WO2023286760A1 - Permanent magnet-type rotary electrical machine and magnet positioning structure - Google Patents

Permanent magnet-type rotary electrical machine and magnet positioning structure Download PDF

Info

Publication number
WO2023286760A1
WO2023286760A1 PCT/JP2022/027377 JP2022027377W WO2023286760A1 WO 2023286760 A1 WO2023286760 A1 WO 2023286760A1 JP 2022027377 W JP2022027377 W JP 2022027377W WO 2023286760 A1 WO2023286760 A1 WO 2023286760A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
plate member
stator
slit
rotor yoke
Prior art date
Application number
PCT/JP2022/027377
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 平
貴之 大西
圭祐 松尾
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202280048830.4A priority Critical patent/CN117730470A/en
Publication of WO2023286760A1 publication Critical patent/WO2023286760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a permanent magnet rotating electric machine and a magnet positioning structure.
  • Patent Document 1 discloses a structure in which a magnet holder made of a non-magnetic material such as resin is processed into a shape into which a permanent magnet fits, and the permanent magnet is positioned by the magnet holder.
  • Patent Document 1 uses a magnet holder made of a non-magnetic material such as resin, there is a problem with the strength of the magnet holder. For this reason, it is not possible to increase the fastening force of the screws that fix the magnet holders. There is a possibility that the force applied to the magnet in the circumferential direction resists the tightening force of the screw and moves the magnet holder in the circumferential direction.
  • the production of resin parts required the production of expensive molds, and each time the dimensions and shape were to be changed, it was necessary to produce molds. For this reason, conventionally, there has been room for improvement in the positioning of the magnets.
  • An object of the present invention is to provide a permanent magnet rotating electrical machine with improved magnet positioning.
  • a permanent magnet type rotating electric machine is a permanent magnet type rotating electric machine including a stator and a rotor disposed radially outside the stator, wherein the rotor is separated from the stator by a gap.
  • the permanent magnet is in contact with the projection at its circumferential end.
  • the fitting portion is fixed to the rotor yoke by a pin extending in the axial direction.
  • the facing surface is positioned radially inward of the fitting portion.
  • the radially inner surface of the permanent magnet is positioned radially inward of the convex portion.
  • a magnet positioning structure is a magnet positioning structure for positioning a permanent magnet on an inner peripheral surface of an annular rotor yoke, comprising a plate member for positioning a circumferential position of the permanent magnet,
  • the inner peripheral surface of the rotor yoke has a slit that is recessed radially outward, and the plate member includes a fitting portion that is fitted in the slit and fixed in position in the circumferential direction, and a fitting portion that protrudes radially inward from the fitting portion.
  • the permanent magnet is positioned by contacting the circumferential end of the permanent magnet with the convex portion.
  • FIG. 1 is a perspective view of a motor according to a first embodiment of the invention
  • FIG. It is a side cross section of the motor 10 of 1st Embodiment. It is a figure shown inclined so that a bottom face may be seen with respect to the side view of the motor 10 of 1st Embodiment.
  • FIG. 2 is a side cross-sectional view showing the motor 10 of the first embodiment cut along a plane passing through the pin 30 and parallel to the axial direction, showing an enlarged view of the vicinity of the pin 30.
  • FIG. It is a figure which extracts and shows the permanent magnet 19 and the board member 20 of FIG. 6 is a perspective view of the permanent magnet 19 and plate member 20 of FIG. 5 as viewed from the -Y side;
  • the XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the Z-axis direction is parallel to the axial direction of the central axis J shown in FIG.
  • the X-axis direction is the left-right direction in FIG.
  • the Y-axis direction is a direction orthogonal to both the Z-axis direction and the X-axis direction.
  • the side indicated by the arrows in the drawing is the + side, and the opposite side is the - side.
  • the positive side in the Z-axis direction (+Z side) is called “one side”
  • the negative side in the Z-axis direction (-Z side) is called “the other side”.
  • the terms “one side” and “the other side” are merely names used for explanation, and do not limit the actual positional relationship and direction.
  • the direction parallel to the central axis J is simply referred to as the "axial direction”
  • the radial direction about the central axis J is simply referred to as the "radial direction”
  • the central axis J that is, the circumference of the central axis J is simply referred to as the "circumferential direction”.
  • the side closer to the central axis J in the radial direction is called “radial inner side”
  • the side farther from the central axis J is called “radial outer side”.
  • extends in the axial direction means not only the case of extending strictly in the axial direction (Z-axis direction), but also the case of extending in a direction inclined within a range of less than 45° with respect to the axial direction.
  • extending in the radial direction means extending strictly in the radial direction, that is, in a direction perpendicular to the axial direction (the Z-axis direction), and in addition to extending in the radial direction by 45 It also includes cases where it extends in a tilted direction within a range of less than °.
  • Parallel includes not only the case of being strictly parallel, but also the case of being tilted within a range of less than 45°.
  • FIG. 1 is a perspective view of a motor according to a first embodiment of the invention.
  • a motor 10 in FIG. 1 is an example of a permanent magnet rotating electric machine.
  • FIG. 2 is a side cross section of the motor 10 of the first embodiment. In FIG. 1, illustration of the fixed shaft 13 and the bearings 14 and 15 is omitted.
  • the motor 10 has a fixed shaft 13 extending along the central axis J, a stator 12, and a rotor 11 arranged radially outside the stator 12 with a gap therebetween. Since the configuration of the stator 12 is not the main part of the present invention, the detailed configuration of the stator 12 is omitted.
  • the fixed shaft 13 is fixed to the stator 12, for example.
  • the rotor 11 has a hollow shaft portion 16 radially inward.
  • the fixed shaft 13 passes through the hollow shaft portion 16 .
  • the rotor 11 is supported by the fixed shaft 13 via bearings 14 and 15 so as to be rotatable around the central axis J. As shown in FIG.
  • the rotor 11 has a rotor yoke 17 facing the stator 12 with a gap therebetween.
  • the rotor yoke 17 is an annular member.
  • the rotor yoke 17 is formed of a laminated steel plate obtained by laminating electromagnetic steel plates in the axial direction.
  • the rotor yoke 17 may be formed by hollowing out an iron core instead of laminated steel plates.
  • the rotor 11 has permanent magnets 19 (see FIG. 3).
  • a permanent magnet 19 is fixed to the inner peripheral surface 18 a of the rotor yoke 17 .
  • the rotor yoke 17 has an inner peripheral surface 18a and an inner peripheral surface 18b.
  • the inner peripheral surface 18 a is an example of a facing surface that faces the stator 12 .
  • the inner peripheral surface 18b is positioned radially inward of the inner peripheral surface 18a.
  • One axial end of the permanent magnet 19 may be in contact with the radial step between the inner peripheral surface
  • FIG. 3 is a side view of the motor 10 of the first embodiment tilted so that the bottom can be seen.
  • An inner peripheral surface 18a of the rotor yoke 17 has a slit 18c recessed radially outward.
  • the slit 18c is formed along the entire circumference of the inner peripheral surface 18a.
  • the slit 18c may be formed by cutting using a lathe or the like.
  • the slit 18c may be formed by laminating electromagnetic steel sheets with an electromagnetic steel sheet having an inner diameter larger than that of the inner peripheral surface 18a sandwiched at an axial position where the slit 18c is desired to be formed.
  • the rotor 11 has a plate member 20. It fits into the slit 18 c of the rotor yoke 17 .
  • the plate member 20 positions the permanent magnet 19 in the circumferential direction.
  • the permanent magnets 19 are arranged over the entire circumference, but only five permanent magnets 19 are shown in FIG. Although the plate members 20 are arranged over the entire circumference in the circumferential direction, only three plate members 20 are illustrated in FIG.
  • the rotor yoke 17 has a through hole 11a into which a pin 30 for fixing the plate member 20 fitted in the slit 18c is inserted.
  • the through hole 11a extends axially.
  • FIG. 4 is a side cross-sectional view showing the motor 10 of the first embodiment cut along a plane passing through the pin 30 and parallel to the axial direction, showing an enlarged view of the vicinity of the pin 30.
  • FIG. The through hole 11a penetrates from the other axial end of the rotor yoke 17 to the slit 18c.
  • the through-hole 11a may further extend from the slit 18c to one side of the rotor yoke 17 in the axial direction.
  • the plate member 20 has a through hole 20c extending in the axial direction. By fitting the plate member 20 into the slit 18c, the through hole 11a and the through hole 20c are communicated with each other.
  • the plate member 20 is fixed to the slit 18c by fitting the pin 30 into the communicating through hole 11a and through hole 20c.
  • FIG. 5 is a diagram showing the permanent magnet 19 and the plate member 20 extracted from FIG.
  • FIG. 6 is a perspective view of the permanent magnet 19 and plate member 20 of FIG. 5 viewed from the -Y side.
  • the permanent magnet 19 has a cubic shape.
  • a surface 19 a that is a radially inner surface faces the stator 12 .
  • a surface 19 b that is a radially outer surface faces the inner peripheral surface 18 a of the rotor yoke 17 .
  • the plate member 20 has a fitting portion 20a and a convex portion 20b protruding radially inward from the fitting portion 20a.
  • the fitting portion 20a is a flat member.
  • the axial width of the slit 18c is substantially equal to the axial thickness of the plate member 20, and the fitting portion 20a fits into the slit 18c.
  • the fitting portion 20a has a through hole 20c extending therethrough in the axial direction.
  • one plate member 20 has three protrusions 20b.
  • the number of protrusions 20b provided on one plate member 20 may be other than three.
  • one plate member 20 has two through holes 20c.
  • the number of through holes 20c provided in one plate member 20 may be other than two.
  • the fitting portion 20a is fixed in its circumferential position by inserting a pin through the through hole 11a and the through hole 20c of the rotor yoke 17 while being fitted in the slit 18c.
  • the fitting portion 20a in the slit 18c and the rotor yoke 17 may be screwed together.
  • the pin that communicates the through-hole 11a and the through-hole 20c is preferably a pin that contacts the through-hole 11a and the through-hole 20c without a gap.
  • a parallel pin or a knock pin can be used.
  • the circumferential length between a certain convex portion 20b and another convex portion 20b adjacent to this certain convex portion 20b in the circumferential direction is approximately equal to the circumferential length of the permanent magnet 19, and the permanent magnet 19 is It fits between the convex portions 20b.
  • the permanent magnet 19 has its circumferential end fixed by contacting the projection 20b.
  • one plate member 20 positions three permanent magnets 19, and a certain plate member 20, this certain plate member 20, and another plate member 20 are arranged in the circumferential direction.
  • One permanent magnet 19 can be arranged and positioned between them.
  • the circumferential length from the circumferentially outermost convex portion 20b of the convex portions 20b of the plate member 20 to the circumferential end of the fitting portion 20a on the side closer to the convex portion 20b is equal to that of the permanent magnet 19. It is 1/2 or less of the length in the circumferential direction.
  • the plate member 20 is, for example, sheet metal. Therefore, the fastening force between the fitting portion 20a and the rotor yoke 17 can be increased. If the plate member 20 is made of a non-magnetic material, the permeance of the magnet in the plate member 20 portion is lowered and the magnetic flux density is lowered.
  • the material of the plate member 20 is, for example, SPHC.
  • the plate member 20 is desirably made of a material that satisfies the strength (stress, surface pressure) against the force applied to the plate member 20 .
  • the inner peripheral surface 18a of the rotor yoke 17 is located radially inward of the fitting portion 20a.
  • the fitting portion 20a does not protrude radially inward from the inner peripheral surface 18a. This makes it easy to fix the permanent magnet 19 to the inner peripheral surface 18a with an adhesive.
  • a surface 19a which is a radially inner surface of the permanent magnet 19, is located radially inward of the convex portion 20b.
  • the convex portion 20 b does not protrude radially inward from the surface 19 a of the permanent magnet 19 .
  • the projections 20b do not protrude into the gap between the rotor 11 and the stator 12.
  • the amount by which the convex portion 20b protrudes radially inward from the inner peripheral surface 18a is set to a protrusion amount that satisfies the strength (stress, surface pressure) required to fix the circumferential position of the permanent magnet 19 .
  • the radial length of the convex portion 20b be the minimum height within a range that satisfies the mechanical strength.
  • the slit 18c is formed in the annular rotor yoke 17. As shown in FIG. Subsequently, the plate member 20 is fitted into the slit 18c and fixed with a pin. Subsequently, an adhesive is applied to the inner peripheral surface 18a of the rotor yoke 17, the permanent magnets 19 are positioned with reference to the protrusions 20b of the plate member 20, and the permanent magnets 19 are adhered and fixed to the inner peripheral surface 18a.
  • the time required to form the slit 18c is short, and the processing time can be shortened.
  • the plate member 20 can be manufactured relatively easily by, for example, laser processing.
  • the part for determining the position of the permanent magnet 19 is the plate member 20 made of sheet metal, so that a mold such as resin molding is not required, and the mold manufacturing cost, size and shape can be changed. There is no cost to do so.
  • the plate member 20 since the plate member 20 is held by the rotor yoke 17 by the pin, the plate member 20 does not move when receiving the motor torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The purpose of the present invention is to provide a permanent magnet-type rotary electrical machine in which magnet positioning is improved. A permanent magnet-type rotary electrical machine (10) comprises: a stator (12); and a rotor (11) disposed radially outside the stator (12). The rotor (11) has: a rotor yoke (17) which faces the stator (12) with a gap therebetween; a permanent magnet (19) disposed on, among the surfaces of the rotor yoke (17), an opposing surface that faces the stator (12); and a plate member (20) for positioning the permanent magnet (19) in the circumferential direction. The opposing surface has a slit (18c) that is recessed radially outward. The plate member (20) has a fitting part (20a) fitted in the slit (18c) so as to have a fixed circumferential position, and a projection part (20b) projecting radially inward from the fitting part (20a). The circumferential end of the permanent magnet (19) comes into contact with the projection part (20b).

Description

永久磁石式回転電機、及び磁石の位置決め構造Permanent magnet type rotary electric machine and magnet positioning structure
 本発明は、永久磁石式回転電機、及び磁石の位置決め構造に関する。 The present invention relates to a permanent magnet rotating electric machine and a magnet positioning structure.
 従来、アウターロータ型の回転電機であって、ステータと対向するロータの内周面に永久磁石を固定する永久磁石式回転電機が知られている。特許文献1では、樹脂等の非磁性材料のマグネットホルダを永久磁石が嵌まる形状に加工し、マグネットホルダによって永久磁石の位置決めをする構造を開示している。 Conventionally, there has been known a permanent magnet type rotating electric machine, which is an outer rotor type rotating electric machine, in which permanent magnets are fixed to the inner peripheral surface of the rotor facing the stator. Patent Document 1 discloses a structure in which a magnet holder made of a non-magnetic material such as resin is processed into a shape into which a permanent magnet fits, and the permanent magnet is positioned by the magnet holder.
特許第6326662号公報Japanese Patent No. 6326662
 しかしながら、特許文献1では樹脂等の非磁性材料のマグネットホルダを用いるため、マグネットホルダの強度に問題があるという問題があった。このため、マグネットホルダを固定するねじの締結力を高めることが出来ず、例えば、ロータの内周面に永久磁石を接着剤で接着してあっても、接着剤がはがれた場合には、永久磁石に対し周方向にかかる力がねじの締結力に抗いマグネットホルダを周方向に移動させるおそれがあった。また、樹脂部品の製作には高価な型の制作が必要であり、寸法や形状を変更する際にはその都度、型の制作が必要であった。このため、従来、磁石の位置決めに改善の余地があった。 However, since Patent Document 1 uses a magnet holder made of a non-magnetic material such as resin, there is a problem with the strength of the magnet holder. For this reason, it is not possible to increase the fastening force of the screws that fix the magnet holders. There is a possibility that the force applied to the magnet in the circumferential direction resists the tightening force of the screw and moves the magnet holder in the circumferential direction. In addition, the production of resin parts required the production of expensive molds, and each time the dimensions and shape were to be changed, it was necessary to produce molds. For this reason, conventionally, there has been room for improvement in the positioning of the magnets.
 本発明は、磁石の位置決めを改善した永久磁石式回転電機を提供することを目的とする。 An object of the present invention is to provide a permanent magnet rotating electrical machine with improved magnet positioning.
 本発明の一態様に係る永久磁石式回転電機は、ステータと、前記ステータの径方向外側に配置されたロータと、を有する永久磁石式回転電機であって、前記ロータは、前記ステータとギャップを介して対向するロータヨークと、前記ロータヨークの面のうち前記ステータと対向する対向面に配置された永久磁石と、前記永久磁石の周方向位置を位置決めする板部材と、を有し、前記対向面は、径方向外側に凹むスリットを有し、前記板部材は、前記スリットに嵌まり周方向位置を固定された嵌合部と、前記嵌合部から径方向内側に突出する凸部と、を有し、前記永久磁石は、その周方向端が前記凸部に接する。 A permanent magnet type rotating electric machine according to an aspect of the present invention is a permanent magnet type rotating electric machine including a stator and a rotor disposed radially outside the stator, wherein the rotor is separated from the stator by a gap. a rotor yoke facing the rotor yoke, permanent magnets disposed on a surface of the rotor yoke facing the stator, and a plate member for positioning the permanent magnet in the circumferential direction, the facing surface being , a slit recessed radially outward, and the plate member includes a fitting portion fitted in the slit and fixed in circumferential position, and a convex portion protruding radially inward from the fitting portion. And, the permanent magnet is in contact with the projection at its circumferential end.
 上記の一態様の永久磁石式回転電機において、前記嵌合部は、軸方向に延びるピンによって前記ロータヨークに固定される。 In the above aspect of the permanent magnet type rotating electric machine, the fitting portion is fixed to the rotor yoke by a pin extending in the axial direction.
 上記の一態様の永久磁石式回転電機において、前記対向面は、前記嵌合部よりも径方向内側に位置する。 In the above aspect of the permanent magnet type rotating electric machine, the facing surface is positioned radially inward of the fitting portion.
 上記の一態様の永久磁石式回転電機において、前記永久磁石の径方向内側の面は、前記凸部よりも径方向内側に位置する。 In the above aspect of the permanent magnet type rotating electric machine, the radially inner surface of the permanent magnet is positioned radially inward of the convex portion.
 本発明の一態様に係る磁石の位置決め構造は、環状のロータヨークの内周面に永久磁石を位置決めする磁石の位置決め構造であって、前記永久磁石の周方向位置を位置決めする板部材を有し、前記ロータヨークの内周面は、径方向外側に凹むスリットを有し、前記板部材は、前記スリットに嵌まり周方向位置を固定された嵌合部と、前記嵌合部から径方向内側に突出する凸部と、を有し、前記永久磁石は、その周方向端が前記凸部に接することで位置決めされる。 A magnet positioning structure according to an aspect of the present invention is a magnet positioning structure for positioning a permanent magnet on an inner peripheral surface of an annular rotor yoke, comprising a plate member for positioning a circumferential position of the permanent magnet, The inner peripheral surface of the rotor yoke has a slit that is recessed radially outward, and the plate member includes a fitting portion that is fitted in the slit and fixed in position in the circumferential direction, and a fitting portion that protrudes radially inward from the fitting portion. The permanent magnet is positioned by contacting the circumferential end of the permanent magnet with the convex portion.
 本発明の一態様によれば、磁石の位置決めを改善した永久磁石式回転電機を提供することが出来る。 According to one aspect of the present invention, it is possible to provide a permanent magnet type rotating electrical machine with improved magnet positioning.
本発明の第1実施形態に係るモータの斜視図である。1 is a perspective view of a motor according to a first embodiment of the invention; FIG. 第1実施形態のモータ10の側断面である。It is a side cross section of the motor 10 of 1st Embodiment. 第1実施形態のモータ10の側面図に対し、底面が見えるように傾けて示す図である。It is a figure shown inclined so that a bottom face may be seen with respect to the side view of the motor 10 of 1st Embodiment. 第1実施形態のモータ10を、ピン30を通り軸方向と平行な面で切断して示す側断面図であって、ピン30の近傍を拡大して示す図である。FIG. 2 is a side cross-sectional view showing the motor 10 of the first embodiment cut along a plane passing through the pin 30 and parallel to the axial direction, showing an enlarged view of the vicinity of the pin 30. FIG. 図3の永久磁石19及び板部材20を抜き出して示す図である。It is a figure which extracts and shows the permanent magnet 19 and the board member 20 of FIG. 図5の永久磁石19及び板部材20を、-Y側から見た斜視図である。6 is a perspective view of the permanent magnet 19 and plate member 20 of FIG. 5 as viewed from the -Y side; FIG.
 以下、図面を参照しながら、本発明の実施形態に係る永久磁石式回転電機について説明する。なお、以下の図面においては、各構成をわかり易くするために、実際の構造と各構造における縮尺及び数等を異ならせる場合がある。 A permanent magnet type rotating electrical machine according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that, in the drawings below, in order to make each configuration easier to understand, there are cases where the scale, number, etc., of the actual structure and each structure are different.
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。X軸方向は、中心軸Jに対する径方向のうち図2の左右方向とする。Y軸方向は、Z軸方向及びX軸方向の両方と直交する方向とする。X軸方向、Y軸方向、及びZ軸方向のいずれにおいても、図中に示す矢印が指す側を+側、反対側を-側とする。 Also, in the drawings, the XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction is parallel to the axial direction of the central axis J shown in FIG. The X-axis direction is the left-right direction in FIG. The Y-axis direction is a direction orthogonal to both the Z-axis direction and the X-axis direction. In any of the X-axis direction, Y-axis direction, and Z-axis direction, the side indicated by the arrows in the drawing is the + side, and the opposite side is the - side.
 また、以下の説明においては、Z軸方向の正の側(+Z側)を「一方側」と呼び、Z軸方向の負の側(-Z側)を「他方側」と呼ぶ。なお、一方側及び他方側とは、単に説明のために用いられる名称であって、実際の位置関係及び方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。径方向において中心軸Jに近づく側を「径方向内側」と呼び、中心軸Jから遠ざかる側を「径方向外側」と呼ぶ。 Also, in the following description, the positive side in the Z-axis direction (+Z side) is called "one side", and the negative side in the Z-axis direction (-Z side) is called "the other side". Note that the terms "one side" and "the other side" are merely names used for explanation, and do not limit the actual positional relationship and direction. Further, unless otherwise specified, the direction parallel to the central axis J (the Z-axis direction) is simply referred to as the "axial direction", the radial direction about the central axis J is simply referred to as the "radial direction", and the central axis J , that is, the circumference of the central axis J is simply referred to as the "circumferential direction". The side closer to the central axis J in the radial direction is called "radial inner side", and the side farther from the central axis J is called "radial outer side".
 なお、本明細書において、「軸方向に延びる」とは、厳密に軸方向(Z軸方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向(Z軸方向)に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また「平行」とは、厳密に平行な場合に加えて、互いに成す角が45°未満の範囲で傾いた場合も含む。 In this specification, "extends in the axial direction" means not only the case of extending strictly in the axial direction (Z-axis direction), but also the case of extending in a direction inclined within a range of less than 45° with respect to the axial direction. Also includes In addition, in this specification, "extending in the radial direction" means extending strictly in the radial direction, that is, in a direction perpendicular to the axial direction (the Z-axis direction), and in addition to extending in the radial direction by 45 It also includes cases where it extends in a tilted direction within a range of less than °. "Parallel" includes not only the case of being strictly parallel, but also the case of being tilted within a range of less than 45°.
<第1実施形態>
 図1は、本発明の第1実施形態に係るモータの斜視図である。図1のモータ10は、永久磁石式回転電機の一例である。図2は、第1実施形態のモータ10の側断面である。図1においては、固定軸13並びに軸受14及び15の図示を省略している。
<First embodiment>
FIG. 1 is a perspective view of a motor according to a first embodiment of the invention. A motor 10 in FIG. 1 is an example of a permanent magnet rotating electric machine. FIG. 2 is a side cross section of the motor 10 of the first embodiment. In FIG. 1, illustration of the fixed shaft 13 and the bearings 14 and 15 is omitted.
 モータ10は、中心軸Jに沿って延びる固定軸13と、ステータ12と、ステータ12の径方向外側にギャップを介して配置されたロータ11とを有する。ステータ12の構成は本発明の要部ではないので、ステータ12の詳細な構成の図示は省略する。固定軸13は、例えばステータ12に固定される。ロータ11は、径方向内側に中空軸部16を有する。固定軸13は、中空軸部16を貫通する。ロータ11は、中心軸Jを回転中心にして回転可能なように軸受14及び15を介して固定軸13に軸支される。 The motor 10 has a fixed shaft 13 extending along the central axis J, a stator 12, and a rotor 11 arranged radially outside the stator 12 with a gap therebetween. Since the configuration of the stator 12 is not the main part of the present invention, the detailed configuration of the stator 12 is omitted. The fixed shaft 13 is fixed to the stator 12, for example. The rotor 11 has a hollow shaft portion 16 radially inward. The fixed shaft 13 passes through the hollow shaft portion 16 . The rotor 11 is supported by the fixed shaft 13 via bearings 14 and 15 so as to be rotatable around the central axis J. As shown in FIG.
 ロータ11は、ステータ12とギャップを介して対向するロータヨーク17を有する。ロータヨーク17は、円環状部材である。ロータヨーク17は、電磁鋼板を軸方向に積層して成る積層鋼板で形成される。ロータヨーク17は、積層鋼板ではなく、鉄心をくり抜いたものを用いてもよい。ロータ11は、永久磁石19(図3参照)を有する。永久磁石19は、ロータヨーク17の内周面18aに固定される。ロータヨーク17は、内周面18a及び内周面18bを有する。内周面18aは、ステータ12と対向する対向面の一例である。内周面18bは、内周面18aよりも径方向内側に位置する。永久磁石19の軸方向一方側端が、内周面18bと内周面18aとの径方向の段差に接するようにしてもよい。 The rotor 11 has a rotor yoke 17 facing the stator 12 with a gap therebetween. The rotor yoke 17 is an annular member. The rotor yoke 17 is formed of a laminated steel plate obtained by laminating electromagnetic steel plates in the axial direction. The rotor yoke 17 may be formed by hollowing out an iron core instead of laminated steel plates. The rotor 11 has permanent magnets 19 (see FIG. 3). A permanent magnet 19 is fixed to the inner peripheral surface 18 a of the rotor yoke 17 . The rotor yoke 17 has an inner peripheral surface 18a and an inner peripheral surface 18b. The inner peripheral surface 18 a is an example of a facing surface that faces the stator 12 . The inner peripheral surface 18b is positioned radially inward of the inner peripheral surface 18a. One axial end of the permanent magnet 19 may be in contact with the radial step between the inner peripheral surface 18b and the inner peripheral surface 18a.
 図3は、第1実施形態のモータ10の側面図に対し、底面が見えるように傾けて示した図である。ロータヨーク17の内周面18aは、径方向外側に凹むスリット18cを有する。スリット18cは、内周面18aの全周に亘って形成される。スリット18cは、旋盤等による切削加工で形成してもよい。スリット18cの形成は、スリット18cを形成したい軸方向位置に、内周面18aよりも内径が大きい電磁鋼板を挟んで電磁鋼板を積層することで行ってもよい。 FIG. 3 is a side view of the motor 10 of the first embodiment tilted so that the bottom can be seen. An inner peripheral surface 18a of the rotor yoke 17 has a slit 18c recessed radially outward. The slit 18c is formed along the entire circumference of the inner peripheral surface 18a. The slit 18c may be formed by cutting using a lathe or the like. The slit 18c may be formed by laminating electromagnetic steel sheets with an electromagnetic steel sheet having an inner diameter larger than that of the inner peripheral surface 18a sandwiched at an axial position where the slit 18c is desired to be formed.
 ロータ11は、板部材20を有する。ロータヨーク17のスリット18cに嵌まる。板部材20は、永久磁石19の周方向位置を位置決めする。永久磁石19は、周方向の全周に亘って配置されるが、図3では5個の永久磁石19だけを図示している。板部材20は、周方向の全周に亘って配置されるが、図3では3個の板部材20だけを図示している。ロータヨーク17は、スリット18cに嵌まった板部材20を固定するピン30が挿入される貫通孔11aを有する。貫通孔11aは軸方向に延びる。 The rotor 11 has a plate member 20. It fits into the slit 18 c of the rotor yoke 17 . The plate member 20 positions the permanent magnet 19 in the circumferential direction. The permanent magnets 19 are arranged over the entire circumference, but only five permanent magnets 19 are shown in FIG. Although the plate members 20 are arranged over the entire circumference in the circumferential direction, only three plate members 20 are illustrated in FIG. The rotor yoke 17 has a through hole 11a into which a pin 30 for fixing the plate member 20 fitted in the slit 18c is inserted. The through hole 11a extends axially.
 図4は、第1実施形態のモータ10を、ピン30を通り軸方向と平行な面で切断して示す側断面図であって、ピン30の近傍を拡大して示す図である。貫通孔11aは、ロータヨーク17の軸方向他方側端からスリット18cへと貫通する。貫通孔11aは、スリット18cから更にロータヨーク17の軸方向一方側へと延びてもよい。板部材20は、軸方向に延びる貫通孔20cを有する。板部材20がスリット18cに嵌まることで、貫通孔11aと貫通孔20cとが連通する。連通する貫通孔11a及び貫通孔20cにピン30が嵌まることで、スリット18cに板部材20が固定される。 FIG. 4 is a side cross-sectional view showing the motor 10 of the first embodiment cut along a plane passing through the pin 30 and parallel to the axial direction, showing an enlarged view of the vicinity of the pin 30. FIG. The through hole 11a penetrates from the other axial end of the rotor yoke 17 to the slit 18c. The through-hole 11a may further extend from the slit 18c to one side of the rotor yoke 17 in the axial direction. The plate member 20 has a through hole 20c extending in the axial direction. By fitting the plate member 20 into the slit 18c, the through hole 11a and the through hole 20c are communicated with each other. The plate member 20 is fixed to the slit 18c by fitting the pin 30 into the communicating through hole 11a and through hole 20c.
 図5は、図3の永久磁石19及び板部材20を抜き出して示す図である。図6は、図5の永久磁石19及び板部材20を、-Y側から見た斜視図である。永久磁石19は、立方体形状である。永久磁石19の面のうち径方向内側の面である面19aは、ステータ12と対向する。永久磁石19の面のうち径方向外側の面である面19bは、ロータヨーク17の内周面18aと対向する。 FIG. 5 is a diagram showing the permanent magnet 19 and the plate member 20 extracted from FIG. FIG. 6 is a perspective view of the permanent magnet 19 and plate member 20 of FIG. 5 viewed from the -Y side. The permanent magnet 19 has a cubic shape. Of the surfaces of the permanent magnet 19 , a surface 19 a that is a radially inner surface faces the stator 12 . Of the surfaces of the permanent magnet 19 , a surface 19 b that is a radially outer surface faces the inner peripheral surface 18 a of the rotor yoke 17 .
 板部材20は、嵌合部20aと、嵌合部20aから径方向内側に突出する凸部20bと、を有する。嵌合部20aは、平板上の部材である。スリット18cの軸方向の幅は、板部材20の軸方向の厚さとほぼ等しく、嵌合部20aはスリット18cに嵌まる。嵌合部20aは、軸方向に貫通する貫通孔20cを有する。本実施形態では、1つの板部材20は、3つの凸部20bを有する。1つの板部材20に設ける凸部20bの数は3つ以外であってもよい。本実施形態では、1つの板部材20は、2つの貫通孔20cを有する。1つの板部材20に設ける貫通孔20cの数は2つ以外であってもよい。嵌合部20aは、スリット18cに嵌まった状態で、ロータヨーク17の貫通孔11aと貫通孔20cとを連通してピンが挿入されることで、周方向位置を固定される。なお、スリット18c内の嵌合部20aとロータヨーク17とを、ねじ止めする構成であってもよい。貫通孔11aと貫通孔20cとを連通するピンとしては、貫通孔11a及び貫通孔20cと隙間なく接するピンであることが望ましく、例えば平行ピンまたはノックピンを用いることが出来る。 The plate member 20 has a fitting portion 20a and a convex portion 20b protruding radially inward from the fitting portion 20a. The fitting portion 20a is a flat member. The axial width of the slit 18c is substantially equal to the axial thickness of the plate member 20, and the fitting portion 20a fits into the slit 18c. The fitting portion 20a has a through hole 20c extending therethrough in the axial direction. In this embodiment, one plate member 20 has three protrusions 20b. The number of protrusions 20b provided on one plate member 20 may be other than three. In this embodiment, one plate member 20 has two through holes 20c. The number of through holes 20c provided in one plate member 20 may be other than two. The fitting portion 20a is fixed in its circumferential position by inserting a pin through the through hole 11a and the through hole 20c of the rotor yoke 17 while being fitted in the slit 18c. The fitting portion 20a in the slit 18c and the rotor yoke 17 may be screwed together. The pin that communicates the through-hole 11a and the through-hole 20c is preferably a pin that contacts the through-hole 11a and the through-hole 20c without a gap. For example, a parallel pin or a knock pin can be used.
 或る凸部20bと、この或る凸部20bと周方向で隣接する別の凸部20bとの間の周方向長さは、永久磁石19の周方向長さとほぼ等しく、永久磁石19は、この凸部20b同士の間に嵌まる。永久磁石19は、その周方向端が凸部20bに接することで、周方向位置を固定される。 The circumferential length between a certain convex portion 20b and another convex portion 20b adjacent to this certain convex portion 20b in the circumferential direction is approximately equal to the circumferential length of the permanent magnet 19, and the permanent magnet 19 is It fits between the convex portions 20b. The permanent magnet 19 has its circumferential end fixed by contacting the projection 20b.
 本実施形態の板部材20は、1つの板部材20で3つの永久磁石19の位置決めをし、或る板部材20と、この或る板部材20と別の板部材20とを周方向で並べた場合、或る板部材20の凸部20bのうち別の板部材20に最も近い凸部20bと、別の板部材20の凸部20bのうち或る板部材20に最も近い凸部20bとの間に、永久磁石19を1つ配置し、位置決めすることが出来る。このとき、板部材20の凸部20bのうち最も周方向外側の凸部20bから、その凸部20bに近い側の嵌合部20aの周方向端までの周方向長さは、永久磁石19の周方向長さの1/2以下である。 In the plate member 20 of this embodiment, one plate member 20 positions three permanent magnets 19, and a certain plate member 20, this certain plate member 20, and another plate member 20 are arranged in the circumferential direction. In this case, the convex portion 20b closest to another plate member 20 among the convex portions 20b of a certain plate member 20 and the convex portion 20b closest to the certain plate member 20 among the convex portions 20b of another plate member 20 One permanent magnet 19 can be arranged and positioned between them. At this time, the circumferential length from the circumferentially outermost convex portion 20b of the convex portions 20b of the plate member 20 to the circumferential end of the fitting portion 20a on the side closer to the convex portion 20b is equal to that of the permanent magnet 19. It is 1/2 or less of the length in the circumferential direction.
 板部材20は、例えば板金である。このため、嵌合部20aとロータヨーク17との締結力を高めることが出来る。板部材20が非磁性材料の場合、板部材20部分の磁石のパーミアンスが低下し磁束密度が下がるため、板部材20は磁性材料であることが望ましい。板部材20の材質は、例えばSPHCである。板部材20は、板部材20にかかる力に対して強度(応力、面圧)を満たす材質であることが望ましい。 The plate member 20 is, for example, sheet metal. Therefore, the fastening force between the fitting portion 20a and the rotor yoke 17 can be increased. If the plate member 20 is made of a non-magnetic material, the permeance of the magnet in the plate member 20 portion is lowered and the magnetic flux density is lowered. The material of the plate member 20 is, for example, SPHC. The plate member 20 is desirably made of a material that satisfies the strength (stress, surface pressure) against the force applied to the plate member 20 .
 ロータヨーク17の内周面18aは、嵌合部20aよりも径方向内側に位置する。または、嵌合部20aは、内周面18aよりも径方向内側に突出しない。これにより、永久磁石19の内周面18aへの接着剤による固定がしやすい。 The inner peripheral surface 18a of the rotor yoke 17 is located radially inward of the fitting portion 20a. Alternatively, the fitting portion 20a does not protrude radially inward from the inner peripheral surface 18a. This makes it easy to fix the permanent magnet 19 to the inner peripheral surface 18a with an adhesive.
 永久磁石19の径方向内側の面である面19aは、凸部20bよりも径方向内側に位置する。または、凸部20bは、永久磁石19の面19aよりも径方向内側に突出しない。これにより、ロータ11とステータ12との間のギャップに凸部20bを突出させることがない。凸部20bが、内周面18aから径方向内側に突出する突出量は、永久磁石19の周方向位置を固定するために必要な強度(応力、面圧)を満たす突出量とする。凸部20bが径方向内側に延びる長さを長くすると、板部材20が磁性材料なので漏れ磁束が増え、ギャップの磁束密度が低下する。従って、凸部20bの径方向長さは、機械的に強度を満たす範囲で最小限の高さとするのが望ましい。 A surface 19a, which is a radially inner surface of the permanent magnet 19, is located radially inward of the convex portion 20b. Alternatively, the convex portion 20 b does not protrude radially inward from the surface 19 a of the permanent magnet 19 . As a result, the projections 20b do not protrude into the gap between the rotor 11 and the stator 12. As shown in FIG. The amount by which the convex portion 20b protrudes radially inward from the inner peripheral surface 18a is set to a protrusion amount that satisfies the strength (stress, surface pressure) required to fix the circumferential position of the permanent magnet 19 . If the length of the protrusion 20b extending radially inward is lengthened, the magnetic flux leakage increases and the magnetic flux density in the gap decreases because the plate member 20 is made of a magnetic material. Therefore, it is desirable that the radial length of the convex portion 20b be the minimum height within a range that satisfies the mechanical strength.
 本実施形態のロータ11を製造するにあたっては、まず、円環状のロータヨーク17にスリット18cを形成する。続いて、板部材20をスリット18cに嵌め、ピンで固定する。続いて、ロータヨーク17の内周面18aに接着剤を塗布し、板部材20の凸部20bを基準にして永久磁石19を位置決めし、永久磁石19を内周面18aに接着して固定する。 In manufacturing the rotor 11 of this embodiment, first, the slit 18c is formed in the annular rotor yoke 17. As shown in FIG. Subsequently, the plate member 20 is fitted into the slit 18c and fixed with a pin. Subsequently, an adhesive is applied to the inner peripheral surface 18a of the rotor yoke 17, the permanent magnets 19 are positioned with reference to the protrusions 20b of the plate member 20, and the permanent magnets 19 are adhered and fixed to the inner peripheral surface 18a.
 本実施形態によれば、スリット18cの形成に要する時間は短く、加工時間の短縮が実現できる。また、本実施形態によれば、板部材20は、例えばレーザー加工により比較的容易に製作が可能である。また、本実施形態によれば、永久磁石19の位置を決めるための部品は、板金の板部材20であるため樹脂成形のような型を必要とせず、型製作費用、および寸法や形状を変更する際の費用が発生しない。また、本実施形態によれば、板部材20はピンによってロータヨーク17に保持されているため、モータトルクを受けた際に板部材20が動くことはない。 According to this embodiment, the time required to form the slit 18c is short, and the processing time can be shortened. Further, according to this embodiment, the plate member 20 can be manufactured relatively easily by, for example, laser processing. Further, according to the present embodiment, the part for determining the position of the permanent magnet 19 is the plate member 20 made of sheet metal, so that a mold such as resin molding is not required, and the mold manufacturing cost, size and shape can be changed. There is no cost to do so. Further, according to this embodiment, since the plate member 20 is held by the rotor yoke 17 by the pin, the plate member 20 does not move when receiving the motor torque.
 本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行ってもよい。加えて、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to the above embodiments, and various improvements and design changes may be made without departing from the scope of the present invention. In addition, the embodiments disclosed this time should be considered in all respects to be illustrative and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the scope and meaning of equivalents to the scope of the claims.
 本出願は、2021年7月14日に出願された日本特許出願である特願2021-116128号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2021-116128, which is a Japanese patent application filed on July 14, 2021, and incorporates all the content described in the Japanese patent application.
10…モータ、11…ロータ、12…ステータ、13…固定軸、17…ロータヨーク、18c…スリット、19…永久磁石、20…板部材 DESCRIPTION OF SYMBOLS 10... Motor 11... Rotor 12... Stator 13... Fixed shaft 17... Rotor yoke 18c... Slit 19... Permanent magnet 20... Plate member

Claims (5)

  1.  ステータと、前記ステータの径方向外側に配置されたロータと、を有する永久磁石式回転電機であって、
     前記ロータは、前記ステータとギャップを介して対向するロータヨークと、前記ロータヨークの面のうち前記ステータと対向する対向面に配置された永久磁石と、前記永久磁石の周方向位置を位置決めする板部材と、を有し、
     前記対向面は、径方向外側に凹むスリットを有し、
     前記板部材は、前記スリットに嵌まり周方向位置を固定された嵌合部と、前記嵌合部から径方向内側に突出する凸部と、を有し、
     前記永久磁石は、その周方向端が前記凸部に接する、
    永久磁石式回転電機。
    A permanent magnet type rotating electric machine having a stator and a rotor disposed radially outward of the stator,
    The rotor includes a rotor yoke facing the stator with a gap therebetween, permanent magnets disposed on a surface of the rotor yoke facing the stator, and plate members for positioning the permanent magnets in the circumferential direction. , and
    The facing surface has a slit recessed radially outward,
    The plate member has a fitting portion fitted in the slit and fixed in a circumferential position, and a convex portion protruding radially inward from the fitting portion,
    The permanent magnet is in contact with the projection at its circumferential end.
    Permanent magnet rotating electric machine.
  2.  前記嵌合部は、軸方向に延びるピンによって前記ロータヨークに固定される、
    請求項1に記載の永久磁石式回転電機。
    The fitting portion is fixed to the rotor yoke by an axially extending pin.
    The permanent magnet type rotary electric machine according to claim 1.
  3.  前記対向面は、前記嵌合部よりも径方向内側に位置する、
    請求項1又は2に記載の永久磁石式回転電機。
    The facing surface is positioned radially inward of the fitting portion,
    The permanent magnet type rotating electric machine according to claim 1 or 2.
  4.  前記永久磁石の径方向内側の面は、前記凸部よりも径方向内側に位置する、
    請求項1から3のいずれか1項に記載の永久磁石式回転電機。
    the radially inner surface of the permanent magnet is located radially inwardly of the convex portion;
    The permanent magnet type rotary electric machine according to any one of claims 1 to 3.
  5.  環状のロータヨークの内周面に永久磁石を位置決めする磁石の位置決め構造であって、
     前記永久磁石の周方向位置を位置決めする板部材を有し、
     前記ロータヨークの内周面は、径方向外側に凹むスリットを有し、
     前記板部材は、前記スリットに嵌まり周方向位置を固定された嵌合部と、前記嵌合部から径方向内側に突出する凸部と、を有し、
     前記永久磁石は、その周方向端が前記凸部に接することで位置決めされる、
    磁石の位置決め構造。
            
    A magnet positioning structure for positioning a permanent magnet on the inner peripheral surface of an annular rotor yoke,
    Having a plate member for positioning the circumferential position of the permanent magnet,
    an inner peripheral surface of the rotor yoke has a slit recessed radially outward,
    The plate member has a fitting portion fitted in the slit and fixed in a circumferential position, and a convex portion protruding radially inward from the fitting portion,
    The permanent magnet is positioned by having its circumferential end in contact with the convex portion.
    Magnet positioning structure.
PCT/JP2022/027377 2021-07-14 2022-07-12 Permanent magnet-type rotary electrical machine and magnet positioning structure WO2023286760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280048830.4A CN117730470A (en) 2021-07-14 2022-07-12 Permanent magnet type rotary electric machine and magnet positioning structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116128A JP7235074B2 (en) 2021-07-14 2021-07-14 Permanent magnet type rotary electric machine and magnet positioning structure
JP2021-116128 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286760A1 true WO2023286760A1 (en) 2023-01-19

Family

ID=84919507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027377 WO2023286760A1 (en) 2021-07-14 2022-07-12 Permanent magnet-type rotary electrical machine and magnet positioning structure

Country Status (3)

Country Link
JP (1) JP7235074B2 (en)
CN (1) CN117730470A (en)
WO (1) WO2023286760A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416177U (en) * 1987-07-15 1989-01-26
JPH0435670U (en) * 1990-07-24 1992-03-25
JP2004360499A (en) * 2003-06-02 2004-12-24 Toyota Industries Corp Electric compressor
DE202018102332U1 (en) * 2018-04-25 2018-05-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Return ring and electrical external rotor motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416177U (en) * 1987-07-15 1989-01-26
JPH0435670U (en) * 1990-07-24 1992-03-25
JP2004360499A (en) * 2003-06-02 2004-12-24 Toyota Industries Corp Electric compressor
DE202018102332U1 (en) * 2018-04-25 2018-05-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Return ring and electrical external rotor motor

Also Published As

Publication number Publication date
JP2023012609A (en) 2023-01-26
JP7235074B2 (en) 2023-03-08
CN117730470A (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
US9124156B2 (en) Rotor for electric rotating machine
WO2017159858A1 (en) Rotor for electric motor, and brushless motor
JP2012161226A (en) Rotor for rotary electric machine
US20140062245A1 (en) Rotor for rotating electric machine
JP4812787B2 (en) Method of manufacturing rotor for pump motor, pump motor, pump and rotor for pump motor
JP2013090368A (en) Rotor of rotary electric machine
JP5790426B2 (en) Rotor
JP2018057155A (en) Rotator of rotating electrical machine
WO2018180634A1 (en) Motor
WO2023286760A1 (en) Permanent magnet-type rotary electrical machine and magnet positioning structure
KR101097398B1 (en) Rotor for Interior Permanent Magnet type motor
WO2018061179A1 (en) Rotor production method, rotor, and motor
US20200185989A1 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
US10958139B2 (en) Sensor magnet assembly and motor
JP5611405B1 (en) Rotating electric machine
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP2007129892A (en) Motor and manufacturing method thereof
JP5818949B2 (en) Rotating electric machine
US20200212737A1 (en) Rotor of rotating electrical machine
JPWO2020054469A1 (en) Stator and motor using it
JP7224218B2 (en) Rotor and rotor manufacturing method
WO2021200050A1 (en) Motor
WO2022244398A1 (en) Hybrid excitation type rotary electrical machine
JP2012010556A (en) Rotor for rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048830.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE