WO2024020760A1 - 一种QoS流的控制方法、装置及计算机存储介质 - Google Patents

一种QoS流的控制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2024020760A1
WO2024020760A1 PCT/CN2022/107723 CN2022107723W WO2024020760A1 WO 2024020760 A1 WO2024020760 A1 WO 2024020760A1 CN 2022107723 W CN2022107723 W CN 2022107723W WO 2024020760 A1 WO2024020760 A1 WO 2024020760A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
status information
qos
terminal status
core network
Prior art date
Application number
PCT/CN2022/107723
Other languages
English (en)
French (fr)
Inventor
吴锦花
沈洋
刘建宁
毛玉欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002818.XA priority Critical patent/CN117769853A/zh
Priority to PCT/CN2022/107723 priority patent/WO2024020760A1/zh
Publication of WO2024020760A1 publication Critical patent/WO2024020760A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a QoS flow control method, device and computer storage medium.
  • XR and media services have the characteristics of high throughput, low latency, and high reliability requirements, they require high power consumption on the terminal side, and the battery power of the terminal may affect the user experience.
  • the present disclosure provides a QoS flow control method, device and computer storage medium to match business traffic characteristics and terminal energy consumption management, thereby ensuring business requirements and user experience.
  • a quality of service (QoS) flow control method which can be applied to access network functional entities in a communication system.
  • the method may include: the first core network functional entity receives terminal status information (UE status information) from an application function (AF) entity, and the terminal status information is used to represent the power consumption status of the terminal; the access network functional entity Terminal status information determines the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration; the access network functional entity sends the first QoS configuration to the first core network functional entity, and the first QoS configuration is used for the terminal and the first core At least one of the network function entity, the second core network function entity and the application function entity performs QoS update.
  • UE status information terminal status information
  • AF application function
  • the first core network functional entity may be a session management function (SMF), and the second core network functional entity may be a policy control function (PCF) entity (which may also be described as A PCF entity), the second core network functional entity can be other PCF entities (can also be described as a second PCF entity).
  • the second PCF entity can be understood as one or more PCF entities.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information, including: the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal based on the terminal status information and the alternative QoS configuration.
  • the terminal status management indication in the terminal determines the first QoS configuration.
  • the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information, including: the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal based on the terminal status information and the configured terminal The correlation between the status information and the QoS configuration determines the first QoS configuration.
  • the above method further includes: the access network functional entity receiving the association relationship sent by the second core network functional entity; or the access network functional entity configuring the association relationship according to the local policy and/or operator policy.
  • the above method further includes: the access network functional entity receiving the alternative QoS configuration sent by the second core network functional entity.
  • the access network functional entity receives terminal status information from the application functional entity, including: the access network functional entity receives terminal status information from the second core network functional entity, and the terminal status information is obtained by the application function entity sent to the second core network functional entity.
  • the access network functional entity sends the first QoS configuration to the first core network functional entity, including: the access network functional entity sends a non-access stratum (non access stratum, NAS) message, the NAS message carries the first QoS configuration.
  • NAS non access stratum
  • a QoS flow control method which method can be applied to a second core network functional entity in a communication system.
  • the method includes: the second core network functional entity receives terminal status information sent by the application functional entity, and the terminal status information is used to represent the power consumption status of the terminal; the second core network functional entity transmits the information to the first core network functional entity or the third core network The functional entity sends terminal status information, and the terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration.
  • the third core network functional entity is an access and mobility management function (AMF) entity.
  • AMF access and mobility management function
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the second core network function entity receives terminal status information from the application function entity, including one of the following: the second core network function entity receives the terminal status information sent by the application function entity The terminal status information; the second core network functional entity receives the terminal status information sent by the time sensitive communication and time synchronization function (TSCTSF) entity, and the terminal status information is sent by the application function entity to the TSCTSF entity.
  • TSCTSF time sensitive communication and time synchronization function
  • the application function entity is an untrusted application function entity; the second core network function entity receives terminal status information from the application function entity, including one of the following: the second core network function entity receives the network opening function The terminal status information sent by the (network exposure function, NEF) entity, the terminal status information is sent to the NEF entity by the application function entity; the second core network function entity receives the terminal status information sent by the TSCTSF entity, the terminal status information is sent by the application function entity Sent to the TSCTSF entity through the NEF entity.
  • NEF network exposure function
  • the above method further includes: the second core network functional entity receives the first QoS configuration sent by the first core network functional entity, and the first QoS configuration is sent by the access network functional entity to the first core network functional entity.
  • the second core network functional entity receives the first QoS configuration sent by the first core network functional entity, including: the second core network functional entity sends a subscription request message to the first core network functional entity, and the subscription request The message is used to request the first event associated with the first QoS configuration; when the first event satisfies the event reporting condition, the second core network functional entity receives the first QoS configuration sent by the first core network functional entity.
  • the above method further includes: the second core network functional entity sending a first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the fourth core network functional entity is other PCF (which can also be described as the second PCF entity).
  • the above method further includes: the second core network function entity sends a first QoS configuration to the application function entity, and the first QoS configuration is used by the application function entity to perform QoS update.
  • the above method further includes: the second core network functional entity receiving the alternative QoS configuration sent by the application functional entity.
  • a QoS flow control method which method can be applied to a first core network functional entity in a communication system.
  • the method includes: a first core network functional entity receives a first QoS configuration sent by an access network functional entity, and the first QoS configuration is a terminal-associated QoS determined by the access network functional entity from an alternative QoS configuration based on the terminal status information of the terminal.
  • the first core network functional entity performs at least one of the following: performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration; sends the first QoS configuration, the first QoS to the second core network functional entity
  • the configuration is used for the second core network function entity and/or the application function entity to perform QoS update; and the first QoS configuration is sent to the terminal, and the first QoS configuration is used for the terminal to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the first core network functional entity sends the first QoS configuration to the second core network functional entity, including: the first core network functional entity queries the subscription event and determines the first event associated with the first QoS configuration; When the first event satisfies the event reporting condition, the first core network functional entity sends the first QoS configuration to the second core network functional entity.
  • the first core network functional entity sends the first QoS configuration to the terminal, including: the first core network functional entity sends a NAS message to the terminal, and the NAS message carries the first QoS configuration.
  • a QoS flow control method which method can be applied to application function entities in a communication system.
  • the method includes: an application function entity receives terminal status information sent by a terminal, and the terminal status information is used to represent the power consumption status of the terminal; the application function entity sends terminal status information to a second core network functional entity, and the terminal status information is also used for access
  • the network function entity determines the QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration according to the terminal status information of the terminal.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the application function entity sends terminal status information to the second core network function entity, including one of the following: the application function entity sends terminal status information to the second core network function entity Status information: the application function entity sends terminal status information to the TSCTSF entity, and the terminal status information is also used by the TSCTSF entity to send to the second core network functional entity.
  • the application function entity is an untrusted application function entity; the application function entity sends terminal status information to the second core network function entity, including: terminal status information sent by the application function entity to the NEF entity, terminal status The information is also used by the NEF entity to send to the second core network functional entity, or the terminal status information is also used by the NEF entity to send to the second core network functional entity through the TSCTSF entity.
  • the above method further includes: the application function entity receives the first QoS configuration sent by the second core network function entity; and the application function entity performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • a QoS flow control method which method can be applied to a core network in a communication system.
  • the method includes: receiving terminal status information sent by the terminal, the terminal status information is used to represent the power consumption status of the terminal; sending the terminal status information to the access network functional entity, the terminal status information is also used by the access network functional entity according to the terminal's
  • the terminal status information is determined from the first QoS configuration of the QoS flow associated with the terminal in the alternative QoS configuration.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the above method further includes: receiving the first QoS configuration sent by the access network functional entity; performing at least one of the following: performing QoS update on the QoS flow associated with the terminal according to the first QoS configuration; The first QoS configuration is sent to the terminal, and the first QoS configuration is used by the terminal to perform QoS update.
  • receiving the first QoS configuration sent by the access network functional entity includes: receiving a non-access layer NAS message sent by the access network functional entity, where the NAS message carries the first QoS configuration.
  • receiving the first QoS configuration sent by the access network functional entity includes: receiving the first QoS configuration through a packet data unit session modification process.
  • sending the terminal status information to the access network functional entity includes: sending a NAS message to the access network functional entity, and the NAS message carries the terminal status information.
  • receiving the terminal status information sent by the terminal includes: receiving the terminal status information through a service specific information provision process or an application function entity session establishment process.
  • a QoS flow control method which method can be applied to a core network in a communication system.
  • the method includes: an application function entity receives terminal status information sent by a terminal, and the terminal status information is used to represent the power consumption status of the terminal; the application function entity sends the terminal status information to a second core network functional entity; the second core network functional entity The terminal status information is sent to the access network functional entity, and the terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information of the terminal.
  • the first core network functional entity is the session management function entity SMF
  • the second core network functional entity is the first policy and control function entity PCF
  • the third core network functional entity is the access and mobility management Functional entity AMF.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the second core network functional entity sends the terminal status information to the access network functional entity, including: the second core network functional entity sends the terminal status information to the first core network functional entity; the first core network functional entity The network function entity sends the terminal status information to the access network function entity.
  • the second core network functional entity sends the terminal status information to the access network functional entity, including: the second core network functional entity sends the terminal status information to the third core network functional entity; the third core network functional entity The network function entity sends the terminal status information to the access network function entity.
  • the above method further includes: the first core network functional entity receives the first QoS configuration sent by the access network functional entity; the first core network functional entity performs the QoS flow associated with the terminal according to the first QoS configuration. to perform QoS updates.
  • the above method further includes: the first core network functional entity receiving the first QoS configuration sent by the access network functional entity; the first core network functional entity sending the first QoS configuration to the second core network function Entity; the second core network functional entity performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the above method further includes: the second core network functional entity sends the first QoS configuration to the application functional entity; and the application functional entity performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the above-mentioned core network further includes: a fourth core network functional entity; wherein the second core network functional entity sends the first QoS configuration to the fourth core network functional entity; the fourth core network functional entity
  • the first QoS configuration is to perform QoS updates on the QoS flows associated with the terminal.
  • the fourth core network functional entity is the second PCF.
  • the above method further includes: the first core network functional entity receiving the first QoS configuration sent by the access network functional entity; and the first core network functional entity sending the first QoS configuration to the terminal.
  • a communication device can be an access network functional entity in a communication system or a chip or system-on-chip of an access network functional entity. It can also be a communication device used in a first core network functional entity. Functional modules for implementing the methods described in each of the above embodiments.
  • the communication device can realize the functions performed by the access network functional entities in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the device may include: a receiving module configured to receive terminal status information (UE status information) from an application function (AF) entity, where the terminal status information is used to represent the power consumption status of the terminal; a processing module configured to Determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration according to the terminal status information; the sending module is configured as the access network functional entity to send the first QoS configuration to the first core network functional entity, the first QoS configuration Used for at least one of the terminal, the first core network functional entity, the second core network functional entity and the application functional entity to perform QoS update.
  • UE status information terminal status information
  • AF application function
  • the first core network functional entity may be a session management function (SMF), and the second core network functional entity may be a policy control function (PCF) entity (which may also be described as A PCF entity), the second core network functional entity can be other PCF entities (can also be described as a second PCF entity).
  • the second PCF entity can be understood as one or more PCF entities.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the processing module is configured to determine the first QoS configuration according to the terminal status information and the terminal status management indication in the alternative QoS configuration.
  • the processing module is configured to determine the first QoS configuration based on the terminal status information and the correlation between the terminal status information and the QoS configuration.
  • the receiving module is configured to receive the association relationship sent by the second core network functional entity; or the processing module is configured to configure the association relationship according to local policies and/or operator policies.
  • the receiving module is configured to receive the alternative QoS configuration sent by the second core network functional entity.
  • the receiving module is configured to receive terminal status information from the second core network functional entity, and the terminal status information is sent to the second core network functional entity by the application functional entity.
  • the sending module is configured to send a NAS message to the first core network functional entity, where the NAS message carries the first QoS configuration.
  • a communication device may be the second core network functional entity in the communication system or a chip or system-on-chip of the second core network functional entity. It may also be the second core network functional entity.
  • the functional modules used to implement the methods described in the above embodiments.
  • the communication device can realize the functions performed by the second core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the communication device may include: a receiving module configured to receive terminal status information sent by the application function entity, where the terminal status information is used to represent the power consumption status of the terminal; a sending module configured to send a message to the first core network functional entity or the third The core network functional entity sends terminal status information, and the terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the receiving module is configured to be one of the following: receiving terminal status information sent by the application function entity; receiving terminal status information sent by the TSCTSF entity.
  • the terminal status information Is sent by the application function entity to the TSCTSF entity.
  • the application function entity is an untrusted application function entity;
  • the receiving module is configured to be one of the following: receiving terminal status information sent by the NEF entity, and the terminal status information is sent by the application function entity to the NEF entity ; Receive terminal status information sent by the TSCTSF entity. The terminal status information is sent by the application function entity to the TSCTSF entity through the NEF entity.
  • the receiving module is configured to receive the first QoS configuration sent by the first core network functional entity, and the first QoS configuration is sent by the access network functional entity to the first core network functional entity.
  • the sending module is configured to send a subscription request message to the first core network functional entity, where the subscription request message is used to request a first event associated with the first QoS configuration; the receiving module is configured to When an event satisfies the event reporting condition, the first QoS configuration sent by the first core network functional entity is received.
  • the sending module is configured to send the first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the sending module is configured to send the first QoS configuration to the application function entity, where the first QoS configuration is used by the application function entity to perform QoS update.
  • the receiving module is configured to receive the alternative QoS configuration sent by the application function entity.
  • a communication device may be the first core network functional entity in the communication system or a chip or system-on-chip of the first core network functional entity. It may also be the first core network functional entity.
  • the functional modules used to implement the methods described in the above embodiments.
  • the communication device can realize the functions performed by the first core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the communication device may include: a receiving module configured to receive a first QoS configuration sent by the access network functional entity, where the first QoS configuration is a terminal association determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • the communication device further includes at least one of the following: a processing module configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module configured to send a message to the second core network
  • the functional entity sends the first QoS configuration, which is used by the second core network functional entity and/or the application functional entity to perform QoS update; and sends the first QoS configuration to the terminal, which is used by the terminal to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the processing module is configured to query the subscription event and determine the first event associated with the first QoS configuration; the sending module is configured to send the first event to the second event if the first event satisfies the event reporting condition.
  • the core network functional entity sends the first QoS configuration.
  • the sending module is configured to send a NAS message to the terminal, where the NAS message carries the first QoS configuration.
  • a communication device can be an application function entity in a communication system or a chip or system-on-chip of the application function entity. It can also be an application function entity used to implement the above-mentioned embodiments. function module of the method described above.
  • the communication device can realize the functions performed by the application function entities in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the communication device may include: a receiving module configured to receive terminal status information sent by the terminal, where the terminal status information is used to represent the power consumption status of the terminal; a sending module configured to send the terminal status information to the second core network functional entity, The terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information of the terminal.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the sending module is configured to be one of the following: sending terminal status information to the second core network functional entity; sending terminal status information to the TSCTSF entity. The information is also used by the TSCTSF entity to send to the second core network functional entity.
  • the application function entity is an untrusted application function entity;
  • the sending module is configured to be one of the following: sending terminal status information to the NEF entity.
  • the terminal status information is also used by the NEF entity to send the message to the NEF entity through the TSCTSF entity.
  • the second core network functional entity sends.
  • the receiving module is configured to receive the first QoS configuration sent by the second core network functional entity; the processing module is configured to: according to the first QoS configuration, process the QoS flow associated with the terminal. to perform QoS updates.
  • a communication device such as an access network functional entity, a first core network functional entity, a third core network functional entity, and a fourth core network functional entity application functional entity.
  • the communication device may include: a memory and a processor; the processor is connected to the memory and is configured to execute the computer-executable instructions stored in the memory to implement the above first to fourth aspects and any possible implementation manner thereof.
  • a core network communication system including: a second core network functional entity and an application functional entity; wherein the application functional entity is configured to: receive terminal status information sent by the terminal, the terminal status information Used to represent the power consumption status of the terminal; send terminal status information to the second core network functional entity.
  • the terminal status information is also used by the access network functional entity to determine the third QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information.
  • a QoS configuration the second core network functional entity is configured to: receive terminal status information sent by the application functional entity; and send terminal status information to the access network functional entity.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium; when the instructions are run on a computer, they are used to perform the above-mentioned first to fourth aspects and any of the possibilities thereof.
  • a computer program or computer program product is provided.
  • the computer program product When the computer program product is executed on a computer, the computer implements the above described first to fourth aspects and any possible implementation manner thereof. QoS flow control method.
  • the terminal status information of the terminal is provided to the access network functional entity through the application functional entity (ie, AF entity), so that the access network functional entity can match the service traffic characteristics and terminal energy consumption management according to the terminal status information, that is, according to The power consumption status of the terminal selects the corresponding QoS configuration to ensure business needs and user experience.
  • the terminal status information provided by the application function entity is used as additional information for policy determination, which can reduce the use of wireless interface network resources, especially when resources are limited.
  • the terminal status information of the terminal is provided to the access network functional entity through the application function entity, so that the user's key applications are allowed to run in the power saving mode, thereby improving the user experience and extending the battery life, instead of completely closure.
  • Figure 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure
  • FIG. 3 is an embodiment of the present disclosure
  • Figure 4 is an embodiment of the present disclosure
  • Figure 5 is an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of a business specific information providing process in an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of the AF session establishment process in an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of the PDU session modification process in an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other. For example, without departing from the scope of the embodiments of the present disclosure, “first information” may also be called “second information”, and similarly, “second information” may also be called “first information”. Depending on the context, the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the technical solution of the embodiment of the present disclosure relates to the architecture of a communication system.
  • the communication system may be a 5G communication system or a future evolution communication system.
  • access network functional entities which can also be described as access network functions, access network elements, access network functional components, access network functional modules, etc.
  • core network function core network Function entity
  • At least one core network functional entity is located in the core network (ie 5GC).
  • the terminal is used to report terminal status information (UE status information) indicating its own power consumption status to the core network side; at least one core network functional entity has at least the following functions: providing the received terminal status information to the access network functional entity , receiving the first QoS configuration determined by the access network functional entity for the QoS flow associated with the terminal based on the terminal status information, and performing QoS update on the QoS flow associated with the terminal based on the received first QoS configuration, and, going to the next level
  • the core network functional entity sends the first QoS configuration for the next-level core network functional entity to perform QoS update on the QoS flow associated with the terminal.
  • the above QoS flow is the QoS flow of the first service of the terminal.
  • the first service may include XR service, mobile media service, etc., wherein XR service and mobile media service may also be called XRM service, or may be described as XR ⁇ M service.
  • XR service and mobile media service may also be called XRM service, or may be described as XR ⁇ M service.
  • the above QoS flow is the QoS flow of the first service of the terminal.
  • the first service may include XR service, mobile media service, etc., wherein XR service and mobile media service may also be called XRM service, or may be described as XR ⁇ M service.
  • FIG. 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure.
  • the above-mentioned 5G communication system 100 may include a 5G Radio Access Network (RAN) and a 5G Core Network (5GC).
  • the 5G wireless access network may include next generation radio access network (NG RAN).
  • NG RAN 101 communicates with the terminal (or terminal device) 102 through the Uu interface.
  • the 5G core network may include: at least one core network functional entity mentioned above, such as access and mobility management function (AMF) entity 1031, SMF entity 1032, PCF entity 1033, UPF entity 1034, AF entity 1035, NEF entity 1036, TSCTSF entity 1037, etc.
  • AMF access and mobility management function
  • the above-mentioned communication system may also include other network functional entities (which may also be called network elements, network devices, etc.), which are not specifically limited in the embodiment of the present disclosure.
  • both the third-party (3rd) AF entity and the operator (operator) AF entity belong to AF entities.
  • third-party AF entities such as instant messaging service servers, electronic payment service servers, etc.
  • operator AF entities such as the agent-call session control function in the IP multimedia system) proxy-call session control function, P-CSCF) entity
  • third-party AF entities need to pass NEF entities when interacting with PCF entities.
  • the above operator AF entity can also be described as a trusted or trusted AF entity, and the above third party AF can also be described as an untrusted or untrusted AF entity.
  • PCF PCF
  • SMF SMF
  • Other entities are similar and will not be listed one by one.
  • N3 Communication interface between UPF 1034 and NG RAN 101.
  • N4 The interface between SMF 1032 and UPF 1034, used to transfer information between the control plane and the user plane (user plan, UP), including controlling the delivery of UP-oriented forwarding rules, QoS control rules, traffic statistics rules, etc. Report UP information.
  • N2 The interface between AMF 1031 and NG RAN 101, used to transmit wireless bearer control information from the core network side to NG RAN 101, etc.
  • N1 The interface between AMF 1031 and terminal 102, has nothing to do with access, and is used to transmit QoS control rules to terminal 102, etc.
  • the communication between any two entities can use service-oriented communication.
  • the interfaces Nnef and Npcf used for communication between NEF and PCF are both service-oriented interfaces.
  • the interfaces Naf, Ntsctsf, Namf and Nsmf are all service-oriented interfaces.
  • the above-mentioned terminal may be a terminal device with a wireless communication function and a wireless sensing function, and may also be called user equipment (UE).
  • Terminals can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or an industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal may also be a handheld device, a vehicle-mounted device, a wearable device, a computing device or other processing device connected to a wireless modem, etc., with wireless communication functions and wireless sensing functions.
  • the terminal device can also be called by different names in different networks, for example: terminal device, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • terminal device access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • the above-mentioned access network functional entity may be a functional entity used by the access network side to support communication terminals to access the wireless communication system.
  • it can be the next generation access network functional entity (next generation NodeB, gNB), transmission reception point (TRP), relay node (relay node), access point (access point, AP) etc.
  • each functional entity and interface are only exemplary, and not all functions of each functional entity are necessary when applied in the embodiments of the present disclosure.
  • the functional entities of the access network and core network may be physical physical devices or virtualized devices, which are not limited here.
  • the communication system in the embodiment of the present disclosure may also include other devices not shown in Figure 1, which are not limited here.
  • XR and media (extend reality and media, XRM) business In 5G networks, mobile media services, XR, cloud games, video-based machine or drone remote control, etc. are expected to contribute more and more traffic to 5G networks.
  • XR and media (extend reality and media, XRM) business Especially XR and media (extend reality and media, XRM) business.
  • XRM business has the characteristics of high throughput, low latency, and high reliability requirements, and requires high power consumption on the terminal side. The battery power of the terminal may affect the user experience.
  • connection management connection management
  • CM connection management
  • MICO mobile initiated connection only
  • extended DRX extended discontinuous reception
  • eDRX extended discontinuous reception
  • the terminal device in the communication system may be UE as an example
  • the first core network functional entity may be SMF as an example
  • the second core network functional entity may be PCF as an example
  • the third core network functional entity may be PCF as an example
  • the core network functional entity may take AMF as an example
  • the fourth core network functional entity may take other PCFs as an example
  • the application function entity may be AF as an example.
  • the terminal, access network functional entity, first core network functional entity, second core network functional entity, third core network functional entity, fourth core network functional entity and application functional entity are also It may be other functional entities with the same or similar functions and connection relationships, which are not limited in this embodiment of the disclosure.
  • embodiments of the present disclosure provide a QoS flow control method.
  • FIG. 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to an access network functional entity (such as RAN)
  • the QoS flow control method may include S201 to S204.
  • the access network functional entity receives the terminal status information (UE status information) sent from the application functional entity (such as AF).
  • UE status information the terminal status information sent from the application functional entity (such as AF).
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the terminal status information includes one or more parameters related to the UE performance.
  • the UE status information may include at least one of the following: UE battery level, UE battery life, UE's power supply mode (powered mode), UE's CPU load, UE overheating status (UE overheating status).
  • parameters related to UE power consumption may include other parameters.
  • the power supply mode of the UE may include: battery-powered mode (battery-powered) and power supply mode (mains/wall-powered).
  • the battery power supply mode refers to using the built-in battery of the UE to provide power
  • the power supply mode refers to using a power adapter to connect to a power source such as a wall socket, a mobile socket, etc., to power the UE.
  • the registered UE can report its own terminal status information to the AF through the application layer, and then the AF reports it to the PCF.
  • PCF sends the terminal status information to the access network functional entity through AMF or SMF.
  • S201 can be reused with service specific information provisioning procedure, AF session establishment procedure (Setting up an AF session with required QoS procedure), etc.
  • S201 can also be reused in other processes, and this is not specifically limited in the embodiments of the present disclosure.
  • S201 can be Nnef_XRMServiceParameter service, Nnef_AFsessionWithQoS_Create request, etc.
  • the access network functional entity determines the first QoS configuration (QoS profile) of the QoS flow associated with the UE from the alternative QoS configuration according to the terminal status information.
  • QoS configuration can also be understood as QoS level, and QoS configuration and QoS level are in one-to-one correspondence.
  • the PCF can send one or more alternative QoS configurations (alternative QoS profile) to the access network functional entity.
  • the access network functional entity can select the QoS configuration of the QoS flow associated with the UE (i.e., the first QoS configuration) from the alternative QoS configurations according to the power consumption status of the UE, thereby according to the QoS Configure QoS updates.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service, an XRM service group (service group) or a multi-modal data service (multiple data service).
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the access network functional entity can determine the corresponding QoS configuration for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF may determine the corresponding QoS configuration for a service of the UE (ie, the first service) based on the terminal status information.
  • "OK” can be described as “setting”, “generating”, “updating”, etc.
  • the above alternative QoS configuration may include at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guarantee Bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • packet delay budget packet delay budget
  • packet error rate packet error rate
  • uplink guaranteed bit rate uplink guaranteed bit rate
  • DL guaranteed bit rate downlink guarantee Bit rate
  • average window averaging window
  • maximum data burst volume maximum data burst volume
  • the above-mentioned packet delay budget refers to the packet delay budget corresponding to the alternative QoS configuration
  • the above-mentioned packet error rate refers to the packet error rate corresponding to the alternative QoS configuration
  • the above-mentioned uplink guaranteed bit rate refers to the uplink guarantee corresponding to the alternative QoS configuration.
  • the above-mentioned downlink guaranteed bit rate refers to the downlink guaranteed bit rate corresponding to the alternative QoS configuration
  • the above-mentioned average window refers to the average window corresponding to the alternative QoS configuration
  • the above-mentioned maximum data burst volume refers to the maximum corresponding to the alternative QoS configuration Data burst amount
  • the above terminal status management indication is information indicating whether the alternative QoS configuration is used for terminal status management.
  • the QoS parameters i.e., alternative QoS parameter sets
  • the QoS parameters i.e., alternative QoS parameter sets
  • the extended alternative QoS configuration can be applied to GBR QoS flows can also be applied to non GBR QoS flows.
  • the PCF can indicate to the access network functional entity whether the alternative QoS configuration is used for terminal status management by whether to carry the terminal status management indication in the alternative QoS configuration.
  • the information that the alternative QoS configuration carries the terminal status management indication indicates that the alternative QoS configuration is used for terminal status management
  • the alternative QoS configuration does not carry the information that the terminal status management indication indicates that the alternative QoS configuration is not used for terminal status management.
  • the PCF may indicate to the access network functional entity whether the alternative QoS configuration is used for terminal status management through the value of the terminal status management indication.
  • the terminal status management indication taking a first value indicates that the alternative QoS configuration is used for terminal status management information
  • the terminal status management indication taking a second value indicates that the alternative QoS configuration is not used for terminal status management information.
  • the PCF can also use other methods to set the terminal status management indication, which is not specifically limited in the embodiments of the present disclosure.
  • the access network functional entity can determine whether the alternative QoS configuration is used for terminal status management according to the terminal status management indication, and then obtain the configuration for terminal status management based on the terminal status information.
  • the QoS configuration that determines the QoS flow associated with the UE in the alternative QoS configuration.
  • the PCF can send alternative QoS configurations for terminal status management to the access network functional entity. Then, after receiving these alternative QoS configurations, the access network functional entity will know the received alternative QoS. The configuration is used for terminal status management, and then S202 is executed.
  • the PCF may send one or more alternative QoS configurations to the access network functional entity in the form of a list (such as alternative QoS (alternative QoS)).
  • alternative QoS alternative QoS
  • the access network functional entity may also determine the first QoS configuration based on the terminal status information and the association between the terminal status information and the QoS configuration.
  • the access network functional entity or PCF can configure the association between terminal status information and QoS configuration.
  • the access network functional entity can determine the QoS configuration of the QoS flow associated with the UE based on the terminal status information from the AF by querying the association between the terminal status information and the QoS configuration.
  • the PCF can send the association between terminal status information and QoS configuration to the access network functional entity; or, the access network functional entity configures the above-mentioned association according to local policies and/or operator policies.
  • the access network functional entity can also obtain the above-mentioned association relationship through other methods, and the embodiments of the present disclosure do not specifically limit this.
  • S203 The access network functional entity performs QoS update based on the first QoS configuration.
  • the access network functional entity determines the corresponding first QoS configuration according to the power consumption status of the UE, it uses the first QoS configuration to perform QoS updates on the QoS flow associated with the UE.
  • the access network functional entity sends the first QoS configuration to the SMF.
  • the access network functional entity may send the first QoS configuration to the UE, 5GC (including SMF and/or PCF) and AF.
  • the access network functional entity can send the first QoS configuration to the UE and 5GC (including SMF and/or PCF) by initiating a packet data unit (PDU) session modification procedure (PDU session modification procedure). and AF.
  • PDU session modification procedure PDU session modification procedure
  • the access network functional entity first sends the first QoS configuration to the SMF, and then the SMF sends it to the PCF.
  • the PCF sends the received first QoS configuration to the AF.
  • the SMF can also configure the first QoS to the UE.
  • the UE, PCF and AF may perform QoS update according to the first QoS configuration.
  • the access network functional entity when it sends the first QoS configuration to the PCF through SMF in S204, it may also send the terminal status information corresponding to the first QoS configuration (that is, the terminal status information from the AF) to PCF, so that the PCF can decide whether the first QoS configuration is suitable for the current power consumption state of the UE based on the latest terminal status information received by itself and the terminal status information sent by the access network functional entity, thereby determining whether to provide the first QoS configuration to the access network functional entity. More suitable alternative QoS configurations, adjust QoS policies, etc., thereby optimizing QoS control.
  • the access network functional entity sends the first QoS configuration to the SMF through a NAS message (such as N2 SM information).
  • a NAS message such as N2 SM information
  • S203 and S204 can be executed at the same time, or S203 can be executed first and then S204, which is not specifically limited in this embodiment of the disclosure.
  • FIG 3 is a schematic flowchart of the implementation of the second QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to the second core network functional entity (such as PCF ) side, the QoS flow control method may include S301 to S305.
  • the PCF receives the terminal status information (UE status information) sent by the application function entity (such as AF).
  • the application function entity such as AF
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the terminal status information includes one or more parameters related to the UE performance.
  • the UE status information may include at least one of the following: UE battery level, UE battery life, UE's power supply mode (powered mode), UE's CPU load, UE overheating status (UE overheating status).
  • parameters related to UE power consumption may include other parameters.
  • the power supply mode of the UE may include: battery-powered mode (battery-powered) and power supply mode (mains/wall-powered).
  • the battery power supply mode refers to using the built-in battery of the UE to provide power
  • the power supply mode refers to using a power adapter to connect to a power source such as a wall socket, a mobile socket, etc., to power the UE.
  • the registered UE can report its own terminal status information to the AF through the application layer, and then the AF reports it to the PCF.
  • the AF may, but is not limited to, send terminal status information to the PCF through the following paths.
  • AF directly sends terminal status information to PCF. It can be understood that AF sends terminal status information to PCF through Naf and Npcf. At this time, AF is trusted AF.
  • AF sends terminal status information to PCF through NEF. It can be understood that AF sends terminal status information to NEF through Naf and Nnef, and NEF sends terminal status information to PCF through Nnef and Npcf. At this time, AF is an untrusted AF.
  • AF sends terminal status information to PCF through TSCTSF. It is understandable that AF sends terminal status information to TSCTSF through Naf and Ntsctsf, and TSCTSF sends terminal status information to PCF through Ntsctsf and Npcf.
  • AF is a trusted AF
  • the first service is a time-sensitive service.
  • AF sends terminal status information to PCF through NEF and TSCTSF. It can be understood that AF sends the terminal status information to NEF through Naf and Nnef, and NEF sends the terminal status information to TSCTSF through Nnef and Ntsctsf. TSCTSF then sends the terminal status information to PCF through Ntsctsf and Npcf. At this time, AF is not Trusted AF, the first service is time-sensitive service.
  • one or more NFs can be set between the AF and the PCF, such as the above-mentioned NEF, TSCTSF, etc.
  • different transmission paths may exist for terminal status information. It should be noted that the above is only an example of the transmission path of the terminal status information, and does not limit the transmission method and transmission path of the terminal status information.
  • the terminal status information can also be transmitted from the AF to the PCF using other paths.
  • the AF when the AF is an untrusted AF, the AF can provide terminal status information to the NEF, and the terminal status information is carried in the AF request message.
  • the AF request message may include: NEF parameter creation request message (such as Nnef_ParameterProvision_Create Request), NEF parameter update request message (such as Nnef_ParameterProvision_Update Request), AF session resource request message (such as Nnef_AFsessionWithQoS_Create request), etc.
  • NEF authorizes AF's request and performs related mapping. NEF then provides terminal status information to PCF.
  • NEF can also provide terminal status information to one or more PCFs corresponding to the multi-UEs.
  • NEF may send terminal status information to the corresponding PCF according to the UE's identity or group identity.
  • PCF may subscribe to NEF for events associated with terminal status information. When the event meets the reporting conditions, PCF receives the terminal status information reported by NEF.
  • NEF can also report service QoS update information (Service QoS update) to PCF.
  • NEF after receiving the terminal status information sent by the AF, NEF can also send the terminal status information to the user data register (user data repository, UDR) functional entity or unified data management (unified data management, UDM) ) functional entity, used as AMF associated parameter storage, SMF associated parameter storage or business characteristic parameter storage of application data.
  • user data register user data repository, UDR
  • unified data management unified data management
  • the PCF may also receive alternative QoS configurations sent by the AF. Further, the PCF can determine the alternative QoS configuration to be sent to the access network functional entity according to the QoS policy.
  • PCF sends terminal status information to SMF or AMF.
  • the terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration.
  • the PCF can provide it to the access network functional entity through SMF or AMF.
  • S302 can be reused with service specific information provisioning procedure, AF session establishment procedure (Setting up an AF session with required QoS procedure), etc.
  • AF session establishment procedure Setting up an AF session with required QoS procedure
  • S302 can be Nnef_XRMServiceParameter service, Nnef_AFsessionWithQoS_Create request, etc.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service or an XRM service group.
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the PCF can determine corresponding QoS parameters for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF may determine corresponding QoS parameters for a service of the UE (ie, the first service) based on the terminal status information.
  • "OK” can be described as “setting”, “generating”, “updating”, etc.
  • PCF receives the first QoS configuration from SMF.
  • the SMF can provide it to the PCF.
  • the PCF sends a subscription request message to the SMF.
  • the subscription request message is used to request the first event associated with the first QoS configuration.
  • the PCF receives The first QoS configuration sent by SMF.
