WO2023287222A1 - Method for preparing low-density plate-shaped conductive powder - Google Patents

Method for preparing low-density plate-shaped conductive powder Download PDF

Info

Publication number
WO2023287222A1
WO2023287222A1 PCT/KR2022/010288 KR2022010288W WO2023287222A1 WO 2023287222 A1 WO2023287222 A1 WO 2023287222A1 KR 2022010288 W KR2022010288 W KR 2022010288W WO 2023287222 A1 WO2023287222 A1 WO 2023287222A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
polymer powder
powder
low
density
Prior art date
Application number
PCT/KR2022/010288
Other languages
French (fr)
Korean (ko)
Inventor
김태엽
조상호
Original Assignee
엑시노 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210093719A external-priority patent/KR102660389B1/en
Application filed by 엑시노 주식회사 filed Critical 엑시노 주식회사
Publication of WO2023287222A1 publication Critical patent/WO2023287222A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Definitions

  • the present invention relates to a low-density conductive powder, and more particularly, to a flat low-density polymer powder and a method for manufacturing the conductive powder including the same.
  • a tablet computer or a notebook computer, including a smart phone is gradually becoming lighter in weight and thinner in spite of increasingly high functionality and high specifications.
  • materials that can support light-thin and short-circuiting for the main body of the product as well as internal electronic components, adhesives or films for bonding or mounting them are continuously being pursued.
  • a conductive adhesive or conductive film is manufactured by molding a paste or mixture of a metal powder having high electrical conductivity, such as silver, copper, nickel, or zinc, with an organic binder (synthetic resin), into a film form.
  • metal powder is basically a material with high density, so there is a limit to weight reduction, and dispersion stability is poor, as well as stability over time, so when precipitation occurs over time, there is a problem of poor uniformity. Due to this, the thickness of the conductive adhesive or the conductive film is non-uniform, the surface is rough, and the conductive properties are not satisfied locally.
  • a method of lowering the density by manufacturing a hollow metal powder or using a plastic ball instead of a metal powder has been proposed.
  • a plastic ball made of, for example, PolyStyrene (PS), PolyMethyl MethAcrylate (PMMA), Arcylonitrile Butadiene Styrene (ABS), PolyOxy Methylene (POM), PolyAcryloNitrile (PAN), etc.
  • PS PolyStyrene
  • PMMA PolyMethyl MethAcrylate
  • ABS Arcylonitrile Butadiene Styrene
  • POM PolyOxy Methylene
  • PAN PolyAcryloNitrile
  • Patent Document 1 Korean Patent Registration No. 10-1718158
  • Patent Document 2 Korea Patent Registration No. 10-1343997
  • Patent Document 3 Korean Patent Publication No. 10-2020-0113461
  • One problem to be solved by the present invention is a low-density plate-like polymer powder capable of preparing a spherical or amorphous polymer powder in a plate-like shape with a wide contact area between particles so as to manufacture a low-density conductive powder capable of implementing high conductivity. It is to provide a manufacturing method of.
  • Another problem to be solved by the present invention is to provide a method for producing a plate-shaped low-density and conductive powder capable of implementing high conductivity and reducing density.
  • a method for manufacturing a low-density plate-shaped conductive powder according to an embodiment of the present invention for solving the above problems includes preparing a polymer powder, mechanically milling the prepared polymer powder to make it plate-shaped, and the plate-shaped conductive powder. A step of coating a metal on the surface of the planarized polymer powder in the phase forming step.
  • the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PolyStyrene, PS), polyethylene (PolyEthylene, PE) and It may be formed of one or more copolymers selected from the group consisting of polypropylene (PP).
  • the polymer powder may have a spherical or amorphous shape with an average particle diameter of 1 to 60 ⁇ m.
  • the plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 ⁇ m and a thickness of 0.2 to 2 ⁇ m, and a ratio of the length of the long axis to the thickness may be 10 to 300.
  • the prepared polymer powder may be mechanically milled using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method.
  • a solvent may be included during the process, and the solvent is methanol, ethanol, 1,2-propanol (1 , 2-Propanol), ethylene glycol, glycerol, and the like. At least one kind may be selected from alcohols.
  • mechanical milling may be performed at a temperature higher than room temperature in order to increase the milling effect.
  • the metal is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe ) and cobalt (Co), or any one or two or more alloys selected from the group consisting of.
  • a single metal layer or multiple metal layers may be formed on the surface of the plate-shaped polymer powder.
  • the spherical or amorphous polymer powder can be easily and inexpensively manufactured into a plate-like shape having a desired thickness-to-diameter (or major axis length).
  • the prepared plate-like polymer powder by coating the prepared plate-like polymer powder with a metal, it can be used to manufacture a conductive powder having excellent conductivity and low density.
  • plate-shaped powder having a large planar area rather than a spherical three-dimensional shape is used as the conductive particle, the contact area between the powders increases and high conductivity can be realized.
  • FIG. 1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
  • 2A is a diagram schematically showing a case in which a single metal layer is formed on the surface of a plate-like polymer powder.
  • 2B is a diagram schematically showing a case in which two metal layers are formed on the surface of a plate-like polymer powder.
  • FIG. 3a and 3b are SEM images of the prepared spherical polymer powder, and FIG. 3b is an enlarged portion of FIG. 3a.
  • FIG. 4a and 4b are SEM images of plate-shaped polymer powder prepared according to an experimental example, and FIG. 4b is an enlarged portion of FIG. 4a.
  • FIG. 5a and 5b are SEM images of copper (Cu)-coated plate-like polymer powder prepared according to Experimental Example 2, and FIG. 5b is an enlarged view of a portion of FIG. 5a.
  • FIG. 6a and 6b are SEM images of plate-like polymer powder coated with nickel (Ni) prepared according to Experimental Example 3, and FIG. 6b is an enlarged view of a portion of FIG. 6a.
  • FIG. 7A and 7B are SEM pictures of plate-shaped polymer powder prepared by coating copper (Cu) as a first coating layer and then coating silver (Ag) as a second coating layer according to Experimental Example 4, and FIG. 7B is a portion of FIG. 7A It shows enlarged.
  • FIG. 8A to 8C show EDS mapping pictures of platelet polymer powders sequentially coated with silver (Ag) and copper (Cu) prepared according to Experimental Example 4, and FIG. 8B shows copper in FIG. 8A ( It shows the distribution of Cu), and FIG. 8c is a photograph showing the distribution of silver (Ag) in FIG. 8a.
  • a method for manufacturing a plate-shaped, low-density conductive powder according to an embodiment of the present invention includes, first, a process of preparing a polymer powder in a plate-like shape (plate-shaped process of polymer powder), and a process of coating the plate-shaped polymer powder with a metal. (coating process of plate-like polymer powder).
  • the 'coating process' is generally performed using the plate-shaped polymer powder produced as a result of the 'plate-forming process' according to an embodiment of the present invention described later, but is not limited thereto.
  • the coating process may be performed using a plate-shaped polymer powder prepared using a method other than the examples described below.
  • FIG. 1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
  • a polymer powder to be plated is prepared (S10).
  • the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). It may be one copolymer selected from the group consisting of, or a mixture in which two or more copolymers are mixed.
  • the polymer powder is polyacrylonitrile.
  • Polyacrylonicryl polymer powder has excellent ductility compared to other types of polymer powder and is easier to plate.
  • the prepared polymer powder has a three-dimensional shape, such as a spherical or amorphous shape.
  • a spherical polymer powder when it is plate-shaped by mechanical milling in step S20 to be described later, it has a circular or elliptical shape with a thin thickness, so it is easy to control the shape of the powder even if it is plate-shaped.
  • a wider contact area can be secured between circular or elliptical powders, and there is an advantage in that the deviation of the contact area between the powders is small.
  • the spherical polymer powder may have an average particle diameter of 1 ⁇ m to 60 ⁇ m.
  • the polymer powder preferably has an average particle diameter of 3 to 15 ⁇ m.
  • the average particle diameter of the polymer powder is smaller than 3 ⁇ m, it is not easy to coat the polymer with metal even if it is plate-shaped, and it is difficult to secure a large contact area between the powders.
  • the average particle diameter of the polymer powder is greater than 15 ⁇ m, the particle size greatly increases after plate-shaping, making it difficult to evenly distribute the powder during manufacture of pastes or films, as well as making it difficult to thin and refine the product.
  • the prepared polymer powder is mechanically milled to plate it (S20).
  • “mechanical milling” refers to flattening by physically applying impact and/or pressure to polymer powder using a milling machine commonly used to make fine powder.
  • metal particles, paints, grains, etc. are broken into smaller particles (powder) when using a milling machine.
  • a polymer powder its shape is easily deformed rather than split into smaller sizes even when an impact or pressure is applied due to its material properties (eg, ductility).
  • material properties eg, ductility
  • spherical polymer powder when mechanical milling is performed using a milling machine, it can be flattened by impact or pressure and plated into a circular or elliptical shape.
  • the milling machine may be a device for mechanically milling using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method.
  • the milling device ie, the milling method used in the milling machine
  • the mechanical milling in step S20 is preferably performed in a state in which the polymer powder is dispersed in a predetermined solvent.
  • a solvent When the polymer powder is dispersed in a solvent, mixing and dispersing effects of the polymer powder can be enhanced, and more uniform milling is possible. Since the polymer powder is hydrophobic and has a lower density than water, it does not disperse well in water. Therefore, it is preferable to use an organic solvent instead of water for dispersing the polymer powder. However, when an organic solvent is used as a dispersion, the polymer powder may be dissolved depending on its type, so an organic solvent of a type in which the polymer powder does not dissolve well should be used.
  • the organic solvent used in the mechanical milling process in step S20 is preferably alcohol.
  • the alcoholic organic solvent may be methanol, ethanol, 1,2-propanol, ethylene glycol, glycerol, or a mixture thereof. can In this case, since the polymer powder is not easily dissolved in the organic solvent and is uniformly dispersed, it is possible to plate the particle size uniformly without damaging the polymer powder.
  • the above-mentioned polymer powder can be easily dissolved in ketones (e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.) It is preferable not to use it as a solvent. If ketones are used as a solvent, the polymer powder is dissolved and the base material may be damaged when the milling machine is used for a long time.
  • ketones e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.
  • the mechanical milling process of step S20 may be performed at a temperature of 10° C. or higher, but the temperature should be lower than the boiling point of the solvent used.
  • the temperature should be lower than the boiling point of the solvent used.
  • high-strength polymer powders such as polymethyl methacrylate (PMMA) have low ductility and can easily break the powder during mechanical milling. Therefore, the temperature is maintained high during the milling process to increase the ductility of the powder, thereby increasing the platelet efficiency.
  • PMMA polymethyl methacrylate
  • the mechanical milling process is preferably performed at room temperature lower than the boiling point of the organic solvent, for example, 25 to 75°C. If the process temperature is less than 25 ° C., the ductility of the polymer powder is not increased, so the polymer powder can be easily broken. On the other hand, when the process temperature is 75° C. or higher, it may be difficult to perform the milling process for a long time because the solvent is evaporated and the amount is reduced during the mechanical milling process.
  • this mechanical milling process is preferably performed at a predetermined rotational speed (rpm) for a predetermined time so that more powder can be plated.
  • the mechanical milling process is preferably performed at 200 to 600 rpm for about 10 to 60 minutes.
  • the rotational speed is too small or the process time is too short, there is a concern that only a part of the polymer powder introduced is plated.
  • the rotation speed is too high, there is a concern that the polymer powder is not plated and pulverized, and if the process time is too long, not only is it a factor that lowers productivity, but also the polymer powder is dissolved in an organic solvent. There is a risk that this may be damaged.
  • the size of the ball used in the mechanical milling process is 0.5 to 4mm, preferably 1 to 3mm. If the size of the ball is too small (for example, 1 mm or less), it is difficult to flatten the polymer powder as a whole and it is easy to break the polymer powder due to partial impact. On the other hand, if the size of the ball is too large (eg, 4 mm or more), the impact applied by the ball is great, so the polymer powder is also easy to break.
  • step S20 when the plate-forming process is performed on the polymer powder using a mechanical milling method under predetermined process conditions (ie, the above-described process temperature, rotational speed, and/or ball size, etc.), the spherical polymer powder
  • the silver is plated to form a plate-like polymer powder.
  • a platelet polymer powder with a length to thickness ratio of 10 to 300 can be made.
  • a conductive metal material is coated on the surface of the planarized polymer powder in the planarization process of step S20 (S30).
  • the metal to be coated is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe) or cobalt (Co) may be a single metal or a mixture of two or more metals among them.
  • the method of coating the surface of the plate-like polymer powder with a conductive metal material there is no particular limitation on the method of coating the surface of the plate-like polymer powder with a conductive metal material, and any known technique for coating the polymer powder with a metal material may be used.
  • a metal material for example, according to the method disclosed in Patent Document 1 (Korean Patent Registration No. 10-1718158) or Patent Document 3 (Korean Patent Publication No. 10-2020-0113461), metal is deposited on the surface of the plate-shaped polymer powder by electroless plating. The material may be coated.
  • a predetermined coating solution containing metal ions to be coated is prepared, plated polymer powder is introduced into the prepared coating solution, and then for a predetermined period of time.
  • the coating solution includes a complexing agent and a reducing agent together with metal ions (metal precursors) so that metal ions can be bound to the surface of the polymer powder by a redox reaction during stirring.
  • the complexing agent serves to form a complex compound of metal ions. Since the produced metal complex has a lower redox potential than pure metal ions, a rapid reduction reaction of metal ions is suppressed to form a uniform metal coating layer.
  • the coating solution may further contain a pH adjuster so that the oxidation-reduction reaction can occur smoothly by the reducing agent.
  • the hydrogen ion concentration (pH) of the coating solution is preferably 7 or more and 12 or less. If the hydrogen ion concentration of the coating solution is less than 7, stability of the solution is lowered and complexes of metal ions may be precipitated. On the other hand, when the hydrogen ion concentration of the coating solution is greater than 12, the speed of the oxidation-reduction reaction is too fast, and the coating layer may be non-uniform.
  • a single metal layer or multiple metal layers may be formed on the surface of the polymer powder.
  • the multiple metal layers need not necessarily be of the same kind of metal, but may be of different kinds of metal.
  • 2A and 2B are views schematically showing a case in which a single metal layer 4 or two metal layers 6a and 6b are formed on the surface of the plate-like polymer powder 2 in step S30, respectively. .
  • the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention has a significantly lower density than the conventional metal conductive powder.
  • the density is 10.49 g / cm3, in the case of copper (Cu), the density is 8.93 g / cm3, in the case of nickel (Ni), the density is 8.8 g / cm3, etc., but the result of step S30
  • the conductive powder made of (conductive powder in FIG. 2A) has a tap density of 2.5 g/cm3 or less regardless of the type of metal 4 coated on the surface of the plate-like polymer powder 2.
  • the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention can be mixed with a polymer resin to be prepared in the form of a conductive paste, film, or sheet, and the plate-shaped low-density conductive powder prepared according to the embodiment itself or mixed with other conductive powders and can be used.
  • Experimental Example 1 is an example of a process of plate-forming polymer powder. More specifically, first, a spherical polymer powder having a particle diameter of 3 to 15 ⁇ m is prepared. 3a and 3b are SEM images of an example of the prepared spherical polymer powder, and FIG. 3b is an enlarged portion of FIG. 3a. Then, a ball with a diameter of 1 to 3 mm is put into the stirrer of the attrition milling device, and then ethanol and polymer powder are mixed at a weight ratio of 10: 1 (eg, 200 g of ethanol and 20 g of polymer powder), It is put into the agitator of the milling device. Subsequently, the stirrer is rotated to plate the polymer powder.
  • 10: 1 eg, 200 g of ethanol and 20 g of polymer powder
  • FIGS. 4a and 4b are SEM pictures of the plated polymer powder prepared according to the process conditions of item 3 of Table 1 below, and Figure 4b is an enlarged portion of Figure 4a.
  • Table 1 shows the process conditions used in the plate-forming process of Experimental Example 1, that is, the diameter of the polymer powder (polymer size), the size of the ball (ball size), the rotation speed of the stirrer (milling speed) and the plate-forming process time (milling time). ), it shows a comparison of the process conditions and the results of particle size analysis (PSA, Particle Size Analysis) of the plated polymer powder according to the experiment while changing some of them.
  • PSD particle size analysis
  • the particle sizes corresponding to 10%, 50%, and 90% of the volume accumulation from the smaller particle size side in the particle size distribution are indicated as D10, D50, and D90, respectively.
  • the item Span is a value of (D90-D10)/D50, showing the degree of uniformity of the size distribution of the polymer powder.
  • the polymer particles are plated and the size of the particles (eg, the size corresponding to the particle size D50) increases.
  • the size of the particle increases, but the uniformity (span) of the particle decreases, and damage may occur to the outer portion of the plate-shaped polymer particle.
  • the ball size, rotation speed, and milling time are too large, for example, when the ball size is 4 ⁇ m or more (eg, 5 ⁇ m) and / or the rotation speed exceeds 600 rpm (eg, 800 rpm), The polymer particles are broken, making it difficult to plate them.
  • Experimental Example 2 is an example of a process of coating copper (Cu) as an example of a conductive metal on the surface of a plate-shaped polymer powder using a redox reaction. More specifically, first, 10 g of plate-like polymer powder is prepared.
  • the plate-like polymer powder may be prepared according to Experimental Example 1 described above, but is not limited thereto.
  • prepare a coating solution by mixing 70g of metal salt CuSO4 ⁇ 5H2O, 68g of complexing agent KNaC4H4O6 ⁇ 4H2O, 55g of Hydrazine as reducing agent, and 50g of NaOH as pH adjusting agent in 1L of distilled water.
  • the prepared plate-like polymer powder is added to the coating solution while the temperature is maintained at 50° C. and stirred for 30 minutes, so that copper (Cu) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with copper (Cu) is washed and then dried in an oven.
  • FIG. 5a and 5b are SEM images of copper (Cu)-coated plate-like polymer powder prepared according to Experimental Example 2, and FIG. 5b is an enlarged view of a portion of FIG. 5a.
  • Experimental Example 3 is an example of a process of coating nickel (Ni) as an example of a conductive metal on the surface of a plate-shaped polymer powder using a redox reaction. More specifically, first, 10 g of plate-like polymer powder is prepared.
  • the plate-shaped polymer powder may be prepared according to Experimental Example 1 described above, but is not limited thereto.
  • a coating solution was prepared by mixing 75 g of metal salt NiCl6 6H2O, 80 g of complexing agent K3C6H5O7, 60 g of reducing agent Hydrazine, and 45 g of pH adjusting agent NaOH in 1 L of distilled water. Subsequently, the prepared plate-like polymer powder is added to the coating solution while maintaining the temperature at 60° C. and stirred for 30 minutes, so that nickel (Ni) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with nickel (Ni) is washed and then dried in an oven.
  • FIG. 6a and 6b are SEM images of plate-like polymer powder coated with nickel (Ni) prepared according to Experimental Example 3, and FIG. 6b is an enlarged view of a portion of FIG. 6a.
  • Experimental Example 4 is an example of a process of additionally coating silver (Ag) as an example of a conductive metal on the surface of the plate-shaped polymer powder coated with copper (Cu) of Experimental Example 2. More specifically, first, 10 g of plate-like polymer powder coated with copper is prepared. The plate-shaped polymer powder coated with copper may be prepared according to Experimental Example 2 described above, but is not limited thereto. Then, a coating solution was prepared by mixing 30 g of metal salt AgNO3, 70 g of complexing agent NH4OH, 91 g of reducing agent C6H8O6, and 20 g of pH adjusting agent NaOH in 1 L of distilled water. Subsequently, the prepared plate-like polymer powder is added to the coating solution while the temperature is maintained at 10° C. and stirred for 30 minutes, so that silver (Ag) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with silver (Ag) is washed and then dried in an oven.
  • silver (Ag) as an example
  • FIG. 7a and 7b are SEM images of a plate-like polymer powder sequentially coated with multiple layers of copper (Cu) and silver (Ag) prepared according to Experimental Example 4, and FIG. 7b is an enlarged view of a portion of FIG. 7a.
  • FIG. 8a to 8c are EDS (Energy Dispersive x-ray Spectrometer) mapping photographs of the plate-shaped polymer powder sequentially coated with copper (Cu) and silver (Ag) in multiple layers prepared according to Experimental Example 4
  • FIG. 8b shows the distribution of copper (Cu) in FIG. 8a
  • FIG. 8c is a photograph showing the distribution of silver (Ag) in FIG. 8a. 8a to 8c, even if copper (Cu) and silver (Ag) are sequentially coated on the polymer powder, it can be seen that both copper (Cu) and silver (Ag) are uniformly coated because the overall distribution is similar. .
  • the low-density plate-like conductive powder manufactured according to the present invention can be used for manufacturing a highly reliable conductive adhesive or conductive film.

Abstract

A method for preparing low-density plate-shaped conductive powder is disclosed. The preparation method according to one embodiment comprises the steps of: preparing polymer powder; forming the prepared polymer powder into a plate shape by mechanically milling same; and coating metal on the surface of the polymer powder which has been formed into a plate shape in the plate-shape forming step.

