WO2023287221A1 - Method for manufacturing plate-like polymer powder - Google Patents

Method for manufacturing plate-like polymer powder Download PDF

Info

Publication number
WO2023287221A1
WO2023287221A1 PCT/KR2022/010286 KR2022010286W WO2023287221A1 WO 2023287221 A1 WO2023287221 A1 WO 2023287221A1 KR 2022010286 W KR2022010286 W KR 2022010286W WO 2023287221 A1 WO2023287221 A1 WO 2023287221A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer powder
plate
powder
milling
polymer
Prior art date
Application number
PCT/KR2022/010286
Other languages
French (fr)
Korean (ko)
Inventor
김태엽
조상호
Original Assignee
엑시노 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엑시노 주식회사 filed Critical 엑시노 주식회사
Publication of WO2023287221A1 publication Critical patent/WO2023287221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/166Deforming granules to give a special form, e.g. spheroidizing, rounding

Definitions

  • the present invention relates to the production of low-density polymer powders, and more particularly, to a method for producing plate-like polymer powders by flattening spherical or amorphous polymer powders.
  • a tablet computer or a notebook computer, including a smart phone is gradually becoming lighter in weight and thinner in spite of increasingly high functionality and high specifications.
  • materials that can support light-thin and short-circuiting for the main body of the product as well as internal electronic components, adhesives or films for bonding or mounting them are continuously being pursued.
  • a conductive adhesive or conductive film is manufactured by molding a paste or mixture of a metal powder having high electrical conductivity, such as silver, copper, nickel, or zinc, with an organic binder (synthetic resin), into a film form.
  • metal powder is basically a material with high density, so there is a limit to weight reduction, and dispersion stability is poor, as well as stability over time, so when precipitation occurs over time, there is a problem of poor uniformity. Due to this, the thickness of the conductive adhesive or the conductive film is non-uniform, the surface is rough, and the conductive properties are not satisfied locally.
  • a method of lowering the density by manufacturing a hollow metal powder or using a plastic ball instead of a metal powder has been proposed.
  • a plastic ball made of, for example, PolyStyrene (PS), PolyMethyl MethAcrylate (PMMA), Arcylonitrile Butadiene Styrene (ABS), PolyOxy Methylene (POM), PolyAcryloNitrile (PAN), etc.
  • PS PolyStyrene
  • PMMA PolyMethyl MethAcrylate
  • ABS Arcylonitrile Butadiene Styrene
  • POM PolyOxy Methylene
  • PAN PolyAcryloNitrile
  • Patent Document 1 Korean Patent Registration No. 10-1718158
  • One problem to be solved by the present invention is to provide a method for producing a plate-shaped polymer powder capable of preparing a spherical or amorphous polymer powder in a plate-shaped form with a large contact area between particles.
  • a method for preparing a plate-shaped polymer powder according to an embodiment of the present invention for solving the above problems includes preparing a polymer powder and mechanically milling the prepared polymer powder to plate it.
  • the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMethyl MethAcrylate, PMMA), polystyrene (PolyStyrene, PS), polyethylene (PolyEthylene, PE) and It may be formed of one or more copolymers selected from the group consisting of polypropylene (PP).
  • the polymer powder may have a spherical or amorphous shape with an average particle diameter of 1 to 60 ⁇ m.
  • the plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 ⁇ m and a thickness of 0.2 to 2 ⁇ m, and a ratio of the length of the long axis to the thickness may be 10 to 300.
  • the prepared polymer powder may be mechanically milled using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method.
  • a solvent may be included during the process in order to increase the mixing and dispersing effect of the polymer powder, and the solvent is methanol, ethanol, 1,2-propanol (1 ,2-propanol), ethylene glycol, glycerol, and the like may be selected from one or more alcohols.
  • mechanical milling may be performed at a temperature higher than room temperature in order to increase the milling effect.
  • spherical or amorphous polymer powder can be easily and inexpensively manufactured into plate-like polymer powder having a desired thickness-to-diameter (or major axis length).
  • the plate-shaped polymer powder prepared in this way can be used to prepare a conductive powder having excellent conductivity and low density through a subsequent process of coating with metal.
  • FIG. 1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
  • FIG. 2a and 2b are SEM images of the prepared spherical polymer powder, and FIG. 2b is an enlarged portion of FIG. 2a.
  • FIG. 3a and 3b are SEM pictures of the plate-shaped polymer powder according to Experimental Example 3, and FIG. 3b is an enlarged portion of FIG. 3a.
  • FIG. 4a and 4b are SEM images of the plate-shaped polymer powder according to Experimental Example 7, and FIG. 4b is an enlarged portion of FIG. 4a.
  • FIG. 5a and 5b are SEM pictures of the plate-shaped polymer powder according to Experimental Example 13, and FIG. 5b is an enlarged portion of FIG. 5a.
  • FIG. 6a and 6b are SEM images of the plated polymer powder according to Comparative Example 1, and FIG. 6b is an enlarged portion of FIG. 6a.
  • FIG. 7a and 7b are SEM images of the plated polymer powder according to Comparative Example 2, and FIG. 7b is an enlarged portion of FIG. 7a.
  • a method for producing a plate-like polymer powder according to an embodiment of the present invention includes a process of preparing a spherical and/or amorphous polymer powder and a process of mechanically milling the prepared polymer powder into a plate shape under predetermined process conditions.
  • the plate-shaped polymer powder thus prepared can be used to manufacture plate-shaped low-density conductive powder by coating a metal through a subsequent process.
  • FIG. 1 is a flowchart showing a method for manufacturing a plate-like polymer powder according to an embodiment of the present invention.
  • a polymer powder to be plated is prepared (S10).
  • the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). It may be one copolymer selected from the group consisting of, or a mixture in which two or more copolymers are mixed.
  • the polymer powder is polyacrylonitrile.
  • Polyacrylonicryl polymer powder has excellent ductility compared to other types of polymer powder and is easier to plate.
  • the prepared polymer powder has a three-dimensional shape, such as a spherical and/or amorphous shape.
  • a spherical polymer powder is plate-shaped by mechanical milling in step S20 to be described later, it has a circular or elliptical shape with a thin thickness, so it is easy to control the shape of the powder even if it is plate-shaped.
  • a wider contact area can be secured between circular or elliptical powders, and there is an advantage in that the deviation of the contact area between the powders is small.
  • the spherical polymer powder may have an average particle diameter of 1 ⁇ m to 60 ⁇ m.
  • the polymer powder preferably has an average particle diameter of 3 to 15 ⁇ m.
  • the average particle diameter of the polymer powder is smaller than 3 ⁇ m, it is not easy to coat the polymer with metal even if it is plate-shaped, and it is difficult to secure a large contact area between the powders.
  • the average particle diameter of the polymer powder is greater than 15 ⁇ m, the particle size greatly increases after plate-shaping, making it difficult to evenly distribute the powder during manufacture of pastes or films, as well as making it difficult to thin and refine the product.
  • the prepared polymer powder is mechanically milled and plated under predetermined process conditions (S20).
  • “mechanical milling” refers to flattening by physically applying impact and/or pressure to polymer powder using a milling machine commonly used to make fine powder.
  • metal particles, paints, grains, etc. are broken into smaller particles (powder) when using a milling machine.
  • a polymer powder its shape is easily deformed rather than split into smaller sizes even when an impact or pressure is applied due to its material properties (eg, ductility).
  • material properties eg, ductility
  • spherical polymer powder when mechanical milling is performed using a milling machine, it can be flattened by impact or pressure and plated into a circular or elliptical shape.
  • the milling machine may be a device for mechanically milling using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method.
  • the milling device ie, the milling method used in the milling machine
  • the mechanical milling in step S20 is preferably performed in a state in which the polymer powder is dispersed in a predetermined solvent.
  • a solvent When the polymer powder is dispersed in a solvent, mixing and dispersing effects of the polymer powder can be enhanced, and more uniform milling is possible. Since the polymer powder is hydrophobic and has a lower density than water, it does not disperse well in water. Therefore, it is preferable to use an organic solvent instead of water for dispersing the polymer powder. However, when an organic solvent is used as a dispersion, the polymer powder may be dissolved depending on its type, so an organic solvent of a type in which the polymer powder does not dissolve well should be used.
  • the organic solvent used in the mechanical milling process in step S20 is preferably alcohol.
  • the alcoholic organic solvent may be methanol, ethanol, 1,2-propanol, ethylene glycol, glycerol, or a mixture thereof. can In this case, since the polymer powder is not easily dissolved in the organic solvent and is uniformly dispersed, it is possible to plate the particle size uniformly without damaging the polymer powder.
  • the above-mentioned polymer powder can be easily dissolved in ketones (e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.) It is preferable not to use it as a solvent. If ketones are used as a solvent, the polymer powder is dissolved and the base material may be damaged when the milling machine is used for a long time.
  • ketones e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.
  • the mechanical milling process of step S20 may be performed at a temperature of 10° C. or higher, but the temperature should be lower than the boiling point of the solvent used.
  • the temperature should be lower than the boiling point of the solvent used.
  • high-strength polymer powders such as polymethyl methacrylate (PMMA) have low ductility and can easily break the powder during mechanical milling. Therefore, the temperature is maintained high during the milling process to increase the ductility of the powder, thereby increasing the platelet efficiency.
  • PMMA polymethyl methacrylate
  • the mechanical milling process is preferably performed at room temperature lower than the boiling point of the organic solvent, for example, 25 to 75°C. If the process temperature is less than 25 ° C., the ductility of the polymer powder is not increased, so the polymer powder can be easily broken. On the other hand, when the process temperature is 75° C. or higher, it may be difficult to perform the milling process for a long time because the solvent is evaporated and the amount is reduced during the mechanical milling process.
  • this mechanical milling process is preferably performed at a predetermined rotational speed (rpm) for a predetermined time so that more powder can be plated.
  • the mechanical milling process is preferably performed at 200 to 600 rpm for about 10 to 60 minutes.
  • the rotational speed is too small or the process time is too short, there is a concern that only a part of the polymer powder introduced is plated.
  • the rotation speed is too high, there is a concern that the polymer powder is not plated and pulverized, and if the process time is too long, not only is it a factor that lowers productivity, but also the polymer powder is dissolved in an organic solvent. There is a risk that this may be damaged.
  • the size of the ball used in the mechanical milling process is 0.5 to 4mm, preferably 1 to 3mm. If the size of the ball is too small (for example, 1 mm or less), it is difficult to flatten the polymer powder as a whole and it is easy to break the polymer powder due to partial impact. On the other hand, if the size of the ball is too large (eg, 4 mm or more), the impact applied by the ball is great, so the polymer powder is also easy to break.
  • step S20 when the plate-forming process is performed on the polymer powder using a mechanical milling method under predetermined process conditions (ie, the above-described process temperature, rotational speed, and/or ball size, etc.), the spherical polymer powder
  • the silver is plated to form a plate-like polymer powder.
  • a platelet polymer powder with a length to thickness ratio of 10 to 300 can be made.
  • the plate-like polymer powder when the plate-like polymer powder is produced, it can be used to prepare a low-density plate-like polymer powder by coating a conductive metal material on its surface.
  • the metal to be coated is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe) or cobalt (Co ), or a mixture of two or more metals.
  • Patent Document 1 Korean Patent Registration No. 10-1718158
  • Patent Document 3 Korean Patent Publication No. 10-2020-0113461
  • metal is deposited on the surface of the plate-shaped polymer powder by electroless plating. The material may be coated.
  • a predetermined coating solution containing metal ions to be coated is prepared, plate-shaped polymer powder is added to the prepared coating solution, and then the solution is stirred for a predetermined period of time to form a corresponding metal material on the surface of the polymer powder. It can also be coated.
  • the coating solution includes a complexing agent and a reducing agent together with metal ions (metal precursors) so that metal ions can be bound to the surface of the polymer powder by a redox reaction during stirring.
  • the complexing agent serves to form a complex compound of metal ions. Since the produced metal complex has a lower redox potential than pure metal ions, a rapid reduction reaction of metal ions is suppressed to form a uniform metal coating layer.
  • the coating solution may further contain a pH adjuster so that the oxidation-reduction reaction can occur smoothly by the reducing agent.
  • the hydrogen ion concentration (pH) of the coating solution is preferably 7 or more and 12 or less.
  • the metal layer formed on the surface of the polymer powder may be formed in a single layer or in multiple layers.
  • the multiple metal layers need not necessarily be of the same kind of metal, but may be of different kinds of metal.
  • the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention has a significantly lower density than the conventional metal conductive powder.
  • the density is 10.49 g / cm3, in the case of copper (Cu), the density is 8.93 g / cm3, in the case of nickel (Ni), the density is 8.8 g / cm3, etc., but the result of step S30
  • the conductive powder made of (conductive powder in FIG. 2A) has a tap density of 2.5 g/cm3 or less regardless of the type of metal 4 coated on the surface of the plate-like polymer powder 2.
  • the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention can be mixed with a polymer resin to be prepared in the form of a conductive paste, film, or sheet, and the plate-shaped low-density conductive powder prepared according to the embodiment itself or mixed with other conductive powders and can be used.
  • Experimental Examples 1 to 13 are examples of the process of plate-forming the polymer powder according to the above-described embodiment of the present invention, respectively. More specifically, first, a spherical polymer powder having a particle diameter of 3 to 15 ⁇ m is prepared (see Table 1). 2a and 2b are SEM images of the spherical polymer powder prepared according to Experimental Example 3, and FIG. 2b is an enlarged portion of FIG. 2a. Then, a ball with a diameter of 1 to 3 mm is put into the stirrer of the attrition milling device, and then ethanol and polymer powder are mixed at a weight ratio of 10: 1 (eg, 200 g of ethanol and 20 g of polymer powder), It is put into the agitator of the milling device.
  • 10: 1 eg, 200 g of ethanol and 20 g of polymer powder
  • the stirrer is rotated to plate the polymer powder.
  • milling was performed at 200 rpm, 400 rpm, or 600 rpm for 10 minutes, 20 minutes, 40 minutes, or 60 minutes, respectively, to prepare a plate-shaped polymer powder having a powder size (long axis length of the plate-shaped powder) of 10 to 20 ⁇ m.
  • Figures 3a and 3b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Experimental Example 3 in Table 1 below, and Figure 3b is an enlarged portion of Figure 3a.
  • Figures 4a and 4b are SEM pictures of the plated polymer powder prepared according to the process conditions of Experimental Example 7 in Table 1 below, Figure 4b is an enlarged portion of Figure 4a, Figures 5a and 5b As an SEM picture of the plate-shaped polymer powder prepared according to the process conditions of Experimental Example 13 in Table 1 below, FIG. 5B is an enlarged portion of FIG. 5A.
  • Comparative Examples 1 and 2 are also examples of the process of plate-forming the polymer powder, but some process conditions are different from those of Experimental Examples 1 to 13 described above (see Table 1). More specifically, in the case of Comparative Example 1, compared to Experimental Example 4 using a 1 mm ball, the size of the ball is larger as 5 mm. And in the case of Comparative Example 2, the ball size is 2 mm, but the milling speed is 800 rpm.
  • FIG. 6a and 6b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Comparative Example 1 in Table 1 below, and FIG. 6b is an enlarged portion of FIG. 6a.
  • Figures 7a and 7b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Comparative Example 2 in Table 1 below, and Figure 7b is an enlarged portion of Figure 7a.
  • Table 1 shows the process conditions used in the plate-forming process of Experimental Examples 1 to 13 and Comparative Examples 1 and 2, that is, the diameter of the polymer powder (polymer size), the size of the ball (ball size), and the rotation speed of the stirrer (milling speed) And it is shown by comparing the process conditions and the result of Particle Size Analysis (PSA) of the plated polymer powder according to the experiment while changing some of the milling time.
  • PSD Particle Size Analysis
  • the particle sizes corresponding to 10%, 50%, and 90% of the volume accumulation from the smaller particle size side in the particle size distribution are indicated as D10, D50, and D90, respectively.
  • the item Span is a value of (D90-D10)/D50, showing the degree of uniformity of the size distribution of the polymer powder.
  • the particle size e.g., the particle size corresponding to the particle size D50
  • the size of the ball increases, but the uniformity (span) of the particle decreases, and damage occurs to the outer portion of the plate-shaped polymer particle.
  • the plate-shaped polymer powder prepared according to the present invention can be used for manufacturing highly reliable conductive adhesives, conductive films, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Disclosed is a method for making a polymer powder into a plate-like form. A method for a plate-like form according to an embodiment comprises the steps of: preparing a polymer powder; and making the prepared polymer powder into a plate-like form through mechanical milling.

Description

판상형 폴리머 분말의 제조방법Manufacturing method of plate-shaped polymer powder
본 발명은 저밀도의 폴리머 분말(polymer powders)의 제조에 관한 것으로, 보다 구체적으로 구형 또는 무정형의 폴리머 분말을 납작하게 하는 판상형 폴리머 분말의 제조방법에 관한 것이다.The present invention relates to the production of low-density polymer powders, and more particularly, to a method for producing plate-like polymer powders by flattening spherical or amorphous polymer powders.
정보 통신 기술의 고도화에 따라, 휴대용 전자기기의 경박 단소화는 지속적으로 이루어지고 있다. 예컨대, 스마트 폰을 비롯하여, 테블릿 컴퓨터나 노트북 컴퓨터는 점점 고기능, 고사양화되고 있음에도 불구하고, 무게는 가벼워지고 두께는 점점 얇아지고 있다. 이를 위하여, 제품의 본체는 물론 내부의 전자 부품, 이들을 접합하거나 실장하기 위한 접착제나 필름 등에 대해서, 경박 단소화를 뒷받침할 수 있는 소재에 대한 연구 개발이 계속 추진되고 있다.With the advancement of information and communication technology, portable electronic devices are continuously being made lighter and smaller. For example, a tablet computer or a notebook computer, including a smart phone, is gradually becoming lighter in weight and thinner in spite of increasingly high functionality and high specifications. To this end, research and development on materials that can support light-thin and short-circuiting for the main body of the product as well as internal electronic components, adhesives or films for bonding or mounting them are continuously being pursued.
휴대용 전자기기의 경박 단소화를 구현하기 위한 여러 가지 기술 요소들 중에서, 회로기판에 고집적 IC칩 등의 전자 부품을 실장하여 접합하기 위한 도전성 접착제 소재에 대한 중요도가 지속적으로 높아지고 있다. 이러한 도전성 접착제는 전자기기에 사용되는 특성상 높은 전도성이 요구되는 것은 물론, 전자파 차폐능과 함께 열전도도, 성형성 등의 성능이 요구되기도 한다. 특히, 전자기기의 경박 단소화를 뒷받침하기 위해서는, 도전성 접착제나 도전성 필름 등의 저밀도 특성에 대한 중요도가 점점 높아지고 있다.Among various technological factors for realizing light, thin, and compact portable electronic devices, the importance of a conductive adhesive material for mounting and bonding electronic components such as highly integrated IC chips on a circuit board is continuously increasing. Due to the nature of these conductive adhesives used in electronic devices, not only high conductivity is required, but also performance such as thermal conductivity and formability along with electromagnetic wave shielding ability is required. In particular, in order to support thin, thin and short electronic devices, the importance of low-density characteristics such as conductive adhesives and conductive films is gradually increasing.
통상적으로 도전성 접착제나 도전성 필름 등은 은이나 구리 또는 니켈이나 아연 등과 같이 높은 전기 전도특성을 갖는 금속 분말을 유기 바인더(합성수지)에 혼합한 페이스트나 또는 혼합물을 필름 형태로 성형하여 제조된다. 하지만, 금속 분말은 기본적으로 밀도가 큰 물질이어서 경량화에 한계가 있으며, 분산 안정성이 좋지 않은 것은 물론 경시 안정성이 떨어져서 시간의 경과에 따라 침전이 발생할 경우에는 균일성이 떨어지는 문제가 있다. 이로 인하여, 도전성 접착제나 도전성 필름의 두께가 불균일하며, 표면이 거칠 뿐만 아니라 국부적으로 전도 특성을 충족시키지 못하는 현상이 발생하기도 한다.In general, a conductive adhesive or conductive film is manufactured by molding a paste or mixture of a metal powder having high electrical conductivity, such as silver, copper, nickel, or zinc, with an organic binder (synthetic resin), into a film form. However, metal powder is basically a material with high density, so there is a limit to weight reduction, and dispersion stability is poor, as well as stability over time, so when precipitation occurs over time, there is a problem of poor uniformity. Due to this, the thickness of the conductive adhesive or the conductive film is non-uniform, the surface is rough, and the conductive properties are not satisfied locally.
이러한 금속 분말의 단점을 해결하기 위하여, 다양한 방법이 제안되고 있다. 예컨대, 금속 분말을 중공형으로 제조함으로써 밀도를 낮추거나 또는 금속 분말이 아닌 플라스틱 볼을 사용하는 방법이 제안되어 있다. 후자의 경우에, 예컨대 PolyStyrene(PS), PolyMethyl MethAcrylate(PMMA), Arcylonitrile Butadiene Styrene(ABS), PolyOxy Methylene(POM), PolyAcryloNitrile(PAN) 등으로 만들어진 플라스틱 볼의 표면에 무전해 금속 도금을 실시함으로써, 도전성을 유지하면서 저밀도화를 달성한다.In order to solve the disadvantages of these metal powders, various methods have been proposed. For example, a method of lowering the density by manufacturing a hollow metal powder or using a plastic ball instead of a metal powder has been proposed. In the latter case, by applying electroless metal plating to the surface of a plastic ball made of, for example, PolyStyrene (PS), PolyMethyl MethAcrylate (PMMA), Arcylonitrile Butadiene Styrene (ABS), PolyOxy Methylene (POM), PolyAcryloNitrile (PAN), etc. Low density is achieved while maintaining conductivity.
하지만, 플라스틱 볼에 금속을 도금하는 종래의 방식은, 모두 밀도가 낮은 모재 심재를 사용함으로써 분말의 저밀도화가 가능하지만, 입자의 형태가 구형으로 입자간 접촉이 점접촉으로 되기 때문에 높은 전도성을 구현하는데 한계가 있다.However, in the conventional method of plating metal on plastic balls, low density of the powder is possible by using a base material core material with low density, but the shape of the particles is spherical and the contact between the particles becomes a point contact to realize high conductivity. There are limits.
[선행기술문헌][Prior art literature]
(특허문헌 1) 한국등록특허 제10-1718158호(Patent Document 1) Korean Patent Registration No. 10-1718158
본 발명이 해결하고자 하는 하나의 과제는, 구형이나 무정형의 폴리머 분말을 입자간의 접촉 면적이 넓은 판상형으로 제조할 수 있는, 판상형 폴리머 분말의 제조방법을 제공하는 것이다.One problem to be solved by the present invention is to provide a method for producing a plate-shaped polymer powder capable of preparing a spherical or amorphous polymer powder in a plate-shaped form with a large contact area between particles.
전술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 판상형 폴리머 분말의 제조방법은, 폴리머 분말을 준비하는 단계 및 상기 준비된 폴리머 분말을 기계적으로 밀링(milling)하여 판상화하는 단계를 포함한다. A method for preparing a plate-shaped polymer powder according to an embodiment of the present invention for solving the above problems includes preparing a polymer powder and mechanically milling the prepared polymer powder to plate it.
상기 실시예의 일 측면에 의하면, 상기 폴리머 분말은, 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMethyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나 이상의 공중합체로 형성될 수 있다. According to one aspect of the embodiment, the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMethyl MethAcrylate, PMMA), polystyrene (PolyStyrene, PS), polyethylene (PolyEthylene, PE) and It may be formed of one or more copolymers selected from the group consisting of polypropylene (PP).
상기 실시예의 다른 측면에 의하면, 상기 폴리머 분말은, 평균 입경이 1~60㎛인 구형 또는 무정형 형상을 가질 수 있다. According to another aspect of the embodiment, the polymer powder may have a spherical or amorphous shape with an average particle diameter of 1 to 60 μm.
그리고 상기 판상화 단계의 결과로 생성된 판상화 폴리머 분말은, 장축의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 상기 두께에 대한 상기 장축의 길이 비율이 10~300일 수 있다. Further, the plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 μm and a thickness of 0.2 to 2 μm, and a ratio of the length of the long axis to the thickness may be 10 to 300.
그리고 상기 판상화 단계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 상기 준비된 폴리머 분말을 기계적으로 밀링할 수 있다. 이 경우에, 상기 판상화 단계에서는, 폴리머 분말의 혼합 및 분산 효과를 증가시키기 위해, 공정 중 용매를 포함할 수 있으며, 용매는 메탄올(methanol), 에탄올(ethanol), 1,2-프로판올(1,2-propanol), 에틸렌 글라이콜(ethylene glycol), 글리세롤(glycerol) 등과 같은 알코올류에서 1종 이상 선택되어질 수 있다. 또한 폴리머 분말 종류에 따라 밀링 효과의 증가를 위해, 상온보다 높은 온도에서 기계적으로 밀링할 수 있다.In the plate-forming step, the prepared polymer powder may be mechanically milled using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method. In this case, in the plate-forming step, a solvent may be included during the process in order to increase the mixing and dispersing effect of the polymer powder, and the solvent is methanol, ethanol, 1,2-propanol (1 ,2-propanol), ethylene glycol, glycerol, and the like may be selected from one or more alcohols. In addition, depending on the type of polymer powder, mechanical milling may be performed at a temperature higher than room temperature in order to increase the milling effect.