  • the PCF can subscribe to the SMF for events associated with the first QoS configuration. After receiving the first QoS configuration, the SMF queries the subscription events and confirms the events associated with the first QoS configuration. When the event meets the reporting conditions, the SMF sends the first QoS configuration to the PCF.
  • the PCF may also use other methods to obtain the first QoS configuration from the SMF, which is not specifically limited in this embodiment of the disclosure.
  • PCF performs QoS update based on the first QoS configuration.
  • the PCF uses the first QoS configuration to perform QoS updates on the QoS flow associated with the UE.
  • PCF sends the first QoS configuration to AF for AF to perform QoS update.
  • the PCF may send the first QoS configuration to the AF with reference to the above-mentioned first to fourth methods.
  • S304 and S305 can be executed at the same time, or S304 can be executed first and then S305, which is not specifically limited in this embodiment of the disclosure.
  • the PCF may also send the first QoS configuration to other PCFs, where the first QoS configuration is used by other PCFs to perform QoS updates on the QoS flow.
  • PCF can be recorded as PCF0
  • PCF can provide the first QoS configuration to other PCFs (such as PCF 1, PCF 2, PCF 3,...) , for other PCFs to execute the QoS update process described in S304 above.
  • PCF 0 After PCF 0 receives the first QoS configuration, it can directly send it to other PCFs such as PCF 1, PCF 2, and PCF 3. Alternatively, other PCFs such as PCF 1, PCF 2, PCF 3, etc. can also subscribe to PCF 0 for events associated with the first QoS configuration (i.e., the first event). When the first event meets the reporting conditions, PCF 0 sends the first QoS configuration to other PCFs such as PCF 1, PCF 2, and PCF 3. Furthermore, all PCFs subscribe to NEF for events associated with the first QoS configuration. When the events meet the reporting conditions, NEF sends the first QoS configuration to all PCFs. Of course, multiple PCFs can also obtain the first QoS configuration through other methods, which are not specifically limited in this embodiment of the disclosure.
  • embodiments of the present disclosure also provide a QoS flow control method.
  • Figure 4 is a schematic flowchart of the implementation of the third QoS flow control method in an embodiment of the present disclosure. As shown in Figure 4, in this embodiment, the QoS flow control method is applied to the first core network functional entity (such as SMF ) side, the QoS flow control method may include S401 to S404.
  • the QoS flow control method may include S401 to S404.
  • the SMF receives the first QoS configuration sent by the access network functional entity.
  • the first QoS configuration is the QoS configuration of the QoS flow associated with the UE determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the UE.
  • the access network functional entity determines the corresponding first QoS configuration according to the terminal status information provided by the AF, it sends the first QoS configuration to the SMF, and the SMF forwards it to the UE, 5GC and AF.
  • the access network function entity may send the first QoS configuration to the SMF through a NAS message (such as N2 SM information).
  • a NAS message such as N2 SM information
  • the SMF may perform at least one of S402 to S404.
  • S402 SMF performs QoS update based on the first QoS configuration.
  • the SMF sends the first QoS configuration to the PCF.
  • the first QoS configuration is used by the PCF body and/or AF to perform QoS updates;
  • the SMF sends the first QoS configuration to the UE, where the first QoS configuration is used by the terminal to perform QoS update.
  • the execution process of SMF can be referred to the description of the SMF execution process in the above embodiments of Figures 2 to 4. For the sake of simplicity of the description, no further description is given here.
  • embodiments of the present disclosure also provide a QoS flow control method.
  • Figure 5 is a schematic flowchart of the implementation of the fourth QoS flow control method in the embodiment of the present disclosure. As shown in Figure 5, this QoS flow control method can be applied to the application function entity (such as AF) side to control the QoS flow.
  • the method may include S501 to S502.
  • the AF receives the terminal status information sent by the UE.
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the UE After the UE registers with the network, it selects PCF to complete AM session association. The UE sends terminal status information to the AF.
  • the AF sends terminal status information to the PCF.
  • the terminal status information is also used by the access network functional entity to determine the above-mentioned first QoS configuration.
  • the AF may, but is not limited to, send terminal status information to the PCF through the following paths.
  • AF directly sends terminal status information to PCF. It can be understood that AF sends terminal status information to PCF through Naf and Npcf. At this time, AF is trusted AF.
  • AF sends terminal status information to PCF through NEF. It can be understood that AF sends terminal status information to NEF through Naf and Nnef, and NEF sends terminal status information to PCF through Nnef and Npcf. At this time, AF is an untrusted AF.
  • AF sends terminal status information to PCF through TSCTSF. It is understandable that AF sends terminal status information to TSCTSF through Naf and Ntsctsf, and TSCTSF sends terminal status information to PCF through Ntsctsf and Npcf.
  • AF is a trusted AF
  • the first service is a time-sensitive service.
  • AF sends terminal status information to PCF through NEF and TSCTSF. It can be understood that AF sends the terminal status information to NEF through Naf and Nnef, and NEF sends the terminal status information to TSCTSF through Nnef and Ntsctsf. TSCTSF then sends the terminal status information to PCF through Ntsctsf and Npcf. At this time, AF is not Trusted AF, the first service is time-sensitive service.
  • one or more NFs can be set between the AF and the PCF, such as the above NEF, TSCTSF, etc.
  • different transmission paths may exist for terminal status information. It should be noted that the above is only an example of the transmission path of the terminal status information, and does not limit the transmission method and transmission path of the terminal status information.
  • the terminal status information can also be transmitted from the AF to the PCF using other paths.
  • the AF when the AF is an untrusted AF, the AF can provide terminal status information to the NEF, and the terminal status information is carried in the AF request message.
  • the AF request message may include: NEF parameter creation request message (such as Nnef_ParameterProvision_Create Request), NEF parameter update request message (such as Nnef_ParameterProvision_Update Request), AF session resource request message (such as Nnef_AFsessionWithQoS_Create request), etc.
  • NEF authorizes AF's request and performs related mapping. NEF then provides terminal status information to PCF.
  • NEF can also provide terminal status information to one or more PCFs corresponding to the multi-UEs.
  • NEF may send terminal status information to the corresponding PCF according to the UE's identity or group identity.
  • PCF may subscribe to NEF for events associated with terminal status information. When the event meets the reporting conditions, PCF receives the terminal status information reported by NEF.
  • NEF can also report service QoS update information (Service QoS update) to PCF.
  • the NEF after receiving the terminal status information sent by the AF, can also send the terminal status information to the UDR or UDM as a service characteristic parameter for AMF associated parameter storage, SMF associated parameter storage or application data. storage.
  • the AF receives the first QoS configuration sent by the PCF.
  • the AF sends a subscription request message to the PCF.
  • the subscription request message is used to request the first event associated with the first QoS configuration.
  • the AF receives The first QoS configuration sent by PCF.
  • S504 AF performs QoS update based on the first QoS configuration.
  • the execution flow of AF can be referred to the description of the execution flow of AF in the above embodiments of FIGS. 2 to 4. For the sake of simplicity of the description, no further description is given here.
  • the AF entity provides terminal status information of the UE to the access network functional entity, so that the access network functional entity can match the service traffic characteristics and terminal energy consumption management according to the terminal status information, that is, according to the power consumption of the terminal Select the corresponding QoS configuration according to the status to ensure business requirements and user experience.
  • the terminal status information provided by the AF is used as additional information for policy determination, which can reduce the use of wireless interface network resources, especially when resources are limited.
  • the AF provides terminal status information of the UE to the access network functional entity, which can support the use of network resources according to the capabilities of the terminal.
  • the application function entity provides terminal status information of the UE to the access network function entity, allowing the user's key applications to be run in the power saving mode, thereby improving the user experience and extending battery life, instead of completely closure.
  • the AF can pass the UE status information to the PCF through the service-specific information provision process, and then the PCF passes it to the RAN through the AMF.
  • Figure 6 is a schematic diagram of a process for providing business specific information in an embodiment of the present disclosure. Referring to Figure 6, the above process may include:
  • the UE has registered with the network and selected PCF to complete the mobility management session (AM session) association.
  • the PCF subscribes to at least one of the following notifications from the UDM based on the contract information or business policy (such as QoS requirements) of the UE or the first service (such as XRM service or multimodal data Service): the change notification of the UE status information, the first service Notifications of changes to relevant policies and changes to contract information for the first business.
  • the first service XRM service or XRM service Group
  • multiple PCFs such as PFCx
  • AF triggers Nnef_XRMServiceParameter service and creates an AF request message, which contains UE status information.
  • the AF request message may also include an XRM service identifier or an XRM service group identifier.
  • AF provides specific parameters of the first service (such as XRM service or multiple data service specific parameters) to single or multiple UEs related to the above services through Nnef_XRMServiceParameter service.
  • the information sent by AF includes service description information (Service Description), service parameters (Service Parameters), UE/Group UE and subscription events (Subscription to events). Among them, specifically:
  • Service Description identifies XRM service or XRM data Service; it can be identified by a combination of DNN (data network name) and S-NSSAI (single network slice selection support information), or XRM ID (XRM business identification); or AF- Service-Identifier (AF service identification) or external Application Identifier (server identification) to represent.
  • DNN data network name
  • S-NSSAI single network slice selection support information
  • XRM ID XRM business identification
  • AF- Service-Identifier AF service identification
  • server identification external Application Identifier
  • Service Parameters information indicated by AF for business strategies associated with XRM services or multi-mode data services and QoS decisions. For example, it includes at least one of the following: application traffic of XRM business or multi-modal data business, rule list of UE policy and other parameters, business group ID (Group ID), or combination of DNN and S-NSSAI, session and service continuity continuity, SSC) mode, alternative QoS (Alternative QoS) parameters and priorities, and the selection priority of the corresponding rules (such as the corresponding positioning or time window priority, the corresponding access type or routing priority, etc.).
  • AF subscribes to notifications about the execution or changes of SM policy, AM policy or UE policy results.
  • AF sends the request message to NEF (Nnef_XRMServiceParameter_Create/Update/Delete Request).
  • NEF authorizes the AF request message.
  • NEF performs relevant mapping, including external to CN identification mapping.
  • the message carries UE status information and/or alternative QoS configuration (such as Alternative QoS parameters and priorities).
  • NEF stores UE status information and/or Alternative QoS parameters and priorities to UDR/UDM, which can be stored as AMF associated parameters, or SMF associated parameters, or business characteristic parameters of application data.
  • NEF may improve corresponding service parameters based on local configuration.
  • NEF can combine the subscription information to confirm whether the requested service characteristics can be authorized and store the corresponding parameters in the UDR for the XRM service or multimodal data Service of a single UE or a Group of multiple UEs.
  • the NEF can transmit UE status information) and/or Alternative QoS parameters and priorities, and/or related service parameters to the PCF, and perform corresponding authorization in each PCF, as well as decision-making or updating of policies and rules.
  • PCF stores the corresponding information in the UDR based on the request authorization result. (It can be directly transmitted to the group-related PCF by NEF according to the group ID, or it can be stored in UDM and transmitted to the group-related PCF through a subscription report)
  • the subscription data of UE group members is associated through XRM service Indication or Group ID, and the Group data of Group UE remains consistent (such as service QoS, access and data routing characteristic parameters).
  • PCF can subscribe to relevant XRM service or multimodal data related event triggers through NEF, such as UE status information, Service QoS update, UE relocation, PCF change, etc.
  • PCF obtains the corresponding UE status information by receiving NEF report, (optionally executing QoS update and other policy coordination (for example, in XRM service or multimodal data Group, if the QoS characteristic parameters of UE1 change, an Event report is triggered to NEF, Forward to the corresponding other UE in the XRM service or multimodal data Group, or the PCF associated with other Application traffic of the same UE, and execute the corresponding Session Update)
  • QoS update and other policy coordination for example, in XRM service or multimodal data Group, if the QoS characteristic parameters of UE1 change, an Event report is triggered to NEF, Forward to the corresponding other UE in the XRM service or multimodal data Group, or the PCF associated with other Application traffic of the same UE, and execute the corresponding Session Update
  • NEF returns the creation request response message (Nnef_XRMSErviceParameter_Create/Update/Delete Response) to AF.
  • PCF receives the UDR/UDM contract information change notification.
  • the PCF sends the obtained UE status information to the AMF, and the AMF notifies the RAN for the (R)AN to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information.
  • PCF sends the relevant execution results to AF (Npcf_EventExposure_Notify) through NEF.
  • AF EventExposure_Notify
  • the PCF update is changed to the UDR, triggering the serving PCF execution policy change and coordination of the XRM service group-related UE.
  • the PCF can directly trigger other PCFs to perform QoS changes; or after the PCF stores the UE status information/XRM service group policy to the UDM, it triggers the subscription of the UDM/NEF UE status information information and reports it to the corresponding PCF, and performs related PCF UE status information acquisition, or direct XRM service group policy changes.
  • NEF after NEF receives the notification, it first performs mapping of internal and external related parameters, and then reports the relevant status to AF (Nnef_ServiceParameter_Notify).
  • AF can pass the UE status information to PCF through the AF session establishment process, and then PCF passes it to RAN through SMF.
  • FIG. 7 is a schematic diagram of the AF session establishment process in an embodiment of the present disclosure. Referring to Figure 7, the above process may include:
  • AF sends an AF session resource request. For example, create an AF request message through Nnef_AFsessionWithQoS_Create request. AF carries UE status information in the request message.
  • the above request message may also include at least one of the following: Alternative QoS, XRM service group information, UE address/UE Identifier, AF Identifier Application ID, QoS flow description information (Flow description(s)), DNN, S -NSSAI, QoS parameters and other corresponding information.
  • the Group ID can be used to identify all flows in the XRM service group.
  • AF sends a request message to NEF (Nnef_AFsessionWithQoS_Create request), and the request message carries UE status information.
  • the request message also carries Alternative QoS.
  • NEF authorizes the AF request, and NEF performs related mappings, including external to CN identification mapping.
  • NEF authorizes the AF request, and decides whether to call TSCTSF or send it directly to PCF based on the parameters provided by AF.
  • PCF can receive information provided by AF from NEF or TSCTSF.
  • NEF triggers Npcf_PolicyAuthorization_Create request and sends the authorized AF request to PCF, which carries UE status information.
  • Alternative QoS for PCF policy decision-making
  • XRM service group information can also be carried.
  • NEF triggers the session update of the corresponding data stream of the XRM service group based on the execution in S701.
  • NEF stores the requested information into UDR/UDM (Npcf_Policy Authorization_Create request (UE status information)).
  • NEF stores UE status information into UDR/UDM, which can be stored as AMF associated parameters, SMF associated parameters, or business characteristic parameters of application data.
  • the NEF can transmit UE status information and/or related service parameters to the PCF, and perform corresponding authorization in each PCF, as well as decision-making or updating of policies and rules.
  • PCF stores the corresponding information in the UDR based on the request authorization result. (It can be directly transmitted to the group-related PCF by NEF according to the group ID, or it can be stored in UDM and transmitted to the group-related PCF through a subscription report)
  • the subscription data of UE group members is associated through XRM service Indication or Group ID, and the Group data of Group UE remains consistent (such as service QoS, access and data routing characteristic parameters).
  • PCF can subscribe to XRM service or multimodal data related events through NEF, such as UE status information, Service QoS update, UE relocation, PCF change, etc.
  • PCF obtains the corresponding UE status information by receiving reports from NEF.
  • PCF performs coordination of subsequent QoS updates and other strategies (for example, in XRM service or multimodal data Group, if the QoS characteristic parameters of UE1 change, an event is triggered Report to NEF, forward to other corresponding UEs in the XRM service or multimodal data Group, or PCF associated with other application traffic of the same UE, and perform corresponding session updates)
  • PCF makes strategic decisions. PCF decides whether updated or new policy information needs to be sent to SMF.
  • PCF generates or updates Policy Control and Charging (PCC) rules based on the UE status information provided by NEF.
  • PCF triggers Npcf_SMPolicyControl_UpdateNotify to update the policy information of the corresponding PDU session of SMF, including PCC rules and QoS policies related to AF requests.
  • PCC Policy Control and Charging
  • PCF sends Npcf_PolicyAuthorization_Create response message to NEF.
  • NEF sends Nnef_AFsessionWithQoS_Create response message to AF, which carries the above QoS configuration to inform whether the request is authorized.
  • PCF triggers the Npcf_SMPolicyControl_UpdateNotify operation based on the possibly updated policy information of the SMF PDU session.
  • This update includes information provided by the AF in S701 and mapped by the PCF to a specific PDU session.
  • the PCF sends the obtained UE status information to the SMF.
  • SMF uses Npcf_SMPolicyControl_UpdateNotify response to confirm PCF's request.
  • the SMF triggers the PDU session modification process, which will allow the (R)AN to determine the QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information.
  • the RAN can pass the first QoS configuration to the UE, 5GC, and AF through the PDU session modification process.
  • FIG 8 is a schematic diagram of the PDU session modification process in an embodiment of the present disclosure. Referring to Figure 8, the above process may include:
  • N2 SM information includes the QFI and an indication that the QoS target for this QoS flow cannot be achieved or can be achieved again.
  • the N2 SM information indicates a reference to an alternative QoS profile that matches the QoS parameter values (optionally, and corresponding UE status) currently being met by the NG-RAN.
  • AMF calls Nsmf_PDUSession_UpdateSMContext (SM context ID, N2 SM information). If PCF has subscribed to the event, SMF reports this event to PCF for each PCC rule for which notification control is set.
  • SMF may need to report some subscription events to PCF by executing the SM policy association modification process initiated by SMF. If dynamic PCC is not deployed, SMF may apply local policies to decide whether to change the QoS profile.
  • SMF responds to AMF through Nsmf_PDUSession_UpdateSMContext Response([N2 SM information(PDU Session ID, QFI(s), QoS Profile(s), [Alternative QoS Profile(s)], Session-AMBR], [ CN Tunnel Info(s)]), N1 SM container(PDU Session Modification Command(PDU Session ID, QoS rule(s), QoS rule operation, QoS Flow level QoS parameters If the QoS flow related to the QoS rule is required, Session-AMBR , [Always-on PDU Session Granted], [Port Management Information Container], [corresponding UE status]))).
  • the alternative QoS configuration file is only valid for modifications initiated by AN.
  • the N2 SM information carries the information that the AMF should provide to (R)AN. It may include QoS profiles and corresponding QFIs to notify the (R)AN to add or modify one or more QoS flows, and may include corresponding UE status.
  • the N1 SM container carries the PDU session modification command that the AMF should provide to the UE. It may include QoS rules, QoS flow levels (QoS numbers (if required) for the QoS flows associated with the QoS rules and corresponding QoS rule operations and QoS flow level QoS parameter operations to notify the UE of one or more QoS additions, Delete or modify the rule. It can include the corresponding UE status.
  • the SMF may need to transparently send a PDU session modification command through the RAN to notify the UE of the QoS parameters currently being enforced by the RAN (i.e. 5QI, GFBR, MFBR) changes.
  • the N2 SM information is not included in Namf_Communication_N1N2MessageTransfer.
  • AMF can send N2 ([N2 SM information received from SMF], NAS message (PDU Session ID, N1 SM container (PDU Session Modification Command)) message to (R)AN.
  • the (R)AN may issue a specific signaling exchange with the UE related to the information received from the SMF.
  • RRC connection reconfiguration may occur when the UE modifies the necessary (R)AN resources related to the PDU session, or if the N1 SM container is received from the AMF in step S804, the RAN only N1 SM container is transmitted to the UE.
  • FIG. 9 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • the communication device 900 may include: a processing module 901; The receiving module 902 and the sending module 903.
  • the communication device 900 can be an access network functional entity in the communication system or a chip or system-on-chip of the access network functional entity. It can also be a first core network functional entity used to implement each of the above. Functional module of the method described in the embodiment.
  • the communication device 900 can implement the functions performed by the access network functional entities in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 902 is configured to receive terminal status information from the application function entity, and the terminal status information is used to represent the power consumption status of the terminal; the processing module 901 is configured to determine from the alternative QoS configuration according to the terminal status information.
  • the first QoS configuration of the QoS flow associated with the terminal; the sending module 903 is configured as the access network functional entity to send the first QoS configuration to the first core network functional entity, and the first QoS configuration is used for the terminal and the first core network functional entity , at least one of the second core network functional entity and the application functional entity performs QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the processing module 901 is configured to determine the first QoS configuration according to the terminal status information and the terminal status management indication in the alternative QoS configuration.
  • the processing module 901 is configured to determine the first QoS configuration based on the terminal status information and the association between the terminal status information and the QoS configuration.
  • the receiving module 902 is configured to receive the association relationship sent by the second core network functional entity; or the processing module 901 is configured to configure the association relationship according to local policies and/or operator policies.
  • the receiving module 902 is configured to receive the alternative QoS configuration sent by the second core network functional entity.
  • the receiving module 902 is configured to receive terminal status information from the second core network functional entity.
  • the terminal status information is sent to the second core network functional entity by the application functional entity.
  • the sending module 903 is configured to send a NAS message to the first core network functional entity, where the NAS message carries the first QoS configuration.
  • the communication device 900 can be the second core network functional entity in the communication system or a chip or system-on-chip of the second core network functional entity, and can also be used in the second core network functional entity to implement The functional modules of the methods described in the above embodiments.
  • the communication device 900 can realize the functions performed by the second core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the communication device 900 may include: a receiving module 902, configured to receive terminal status information sent by the application function entity, where the terminal status information is used to represent the power consumption status of the terminal; and a sending module 903, configured to send a message to the first core
  • the network function entity or the third core network function entity sends the terminal status information, and the terminal status information is also used by the access network function entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the receiving module 902 is configured to be one of the following: receiving terminal status information sent by the application function entity; receiving terminal status information sent by the TSCTSF entity. The terminal status The information is sent by the application function entity to the TSCTSF entity.
  • the application function entity is an untrusted application function entity;
  • the receiving module 902 is configured to be one of the following: receiving terminal status information sent by the NEF entity, and the terminal status information is sent by the application function entity to the NEF entity Receive terminal status information sent by the TSCTSF entity.
  • the terminal status information is sent by the application function entity to the TSCTSF entity through the NEF entity.
  • the receiving module 902 is configured to receive the first QoS configuration sent by the first core network functional entity.
  • the first QoS configuration is sent by the access network functional entity to the first core network functional entity.
  • the sending module 903 is configured to send a subscription request message to the first core network functional entity, where the subscription request message is used to request the first event associated with the first QoS configuration; the receiving module 902 is configured to When the first event satisfies the event reporting condition, receive the first QoS configuration sent by the first core network functional entity.
  • the sending module 903 is configured to send the first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the sending module 903 is configured to send the first QoS configuration to the application function entity, where the first QoS configuration is used for the application function entity to perform QoS update.
  • the receiving module 902 is configured to receive the alternative QoS configuration sent by the application function entity.
  • the communication device 900 may be the first core network functional entity or a chip or system-on-chip of the first core network functional entity in the communication system, and may also be the first core network functional entity used to implement The functional modules of the methods described in the above embodiments.
  • the communication device 900 can realize the functions performed by the first core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 902 is configured to receive the first QoS configuration sent by the access network functional entity, where the first QoS configuration is the QoS associated with the terminal determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • the communication device 900 further includes at least one of the following: a processing module 901 configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module 903 configured to send a QoS update to the second core
  • the network function entity sends the first QoS configuration, the first QoS configuration is used by the second core network function entity and/or the application function entity to perform QoS update; and sends the first QoS configuration to the terminal, the first QoS configuration is used by the terminal to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the processing module 901 is configured to query subscription events and determine the first event associated with the first QoS configuration; the sending module 903 is configured to send the The second core network functional entity sends the first QoS configuration.
  • the sending module 903 is configured to send a NAS message to the terminal, where the NAS message carries the first QoS configuration.
  • the communication device 900 may be an application function entity in the communication system or a chip or system-on-chip of the application function entity, or may be an application function entity used to implement the methods described in the above embodiments.
  • functional module The communication device 900 can implement the functions performed by the application function entities in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 902 is configured to receive terminal status information sent by the terminal, and the terminal status information is used to represent the power consumption status of the terminal;
  • the sending module 903 is configured to send the terminal status information to the second core network functional entity, and the terminal The status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration based on the terminal status information of the terminal.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for terminal status management .
  • the application function entity is a trusted application function entity; the sending module 903 is configured to be one of the following: sending terminal status information to the second core network functional entity; sending terminal status information to the TSCTSF entity. The status information is also used by the TSCTSF entity to send to the second core network functional entity.
  • the application function entity is an untrusted application function entity;
  • the sending module 903 is configured to be one of the following: sending terminal status information to the NEF entity.
  • the terminal status information is also used by the NEF entity through the TSCTSF entity. Sent to the second core network functional entity.
  • the receiving module 902 is configured to receive the first QoS configuration sent by the second core network functional entity; the processing module is configured to: according to the first QoS configuration, perform QoS associated with the terminal. The stream performs QoS updates.
  • the receiving module 902 mentioned in the embodiment of the present disclosure may be a receiving interface, a receiving circuit or a receiver, etc.; the sending module 903 may be a sending interface, a sending circuit or a transmitter, etc.; and the processing module 901 may be one or more processors.
  • inventions of the present disclosure provide a communication device.
  • the communication device may be the access network functional entity, the first core network functional entity, the second core network functional entity described in one or more of the above embodiments. Entity or application function entity.
  • Figure 10 is a schematic structural diagram of a communication device in an embodiment of the present disclosure. As shown in Figure 10, the communication device 1000 uses general computer hardware, including a processor 1001, a memory 1002, a bus 1003, an input device 1004 and an output Device 1005.
  • memory 1002 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random access memory.
  • Memory 1002 may store an operating system, application programs, other program modules, executable code, program data, user data, and the like.
  • Input device 1004 may be used to input commands and information to a communication device, such as a keyboard or a pointing device such as a mouse, trackball, touch pad, microphone, joystick, game pad, satellite television dish, scanner, or similar device. These input devices may be connected to processor 1001 via bus 1003.
  • a communication device such as a keyboard or a pointing device such as a mouse, trackball, touch pad, microphone, joystick, game pad, satellite television dish, scanner, or similar device.
  • processor 1001 may be connected to processor 1001 via bus 1003.
  • the output device 1005 can be used for communication devices to output information.
  • the output device 1005 can also be other peripheral output devices, such as speakers and/or printing devices. These output devices can also be connected to the processor 1001 through the bus 1003. .
  • the communication device may be connected to a network through the antenna 1006, such as a local area network (LAN).
  • LAN local area network
  • the computer execution instructions stored in the control device can be stored in a remote storage device and are not limited to local storage.
  • the communication device executes the relay communication method on the UE side or the network device side in the above embodiments.
  • the specific execution process refer to the above embodiments. , which will not be described in detail here.
  • the above-mentioned memory 1002 stores computer execution instructions for realizing the functions of the processing module 901, the receiving module 902, and the sending module 903 in FIG. 9 .
  • the functions/implementation processes of the processing module 901, the receiving module 902 and the sending module 903 in Figure 9 can all be implemented by the processor 1001 in Figure 10 calling the computer execution instructions stored in the memory 1002.
  • the processor 1001 in Figure 10 calling the computer execution instructions stored in the memory 1002.
  • embodiments of the present disclosure provide a network functional entity, such as an access network functional entity, a first core network functional entity, a second core network functional entity or an application functional entity.
  • a network functional entity such as an access network functional entity, a first core network functional entity, a second core network functional entity or an application functional entity.
  • FIG 11 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • the network functional entity 1100 may include a processing component 1101, which further includes one or more processors, and is represented by a memory 1102 A memory resource used to store instructions, such as application programs, that can be executed by processing component 1101.
  • An application stored in memory 1102 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 1101 is configured to execute instructions to perform any of the foregoing methods applied to the network device.
  • the network function entity 1100 may also include a power supply component 1103 configured to perform power management of the network function entity 1100, a wired or wireless network interface 1104 configured to connect the network function entity 1100 to the network, and an input/output (I/O ) interface 1105.
  • the network function entity 1100 may operate based on an operating system stored in the memory 1102, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the embodiment of the present disclosure also provides a communication device, such as an access network functional entity, a first core network functional entity, a second core network functional entity or an application functional entity, including: a memory and a processor; a processor Connected to a memory and configured to implement the method described in one or more embodiments above by executing computer-executable instructions stored on the memory.
  • a communication device such as an access network functional entity, a first core network functional entity, a second core network functional entity or an application functional entity, including: a memory and a processor; a processor Connected to a memory and configured to implement the method described in one or more embodiments above by executing computer-executable instructions stored on the memory.
  • embodiments of the present disclosure also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium; when the instructions are run on the computer, they are used to execute the network in one or more of the above embodiments. QoS flow control method on the functional entity side.
  • the network functional entity may include: an access network functional entity, a first core network functional entity, a second core network functional entity, and an application functional entity.
  • embodiments of the present disclosure also provide a computer program or computer program product.
  • the computer program product When the computer program product is executed on a computer, it causes the computer to implement the QoS flow on the network function entity side in one or more of the above embodiments. control method.
  • the network functional entity may include: an access network functional entity, a first core network functional entity, a second core network functional entity, and an application functional entity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种QoS 流的控制方法、装置及计算机存储介质。该控制方法可以应用于5G 系统中。该方法可以包括:接入网功能实体接收来自应用功能实体的终端状态信息,终端状态信息用于表示终端的功耗状态;接入网功能实体根据终端状态信息,从替代 QoS配置中确定终端关联的QoS流的第一QoS配置;接入网功能实体向第一核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第一核心网功能实体、第二核心网功能实体以及应用功能实体中的至少之一执行QoS更新。

Description

一种QoS流的控制方法、装置及计算机存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种QoS流的控制方法、装置及计算机存储介质。
背景技术
在第五代移动网络(5th generation mobile networks,5G)技术中,移动媒体服务、云扩展现实(extend reality,XR)、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。
目前,由于XR和媒体业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
那么,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
发明内容
本公开提供了一种QoS流的控制方法、装置及计算机存储介质,以匹配业务流量特性和终端能耗管理,从而保障业务需求和用户体验。
根据本公开的第一方面提供一种服务质量(quality of service,QoS)流的控制方法,可以应用于通信系统中的接入网功能实体。该方法可以包括:第一核心网功能实体接收来自应用功能(application function,AF)实体的终端状态信息(UE status information),终端状态信息用于表示终端的功耗状态;接入网功能实体根据终端状态信息,从替代QoS配置中确定终端关联的QoS流的第一QoS配置;接入网功能实体向第一核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第一核心网功能实体、第二核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在本公开中,第一核心网功能实体可以为会话管理功能实体(session management function,SMF),第二核心网功能实体为策略和控制功能(policy control function,PCF)实体(也可以描述为第一PCF实体),第二核心网功能实体可以为其他PCF实体(也可以描述为第二PCF实体)。第二PCF实体可以理解为一个或者多个PCF实体。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,接入网功能实体根据终端状态信息,从替代QoS配置中确定终端关联 的QoS流的第一QoS配置,包括:接入网功能实体根据终端状态信息以及替代QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中,接入网功能实体根据终端状态信息,从替代QoS配置中确定终端关联的QoS流的第一QoS配置,包括:接入网功能实体根据终端状态信息以及配置的终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,上述方法还包括:接入网功能实体接收第二核心网功能实体发送的关联关系;或,接入网功能实体根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,上述方法还包括:接入网功能实体接收第二核心网功能实体发送的替代QoS配置。
在一些可能的实施方式中,接入网功能实体接收来自应用功能实体的终端状态信息,包括:接入网功能实体接收来自第二核心网功能实体的终端状态信息,终端状态信息是由应用功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,接入网功能实体向第一核心网功能实体发送第一QoS配置,包括:接入网功能实体向第一核心网功能实体发送非接入层(non access stratum,NAS)消息,NAS消息中携带有第一QoS配置。
根据本公开的第二方面提供一种QoS流的控制方法,该方法可以应用于该方法可以应用于通信系统中的第二核心网功能实体。该方法包括:第二核心网功能实体接收应用功能实体发送的终端状态信息,终端状态信息用于表示终端的功耗状态;第二核心网功能实体向第一核心网功能实体或者第三核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体从替代QoS配置中确定终端关联的QoS流的第一QoS配置。
在本公开中,第三核心网功能实体为接入与移动性管理功能(access and mobility management function,AMF)实体。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;第二核心网功能实体接收来自应用功能实体的终端状态信息,包括以下之一:第二核心网功能实体接收应用功能实体发送的终端状态信息;第二核心网功能实体接收时间敏感通信时间同步功能(time sensitive communication and time synchronization function,TSCTSF)实体发送的终端状态信息,终端状态信息是由应用功能实体发送给TSCTSF实体的。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;第二核心网功能实体接收来 自应用功能实体的终端状态信息,包括以下之一:第二核心网功能实体接收网络开放功能(network exposure function,NEF)实体发送的终端状态信息,终端状态信息由应用功能实体发送给NEF实体的;第二核心网功能实体接收TSCTSF实体发送的终端状态信息,终端状态信息是由应用功能实体通过NEF实体发送给TSCTSF实体的。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体接收第一核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第一核心网功能实体的。
在一些可能的实施方式中,第二核心网功能实体接收第一核心网功能实体发送的第一QoS配置,包括:第二核心网功能实体向第一核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;在第一事件满足事件上报条件的情况下,第二核心网功能实体接收第一核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在本公开中,第四核心网功能实体为其他PCF(也可以描述为第二PCF实体)。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体向应用功能实体发送第一QoS配置,第一QoS配置用于应用功能实体执行QoS更新。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体接收应用功能实体发送的替代QoS配置。
根据本公开的第三方面提供一种QoS流的控制方法,该方法可以应用于该方法可以应用于通信系统中的第一核心网功能实体。该方法包括:第一核心网功能实体接收接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的QoS配置;第一核心网功能实体执行以下至少之一:根据第一QoS配置,对终端关联的QoS流的执行QoS更新;向第二核心网功能实体发送第一QoS配置,第一QoS配置用于第二核心网功能实体和/或应用功能实体执行QoS更新;向终端发送第一QoS配置,第一QoS配置用于终端执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,第一核心网功能实体向第二核心网功能实体发送第一QoS配置,包括:第一核心网功能实体查询订阅事件,确定第一QoS配置关联的第一事件;在第一事件满足事件上报条件的情况下,第一核心网功能实体向第二核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,第一核心网功能实体向终端发送第一QoS配置,包括:第一核心网功 能实体向终端发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第四方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的应用功能实体。该方法包括:应用功能实体接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;应用功能实体向第二核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;应用功能实体向第二核心网功能实体发送终端状态信息,包括以下之一:应用功能实体向第二核心网功能实体发送终端状态信息;应用功能实体向TSCTSF实体发送终端状态信息,终端状态信息还用于TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;应用功能实体向第二核心网功能实体发送终端状态信息,包括:应用功能实体向NEF实体发送的终端状态信息,终端状态信息还用于NEF实体向第二核心网功能实体发送,或,终端状态信息还用于NEF实体通过TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,上述方法还包括:应用功能实体接收第二核心网功能实体发送的第一QoS配置;应用功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
根据本公开的第五方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的核心网。该方法包括:接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;将终端状态信息发送给接入网功能实体,终端状态信息还用于接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,上述方法还包括:接收接入网功能实体发送的第一QoS配置;执行以下至少之一:根据第一QoS配置,对终端关联的QoS流的执行QoS更新;将第一QoS配置发送给终 端,第一QoS配置用于终端执行QoS更新。
在一些可能的实施方式中,接收接入网功能实体发送的第一QoS配置,包括:接收接入网功能实体发送的非接入层NAS消息,NAS消息中携带有第一QoS配置。
在一些可能的实施方式中,接收接入网功能实体发送的第一QoS配置,包括:通过分组数据单元会话修改流程,接收第一QoS配置。
在一些可能的实施方式中,将终端状态信息发送给接入网功能实体,包括:向接入网功能实体发送NAS消息,NAS消息中携带有终端状态信息。
在一些可能的实施方式中,接收终端发送的终端状态信息,包括:通过业务特定信息提供流程或应用功能实体会话建立流程接收终端状态信息。
根据本公开的第六方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的核心网。该方法包括:应用功能实体接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;应用功能实体将终端状态信息发送给第二核心网功能实体;第二核心网功能实体将终端状态信息发送给接入网功能实体,终端状态信息还用于接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,第一核心网功能实体为会话管理功能实体SMF,第二核心网功能实体为第一策略和控制功能实体PCF,第三核心网功能实体为接入与移动性管理功能实体AMF。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,第二核心网功能实体将终端状态信息发送给接入网功能实体,包括:第二核心网功能实体将终端状态信息发送给第一核心网功能实体;第一核心网功能实体将终端状态信息发送给接入网功能实体。
在一些可能的实施方式中,第二核心网功能实体将终端状态信息发送给接入网功能实体,包括:第二核心网功能实体将终端状态信息发送给第三核心网功能实体;第三核心网功能实体将终端状态信息发送给接入网功能实体。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体接收接入网功能实体发送的第一QoS配置;第一核心网功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体接收接入网功能实体发送的第一QoS配置;第一核心网功能实体将第一QoS配置发送给第二核心网功能实体;第二核心网功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体将第一QoS配置发送给应用功 能实体;应用功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,上述核心网还包括:第四核心网功能实体;其中,第二核心网功能实体将第一QoS配置发送给第四核心网功能实体;第四核心网功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,第四核心网功能实体为第二PCF。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体接收接入网功能实体发送的第一QoS配置;第一核心网功能实体将第一QoS配置发送给终端。
根据本公开的第七方面提供一种通信装置,该通信装置可以为通信系统中的接入网功能实体或者接入网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中接入网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该装置可以包括:接收模块,被配置为接收来自应用功能(application function,AF)实体的终端状态信息(UE status information),终端状态信息用于表示终端的功耗状态;处理模块,被配置为根据终端状态信息,从替代QoS配置中确定终端关联的QoS流的第一QoS配置;发送模块,被配置为接入网功能实体向第一核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第一核心网功能实体、第二核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在本公开中,第一核心网功能实体可以为会话管理功能实体(session management function,SMF),第二核心网功能实体为策略和控制功能(policy control function,PCF)实体(也可以描述为第一PCF实体),第二核心网功能实体可以为其他PCF实体(也可以描述为第二PCF实体)。第二PCF实体可以理解为一个或者多个PCF实体。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块,被配置为根据终端状态信息以及替代QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中,处理模块,被配置为根据终端状态信息以及终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的关联关系;或,处理模块,被配置为根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的替代QoS配置。
在一些可能的实施方式中,接收模块,被配置为接收来自第二核心网功能实体的终端状态信息, 终端状态信息是由应用功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,发送模块,被配置为向第一核心网功能实体发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第八方面提供一种通信装置,该通信装置可以为通信系统中的第二核心网功能实体或者第二核心网功能实体的芯片或者片上系统,还可以为第二核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中第二核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该通信装置可以包括:接收模块,被配置为接收应用功能实体发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块,被配置为向第一核心网功能实体或者第三核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体从替代QoS配置中确定终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;接收模块,被配置为以下之一:接收应用功能实体发送的终端状态信息;接收TSCTSF实体发送的终端状态信息,终端状态信息是由应用功能实体发送给TSCTSF实体的。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;接收模块,被配置为以下之一:接收NEF实体发送的终端状态信息,终端状态信息由应用功能实体发送给NEF实体的;收TSCTSF实体发送的终端状态信息,终端状态信息是由应用功能实体通过NEF实体发送给TSCTSF实体的。
在一些可能的实施方式中,接收模块,被配置为接收第一核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第一核心网功能实体的。
在一些可能的实施方式中,发送模块,被配置为向第一核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;接收模块,被配置为在第一事件满足事件上报条件的情况下,接收第一核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,发送模块,被配置为向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在一些可能的实施方式中,发送模块,被配置为向应用功能实体发送第一QoS配置,第一QoS配置用于应用功能实体执行QoS更新。
在一些可能的实施方式中,接收模块,被配置为接收应用功能实体发送的替代QoS配置。
