WO2023286730A1 - 合成燃料の製造方法 - Google Patents
合成燃料の製造方法 Download PDFInfo
- Publication number
- WO2023286730A1 WO2023286730A1 PCT/JP2022/027232 JP2022027232W WO2023286730A1 WO 2023286730 A1 WO2023286730 A1 WO 2023286730A1 JP 2022027232 W JP2022027232 W JP 2022027232W WO 2023286730 A1 WO2023286730 A1 WO 2023286730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- gas
- oxygen
- synthetic fuel
- gasification
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 310
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 155
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 155
- 239000007789 gas Substances 0.000 claims abstract description 78
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 61
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 55
- 239000001301 oxygen Substances 0.000 claims abstract description 50
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 50
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 49
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000000926 separation method Methods 0.000 claims abstract description 45
- 238000002309 gasification Methods 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002699 waste material Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 65
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 38
- 239000001257 hydrogen Substances 0.000 claims description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims description 34
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000010813 municipal solid waste Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 150000002926 oxygen Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 235000001950 Elaeis guineensis Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 241001133760 Acoelorraphe Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000512897 Elaeis Species 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0495—Non-catalytic processes; Catalytic processes in which there is also another way of activation, e.g. radiation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/0476—Vacuum pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0485—Set-up of reactors or accessories; Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/57—Gasification using molten salts or metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/005—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
- C25B15/081—Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1659—Conversion of synthesis gas to chemicals to liquid hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1684—Integration of gasification processes with another plant or parts within the plant with electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present invention relates to a method for producing SAF (Sustainable Aviation fuel) and synthetic fuel such as diesel fuel from waste such as biomass.
- SAF Stustainable Aviation fuel
- synthetic fuel such as diesel fuel from waste such as biomass.
- the present invention relates to a method for producing a synthetic fuel capable of reducing the amount of carbon dioxide emitted into the atmosphere when it is converted into a synthetic fuel.
- waste such as woody biomass and MSW (Municipal Solid Waste) is reacted with oxygen and water at a high temperature in a gasification furnace to gasify the waste, and from the resulting carbon monoxide and hydrogen
- FT Fischer-Tropsch
- FIG. 2 is a diagram showing an example of a process flow of a conventional synthetic fuel manufacturing method.
- a waste 3 such as woody biomass or MSW is reacted with oxygen and water 4 at a high temperature to gasify the waste to produce a gasified gas G1 containing carbon dioxide, carbon monoxide and hydrogen.
- a gasification step G to be produced a carbon dioxide separation step S for separating carbon dioxide from the gasification gas G1 produced in the gasification step G, and a synthesis gas G2 (monoxide FT synthesis step FT for producing synthetic fuel by performing FT synthesis using gas containing carbon and hydrogen).
- the carbon dioxide separated in the carbon dioxide separation step S is generally discharged into the atmosphere.
- Patent Document 1 As a method for producing a synthetic fuel using carbon dioxide as one of the raw materials, there is a method described in Patent Document 1, for example.
- This patent discloses the conversion of carbon dioxide and water to carbon monoxide and hydrogen by co-electrolysis in a syngas production cell (solid oxide electrolyser cell), which is then converted to hydrocarbons in a catalytic reactor.
- a process for converting to fuel is disclosed.
- reaction formula (1) represents a reaction that produces carbon monoxide (CO) and hydrogen gas (H 2 ) by partial combustion or steam gasification of waste.
- reaction formula (3) represents a reaction for producing a synthetic fuel (C n H 2n+2 ) from carbon monoxide (CO) and hydrogen gas (H 2 ), and the amount of carbon monoxide (CO) used The amount of hydrogen gas (H 2 ) used is more than twice (2n+1) with respect to (n).
- reaction formula (2) a shift reaction occurs between carbon monoxide and water (CO+H 2 O) and carbon dioxide and hydrogen gas (CO 2 +H 2 ).
- the carbon dioxide separated in the carbon dioxide separation step S is normally discharged into the atmosphere.