Description

저밀도 판상형 도전성 분말의 제조방법Manufacturing method of low-density plate-shaped conductive powder
본 발명은 저밀도의 도전성 분말에 관한 것으로, 보다 구체적으로 납작한 형상의 저밀도 폴리머 분말(Polymer powders) 및 이를 포함하는 도전성 분말을 제조하는 방법에 관한 것이다.The present invention relates to a low-density conductive powder, and more particularly, to a flat low-density polymer powder and a method for manufacturing the conductive powder including the same.
정보 통신 기술의 고도화에 따라, 휴대용 전자기기의 경박 단소화는 지속적으로 이루어지고 있다. 예컨대, 스마트 폰을 비롯하여, 테블릿 컴퓨터나 노트북 컴퓨터는 점점 고기능, 고사양화되고 있음에도 불구하고, 무게는 가벼워지고 두께는 점점 얇아지고 있다. 이를 위하여, 제품의 본체는 물론 내부의 전자 부품, 이들을 접합하거나 실장하기 위한 접착제나 필름 등에 대해서, 경박 단소화를 뒷받침할 수 있는 소재에 대한 연구 개발이 계속 추진되고 있다.With the advancement of information and communication technology, portable electronic devices are continuously being made lighter and smaller. For example, a tablet computer or a notebook computer, including a smart phone, is gradually becoming lighter in weight and thinner in spite of increasingly high functionality and high specifications. To this end, research and development on materials that can support light-thin and short-circuiting for the main body of the product as well as internal electronic components, adhesives or films for bonding or mounting them are continuously being pursued.
휴대용 전자기기의 경박 단소화를 구현하기 위한 여러 가지 기술 요소들 중에서, 회로기판에 고집적 IC칩 등의 전자 부품을 실장하여 접합하기 위한 도전성 접착제 소재에 대한 중요도가 지속적으로 높아지고 있다. 이러한 도전성 접착제는 전자기기에 사용되는 특성상 높은 전도성이 요구되는 것은 물론, 전자파 차폐능과 함께 열전도도, 성형성 등의 성능이 요구되기도 한다. 특히, 전자기기의 경박 단소화를 뒷받침하기 위해서는, 도전성 접착제나 도전성 필름 등의 저밀도 특성에 대한 중요도가 점점 높아지고 있다.Among various technological factors for realizing light, thin, and compact portable electronic devices, the importance of a conductive adhesive material for mounting and bonding electronic components such as highly integrated IC chips on a circuit board is continuously increasing. Due to the nature of these conductive adhesives used in electronic devices, not only high conductivity is required, but also performance such as thermal conductivity and formability along with electromagnetic wave shielding ability is required. In particular, in order to support thin, thin and short electronic devices, the importance of low-density characteristics such as conductive adhesives and conductive films is gradually increasing.
통상적으로 도전성 접착제나 도전성 필름 등은 은이나 구리 또는 니켈이나 아연 등과 같이 높은 전기 전도특성을 갖는 금속 분말을 유기 바인더(합성수지)에 혼합한 페이스트나 또는 혼합물을 필름 형태로 성형하여 제조된다. 하지만, 금속 분말은 기본적으로 밀도가 큰 물질이어서 경량화에 한계가 있으며, 분산 안정성이 좋지 않은 것은 물론 경시 안정성이 떨어져서 시간의 경과에 따라 침전이 발생할 경우에는 균일성이 떨어지는 문제가 있다. 이로 인하여, 도전성 접착제나 도전성 필름의 두께가 불균일하며, 표면이 거칠 뿐만 아니라 국부적으로 전도 특성을 충족시키지 못하는 현상이 발생하기도 한다.In general, a conductive adhesive or conductive film is manufactured by molding a paste or mixture of a metal powder having high electrical conductivity, such as silver, copper, nickel, or zinc, with an organic binder (synthetic resin), into a film form. However, metal powder is basically a material with high density, so there is a limit to weight reduction, and dispersion stability is poor, as well as stability over time, so when precipitation occurs over time, there is a problem of poor uniformity. Due to this, the thickness of the conductive adhesive or the conductive film is non-uniform, the surface is rough, and the conductive properties are not satisfied locally.
이러한 금속 분말의 단점을 해결하기 위하여, 다양한 방법이 제안되고 있다. 예컨대, 금속 분말을 중공형으로 제조함으로써 밀도를 낮추거나 또는 금속 분말이 아닌 플라스틱 볼을 사용하는 방법이 제안되어 있다. 후자의 경우에, 예컨대 PolyStyrene(PS), PolyMethyl MethAcrylate(PMMA), Arcylonitrile Butadiene Styrene(ABS), PolyOxy Methylene(POM), PolyAcryloNitrile(PAN) 등으로 만들어진 플라스틱 볼의 표면에 무전해 금속 도금을 실시함으로써, 도전성을 유지하면서 저밀도화를 달성한다.In order to solve the disadvantages of these metal powders, various methods have been proposed. For example, a method of lowering the density by manufacturing a hollow metal powder or using a plastic ball instead of a metal powder has been proposed. In the latter case, by applying electroless metal plating to the surface of a plastic ball made of, for example, PolyStyrene (PS), PolyMethyl MethAcrylate (PMMA), Arcylonitrile Butadiene Styrene (ABS), PolyOxy Methylene (POM), PolyAcryloNitrile (PAN), etc. Low density is achieved while maintaining conductivity.
하지만, 플라스틱 볼에 금속을 도금하는 종래의 방식은, 모두 밀도가 낮은 모재 심재를 사용함으로써 분말의 저밀도화가 가능하지만, 입자의 형태가 구형으로 입자간 접촉이 점접촉으로 되기 때문에 높은 전도성을 구현하는데 한계가 있다.However, in the conventional method of plating metal on plastic balls, low density of the powder is possible by using a base material core material with low density, but the shape of the particles is spherical and the contact between the particles becomes a point contact to realize high conductivity. There are limits.
[선행기술문헌][Prior art literature]
(특허문헌 1) 한국등록특허 제10-1718158호(Patent Document 1) Korean Patent Registration No. 10-1718158
(특허문헌 2) 한국등록특허 제10-1343997호(Patent Document 2) Korea Patent Registration No. 10-1343997
(특허문헌 3) 한국공개특허 제10-2020-0113461호(Patent Document 3) Korean Patent Publication No. 10-2020-0113461
본 발명이 해결하고자 하는 하나의 과제는, 높은 전도도의 구현이 가능한 저밀도 도전성 분말을 제조할 수 있도록, 구형이나 무정형의 폴리머 분말을 입자간의 접촉 면적이 넓은 판상형으로 제조할 수 있는, 저밀도 판상형 폴리머 분말의 제조방법을 제공하는 것이다.One problem to be solved by the present invention is a low-density plate-like polymer powder capable of preparing a spherical or amorphous polymer powder in a plate-like shape with a wide contact area between particles so as to manufacture a low-density conductive powder capable of implementing high conductivity. It is to provide a manufacturing method of.
본 발명이 해결하고자 하는 다른 하나의 과제는, 높은 전도도의 구현이 가능하며 또한 저밀도화가 가능한 판상형 저밀도 및 전도성 분말의 제조방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a method for producing a plate-shaped low-density and conductive powder capable of implementing high conductivity and reducing density.
전술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 저밀도 판상형 도전성 분말의 제조방법은, 폴리머 분말을 준비하는 단계, 상기 준비된 폴리머 분말을 기계적으로 밀링(milling)하여 판상화하는 단계 및 상기 판상화 단계에서 판상화된 폴리머 분말의 표면에 금속을 코팅하는 단계를 포함한다. A method for manufacturing a low-density plate-shaped conductive powder according to an embodiment of the present invention for solving the above problems includes preparing a polymer powder, mechanically milling the prepared polymer powder to make it plate-shaped, and the plate-shaped conductive powder. A step of coating a metal on the surface of the planarized polymer powder in the phase forming step.
상기 실시예의 일 측면에 의하면, 상기 폴리머 분말은, 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMetahyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나 이상의 공중합체로 형성될 수 있다. According to one aspect of the embodiment, the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PolyStyrene, PS), polyethylene (PolyEthylene, PE) and It may be formed of one or more copolymers selected from the group consisting of polypropylene (PP).
상기 실시예의 다른 측면에 의하면, 상기 폴리머 분말은, 평균 입경이 1~60㎛인 구형 또는 무정형 형상을 가질 수 있다. According to another aspect of the embodiment, the polymer powder may have a spherical or amorphous shape with an average particle diameter of 1 to 60 μm.
그리고 상기 판상화 단계의 결과로 생성된 판상화 폴리머 분말은, 장축의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 상기 두께에 대한 상기 장축의 길이 비율이 10~300일 수 있다. Further, the plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 μm and a thickness of 0.2 to 2 μm, and a ratio of the length of the long axis to the thickness may be 10 to 300.
그리고 상기 판상화 단계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 상기 준비된 폴리머 분말을 기계적으로 밀링할 수 있다. 이 경우에, 상기 판상화 단계에서는, 폴리머 분말의 혼합 및 분산 효과를 증가시키기 위해, 공정 중 용매를 포함할 수 있으며, 용매는 메탄올(Methanol), 에탄올(Ethanol), 1,2-프로판올(1,2-Propanol), 에틸렌 글라이콜(Ethylene glycol), 글리세롤(Glycerol) 등과 같은 알코올류에서 1종 이상 선택되어질 수 있다. 또한 폴리머 분말 종류에 따라 밀링 효과의 증가를 위해, 상온보다 높은 온도에서 기계적으로 밀링할 수 있다.In the plate-forming step, the prepared polymer powder may be mechanically milled using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method. In this case, in the plate-forming step, in order to increase the effect of mixing and dispersing the polymer powder, a solvent may be included during the process, and the solvent is methanol, ethanol, 1,2-propanol (1 , 2-Propanol), ethylene glycol, glycerol, and the like. At least one kind may be selected from alcohols. In addition, depending on the type of polymer powder, mechanical milling may be performed at a temperature higher than room temperature in order to increase the milling effect.
상기 실시예의 또 다른 측면에 의하면, 상기 금속은 은(Ag), 구리(Cu), 니켈(Ni), 주석(Sn), 금(Au), 알루미늄(Al), 비스무트(Bi), 철(Fe) 및 코발트(Co)로 이루어진 그룹에서 선택된 어느 1가지이거나 또는 2가지 이상의 합금으로 이루어질 수 있다. 이 경우에, 상기 금속 코팅 단계에서는 상기 판상화된 폴리머 분말의 표면에 단층의 금속층을 형성하거나 또는 다층의 금속층을 형성할 수 있다.According to another aspect of the embodiment, the metal is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe ) and cobalt (Co), or any one or two or more alloys selected from the group consisting of. In this case, in the metal coating step, a single metal layer or multiple metal layers may be formed on the surface of the plate-shaped polymer powder.
전술한 본 발명의 실시예에 의하면, 구형이나 무정형의 폴리머 분말을 손쉽고 저렴하게, 그리고 원하는 두께 대비 직경(또는 장축 길이)를 갖는 판상의 형상으로 제조할 수 있다. 그리고 제조된 판상형 폴리머 분말을 금속으로 코팅함으로써 전도성이 우수하고 밀도가 낮은 도전성 분말을 제조하는데 활용할 수 있다. 이 때, 구형과 같은 3차원 입체 형상이 아닌 넓은 평면 면적을 갖는 판상형의 분말을 도전성 입자로 활용하므로, 분말들 사이의 접촉 면적이 증가하여 높은 전도도의 구현이 가능하다.According to the above-described embodiments of the present invention, the spherical or amorphous polymer powder can be easily and inexpensively manufactured into a plate-like shape having a desired thickness-to-diameter (or major axis length). In addition, by coating the prepared plate-like polymer powder with a metal, it can be used to manufacture a conductive powder having excellent conductivity and low density. At this time, since plate-shaped powder having a large planar area rather than a spherical three-dimensional shape is used as the conductive particle, the contact area between the powders increases and high conductivity can be realized.
도 1은 본 발명의 일 실시예에 따른 저밀도 판상형 도전성 분말의 제조방법을 보여 주는 흐름도이다.1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
도 2a는 판상형 폴리머 분말의 표면에 단층의 금속층을 형성한 경우를 모식적으로 보여 주는 도면이다.2A is a diagram schematically showing a case in which a single metal layer is formed on the surface of a plate-like polymer powder.
도 2b는 판상형 폴리머 분말의 표면에 2층의 금속층을 형성한 경우를 모식적으로 보여 주는 도면이다. 2B is a diagram schematically showing a case in which two metal layers are formed on the surface of a plate-like polymer powder.
도 3a 및 도 3b는 준비된 구형의 폴리머 분말에 대한 SEM 사진으로서, 도 3b는 도 3a의 일부를 확대한 것이다.3a and 3b are SEM images of the prepared spherical polymer powder, and FIG. 3b is an enlarged portion of FIG. 3a.
도 4a 및 도 4b는 일 실험예에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 4b는 도 4a의 일부를 확대한 것이다.4a and 4b are SEM images of plate-shaped polymer powder prepared according to an experimental example, and FIG. 4b is an enlarged portion of FIG. 4a.
도 5a 및 도 5b는 실험예 2에 따라 제조된 구리(Cu)가 코팅된 판상형 폴리머 분말의 SEM 사진으로서, 도 5b는 도 5a의 일부를 확대해서 보여 주는 것이다.5a and 5b are SEM images of copper (Cu)-coated plate-like polymer powder prepared according to Experimental Example 2, and FIG. 5b is an enlarged view of a portion of FIG. 5a.
도 6a 및 도 6b는 실험예 3에 따라 제조된 니켈(Ni)이 코팅된 판상형 폴리머 분말의 SEM 사진으로서, 도 6b는 도 6a의 일부를 확대해서 보여 주는 것이다.6a and 6b are SEM images of plate-like polymer powder coated with nickel (Ni) prepared according to Experimental Example 3, and FIG. 6b is an enlarged view of a portion of FIG. 6a.
도 7a 및 도 7b는 실험예 4에 따라 1차 코팅층으로 구리(Cu) 코팅 후 2차 코팅층으로 은(Ag)을 코팅하여 제조된 판상형 폴리머 분말의 SEM 사진으로서, 도 7b는 도 7a의 일부를 확대해서 보여 주는 것이다. 7A and 7B are SEM pictures of plate-shaped polymer powder prepared by coating copper (Cu) as a first coating layer and then coating silver (Ag) as a second coating layer according to Experimental Example 4, and FIG. 7B is a portion of FIG. 7A It shows enlarged.
도 8a 내지 도 8c는 실험예 4에 따라 제조된 은(Ag)과 구리(Cu)가 순차적으로 코팅된 판상화된 폴리머 분말에 대한 EDS 맵핑 사진을 보여 주는 것으로서, 도 8b는 도 8a에서 구리(Cu)의 분포를 보여 주는 것이고, 도 8c는 도 8a에서 은(Ag)의 분포를 보여 주는 사진이다.8A to 8C show EDS mapping pictures of platelet polymer powders sequentially coated with silver (Ag) and copper (Cu) prepared according to Experimental Example 4, and FIG. 8B shows copper in FIG. 8A ( It shows the distribution of Cu), and FIG. 8c is a photograph showing the distribution of silver (Ag) in FIG. 8a.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 본 명세서에서 사용되는 용어 및 단어들은 실시예에서의 기능을 고려하여 선택된 용어들로서, 그 용어의 의미는 발명의 의도 또는 관례 등에 따라 달라질 수 있다. 따라서 후술하는 실시예에서 사용된 용어는, 본 명세서에 구체적으로 정의된 경우에는 그 정의에 따르며, 구체적인 정의가 없는 경우는 당업자들이 일반적으로 인식하는 의미로 해석되어야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Terms and words used in this specification are terms selected in consideration of functions in the embodiments, and the meanings of the terms may vary depending on the intention or practice of the invention. Therefore, the terms used in the embodiments to be described later, when specifically defined in the present specification, follow the definition, and when there is no specific definition, they should be interpreted as meanings generally recognized by those skilled in the art.
본 발명의 일 실시예에 따른 판상형이며 저밀도를 갖는 도전성 분말의 제조방법은, 우선 폴리머 분말을 판상형으로 제조하는 과정(폴리머 분말의 판상화 과정)과, 그리고 판상형의 폴리머 분말에 금속을 코팅하는 과정(판상형 폴리머 분말의 코팅 과정)을 포함한다. 여기서, ‘코팅 과정’은, 후술하는 본 발명의 실시예에 따른 ‘판상화 과정’의 결과로 생성된 판상형 폴리머 분말을 이용하여 수행되는 것이 일반적이나, 여기에만 한정되는 것은 아니다. 예컨대, 코팅 과정은, 후술하는 실시예 이외의 방법을 이용하여 제조된 판상형 폴리머 분말을 이용하여 수행될 수도 있다. A method for manufacturing a plate-shaped, low-density conductive powder according to an embodiment of the present invention includes, first, a process of preparing a polymer powder in a plate-like shape (plate-shaped process of polymer powder), and a process of coating the plate-shaped polymer powder with a metal. (coating process of plate-like polymer powder). Here, the 'coating process' is generally performed using the plate-shaped polymer powder produced as a result of the 'plate-forming process' according to an embodiment of the present invention described later, but is not limited thereto. For example, the coating process may be performed using a plate-shaped polymer powder prepared using a method other than the examples described below.
도 1은 본 발명의 일 실시예에 따른 저밀도 판상형 도전성 분말의 제조방법을 보여 주는 흐름도이다. 1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
도 1을 참조하면, 우선, 판상화의 대상이 되는 폴리머 분말을 준비한다(S10). 폴리머 분말의 종류에는 특별한 제한이 없다. 예컨대, 폴리머 분말은 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMetahyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나의 공중합체이거나 또는 2가지 이상의 공중합체가 섞여 있는 혼합물이어도 된다. 바람직하게는, 폴리머 분말은 폴리아크릴로니트릴인 것이 좋다. 폴리아크릴로니크릴 폴리머 분말은 다른 종류의 폴리머 분말에 비해 연성이 뛰어나서 판상화에 더 용이하다.Referring to FIG. 1, first, a polymer powder to be plated is prepared (S10). There is no particular limitation on the type of polymer powder. For example, the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). It may be one copolymer selected from the group consisting of, or a mixture in which two or more copolymers are mixed. Preferably, the polymer powder is polyacrylonitrile. Polyacrylonicryl polymer powder has excellent ductility compared to other types of polymer powder and is easier to plate.
그리고 준비된 폴리머 분말은 입체적인 형상, 예컨대 구형 또는 무정형의 형상을 갖는다. 예컨대, 구형의 폴리머 분말은, 후술하는 단계 S20에서의 기계적 밀링에 의하여 판상화가 되면, 두께가 얇은 원형 또는 타원형의 형상을 가지게 되므로, 판상형이 되더라도 분말의 형상 제어가 용이하다. 그리고 금속으로 코팅될 경우에 원형 또는 타원형의 분말들 사이에는 보다 넓은 접촉 면적을 확보할 수 있을 뿐만 아니라 분말들 사이에 접촉 면적의 편차도 작은 장점이 있다.And the prepared polymer powder has a three-dimensional shape, such as a spherical or amorphous shape. For example, when the spherical polymer powder is plate-shaped by mechanical milling in step S20 to be described later, it has a circular or elliptical shape with a thin thickness, so it is easy to control the shape of the powder even if it is plate-shaped. In addition, when coated with metal, a wider contact area can be secured between circular or elliptical powders, and there is an advantage in that the deviation of the contact area between the powders is small.
예컨대, 구형의 폴리머 분말은, 평균 입경이 1~60㎛인 크기를 가질 수 있다. 바람직하게는, 폴리머 분말은 평균 입경이 3~15㎛ 인 것이 바람직하다. 폴리머 분말의 평균 입경이 3㎛보다 작은 경우에는, 판상화가 되더라도 금속 코팅이 용이하지 않을 뿐만 아니라 분말들 사이에 넓은 접촉 면적을 확보하기 어렵다. 반면, 폴리머 분말의 평균 입경이 15㎛보다 큰 경우에는, 판상화 후에 입도가 크게 증가하여 페이스트나 필름 등의 제조시에 분말이 고르게 분포되기 어려울 뿐만 아니라 제품의 박막화 및 정밀화가 어려운 단점이 있다.For example, the spherical polymer powder may have an average particle diameter of 1 μm to 60 μm. Preferably, the polymer powder preferably has an average particle diameter of 3 to 15 μm. When the average particle diameter of the polymer powder is smaller than 3 μm, it is not easy to coat the polymer with metal even if it is plate-shaped, and it is difficult to secure a large contact area between the powders. On the other hand, when the average particle diameter of the polymer powder is greater than 15 μm, the particle size greatly increases after plate-shaping, making it difficult to evenly distribute the powder during manufacture of pastes or films, as well as making it difficult to thin and refine the product.
계속해서, 준비된 폴리머 분말을 기계적으로 밀링(milling)하여 판상화한다(S20). 여기서, “기계적 밀링”이란 통상적으로 미세 분말을 만드는데 사용하는 밀링 기계(milling machine)를 사용하여 폴리머 분말에 물리적으로 충격 및/또는 압력을 가하여 납작하게 만드는 것을 가리킨다. 통상적으로 금속 입자나 도료, 곡식 등의 경우에는 밀링 기계를 사용할 경우에는 크기가 더 작은 입자(분말)로 쪼개진다. 하지만, 폴리머 분말의 경우에는 그 재료가 갖는 특성(예컨대, 연성)으로 인하여 충격이나 압력이 가해지더라도 분말이 더 작은 크기로 쪼개지기 보다는 형상이 변형되기가 쉽다. 보다 구체적으로, 구형의 폴리머 분말의 경우에, 밀링 기계를 사용하여 기계적 밀링을 수행할 경우에, 충격이나 압력에 의하여 납작하게 되어 원형 또는 타원형의 형상으로 판상화가 이루어질 수 있다.Subsequently, the prepared polymer powder is mechanically milled to plate it (S20). Here, "mechanical milling" refers to flattening by physically applying impact and/or pressure to polymer powder using a milling machine commonly used to make fine powder. In general, metal particles, paints, grains, etc. are broken into smaller particles (powder) when using a milling machine. However, in the case of a polymer powder, its shape is easily deformed rather than split into smaller sizes even when an impact or pressure is applied due to its material properties (eg, ductility). More specifically, in the case of spherical polymer powder, when mechanical milling is performed using a milling machine, it can be flattened by impact or pressure and plated into a circular or elliptical shape.
여기서, 기계적 밀링을 수행하기 위한 밀링 기계의 종류에는 특별한 제한이 없다. 예컨대, 밀링 기계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 기계적으로 밀링하기 위한 장치일 수 있다. 사용되는 볼의 크기, 회전속도, 공정 시간 등 밀링 조건에 따라 밀링 장치(즉, 밀링 기계에서 사용하는 밀링 방법)는 선택적으로 사용이 가능하다. 본 발명의 실시예에 의하면, 볼의 크기, 회전 속도, 생산성 등을 고려하여 어트리션밀법을 사용하여 판상화 단계(S20)를 수행하는 것이 바람직하다. Here, there is no particular limitation on the type of milling machine for performing mechanical milling. For example, the milling machine may be a device for mechanically milling using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method. Depending on the milling conditions such as the size of the ball used, the rotational speed, and the processing time, the milling device (ie, the milling method used in the milling machine) can be selectively used. According to an embodiment of the present invention, it is preferable to perform the plate forming step (S20) using the attrition mill method in consideration of the ball size, rotational speed, productivity, and the like.
본 발명의 실시예에 의하면, 단계 S20에서의 기계적 밀링은 폴리머 분말을 소정의 용매에 분산시킨 상태에서 수행하는 것이 바람직하다. 폴리머 분말을 용매에 분산시키면, 폴리머 분말의 혼합 및 분산 효과를 높일 수 있어서, 보다 균일한 밀링이 가능하다. 폴리머 분말은 소수성이고 또한 물보다 밀도가 작으므로, 물에는 잘 분산되지 않는다. 따라서 폴리머 분말의 분산을 위해서는, 물 대신에 유기 용매를 사용하는 것이 바람직하다. 다만, 유기 용매를 분산액으로 사용할 경우에는 그 종류에 따라서 폴리머 분말이 용해될 수도 있으므로, 해당 폴리머 분말이 잘 용해되지 않는 종류의 유기 용매를 사용해야 한다. According to an embodiment of the present invention, the mechanical milling in step S20 is preferably performed in a state in which the polymer powder is dispersed in a predetermined solvent. When the polymer powder is dispersed in a solvent, mixing and dispersing effects of the polymer powder can be enhanced, and more uniform milling is possible. Since the polymer powder is hydrophobic and has a lower density than water, it does not disperse well in water. Therefore, it is preferable to use an organic solvent instead of water for dispersing the polymer powder. However, when an organic solvent is used as a dispersion, the polymer powder may be dissolved depending on its type, so an organic solvent of a type in which the polymer powder does not dissolve well should be used.
보다 구체적으로, 폴리아크릴로나이트릴(PAN), 폴리메틸 메타크릴레이트 (PMMA), 폴리스타이렌(PS), 폴리에틸렌(PE)이나 폴리프로필렌(PP)과 같은 폴리머 분말은 알콜류에 쉽게 용해되지 않는다. 따라서 단계 S20에서의 기계적 밀링 공정에서 사용하는 유기 용매는 알콜류인 것이 바람직하다. 예를 들어, 알콜류 유기 용매는 메탄올(Methanol), 에탄올(Ethanol), 1,2-프로판올(1,2-Propanol), 에틸렌 글라이콜(Ethylene glycol), 글리세롤(Glycerol) 이거나 또는 이들의 혼합물일 수 있다. 이 경우에, 폴리머 분말이 유기 용매에 쉽게 용해되지 않고 또한 균일하게 분산되어 있기 때문에,폴리머 분말의 손상 없이 입도가 균일하게 판상화하는 것이 가능하다. More specifically, polymer powders such as polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polystyrene (PS), polyethylene (PE) or polypropylene (PP) are not easily soluble in alcohol. Therefore, the organic solvent used in the mechanical milling process in step S20 is preferably alcohol. For example, the alcoholic organic solvent may be methanol, ethanol, 1,2-propanol, ethylene glycol, glycerol, or a mixture thereof. can In this case, since the polymer powder is not easily dissolved in the organic solvent and is uniformly dispersed, it is possible to plate the particle size uniformly without damaging the polymer powder.
다만, 알콜류라고 하더라도 케톤류(예컨대, 아세톤, 메틸에틸케톤, 메틸부틸케톤, 메틸이소부틸케톤 등)에는 전술한 종류의 폴리머 분말이 쉽게 용해될 수 있으므로, 이러한 케톤류는 단계 S20에서의 기계적 밀링 공정의 용매로 사용하지 않는 것이 바람직하다. 만일, 케톤류를 용매로 사용할 경우에는 폴리머 분말이 용해되어, 밀링 기계를 장기간 사용할 경우에 모재를 손상시킬 염려가 있다.However, since the above-mentioned polymer powder can be easily dissolved in ketones (e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.) It is preferable not to use it as a solvent. If ketones are used as a solvent, the polymer powder is dissolved and the base material may be damaged when the milling machine is used for a long time.
본 발명의 일 실시예에 의하면, 단계 S20의 기계적 밀링 공정은, 10℃ 이상의 온도에서 수행할 수 있으나, 사용되는 용매의 끊는 점보다는 낮은 온도이어야 한다. 이 경우에, 폴리머 분말 종류에 따라서는, 밀링 효과의 증가를 위해, 상온(25℃)보다 높은 온도에서 수행하는 것이 좋다. 예를 들어, 폴리메틸 메타크릴레이트(PMMA)와 같이 강도가 높은 폴리머 분말은 연성이 낮아 기계적 밀링 중 분말이 쉽게 깨질 수 있으므로, 밀링 공정 중에 온도를 높게 유지하여 분말의 연성을 증가시켜 판상화 효율을 증대시킬 수 있다. 이 경우 바람직하게는, 기계적 밀링 공정은 상온부터 유기 용매의 끊는점 보다 낮은 온도, 예컨대 25~75℃에서 수행하는 것이 좋다. 만일 공정온도가 25℃이하일 경우 폴리머 분말의 연성이 높아지지 않아서 폴리머 분말이 쉽게 깨질 수 있다. 반면, 공정온도가 75℃이상일 경우에는, 기계적 밀링 공정의 진행 중에 용매가 증발되어서 양이 줄어들게 되므로 장시간 밀링 공정을 수행하기가 어려울 수도 있다.According to one embodiment of the present invention, the mechanical milling process of step S20 may be performed at a temperature of 10° C. or higher, but the temperature should be lower than the boiling point of the solvent used. In this case, depending on the type of polymer powder, it is preferable to perform the milling at a temperature higher than room temperature (25° C.) in order to increase the milling effect. For example, high-strength polymer powders such as polymethyl methacrylate (PMMA) have low ductility and can easily break the powder during mechanical milling. Therefore, the temperature is maintained high during the milling process to increase the ductility of the powder, thereby increasing the platelet efficiency. can increase In this case, the mechanical milling process is preferably performed at room temperature lower than the boiling point of the organic solvent, for example, 25 to 75°C. If the process temperature is less than 25 ° C., the ductility of the polymer powder is not increased, so the polymer powder can be easily broken. On the other hand, when the process temperature is 75° C. or higher, it may be difficult to perform the milling process for a long time because the solvent is evaporated and the amount is reduced during the mechanical milling process.
그리고 이러한 기계적 밀링 공정은 보다 많은 분말이 판상화가 될 수 있도록 소정의 회전속도(rpm)로 일정 시간 동안 수행하는 것이 바람직하다. 예컨대, 기계적 밀링 공정은 200~600rpm으로 약 10~60분 정도 수행하는 것이 바람직하다. 회전속도가 너무 작거나 또는 공정 시간이 너무 짧을 경우에는 투입되는 폴리머 분말 중 일부만이 판상화가 될 염려가 있다. 반면, 회전속도가 너무 클 경우에는 폴리머 분말이 판상화되지 않고 분쇄될 염려가 있으며, 또한 공정 시간이 지나치게 길 경우에는 생산성을 저하시키는 요인이 될 뿐만 아니라 폴리머 분말이 유기 용매에 많이 용해되어 폴리머 분말이 손상될 염려가 있다.In addition, it is preferable to perform this mechanical milling process at a predetermined rotational speed (rpm) for a predetermined time so that more powder can be plated. For example, the mechanical milling process is preferably performed at 200 to 600 rpm for about 10 to 60 minutes. When the rotational speed is too small or the process time is too short, there is a concern that only a part of the polymer powder introduced is plated. On the other hand, if the rotation speed is too high, there is a concern that the polymer powder is not plated and pulverized, and if the process time is too long, not only is it a factor that lowers productivity, but also the polymer powder is dissolved in an organic solvent. There is a risk that this may be damaged.
그리고 기계적 밀링 공정에 사용되는 볼의 크기는 0.5~4mm, 바람직하게는 1~3mm인 것이 좋다. 만일, 볼의 크기가 너무 작으면(예컨대, 1mm 이하), 폴리머 분말의 전체적으로 평평하게 판상화되기 어려울뿐만 아니라 부분적으로 충격이 가해져서 폴리머 분말이 깨지기 쉽다. 반면, 볼의 크기가 너무 크면(예컨대, 4mm 이상), 볼에 의해서 가해지는 충격이 크기 때문에, 역시 폴리머 분말이 깨지기 쉽다.And the size of the ball used in the mechanical milling process is 0.5 to 4mm, preferably 1 to 3mm. If the size of the ball is too small (for example, 1 mm or less), it is difficult to flatten the polymer powder as a whole and it is easy to break the polymer powder due to partial impact. On the other hand, if the size of the ball is too large (eg, 4 mm or more), the impact applied by the ball is great, so the polymer powder is also easy to break.
이와 같이, 단계 S20에서 소정의 공정조건(즉, 전술한 공정온도, 회전속도 및/또는 볼의 크기 등)으로 기계적 밀링법을 이용하여 폴리머 분말에 대하여 판상화 공정을 수행하면, 구형의 폴리머 분말은 판상화가 되어서 판상형 폴리머 분말이 만들어진다. 예컨대, 평균 입경이 1~60㎛인 구형의 폴리머 분말을 볼밀법, 비즈밀법 또는 어트리션밀법 등을 이용하여 판상화할 경우에, 장축(또는 지름)의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 두께에 대한 장축(또는 지름)의 길이 비율이 10~300인 판상화 폴리머 분말이 만들어질 수 있다. As such, in step S20, when the plate-forming process is performed on the polymer powder using a mechanical milling method under predetermined process conditions (ie, the above-described process temperature, rotational speed, and/or ball size, etc.), the spherical polymer powder The silver is plated to form a plate-like polymer powder. For example, when spherical polymer powder having an average particle diameter of 1 to 60 μm is plated using a ball mill method, a bead mill method, or an attrition mill method, the length of the long axis (or diameter) is 2 to 150 μm and the thickness is 0.2 μm. As ~2 μm, a platelet polymer powder with a length to thickness ratio of 10 to 300 can be made.
계속해서 도 1을 참조하면, 단계 S20의 판상화 공정에서 판상화된 폴리머 분말의 표면에 도전성 금속 물질을 코팅한다(S30). 여기서, 코팅되는 금속은 은(Ag), 구리(Cu), 니켈(Ni), 주석(Sn), 금(Au), 알루미늄(Al), 비스무트(Bi), 철(Fe) 또는 코발트(Co)의 단일 금속이거나 또는 이들 중에서 2가지 이상의 금속으로 이루어진 혼합물이어도 된다.Continuing to refer to FIG. 1 , a conductive metal material is coated on the surface of the planarized polymer powder in the planarization process of step S20 (S30). Here, the metal to be coated is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe) or cobalt (Co) may be a single metal or a mixture of two or more metals among them.
본 실시예의 일 측면에 의하면, 판상형 폴리머 분말의 표면에 도전성 금속 물질을 코팅하는 방법에 특별한 제한이 없으며, 폴리머 분말에 금속 물질을 코팅하는 것으로서 공지되어 있는 어떠한 기법을 사용해도 된다. 예컨대, 전술한 특허문헌 1(한국등록특허 제10-1718158호) 또는 특허문헌 3(한국공개특허 제10-2020-0113461호)에 개시된 방법에 따라서, 무전해 도금법으로 판상형 폴리머 분말의 표면에 금속 물질을 코팅해도 된다.According to one aspect of this embodiment, there is no particular limitation on the method of coating the surface of the plate-like polymer powder with a conductive metal material, and any known technique for coating the polymer powder with a metal material may be used. For example, according to the method disclosed in Patent Document 1 (Korean Patent Registration No. 10-1718158) or Patent Document 3 (Korean Patent Publication No. 10-2020-0113461), metal is deposited on the surface of the plate-shaped polymer powder by electroless plating. The material may be coated.
본 실시예의 다른 측면에 의하면, 단계 S30의 코팅 과정은, 코팅하고자 하는 금속 이온이 포함되어 있는 소정의 코팅 용액을 준비하고, 준비된 코팅 용액에 판상화된 폴리머 분말을 투입한 다음, 소정의 시간 동안 해당 용액을 교반함으로써 폴리머 분말의 표면에 해당 금속 물질이 코팅되도록 할 수도 있다. 이를 위하여, 교반하는 동안에는 산화환원 반응에 의하여 금속 이온이 폴리머 분말의 표면에 결합될 수 있도록, 코팅 용액은 금속 이온(금속 전구체)과 함께 착화제와 환원제를 포함한다. 여기서, 착화제는 금속 이온의 착화합물을 형성하는 역할을 수행한다. 생성된 금속 착화물은 순수 금속 이온보다 산화환원전위(redox potential)를 낮추기 때문에, 금속 이온들의 급격한 환원 반응을 억제시켜 균일한 금속 코팅층이 형성되도록 한다.According to another aspect of this embodiment, in the coating process of step S30, a predetermined coating solution containing metal ions to be coated is prepared, plated polymer powder is introduced into the prepared coating solution, and then for a predetermined period of time. By stirring the solution, the surface of the polymer powder may be coated with the corresponding metal material. To this end, the coating solution includes a complexing agent and a reducing agent together with metal ions (metal precursors) so that metal ions can be bound to the surface of the polymer powder by a redox reaction during stirring. Here, the complexing agent serves to form a complex compound of metal ions. Since the produced metal complex has a lower redox potential than pure metal ions, a rapid reduction reaction of metal ions is suppressed to form a uniform metal coating layer.
그리고 필요한 경우에 코팅 용액은 환원제에 의하여 산화환원 반응이 원활하게 일어날 수 있도록 pH 조절제를 더 포함할 수도 있다. 본 발명의 일 실시예에 의하면, 코팅 용액의 수소이온농도(pH)는 7 이상 12 이하인 것이 바람직하다. 만일, 코팅 용액의 수소이온농도가 7보다 작으면, 용액의 안정성이 저하되어 금속 이온의 착화물이 석출될 수 있다. 반면, 코팅 용액의 수소이온농도가 12보다 크면, 산화환원 반응의 속도가 너무 빨라서, 코팅층이 불균일할 수가 있다.And, if necessary, the coating solution may further contain a pH adjuster so that the oxidation-reduction reaction can occur smoothly by the reducing agent. According to one embodiment of the present invention, the hydrogen ion concentration (pH) of the coating solution is preferably 7 or more and 12 or less. If the hydrogen ion concentration of the coating solution is less than 7, stability of the solution is lowered and complexes of metal ions may be precipitated. On the other hand, when the hydrogen ion concentration of the coating solution is greater than 12, the speed of the oxidation-reduction reaction is too fast, and the coating layer may be non-uniform.
그리고 본 발명의 실시예에 의하면, 단계 S30의 금속 코팅 단계에서는 폴리머 분말의 표면에 단층의 금속층을 형성하거나 또는 다층의 금속층을 형성할 수도 있다. 후자의 경우에, 다층의 금속층은 반드시 동일한 종류의 금속일 필요는 없으며, 서로 다른 종류의 금속이어도 된다. 도 2a 및 도 2b는 각각 단계 S30에서 판상형 폴리머 분말(2)의 표면에 단층의 금속층(4)을 형성하거나 또는 2층의 금속층(6a, 6b)을 형성한 경우를 모식적으로 보여 주는 도면이다.And according to an embodiment of the present invention, in the metal coating step of step S30, a single metal layer or multiple metal layers may be formed on the surface of the polymer powder. In the latter case, the multiple metal layers need not necessarily be of the same kind of metal, but may be of different kinds of metal. 2A and 2B are views schematically showing a case in which a single metal layer 4 or two metal layers 6a and 6b are formed on the surface of the plate-like polymer powder 2 in step S30, respectively. .
이러한 본 발명의 실시예에 따라 제조된 판상형 저밀도 도전성 분말은 기존의 금속 도전성 분말보다 밀도가 상당히 작다. 예컨대, 은(Ag)의 경우에 밀도가 10.49g/cm3, 구리(Cu)의 경우에 밀도가 8.93g/cm3, 니켈(Ni)의 경우에 밀도가 8.8g/cm3 등이나, 단계 S30의 결과로 제조된 도전성 분말(도 2a의 도전성 분말)은, 판상형 폴리머 분말(2)의 표면에 코팅되는 금속(4)의 종류에 상관없이 2.5g/cm3 이하의 탭 밀도를 가진다.The plate-shaped low-density conductive powder prepared according to the embodiment of the present invention has a significantly lower density than the conventional metal conductive powder. For example, in the case of silver (Ag), the density is 10.49 g / cm3, in the case of copper (Cu), the density is 8.93 g / cm3, in the case of nickel (Ni), the density is 8.8 g / cm3, etc., but the result of step S30 The conductive powder made of (conductive powder in FIG. 2A) has a tap density of 2.5 g/cm3 or less regardless of the type of metal 4 coated on the surface of the plate-like polymer powder 2.
그리고 이러한 본 발명의 실시예에 따라 제조된 판상형 저밀도 도전성 분말은 고분자 수지와 혼합하여 전도성 페이스트, 필름 또는 시트형태로 제조 가능하며, 실시예에 따라 제조된 판상형 저밀도 도전성 분말 자체 또는 다른 전도성 분말과 혼합하여 사용 할 수 있다.In addition, the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention can be mixed with a polymer resin to be prepared in the form of a conductive paste, film, or sheet, and the plate-shaped low-density conductive powder prepared according to the embodiment itself or mixed with other conductive powders and can be used.
이하에서는 전술한 본 발명의 실시예에 따른 실험예를 기술한다. 다만, 하기에 기재된 실험예는 전술한 본 발명의 실시예를 구체적으로 예시하거나 설명하기 위한 것으로서, 본 발명의 실시예가 후술된 실험예에 의하여 한정되는 것은 아니다. Hereinafter, experimental examples according to the above-described embodiments of the present invention will be described. However, the experimental examples described below are intended to specifically illustrate or explain the above-described embodiments of the present invention, and the embodiments of the present invention are not limited by the experimental examples described later.
실험예 1Experimental Example 1
실험예 1은 폴리머 분말을 판상화하는 과정의 일례이다. 보다 구체적으로, 우선 입자의 직경이 3~15㎛인 구형의 폴리머 분말을 준비한다. 도 3a 및 도 3b는 준비된 구형의 폴리머 분말의 일례에 대한 SEM 사진으로서, 도 3b는 도 3a의 일부를 확대한 것이다. 그리고 어트리션 밀링 장치의 교반기에 1~3mm 직경의 볼(ball)을 투입한 다음, 에탄올과 폴리머 분말을 중량비 10:1(예컨대, 에탄올 200g과 폴리머 분말 20g)로 혼합하여, 역시 어트리션 밀링 장치의 교반기에 투입한다. 계속해서 교반기를 회전시켜서 폴리머 분말을 판상화시킨다. 본 실험예에서는 200rpm, 400rpm, 또는 600rpm으로 각각 10분, 20분, 40분 또는 60분간 밀링하여, 분말의 크기(판상형 분말의 장축 길이)가 10~20㎛인 판상형 폴리머 분말을 제조하였다. 도 4a 및 도 4b는 아래 표 1의 항목 3의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 4b는 도 4a의 일부를 확대한 것이다. Experimental Example 1 is an example of a process of plate-forming polymer powder. More specifically, first, a spherical polymer powder having a particle diameter of 3 to 15 μm is prepared. 3a and 3b are SEM images of an example of the prepared spherical polymer powder, and FIG. 3b is an enlarged portion of FIG. 3a. Then, a ball with a diameter of 1 to 3 mm is put into the stirrer of the attrition milling device, and then ethanol and polymer powder are mixed at a weight ratio of 10: 1 (eg, 200 g of ethanol and 20 g of polymer powder), It is put into the agitator of the milling device. Subsequently, the stirrer is rotated to plate the polymer powder. In this experimental example, milling was performed at 200 rpm, 400 rpm, or 600 rpm for 10 minutes, 20 minutes, 40 minutes, or 60 minutes, respectively, to prepare a plate-shaped polymer powder having a powder size (long axis length of the plate-shaped powder) of 10 to 20 μm. Figures 4a and 4b are SEM pictures of the plated polymer powder prepared according to the process conditions of item 3 of Table 1 below, and Figure 4b is an enlarged portion of Figure 4a.
표 1은 실험예 1의 판상화 공정에 사용된 공정 조건, 즉 폴리머 분말의 직경(polymer size), 볼의 크기(ball size), 교반기의 회전 속도(milling speed) 및 판상화 공정 시간(milling time) 중에서 일부를 변화시키면서 실험한 경우의, 공정 조건과 이에 따른 판상화된 폴리머 분말의 입도 분석(PSA, Particle Size Analysis) 결과를 비교해서 보여 주는 것이다. 표 1에서 입도 분포에 있어서 입경이 작은측으로부터의 체적 누적이 10%, 50%, 90%에 해당하는 입도를 각각 D10, D50, D90으로 표시하였다. 그리고 항목 Span은 (D90-D10)/D50의 값으로서, 폴리머 분말의 크기 분포의 균일성 정도를 보여준다. Table 1 shows the process conditions used in the plate-forming process of Experimental Example 1, that is, the diameter of the polymer powder (polymer size), the size of the ball (ball size), the rotation speed of the stirrer (milling speed) and the plate-forming process time (milling time). ), it shows a comparison of the process conditions and the results of particle size analysis (PSA, Particle Size Analysis) of the plated polymer powder according to the experiment while changing some of them. In Table 1, the particle sizes corresponding to 10%, 50%, and 90% of the volume accumulation from the smaller particle size side in the particle size distribution are indicated as D10, D50, and D90, respectively. And the item Span is a value of (D90-D10)/D50, showing the degree of uniformity of the size distribution of the polymer powder.
Figure PCTKR2022010288-appb-img-000001
Figure PCTKR2022010288-appb-img-000001
표 1을 참조하면, 볼의 크기와 밀링 시간이 증가함에 따라, 폴리머 입자의 판상화가 진행되어서 입자의 크기(예컨대, 입도 D50에 대응하는 입자의 크기)가 증가한다는 것을 알 수 있다. 그리고 볼의 크기가 증가함에 따라 입자의 크기는 커지나 입자의 균일성(Span)은 감소하며, 판상화된 폴리머 입자의 외각 부분에 손상이 발생할 수가 있다. 또한, 볼의 크기, 회전 속도, 밀링 시간이 너무 큰 경우, 일례로, 볼의 크기가 4㎛ 이상(예컨대, 5㎛)이거나 및/또는 회전 속도가 600rpm 초과(예컨대, 800rpm)인 경우에는, 폴리머 입자가 깨져서 판상화하기 어렵다. Referring to Table 1, it can be seen that as the ball size and milling time increase, the polymer particles are plated and the size of the particles (eg, the size corresponding to the particle size D50) increases. In addition, as the size of the ball increases, the size of the particle increases, but the uniformity (span) of the particle decreases, and damage may occur to the outer portion of the plate-shaped polymer particle. In addition, when the ball size, rotation speed, and milling time are too large, for example, when the ball size is 4 μm or more (eg, 5 μm) and / or the rotation speed exceeds 600 rpm (eg, 800 rpm), The polymer particles are broken, making it difficult to plate them.
실험예 2Experimental Example 2
실험예 2는 산화환원 반응을 이용하여 판상화된 폴리머 분말의 표면에 도전성 금속의 일례로 구리(Cu)를 코팅하는 과정의 일례이다. 보다 구체적으로, 우선 판상형 폴리머 분말을 10g 준비한다. 판상형 폴리머 분말은 전술한 실험예 1에 따라 준비된 것일 수 있으나, 여기에 한정되는 것은 아니다. 그리고 증류수 1L에 금속염 CuSO4·5H2O 70g, 착화제 KNaC4H4O6·4H2O 68g, 환원제 Hydrazine 55g 및 pH 조절제 NaOH 50g을 혼합하여 코팅 용액을 준비한다. 계속해서 온도를 50℃로 유지한 상태의 코팅 용액에 준비된 판상형 폴리머 분말을 투입하고 30분간 교반함으로써, 판상형 폴리머 분말의 표면에 구리(Cu)가 결합되도록 한다. 이후에, 구리(Cu)가 코팅된 분말을 세정한 다음 오븐으로 건조한다.Experimental Example 2 is an example of a process of coating copper (Cu) as an example of a conductive metal on the surface of a plate-shaped polymer powder using a redox reaction. More specifically, first, 10 g of plate-like polymer powder is prepared. The plate-like polymer powder may be prepared according to Experimental Example 1 described above, but is not limited thereto. And prepare a coating solution by mixing 70g of metal salt CuSO4·5H2O, 68g of complexing agent KNaC4H4O6·4H2O, 55g of Hydrazine as reducing agent, and 50g of NaOH as pH adjusting agent in 1L of distilled water. Subsequently, the prepared plate-like polymer powder is added to the coating solution while the temperature is maintained at 50° C. and stirred for 30 minutes, so that copper (Cu) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with copper (Cu) is washed and then dried in an oven.
도 5a 및 도 5b는 실험예 2에 따라 제조된 구리(Cu)가 코팅된 판상형 폴리머 분말의 SEM 사진으로서, 도 5b는 도 5a의 일부를 확대해서 보여 주는 것이다. 5a and 5b are SEM images of copper (Cu)-coated plate-like polymer powder prepared according to Experimental Example 2, and FIG. 5b is an enlarged view of a portion of FIG. 5a.
실험예 3Experimental Example 3
실험예 3은 산화환원 반응을 이용하여 판상화된 폴리머 분말의 표면에 도전성 금속의 일례로 니켈(Ni)를 코팅하는 과정의 일례이다. 보다 구체적으로, 우선 판상형 폴리머 분말을 10g 준비한다. 판상형 폴리머 분말은 전술한 실험예 1에 따라 준비된 것일 수 있으나, 여기에 한정되는 것은 아니다. 그리고 증류수 1L에 금속염 NiCl6·6H2O 75g, 착화제 K3C6H5O7 80g, 환원제 Hydrazine 60g 및 pH 조절제 NaOH 45g을 혼합하여 코팅 용액을 준비한다. 계속해서 온도를 60℃로 유지한 상태의 코팅 용액에 준비된 판상형 폴리머 분말을 투입하고 30분간 교반함으로써, 판상형 폴리머 분말의 표면에 니켈(Ni)이 결합되도록 한다. 이후에, 니켈(Ni)이 코팅된 분말을 세정한 다음 오븐으로 건조한다.Experimental Example 3 is an example of a process of coating nickel (Ni) as an example of a conductive metal on the surface of a plate-shaped polymer powder using a redox reaction. More specifically, first, 10 g of plate-like polymer powder is prepared. The plate-shaped polymer powder may be prepared according to Experimental Example 1 described above, but is not limited thereto. In addition, a coating solution was prepared by mixing 75 g of metal salt NiCl6 6H2O, 80 g of complexing agent K3C6H5O7, 60 g of reducing agent Hydrazine, and 45 g of pH adjusting agent NaOH in 1 L of distilled water. Subsequently, the prepared plate-like polymer powder is added to the coating solution while maintaining the temperature at 60° C. and stirred for 30 minutes, so that nickel (Ni) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with nickel (Ni) is washed and then dried in an oven.
도 6a 및 도 6b는 실험예 3에 따라 제조된 니켈(Ni)이 코팅된 판상형 폴리머 분말의 SEM 사진으로서, 도 6b는 도 6a의 일부를 확대해서 보여 주는 것이다. 6a and 6b are SEM images of plate-like polymer powder coated with nickel (Ni) prepared according to Experimental Example 3, and FIG. 6b is an enlarged view of a portion of FIG. 6a.
실험예 4Experimental Example 4
실험예 4는 실험예 2의 구리(Cu)가 코팅된 판상형 폴리머 분말 표면에 도전성 금속의 일례로 은(Ag)을 추가로 코팅하는 과정의 일례이다. 보다 구체적으로 우선 구리가 코팅된 판상형 폴리머 분말을 10g을 준비한다. 구리가 코팅된 판상형 폴리머 분말은 전술한 실험예 2에 따라 준비된 것일 수 있으나 여기에 한정된 것은 아니다. 그리고 증류수 1L에 금속염 AgNO3 30g, 착화제 NH4OH 70g, 환원제 C6H8O6 91g 및 pH 조절제 NaOH 20g을 혼합하여 코팅 용액을 준비한다. 계속해서 온도를 10℃로 유지한 상태의 코팅 용액에 준비된 판상형 폴리머 분말을 투입하고 30분간 교반함으로써, 판상형 폴리머 분말의 표면에 은(Ag)이 결합되도록 한다. 이후에, 은(Ag)이 코팅된 분말을 세정한 다음 오븐으로 건조한다.Experimental Example 4 is an example of a process of additionally coating silver (Ag) as an example of a conductive metal on the surface of the plate-shaped polymer powder coated with copper (Cu) of Experimental Example 2. More specifically, first, 10 g of plate-like polymer powder coated with copper is prepared. The plate-shaped polymer powder coated with copper may be prepared according to Experimental Example 2 described above, but is not limited thereto. Then, a coating solution was prepared by mixing 30 g of metal salt AgNO3, 70 g of complexing agent NH4OH, 91 g of reducing agent C6H8O6, and 20 g of pH adjusting agent NaOH in 1 L of distilled water. Subsequently, the prepared plate-like polymer powder is added to the coating solution while the temperature is maintained at 10° C. and stirred for 30 minutes, so that silver (Ag) is bonded to the surface of the plate-like polymer powder. Thereafter, the powder coated with silver (Ag) is washed and then dried in an oven.
도 7a 및 도 7b는 실험예 4에 따라 제조된 구리(Cu)와 은(Ag)이 다층으로 순차 코팅된 판상형 폴리머 분말의 SEM 사진으로서, 도 7b는 도 7a의 일부를 확대해서 보여 주는 것이다.7a and 7b are SEM images of a plate-like polymer powder sequentially coated with multiple layers of copper (Cu) and silver (Ag) prepared according to Experimental Example 4, and FIG. 7b is an enlarged view of a portion of FIG. 7a.
그리고 도 8a 내지 도 8c는 실험예 4에 따라 제조된 구리(Cu)와 은(Ag)이 다층으로 순차 코팅된 판상화된 폴리머 분말에 대한 EDS(Energy Dispersive x-ray Spectrometer) 맵핑(mapping) 사진을 보여 주는 것으로서, 도 8b는 도 8a에서 구리(Cu)의 분포를 보여 주는 것이고, 도 8c는 도 8a에서 은(Ag)의 분포를 보여 주는 사진이다. 도 8a 내지 도 8c를 참조하면, 폴리머 분말에 구리(Cu)와 은(Ag)을 순차적으로 코팅하더라도, 전체적으로 분포가 유사하여 구리(Cu)와 은(Ag) 모두 균일하게 코팅된 것을 알 수 있다. 8a to 8c are EDS (Energy Dispersive x-ray Spectrometer) mapping photographs of the plate-shaped polymer powder sequentially coated with copper (Cu) and silver (Ag) in multiple layers prepared according to Experimental Example 4 As shown, FIG. 8b shows the distribution of copper (Cu) in FIG. 8a, and FIG. 8c is a photograph showing the distribution of silver (Ag) in FIG. 8a. 8a to 8c, even if copper (Cu) and silver (Ag) are sequentially coated on the polymer powder, it can be seen that both copper (Cu) and silver (Ag) are uniformly coated because the overall distribution is similar. .
이상 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 전술한 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.Although the present invention has been described in detail with preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.
본 발명에 따라 제조된 저밀도 판상형 도전성 분말은 우수한 신뢰성을 갖는 도전성 접착제나 도전성 필름 등의 제조에 활용될 수 있다.The low-density plate-like conductive powder manufactured according to the present invention can be used for manufacturing a highly reliable conductive adhesive or conductive film.

Claims (9)

  1. 폴리머 분말을 준비하는 단계; preparing polymer powder;
    상기 준비된 폴리머 분말을 기계적으로 밀링(milling)하여 판상화하는 단계; 및mechanically milling the prepared polymer powder into a plate; and
    상기 판상화 단계에서 판상화된 폴리머 분말의 표면에 금속을 코팅하는 단계를 포함하는 저밀도 판상형 도전성 분말의 제조방법.Method for producing a low-density plate-like conductive powder comprising the step of coating a metal on the surface of the plate-shaped polymer powder in the plate-shaped step.
  2. 제1항에 있어서, According to claim 1,
    상기 폴리머 분말은, 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMetahyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나 이상의 공중합체로 형성된 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). A method for producing a low-density plate-shaped conductive powder, characterized in that it is formed of at least one copolymer selected from the group consisting of.
  3. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 폴리머 분말은, 평균 입경이 1~60㎛인 구형 또는 무정형 형상을 갖는 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The method for producing a low-density plate-like conductive powder, characterized in that the polymer powder has a spherical or amorphous shape with an average particle diameter of 1 to 60 μm.
  4. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 판상화 단계의 결과로 생성된 판상화 폴리머 분말은, 장축의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 상기 두께에 대한 상기 장축의 길이 비율이 10~300인 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 μm and a thickness of 0.2 to 2 μm, and a ratio of the length of the long axis to the thickness is 10 to 300. Method for producing low-density plate-shaped conductive powder.
  5. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 판상화 단계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 상기 준비된 폴리머 분말을 기계적으로 밀링하는 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The plate-forming step is characterized by mechanically milling the prepared polymer powder using at least one method selected from a ball mill method, an attrition mill method and a beads mill method Method for producing low-density plate-shaped conductive powder.
  6. 제5항에 있어서, According to claim 5,
    상기 판상화 단계는, 메탄올(Methanol), 에탄올(Ethanol), 1,2-프로판올(1,2-Propanol), 에틸렌 글라이콜(Ethylene glycol) 및 글리세롤(Glycerol)을 포함하는 알코올류에서 선택된 하나 이상의 용매에 상기 준비된 폴리머 분말을 분산시킨 상태에서 기계적으로 밀링하는 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The plate-forming step is one selected from alcohols including methanol, ethanol, 1,2-propanol, ethylene glycol and glycerol A method for producing a low-density plate-like conductive powder, characterized in that mechanical milling is performed in a state in which the prepared polymer powder is dispersed in the above solvent.
  7. 제1항에 있어서,According to claim 1,
    상기 금속은 은(Ag), 구리(Cu), 니켈(Ni), 주석(Sn), 금(Au), 알루미늄(Al), 비스무트(Bi), 철(Fe) 및 코발트(Co)로 이루어진 그룹에서 선택된 어느 1가지이거나 또는 2가지 이상의 합금으로 이루어진 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The metal is a group consisting of silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe) and cobalt (Co) Method for producing a low-density plate-shaped conductive powder, characterized in that consisting of any one or two or more alloys selected from.
  8. 제7항에 있어서,According to claim 7,
    상기 금속 코팅 단계에서는 상기 판상화된 폴리머 분말의 표면에 단층의 금속층을 형성하거나 또는 다층의 금속층을 형성하는 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.In the metal coating step, a single metal layer or a multi-layer metal layer is formed on the surface of the plate-shaped polymer powder.
  9. 제1항에 있어서,According to claim 1,
    상기 금속 코팅 단계의 결과로 제조된 도전성 분말은, 2.5g/cm3 이하의 탭 밀도를 갖는 것을 특징으로 하는 저밀도 판상형 도전성 분말의 제조방법.The method of manufacturing a low-density plate-like conductive powder, characterized in that the conductive powder produced as a result of the metal coating step has a tap density of 2.5 g / cm3 or less.
PCT/KR2022/010288 2021-07-16 2022-07-14 Method for preparing low-density plate-shaped conductive powder WO2023287222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210093719A KR102660389B1 (en) 2021-07-16 Method for manufacturing plate-shaped conductive powder with low density
KR10-2021-0093719 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023287222A1 true WO2023287222A1 (en) 2023-01-19

Family

ID=84920257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010288 WO2023287222A1 (en) 2021-07-16 2022-07-14 Method for preparing low-density plate-shaped conductive powder

Country Status (1)

Country Link
WO (1) WO2023287222A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402437B1 (en) * 2013-10-15 2014-06-03 한동철 The method of silver coated flake copper powder used membrane sheet circuit printing conductive paste
KR20150137783A (en) * 2014-05-30 2015-12-09 (주) 유니플라텍 Electromagnetic interference shielding film using coating composition with low specific gravity conductive particle
KR20160148515A (en) * 2014-04-24 2016-12-26 다츠다 덴센 가부시키가이샤 Metal-coated resin particles and electroconductive adhesive in which same are used
KR20170038467A (en) * 2015-09-30 2017-04-07 엘에스니꼬동제련 주식회사 The manufacturing method of flake silver powder using the agglomerated silver powder
KR20200002953A (en) * 2017-04-28 2020-01-08 히타치가세이가부시끼가이샤 Manufacturing method of adhesive composition and connector
KR20200113461A (en) * 2019-03-25 2020-10-07 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402437B1 (en) * 2013-10-15 2014-06-03 한동철 The method of silver coated flake copper powder used membrane sheet circuit printing conductive paste
KR20160148515A (en) * 2014-04-24 2016-12-26 다츠다 덴센 가부시키가이샤 Metal-coated resin particles and electroconductive adhesive in which same are used
KR20150137783A (en) * 2014-05-30 2015-12-09 (주) 유니플라텍 Electromagnetic interference shielding film using coating composition with low specific gravity conductive particle
KR20170038467A (en) * 2015-09-30 2017-04-07 엘에스니꼬동제련 주식회사 The manufacturing method of flake silver powder using the agglomerated silver powder
KR20200002953A (en) * 2017-04-28 2020-01-08 히타치가세이가부시끼가이샤 Manufacturing method of adhesive composition and connector
KR20200113461A (en) * 2019-03-25 2020-10-07 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder

Also Published As

Publication number Publication date
KR20230012896A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP6410064B2 (en) Conductive fine particles and conductive sheet
KR100988298B1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
WO2012023566A1 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
CN101077529B (en) Method for preparing nano copper powder and copper slurry
US20110278058A1 (en) Nanomaterial composites and methods of making
JPWO2012157704A1 (en) Copper powder, copper paste, method for producing conductive coating film and conductive coating film
KR20090118954A (en) Light-transmitting electromagnetic shielding material, method for producing the same, and fine particle having ultrathin film of noble metal
TW201018387A (en) Electromagnetic interference suppressing hybrid sheet
JP7280880B2 (en) Conductive particles, conductive materials and connecting structures
EP3096330B1 (en) Composite conductive particle, conductive resin composition containing same and conductive coated article
WO2023287222A1 (en) Method for preparing low-density plate-shaped conductive powder
WO2023287221A1 (en) Method for manufacturing plate-like polymer powder
KR101335493B1 (en) Flake silver paste with excellent electrical property and method of manufacturing the same
CN108461172B (en) Conductive particle and preparation method and application thereof
KR102660389B1 (en) Method for manufacturing plate-shaped conductive powder with low density
CN113270233B (en) Water-based conductive slurry and preparation method thereof
CN115171978A (en) High-conductivity aqueous slurry, preparation method thereof and high-conductivity thin film
JPH1166957A (en) Conductor composition
CN115699218A (en) Conductive particle, conductive material, and connection structure
JP6332058B2 (en) Copper powder, and copper paste, conductive paint, and conductive sheet using the same
JP2008101260A (en) Electroconductive fine particle and production method therefor
JP2022180322A (en) Copper powder and conductive composition comprising the same, and wiring structure comprising the same and method for producing conductive member using the same
CN116117136A (en) Silver-coated copper powder and application thereof
CN115819820A (en) Composite foil and preparation process thereof
CN115874171A (en) Gold layer density control method based on cyanide-free gold plating solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE