WO2023287125A1 - 전지팩 및 이를 포함하는 디바이스 - Google Patents

전지팩 및 이를 포함하는 디바이스 Download PDF

Info

Publication number
WO2023287125A1
WO2023287125A1 PCT/KR2022/009995 KR2022009995W WO2023287125A1 WO 2023287125 A1 WO2023287125 A1 WO 2023287125A1 KR 2022009995 W KR2022009995 W KR 2022009995W WO 2023287125 A1 WO2023287125 A1 WO 2023287125A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
pack
battery
tube
battery pack
Prior art date
Application number
PCT/KR2022/009995
Other languages
English (en)
French (fr)
Inventor
신주환
홍순창
유형석
김해진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22842387.7A priority Critical patent/EP4290653A4/en
Priority to JP2023552558A priority patent/JP2024508504A/ja
Priority to US18/282,895 priority patent/US20240170755A1/en
Priority to CN202280022020.1A priority patent/CN116998050A/zh
Publication of WO2023287125A1 publication Critical patent/WO2023287125A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/08Sealing by means of axial screws compressing a ring or sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a device including the same, and more particularly, to a battery pack having a water cooling structure and a device including the same.
  • secondary batteries capable of charging and discharging are a solution to air pollution, such as existing gasoline vehicles using fossil fuels, electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles ( P-HEV), etc., the need for development of secondary batteries is increasing.
  • a lithium secondary battery mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with such a positive electrode active material and a negative electrode active material are disposed with a separator therebetween, and a battery case in which the electrode assembly is sealed and housed together with an electrolyte solution.
  • lithium secondary batteries can be classified into a can-type secondary battery in which an electrode assembly is embedded in a metal can and a pouch-type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of an exterior material.
  • a battery module electrically connecting multiple battery cells this is used In this battery module, capacity and output are improved by forming a battery cell stack in which a plurality of battery cells are connected in series or parallel to each other.
  • one or more battery modules may be mounted together with various control and protection systems such as a battery management system (BMS) and a cooling system to form a battery pack.
  • BMS battery management system
  • a plurality of secondary batteries that is, a battery module or a battery pack having battery cells may increase the temperature more quickly and severely due to the sum of heat emitted from the plurality of battery cells in a narrow space.
  • a battery module including a plurality of battery cells and a battery pack equipped with such a battery module high output can be obtained, but it is not easy to remove heat generated from the battery cells during charging and discharging. If the heat dissipation of the battery cell is not performed properly, the battery cell deteriorates rapidly, shortens its lifespan, and increases the possibility of explosion or ignition.
  • battery modules included in vehicle battery packs are frequently exposed to direct sunlight and may be placed in high temperature conditions such as summer or desert areas.
  • the problem to be solved by the present invention is to provide a battery pack with improved sealing for preventing leakage of refrigerant and assembly in the process of implementing the cooling structure in a water-cooled cooling structure, and a device including the same.
  • a battery pack includes a battery module; a pack frame accommodating the battery module and having a through-hole formed on one surface thereof; a cooling port inserted into the through hole; a cooling connector located inside the pack frame and connected to the cooling port; a cover member coupled to the cooling port and having an opening; and a pack refrigerant pipe connected to the cooling connector.
  • the cooling port includes a plate-shaped base portion and a first tube protruding from the base portion in a first direction and passing through the through hole.
  • the base part includes a base protrusion formed on one surface of the base part in the first direction.
  • a sealing member is positioned between the opening of the cover member and the base protrusion.
  • the cooling connector may be coupled to the first tube.
  • An outer peripheral protrusion protruding in an outer circumferential direction may be formed on an outer circumferential surface of the first tube.
  • the cooling connector may be engaged with the outer circumferential protrusion.
  • the sealing member may be positioned between an inner circumferential surface of the opening and an outer circumferential surface of the base protrusion.
  • An inner diameter of the opening may be larger than a diameter of the base protrusion, so that a space in which the sealing member is seated may be formed between the opening and the base protrusion.
  • the cover member may be coupled to the one surface of the base portion in the first direction so that the first tube and the base protrusion pass through the opening.
  • the cover member may be positioned between the outer surface of the pack frame and the base portion.
  • the cover member may be mounted to the base part through hook coupling.
  • the cooling port may include a second tube protruding from the base in a second direction opposite to the first direction.
  • An interior of the first tube and an interior of the second tube may be connected to each other, and a refrigerant may flow between the interior of the first tube and the interior of the second tube.
  • a space in which a sealing member is located can be naturally formed through the coupling of the cooling port and the cover member, so that the airtightness of the refrigerant circulation structure can be improved and structural simplification can be achieved.
  • FIG. 1 is an exploded perspective view showing a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing one of the battery modules included in the battery pack of FIG. 1;
  • FIG. 3 is an exploded perspective view showing a state in which the module frame is removed for the battery module of FIG. 2 .
  • Figure 4 is a perspective view showing one of the battery cells included in the battery module of Figure 3;
  • FIG 5 and 6 are partial perspective views illustrating a coupling relationship between a cooling port, a cover member, and a cooling connector according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing a cooling port according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a state in which a cooling port and a cover member are coupled according to an embodiment of the present invention.
  • FIG. 9 is a perspective view respectively showing a cooling port and a cover member according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which a cooling port, a cover member, and a sealing member are coupled according to an embodiment of the present invention.
  • FIG. 11 is a partial perspective view showing a state before coupling the first tube of the cooling port and the cooling connector inside the pack frame.
  • Fig. 12 is a cross-sectional view showing a cross section taken along the cutting line A-A' in Fig. 11;
  • FIG. 13 is a perspective view showing a cooling port according to a comparative example of the present invention.
  • FIG. 14 is a partial perspective view illustrating a cooling port, a coupling bracket, and a sealing member according to another comparative example of the present invention.
  • a part such as a layer, film, region, plate, etc.
  • a part when a part is said to be “directly on” another part, it means that there is no other part in between.
  • a reference part means to be located above or below the reference part, and to necessarily be located “on” or “on” in the opposite direction of gravity does not mean not.
  • planar image it means when the target part is viewed from above, and when it is referred to as “cross-sectional image”, it means when a cross section of the target part cut vertically is viewed from the side.
  • FIG. 1 is an exploded perspective view showing a battery pack according to an embodiment of the present invention.
  • 2 is a perspective view showing one of the battery modules included in the battery pack of FIG. 1;
  • 3 is an exploded perspective view showing a state in which the module frame is removed for the battery module of FIG. 2 .
  • Figure 4 is a perspective view showing one of the battery cells included in the battery module of Figure 3;
  • the battery pack 1000 includes a battery module 100 and a pack frame 200 accommodating the battery module 100 .
  • the number of battery modules 100 accommodated in the pack frame 200 and one or a plurality of battery modules 100 may be accommodated.
  • the battery module 100 may include a plurality of battery cells 110 and a module frame 120 in which the battery cells 110 are accommodated.
  • the battery cell 110 may be a pouch type battery cell.
  • a pouch-type battery cell may be formed by accommodating an electrode assembly in a pouch case of a laminate sheet including a resin layer and a metal layer, and then fusing the outer periphery of the pouch case.
  • These battery cells 110 may be formed in a rectangular sheet structure.
  • the battery cell 110 has two electrode leads 111 and 112 facing each other so that one end 114a and the other end 114b of the battery body 113 face each other. ) may have a structure protruding from each.
  • the battery cell 110 is manufactured by adhering both ends 114a and 114b of the battery case 114 and one side portion 114c connecting them in a state in which an electrode assembly (not shown) is accommodated in the battery case 114. It can be.
  • the battery cell 110 has a total of three sealing parts 114sa, 114sb, and 114sc, and the sealing parts 114sa, 114sb, and 114sc are sealed by a method such as fusion. structure, and the other side may be made of the connecting portion 115.
  • a space between both ends 114a and 114b of the battery case 114 is defined in the longitudinal direction of the battery cell 110, and one side portion 114c and a connection portion connecting both ends 114a and 114b of the battery case 114 (115) can be defined in the width direction of the battery cell (110).
  • the battery cell 110 described above is an exemplary structure, and a unidirectional battery cell in which two electrode leads protrude in the same direction is of course possible.
  • the battery cell 110 may be composed of a plurality, and the plurality of battery cells 110 may be stacked so as to be electrically connected to each other. For example, as shown in FIG. 3 , a plurality of battery cells 110 may be stacked along a direction parallel to the y-axis.
  • the battery case 114 generally has a laminate structure of a resin layer/metal thin film layer/resin layer. For example, when the battery case surface is made of an O (oriented)-nylon layer, when a plurality of battery cells 110 are stacked to form a medium or large battery module, they tend to slide easily due to external impact. .
  • an adhesive member such as adhesive adhesive such as double-sided tape or chemical adhesive bonded by a chemical reaction during adhesion is attached to the surface of the battery case, and the battery cell 110 ) can be stacked.
  • the module frame 120 as a structure for accommodating a plurality of battery cells 110, may be a mono frame in the form of a metal plate material in which the top, bottom and both sides are integrated.
  • this is an exemplary structure, and a form in which an upper cover is bonded to a U-shaped frame with an open top or a form in which a U-shaped frame and an inverted U-shaped frame are coupled to each other are all possible.
  • the battery module 100 may further include a bus bar frame 130 and a bus bar 140 mounted on the bus bar frame 130 .
  • the bus bar frame 130 may be located on one side (x-axis direction) and the other side (-x-axis direction) of the battery cells 110, respectively.
  • One side (x-axis direction) and the other side (-x-axis direction) may correspond to directions in which the electrode leads 111 and 112 of the battery cell 110 protrude.
  • a lead slit is formed in the bus bar frame 130 , and electrode leads 111 and 112 of the battery cell 110 pass through the lead slit and then are bent and bonded to the bus bar 140 . If physical and electrical connection is possible, there is no particular limitation on the bonding method, and welding bonding may be performed as an example. That is, the battery cells 110 may be electrically connected to each other via the bus bar 140 .
  • the battery pack 1000 according to the present embodiment may further include a heat sink 100S located on one side of the battery module 100 .
  • a heat sink 100S may be located under each battery module 100 .
  • the heat sink 100S is a component through which a refrigerant flows, and serves to cool the battery module 100 generating heat.
  • the battery pack 1000 according to the present embodiment includes a pack coolant pipe 700 accommodated in the pack frame 200 .
  • the pack refrigerant pipe 700 may be connected to the heat sink 100S, and may supply refrigerant into the heat sink 100S or discharge refrigerant from the heat sink 100S. That is, the pack refrigerant pipe 700 may be provided for the refrigerant circulation structure of the heat sink 100S.
  • a pack cover 900 may be positioned above the pack frame 200 .
  • Other electrical components including the battery module 100, the heat sink 100S, and the pack refrigerant pipe 700 described above may be accommodated between the pack frame 200 and the pack cover 900.
  • FIG. 5 and 6 are partial perspective views illustrating a coupling relationship between a cooling port, a cover member, and a cooling connector according to an embodiment of the present invention.
  • FIG. 6 the illustration of the pack refrigerant pipe 700 and the cooling connector 600 of FIG. 5 is omitted.
  • a through hole 200H is formed on one side of the pack frame 200.
  • the battery pack 1000 according to this embodiment includes a cooling port 300 inserted into the through hole 200H; A cooling connector 600 located inside the pack frame 200 and connected to the cooling port 300; It includes a cover member 400 coupled to the cooling port 300 and having an opening formed therein.
  • the pack refrigerant pipe 700 is connected to the cooling connector 600. That is, the pack refrigerant pipe 700 may connect the heat sink 100S and the cooling connector 600 .
  • the heat sink 100S of the battery module 100, the pack coolant pipe 700, and the cooling connector 600 may be sequentially connected.
  • the cooling port 300 may be connected to a refrigerant supply/discharge system on the outside of the pack frame 200 .
  • the cooling port 300 and the cooling connector 600 may be connected to each other through a through hole 200H formed in the pack frame 200 . That is, the cooling port 300, the cooling connector 600, the pack refrigerant pipe 700, and the heat sink 100S are sequentially connected to cool the battery module 100 inside the battery pack 1000. can form
  • FIG. 7 is a perspective view showing a cooling port according to an embodiment of the present invention.
  • 8 is a perspective view illustrating a state in which a cooling port and a cover member are coupled according to an embodiment of the present invention.
  • 9 is a perspective view respectively showing a cooling port and a cover member according to an embodiment of the present invention.
  • 10 is a perspective view illustrating a state in which a cooling port, a cover member, and a sealing member are coupled according to an embodiment of the present invention. In FIGS. 8 and 10 , shading is applied to the cover member 400 for convenience of explanation.
  • the cooling port 300 protrudes from the plate-shaped base portion 330 and the base portion 330 in the first direction d1.
  • a first pipe 310 passing through the through hole 200H of the pack frame 200 is included.
  • the first direction d1 may be a direction toward the inside of the pack frame 200 from the through hole 200H.
  • the cooling port 300 may further include a second tube 320 protruding from the base portion 330 in a second direction d2 opposite to the first direction d1.
  • the second direction may be a direction toward the outside of the pack frame 200 from the through hole 200H.
  • the inside of the first pipe 310 and the inside of the second pipe 320 are connected to each other, and the refrigerant may flow between the inside of the first pipe 310 and the inside of the second pipe 320 .
  • the base portion 330 includes a base protrusion 330P formed on one surface of the base portion 330 in the first direction d1 .
  • the base portion 330 is shown as a plate-shaped member having rounded corners, but if it is a plate-shaped member, the shape is not particularly limited.
  • the cover member 400 having the opening 410H is coupled to the cooling port 300 .
  • the sealing member 500 is positioned between the opening 410H of the cover member 400 and the base protrusion 330P.
  • the sealing member 500 is an O-ring member and prevents leakage of refrigerant between the cooling port 300 and the through hole 200H.
  • the cover member 400 may be coupled to one surface of the base portion 330 in the first direction d1 such that the first tube 310 and the base protrusion 330P pass through the opening 410H. . Accordingly, as shown in FIG. 6 , the cover member 400 may be positioned between the outer surface of the pack frame 200 and the base portion 330 of the cooling port 300 .
  • the opening 410H may have a circular hole shape, and the base protrusion 330P may also have a cylindrical protrusion corresponding thereto.
  • the inner diameter dm1 of the opening 410H is larger than the diameter dm2 of the base protrusion 330P, so that a space in which the sealing member 500 is seated may be formed between the opening 410H and the base protrusion 330P.
  • the sealing member 500 according to the present embodiment may be positioned between the inner circumferential surface of the opening 410H and the outer circumferential surface of the base protrusion 330P.
  • the sealing member 500 is fixed between the inner circumferential surface of the opening 410H and the outer circumferential surface of the base protrusion 330P to prevent outflow of refrigerant between the cooling port 300 and the outer surface of the pack frame 200. can block
  • the refrigerant in this specification is a medium for cooling, and is not particularly limited, but may be, for example, cooling water. That is, the battery pack 1000 according to the present embodiment may have a water-cooled cooling structure.
  • the cover member 400 and the base part 330 according to the present embodiment may be fastened by a physical method.
  • the cover member 400 according to the present embodiment may be mounted to the base portion 330 through hook coupling.
  • a hook protrusion 330HP may be formed on each side of the base portion 330, and a hook groove 420H may be formed in the cover member 400 to correspond to the hook protrusion 330HP.
  • the cover member 400 and the base portion 330 may be hook-coupled in such a way that the hook protrusion 330HP is inserted into the hook groove 420H.
  • a hook protrusion may be formed in the cover member and a hook groove may be formed in the base portion.
  • FIG. 11 is a partial perspective view showing a state before coupling the first tube of the cooling port and the cooling connector inside the pack frame.
  • Fig. 12 is a cross-sectional view showing a cross section taken along the cutting line A-A' in Fig. 11; In particular, FIG. 12 is a cross-sectional view assuming that the cooling connector 600 and the first tube 310 of the cooling port 300 in FIG. 11 are coupled to each other.
  • the cooling connector 600 in a state where the first tube 310 of the cooling port 300 according to the present embodiment passes through the through hole 200H of the pack frame 200, the cooling connector 600 It may be coupled to the first tube 310. Also, as described above, the cooling connector 600 may be connected to the pack refrigerant pipe 700. Meanwhile, on the outside of the pack frame 200, the sealing member 500 is positioned between the inner circumferential surface of the opening 410H and the outer circumferential surface of the base protrusion 330P.
  • An outer circumferential protruding portion 310P protruding in an outer circumferential direction may be formed on an outer circumferential surface of the first tube 310
  • an inner circumferential protruding portion 600P may be formed on an inner circumferential surface of the cooling connector 600 .
  • FIG. 12 when the first tube 310 is inserted into the cooling connector 600, the inner protrusion 600P of the cooling connector 600 is caught by the outer protrusion 310P of the first tube 310. can be combined In this way, the first tube 310 and the cooling connector 600 may be coupled to each other inside the pack frame 200 .
  • a base hole 330H may be formed in the base portion 330 according to the present embodiment, and a bolt portion may be formed on the outer surface of the pack frame 200. 800 may be located. After the bolt unit 800 passes through the base hole 330H, it may be coupled to the nut unit 800N. That is, the base part 330 may be fixed to the pack frame 200 in a bolt/nut coupling method.
  • the triangular shape of the base portion 330 is shown, the shape is not particularly limited as long as it has a plate shape so as to be fixed to the pack frame 200. There is no particular limitation on the number of base holes 330H.
  • the second tube 320 protrudes from the through hole 200H in the second direction d2 toward the outside of the pack frame 200, and extends outside the battery pack 1000. It can be connected to a refrigerant supply/discharge system. For example, it may be connected to an external cooling pipe or a cooling motor.
  • FIG. 13 is a perspective view showing a cooling port according to a comparative example of the present invention.
  • a cooling port 30a may include a first tube 31a, a second tube 32a, and a base portion 33a.
  • the first tube 31a protrudes in a first direction d1
  • the second tube 32a protrudes in a second direction d2 opposite to the first direction d1.
  • the interior of the first tube 31a and the interior of the second tube 32a are connected to each other, so that the refrigerant can flow into the interior of the first tube 31a and the interior of the second tube 32a.
  • An outer circumferential protruding portion 31aP protruding in an outer circumferential direction may be formed in the first tube 31a to be coupled with the cooling connector.
  • a recessed groove 33G may be formed in the base portion 33a so that an O-ring type sealing member (not shown) may be mounted.
  • an injection molding method may be used.
  • the first direction d1 or the second direction (d2) has no choice but to take out the mold.
  • the outer peripheral protrusion 31aP protrudes in directions perpendicular to the first and second directions d1 and d2.
  • FIG. 14 is a partial perspective view illustrating a cooling port, a coupling bracket, and a sealing member according to another comparative example of the present invention.
  • a cooling port 30b may include a first tube 31b, a second tube 32b, and a base portion 33b.
  • the first tube 31b protrudes in the first direction d1
  • the second tube 32b protrudes in the second direction d2 opposite to the first direction d1.
  • the inside of the first pipe (31b) and the inside of the second pipe (32b) are connected to each other, so that the refrigerant can flow inside the first pipe (31b) and the inside of the second pipe (32b).
  • the first tube 31b may pass through the through hole 20H of the pack frame 20 .
  • An outer circumferential protrusion 31bp protruding in an outer circumferential direction may be formed in the first tube 31b to be coupled with the cooling connector.
  • a separate coupling bracket 40b is added instead of forming a recessed groove in the base portion 33b of the cooling port 30b.
  • the coupling bracket 40b is located between the outer surface of the pack frame 20 and the base portion 33b.
  • An opening hole 40H is formed in the coupling bracket 40b, and the first tube 31b may pass through the opening hole 40H.
  • O-ring shaped sealing members 50b1 and 50b2 may be positioned between the coupling bracket 40b and the base portion 33b and between the coupling bracket 40b and the outer surface of the pack frame 20, respectively.
  • Bracket recessed grooves 40G may be formed on both sides of the coupling bracket 40b so that the sealing members 50b1 and 50b2 may be seated.
  • the manufacturing process becomes complicated because the assembly positions between the two sealing members 50b1 and 50b2, the coupling bracket 40b, and the base portion 33b must be precisely set in the coupling process between the parts.
  • the increase in the area where the sealing members 50b1 and 50b2 are required means, in other words, the increase in the area where the refrigerant can leak out. That is, it can be seen that the airtightness for preventing leakage of the refrigerant is deteriorated.
  • the cooling port 300 can naturally provide a space where the sealing member 500 is located through coupling with the cover member 400 . Therefore, defects such as undercuts do not occur in the manufacturing process, and there is no need for additional sealing members to be interposed. This leads to the advantage of reducing the cost by reducing the required configuration and self-control.
  • the structure is simplified and the manufacturing process is simple.
  • the cooling port 30b of FIG. 14 since an area requiring a sealing member is reduced, the risk of refrigerant leakage is reduced.
  • One or more battery modules according to the present embodiment described above may be mounted together with various control and protection systems such as a battery management system (BMS), a battery disconnect unit (BDU), and a cooling system to form a battery pack.
  • BMS battery management system
  • BDU battery disconnect unit
  • the battery pack may be applied to various devices. Specifically, it can be applied to means of transportation such as electric bicycles, electric vehicles, hybrids, or energy storage systems (ESS), but is not limited thereto and can be applied to various devices that can use secondary batteries.
  • means of transportation such as electric bicycles, electric vehicles, hybrids, or energy storage systems (ESS), but is not limited thereto and can be applied to various devices that can use secondary batteries.
  • ESS energy storage systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 전지팩은 전지 모듈; 상기 전지 모듈을 수납하고, 일면에 관통구가 형성된 팩 프레임; 상기 관통구에 삽입되는 냉각 포트; 상기 팩 프레임의 내부에 위치하고, 상기 냉각 포트와 연결되는 냉각 커넥터; 상기 냉각 포트와 결합되고, 개구부가 형성된 커버 부재; 및 상기 냉각 커넥터와 연결되는 팩 냉매관을 포함한다. 상기 냉각 포트는, 판상형의 베이스부 및 상기 베이스부로부터 제1 방향으로 돌출되어 상기 관통구를 통과하는 제1 관을 포함한다. 상기 베이스부는, 상기 베이스부의 상기 제1 방향의 일면에 형성된 베이스 돌출부를 포함한다. 상기 커버 부재의 상기 개구부와 상기 베이스 돌출부 사이에 실링 부재가 위치한다.

Description

전지팩 및 이를 포함하는 디바이스
관련 출원(들)과의 상호 인용
본 출원은 2021년 7월 12일자 한국 특허 출원 제10-2021-0091134호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지팩 및 이를 포함하는 디바이스에 관한 것으로서, 보다 구체적으로는 수냉식 냉각 구조를 갖는 전지팩 및 이를 포함하는 디바이스에 관한 것이다.
현대 사회에서는 휴대폰, 노트북, 캠코더, 디지털 카메라 등의 휴대형 기기의 사용이 일상화되면서, 상기와 같은 모바일 기기와 관련된 분야의 기술에 대한 개발이 활발해지고 있다. 또한, 충방전이 가능한 이차 전지는 화석 연료를 사용하는 기존의 가솔린 차량 등의 대기 오염 등을 해결하기 위한 방안으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 등의 동력원으로 이용되고 있는 바, 이차 전지에 대한 개발의 필요성이 높아지고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충, 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
소형 기기들에 이용되는 이차 전지의 경우, 2-3개의 전지셀들이 배치되나, 자동차 등과 같은 중대형 디바이스에 이용되는 이차 전지의 경우는, 다수의 전지셀을 전기적으로 연결한 전지 모듈(Battery module)이 이용된다. 이러한 전지 모듈은 다수의 전지셀이 서로 직렬 또는 병렬로 연결되어 전지셀 적층체를 형성함으로써 용량 및 출력이 향상된다. 또한, 하나 이상의 전지 모듈은 BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
이차 전지는, 적정 온도보다 높아지는 경우 이차 전지의 성능이 저하될 수 있고, 심한 경우 폭발이나 발화의 위험도 있다. 특히, 다수의 이차 전지, 즉 전지셀을 구비한 전지 모듈이나 전지팩은 좁은 공간에서 다수의 전지셀로부터 나오는 열이 합산되어 온도가 더욱 빠르고 심하게 올라갈 수 있다. 다시 말해서, 다수의 전지셀들을 포함하는 전지 모듈과 이러한 전지 모듈이 장착된 전지팩의 경우, 높은 출력을 얻을 수 있지만, 충전 및 방전 시 전지셀에서 발생하는 열을 제거하는 것이 용이하지 않다. 전지셀의 방열이 제대로 이루어지지 않을 경우 전지셀의 열화가 빨라지면서 수명이 짧아지게 되고, 폭발이나 발화의 가능성이 커지게 된다.
더욱이, 차량용 전지팩에 포함되는 전지 모듈의 경우, 직사광선에 자주 노출되고, 여름철이나 사막 지역과 같은 고온 조건에 놓일 수 있다.
따라서, 전지 모듈이나 전지팩을 구성하는 경우, 안정적이면서도 효과적인 냉각 성능을 확보하는 것은 매우 중요하다고 할 수 있다. 특히, 근래에는 전지 모듈이나 전지팩의 용량이 늘어남에 따라 발열량이 증가하고, 증가된 발열량을 제어하기 위해 공냉식보다는 수냉식의 냉각 구조가 요구된다. 수냉식의 냉각 구조의 경우, 냉각 성능이 우수하나, 냉매가 전지팩 내부로 유출되지 않도록 하는 실링 구조가 필수적으로 요구된다.
전지팩의 용량 증대와 방열 성능 개선에 대한 요구가 계속됨에 따라, 안정적인 실링 구조의 냉각 시스템을 갖춘 전지팩을 개발하는 것이 실질적으로 필요하다고 할 수 있다.
본 발명이 해결하고자 하는 과제는, 수냉식의 냉각 구조에 있어서, 냉매의 누출 방지를 위한 밀폐성과 냉각 구조 구현 과정에서의 조립성이 개선된 전지팩 및 이를 포함하는 디바이스를 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지팩은 전지 모듈; 상기 전지 모듈을 수납하고, 일면에 관통구가 형성된 팩 프레임; 상기 관통구에 삽입되는 냉각 포트; 상기 팩 프레임의 내부에 위치하고, 상기 냉각 포트와 연결되는 냉각 커넥터; 상기 냉각 포트와 결합되고, 개구부가 형성된 커버 부재; 및 상기 냉각 커넥터와 연결되는 팩 냉매관을 포함한다. 상기 냉각 포트는, 판상형의 베이스부 및 상기 베이스부로부터 제1 방향으로 돌출되어 상기 관통구를 통과하는 제1 관을 포함한다. 상기 베이스부는, 상기 베이스부의 상기 제1 방향의 일면에 형성된 베이스 돌출부를 포함한다. 상기 커버 부재의 상기 개구부와 상기 베이스 돌출부 사이에 실링 부재가 위치한다.
상기 제1 관이 상기 관통구를 통과한 상태에서, 상기 냉각 커넥터가 상기 제1 관에 결합될 수 있다.
상기 제1 관의 외주면에 외주 방향으로 돌출된 외주 돌출부가 형성될 수 있다.
상기 냉각 커넥터는 상기 외주 돌출부에 걸림 결합될 수 있다.
상기 개구부의 내주면과 상기 베이스 돌출부의 외주면 사이에 상기 실링 부재가 위치할 수 있다.
상기 개구부의 내경은 상기 베이스 돌출부의 직경보다 크게 구성되어, 상기 개구부와 상기 베이스 돌출부 사이에 상기 실링 부재가 안착되는 공간이 형성될 수 있다.
상기 커버 부재는, 상기 제1 관과 상기 베이스 돌출부가 상기 개구부를 통과하도록, 상기 베이스부의 상기 제1 방향의 상기 일면에 결합될 수 있다.
상기 팩 프레임의 외면과 상기 베이스부 사이에 상기 커버 부재가 위치할 수 있다.
상기 커버 부재는, 상기 베이스부에 후크 결합으로 장착될 수 있다.
상기 냉각 포트는, 상기 베이스부로부터 상기 제1 방향과 반대되는 제2 방향으로 돌출되는 제2 관을 포함할 수 있다.
상기 제1 관의 내부와 상기 제2 관의 내부가 서로 연결되고, 상기 제1 관의 내부와 상기 제2 관의 내부에 냉매가 흐를 수 있다.
본 발명의 실시예들에 따르면, 냉각 포트와 커버 부재의 결합을 통해 실링 부재가 위치하는 공간을 자연스럽게 형성할 수 있어, 냉매 순환 구조의 밀폐성을 높임과 동시에 구조적 간소화가 가능하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 전지팩을 나타낸 분해 사시도이다.
도 2는 도 1의 전지팩에 포함된 전지 모듈들 중 하나를 나타낸 사시도이다.
도 3은 도 2의 전지 모듈에 대해 모듈 프레임을 제거한 모습을 나타낸 분해 사시도이다.
도 4는 도 3의 전지 모듈에 포함된 전지셀들 중 하나를 나타낸 사시도이다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 냉각 포트, 커버 부재 및 냉각 커넥터의 결합 관계를 나타낸 부분 사시도들이다.
도 7은 본 발명의 일 실시예에 따른 냉각 포트를 나타낸 사시도이다.
도 8은 본 발명의 일 실시예에 따른 냉각 포트와 커버 부재가 결합된 모습을 나타낸 사시도이다.
도 9는 본 발명의 일 실시예에 따른 냉각 포트와 커버 부재를 각각 나타낸 사시도이다.
도 10은 본 발명의 일 실시예에 따른 냉각 포트, 커버 부재 및 실링 부재가 결합된 모습을 나타낸 사시도이다.
도 11은 팩 프레임의 내부에서 냉각 포트의 제1 관과 냉각 커넥터가 결합되기 전의 모습을 도시한 부분 사시도이다.
도 12는, 도 11의 절단선 A-A’를 따라 자른 단면을 나타낸 단면도이다.
도 13은 본 발명의 비교예에 따른 냉각 포트를 나타낸 사시도이다.
도 14는 본 발명의 다른 비교예에 따른 냉각 포트, 결합 브라켓 및 실링 부재들을 나타낸 부분 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 1은 본 발명의 일 실시예에 따른 전지팩을 나타낸 분해 사시도이다. 도 2는 도 1의 전지팩에 포함된 전지 모듈들 중 하나를 나타낸 사시도이다. 도 3은 도 2의 전지 모듈에 대해 모듈 프레임을 제거한 모습을 나타낸 분해 사시도이다. 도 4는 도 3의 전지 모듈에 포함된 전지셀들 중 하나를 나타낸 사시도이다.
도 1 내지 도 4를 참고하면, 본 실시예에 따른 전지팩(1000)은, 전지 모듈(100) 및 전지 모듈(100)을 수납하는 팩 프레임(200)을 포함한다. 팩 프레임(200) 내에 수납되는 전지 모듈(100)의 개수에 특별한 제한은 없으며, 하나 또는 복수의 전지 모듈(100)이 수납될 수 있다.
우선, 본 실시예에 따른 전지 모듈(100)은, 복수의 전지셀(110)들 및 전지셀(110)들이 수납된 모듈 프레임(120)을 포함할 수 있다.
본 실시예에 따른 전지셀(110)은 파우치형 전지셀일 수 있다. 이러한 파우치형 전지셀은, 수지층과 금속층을 포함하는 라미네이트 시트의 파우치 케이스에 전극 조립체를 수납한 뒤, 상기 파우치 케이스의 외주부를 융착하여 형성될 수 있다. 이러한 전지셀(110)은 장방형 시트 구조로 형성될 수 있다.
구체적으로, 도 4를 참고하면, 본 실시예에 따른 전지셀(110)은 두 개의 전극 리드(111, 112)가 서로 대향하여 전지 본체(113)의 일단부(114a)와 다른 일단부(114b)로부터 각각 돌출되어 있는 구조를 가질 수 있다. 전지셀(110)은, 전지 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 전지 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 일측부(114c)를 접착함으로써 제조될 수 있다. 다시 말해, 본 발명의 일 실시예에 따른 전지셀(110)은 총 3군데의 실링부(114sa, 114sb, 114sc)를 갖고, 실링부(114sa, 114sb, 114sc)는 융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 연결부(115)로 이루어질 수 있다. 전지 케이스(114)의 양 단부(114a, 114b) 사이를 전지셀(110)의 길이 방향으로 정의하고, 전지 케이스(114)의 양 단부(114a, 114b)를 연결하는 일측부(114c)와 연결부(115) 사이를 전지셀(110)의 폭 방향으로 정의할 수 있다.
다만, 위에서 설명한 전지셀(110)은 예시적 구조이며, 2개의 전극 리드가 동일한 방향으로 돌출된 단방향 전지셀도 가능함은 물론이다.
전지셀(110)은 복수개로 구성될 수 있으며, 복수의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 적층될 수 있다. 예를들어, 도 3에 도시된 바와 같이 y축과 평행한 방향을 따라 복수의 전지셀(110)들이 적층될 수 있다. 전지 케이스(114)는 일반적으로 수지층/금속 박막층/수지층의 라미네이트 구조로 이루어져 있다. 예를 들어, 전지 케이스 표면이 O(oriented)-나일론 층으로 이루어져 있는 경우에는, 중대형 전지 모듈을 형성하기 위하여 다수의 전지셀(110)들을 적층할 때, 외부 충격에 의해 쉽게 미끄러지는 경향이 있다. 따라서, 이를 방지하고 전지셀들의 안정적인 적층 구조를 유지하기 위해, 전지 케이스의 표면에 양면 테이프 등의 점착식 접착제 또는 접착시 화학 반응에 의해 결합되는 화학 접착제 등의 접착 부재를 부착하여 전지셀(110)들을 적층할 수 있다.
모듈 프레임(120)은, 복수의 전지셀(110)들을 수납하기 위한 구조물로써, 상면, 하면 및 양 측면이 일체화된 금속 판재 형태의 모노 프레임일 수 있다. 다만 이는 하나의 예시적 구조이며, 상부가 개방된 U자형 프레임에 상부 커버가 접합된 형태나 U자형 프레임과 뒤집힌 U자형 프레임이 상호 결합된 형태 등이 모두 가능하다.
한편, 도 3을 참고하면, 본 실시예에 따른 전지 모듈(100)은, 버스바 프레임(130) 및 버스바 프레임(130)에 장착된 버스바(140)를 더 포함할 수 있다. 구체적으로, 버스바 프레임(130)이 전지셀(110)들의 일측(x축 방향) 및 타측(-x축 방향)에 각각 위치할 수 있다. 일측(x축 방향) 및 타측(-x축 방향)은, 전지셀(110)의 전극 리드(111, 112)가 돌출되는 방향에 해당할 수 있다. 버스바 프레임(130)에는 리드 슬릿이 형성되고, 전지셀(110)의 전극 리드(111, 112)가 상기 리드 슬릿을 통과한 뒤 구부러져 버스바(140)에 접합될 수 있다. 물리적, 전기적 연결이 가능하다면, 접합의 방식에 특별한 제한은 없으며, 일례로 용접 접합이 이루어질 수 있다. 즉, 전지셀(110)들은 버스바(140)를 매개로 서로 전기적으로 연결될 수 있다.
한편, 도 1 및 도 2를 다시 참고하면, 본 실시예에 따른 전지팩(1000)은 전지 모듈(100)의 일측에 위치한 히트 싱크(100S)를 더 포함할 수 있다. 일례로, 각각의 전지 모듈(100) 아래에 히트 싱크(100S)가 위치할 수 있다. 히트 싱크(100S)는 내부에 냉매가 흐르는 구성물로써, 열이 발생하는 전지 모듈(100)에 대한 냉각 기능을 담당한다. 또한, 본 실시예에 따른 전지팩(1000)은 팩 프레임(200)에 수납되는 팩 냉매관(700)을 포함한다. 팩 냉매관(700)은 히트 싱크(100S)와 연결될 수 있으며, 히트 싱크(100S) 내부로 냉매를 공급하거나 히트 싱크(100S)로부터 냉매를 배출시킬 수 있다. 즉, 히트 싱크(100S)의 냉매 순환 구조를 위해 팩 냉매관(700)이 마련될 수 있다.
한편, 팩 프레임(200)의 상부에는 팩 커버(900)가 위치할 수 있다. 상술한, 전지 모듈(100), 히트 싱크(100S), 팩 냉매관(700)을 비롯한 기타 전장품들이 팩 프레임(200)과 팩 커버(900) 사이에 수납될 수 있다.
이하에서는, 도 5 및 도 6 등을 참고하여, 본 실시예에 따른 냉각 포트, 커버 부재 및 냉각 커넥터에 대해 설명하도록 한다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 냉각 포트, 커버 부재 및 냉각 커넥터의 결합 관계를 나타낸 부분 사시도이다. 도 6에서는 도 5의 팩 냉매관(700)과 냉각 커넥터(600)의 도시를 생략하였다.
도 1, 도 5 및 도 6을 참고하면, 팩 프레임(200)의 일면에 관통구(200H)가 형성된다. 본 실시예에 따른 전지팩(1000)은, 관통구(200H)에 삽입되는 냉각 포트(300); 팩 프레임(200)의 내부에 위치하고 냉각 포트(300)와 연결되는 냉각 커넥터(600); 냉각 포트(300)와 결합되고 개구부가 형성된 커버 부재(400)를 포함한다. 이때, 팩 냉매관(700)은 냉각 커넥터(600)와 연결된다. 즉, 팩 냉매관(700)은 히트 싱크(100S)와 냉각 커넥터(600)를 연결할 수 있다.
팩 프레임(200)의 내부에서, 전지 모듈(100)의 히트 싱크(100S), 팩 냉매관(700) 및 냉각 커넥터(600)가 차례대로 연결될 수 있다. 한편, 구체적으로 도시하지 않았으나, 팩 프레임(200)의 외측에서 냉각 포트(300)가 냉매 공급/배출 시스템과 연결될 수 있다. 후술하겠으나, 냉각 포트(300)와 냉각 커넥터(600)는 팩 프레임(200)에 형성된 관통구(200H)를 통해 서로 연결될 수 있다. 즉, 냉각 포트(300), 냉각 커넥터(600), 팩 냉매관(700) 및 히트 싱크(100S)가 차례로 연결되어, 전지팩(1000) 내부에서 전지 모듈(100)의 냉각을 위한 냉매 순환 구조를 형성할 수 있다.
이하에서는, 도 7 내지 도 10 등을 참고하여, 본 실시예에 따른 냉각 포트, 커버 부재 및 냉각 커넥터의 구조에 대해 자세히 설명하도록 한다.
도 7은 본 발명의 일 실시예에 따른 냉각 포트를 나타낸 사시도이다. 도 8은 본 발명의 일 실시예에 따른 냉각 포트와 커버 부재가 결합된 모습을 나타낸 사시도이다. 도 9는 본 발명의 일 실시예에 따른 냉각 포트와 커버 부재를 각각 나타낸 사시도이다. 도 10은 본 발명의 일 실시예에 따른 냉각 포트, 커버 부재 및 실링 부재가 결합된 모습을 나타낸 사시도이다. 도 8과 도 10에서, 설명의 편의를 위해 커버 부재(400)에 음영 처리를 실시하였다.
우선, 도 5 내지 도 9를 함께 참고하면, 본 발명의 일 실시예에 따른 냉각 포트(300)는, 판상형의 베이스부(330) 및 베이스부(330)로부터 제1 방향(d1)으로 돌출되어 팩 프레임(200)의 관통구(200H)를 통과하는 제1 관(310)을 포함한다. 여기서 제1 방향(d1)은 관통구(200H)에서 팩 프레임(200)의 내부를 향하는 방향일 수 있다. 또한, 냉각 포트(300)는 베이스부(330)로부터 제1 방향(d1)과 반대되는 제2 방향(d2)으로 돌출되는 제2 관(320)을 더 포함할 수 있다. 여기서 제2 방향은, 관통구(200H)에서 팩 프레임(200)의 외부를 향하는 방향일 수 있다. 제1 관(310)의 내부와 제2 관(320)의 내부가 서로 연결되고, 제1 관(310)의 내부와 제2 관(320)의 내부에 냉매가 흐를 수 있다. 베이스부(330)는, 베이스부(330)의 제1 방향(d1)의 일면에 형성된 베이스 돌출부(330P)를 포함한다. 베이스부(330)는 모서리가 둥근 형태의 판상 부재로 도시되어 있지만, 판상형이라면 그 형태에 특별한 제한은 없다.
도 7 내지 도 10을 참고하면, 상술한 바 대로, 개구부(410H)가 형성된 커버 부재(400)가 냉각 포트(300)와 결합한다. 이 때, 커버 부재(400)의 개구부(410H)와 베이스 돌출부(330P) 사이에 실링 부재(500)가 위치한다. 실링 부재(500)는 O-ring 형태의 부재로써, 냉각 포트(300)와 관통구(200H) 사이에서 냉매의 누출이 일어나는 것을 방지한다.
구체적으로, 커버 부재(400)는, 제1 관(310)과 베이스 돌출부(330P)가 개구부(410H)를 통과하도록, 베이스부(330)의 제1 방향(d1)의 일면에 결합될 수 있다. 이에 따라, 도 6에 도시된 것처럼, 팩 프레임(200)의 외면과 냉각 포트(300)의 베이스부(330) 사이에 커버 부재(400)가 위치할 수 있다.
이 때, 개구부(410H)는 원형의 홀 형태일 수 있고, 베이스 돌출부(330P)도 이와 대응하도록 원기둥 형태의 돌출부일 수 있다. 개구부(410H)의 내경(dm1)은 베이스 돌출부(330P)의 직경(dm2)보다 크게 구성되어, 개구부(410H)와 베이스 돌출부(330P) 사이에 실링 부재(500)가 안착되는 공간이 형성될 수 있다. 즉, 본 실시예에 따른 실링 부재(500)는, 개구부(410H)의 내주면과 베이스 돌출부(330P)의 외주면 사이에 위치할 수 있다. 보다 상세하게는, 실링 부재(500)가 개구부(410H)의 내주면과 베이스 돌출부(330P)의 외주면 사이에 고정되어, 냉각 포트(300)와 팩 프레임(200)의 외면 사이에서의 냉매의 유출을 차단할 수 있다.
한편, 본 명세서에서의 냉매는 냉각을 위한 매개물로써, 특별한 제한은 없으나, 일례로 냉각수일 수 있다. 즉, 본 실시예에 따른 전지팩(1000)은 수냉식의 냉각 구조를 가질 수 있다.
한편, 본 실시예에 따른 커버 부재(400)와 베이스부(330)는 물리적 방법으로 체결될 수 있다. 예를 들어, 본 실시예에 따른 커버 부재(400)는, 베이스부(330)에 후크 결합으로 장착될 수 있다. 구체적으로, 베이스부(330)의 각 변에는 후크 돌출부(330HP)가 형성될 수 있고, 이러한 후크 돌출부(330HP)와 대응하도록 커버 부재(400)에는, 후크 홈(420H)이 형성될 수 있다. 후크 돌출부(330HP)가 후크 홈(420H)에 삽입되는 방식으로, 커버 부재(400)와 베이스부(330)가 후크 결합될 수 있다. 다만, 이는 하나의 예시에 해당하며, 다른 실시예로써, 커버 부재에 후크 돌출부가 형성되고, 베이스부에 후크 홈이 형성될 수 있다. 후크 돌출부와 후크 홈의 개수에 특별한 제한은 없다.
이하에서는, 도 11 및 도 12를 참고하여, 본 실시예에 따른 냉각 포트의 제1 관과 냉각 커넥터의 연결 관계에 대해 자세히 설명하도록 한다.
도 11은 팩 프레임의 내부에서 냉각 포트의 제1 관과 냉각 커넥터가 결합되기 전의 모습을 도시한 부분 사시도이다. 도 12는, 도 11의 절단선 A-A’를 따라 자른 단면을 나타낸 단면도이다. 특히 도 12는 도 11에서 냉각 커넥터(600)와 냉각 포트(300)의 제1 관(310)이 서로 결합된 상태임을 가정하고 나타낸 단면도이다.
도 10 내지 도 12를 참고하면, 본 실시예에 따른 냉각 포트(300)의 제1 관(310)이 팩 프레임(200)의 관통구(200H)를 통과한 상태에서, 냉각 커넥터(600)가 제1 관(310)에 결합될 수 있다. 또한 상술한 바 대로, 냉각 커넥터(600)는 팩 냉매관(700)과 연결될 수 있다. 한편, 팩 프레임(200)의 외측에서, 실링 부재(500)가 개구부(410H)의 내주면과 베이스 돌출부(330P)의 외주면 사이에 위치한 모습이 도시되어 있다.
제1 관(310)의 외주면에는 외주 방향으로 돌출된 외주 돌출부(310P)가 형성될 수 있고, 냉각 커넥터(600)의 내주면에는 내주 돌출부(600P)가 형성될 수 있다. 도 12에 도시된 것처럼, 제1 관(310)이 냉각 커넥터(600)에 삽입될 때, 냉각 커넥터(600)의 내주 돌출부(600P)가 제1 관(310)의 외주 돌출부(310P)에 걸림 결합될 수 있다. 이러한 방식으로, 팩 프레임(200)의 내부에서 제1 관(310)과 냉각 커넥터(600)가 서로 결합될 수 있다.
한편, 도 6, 도 7, 도 9 및 도 12를 함께 참고하면, 본 실시예에 따른 베이스부(330)에는 베이스 홀(330H)이 형성될 수 있고, 팩 프레임(200)의 외면에는 볼트부(800)가 위치할 수 있다. 볼트부(800)가 베이스 홀(330H)을 통과한 후 너트부(800N)와 결합될 수 있다. 즉, 볼트/너트 결합 방식으로, 베이스부(330)가 팩 프레임(200)에 고정될 수 있다. 삼각형 형태의 베이스부(330)를 도시하였으나, 팩 프레임(200)에 고정될 수 있도록 판상 형태를 갖는다면 그 형태에 특별한 제한은 없다. 베이스 홀(330H)의 개수에도 특별한 제한은 없다.
본 실시예에 따른 제2 관(320)은, 상술한 바 대로, 관통구(200H)에서 팩 프레임(200)의 외부를 향하는 제2 방향(d2)으로 돌출되고, 전지팩(1000) 외부의 냉매 공급/배출 시스템과 연결될 수 있다. 일례로, 외부의 냉각관이나 냉각 모터 등과 연결될 수 있다.
이하에서는, 본 실시예에 따른 냉각 포트, 커버 부재 및 실링 부재가 갖는 장점을 비교예와의 비교를 통해 설명하도록 한다.
도 13은 본 발명의 비교예에 따른 냉각 포트를 나타낸 사시도이다.
도 13을 참고하면, 본 발명의 비교예에 따른 냉각 포트(30a)는, 제1 관(31a), 제2 관(32a) 및 베이스부(33a)를 포함할 수 있다. 제1 관(31a)은 제1 방향(d1)으로 돌출되고, 제2 관(32a)은 제1 방향(d1)과 반대되는 제2 방향(d2)으로 돌출된다. 제1 관(31a)의 내부와 제2 관(32a)의 내부가 서로 연결되어, 제1 관(31a)의 내부와 제2 관(32a)의 내부에 냉매가 흐를 수 있다.
제1 관(31a)에는 냉각 커넥터와의 결합을 위해 외주 방향으로 돌출된 외주 돌출부(31aP)가 형성될 수 있다. 이 때, 베이스부(33a)에는 O-ring 형태의 실링 부재(도시하지 않음)가 장착될 수 있도록 만입된 만입홈(33G)이 형성될 수 있다.
냉각 포트(30a)를 제조함에 있어, 사출 성형 방식이 이용될 수 있는데, 사출 성형 방식에서, 제1 관(31a)과 만입홈(33G)을 형성하기 위해서는 제1 방향(d1) 또는 제2 방향(d2)으로 금형을 빼낼 수밖에 없다. 이 경우, 제1 방향(d1) 및 제2 방향(d2)과 수직한 방향으로 돌출된 형태의 외주 돌출부(31aP)가 걸리게 된다. 결국, 도 13의 도시된 냉각 포트(30a)를 사출 성형 방식으로 제조하게 되면, 외주 돌출부(31aP) 부분에 언더컷(undercut)이 발생하는 문제가 있다. 즉, 사출 성형 방식으로 외주 돌출부(31aP)와 만입된 형태의 만입홈(33G)을 동시에 제작하는 것이 불가능하다.
도 14는 본 발명의 다른 비교예에 따른 냉각 포트, 결합 브라켓 및 실링 부재들을 나타낸 부분 사시도이다.
도 14를 참고하면, 본 발명의 다른 비교예에 따른 냉각 포트(30b)는, 제1 관(31b), 제2 관(32b) 및 베이스부(33b)를 포함할 수 있다. 제1 관(31b)은 제1 방향(d1)으로 돌출되고, 제2 관(32b)은 제1 방향(d1)과 반대되는 제2 방향(d2)으로 돌출된다. 제1 관(31b)의 내부와 제2 관(32b)의 내부가 서로 연결되어, 제1 관(31b)의 내부와 제2 관(32b)의 내부에 냉매가 흐를 수 있다. 제1 관(31b)은, 팩 프레임(20)의 관통구(20H)를 통과할 수 있다. 제1 관(31b)에는 냉각 커넥터와의 결합을 위해 외주 방향으로 돌출된 외주 돌출부(31bp)가 형성될 수 있다.
도 13에 도시된 냉각 포트(30a)가 갖는 상기 문제점을 해결하기 위해, 냉각 포트(30b)의 베이스부(33b)에 만입홈을 형성하는 대신, 별도의 결합 브라켓(40b)을 추가하였다.
결합 브라켓(40b)은 팩 프레임(20)의 외면과 베이스부(33b) 사이에 위치한다. 결합 브라켓(40b)에는 개구홀(40H)이 형성되고, 제1 관(31b)이 이러한 개구홀(40H)을 통과할 수 있다.
결합 브라켓(40b)과 베이스부(33b) 사이 및 결합 브라켓(40b)과 팩 프레임(20)의 외면 사이 각각 모두에 O-ring 형태의 실링 부재(50b1, 50b2)들이 위치할 수 있다. 결합 브라켓(40b)의 양 면 각각에는 실링 부재(50b1, 50b2)들이 안착될 수 있도록 만입된 브라켓 만입홈(40G)이 형성될 수 있다.
즉, 본 비교예에서는, 언더컷 발생을 방지하기 위해 베이스부(33b) 자체에 만입홈을 형성하지 않고, 브라켓 만입홈(40G)이 형성된 별도의 결합 브라켓(40b)을 추가하였다. 다만, 결합 브라켓(40b)이 개재되는 형태이기 때문에 냉매의 유출 방지를 위해 실링 부재가 추가되어야 하는 영역이, 결합 브라켓(40b)과 베이스부(33b) 사이 및 결합 브라켓(40b)과 팩 프레임(20)의 외면 사이, 2군데로 늘어난다. 언더컷이 발생하지는 않으나, 실링 부재(50b1, 50b2)가 2개가 요구되어 불필요한 부품이 늘어나는 단점이 있다. 또한, 각 부품간 결합과정에서, 2개의 실링 부재(50b1, 50b2), 결합 브라켓(40b), 베이스부(33b) 간의 조립 위치를 세밀히 설정해야 하기 때문에 제조 공정이 복잡해진다. 또한, 실링 부재(50b1, 50b2)가 필요한 영역이 늘어난다는 것은 바꾸어 말하면 냉매의 유출이 발생할 수 있는 부분이 늘어난다는 것을 의미한다. 즉, 냉매의 누출 방지를 위한 밀폐성이 저하되는 것으로 볼 수 있다.
반면, 본 실시예에 따른 냉각 포트(300)는 커버 부재(400)와의 결합을 통해 실링 부재(500)가 위치하는 공간을 자연히 마련할 수 있다. 따라서, 제조 과정에서 언더컷 등의 불량이 발생하지 않고, 또 실링 부재가 추가로 개재될 필요가 없다. 이는 필요한 구성과 자제가 줄어들어 원가 절감이 가능하다는 장점으로 이어진다. 또한, 베이스부(330)와 커버 부재(400) 간의 기계적 결합으로 간단히 제조될 수 있으므로, 구조가 간소화되고 제조 공정도 간단하다. 또한, 도 14의 냉각 포트(30b)에 비해 실링 부재가 필요한 영역이 줄어들기 때문에 냉매 유출의 위험성이 적다는 장점을 갖는다.
본 실시예에서 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다.
앞에서 설명한 본 실시예에 따른 하나 또는 그 이상의 전지 모듈은, BMS(Battery Management System), BDU(Battery Disconnect Unit), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
상기 전지팩은 다양한 디바이스에 적용될 수 있다. 구체적으로는, 전기 자전거, 전기 자동차, 하이브리드 등의 운송 수단이나 ESS(Energy Storage System)에 적용될 수 있으나 이에 제한되지 않고 이차 전지를 사용할 수 있는 다양한 디바이스에 적용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
1000: 전지팩
100: 전지 모듈
300: 냉각 포트
400: 커버 부재
500: 실링 부재
600: 냉각 커넥터
700: 팩 냉매관

Claims (12)

  1. 전지 모듈;
    상기 전지 모듈을 수납하고, 일면에 관통구가 형성된 팩 프레임;
    상기 관통구에 삽입되는 냉각 포트;
    상기 팩 프레임의 내부에 위치하고, 상기 냉각 포트와 연결되는 냉각 커넥터;
    상기 냉각 포트와 결합되고, 개구부가 형성된 커버 부재; 및
    상기 냉각 커넥터와 연결되는 팩 냉매관을 포함하고,
    상기 냉각 포트는, 판상형의 베이스부 및 상기 베이스부로부터 제1 방향으로 돌출되어 상기 관통구를 통과하는 제1 관을 포함하며,
    상기 베이스부는, 상기 베이스부의 상기 제1 방향의 일면에 형성된 베이스 돌출부를 포함하고,
    상기 커버 부재의 상기 개구부와 상기 베이스 돌출부 사이에 실링 부재가 위치하는 전지팩.
  2. 제1항에서,
    상기 제1 관이 상기 관통구를 통과한 상태에서, 상기 냉각 커넥터가 상기 제1 관에 결합되는 전지팩.
  3. 제2항에서,
    상기 제1 관의 외주면에 외주 방향으로 돌출된 외주 돌출부가 형성되는 전지팩.
  4. 제3항에서,
    상기 냉각 커넥터는 상기 외주 돌출부에 걸림 결합되는 전지팩.
  5. 제1항에서,
    상기 개구부의 내주면과 상기 베이스 돌출부의 외주면 사이에 상기 실링 부재가 위치하는 전지팩.
  6. 제1항에서,
    상기 개구부의 내경은 상기 베이스 돌출부의 직경보다 크게 구성되어, 상기 개구부와 상기 베이스 돌출부 사이에 상기 실링 부재가 안착되는 공간이 형성되는 전지팩.
  7. 제1항에서,
    상기 커버 부재는, 상기 제1 관과 상기 베이스 돌출부가 상기 개구부를 통과하도록, 상기 베이스부의 상기 제1 방향의 상기 일면에 결합되는 전지팩.
  8. 제1항에서,
    상기 팩 프레임의 외면과 상기 베이스부 사이에 상기 커버 부재가 위치하는 전지팩.
  9. 제1항에서,
    상기 커버 부재는, 상기 베이스부에 후크 결합으로 장착되는 전지팩.
  10. 제1항에서,
    상기 냉각 포트는, 상기 베이스부로부터 상기 제1 방향과 반대되는 제2 방향으로 돌출되는 제2 관을 포함하는 전지팩.
  11. 제10항에서,
    상기 제1 관의 내부와 상기 제2 관의 내부가 서로 연결되고,
    상기 제1 관의 내부와 상기 제2 관의 내부에 냉매가 흐르는 전지팩.
  12. 제1항에 따른 전지팩을 포함하는 디바이스.
PCT/KR2022/009995 2021-07-12 2022-07-08 전지팩 및 이를 포함하는 디바이스 WO2023287125A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22842387.7A EP4290653A4 (en) 2021-07-12 2022-07-08 BATTERY PACK AND DEVICE
JP2023552558A JP2024508504A (ja) 2021-07-12 2022-07-08 電池パックおよびそれを含むデバイス
US18/282,895 US20240170755A1 (en) 2021-07-12 2022-07-08 Battery pack and device including the same
CN202280022020.1A CN116998050A (zh) 2021-07-12 2022-07-08 电池组和包括该电池组的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210091134A KR20230010501A (ko) 2021-07-12 2021-07-12 전지팩 및 이를 포함하는 디바이스
KR10-2021-0091134 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023287125A1 true WO2023287125A1 (ko) 2023-01-19

Family

ID=84920107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009995 WO2023287125A1 (ko) 2021-07-12 2022-07-08 전지팩 및 이를 포함하는 디바이스

Country Status (6)

Country Link
US (1) US20240170755A1 (ko)
EP (1) EP4290653A4 (ko)
JP (1) JP2024508504A (ko)
KR (1) KR20230010501A (ko)
CN (1) CN116998050A (ko)
WO (1) WO2023287125A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170068445A (ko) * 2015-04-28 2017-06-19 주식회사 엘지화학 전지팩
KR20180045373A (ko) * 2016-10-25 2018-05-04 주식회사 엘지화학 발열 부품 냉각 수단을 구비한 배터리 팩
KR20200017822A (ko) * 2018-08-09 2020-02-19 주식회사 엘지화학 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200041007A (ko) * 2018-10-11 2020-04-21 에스케이이노베이션 주식회사 냉각 유로 커넥터 및 이를 구비하는 배터리 팩
KR20200107107A (ko) * 2019-03-06 2020-09-16 주식회사 엘지화학 전지팩 및 이를 포함하는 디바이스

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012648A (ko) * 2010-08-02 2012-02-10 (주)브이이엔에스 전기자동차
CN110212133B (zh) * 2019-06-25 2021-02-05 奇瑞汽车股份有限公司 一种汽车电池包箱体与冷却水管管接头的密封固定结构
KR20220060817A (ko) * 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 쿨런트 포트 어셈블리
KR20220080621A (ko) * 2020-12-07 2022-06-14 주식회사 엘지에너지솔루션 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170068445A (ko) * 2015-04-28 2017-06-19 주식회사 엘지화학 전지팩
KR20180045373A (ko) * 2016-10-25 2018-05-04 주식회사 엘지화학 발열 부품 냉각 수단을 구비한 배터리 팩
KR20200017822A (ko) * 2018-08-09 2020-02-19 주식회사 엘지화학 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200041007A (ko) * 2018-10-11 2020-04-21 에스케이이노베이션 주식회사 냉각 유로 커넥터 및 이를 구비하는 배터리 팩
KR20200107107A (ko) * 2019-03-06 2020-09-16 주식회사 엘지화학 전지팩 및 이를 포함하는 디바이스

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290653A4 *

Also Published As

Publication number Publication date
KR20230010501A (ko) 2023-01-19
EP4290653A4 (en) 2024-07-10
EP4290653A1 (en) 2023-12-13
JP2024508504A (ja) 2024-02-27
US20240170755A1 (en) 2024-05-23
CN116998050A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020262832A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2017104878A1 (ko) 배터리 팩
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2014077578A1 (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221307A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149900A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021246636A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020251171A1 (ko) 전지 모듈, 그 제조 방법 및 전지 모듈을 포함하는 전지 팩
WO2022203232A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215654A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022211250A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221296A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022225168A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022164119A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023287125A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552558

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022842387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280022020.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18282895

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317063453

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022842387

Country of ref document: EP

Effective date: 20230904

NENP Non-entry into the national phase

Ref country code: DE