- the object of the present invention is to provide a method for producing a synthetic fuel that can reduce the amount of carbon dioxide emitted into the atmosphere.
- the present inventors combined a step such as a carbon dioxide electrolysis step with the conventional method shown in FIG. We have found that recycling as a raw material is very effective, and have completed the present invention. That is, the present invention includes each of the following aspects.
- a method for producing a synthetic fuel having Furthermore, having a carbon dioxide electrolysis step of electrolyzing the carbon dioxide separated in the carbon dioxide separation step to generate an electrolytic gas containing carbon monoxide and carbon dioxide,
- a method for producing a synthetic fuel characterized in that the electrolysis gas produced in the carbon dioxide electrolysis step is supplied to a carbon dioxide separation step to separate carbon dioxide from the gasification gas and the electrolysis gas.
- [2] Further, according to [1], it has a water electrolysis step in which water is electrolyzed to generate oxygen and hydrogen, the generated hydrogen is supplied to the FT synthesis step, and the generated oxygen is supplied to the gasification step. of synthetic fuels.
- An improved method for reducing atmospheric emissions of carbon dioxide generated in existing synthetic fuel production equipment comprising: a gasifier for reacting waste with oxygen and water at high temperature to gasify the waste to produce a gasified gas containing carbon dioxide, carbon monoxide and hydrogen; a carbon dioxide separator that separates carbon dioxide from at least the gasification gas produced in the gasifier; an FT synthesizer that produces a synthetic fuel by Fischer-Tropsch synthesis from the synthesis gas from which carbon dioxide is separated in the carbon dioxide separator; For existing synthetic fuel production facilities with adding a carbon dioxide electrolysis device that electrolyzes carbon dioxide separated in the carbon dioxide separation device to produce an electrolytic gas containing carbon monoxide and carbon dioxide; A method for improving a synthetic fuel production facility, comprising supplying electrolytic gas produced in a carbon dioxide electrolyzer to a carbon dioxide separator to separate carbon dioxide from the gasified gas and the electrolytic gas.
- a water electrolyzer for electrolyzing water to generate oxygen and hydrogen is added, the generated hydrogen is supplied to the FT synthesizer, and the generated oxygen is supplied to the gasifier.[4] of synthetic fuel manufacturing facilities.
- part of the carbon dioxide that has been discharged into the atmosphere in the conventional method is reduced to carbon monoxide in the carbon dioxide electrolysis step, and this is recycled as a raw material for FT synthesis, so that carbon dioxide into the atmosphere It can reduce carbon emissions.
- the molar amount of hydrogen produced by electrolyzing water to be supplied to the FT synthesis step is preferably at least twice the molar amount of carbon monoxide in the electrolytic gas. As a result, the compositional balance of the raw material gas in the FT synthesis step becomes favorable.
- oxygen generated by electrolyzing water it is also preferable to supply oxygen generated by electrolyzing water to the gasification process. By using this oxygen for gasification of the waste, the load of the oxygen separation process can be reduced.
- FIG. 1 is a diagram showing an example of a process flow of a method for producing a synthetic fuel according to the present invention. It is a figure which shows an example of the process flow of the manufacturing method of the conventional synthetic fuel.
- FIG. 1 is a diagram showing a process flow in a preferred embodiment of the synthetic fuel production method of the present invention. Each step will be described below.
- the supply of materials and power to each process can be performed by providing a supply system including a supply line as necessary, and the discharge or removal of products and waste from each process can be performed using a discharge line as necessary. This can be done by providing an evacuation system containing
- the oxygen separation step OS shown in FIG. 1 is a step of separating oxygen from the air 2 .
- the oxygen separated in this oxygen separation process is supplied to the gasification process G described later.
- gases other than oxygen in the air are adsorbed by an adsorbent (for example, synthetic zeolite) by adjusting the pressure
- adsorbent for example, synthetic zeolite
- VPSA Vauum Pressure Swing Adsorption
- Gases other than adsorbed oxygen (nitrogen, etc.) may be discharged into the atmosphere.