전술한 본 발명의 실시예에 의하면, 구형이나 무정형의 폴리머 분말을 손쉽고 저렴하게, 그리고 원하는 두께 대비 직경(또는 장축 길이)를 갖는 판상형 폴리머 분말로 제조할 수 있다. According to the above-described embodiments of the present invention, spherical or amorphous polymer powder can be easily and inexpensively manufactured into plate-like polymer powder having a desired thickness-to-diameter (or major axis length).
그리고 이와 같이 제조된 판상형 폴리머 분말은, 금속으로 코팅하는 후속 공정을 통하여 전도성이 우수하고 밀도가 낮은 도전성 분말을 제조하는데 활용할 수 있다.In addition, the plate-shaped polymer powder prepared in this way can be used to prepare a conductive powder having excellent conductivity and low density through a subsequent process of coating with metal.
도 1은 본 발명의 일 실시예에 따른 저밀도 판상형 도전성 분말의 제조방법을 보여 주는 흐름도이다.1 is a flowchart showing a method of manufacturing low-density plate-like conductive powder according to an embodiment of the present invention.
도 2a 및 도 2b는 준비된 구형의 폴리머 분말에 대한 SEM 사진으로서, 도 2b는 도 2a의 일부를 확대한 것이다.2a and 2b are SEM images of the prepared spherical polymer powder, and FIG. 2b is an enlarged portion of FIG. 2a.
도 3a 및 도 3b는 실험예 3에 따라 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 3b는 도 3a의 일부를 확대한 것이다.3a and 3b are SEM pictures of the plate-shaped polymer powder according to Experimental Example 3, and FIG. 3b is an enlarged portion of FIG. 3a.
도 4a 및 도 4b는 실험예 7에 따라 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 4b는 도 4a의 일부를 확대한 것이다.4a and 4b are SEM images of the plate-shaped polymer powder according to Experimental Example 7, and FIG. 4b is an enlarged portion of FIG. 4a.
도 5a 및 도 5b는 실험예 13에 따라 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 5b는 도 5a의 일부를 확대한 것이다.5a and 5b are SEM pictures of the plate-shaped polymer powder according to Experimental Example 13, and FIG. 5b is an enlarged portion of FIG. 5a.
도 6a 및 도 6b는 비교예 1에 따라 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 6b는 도 6a의 일부를 확대한 것이다.6a and 6b are SEM images of the plated polymer powder according to Comparative Example 1, and FIG. 6b is an enlarged portion of FIG. 6a.
도 7a 및 도 7b는 비교예 2에 따라 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 7b는 도 7a의 일부를 확대한 것이다.7a and 7b are SEM images of the plated polymer powder according to Comparative Example 2, and FIG. 7b is an enlarged portion of FIG. 7a.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 본 명세서에서 사용되는 용어 및 단어들은 실시예에서의 기능을 고려하여 선택된 용어들로서, 그 용어의 의미는 발명의 의도 또는 관례 등에 따라 달라질 수 있다. 따라서 후술하는 실시예에서 사용된 용어는, 본 명세서에 구체적으로 정의된 경우에는 그 정의에 따르며, 구체적인 정의가 없는 경우는 당업자들이 일반적으로 인식하는 의미로 해석되어야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Terms and words used in this specification are terms selected in consideration of functions in the embodiments, and the meanings of the terms may vary depending on the intention or practice of the invention. Therefore, the terms used in the embodiments to be described later, when specifically defined in the present specification, follow the definition, and when there is no specific definition, they should be interpreted as meanings generally recognized by those skilled in the art.
본 발명의 일 실시예에 따른 판상형 폴리머 분말의 제조방법은, 구형 및/또는 무정형의 폴리머 분말을 준비하는 과정 및 준비된 폴리머 분말을 소정의 공정 조건에서 기계적으로 밀링(milling)하여 판상화하는 과정을 포함한다. 이에 의하여 준비된 판상형 폴리머 분말은, 후속 공정을 통해 금속을 코팅함으로써 판상형 저밀도 도전성 분말을 제조하는데 활용될 수 있다. A method for producing a plate-like polymer powder according to an embodiment of the present invention includes a process of preparing a spherical and/or amorphous polymer powder and a process of mechanically milling the prepared polymer powder into a plate shape under predetermined process conditions. include The plate-shaped polymer powder thus prepared can be used to manufacture plate-shaped low-density conductive powder by coating a metal through a subsequent process.
도 1은 본 발명의 일 실시예에 따른 판상형 폴리머 분말의 제조방법을 보여 주는 흐름도이다. 1 is a flowchart showing a method for manufacturing a plate-like polymer powder according to an embodiment of the present invention.
도 1을 참조하면, 우선, 판상화의 대상이 되는 폴리머 분말을 준비한다(S10). 폴리머 분말의 종류에는 특별한 제한이 없다. 예컨대, 폴리머 분말은 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMetahyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나의 공중합체이거나 또는 2가지 이상의 공중합체가 섞여 있는 혼합물이어도 된다. 바람직하게는, 폴리머 분말은 폴리아크릴로니트릴인 것이 좋다. 폴리아크릴로니크릴 폴리머 분말은 다른 종류의 폴리머 분말에 비해 연성이 뛰어나서 판상화에 더 용이하다.Referring to FIG. 1, first, a polymer powder to be plated is prepared (S10). There is no particular limitation on the type of polymer powder. For example, the polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). It may be one copolymer selected from the group consisting of, or a mixture in which two or more copolymers are mixed. Preferably, the polymer powder is polyacrylonitrile. Polyacrylonicryl polymer powder has excellent ductility compared to other types of polymer powder and is easier to plate.
그리고 준비된 폴리머 분말은 입체적인 형상, 예컨대 구형 및/또는 무정형의 형상을 갖는다. 예컨대, 구형의 폴리머 분말은, 후술하는 단계 S20에서의 기계적 밀링에 의하여 판상화가 되면, 두께가 얇은 원형 또는 타원형의 형상을 가지게 되므로, 판상형이 되더라도 분말의 형상 제어가 용이하다. 그리고 금속으로 코팅될 경우에 원형 또는 타원형의 분말들 사이에는 보다 넓은 접촉 면적을 확보할 수 있을 뿐만 아니라 분말들 사이에 접촉 면적의 편차도 작은 장점이 있다.And the prepared polymer powder has a three-dimensional shape, such as a spherical and/or amorphous shape. For example, when the spherical polymer powder is plate-shaped by mechanical milling in step S20 to be described later, it has a circular or elliptical shape with a thin thickness, so it is easy to control the shape of the powder even if it is plate-shaped. In addition, when coated with metal, a wider contact area can be secured between circular or elliptical powders, and there is an advantage in that the deviation of the contact area between the powders is small.
예컨대, 구형의 폴리머 분말은, 평균 입경이 1~60㎛인 크기를 가질 수 있다. 바람직하게는, 폴리머 분말은 평균 입경이 3~15㎛ 인 것이 바람직하다. 폴리머 분말의 평균 입경이 3㎛보다 작은 경우에는, 판상화가 되더라도 금속 코팅이 용이하지 않을 뿐만 아니라 분말들 사이에 넓은 접촉 면적을 확보하기 어렵다. 반면, 폴리머 분말의 평균 입경이 15㎛보다 큰 경우에는, 판상화 후에 입도가 크게 증가하여 페이스트나 필름 등의 제조시에 분말이 고르게 분포되기 어려울 뿐만 아니라 제품의 박막화 및 정밀화가 어려운 단점이 있다.For example, the spherical polymer powder may have an average particle diameter of 1 μm to 60 μm. Preferably, the polymer powder preferably has an average particle diameter of 3 to 15 μm. When the average particle diameter of the polymer powder is smaller than 3 μm, it is not easy to coat the polymer with metal even if it is plate-shaped, and it is difficult to secure a large contact area between the powders. On the other hand, when the average particle diameter of the polymer powder is greater than 15 μm, the particle size greatly increases after plate-shaping, making it difficult to evenly distribute the powder during manufacture of pastes or films, as well as making it difficult to thin and refine the product.
계속해서, 준비된 폴리머 분말을 소정의 공정 조건으로 기계적으로 밀링(milling)하여 판상화한다(S20). 여기서, “기계적 밀링”이란 통상적으로 미세 분말을 만드는데 사용하는 밀링 기계(milling machine)를 사용하여 폴리머 분말에 물리적으로 충격 및/또는 압력을 가하여 납작하게 만드는 것을 가리킨다. 통상적으로 금속 입자나 도료, 곡식 등의 경우에는 밀링 기계를 사용할 경우에는 크기가 더 작은 입자(분말)로 쪼개진다. 하지만, 폴리머 분말의 경우에는 그 재료가 갖는 특성(예컨대, 연성)으로 인하여 충격이나 압력이 가해지더라도 분말이 더 작은 크기로 쪼개지기 보다는 형상이 변형되기가 쉽다. 보다 구체적으로, 구형의 폴리머 분말의 경우에, 밀링 기계를 사용하여 기계적 밀링을 수행할 경우에, 충격이나 압력에 의하여 납작하게 되어 원형 또는 타원형의 형상으로 판상화가 이루어질 수 있다.Subsequently, the prepared polymer powder is mechanically milled and plated under predetermined process conditions (S20). Here, "mechanical milling" refers to flattening by physically applying impact and/or pressure to polymer powder using a milling machine commonly used to make fine powder. In general, metal particles, paints, grains, etc. are broken into smaller particles (powder) when using a milling machine. However, in the case of a polymer powder, its shape is easily deformed rather than split into smaller sizes even when an impact or pressure is applied due to its material properties (eg, ductility). More specifically, in the case of spherical polymer powder, when mechanical milling is performed using a milling machine, it can be flattened by impact or pressure and plated into a circular or elliptical shape.
여기서, 기계적 밀링을 수행하기 위한 밀링 기계의 종류에는 특별한 제한이 없다. 예컨대, 밀링 기계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 기계적으로 밀링하기 위한 장치일 수 있다. 사용되는 볼의 크기, 회전속도, 공정 시간 등 밀링 조건에 따라 밀링 장치(즉, 밀링 기계에서 사용하는 밀링 방법)는 선택적으로 사용이 가능하다. 본 발명의 실시예에 의하면, 볼의 크기, 회전 속도, 생산성 등을 고려하여 어트리션밀법을 사용하여 판상화 단계(S20)를 수행하는 것이 바람직하다. Here, there is no particular limitation on the type of milling machine for performing mechanical milling. For example, the milling machine may be a device for mechanically milling using one or more methods selected from among a ball mill method, an attrition mill method, and a beads mill method. Depending on the milling conditions such as the size of the ball used, the rotational speed, and the processing time, the milling device (ie, the milling method used in the milling machine) can be selectively used. According to an embodiment of the present invention, it is preferable to perform the plate forming step (S20) using the attrition mill method in consideration of the ball size, rotational speed, productivity, and the like.
본 발명의 실시예에 의하면, 단계 S20에서의 기계적 밀링은 폴리머 분말을 소정의 용매에 분산시킨 상태에서 수행하는 것이 바람직하다. 폴리머 분말을 용매에 분산시키면, 폴리머 분말의 혼합 및 분산 효과를 높일 수 있어서, 보다 균일한 밀링이 가능하다. 폴리머 분말은 소수성이고 또한 물보다 밀도가 작으므로, 물에는 잘 분산되지 않는다. 따라서 폴리머 분말의 분산을 위해서는, 물 대신에 유기 용매를 사용하는 것이 바람직하다. 다만, 유기 용매를 분산액으로 사용할 경우에는 그 종류에 따라서 폴리머 분말이 용해될 수도 있으므로, 해당 폴리머 분말이 잘 용해되지 않는 종류의 유기 용매를 사용해야 한다. According to an embodiment of the present invention, the mechanical milling in step S20 is preferably performed in a state in which the polymer powder is dispersed in a predetermined solvent. When the polymer powder is dispersed in a solvent, mixing and dispersing effects of the polymer powder can be enhanced, and more uniform milling is possible. Since the polymer powder is hydrophobic and has a lower density than water, it does not disperse well in water. Therefore, it is preferable to use an organic solvent instead of water for dispersing the polymer powder. However, when an organic solvent is used as a dispersion, the polymer powder may be dissolved depending on its type, so an organic solvent of a type in which the polymer powder does not dissolve well should be used.
보다 구체적으로, 폴리아크릴로나이트릴(PAN), 폴리메틸 메타크릴레이트(PMMA), 폴리스타이렌(PS), 폴리에틸렌(PE)이나 폴리프로필렌(PP)과 같은 폴리머 분말은 알콜류에 쉽게 용해되지 않는다. 따라서 단계 S20에서의 기계적 밀링 공정에서 사용하는 유기 용매는 알콜류인 것이 바람직하다. 예를 들어, 알콜류 유기 용매는 메탄올(methanol), 에탄올(ethanol), 1,2-프로판올(1,2-propanol), 에틸렌 글라이콜(ethylene glycol), 글리세롤(glycerol)이거나 또는 이들의 혼합물일 수 있다. 이 경우에, 폴리머 분말이 유기 용매에 쉽게 용해되지 않고 또한 균일하게 분산되어 있기 때문에, 폴리머 분말의 손상 없이 입도가 균일하게 판상화하는 것이 가능하다. More specifically, polymer powders such as polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polystyrene (PS), polyethylene (PE) or polypropylene (PP) are not easily soluble in alcohol. Therefore, the organic solvent used in the mechanical milling process in step S20 is preferably alcohol. For example, the alcoholic organic solvent may be methanol, ethanol, 1,2-propanol, ethylene glycol, glycerol, or a mixture thereof. can In this case, since the polymer powder is not easily dissolved in the organic solvent and is uniformly dispersed, it is possible to plate the particle size uniformly without damaging the polymer powder.
다만, 알콜류라고 하더라도 케톤류(예컨대, 아세톤, 메틸에틸케톤, 메틸부틸케톤, 메틸이소부틸케톤 등)에는 전술한 종류의 폴리머 분말이 쉽게 용해될 수 있으므로, 이러한 케톤류는 단계 S20에서의 기계적 밀링 공정의 용매로 사용하지 않는 것이 바람직하다. 만일, 케톤류를 용매로 사용할 경우에는 폴리머 분말이 용해되어, 밀링 기계를 장기간 사용할 경우에 모재를 손상시킬 염려가 있다.However, since the above-mentioned polymer powder can be easily dissolved in ketones (e.g., acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, etc.) It is preferable not to use it as a solvent. If ketones are used as a solvent, the polymer powder is dissolved and the base material may be damaged when the milling machine is used for a long time.
본 발명의 일 실시예에 의하면, 단계 S20의 기계적 밀링 공정은, 10℃ 이상의 온도에서 수행할 수 있으나, 사용되는 용매의 끊는 점보다는 낮은 온도이어야 한다. 이 경우에, 폴리머 분말 종류에 따라서는, 밀링 효과의 증가를 위해, 상온(25℃)보다 높은 온도에서 수행하는 것이 좋다. 예를 들어, 폴리메틸 메타크릴레이트(PMMA)와 같이 강도가 높은 폴리머 분말은 연성이 낮아 기계적 밀링 중 분말이 쉽게 깨질 수 있으므로, 밀링 공정 중에 온도를 높게 유지하여 분말의 연성을 증가시켜 판상화 효율을 증대시킬 수 있다. 이 경우 바람직하게는, 기계적 밀링 공정은 상온부터 유기 용매의 끊는점 보다 낮은 온도, 예컨대 25~75℃에서 수행하는 것이 좋다. 만일 공정온도가 25℃이하일 경우 폴리머 분말의 연성이 높아지지 않아서 폴리머 분말이 쉽게 깨질 수 있다. 반면, 공정온도가 75℃이상일 경우에는, 기계적 밀링 공정의 진행 중에 용매가 증발되어서 양이 줄어들게 되므로 장시간 밀링 공정을 수행하기가 어려울 수도 있다.According to one embodiment of the present invention, the mechanical milling process of step S20 may be performed at a temperature of 10° C. or higher, but the temperature should be lower than the boiling point of the solvent used. In this case, depending on the type of polymer powder, it is preferable to perform the milling at a temperature higher than room temperature (25° C.) in order to increase the milling effect. For example, high-strength polymer powders such as polymethyl methacrylate (PMMA) have low ductility and can easily break the powder during mechanical milling. Therefore, the temperature is maintained high during the milling process to increase the ductility of the powder, thereby increasing the platelet efficiency. can increase In this case, the mechanical milling process is preferably performed at room temperature lower than the boiling point of the organic solvent, for example, 25 to 75°C. If the process temperature is less than 25 ° C., the ductility of the polymer powder is not increased, so the polymer powder can be easily broken. On the other hand, when the process temperature is 75° C. or higher, it may be difficult to perform the milling process for a long time because the solvent is evaporated and the amount is reduced during the mechanical milling process.
그리고 이러한 기계적 밀링 공정은 보다 많은 분말이 판상화가 될 수 있도록 소정의 회전속도(rpm)로 일정 시간 동안 수행하는 것이 바람직하다. 예컨대, 기계적 밀링 공정은 200~600rpm으로 약 10~60분 정도 수행하는 것이 바람직하다. 회전속도가 너무 작거나 또는 공정 시간이 너무 짧을 경우에는 투입되는 폴리머 분말 중 일부만이 판상화가 될 염려가 있다. 반면, 회전속도가 너무 클 경우에는 폴리머 분말이 판상화되지 않고 분쇄될 염려가 있으며, 또한 공정 시간이 지나치게 길 경우에는 생산성을 저하시키는 요인이 될 뿐만 아니라 폴리머 분말이 유기 용매에 많이 용해되어 폴리머 분말이 손상될 염려가 있다.In addition, it is preferable to perform this mechanical milling process at a predetermined rotational speed (rpm) for a predetermined time so that more powder can be plated. For example, the mechanical milling process is preferably performed at 200 to 600 rpm for about 10 to 60 minutes. When the rotational speed is too small or the process time is too short, there is a concern that only a part of the polymer powder introduced is plated. On the other hand, if the rotation speed is too high, there is a concern that the polymer powder is not plated and pulverized, and if the process time is too long, not only is it a factor that lowers productivity, but also the polymer powder is dissolved in an organic solvent. There is a risk that this may be damaged.
그리고 기계적 밀링 공정에 사용되는 볼의 크기는 0.5~4mm, 바람직하게는 1~3mm인 것이 좋다. 만일, 볼의 크기가 너무 작으면(예컨대, 1mm 이하), 폴리머 분말의 전체적으로 평평하게 판상화되기 어려울뿐만 아니라 부분적으로 충격이 가해져서 폴리머 분말이 깨지기 쉽다. 반면, 볼의 크기가 너무 크면(예컨대, 4mm 이상), 볼에 의해서 가해지는 충격이 크기 때문에, 역시 폴리머 분말이 깨지기 쉽다.And the size of the ball used in the mechanical milling process is 0.5 to 4mm, preferably 1 to 3mm. If the size of the ball is too small (for example, 1 mm or less), it is difficult to flatten the polymer powder as a whole and it is easy to break the polymer powder due to partial impact. On the other hand, if the size of the ball is too large (eg, 4 mm or more), the impact applied by the ball is great, so the polymer powder is also easy to break.
이와 같이, 단계 S20에서 소정의 공정조건(즉, 전술한 공정온도, 회전속도 및/또는 볼의 크기 등)으로 기계적 밀링법을 이용하여 폴리머 분말에 대하여 판상화 공정을 수행하면, 구형의 폴리머 분말은 판상화가 되어서 판상형 폴리머 분말이 만들어진다. 예컨대, 평균 입경이 1~60㎛인 구형의 폴리머 분말을 볼밀법, 비즈밀법 또는 어트리션밀법 등을 이용하여 판상화할 경우에, 장축(또는 지름)의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 두께에 대한 장축(또는 지름)의 길이 비율이 10~300인 판상화 폴리머 분말이 만들어질 수 있다. As such, in step S20, when the plate-forming process is performed on the polymer powder using a mechanical milling method under predetermined process conditions (ie, the above-described process temperature, rotational speed, and/or ball size, etc.), the spherical polymer powder The silver is plated to form a plate-like polymer powder. For example, when spherical polymer powder having an average particle diameter of 1 to 60 μm is plated using a ball mill method, a bead mill method, or an attrition mill method, the length of the long axis (or diameter) is 2 to 150 μm and the thickness is 0.2 μm. As ~2 μm, a platelet polymer powder with a length to thickness ratio of 10 to 300 can be made.
이와 같이, 판상화 폴리머 분말이 제조되면, 이의 표면에 도전성 금속 물질을 코팅함으로써, 저밀도 판상형 폴리머 분말을 제조하는데 활용할 수 있다. 이를 위하여, 코팅되는 금속은 은(Ag), 구리(Cu), 니켈(Ni), 주석(Sn), 금(Au), 알루미늄(Al), 비스무트(Bi), 철(Fe) 또는 코발트(Co)의 단일 금속이거나 또는 이들 중에서 2가지 이상의 금속으로 이루어진 혼합물이어도 된다. In this way, when the plate-like polymer powder is produced, it can be used to prepare a low-density plate-like polymer powder by coating a conductive metal material on its surface. To this end, the metal to be coated is silver (Ag), copper (Cu), nickel (Ni), tin (Sn), gold (Au), aluminum (Al), bismuth (Bi), iron (Fe) or cobalt (Co ), or a mixture of two or more metals.
판상형 폴리머 분말의 표면에 도전성 금속 물질을 코팅하는 방법에 특별한 제한이 없으며, 폴리머 분말에 금속 물질을 코팅하는 것으로서 공지되어 있는 어떠한 기법을 사용해도 된다. 예컨대, 전술한 특허문헌 1(한국등록특허 제10-1718158호) 또는 특허문헌 3(한국공개특허 제10-2020-0113461호)에 개시된 방법에 따라서, 무전해 도금법으로 판상형 폴리머 분말의 표면에 금속 물질을 코팅해도 된다. There is no particular limitation on the method of coating the surface of the plate-like polymer powder with a conductive metal material, and any technique known for coating a metal material on the polymer powder may be used. For example, according to the method disclosed in Patent Document 1 (Korean Patent Registration No. 10-1718158) or Patent Document 3 (Korean Patent Publication No. 10-2020-0113461), metal is deposited on the surface of the plate-shaped polymer powder by electroless plating. The material may be coated.
또는, 코팅하고자 하는 금속 이온이 포함되어 있는 소정의 코팅 용액을 준비하고, 준비된 코팅 용액에 판상화된 폴리머 분말을 투입한 다음, 소정의 시간 동안 해당 용액을 교반함으로써 폴리머 분말의 표면에 해당 금속 물질이 코팅되도록 할 수도 있다. 이를 위하여, 교반하는 동안에는 산화환원 반응에 의하여 금속 이온이 폴리머 분말의 표면에 결합될 수 있도록, 코팅 용액은 금속 이온(금속 전구체)과 함께 착화제와 환원제를 포함한다. 여기서, 착화제는 금속 이온의 착화합물을 형성하는 역할을 수행한다. 생성된 금속 착화물은 순수 금속 이온보다 산화환원전위(redox potential)를 낮추기 때문에, 금속 이온들의 급격한 환원 반응을 억제시켜 균일한 금속 코팅층이 형성되도록 한다.Alternatively, a predetermined coating solution containing metal ions to be coated is prepared, plate-shaped polymer powder is added to the prepared coating solution, and then the solution is stirred for a predetermined period of time to form a corresponding metal material on the surface of the polymer powder. It can also be coated. To this end, the coating solution includes a complexing agent and a reducing agent together with metal ions (metal precursors) so that metal ions can be bound to the surface of the polymer powder by a redox reaction during stirring. Here, the complexing agent serves to form a complex compound of metal ions. Since the produced metal complex has a lower redox potential than pure metal ions, a rapid reduction reaction of metal ions is suppressed to form a uniform metal coating layer.
그리고 필요한 경우에 코팅 용액은 환원제에 의하여 산화환원 반응이 원활하게 일어날 수 있도록 pH 조절제를 더 포함할 수도 있다. 본 발명의 일 실시예에 의하면, 이 경우에 코팅 용액의 수소이온농도(pH)는 7 이상 12 이하인 것이 바람직하다.And, if necessary, the coating solution may further contain a pH adjuster so that the oxidation-reduction reaction can occur smoothly by the reducing agent. According to one embodiment of the present invention, in this case, the hydrogen ion concentration (pH) of the coating solution is preferably 7 or more and 12 or less.
그리고 폴리머 분말의 표면에 형성되는 금속층은 단층이거나 또는 다층으로 형성할 수도 있다. 후자의 경우에, 다층의 금속층은 반드시 동일한 종류의 금속일 필요는 없으며, 서로 다른 종류의 금속이어도 된다. Further, the metal layer formed on the surface of the polymer powder may be formed in a single layer or in multiple layers. In the latter case, the multiple metal layers need not necessarily be of the same kind of metal, but may be of different kinds of metal.
이러한 본 발명의 실시예에 따라 제조된 판상형 저밀도 도전성 분말은 기존의 금속 도전성 분말보다 밀도가 상당히 작다. 예컨대, 은(Ag)의 경우에 밀도가 10.49g/cm3, 구리(Cu)의 경우에 밀도가 8.93g/cm3, 니켈(Ni)의 경우에 밀도가 8.8g/cm3 등이나, 단계 S30의 결과로 제조된 도전성 분말(도 2a의 도전성 분말)은, 판상형 폴리머 분말(2)의 표면에 코팅되는 금속(4)의 종류에 상관없이 2.5g/cm3 이하의 탭 밀도를 가진다.The plate-shaped low-density conductive powder prepared according to the embodiment of the present invention has a significantly lower density than the conventional metal conductive powder. For example, in the case of silver (Ag), the density is 10.49 g / cm3, in the case of copper (Cu), the density is 8.93 g / cm3, in the case of nickel (Ni), the density is 8.8 g / cm3, etc., but the result of step S30 The conductive powder made of (conductive powder in FIG. 2A) has a tap density of 2.5 g/cm3 or less regardless of the type of metal 4 coated on the surface of the plate-like polymer powder 2.
그리고 이러한 본 발명의 실시예에 따라 제조된 판상형 저밀도 도전성 분말은 고분자 수지와 혼합하여 전도성 페이스트, 필름 또는 시트형태로 제조 가능하며, 실시예에 따라 제조된 판상형 저밀도 도전성 분말 자체 또는 다른 전도성 분말과 혼합하여 사용할 수 있다.In addition, the plate-shaped low-density conductive powder prepared according to the embodiment of the present invention can be mixed with a polymer resin to be prepared in the form of a conductive paste, film, or sheet, and the plate-shaped low-density conductive powder prepared according to the embodiment itself or mixed with other conductive powders and can be used.
이하에서는 전술한 본 발명의 실시예에 따른 실험예와 비교예를 기술한다. 다만, 하기에 기재된 실험예는 전술한 본 발명의 실시예를 구체적으로 예시하거나 설명하기 위한 것으로서, 본 발명의 실시예가 후술된 실험예에 의하여 한정되는 것은 아니다. Hereinafter, experimental examples and comparative examples according to the above-described embodiments of the present invention will be described. However, the experimental examples described below are intended to specifically illustrate or explain the above-described embodiments of the present invention, and the embodiments of the present invention are not limited by the experimental examples described later.
실험예 1~13Experimental Examples 1 to 13
실험예 1~13은 각각 전술한 본 발명의 실시예에 따라 폴리머 분말을 판상화하는 과정의 일례이다. 보다 구체적으로, 우선 입자의 직경이 3~15㎛인 구형의 폴리머 분말을 준비한다(표 1 참조). 도 2a 및 도 2b는 실험예 3에 따라 준비된 구형의 폴리머 분말에 대한 SEM 사진으로서, 도 2b는 도 2a의 일부를 확대한 것이다. 그리고 어트리션 밀링 장치의 교반기에 1~3mm 직경의 볼(ball)을 투입한 다음, 에탄올과 폴리머 분말을 중량비 10:1(예컨대, 에탄올 200g과 폴리머 분말 20g)로 혼합하여, 역시 어트리션 밀링 장치의 교반기에 투입한다. 계속해서 교반기를 회전시켜서 폴리머 분말을 판상화시킨다. 본 실험예에서는 200rpm, 400rpm, 또는 600rpm으로 각각 10분, 20분, 40분 또는 60분간 밀링하여, 분말의 크기(판상형 분말의 장축 길이)가 10~20㎛인 판상형 폴리머 분말을 제조하였다. Experimental Examples 1 to 13 are examples of the process of plate-forming the polymer powder according to the above-described embodiment of the present invention, respectively. More specifically, first, a spherical polymer powder having a particle diameter of 3 to 15 μm is prepared (see Table 1). 2a and 2b are SEM images of the spherical polymer powder prepared according to Experimental Example 3, and FIG. 2b is an enlarged portion of FIG. 2a. Then, a ball with a diameter of 1 to 3 mm is put into the stirrer of the attrition milling device, and then ethanol and polymer powder are mixed at a weight ratio of 10: 1 (eg, 200 g of ethanol and 20 g of polymer powder), It is put into the agitator of the milling device. Subsequently, the stirrer is rotated to plate the polymer powder. In this experimental example, milling was performed at 200 rpm, 400 rpm, or 600 rpm for 10 minutes, 20 minutes, 40 minutes, or 60 minutes, respectively, to prepare a plate-shaped polymer powder having a powder size (long axis length of the plate-shaped powder) of 10 to 20 μm.
도 3a 및 도 3b는 아래 표 1의 실험예 3의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 3b는 도 3a의 일부를 확대한 것이다. 그리고 도 4a 및 도 4b는 아래 표 1의 실험예 7의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 4b는 도 4a의 일부를 확대한 것이며, 도 5a 및 도 5b는 아래 표 1의 실험예 13의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 5b는 도 5a의 일부를 확대한 것이다.Figures 3a and 3b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Experimental Example 3 in Table 1 below, and Figure 3b is an enlarged portion of Figure 3a. And Figures 4a and 4b are SEM pictures of the plated polymer powder prepared according to the process conditions of Experimental Example 7 in Table 1 below, Figure 4b is an enlarged portion of Figure 4a, Figures 5a and 5b As an SEM picture of the plate-shaped polymer powder prepared according to the process conditions of Experimental Example 13 in Table 1 below, FIG. 5B is an enlarged portion of FIG. 5A.
비교예 1, 2Comparative Examples 1 and 2
비교예 1, 2도 폴리머 분말을 판상화하는 과정의 일례인데, 전술한 실험예 1~13과 비교하여 일부 공정조건이 상이하다(표 1 참조). 보다 구체적으로, 비교예 1의 경우에는, 1mm의 볼을 사용하는 실험예 4와 비교하여, 볼의 크기가 5mm로서 더 크다. 그리고 비교예 2의 경우에는, 볼의 크기는 2mm이지만, 밀링 속도가 800rpm이다.Comparative Examples 1 and 2 are also examples of the process of plate-forming the polymer powder, but some process conditions are different from those of Experimental Examples 1 to 13 described above (see Table 1). More specifically, in the case of Comparative Example 1, compared to Experimental Example 4 using a 1 mm ball, the size of the ball is larger as 5 mm. And in the case of Comparative Example 2, the ball size is 2 mm, but the milling speed is 800 rpm.
도 6a 및 도 6b는 아래 표 1의 비교예 1의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 6b는 도 6a의 일부를 확대한 것이다. 그리고 도 7a 및 도 7b는 아래 표 1의 비교예 2의 공정 조건에 따라 제조된 판상화된 폴리머 분말에 대한 SEM 사진으로서, 도 7b는 도 7a의 일부를 확대한 것이다.6a and 6b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Comparative Example 1 in Table 1 below, and FIG. 6b is an enlarged portion of FIG. 6a. And Figures 7a and 7b are SEM pictures of the plate-shaped polymer powder prepared according to the process conditions of Comparative Example 2 in Table 1 below, and Figure 7b is an enlarged portion of Figure 7a.
표 1은 실험예 1~13 및 비교예 1, 2의 판상화 공정에 사용된 공정 조건, 즉 폴리머 분말의 직경(polymer size), 볼의 크기(ball size), 교반기의 회전 속도(milling speed) 및 판상화 공정 시간(milling time) 중에서 일부를 변화시키면서 실험한 경우의, 공정 조건과 이에 따른 판상화된 폴리머 분말의 입도 분석(PSA, Particle Size Analysis) 결과를 비교해서 보여 주는 것이다. 표 1에서 입도 분포에 있어서 입경이 작은측으로부터의 체적 누적이 10%, 50%, 90%에 해당하는 입도를 각각 D10, D50, D90으로 표시하였다. 그리고 항목 Span은 (D90-D10)/D50의 값으로서, 폴리머 분말의 크기 분포의 균일성 정도를 보여준다.Table 1 shows the process conditions used in the plate-forming process of Experimental Examples 1 to 13 and Comparative Examples 1 and 2, that is, the diameter of the polymer powder (polymer size), the size of the ball (ball size), and the rotation speed of the stirrer (milling speed) And it is shown by comparing the process conditions and the result of Particle Size Analysis (PSA) of the plated polymer powder according to the experiment while changing some of the milling time. In Table 1, the particle sizes corresponding to 10%, 50%, and 90% of the volume accumulation from the smaller particle size side in the particle size distribution are indicated as D10, D50, and D90, respectively. And the item Span is a value of (D90-D10)/D50, showing the degree of uniformity of the size distribution of the polymer powder.
Figure PCTKR2022010286-appb-img-000001
Figure PCTKR2022010286-appb-img-000001
표 1 및 도 3a 내지 도 5b를 참조하면, 볼의 크기와 밀링 시간이 증가함에 따라, 폴리머 입자의 판상화가 진행되어서 입자의 크기(예컨대, 입도 D50에 대응하는 입자의 크기)가 증가한다는 것을 알 수 있다. 그리고 볼의 크기가 증가함에 따라 입자의 크기는 커지나 입자의 균일성(Span)은 감소하며, 판상화된 폴리머 입자의 외각 부분에 손상이 발생한다. 또한, 도 6a 내지 도 7b를 참조하면, 볼의 크기, 회전 속도, 밀링 시간이 너무 큰 경우, 일례로, 비교예 1과 같이 볼의 크기가 4㎜ 이상(예컨대, 5㎜)이거나 또는 비교예 2와 같이 회전 속도가 600rpm을 초과(예컨대, 800rpm)인 경우에는, 폴리머 입자가 깨져서 판상화하기 어렵다는 것을 알 수 있다.Referring to Table 1 and FIGS. 3A to 5B, it can be seen that as the ball size and milling time increase, the polymer particles are plated and the particle size (e.g., the particle size corresponding to the particle size D50) increases. can In addition, as the size of the ball increases, the size of the particle increases, but the uniformity (span) of the particle decreases, and damage occurs to the outer portion of the plate-shaped polymer particle. In addition, referring to Figures 6a to 7b, when the ball size, rotation speed, milling time is too large, for example, as in Comparative Example 1, the size of the ball is 4 mm or more (eg, 5 mm) or Comparative Example As shown in 2, when the rotation speed exceeds 600 rpm (eg, 800 rpm), it can be seen that the polymer particles are broken and it is difficult to plate them.
이상 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 전술한 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다. Although the present invention has been described in detail with preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.
본 발명에 따라 제조된 판상화된 폴리머 분말은 우수한 신뢰성을 갖는 도전성 접착제, 도전성 필름 등의 제조에 활용될 수 있다.The plate-shaped polymer powder prepared according to the present invention can be used for manufacturing highly reliable conductive adhesives, conductive films, and the like.

Claims (5)

  1. 폴리머 분말을 준비하는 단계; 및preparing polymer powder; and
    상기 준비된 폴리머 분말을 기계적으로 밀링(milling)하여 판상화하는 단계를 포함하는 폴리머 분말의 판상화 방법.A method of plate-forming a polymer powder comprising the step of mechanically milling the prepared polymer powder into a plate shape.
  2. 제1항에 있어서, According to claim 1,
    상기 폴리머 분말은, 폴리아크릴로나이트릴(PolyAcryloNitrile, PAN), 폴리메틸 메타크릴레이트(PolyMetahyl MethAcrylate, PMMA), 폴리스타이렌(PolyStyrene, PS), 폴리에틸렌(PolyEthylene, PE) 및 폴리프로필렌(PolyPropylene, PP)으로 이루어진 그룹에서 선택된 하나 이상의 공중합체로 형성된 것을 특징으로 하는 폴리머 분말의 판상화 방법.The polymer powder is polyacrylonitrile (PolyAcryloNitrile, PAN), polymethyl methacrylate (PolyMetahyl MethAcrylate, PMMA), polystyrene (PS), polyethylene (PolyEthylene, PE) and polypropylene (PolyPropylene, PP). A method for plate-forming a polymer powder, characterized in that it is formed of at least one copolymer selected from the group consisting of:
  3. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 폴리머 분말은, 평균 입경이 1~60㎛인 구형 또는 무정형 형상을 가지며, The polymer powder has a spherical or amorphous shape with an average particle diameter of 1 to 60 μm,
    상기 판상화 단계의 결과로 생성된 판상화 폴리머 분말은, 장축의 길이가 2~150㎛이고 두께가 0.2~2㎛로서, 상기 두께에 대한 상기 장축의 길이 비율이 10~300인 것을 특징으로 하는 폴리머 분말의 판상화 방법.The plate-shaped polymer powder produced as a result of the plate-forming step has a length of a long axis of 2 to 150 μm and a thickness of 0.2 to 2 μm, and a ratio of the length of the long axis to the thickness is 10 to 300. A method for plate-forming polymer powders.
  4. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 판상화 단계는, 볼밀(ball mill)법, 어트리션밀(attrition mill)법 및 비즈밀(beads mill)법 중에서 선택된 하나 이상의 방법을 사용하여 상기 준비된 폴리머 분말을 기계적으로 밀링하는 것을 특징으로 하는 폴리머 분말의 판상화 방법.The plate-forming step is characterized by mechanically milling the prepared polymer powder using at least one method selected from a ball mill method, an attrition mill method and a beads mill method A method for plate-forming polymer powders.
  5. 제4항에 있어서, According to claim 4,
    상기 판상화 단계는, 메탄올(Methanol), 에탄올(Ethanol), 1,2-프로판올(1,2-Propanol), 에틸렌 글라이콜(Ethylene glycol) 및 글리세롤(Glycerol)을 포함하는 알코올류에서 선택된 하나 이상의 용매에 상기 준비된 폴리머 분말을 분산시킨 상태에서 기계적으로 밀링하는 것을 특징으로 하는 폴리머 분말의 판상화 방법.The plate-forming step is one selected from alcohols including methanol, ethanol, 1,2-propanol, ethylene glycol and glycerol A method of plate-forming a polymer powder, characterized in that mechanical milling is performed in a state in which the prepared polymer powder is dispersed in the above solvent.
PCT/KR2022/010286 2021-07-16 2022-07-14 Method for manufacturing plate-like polymer powder WO2023287221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0093684 2021-07-16
KR1020210093684A KR102529791B1 (en) 2021-07-16 2021-07-16 Method for fabricating plate-shaped polymer powders

Publications (1)

Publication Number Publication Date
WO2023287221A1 true WO2023287221A1 (en) 2023-01-19

Family

ID=84920255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010286 WO2023287221A1 (en) 2021-07-16 2022-07-14 Method for manufacturing plate-like polymer powder

Country Status (2)

Country Link
KR (1) KR102529791B1 (en)
WO (1) WO2023287221A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510305A (en) * 1967-11-21 1985-04-09 Coathylene S.A. Process for the production of polypropylene powders
KR890010044A (en) * 1987-12-30 1989-08-05 원본미기재 Method for producing plate-shaped superabsorbent polymer
KR20160025576A (en) * 2013-06-28 2016-03-08 다이셀에보닉 주식회사 Laminar resin powder and paint containing same
US10766167B1 (en) * 2020-01-10 2020-09-08 Prince Mohammad Bin Fahd University Method of forming thermally and electrically conductive polyolefin-carbon nanomaterial composite having breakdown-induced electrical conduction pathways

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056802A (en) 2011-11-18 2013-05-30 강형식 Thermal conductive composite comprising nano metal powder and method of preparation the same
KR101610631B1 (en) * 2013-12-06 2016-04-08 연세대학교 산학협력단 Polymer matrix composite and method for manufacturing the same
EP3028830B1 (en) * 2014-12-02 2017-11-22 Omya International AG Process for producing a compacted material, material so produced and its use
KR101718158B1 (en) 2016-03-10 2017-03-21 마이크로컴퍼지트 주식회사 Low specific gravity conductive particle, method for producing the particle, and composite structure comprising the particle
KR102225688B1 (en) 2019-03-25 2021-03-12 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510305A (en) * 1967-11-21 1985-04-09 Coathylene S.A. Process for the production of polypropylene powders
KR890010044A (en) * 1987-12-30 1989-08-05 원본미기재 Method for producing plate-shaped superabsorbent polymer
KR20160025576A (en) * 2013-06-28 2016-03-08 다이셀에보닉 주식회사 Laminar resin powder and paint containing same
US10766167B1 (en) * 2020-01-10 2020-09-08 Prince Mohammad Bin Fahd University Method of forming thermally and electrically conductive polyolefin-carbon nanomaterial composite having breakdown-induced electrical conduction pathways

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKSIMKIN A.V., S. D. KALOSHKIN, V. V. TCHERDYNTSEV, D. I. CHUKOV, I. V. SHCHETININ: "Effect of high‐energy ball milling on the structure and mechanical properties of ultra‐high molecular weight polyethylene", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 130, no. 4, 14 June 2013 (2013-06-14), pages 2971 - 2977, XP093024374, DOI: 10.1002/app.39457 *

Also Published As

Publication number Publication date
KR102529791B1 (en) 2023-05-08
KR20230012880A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP6264731B2 (en) Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles
KR20090118954A (en) Light-transmitting electromagnetic shielding material, method for producing the same, and fine particle having ultrathin film of noble metal
DE69926533T2 (en) PARTICLE
CN104332217A (en) Free ground film and manufacturing method thereof, and shielding circuit board including free ground film and ground method thereof
US11037691B2 (en) Electrically conductive material, printing ink and method for manufacturing electrically conductive structure
CN101077529A (en) Method for preparing nano copper powder and copper slurry
WO2021023162A1 (en) Conductive material and preparation method therefor, and electronic device
JP2007173075A (en) Conductive particulate and anisotropic conductive material
EP3121207A1 (en) Resin particles, conductive microparticles, and anistropic conductive material using same
CN109957144A (en) A kind of preparation method of electroplate conductive filler
EP3096330B1 (en) Composite conductive particle, conductive resin composition containing same and conductive coated article
Yamamoto et al. An electroless plating method for conducting microbeads using gold nanoparticles
WO2023287221A1 (en) Method for manufacturing plate-like polymer powder
KR101335493B1 (en) Flake silver paste with excellent electrical property and method of manufacturing the same
JP4100244B2 (en) Nickel powder and method for producing the same
WO2023287222A1 (en) Method for preparing low-density plate-shaped conductive powder
CN114156485A (en) Composite modification layer and application thereof in anode-free lithium battery
CN103949635B (en) A kind of preparation method of flaky silver coated copper powder
CN106623978A (en) Large-grain-size spherical silver powder and preparation method thereof
Cheng et al. Preparation of micron–sized polystyrene/silver core–shell microspheres by ultrasonic assisted electroless plating
KR20240105559A (en) Method for manufacturing low-density conductive paste
JPH1166957A (en) Conductor composition
CN114734036B (en) Powder for coating silver layer of silver-plated activated substrate of core-shell structure, preparation method and application
JP4897384B2 (en) Manufacturing method of light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material, and display filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842483

Country of ref document: EP

Kind code of ref document: A1