根据本公开的第九方面提供一种通信装置,该通信装置可以为通信系统中的第一核心网功能实体或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该通信装置可以包括:接收模块,被配置为接收接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的QoS配置;通信装置还包括以下至少之一:处理模块,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块,被配置为向第二核心网功能实体发送第一QoS配置,第一QoS配置用于第二核心网功能实体和/或应用功能实体执行QoS更新;向终端发送第一QoS配置,第一QoS配置用于终端执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块,被配置为查询订阅事件,确定第一QoS配置关联的第一事件;发送模块,被配置为在第一事件满足事件上报条件的情况下,向第二核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,发送模块,被配置为向终端发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第十方面提供一种通信装置,该通信装置可以为通信系统中的应用功能实体或者应用功能实体的芯片或者片上系统,还可以为应用功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中应用功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该通信装置可以包括:接收模块,被配置为接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块,被配置为向第二核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终 端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;发送模块,被配置为以下之一:向第二核心网功能实体发送终端状态信息;向TSCTSF实体发送终端状态信息,终端状态信息还用于TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;发送模块,被配置为以下之一:向NEF实体发送的终端状态信息,终端状态信息还用于NEF实体通过TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的第一QoS配置;处理模块被配置为:根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
根据本公开的第十一方面提供一种通信装置,如接入网功能实体、第一核心网功能实体、第三核心网功能实体、第四核心网功能实体应用功能实体。该通信装置可以包括:存储器和处理器;处理器与存储器连接,被配置为通执行存储在存储器上的计算机可执行指令,以实现如上述第一至四方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第十二方面提供一种核心网通信系统,包括:第二核网功能实体和应用功能实体;其中,应用功能实体,被配置为:接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;向第二核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体根据终端状态信息从替代QoS配置中确定的终端关联的QoS流的第一QoS配置;第二核心网功能实体,被配置为:接收应用功能实体发送的终端状态信息;向接入网功能实体发送终端状态信息。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
根据本公开的第十三方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行如上述第一至四方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第十四方面提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现如上述第一至四方面及其任一可能的实施方式所述的QoS流的控制方法。
在本公开中,通过应用功能实体(即AF实体)向接入网功能实体提供终端的终端状态信息,使得接入网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态选择对应的QoS配置,以保障业务需求和用户体验。进一步地,应用功能实体提供的终端状态信息作为策略确定的附加信息,能够减少对无线接口网络资源的使用,尤其是在资源有限的情况下。进一步地,通过应用功能实体向接入网功能实体提供终端的终端状态信息,能够支持根据终端的能力使用网络资 源。进一步地,通过应用功能实体向接入网功能实体提供终端的终端状态信息,使得在省电模式下允许运行用户关键的应用程序,以此来改善用户体验,同时能够延长电池寿命,而不是完全关闭。
应当理解的是,本公开的第五至十四方面与本公开的第一至四方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本公开实施例中的5G通信系统的一种架构示意图;
图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图;
图3为本公开实施例中的;
图4为本公开实施例中的;
图5为本公开实施例中的;
图6为本公开实施例中的业务特定信息提供流程的示意图
图7为本公开实施例中的AF会话建立流程的示意图;
图8为本公开实施例中的PDU会话修改流程的示意图;
图9为本公开实施例中的一种通信装置的结构示意图;
图10为本公开实施例中的一种通信装置的结构示意图;
图11为本公开实施例中的一种网络功能实体的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,“第一信息”也可以被称为“第二信息”,类似地,“第二信息”也可以被称为“第一信息”。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
进一步地,在本公开实施例的描述中,“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。 另外,在本公开实施例的描述中,“多个”可以指两个或多于两个。
本公开实施例的技术方案涉及一种通信系统的架构。该通信系统可以是5G通信系统或未来演进通信系统。在该通信系统的架构中,存在终端、接入网功能实体(也可以描述为接入网功能、接入网网元、接入网功能组件、接入网功能模块等)以及至少一个核心网功能(core network function)实体(也可以描述为核心网功能、核心网设备、核心网网元、核心网功能组件、核心网功能模块等)。至少一个核心网功能实体位于核心网(即5GC)中。终端用于向核心网侧上报用于指示自身功耗状态的终端状态信息(UE status information);至少一个核心网功能实体至少具备以下功能:将接收到的终端状态信息提供给接入网功能实体,接收接入网功能实体根据终端状态信息为终端关联的QoS流确定的第一QoS配置,并根据接收到的第一QoS配置,对终端关联的QoS流执行QoS更新,以及,向下一级核心网功能实体发送第一QoS配置,以用于下一级核心网功能实体对终端关联的QoS流执行QoS更新。在实际应用中,上述QoS流为终端的第一业务的QoS流。第一业务可以包括XR业务、移动媒体业务等,其中,XR业务和移动媒体业务也可以称为XRM业务,也可以描述为XR\M业务。在实际应用中,上述QoS流为终端的第一业务的QoS流。第一业务可以包括XR业务、移动媒体业务等,其中,XR业务和移动媒体业务也可以称为XRM业务,也可以描述为XR\M业务。
在下文中,将以5G通信系统为例对本公开实施例进行解释和说明。需要说明的是,本公开实施例同样适用于5G通信系统之后的任何未来演进通信系统,本公开实施例对此不作具体限定。
图1为本公开实施例中的5G通信系统的一种架构示意图。参见图1,上述5G通信系统100可以包括5G无线接入网(RAN)和5G核心网(5GC)。5G无线接入网可以包括下一代无线接入网(next generation radio access network,NG RAN)。NG RAN 101通过Uu接口与终端(或称为终端设备)102通信。5G核心网可以包括:上述至少一个核心网功能实体,如接入和移动性管理功能(access and mobility management function,AMF)实体1031、SMF实体1032、PCF实体1033、UPF实体1034、AF实体1035、NEF实体1036、TSCTSF实体1037等。在本公开实施例中,上述通信系统还可以包括其他网络功能实体(也可以称之为网元、网络设备等),本公开实施例对此不作具体限定。
需要说明的是,在图1中第三方(3rd)AF实体和运行商(operator)AF实体都属于AF实体。区别在于:第三方AF实体(如即时通信业务服务器、电子支付业务服务器等)不受运营商管控,而运营商AF实体(如IP多媒体系统(IP multimedia system)中的代理-呼叫会话控制功能(proxy-call session control function,P-CSCF)实体)受运营商管控。第三方AF实体与PCF实体交互时需要通过NEF实体。上述运营商AF实体还可以描述为受信的或者可信的AF实体,上述第三方AF还可以描述为非受信的或者不可信的AF实体。
另外,为了描述更为简洁,在后续描述时,将各个功能实体中的“实体”去掉,比如PCF实体简称为PCF,SMF实体简称为SMF,其它实体类似,不再一一例举。
在本公开实施例中,在上述5G通信系统100中,各个核心网功能实体之间可以设置有以下接口:
N3:UPF 1034与NG RAN 101之间的通信接口。
N4:SMF 1032与UPF 1034之间的接口,用于控制面与用户面(user plan,UP)之间传递信息,包括控制面向UP的转发规则、QoS控制规则、流量统计规则等的下发以及UP的信息上报。
N2:AMF 1031与NG RAN 101之间的接口,用于传递核心网侧至NG RAN 101的无线承载控制信息等。
N1:AMF 1031与终端102之间的接口,与接入无关,用于向终端102传递QoS控制规则等。
在图1中,NEF、PCF、TSCTSF、AMF以及SMF之间,任意两个实体之间通信可以采用服务化通信方式,比如NEF与PCF之间通信采用的接口Nnef和Npcf均为服务化的接口,同理,接口Naf、Ntsctsf、Namf以及Nsmf均为服务化的接口。
上述终端可以是一种具有无线通信功能和无线感知功能的终端设备,也可以称为用户设备(user equipment,UE)。终端可以部署在陆地上,包括室内或室外、手持、可穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是手机(mobile phone)、平板电脑(tablet computer)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。终端也可以是具有无线通信功能和无线感知功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备等。可选的,在不同的网络中终端装置还可以叫做不同的名称,例如:终端装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G通信系统或未来演进通信系统中的终端等。
上述接入网功能实体可以为接入网侧用于支持通信终端接入无线通信系统的功能实体。例如,可以是5G通信系统中的下一代接入网功能实体(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等。
需要说明的是,在图1所示的通信系统中,各功能实体以及接口仅为示例性的,各个功能实体在应用于本公开实施例中时,并非全部功能都是必需的。接入网和核心网的功能实体可以是物理上的实体设备,也可以是虚拟化的设备,在此不做限定。当然,本公开实施例中的通信系统还可以包括未在图1中示出的其他设备,在此不做限定。
在5G网络中,移动媒体服务、XR、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。尤其是XR以及媒体(extend reality and media,XRM)业务。XRM业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
目前,基于现有的终端实现,考虑到业务流量特性,在3GPP中已经定义了终端省电增强方案。例如,终端在不同连接状态(connection management,CM)下的省电模式,如CM-IDLE(空闲态)的省电模式以及RRC非激活状态下的CM-CONNECTED(连接)的省电模式,还定义了仅终端发起连接(mobile initiated connection only,MICO)模式、扩展不连续接收(extended DRX,eDRX)模式等。但是,上述方案均为专门为具有超低功耗的物联网终端而设计的。如果在智能手机上使用这些解决方案,用户体验将受到很大影响。
所以,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
在本公开实施例中,在以下实施例中,通信系统中的终端设备可以以UE为例、第一核心网功能实体可以以SMF为例、第二核心网功能实体为PCF为例、第三核心网功能实体可以以AMF为例,第四核心网功能实体可以以其他PCF为例以及应用功能实体为AF为例,对本公开实施例提出的QoS流的控制方法进行说明。在5G通信系统及其演进版本中,终端、接入网功能实体、第一核心网功能实体、第二核心网功能实体、第三核心网功能实体、第四核心网功能实体以及应用功能实体也可能是具有相同或相似功能和连接关系的其他功能实体,本公开实施例对此不作限定。
为了解决上述问题,结合上述通信系统,本公开实施例提供一种QoS流的控制方法。
图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图,如图2所示,在本实施例中,QoS流的控制方法应用于接入网功能实体(如RAN)侧,该QoS流的控制方法可以包括S201至S204。
S201,接入网功能实体接收来自应用功能实体(如AF)发送的终端状态信息(UE status information)。
其中,终端状态信息用于表示该UE的功耗状态。示例性的,终端状态信息包括与UE性能相关的一个或者多个参数,如UE status information可以包括以下至少之一:UE的电池电量(UE battery level)、UE的电池寿命(UE battery life)、UE的供电模式(powered mode)、UE的CPU负荷、UE过热状态(UE overheating status)。当然,在本公开实施例中,与UE功耗相关的参数可以包括其他这里,上述UE的供电模式可以包括:电池供电模式(battery-powered)以及电源供电模式(mains/wall-powered)。这里,电池供电模式是指使用UE的内置电池进行供电,电源供电模式是指使用电源适配器连接至如墙壁插座、移动插座等与电源连接,对UE进行供电。
应理解的,注册后的UE可以通过应用层将自身的终端状态信息上报给AF,再由AF上报给PCF。PCF将终端状态信息通过AMF或SMF发送给接入网功能实体。
需要说明的是,上述S201可以与业务特定信息提供流程(Service specific information provisioning procedure)、AF会话建立流程(Setting up an AF session with required QoS procedure)等进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。示例性的,S201可以为Nnef_XRMServiceParameter service、Nnef_AFsessionWithQoS_Create request等。
S202,接入网功能实体根据终端状态信息,从替代QoS配置中确定UE关联的QoS流的第一QoS配置(QoS profile)。
这里,QoS配置也可以理解为QoS等级(QoS level),QoS配置与QoS等级是一一对应的。
可以理解的,PCF可以向接入网功能实体发送一个或者多个替代QoS配置(alternative QoS profile)。接入网功能实体在接收到UE的终端状态信息后,可以根据UE的功耗状态,从替代QoS配置中选择与UE关联的QoS流的QoS配置(即第一QoS配置),从而根据该QoS配置进行QoS更新。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务、XRM业务组(service group)或者多模态数据业务(multiple data service)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,接入网功能实体根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS配置。或者,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务),确定相应的QoS配置。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
在一些可能的实施方式中,上述替代QoS配置可以包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
可以理解的,上述分组延迟预算是指该替代QoS配置对应的分组延迟预算;上述分组差错率指该替代QoS配置对应的分组差错率;上述上行保障比特速率是指该替代QoS配置对应的上行保障比特速率;上述下行保障比特速率是指该替代QoS配置对应的下行保障比特速率;上述平均窗口是指该替代QoS配置对应的平均窗口;上述最大数据突发量是指该替代QoS配置对应的最大数据突发量;上述终端状态管理指示是指示该替代QoS配置是否用于终端状态管理的信息。
需要说明的是,在本公开实施例中,对现有通信协议中定义的替代QoS配置中的QoS参数(即alternative QoS parameter sets)进行了扩展,使得扩展后的替代QoS配置既可以适用于GBR QoS流,也可以适用于non GBR QoS流。
在实际应用中,PCF可以通过是否在替代QoS配置中携带终端状态管理指示向接入网功能实体指示该替代QoS配置是否用于终端状态管理的信息。例如,替代QoS配置中携带终端状态管理指示表示该替代QoS配置用于终端状态管理的信息,替代QoS配置中未携带终端状态管理指示表示该替代QoS配置不用于终端状态管理的信息。或者,PCF可以通过终端状态管理指示的值(value)向接入网功能实体指示该替代QoS配置是否用于终端状态管理的信息。例如,终端状态管理指示取值为第一值表示该替代QoS配置用于终端状态管理的信息,终端状态管理指示取值为第二值表示该替代QoS配置不用于终端状态管理的信息。当然,PCF还可以采用其他方式设置终端状态管理指示,本公开实施例对此不做具体限定。
相应地,在S202中,接入网功能实体在接收到替代QoS配置后,可以根据终端状态管理指示确定该替代QoS配置是否用于终端状态管理,进而根据终端状态信息从用于终端状态管理的替代QoS配置中确定UE关联的QoS流的QoS配置。
在一些可能的实施方式中,PCF可以向接入网功能实体发送用于终端状态管理的替代QoS配置,那么,接入网功能实体在接收到这些替代QoS配置后,便知晓接收到的替代QoS配置用于终端状态管理,进而执行S202。
在一些可能的实施方式中,PCF可以将一个或者多个替代QoS配置以列表(如替代QoS(alternative QoS))的形式发送给接入网功能实体。
在另一些可能的实施方式中,在S202中,接入网功能实体还可以根据终端状态信息以及终端状态信息与QoS配置的关联关系,确定第一QoS配置。
可以理解的,接入网功能实体或者PCF可以配置终端状态信息与QoS配置的关联关系。在S202中,接入网功能实体可以通过查询终端状态信息与QoS配置的关联关系,根据来自AF的终端状态信息确定UE关联的QoS流的QoS配置。
在一些可能的实施方式中,PCF可以向接入网功能实体发送终端状态信息与QoS配置的关联关系;或者,接入网功能实体根据本地策略和/或运营商策略配置上述关联关系。当然,接入网功能实体还可以通过其他方式得到上述关联关系,本公开实施例对此不作具体限定。
S203,接入网功能实体基于第一QoS配置进行QoS更新。
可以理解的,接入网功能实体在根据UE的功耗状态确定对应的第一QoS配置后,使用该第一QoS配置对UE关联的QoS流进行QoS更新。
S204,接入网功能实体向SMF发送第一QoS配置。
可以理解的,为了统一QoS控制,接入网功能实体在确定第一QoS配置后,可以将第一QoS配置发送给UE、5GC(包括SMF和/或PCF)以及AF。示例性的,接入网功能实体可以通过发起分组数据单元(packet data unit,PDU)会话修改流程(PDU session modification procedure),将第一QoS配置发送给UE、5GC(包括SMF和/或PCF)以及AF。在PDU会话修改流程中,接入网功能实体先将第一QoS配置发送给SMF,再由SMF发送给PCF,PCF将接收到的第一QoS配置发送给AF。另外,SMF还可以将第一QoS配置UE。当UE、PCF以及AF接收到第一QoS配置后,可以根据第一QoS配置执行QoS更新。
在一些可能的实施方式中,接入网功能实体在S204中通过SMF向PCF发送第一QoS配置时,还可以将第一QoS配置对应的终端状态信息(即来自AF的终端状态信息)发送给PCF,以便于PCF基于自身最新收到的终端状态信息以及接入网功能实体发送的终端状态信息来决策第一QoS配置是否适合UE当前的功耗状态,从而确定是否向接入网功能实体提供更合适的替代QoS配置、调整QoS策略等,进而优化QoS控制。
示例性的,在S203中,接入网功能实体通过NAS消息(如N2 SM information)向SMF发送第一QoS配置。
需要说明的是,上述S203和S204可以同时执行,也可以先执行S203再执行S204,本公开实施例对此不做具体限定。
图3为本公开实施例中的第二种QoS流的控制方法的实施流程示意图,如图3所示,在本实施例中,QoS流的控制方法应用于第二核心网功能实体(如PCF)侧,该QoS流的控制方法可以包括S301至S305。
S301,PCF接收应用功能实体(如AF)发送的终端状态信息(UE status information)。
其中,终端状态信息用于表示该UE的功耗状态。示例性的,终端状态信息包括与UE性能相关的一个或者多个参数,如UE status information可以包括以下至少之一:UE的电池电量(UE battery level)、UE的电池寿命(UE battery life)、UE的供电模式(powered mode)、UE的CPU负荷、UE 过热状态(UE overheating status)。当然,在本公开实施例中,与UE功耗相关的参数可以包括其他这里,上述UE的供电模式可以包括:电池供电模式(battery-powered)以及电源供电模式(mains/wall-powered)。这里,电池供电模式是指使用UE的内置电池进行供电,电源供电模式是指使用电源适配器连接至如墙壁插座、移动插座等与电源连接,对UE进行供电。
应理解的,注册后的UE可以通过应用层将自身的终端状态信息上报给AF,再由AF上报给PCF。
在一些可能的实施方式中,AF可以且不限于通过以下路径向PCF发送终端状态信息。
第一种路径,AF直接向PCF发送终端状态信息。可以理解的,AF通过Naf和Npcf将终端状态信息发送给PCF。此时,AF为受信的AF。
第二种路径,AF通过NEF向PCF发送终端状态信息。可以理解的,AF通过Naf和Nnef将终端状态信息发送给NEF,NEF再通过Nnef和Npcf将终端状态信息发送给PCF,此时,AF为非受信的AF。
第三种路径,AF通过TSCTSF向PCF发送终端状态信息。可以理解的,AF通过Naf和Ntsctsf将终端状态信息发送给TSCTSF,TSCTSF再通过Ntsctsf和Npcf将终端状态信息发送给PCF,此时,AF为受信的AF,第一业务为时间敏感业务。
第四种路径,AF通过NEF和TSCTSF向PCF发送终端状态信息。可以理解的,AF通过Naf和Nnef将终端状态信息发送给NEF,NEF通过Nnef和Ntsctsf将终端状态信息发送给TSCTSF,TSCTSF再通过Ntsctsf和Npcf将终端状态信息发送给PCF,此时,AF为非受信的AF,第一业务为时间敏感业务。
由上述第一种方式至第四种方式可知,对于不同AF的类型和/或第一业务的类型,在AF与PCF的之间的可以设置一个或者多个NF,如上述NEF、TSCTSF等。相应的,终端状态信息可以存在不同的传输路径。需要说明的是,以上仅为终端状态信息的传输路径的示例,并不对终端状态信息的传输方式和传输路径造成限定,终端状态信息还可以采用其他路径由AF传输至PCF。
当然,随着通信系统的演进,上述NF可以存在其他的部署情况,本公开实施例对此不作具体限定。
在一些可能的实施方式中,在AF为非受信的AF的情况下,AF可以向NEF提供终端状态信息,终端状态信息携带在于AF请求消息中。示例性的,AF请求消息可以包括:NEF参数创建请求消息(如Nnef_ParameterProvision_Create Request)、NEF参数更新请求消息(如Nnef_ParameterProvision_Update Request)、AF会话资源请求消息(如Nnef_AFsessionWithQoS_Create request)等。NEF授权AF的请求,并执行相关映射。然后,NEF向PCF提供终端状态信息。在一实施例中,在多UE场景下,NEF还可以向多UE对应的一个或者多个PCF提供终端状态信息。
在一实施例中,NEF可以根据UE的标识或者组标识,向对应的PCF发送终端状态信息。
在另一实施例中,PCF可以向NEF订阅终端状态信息关联的事件。在该事件满足上报条件时,PCF接收NEF上报的终端状态信息。可选的,NEF还可以向PCF上报业务QoS更新信息(Service  QoS update)。
在一些可能的实施方式中,NEF在接收到AF发送的终端状态信息之后,还可以将终端状态信息发送至用户数据寄存器(user data repository,UDR)功能实体或统一数据管理(unified data management,UDM)功能实体,以作为AMF关联参数存储、SMF关联参数存储或应用数据的业务特性参数存储。
在一些可能的实施方式中,PCF还可以接收AF发送的替代QoS配置。进一步地,PCF可以根据QoS策略,确定发送给接入网功能实体的替代QoS配置。
S302,PCF向SMF或者AMF发送终端状态信息。
其中,终端状态信息还用于接接入网功能实体从替代QoS配置中确定终端关联的QoS流的第一QoS配置。
可以理解的,PCF在接收到UE的终端状态信息后,可以通过SMF或AMF提供给接入网功能实体。
示例性的,上述S302可以与业务特定信息提供流程(Service specific information provisioning procedure)、AF会话建立流程(Setting up an AF session with required QoS procedure)等进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。示例性的,S302可以为Nnef_XRMServiceParameter service、Nnef_AFsessionWithQoS_Create request等。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务或者XRM业务组(service group)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS参数。或者,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务),确定相应的QoS参数。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
S303,PCF接收来自SMF的第一QoS配置。
可以理解的,SMF在接收到接入网功能实体发送的第一QoS配置后,可以提供给PCF。
在一些可能的实施方式中,在S303中,PCF向SMF发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件,在第一事件满足事件上报条件的情况下,PCF接收SMF发送的第一QoS配置。
可以理解的,PCF可以向SMF订阅第一QoS配置关联的事件。SMF在接收到第一QoS配置后,查询订阅事件,确认第一QoS配置关联的事件。在事件满足上报条件的情况下,SMF向PCF发送第一QoS配置。当然,PCF还可以采用其他方式从SMF处获得第一QoS配置,本公开实施例对此不做具体限定。
S304,PCF基于第一QoS配置进行QoS更新。
可以理解的,PCF在接收到根据UE的功耗状态确定的第一QoS配置后,使用该第一QoS配置对UE关联的QoS流进行QoS更新。
S305,PCF向AF发送第一QoS配置,以供AF执行QoS更新。
在一些可能的实施方式中,PCF可以参考上述第一种方式至第四种方式,将第一QoS配置发送给AF。
需要说明的是,上述S304和S305可以同时执行,也可以先执行S304再执行S305,本公开实施例对此不做具体限定。
在一些可能的实施方式中,在S303之后,PCF还可以向其他PCF发送第一QoS配置,第一QoS配置用于其他PCF对QoS流执行QoS更新。
应理解的,在多UE场景下,不同UE可以对应于不同PCF。那么,当一个PCF(可以记为PCF0)接收到来自接入网功能实体的第一QoS配置后,可以将第一QoS配置提供给其他PCF(如PCF 1、PCF 2、PCF 3、……),以供其他PCF执行如上述S304所述的QoS更新流程。
示例性的,PCF 0在接收到第一QoS配置后,可以直接发送给PCF 1、PCF 2、PCF 3等其他PCF。或者,PCF 1、PCF 2、PCF 3等其他PCF也可以向PCF 0订阅第一QoS配置关联的事件(即第一事件)。在第一事件满足上报条件的情况下,PCF 0向PCF 1、PCF 2、PCF 3等其他PCF发送第一QoS配置。再者,所有的PCF向NEF订阅第一QoS配置关联的事件,在事件满足上报条件的情况下,NEF向所有PCF发送第一QoS配置。当然,多个PCF还可以通过其他方式获得第一QoS配置,本公开实施例对此不做具体限定。
在一些可能的实施方式中,本公开实施例还提供一种QoS流的控制方法。图4为本公开实施例中的第三种QoS流的控制方法的实施流程示意图,如图4所示,在本实施例中,QoS流的控制方法应用于第一核心网功能实体(如SMF)侧,该QoS流的控制方法可以包括S401至S404。
S401,SMF接收接入网功能实体发送的第一QoS配置。
其中,第一QoS配置为接入网功能实体根据UE的终端状态信息从替代QoS配置中确定的UE关联的QoS流的QoS配置。
可以理解的,接入网功能实体在根据AF提供的终端状态信息确定对应的第一QoS配置后,将第一QoS配置发送给SMF,由SMF转发给UE、5GC以及AF。
在一实施例中,接入网功能实体可以通过NAS消息(如N2 SM information)向SMF发送第一QoS配置。
在S401之后,SMF可以执行S402至S404中的至少之一。
S402,SMF基于第一QoS配置执行QoS更新。
S403,SMF向PCF发送第一QoS配置,第一QoS配置用于PCF体和/或AF执行QoS更新;
S404,SMF向UE发送第一QoS配置,第一QoS配置用于终端执行QoS更新。
在本公开实施中,SMF的执行流程可以参见上述图2至图4实施例中对SMF执行流程的描述,为了说明书简洁,在此不做赘述。
在一些可能的实施方式中,本公开实施例还提供一种QoS流的控制方法。图5为本公开实施例中的第四种QoS流的控制方法的实施流程示意图,如图5所示,该QoS流的控制方法可以应用于应用功能实体(如AF)侧,QoS流的控制方法可以包括S501至S502。
S501,AF接收UE发送的终端状态信息,终端状态信息用于表示UE的功耗状态。
应理解的,UE在注册到网络之后,选择PCF完成AM session关联。UE向AF发送终端状态信息。
S502,AF向PCF发送终端状态信息,终端状态信息还用于接入网功能实体确定上述第一QoS配置。
在一些可能的实施方式中,AF可以且不限于通过以下路径向PCF发送终端状态信息。
第一种路径,AF直接向PCF发送终端状态信息。可以理解的,AF通过Naf和Npcf将终端状态信息发送给PCF。此时,AF为受信的AF。
第二种路径,AF通过NEF向PCF发送终端状态信息。可以理解的,AF通过Naf和Nnef将终端状态信息发送给NEF,NEF再通过Nnef和Npcf将终端状态信息发送给PCF,此时,AF为非受信的AF。
第三种路径,AF通过TSCTSF向PCF发送终端状态信息。可以理解的,AF通过Naf和Ntsctsf将终端状态信息发送给TSCTSF,TSCTSF再通过Ntsctsf和Npcf将终端状态信息发送给PCF,此时,AF为受信的AF,第一业务为时间敏感业务。
第四种路径,AF通过NEF和TSCTSF向PCF发送终端状态信息。可以理解的,AF通过Naf和Nnef将终端状态信息发送给NEF,NEF通过Nnef和Ntsctsf将终端状态信息发送给TSCTSF,TSCTSF再通过Ntsctsf和Npcf将终端状态信息发送给PCF,此时,AF为非受信的AF,第一业务为时间敏感业务。
由上述第一种方式至第四种方式可知,对于不同AF的类型和/或终端业务的类型,在AF与PCF的之间的可以设置一个或者多个NF,如上述NEF、TSCTSF等。相应的,终端状态信息可以存在不同的传输路径。需要说明的是,以上仅为终端状态信息的传输路径的示例,并不对终端状态信息的传输方式和传输路径造成限定,终端状态信息还可以采用其他路径由AF传输至PCF。
当然,随着通信系统的演进,上述NF可以存在其他的部署情况,本公开实施例对此不作具体限定。
在一些可能的实施方式中,在AF为非受信的AF的情况下,AF可以向NEF提供终端状态信息,终端状态信息携带在于AF请求消息中。示例性的,AF请求消息可以包括:NEF参数创建请求消息(如Nnef_ParameterProvision_Create Request)、NEF参数更新请求消息(如Nnef_ParameterProvision_Update Request)、AF会话资源请求消息(如Nnef_AFsessionWithQoS_Create request)等。NEF授权AF的请求,并执行相关映射。然后,NEF向PCF提供终端状态信息。在一实施例中,在多UE场景下,NEF还可以向多UE对应的一个或者多个PCF提供终端状态信息。
在一实施例中,NEF可以根据UE的标识或者组标识,向对应的PCF发送终端状态信息。
在另一实施例中,PCF可以向NEF订阅终端状态信息关联的事件。在该事件满足上报条件时,PCF接收NEF上报的终端状态信息。可选的,NEF还可以向PCF上报业务QoS更新信息(Service QoS update)。
在一些可能的实施方式中,NEF在接收到AF发送的终端状态信息之后,还可以将终端状态信息发送至UDR或UDM,以作为AMF关联参数存储、SMF关联参数存储或应用数据的业务特性参数存储。
S503,AF接收PCF发送的第一QoS配置。
在一些可能的实施方式中,在S503中,AF向PCF发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件,在第一事件满足事件上报条件的情况下,AF接收PCF发送的第一QoS配置。
S504,AF基于第一QoS配置执行QoS更新。
在本公开实施中,AF的执行流程可以参见上述图2至图4实施例中对AF执行流程的描述,为了说明书简洁,在此不做赘述。
至此,便实现了对QoS流的QoS控制流程。
在本公开实施例中,通过AF实体向接入网功能实体提供UE的终端状态信息,使得接入网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态选择对应的QoS配置,以保障业务需求和用户体验。进一步地,AF提供的终端状态信息作为策略确定的附加信息,能够减少对无线接口网络资源的使用,尤其是在资源有限的情况下。进一步地,通过AF向接入网功能实体提供UE的终端状态信息,能够支持根据终端的能力使用网络资源。进一步地,通过应用功能实体向接入网功能实体提供UE的终端状态信息,使得在省电模式下允许运行用户关键的应用程序,以此来改善用户体验,同时能够延长电池寿命,而不是完全关闭。
为了更好地理解本公开实施例,可以且不限于通过以下示例性流程进行进一步说明。
示例一:
在本示例中,AF可以通过业务特定信息提供流程将UE status information传递给PCF,再由PCF通过AMF传递给RAN。
图6为本公开实施例中的业务特定信息提供流程的示意图,参见图6,上述流程可以包括:
S600,UE已注册到网络,选择了PCF完成移动性管理会话(AM session)关联。
其中,PCF根据UE或第一业务(如XRM service or multimodal data Service)的签约信息或业务策略(如QoS需求),向UDM订阅以下通知中的至少一个:UE status information的变更通知、第一业务相关策略的变更通知、第一业务的签约信息的变更通知。可选地,如果第一业务(XRM service或XRM service Group)关联多个PCF(如PFCx),则这些PCF均向UDM订阅。
S601,AF触发Nnef_XRMServiceParameter service,创建AF请求消息,该请求消息中包含UE status information。
可选地,AF请求消息中还可以包括XRM业务标识或XRM业务组标识。AF通过Nnef_XRMServiceParameter service给上述业务相关的单个或多个UE提供第一业务的特定参数(如XRM service or multiple data service specific parameters)。AF发送的信息包括业务描述信息(Service Description)业务参数(Service Parameters)、UE/Group UE以及订阅事件(Subscription to events)。其中,具体的:
1、Service Description,标识XRM service or XRM data Service;可用combination of DNN(数据网 络名称)和S-NSSAI(单网络切片选择支持信息)组合,或者XRM ID(XRM业务标识)来标识;或者AF-Service-Identifier(AF服务标识)或外部Application Identifier(服务器标识)来表示。
2、Service Parameters,AF指示的用于XRM业务或多模式数据业务关联的业务策略以及QoS决策的信息。例如,包括以下至少一个:XRM业务或多模态数据业务的应用流量、UE策略等参数的规则列表、业务组标识(Group ID)、或DNN和S-NSSAI组合,会话服务连续(session and service continuity,SSC)模式,替代QoS(Alternative QoS)参数及优先级,相应规则的选择优先级(例如相应定位或时间窗口优先级,相应接入类型或路由选择优先级等)。
3、AF请求消息所关联的XRM service or multiple data Service相关的单个UE,或多个UE(Group UE)。
4、Subscription to events,AF订阅关于SM策略、AM策略或UE策略结果的执行或变更的通知。
其中,当AF需要更新和删除相应请求或订阅时,也可通过该服务发起AF请求的更新和删除流程。
S602,AF将请求消息发送给NEF(Nnef_XRMServiceParameter_Create/Update/Delete Request)。
这里,NEF授权AF请求消息。NEF执行相关映射,包括外部到CN标识的映射。消息中携带UE status information和/或替代QoS配置(如Alternative QoS参数及优先级)。
NEF存储UE status information和/或Alternative QoS参数及优先级,到UDR/UDM,可作为AMF关联参数存储,或SMF关联参数存储,或应用数据的业务特性参数存储。
可选地,NEF可能会根据本地配置完善相应业务参数。可选地,基于运营商策略,NEF可结合签约信息,为单个UE或Group多个UE的XRM service or multimodal data Service,确认是否请求业务特性可授权并将相应参数存储到UDR中。
如果涉及多个UE,则NEF可传送UE status information)和/或Alternative QoS参数及优先级,和/或相关业务参数到PCF,在每个PCF中执行相应授权,以及策略和规则的决策或更新。PCF根据请求授权结果,存储相应信息到UDR中。(可由NEF根据组标识直接传送到组相关PCF,或存储到UDM后通过订阅报告传送到组相关PCF)
可选地,对于多UE场景,其中UE group成员的签约数据通过XRM service Indication或者Group ID关联,其中Group UE的Group数据保持一致(例如业务的QoS、接入和数据路由的特性参数)。
进一步地,PCF可通过NEF,订阅相关XRM service or multimodal data related event trigger,例如UE status information,Service QoS update,UE relocation,PCF change等。
那么,PCF通过接收NEF report,获取相应UE status information,(可选地执行QoS update等策略的协同(例如,XRM service or multimodal data Group中,UE1的QoS特性参数变更,则触发Event report到NEF,前转给XRM service or multimodal data Group中,对应的其它UE,或同一UE的其它Application traffic关联的PCF,执行相应Session Update)
S604,NEF给AF返回创建请求响应消息(Nnef_XRMSErviceParameter_Create/Update/Delete Response)。
S605,PCF收到UDR/UDM的签约信息变更通知。
S606,PCF将获取到的UE status information,发送给AMF,AMF通知到RAN,以供(R)AN根据 终端状态信息,从替代QoS配置中确定终端关联的QoS流的第一QoS配置。
S607,如果AF订阅了XRM service相关policy的执行通知,则PCF通过NEF发送相关执行结果给AF(Npcf_EventExposure_Notify)。同时,若有UE status information订阅或相关签约参数变更订阅,PCF更新变更到UDR,触发XRM service组相关UE的serving PCF执行策略变更和协同。这里,若多个PCF场景,可以为PCF直接触发其它PCF执行QoS变更;或PCF存储UE status information/XRM service组策略到UDM后,触发订阅UDM/NEF UE status information信息上报到相应PCF,执行相关PCF的UE status information获取,或直接的XRM service组策略变更。
S608,NEF收到通知后,首先执行内外相关参数的映射,然后将相关状态上报给AF(Nnef_ServiceParameter_Notify)。
对上述,需要说明的是,本示例中的步骤仅是进行示例性说明,其他步骤可以参见相关技术中的业务特定信息提供流程。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
示例二:
在本示例中,AF可以通过AF会话建立流程将UE status information传递给PCF,再由PCF通过SMF传递给RAN。
图7为本公开实施例中的AF会话建立流程的示意图,参见图7,上述流程可以包括:
首先,AF发送AF会话资源请求。例如,通过Nnef_AFsessionWithQoS_Create request,创建AF请求消息。AF在请求消息中携带UE status information。
可选地,上述请求消息中还可以包括一下至少之一:Alternative QoS,XRM service group信息,UE address/UE Identifier,AF Identifier Application ID,QoS流描述信息(Flow description(s)),DNN,S-NSSAI,QoS parameters等相应信息。这里Group ID可用于识别XRM service group中的所有flows。
S701,AF将请求消息发送给NEF(Nnef_AFsessionWithQoS_Create request),该请求消息中携带UE status information。可选地,请求消息中还携带有Alternative QoS。NEF授权AF请求,NEF执行相关映射,包括外部到CN标识的映射。
S702,NEF对AF请求进行授权,根据AF提供的参数决定是调用TSCTSF还是直接发送给PCF。PCF可以从NEF或TSCTSF接收AF提供的信息。NEF触发Npcf_PolicyAuthorization_Create request,将授权的AF请求发送给PCF,其中,携带由UE status information。可选地,还可以携带有Alternative QoS(供PCF策略决策)以及XRM service group信息。NEF根据S701中的执行,触发XRM service组相应数据流的会话更新。
S703,NEF存储应请求信息到UDR/UDM(Npcf_Policy Authorization_Create request(UE status information))。NEF存储UE status information到UDR/UDM,可作为AMF关联参数存储,或SMF关联参数存储,或应用数据的业务特性参数存储。
如果涉及多个UE,则NEF可传送UE status information和/或相关业务参数到PCF,在每个PCF中执行相应授权,以及策略和规则的决策或更新。PCF根据请求授权结果,存储相应信息到UDR中。(可由NEF根据组标识直接传送到组相关PCF,或存储到UDM后通过订阅报告传送到组相关PCF)
可选地,对于多UE场景,其中UE group成员的签约数据通过XRM service Indication或者Group ID关联,其中Group UE的Group数据保持一致(例如业务的QoS、接入和数据路由的特性参数)。
在一实施例中,PCF可通过NEF,订阅相关XRM service or multimodal data related的事件,例如UE status information、Service QoS更新、UE移动(relocation),PCF更改(change)等。
进一步地,PCF通过接收NEF的上报,获取相应UE status information,可选地,PCF执行后续QoS update等策略的协同(例如,XRM service or multimodal data Group中,UE1的QoS特性参数变更,则触发事件上报到NEF,前转给XRM service or multimodal data Group中对应的其它UE,或同一UE的其它应用流量关联的PCF,执行相应会话更新)
S704,PCF进行策略决策。PCF决定是否需要将更新后的或者新的策略信息发送给SMF。
其中,PCF基于NEF提供的UE状态信息UE status information,生成或更新策略控制和计费(Policy Control and Charging,PCC)规则。PCF触发Npcf_SMPolicyControl_UpdateNotify,更新SMF相应PDU会话的策略信息,包括AF请求相关的PCC规则和QoS策略。
S705,PCF向NEF发送Npcf_PolicyAuthorization_Create response message。
S706,NEF向AF发送Nnef_AFsessionWithQoS_Create response message,其中携带由上述QoS配置,以告知是否请求被授权。
S707,PCF基于SMF的PDU会话的可能更新的策略信息,触发Npcf_SMPolicyControl_UpdateNotify操作。此次更新包括:由AF在S701中提供并由PCF映射到特定PDU会话的信息。PCF将获取到的UE状态信息UE status information,发送给SMF。
S708,SMF使用Npcf_SMPolicyControl_UpdateNotify response确认PCF的请求。
S709-S711,SMF触发PDU会话修改流程,将以供(R)AN根据终端状态信息,从替代QoS配置中确定终端关联的QoS流的QoS配置。
对上述,需要说明的是,本示例中的步骤仅是进行示例性说明,其他步骤可以参见相关技术中的AF会话建立流程。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
示例三:
在本示例中,RAN可以通过PDU会话修改流程将第一QoS配置传递给UE、5GC、AF。
图8为本公开实施例中的PDU会话修改流程的示意图,参见图8,上述流程可以包括:
S801,(AN发起的通知控制)如果为GBR QoS流配置了通知控制,当(R)AN决定QoS流的QoS目标时,(R)AN会向SMF发送N2消息(PDU会话ID,N2 SM信息)分别不能实现或可以再次 实现。N2 SM信息分别包括QFI和该QoS流的QoS目标不能实现或可以再次实现的指示。当QoS目标无法满足时,N2 SM信息指示对与NG-RAN当前正在满足的QoS参数值(可选,以及相应的UE状态)匹配的替代QoS配置文件的引用。AMF调用Nsmf_PDUSession_UpdateSMContext(SM上下文ID,N2 SM信息)。如果PCF已订阅该事件,则SMF会针对为其设置通知控制的每个PCC规则将此事件报告给PCF。
S802,SMF可能需要通过执行SMF发起的SM策略关联修改流程来向PCF报告一些订阅事件。如果没有部署动态PCC,SMF可能会应用本地策略来决定是否更改QoS配置文件。
S803,对于AN发起的修改,SMF通过Nsmf_PDUSession_UpdateSMContext Response([N2 SM information(PDU Session ID,QFI(s),QoS Profile(s),[Alternative QoS Profile(s)],Session-AMBR]响应AMF,[CN Tunnel Info(s)]),N1 SM container(PDU Session Modification Command(PDU Session ID,QoS rule(s),QoS rule operation,QoS Flow level QoS参数如果与QoS规则相关的QoS流需要,Session-AMBR,[Always-on PDU Session Granted],[Port Management Information Container],[corresponding UE status])))。需要说明的是替代QoS配置文件仅对AN发起的修改有效。
其中,N2 SM信息携带AMF应提供给(R)AN的信息。它可以包括QoS配置文件和相应的QFI,以通知(R)AN添加或修改一个或多个QoS流,并且可以包括相应的UE状态。
其中,N1 SM容器携带AMF应提供给UE的PDU会话修改命令。它可以包括QoS规则、QoS流级别(QoS数(如果需要)用于与QoS规则相关联的QoS流以及相应的QoS规则操作和QoS流级别QoS参数操作,以通知UE一个或多个QoS添加、删除或修改规则。它可以包括相应的UE状态。SMF可能需要通过RAN透明地发送PDU会话修改命令,以通知UE在SMF接收到QoS通知控制后RAN当前正在执行的QoS参数(即5QI、GFBR、MFBR)的变化。当SMF通过RAN透明地发送PDU会话修改命令时,N2 SM信息不包含在Namf_Communication_N1N2MessageTransfer中。
S804,AMF可以向(R)AN发送N2([N2 SM information received from SMF],NAS message(PDU Session ID,N1 SM container(PDU Session Modification Command)))消息。
S805,(R)AN可以与从SMF接收的信息相关的UE发出特定的信令交换。例如,在,NG-RAN的情况下,RRC连接重新配置可能发生在UE修改与PDU会话相关的必要(R)AN资源时,或者如果在步骤S804中从AMF接收到N1 SM容器,RAN仅将N1 SM容器传输到UE。
对上述,需要说明的是,本示例中的步骤仅是进行示例性说明,其他步骤可以参见相关技术中的PDU会话修改流程。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
基于相同的发明构思,本公开实施例提供一种通信装置,图9为本公开实施例中的一种通信装置的结构示意图,参见图9所示,该通信装置900可以包括:处理模块901、接收模块902以及发送模块903。
在一些可能的实施例中,该通信装置900可以为通信系统中的接入网功能实体或者接入网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能 模块。该通信装置900可以实现上述各实施例中接入网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块902,被配置为接收来自应用功能实体的终端状态信息,终端状态信息用于表示终端的功耗状态;处理模块901,被配置为根据终端状态信息,从替代QoS配置中确定终端关联的QoS流的第一QoS配置;发送模块903,被配置为接入网功能实体向第一核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第一核心网功能实体、第二核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块901,被配置为根据终端状态信息以及替代QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中,处理模块901,被配置为根据终端状态信息以及终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,接收模块902,被配置为接收第二核心网功能实体发送的关联关系;或,处理模块901,被配置为根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,接收模块902,被配置为接收第二核心网功能实体发送的替代QoS配置。
在一些可能的实施方式中,接收模块902,被配置为接收来自第二核心网功能实体的终端状态信息,终端状态信息是由应用功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,发送模块903,被配置为向第一核心网功能实体发送NAS消息,NAS消息中携带有第一QoS配置。
在一些可能的实施方式中,该通信装置900可以为通信系统中的第二核心网功能实体或者第二核心网功能实体的芯片或者片上系统,还可以为第二核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置900可以实现上述各实施例中第二核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,该通信装置900可以包括:接收模块902,被配置为接收应用功能实体发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块903,被配置为向第一核心网功能实体或者第三核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体从替代QoS配置中确定终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、 CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;接收模块902,被配置为以下之一:接收应用功能实体发送的终端状态信息;接收TSCTSF实体发送的终端状态信息,终端状态信息是由应用功能实体发送给TSCTSF实体的。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;接收模块902,被配置为以下之一:接收NEF实体发送的终端状态信息,终端状态信息由应用功能实体发送给NEF实体的;收TSCTSF实体发送的终端状态信息,终端状态信息是由应用功能实体通过NEF实体发送给TSCTSF实体的。
在一些可能的实施方式中,接收模块902,被配置为接收第一核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第一核心网功能实体的。
在一些可能的实施方式中,发送模块903,被配置为向第一核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;接收模块902,被配置为在第一事件满足事件上报条件的情况下,接收第一核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,发送模块903,被配置为向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在一些可能的实施方式中,发送模块903,被配置为向应用功能实体发送第一QoS配置,第一QoS配置用于应用功能实体执行QoS更新。
在一些可能的实施方式中,接收模块902,被配置为接收应用功能实体发送的替代QoS配置。
在一些可能的实施方式中,该通信装置900可以为通信系统中的第一核心网功能实体或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置900可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块902,被配置为接收接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的QoS配置;通信装置900还包括以下至少之一:处理模块901,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块903,被配置为向第二核心网功能实体发送第一QoS配置,第一QoS配置用于第二核心网功能实体和/或应用功能实体执行QoS更新;向终端发送第一QoS配置,第一QoS配置用于终端执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块901,被配置为查询订阅事件,确定第一QoS配置关联的第一事件;发送模块903,被配置为在第一事件满足事件上报条件的情况下,向第二核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,发送模块903,被配置为向终端发送NAS消息,NAS消息中携带有第一QoS配置。
在一些可能的实施方式中,该通信装置900可以为通信系统中的应用功能实体或者应用功能实体的芯片或者片上系统,还可以为应用功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置900可以实现上述各实施例中应用功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块902,被配置为接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块903,被配置为向第二核心网功能实体发送终端状态信息,终端状态信息还用于接入网功能实体根据终端的终端状态信息从替代QoS配置中确定的终端关联的QoS流的第一QoS配置。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,替代QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示替代QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,应用功能实体为受信的应用功能实体;发送模块903,被配置为以下之一:向第二核心网功能实体发送终端状态信息;向TSCTSF实体发送终端状态信息,终端状态信息还用于TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,应用功能实体为非受信的应用功能实体;发送模块903,被配置为以下之一:向NEF实体发送的终端状态信息,终端状态信息还用于NEF实体通过TSCTSF实体向第二核心网功能实体发送。
在一些可能的实施方式中,接收模块902,被配置为接收第二核心网功能实体发送的第一QoS配置;处理模块被配置为:根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
需要说明的是,处理模块901、接收模块902以及发送模块903的具体实现流程可参考图2至图5实施例的详细描述,为了说明书的简洁,这里不再赘述。
本公开实施例中提到的接收模块902可以为接收接口、接收电路或者接收器等;发送模块903可以为发送接口、发送电路或者发送器等;处理模块901可以为一个或者多个处理器。
基于相同的发明构思,本公开实施例提供一种通信装置,该通信装置可以为上述一个或者多个实施例中所述的接入网功能实体、第一核心网功能实体、第二核心网功能实体或应用功能实体。图10为本公开实施例中的一种通信装置的结构示意图,参见图10所示,通信装置1000,采用了通用的计算机硬件,包括处理器1001、存储器1002、总线1003、输入设备1004和输出设备1005。
在一些可能的实施方式中,存储器1002可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器1002可以存储操作系统、应用程序、其他程序模块、可执行代码、程序数据、用户数据等。
输入设备1004可以用于向通信设备输入命令和信息,输入设备1004如键盘或指向设备,如鼠标、轨迹球、触摸板、麦克风、操纵杆、游戏垫、卫星电视天线、扫描仪或类似设备。这些输入设备可以通过总线1003连接至处理器1001。
输出设备1005可以用于通信设备输出信息,除了监视器之外,输出设备1005还可以为其他外围输出设各,如扬声器和/或打印设备,这些输出设备也可以通过总线1003连接到处理器1001。
通信设备可以通过天线1006连接到网络中,例如连接到局域网(local area network,LAN)。在联网环境下,控制备中存储的计算机执行指令可以存储在远程存储设备中,而不限于在本地存储。
当通信设备中的处理器1001执行存储器1002中存储的可执行代码或应用程序时,通信设备以执行以上实施例中的UE侧或者网络设备侧的中继通信方法,具体执行流程参见上述实施例,在此不再赘述。
此外,上述存储器1002中存储有用于实现图9中的处理模块901、接收模块902以及发送模块903的功能的计算机执行指令。图9中的处理模块901、接收模块902以及发送模块903的功能/实现流程均可以通过图10中的处理器1001调用存储器1002中存储的计算机执行指令来实现,具体实现流程和功能参考上述相关实施例。
基于相同的发明构思,本公开实施例提供一种网络功能实体,如接入网功能实体、第一核心网功能实体、第二核心网功能实体或应用功能实体。
图11为本公开实施例中的一种网络功能实体的结构示意图,参见图11所示,网络功能实体1100可以包括处理组件1101,其进一步包括一个或多个处理器,以及由存储器1102所代表的存储器资源,用于存储可由处理组件1101的执行的指令,例如应用程序。存储器1102中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1101被配置为执行指令,以执行上述方法前述应用在所述网络设备的任一方法。
网络功能实体1100还可以包括一个电源组件1103被配置为执行网络功能实体1100的电源管理,一个有线或无线网络接口1104被配置为将网络功能实体1100连接到网络,和一个输入输出(I/O)接口1105。网络功能实体1100可以操作基于存储在存储器1102的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
基于相同的发明构思,本公开实施例还一种通信装置,如接入网功能实体、第一核心网功能实 体、第二核心网功能实体或应用功能实体,包括:存储器和处理器;处理器与存储器连接,被配置为通执行存储在存储器上的计算机可执行指令,以实现如上述一个或者多个实施例所述的方法。
基于相同的发明构思,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行上述一个或者多个实施例中网络功能实体侧的QoS流的控制方法。这里,网络功能实体可以包括:接入网功能实体、第一核心网功能实体、第二核心网功能实体以及应用功能实体。
基于相同的发明构思,本公开实施例还提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现上述一个或者多个实施例中网络功能实体侧的QoS流的控制方法。这里,网络功能实体可以包括:接入网功能实体、第一核心网功能实体、第二核心网功能实体以及应用功能实体。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (63)

  1. 一种服务质量QoS流的控制方法,由接入网功能执行,所述方法包括:
    接收来自应用功能的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    根据所述终端状态信息,从替代QoS配置中确定所述终端关联的QoS流的第一QoS配置;
    向所述第一核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第一核心网功能、第二核心网功能以及所述应用功能中的至少之一执行QoS更新。
  2. 根据权利要求1所述的方法,其中,所述第一核心网功能为会话管理功能SMF,所述第二核心网功能为策略和控制功能PCF。
  3. 根据权利要求1所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  4. 根据权利要求1所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  5. 根据权利要求4所述的方法,其中,所述根据所述终端状态信息,确定所述终端设备的业务会话或业务数据流对应的第一QoS配置,包括:
    根据所述终端状态信息以及所述替代QoS配置中的终端状态管理指示,确定所述第一QoS配置。
  6. 根据权利要求1所述的方法,其中,所述根据所述终端状态信息,确定所述终端设备的业务会话或业务数据流对应的第一QoS配置,包括:
    根据所述终端状态信息以及终端状态信息与QoS配置的关联关系,确定所述第一QoS配置。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述关联关系;或,
    根据本地策略和/或运营商策略配置所述关联关系。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述替代QoS配置。
  9. 根据权利要求1所述的方法,其中,所述接收来自应用功能的终端状态信息,包括:
    接收来自所述第二核心网功能的所述终端状态信息,所述终端状态信息是由所述应用功能发送给所述所述第二核心网功能的。
  10. 根据权利要求1所述的方法,其中,所述向所述第一核心网功能发送所述第一QoS配置,包括:
    向所述第一核心网功能发送非接入层NAS消息,所述NAS消息中携带有所述第一QoS配置。
  11. 一种服务质量QoS流的控制方法,由第二核心网功能执行,所述方法还包括:
    接收应用功能发送的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    向接入网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网功能从替代QoS配置中确定所述终端关联的QoS流的第一QoS配置。
  12. 根据权利要求11所述的方法,其中,所述第一核心网功能为会话管理功能SMF,所述第二核心网功能为第一策略和控制功能PCF,所述第三核心网功能为接入与移动性管理功能AMF。
  13. 根据权利要求11所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  14. 根据权利要求11所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  15. 根据权利要求11所述的方法,其中,所述应用功能为受信的应用功能;
    所述接收来自应用功能的终端状态信息,包括以下之一:
    接收所述应用功能发送的终端状态信息;
    接收时间敏感通信时间同步功能TSCTSF发送的所述终端状态信息,所述终端状态信息是由所述应用功能发送给所述TSCTSF的。
  16. 根据权利要求11所述的方法,其中,所述应用功能为非受信的应用功能;
    所述接收来自应用功能的终端状态信息,包括以下之一:
    接收网络开放功能NEF发送的所述终端状态信息,所述终端状态信息由所述应用功能发送给所述 NEF的;
    接收时间敏感通信时间同步功能TSCTSF发送的所述终端状态信息,所述终端状态信息是由所述应用功能通过NEF发送给所述TSCTSF的。
  17. 根据权利要求11所述的方法,其中,所述向接入网功能发送所述终端状态信息,包括:
    通过所述第一核心网功能或所述第三核心网功能向所述接入网功能发送所述终端状态信息。
  18. 根据权利要求11所述的方法,其中,所述方法还包括:
    接收所述第一核心网功能发送的所述第一QoS配置。
  19. 根据权利要求18所述的方法,其中,所述接收所述第一核心网功能发送的所述第一QoS配置,包括:
    向所述第一核心网功能发送订阅请求消息,所述订阅请求消息用于请求所述第一QoS配置关联的第一事件;
    在所述第一事件满足事件上报条件的情况下,接收所述第一核心网功能发送的所述第一QoS配置。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:
    向第四核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述第四核心网功能执行QoS更新。
  21. 根据权利要求18所述的方法,其中,所述方法还包括:
    向所述应用功能发送所述第一QoS配置,所述第一QoS配置用于所述应用功能执行QoS更新。
  22. 根据权利要求11所述的方法,其中,所述方法还包括:
    接收所述应用功能发送的所述替代QoS配置。
  23. 一种服务质量QoS流的控制方法,由第一核心网功能执行,所述方法包括:
    接收接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的QoS配置,所述终端状态信息用于表示终端的功耗状态;
    执行以下至少之一:
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    向第二核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述第二核心网功能和/或所述应用功能执行QoS更新;
    向所述终端发送所述第一QoS配置,所述第一QoS配置还用于所述终端执行QoS更新。
  24. 根据权利要求23所述的方法,其中,所述第一核心网功能为会话管理功能SMF,所述第二核心网功能为第一策略和控制功能PCF。
  25. 根据权利要求23所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  26. 根据权利要求23所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  27. 根据权利要求23所述的方法,其中,所述方法还包括;
    接收所述第二核心网功能发送的所述终端状态信息;
    向所述接入网功能发送所述终端状态信息。
  28. 根据权利要求27所述的方法,其中,所述向第二核心网功能发送所述第一QoS配置,包括:
    查询订阅事件,确定所述第一QoS配置关联的第一事件;
    在所述第一事件满足事件上报条件的情况下,向所述第二核心网功能发送所述第一QoS配置。
  29. 根据权利要求28所述的方法,其中,所述向所述终端发送所述第一QoS配置,包括:
    向所述终端发送非接入层NAS消息,所述NAS消息中携带有所述第一QoS配置。
  30. 一种服务质量QoS流的控制方法,由应用功能执行,所述方法还包括:
    接收终端发送的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    向第二核心网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网功能根据所述终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的第一QoS配置。
  31. 根据权利要求30所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  32. 根据权利要求30所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  33. 根据权利要求30所述的方法,其中,所述应用功能为受信的应用功能;所述向第二核心网功能发送所述终端状态信息,包括以下之一:
    向所述第二核心网功能发送所述终端状态信息;
    向时间敏感通信时间同步功能TSCTSF发送所述终端状态信息,所述终端状态信息还用于所述TSCTSF向所述第二核心网功能发送。
  34. 根据权利要求30所述的方法,其中,所述应用功能为非受信的应用功能;所述向第二核心网功能发送所述终端状态信息,包括:
    向网络开放功能NEF发送的所述终端状态信息,所述终端状态信息还用于所述NEF向所述第二核心网功能发送,或,所述终端状态信息还用于所述NEF通过时间敏感通信时间同步功能TSCTSF向所述第二核心网功能发送。
  35. 根据权利要求30所述的方法,其中,所述接收终端发送的终端状态信息,包括:
    通过业务特定信息提供流程或应用功能会话建立流程接收所述终端状态信息。
  36. 根据权利要求30所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述第一QoS配置;
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  37. 一种服务质量QoS流的控制方法,由核心网设备执行,所述方法包括:
    接收终端发送的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    将所述终端状态信息发送给接入网功能,所述终端状态信息还用于所述接入网功能根据所述终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的第一QoS配置。
  38. 根据权利要求37所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  39. 根据权利要求37所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  40. 根据权利要求37所述的方法,其中,所述方法还包括:
    接收所述接入网功能发送的所述第一QoS配置;
    执行以下至少之一:
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    将所述第一QoS配置发送给终端,所述第一QoS配置用于所述终端执行QoS更新。
  41. 根据权利要求37所述的方法,其中,所述接收所述接入网功能发送的所述第一QoS配置,包括:
    接收所述接入网功能发送的非接入层NAS消息,所述NAS消息中携带有所述第一QoS配置。
  42. 根据权利要求37所述的方法,其中,所述接收所述接入网功能发送的所述第一QoS配置,包括:
    通过分组数据单元会话修改流程,接收所述第一QoS配置。
  43. 根据权利要求37所述的方法,其中,所述将所述终端状态信息发送给接入网功能,包括:
    向所述接入网功能发送NAS消息,所述NAS消息中携带有所述终端状态信息。
  44. 根据权利要求37所述的方法,其中,所述接收终端发送的终端状态信息,包括:
    通过业务特定信息提供流程或应用功能会话建立流程接收所述终端状态信息。
  45. 一种服务质量QoS流的控制方法,由核心网设备执行,所述方法包括:
    应用功能接收终端发送的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    所述应用功能将所述终端状态信息发送给第二核心网功能;
    所述第二核心网功能将所述终端状态信息发送给接入网功能,所述终端状态信息还用于所述接入网功能根据所述终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的第一QoS配置。
  46. 根据权利要求45所述的方法,其中,所述第一核心网功能为会话管理功能SMF,所述第二核心网功能为第一策略和控制功能PCF,所述第三核心网功能为接入与移动性管理功能AMF。
  47. 根据权利要求45所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  48. 根据权利要求45所述的方法,其中,所述替代QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述替代QoS配置是否支持用于终端状态管理。
  49. 根据权利要求45所述的方法,其中,所述第二核心网功能将所述终端状态信息发送给接入网功能,包括:
    所述第二核心网功能将所述终端状态信息发送给第一核心网功能;
    所述第一核心网功能将所述终端状态信息发送给所述接入网功能。
  50. 根据权利要求45所述的方法,其中,所述第二核心网功能将所述终端状态信息发送给接入网功能,包括:
    所述第二核心网功能将所述终端状态信息发送给第三核心网功能;
    所述第三核心网功能将所述终端状态信息发送给所述接入网功能。
  51. 根据权利要求45所述的方法,其中,所述方法还包括:
    所述第一核心网功能接收所述接入网功能发送的所述第一QoS配置;
    所述第一核心网功能根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  52. 根据权利要求45所述的方法,其中,所述方法还包括:
    所述第一核心网功能接收所述接入网功能发送的所述第一QoS配置;
    所述第一核心网功能将所述第一QoS配置发送给所述第二核心网功能;
    所述第二核心网功能根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  53. 根据权利要求52所述的方法,其中,所述方法还包括:
    所述第二核心网功能将所述第一QoS配置发送给所述应用功能;
    所述应用功能根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  54. 根据权利要求52所述的系统,其中,所述核心网还包括:第四核心网功能;其中,
    所述第二核心网功能将所述第一QoS配置发送给所述第四核心网功能;
    所述第四核心网功能根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  55. 根据权利要求54所述的系统,其中,所述第四核心网功能为第二PCF。
  56. 根据权利要求45所述的方法,其中,所述方法还包括:
    所述第一核心网功能接收所述接入网功能发送的所述第一QoS配置;
    所述第一核心网功能将所述第一QoS配置发送给所述终端。
  57. 一种通信装置,包括:
    接收模块,被配置为接收来自应用功能的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    处理模块,被配置为根据所述终端状态信息,从替代QoS配置中确定所述终端关联的QoS流的 第一QoS配置;
    发送模块,被配置为向所述第一核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第一核心网功能、第二核心网功能以及所述应用功能中的至少之一执行QoS更新。
  58. 一种通信装置,包括:
    接收模块,被配置为接收应用功能发送的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    发送模块,被配置向接入网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网功能从替代QoS配置中确定所述终端关联的QoS流的第一QoS配置。
  59. 一种通信装置,包括:
    接收模块,被配置为接收接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的QoS配置;
    所述装置还包括以下至少之一:
    处理模块,被配置为根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    发送模块,被配置为向第二核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述第二核心网功能和/或所述应用功能执行QoS更新;
    所述发送模块,被配置为向所述终端发送所述第一QoS配置,所述第一QoS配置还用于所述终端执行QoS更新。
  60. 一种通信装置,包括:
    接收模块,被配置为接收终端发送的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    发送模块,被配置为向第二核心网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网功能根据所述终端的终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的第一QoS配置。
  61. 一种核心网系统,包括:第二核网功能和应用功能;其中,
    所述应用功能,被配置为:接收终端发送的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;向所述第二核心网功能发送所述终端状态信息,所述终端状态信息还用于接入网功能根据所述终端状态信息从替代QoS配置中确定的所述终端关联的QoS流的第一QoS配置;
    所述第二核心网功能,被配置为:接收所述应用功能发送的所述终端状态信息;向所述接入网功能发送所述终端状态信息。
  62. 一种通信装置,其特征在于,包括:存储器和处理器;所述处理器与所述存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,以实现如权利要求1至56任一项所述的服务质量QoS流的控制方法。
  63. 一种计算机存储介质,存储有计算机可执行指令,其特征在于,所述计算机可执行指令被处理器执行后能够实现如权利要求1至56任一项所述的服务质量QoS流的控制方法。
PCT/CN2022/107723 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质 WO2024020760A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002818.XA CN117769853A (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质
PCT/CN2022/107723 WO2024020760A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107723 WO2024020760A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2024020760A1 true WO2024020760A1 (zh) 2024-02-01

Family

ID=89704896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107723 WO2024020760A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN117769853A (zh)
WO (1) WO2024020760A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662277A (zh) * 2018-06-28 2020-01-07 华为技术有限公司 省电管理方法、图形用户界面以及终端
US20200029316A1 (en) * 2018-07-19 2020-01-23 Comcast Cable Communications, Llc Resource Management for Wireless Communications Using a Power Saving State
CN112804717A (zh) * 2019-11-14 2021-05-14 英特尔公司 用于向应用服务器通知QoS信息的装置和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662277A (zh) * 2018-06-28 2020-01-07 华为技术有限公司 省电管理方法、图形用户界面以及终端
US20200029316A1 (en) * 2018-07-19 2020-01-23 Comcast Cable Communications, Llc Resource Management for Wireless Communications Using a Power Saving State
CN112804717A (zh) * 2019-11-14 2021-05-14 英特尔公司 用于向应用服务器通知QoS信息的装置和方法

Also Published As

Publication number Publication date
CN117769853A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
JP7187580B2 (ja) セッション管理の方法、装置、およびシステム
US20220060935A1 (en) Communications Method and Apparatus
WO2021018200A1 (zh) 会话管理方法及装置
EP4024956A1 (en) Communication method, apparatus, and system
US20230046157A1 (en) Communication method and apparatus
US11310658B2 (en) Method and apparatus for determining status of terminal device, and device
US11082893B2 (en) Session migration method and device applied to a UE tracking area update
EP3952213B1 (en) Communication method, apparatus, and system
WO2022016948A1 (zh) 一种通信方法及装置
WO2020177632A1 (zh) 一种安全保护方法及装置
WO2019238050A1 (zh) 一种通信方法及装置
WO2024020760A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2022067538A1 (zh) 网元发现方法、装置、设备及存储介质
WO2024020759A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2024000445A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2023245458A1 (zh) 一种信息上报方法、装置及计算机存储介质
WO2020142884A1 (zh) 切换传输路径的方法及装置
CN115136624A (zh) 会话处理方法、设备及存储介质
US20240155325A1 (en) Information obtaining method and apparatus, and system
US20220353340A1 (en) Communication Method and Communication Apparatus
WO2023045839A1 (zh) 通信方法、装置、核心网设备及通信设备
EP4297352A1 (en) Data transmission method and apparatus
US20230007576A1 (en) Access network intelligent controller for multiple types of access networks
WO2022016338A1 (zh) 一种通信方法及装置
AU2020379793B2 (en) Communication method, apparatus and system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002818.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952227

Country of ref document: EP

Kind code of ref document: A1