- the specific reaction conditions the type of adsorbent, and the configuration of the reactor including the oxygen separation device or oxygen separation system, known conditions, types, and configurations related to oxygen separation technology can be employed without limitation.
- the present invention it is preferable to use the VPSA process as described above as one of the processes for obtaining oxygen to be supplied to the gasification process G.
- the present invention is not limited to this.
- high-purity oxygen gas may be obtained by other known methods (cryogenic separation method, etc.) and supplied to the gasification process G. While the VPSA process is often economically advantageous, the cryogenic separation process may be more economically advantageous, for example, in small-scale plants.
- the waste, oxygen and water are supplied to a gasification furnace (melting furnace), A method of reacting at a predetermined temperature and pressure can be mentioned.
- a gasification furnace melting furnace
- the reaction temperature is usually 700°C or higher, preferably 800°C to 1200°C.
- the waste that is used as a raw material in the gasification step G includes solids, liquids, and mixtures thereof containing hydrocarbon components that can be gasified.
- woody biomass and MSW Moxipal Solid Waste
- the present invention is not limited to this.
- waste such as herbaceous biomass, PKS (Palm Kernel Shell), OPT (Oil Palm Trunk, old oil palm tree) can also be used.
- the carbon dioxide separation step S shown in FIG. 1 is a step of separating carbon dioxide from a gas to be treated containing at least gasification gas G1 [CO 2 /CO/H 2 ].
- gasification gas G1 alone, or both the gasification gas G1 and the electrolytic gas G3 [CO 2 /CO] generated in the carbon dioxide electrolysis step E described later can be used.
- these may be mixed and supplied to the carbon dioxide separation step S as necessary.
- the carbon dioxide separated in this carbon dioxide separation step S is not discharged into the atmosphere, but is supplied to the carbon dioxide electrolysis step E described later and recycled via the supply systems 7 and 8. As a result, the amount of carbon dioxide emitted into the atmosphere can be reduced.
- the gas from which carbon dioxide has been separated that is, the synthesis gas G2 [CO/H 2 ] containing carbon monoxide and hydrogen is supplied to the FT synthesis process FT, which will be described later, as a raw material for synthetic fuel.
- carbon dioxide is absorbed in an absorbent such as amine in the absorption step, and the absorbent is heated in the regeneration step to remove carbon dioxide.
- an absorbent such as amine in the absorption step
- Separate chemisorption methods are mentioned.
- the specific reaction conditions and the configuration of the reactor including the carbon dioxide separator or carbon dioxide separation system the known conditions and configurations related to carbon dioxide separation technology can be employed without limitation.
- the carbon dioxide electrolysis step E shown in FIG. 1 is a step of electrolyzing the carbon dioxide separated in the carbon dioxide separation step S to generate electrolytic gas G3 [CO/CO 2 ] containing carbon monoxide and carbon dioxide. .
- the electrolytic gas G3 [CO/CO 2 ] generated in this carbon dioxide electrolysis step E is returned to the carbon dioxide separation step S.
- Carbon dioxide electrolysis step E is typically a step of reducing part of carbon dioxide to carbon monoxide by electrolysis. Therefore, the produced electrolytic gas G3 [CO/CO 2 ] is typically a mixed gas of carbon monoxide produced by the reduction and carbon dioxide that has not been reduced.
- the specific electrolysis conditions and the configuration of the electrolysis device or electrolysis system known conditions and configurations related to carbon dioxide electrolysis technology can be employed without limitation.
- the step of reducing part of the carbon dioxide to carbon monoxide by electrolysis is the method described in Patent Document 1 (carbon dioxide and water in a solid oxide electrolytic cell at a high temperature (500 ° C. or higher).
- a high temperature 500 ° C. or higher.
- electrolysis can be performed at a low temperature (less than 100 ° C.) and there is no problem of performance deterioration due to electrode adhesion of deposited carbon. be.
- the carbon dioxide treated in the carbon dioxide electrolysis step E may be supplied to the carbon dioxide separation step S, it is preferable to discharge a part of the carbon dioxide to the atmosphere.
- the reason for this is to prevent an inert gas such as nitrogen, which is an impurity of the oxygen supplied to the gasification process G, from accumulating in the system.
- the amount of carbon dioxide emitted to the atmosphere in this step is extremely small compared to the amount emitted in the conventional method shown in FIG. 2 (that is, the amount of all carbon dioxide separated in the carbon dioxide separation step S). quantity. Therefore, according to the present invention, the amount of carbon dioxide emissions can be sufficiently reduced as compared with the conventional method.
- renewable energy is energy that always exists in the natural world, such as sunlight, wind power, geothermal power, and hydraulic power, and is characterized by not emitting carbon dioxide during power generation. Using power from this renewable energy for the carbon dioxide electrolysis step E meets the objective of the present invention, which is to reduce carbon dioxide emissions.
- the water electrolysis process WE shown in FIG. 1 is a process of electrolyzing water to generate oxygen and hydrogen.
- the specific electrolysis conditions and the configuration of the electrolysis device or electrolysis system in this step WE known conditions and configurations related to water electrolysis technology can be employed without limitation.
- the generated hydrogen is supplied via the supply system 11 to the FT synthesis process FT, which will be described later.
- the molar amount of the hydrogen generated in the water electrolysis process WE supplied to the FT synthesis process is preferably at least twice the molar amount of carbon monoxide in the electrolytic gas G3. Thereby, the compositional balance of the raw material gas in the FT synthesis process FT becomes suitable.
- the oxygen generated in the water electrolysis process WE is supplied to the gasification process G via the supply system 12.
- the load of the oxygen separation process OS can be reduced.
- the water electrolysis process WE described above it is preferable to use the water electrolysis process WE described above as one of the processes for generating hydrogen to be supplied to the FT synthesis process FT.
- the present invention is not limited to this.
- hydrogen may be produced by another known method and supplied to the FT synthesis step FT.
- FT synthesis step FT shown in FIG . This is the process of producing a synthetic fuel by synthesis.
- Fischer-Tropsch (FT) synthesis is a synthesis method for obtaining synthetic fuels (gas and liquid hydrocarbons) from carbon monoxide and hydrogen through a catalytic reaction.
- Compounds of iron and cobalt are commonly used as catalysts.
- the specific reaction conditions the type of catalyst, and the reactor configuration including the FT synthesis apparatus or FT synthesis system in this FT synthesis, known conditions, types, and configurations related to FT synthesis technology can be employed without limitation.
- SAF Stainable Aviation fuel
- other synthetic fuels 5 are obtained.
- Other synthetic fuels include, for example, kerosene, diesel oil, naphtha, and the like. Further, the gas fraction generated during the synthesis is used as fuel gas or burned in a flare or the like and released into the atmosphere as offgas 6 .
- the synthetic fuel production method of the present invention described above can be carried out by newly constructing all the devices for carrying out the respective steps. However, it can also be implemented by adding a carbon dioxide electrolysis device and, if necessary, other devices (for example, a water electrolysis device) to the existing production facility.
- the method for improving a synthetic fuel production facility of the present invention is an improvement method for reducing the amount of carbon dioxide emitted into the atmosphere in the existing equipment of a synthetic fuel production facility.
- waste, oxygen and water are reacted at high temperature to gasify the waste, and gasification gas G1 containing carbon dioxide, carbon monoxide and hydrogen is produced.
- a gasifier (g) to produce a gasifier (g) to produce, a carbon dioxide separator (s) for separating carbon dioxide from at least the gasified gas G1 produced in the gasifier (g), and carbon dioxide in the carbon dioxide separator (s) an FT synthesis unit that produces a synthetic fuel by Fischer-Tropsch synthesis from the separated synthesis gas G2, and that releases the carbon dioxide separated in the carbon dioxide separation unit(s) to the atmosphere. manufacturing equipment.
- an existing synthetic fuel production apparatus is provided with a carbon dioxide electrolyzer (e) that electrolyzes carbon dioxide to generate an electrolytic gas G3 containing carbon monoxide and carbon dioxide;
- a supply system 7 for supplying carbon dioxide generated in the carbon separation device (s) to the carbon dioxide electrolysis device (e), and supplying electrolytic gas G3 generated in the carbon dioxide electrolysis device (e) to the carbon dioxide separation device (s).
- a supply system 8 is added.
- the molar amount of hydrogen generated in the water electrolyzer (we) supplied to the FT synthesis apparatus is preferably at least twice the molar amount of carbon monoxide in the electrolytic gas G3. It is also preferable to supply the oxygen generated in the water electrolyzer (we) to the gasifier (g).
- Adding a device such as a carbon dioxide electrolysis device to existing manufacturing facilities in this way is advantageous in terms of facility costs compared to building all new facilities. Furthermore, the production of synthetic fuel can be increased by effectively utilizing the carbon dioxide emitted by existing production facilities.
- the present invention is very useful from the viewpoint of preventing global warming because it can recycle carbon dioxide generated when producing synthetic fuel from waste and reduce the amount of carbon dioxide emitted into the atmosphere.
- Electricity 2 Air 3: Waste 4: Water 5: Fuel 6: Off-gas 7: Carbon dioxide supply system 8: Electrolytic gas supply system 9: Electricity generated by renewable energy 10: Electricity generated by renewable energy Electric power 11: Hydrogen supply system 12: Oxygen supply system OS: Oxygen separation process G: Gasification process S: Carbon dioxide separation process FT: FT synthesis process E: Carbon dioxide electrolysis process WE: Water electrolysis process G1: Gasification gas G2: Syngas G3: Electrolytic gas
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Analytical Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
CpHq+pH2O → pCO+(p+(q/2))H2(1)
CO+H2O ←→ CO2+H2 (2)
nCO+(2n+1)H2 → CnH2n+2+nH2O (3)
少なくともガス化工程において生成したガス化ガスから二酸化炭素を分離する二酸化炭素分離工程と、
二酸化炭素分離工程において二酸化炭素が分離された合成ガスからフィッシャー・トロプシュ合成により合成燃料を生成するFT合成工程と、
を有する合成燃料の製造方法において、
さらに、二酸化炭素分離工程において分離された二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスを生成する二酸化炭素電解工程を有し、
二酸化炭素電解工程において生成した電解ガスを二酸化炭素分離工程に供給し、ガス化ガス及び電解ガスから二酸化炭素を分離することを特徴とする合成燃料の製造方法。
廃棄物と酸素と水とを高温で反応させて廃棄物をガス化し、二酸化炭素、一酸化炭素及び水素を含むガス化ガスを生成するガス化装置と、
少なくともガス化装置において生成したガス化ガスから二酸化炭素を分離する二酸化炭素分離装置と、
二酸化炭素分離装置において二酸化炭素が分離された合成ガスからフィッシャー・トロプシュ合成により合成燃料を生成するFT合成装置と、
を有する既存の合成燃料の製造設備に対して、
二酸化炭素分離装置において分離された二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスを生成する二酸化炭素電解装置を追加し、
二酸化炭素電解装置において生成した電解ガスを二酸化炭素分離装置に供給し、ガス化ガス及び電解ガスから二酸化炭素を分離することを特徴とする合成燃料の製造設備の改良方法。
図1に示す酸素分離工程OSは、空気2から酸素を分離する工程である。この酸素分離工程において分離した酸素は後述するガス化工程Gに供給する。
図1に示すガス化工程Gは、廃棄物3と、水4と、酸素とを高温で反応させて廃棄物をガス化し、二酸化炭素、一酸化炭素及び水素を含むガス化ガスG1[CO2/CO/H2]を生成する工程である。このガス化工程Gにおいて生成したガス化ガスG1[CO2/CO/H2]は、後述する二酸化炭素分離工程Sに供給する。
図1に示す二酸化炭素分離工程Sは、少なくともガス化ガスG1[CO2/CO/H2]を含む処理対象のガスから二酸化炭素を分離する工程である。処理対象ガスとして、ガス化ガスG1単独を、あるいは、ガス化ガスG1と後述する二酸化炭素電解工程Eにおいて生成した電解ガスG3[CO2/CO]の両方を用いることができる。ガス化ガスG1及び電解ガスG3から二酸化炭素を分離する場合には、必要に応じてこれらを混合して二酸化炭素分離工程Sに供給してもよい。
図1に示す二酸化炭素電解工程Eは、二酸化炭素分離工程Sにおいて分離された二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスG3[CO/CO2]を生成する工程である。この二酸化炭素電解工程Eにおいて生成した電解ガスG3[CO/CO2]は、二酸化炭素分離工程Sに戻す。
図1に示す水電解工程WEは、水を電気分解して酸素と水素を生成する工程である。この工程WEにおける具体的な電解条件や、電解装置または電解システムの構成については、水電解技術に関する公知の条件及び構成を制限なく採用できる。
図1に示すFT合成工程FTは、二酸化炭素分離工程Sにおいて二酸化炭素が分離された合成ガスG2、すなわち一酸化炭素及び水素を含む合成ガスG2[CO/H2]からフィッシャー・トロプシュ(FT)合成により合成燃料を生成する工程である。
以上説明した本発明の合成燃料の製造方法は、各工程を実施する為の各装置を全て新たに建造することによって実施できる。ただし、既存の製造設備に対して二酸化炭素電解装置及び必要に応じてその他の装置(例えば水電解装置)を追加することによっても実施できる。
改良の対象としての既存の合成燃料の製造設備の一例として、廃棄物と酸素と水とを高温で反応させて廃棄物をガス化し、二酸化炭素、一酸化炭素及び水素を含むガス化ガスG1を生成するガス化装置(g)と、少なくともガス化装置(g)において生成したガス化ガスG1から二酸化炭素を分離する二酸化炭素分離装置(s)と、二酸化炭素分離装置(s)において二酸化炭素が分離された合成ガスG2からフィッシャー・トロプシュ合成によって合成燃料を生成するFT合成装置と、を有し、二酸化炭素分離装置(s)において分離された二酸化炭素を大気中に放出する、既存の合成燃料の製造設備を挙げることができる。
本発明にかかる改良方法では、既存の合成燃料の製造装置に対して、二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスG3を生成する二酸化炭素電解装置(e)と、二酸化炭素分離装置(s)で発生した二酸化炭素を二酸化炭素電解装置(e)に供給する供給系7と、二酸化炭素電解装置(e)で生成した電解ガスG3を二酸化炭素分離装置(s)に供給する供給系8が追加される。
この二酸化炭素電解装置(e)及び供給系7、8を含む循環系の追加によって、既存の設備において二酸化炭素分離装置(s)から大気中に放出されていた二酸化炭素を二酸化炭素電解装置(e)に回収し、かつ二酸化炭素電解装置(e)においてその一部を一酸化炭素に変換して合成ガスG2の成分として利用して、二酸化炭素の排出量の効果的な低減が可能となる。
2:空気
3:廃棄物
4:水
5:燃料
6:オフガス
7:二酸化炭素供給系
8:電解ガス供給系
9:再生可能エネルギーによって発電された電力
10:再生可能エネルギーによって発電された電力
11:水素供給系
12:酸素供給系
OS:酸素分離工程
G:ガス化工程
S:二酸化炭素分離工程
FT:FT合成工程
E:二酸化炭素電解工程
WE:水電解工程
G1:ガス化ガス
G2:合成ガス
G3:電解ガス
Claims (5)
- 廃棄物と酸素と水とを高温で反応させて廃棄物をガス化し、二酸化炭素、一酸化炭素及び水素を含むガス化ガスを生成するガス化工程と、
少なくともガス化工程において生成したガス化ガスから二酸化炭素を分離する二酸化炭素分離工程と、
二酸化炭素分離工程において二酸化炭素が分離された合成ガスからフィッシャー・トロプシュ合成により合成燃料を生成するFT合成工程と、
を有する合成燃料の製造方法において、
さらに、二酸化炭素分離工程において分離された二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスを生成する二酸化炭素電解工程を有し、
二酸化炭素電解工程において生成した電解ガスを二酸化炭素分離工程に供給し、ガス化ガス及び電解ガスから二酸化炭素を分離することを特徴とする合成燃料の製造方法。 - さらに、水を電気分解して酸素と水素を生成する水電解工程を有し、生成した水素をFT合成工程に供給し、生成した酸素をガス化工程に供給する請求項1に記載の合成燃料の製造方法。
- さらに、空気から酸素を分離する酸素分離工程を有し、分離した酸素をガス化工程に供給する請求項1又は2に記載の合成燃料の製造方法。
- 既存の合成燃料の製造設備の装置において発生する二酸化炭素の大気中への排出量を低減する為の改良方法であって、
廃棄物と酸素と水とを高温で反応させて廃棄物をガス化し、二酸化炭素、一酸化炭素及び水素を含むガス化ガスを生成するガス化装置と、
少なくともガス化装置において生成したガス化ガスから二酸化炭素を分離する二酸化炭素分離装置と、
二酸化炭素分離装置において二酸化炭素が分離された合成ガスからフィッシャー・トロプシュ合成により合成燃料を生成するFT合成装置と、
を有する既存の合成燃料の製造設備に対して、
二酸化炭素分離装置において分離された二酸化炭素を電気分解して一酸化炭素及び二酸化炭素を含む電解ガスを生成する二酸化炭素電解装置を追加し、
二酸化炭素電解装置において生成した電解ガスを二酸化炭素分離装置に供給し、ガス化ガス及び電解ガスから二酸化炭素を分離することを特徴とする合成燃料の製造設備の改良方法。 - さらに、水を電気分解して酸素と水素を生成する水電解装置を追加し、生成した水素をFT合成装置に供給し、生成した酸素をガス化装置に供給する請求項4に記載の合成燃料の製造設備の改良方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022311114A AU2022311114A1 (en) | 2021-07-12 | 2022-07-11 | Synthetic fuel production method |
CN202280049653.1A CN117642487A (zh) | 2021-07-12 | 2022-07-11 | 合成燃料的制造方法 |
US18/576,502 US20240308932A1 (en) | 2021-07-12 | 2022-07-11 | Method for producing synthetic fuel |
EP22842074.1A EP4328287A1 (en) | 2021-07-12 | 2022-07-11 | Synthetic fuel production method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021115084A JP2023011306A (ja) | 2021-07-12 | 2021-07-12 | 合成燃料の製造方法 |
JP2021-115084 | 2021-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023286730A1 true WO2023286730A1 (ja) | 2023-01-19 |
Family
ID=84919347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027232 WO2023286730A1 (ja) | 2021-07-12 | 2022-07-11 | 合成燃料の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240308932A1 (ja) |
EP (1) | EP4328287A1 (ja) |
JP (1) | JP2023011306A (ja) |
CN (1) | CN117642487A (ja) |
AU (1) | AU2022311114A1 (ja) |
WO (1) | WO2023286730A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070763A (ja) * | 2008-09-19 | 2010-04-02 | Siemens Ag | 化学製品を提供するシステムおよび化学製品を提供するための方法 |
JP2010248459A (ja) * | 2009-04-16 | 2010-11-04 | Kazuteru Shinohara | バイオマスを原料とした液状油の製造方法 |
JP2014510163A (ja) * | 2011-02-11 | 2014-04-24 | スティーブ・クルースニャク | 炭化水素燃料調製のためのフィッシャートロプシュ法の強化 |
JP2016511296A (ja) | 2013-01-04 | 2016-04-14 | サウジ アラビアン オイル カンパニー | 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換 |
JP2020500258A (ja) * | 2016-08-29 | 2020-01-09 | ダイオキサイド マテリアルズ,インコーポレイティド | 再生可能燃料および化学品を製造するための装置および方法 |
-
2021
- 2021-07-12 JP JP2021115084A patent/JP2023011306A/ja active Pending
-
2022
- 2022-07-11 WO PCT/JP2022/027232 patent/WO2023286730A1/ja active Application Filing
- 2022-07-11 US US18/576,502 patent/US20240308932A1/en active Pending
- 2022-07-11 EP EP22842074.1A patent/EP4328287A1/en active Pending
- 2022-07-11 AU AU2022311114A patent/AU2022311114A1/en active Pending
- 2022-07-11 CN CN202280049653.1A patent/CN117642487A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070763A (ja) * | 2008-09-19 | 2010-04-02 | Siemens Ag | 化学製品を提供するシステムおよび化学製品を提供するための方法 |
JP2010248459A (ja) * | 2009-04-16 | 2010-11-04 | Kazuteru Shinohara | バイオマスを原料とした液状油の製造方法 |
JP2014510163A (ja) * | 2011-02-11 | 2014-04-24 | スティーブ・クルースニャク | 炭化水素燃料調製のためのフィッシャートロプシュ法の強化 |
JP2016511296A (ja) | 2013-01-04 | 2016-04-14 | サウジ アラビアン オイル カンパニー | 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換 |
JP2020500258A (ja) * | 2016-08-29 | 2020-01-09 | ダイオキサイド マテリアルズ,インコーポレイティド | 再生可能燃料および化学品を製造するための装置および方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240308932A1 (en) | 2024-09-19 |
CN117642487A (zh) | 2024-03-01 |
AU2022311114A1 (en) | 2023-12-14 |
JP2023011306A (ja) | 2023-01-24 |
EP4328287A1 (en) | 2024-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9085497B2 (en) | Conversion of carbon dioxide to hydrocarbons via hydrogenation | |
US9249064B2 (en) | Storage of intermittent renewable energy as fuel using carbon containing feedstock | |
CA2357527C (en) | Methanol recycle stream | |
EP2637991B1 (en) | Method and apparatus for the carbon dioxide based methanol synthesis | |
EP2166064A1 (en) | A chemical product providing system and method for providing a chemical product | |
US20080031809A1 (en) | Controlling the synthesis gas composition of a steam methane reformer | |
US20200078728A1 (en) | A process and relating apparatus to make pure hydrogen from a syngas originated from wastes gasification | |
US20040171701A1 (en) | Methanol production process | |
KR20230018436A (ko) | 순환 탄소 공정 | |
EP3029016B1 (en) | Method and system for acetylene (CH2) or ethylene (C2H4) production | |
CN106460208B (zh) | 使用可再生电能生产烃的烃生产设备和方法 | |
JP6999213B1 (ja) | カーボンニュートラル液体燃料製造システム | |
JP4030846B2 (ja) | メタノールの製造方法および装置 | |
KR20210097189A (ko) | 스팀/co2 개질에 의한 수소 및 ft 생성물의 제조 | |
US12098328B2 (en) | Processes and systems for producing hydrocarbon fuels having high carbon conversion efficiency | |
WO2023286730A1 (ja) | 合成燃料の製造方法 | |
WO2023286731A1 (ja) | 合成燃料の製造方法 | |
EP3411356A1 (en) | A carbon neutral process and relating apparatus to produce urea from municipal or industrial wastes with zero emissions | |
TW202348548A (zh) | 製造可再生燃料的方法及設備 | |
WO2024189359A1 (en) | Apparatus for producing sustainable aviation fuels using synthesis gas fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22842074 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022842074 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022311114 Country of ref document: AU Ref document number: AU2022311114 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2022842074 Country of ref document: EP Effective date: 20231123 |
|
ENP | Entry into the national phase |
Ref document number: 2022311114 Country of ref document: AU Date of ref document: 20220711 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024550002 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401000081 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280049653.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |