WO2023286595A1 - Polyurethane resin composition - Google Patents

Polyurethane resin composition Download PDF

Info

Publication number
WO2023286595A1
WO2023286595A1 PCT/JP2022/025875 JP2022025875W WO2023286595A1 WO 2023286595 A1 WO2023286595 A1 WO 2023286595A1 JP 2022025875 W JP2022025875 W JP 2022025875W WO 2023286595 A1 WO2023286595 A1 WO 2023286595A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing compound
butylene oxide
polyurethane resin
resin composition
mass
Prior art date
Application number
PCT/JP2022/025875
Other languages
French (fr)
Japanese (ja)
Inventor
梓 金井
勝紀 竹田
望 繁中
愛 石野
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Publication of WO2023286595A1 publication Critical patent/WO2023286595A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • An embodiment of the present invention relates to a polyurethane resin composition.
  • Patent Document 1 discloses a polyurethane resin composition containing a hydroxyl group-containing compound, an isocyanate group-containing compound, a metal hydroxide and a plasticizer, wherein the hydroxyl group-containing compound contains polybutadiene polyol and castor oil-based polyol, A polyurethane resin composition is disclosed wherein the metal hydroxide is aluminum hydroxide and/or magnesium hydroxide.
  • An object of the embodiments of the present invention is to provide a polyurethane resin composition that is excellent in heat and humidity resistance.
  • a polyurethane resin composition comprising a butylene oxide-based polyol (A2) in which the above is a butylene oxide unit, and wherein the butylene oxide-based polyol (A2) has a number average molecular weight of 400 or more and 3,000 or less.
  • the butylene oxide-based polyol (A2) has a number average molecular weight of 600 or more and 1600 or less, and the content of the butylene oxide-based polyol (A2) in 100% by mass of the hydroxyl group-containing compound (A) is 20% by mass or more.
  • the polyurethane resin composition according to this embodiment contains a hydroxyl group-containing compound (A) and an isocyanate group-containing compound (B).
  • hydroxyl group-containing compound (A) As the hydroxyl group-containing compound (A), a polyol compound having two or more hydroxyl groups in one molecule can be used.
  • the hydroxyl group-containing compound (A) is a polybutadiene polyol (A1) and a butylene oxide and a polyol (A2).
  • the polybutadiene polyol (A1) is not particularly limited, and preferably has a 1,4-bonded type, 1,2-bonded type, or a mixture of these polybutadiene structures and at least two hydroxyl groups in the molecule. More preferably, both ends of the polybutadiene structure have hydroxyl groups.
  • the polybutadiene polyol (A1) may be a hydrogenated polybutadiene polyol in which some or all of its unsaturated double bonds are hydrogenated, or a combination of non-hydrogenated and hydrogenated polybutadiene polyols. Moreover, two or more polybutadiene polyols having different molecular weights and functional group numbers may be used in combination.
  • the molecular weight of the polybutadiene polyol (A1) is not particularly limited. good.
  • the number of functional groups of polybutadiene polyol (A1) is not particularly limited, and may be, for example, 2.0 to 4.0 or 2.0 to 2.5.
  • the hydroxyl value of the polybutadiene polyol (A1) is not particularly limited, and may be, for example, 10 to 200 mgKOH/g, 15 to 150 mgKOH/g, 20 to 120 mgKOH/g, 25 to 100 mgKOH/g, or 40 to 90 mgKOH. /g.
  • the number average molecular weight (Mn) of polybutadiene polyol (A1) is a value measured by the GPC method (gel permeation chromatography method) and calculated using a standard polystyrene calibration curve.
  • GPC conditions are, for example, column: "TSKgel GMHHR-H” manufactured by Tosoh Corporation, solvent: THF, flow rate: 0.6 mL/min, measurement temperature: 40°C.
  • the hydroxyl value of polybutadiene polyol (A1) is a value measured according to A method of JIS K1557-1:2007. Potassium hydroxide ( KOH) in mg.
  • the number of functional groups of polybutadiene polyol (A1) is a value calculated by the following formula.
  • the content of the polybutadiene polyol (A1) is not particularly limited, but is preferably 20 to 90% by mass, more preferably 40 to 80% by mass, based on 100% by mass of the hydroxyl group-containing compound (A). It is preferably 50 to 80% by mass.
  • the butylene oxide-based polyol (A2) is a polyol in which 50 mol % or more of the alkylene oxide units are butylene oxide units. More specifically, the butylene oxide-based polyol (A2) is a polyalkylene glycol in which 50 mol% or more of the total alkylene oxide used to form the polyol is butylene oxide, and is a broadly defined polybutylene glycol. .
  • the moist heat resistance of the polyurethane resin composition can be improved.
  • the amount of butylene oxide units relative to all alkylene oxide units is preferably 60 mol% or more, more preferably 60 mol% or more, from the viewpoint of wet heat resistance and compatibility with the polybutadiene polyol (A1). It may be 70 mol % or more, may be 80 mol % or more, may be 90 mol % or more, or may be 100 mol %.
  • the other alkylene oxide units are not particularly limited, and examples include ethylene oxide units and/or propylene oxide units.
  • the butylene oxide-based polyol (A2) may be a polybutylene glycol composed of 100 mol% of alkylene oxide units and of butylene oxide units.
  • a butylene oxide-based polyol (A2) having a number average molecular weight (Mn) of 400 to 3000 is used.
  • Mn number average molecular weight
  • the butylene oxide polyol (A2) preferably has a number average molecular weight of 600 or more, more preferably 800 or more.
  • the number average molecular weight is preferably 2000 or less, more preferably 1600 or less, and may be 1300 or less.
  • the hydroxyl value of the butylene oxide-based polyol (A2) is not particularly limited, and may be, for example, 37-500 mgKOH/g, 50-300 mgKOH/g, or 60-200 mgKOH/g.
  • the number average molecular weight (Mn) of the butylene oxide-based polyol (A2) is a value converted from the hydroxyl value and the number of functional groups according to the following formula.
  • the hydroxyl value of the butylene oxide polyol (A2) is a value (mgKOH/g) measured according to A method of JIS K1557-1:2007. .
  • the number of functional groups of the butylene oxide-based polyol (A2) is obtained from the number of active hydrogen atoms in the active hydrogen atom-containing compound as an initiator as described below.
  • the structure of the butylene oxide-based polyol (A2) is not particularly limited.
  • it has a structure obtained by addition polymerization of an alkylene oxide containing butylene oxide to a compound having 2 to 8 active hydrogen atoms as an initiator.
  • the butylene oxide 1,2-butylene oxide and/or 2,3-butylene oxide are used, preferably 1,2-butylene oxide.
  • a bifunctional butylene oxide polyol (A2) can be obtained. If a compound (diol) having two active hydrogen atoms such as ethylene glycol or propylene glycol is used as the initiator, a bifunctional butylene oxide polyol (A2) can be obtained. If a compound (triol) having three active hydrogen atoms such as glycerin or trimethylolpropane is used as the initiator, a trifunctional butylene oxide polyol (A2) can be obtained. Since it is believed that tri-functionality cures faster than di-functionality, a tri-functional butylene oxide polyol (A2) may be used when faster curing is desired.
  • the number of functional groups of the butylene oxide-based polyol (A2) is not particularly limited, and may be 2-8 or 2-4.
  • the butylene oxide-based polyol (A2) is bifunctional or trifunctional, and a combination of bifunctional and trifunctional may be used.
  • butylene oxide when butylene oxide is copolymerized with other alkylene oxide, random copolymerization or block copolymerization may be used.
  • a terminal ethylene oxide-added polybutylene glycol having a structure in which butylene oxide is added to an initiator and then ethylene oxide is added to the end of the polybutylene oxide chain may be used. Curability can be enhanced by adding ethylene oxide to the terminal.
  • butylene oxide-based polyol (A2) any one of those having the above structure may be used, or two or more of those having different number average molecular weights, structures, etc. may be used in combination.
  • the content of the butylene oxide-based polyol (A2) is not particularly limited, it is preferably 10 to 80% by mass with respect to 100% by mass of the hydroxyl group-containing compound (A).
  • the content of the butylene oxide-based polyol (A2) is 10% by mass or more, the mixed viscosity during production of the polyurethane resin composition can be lowered. Further, when the content is 80% by mass or less, the curability can be improved.
  • the content of the butylene oxide-based polyol (A2) is more preferably 20 to 60% by mass, still more preferably 20 to 50% by mass.
  • the mass ratio of the polybutadiene polyol (A1) and the butylene oxide polyol (A2) is not particularly limited, but (A2)/(A1) is preferably 0.1 to 3.5, more preferably 0.2. ⁇ 1.0.
  • the hydroxyl group-containing compound (A) may consist only of the polybutadiene polyol (A1) and the butylene oxide-based polyol (A2), but may also contain other hydroxyl group-containing compounds.
  • the total amount (A1+A2) of the polybutadiene polyol (A1) and the butylene oxide polyol (A2) relative to 100% by mass of the hydroxyl group-containing compound (A) is not particularly limited, it is preferably 70% by mass or more, more preferably 80% by mass. It is at least 90% by mass, more preferably at least 90% by mass, and may be 100% by mass.
  • polyols are used as the other hydroxyl group-containing compound, and there is no particular limitation.
  • examples thereof include castor oil, castor oil fatty acids, hydrogenated castor oils obtained by hydrogenating these, and castor oil-based polyols produced using hydrogenated castor oil fatty acids.
  • other polyester polyols, polyether polyols, polycarbonate polyols, dimer acid polyols, polycaprolactone polyols, acrylic polyols, polyisoprene polyols, and the like are included.
  • low-molecular-weight polyols that are commonly used as cross-linking agents may be used.
  • N,N-bis(2-hydroxypropyl)aniline hydroquinone-bis( ⁇ -hydroxyethyl)ether, resorcinol-bis( ⁇ -hydroxyethyl) ether, and aliphatic alcohols such as ethylene glycol, 1,4-butanediol, octanediol, trimethylolpropane, and triisopropanolamine.
  • isocyanate group-containing compound (B) Various polyisocyanate compounds having two or more isocyanate groups in one molecule can be used as the isocyanate group-containing compound (B).
  • examples of the isocyanate group-containing compound (B) include an aliphatic polyisocyanate compound (B1), an alicyclic polyisocyanate compound (B2), an aromatic polyisocyanate compound (B3), and modified and polynuclear compounds thereof. Any one of them may be used, or two or more may be used in combination.
  • Examples of the aliphatic polyisocyanate compound (B1) include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like.
  • HDI hexamethylene diisocyanate
  • 2,2,4-trimethylhexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate
  • lysine diisocyanate 2-methylpentane-1,5-diisocyanate
  • 3-methylpentane-1,5-diisocyanate 3-methylpentane-1,5-diisocyanate and the like.
  • Examples of the alicyclic polyisocyanate compound (B2) include isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3 -Bis(isocyanatomethyl)cyclohexane and the like.
  • IPDI isophorone diisocyanate
  • hydrogenated xylylene diisocyanate 4,4′-dicyclohexylmethane diisocyanate
  • 1,4-cyclohexane diisocyanate 1,4-cyclohexane diisocyanate
  • methylcyclohexylene diisocyanate 1,3 -Bis(isocyanatomethyl)cyclohexane and the like.
  • aromatic polyisocyanate compound (B3) examples include tolylene diisocyanate (TDI, such as 2,4-TDI, 2,6-TDI), diphenylmethane diisocyanate (MDI, such as 2,2'-MDI, 2,4' -MDI, 4,4'-MDI), 4,4'-dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate (XDI), 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, etc. mentioned.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • MDI such as 2,2'-MDI, 2,4' -MDI, 4,4'-MDI
  • XDI xylylene diisocyanate
  • 1,3-phenylene diisocyanate 1,4-phenylene diisocyanate, etc. mentioned.
  • Modified products of these polyisocyanate compounds (B1) to (B3) include, for example, isocyanurate modified products, allophanate modified products, biuret modified products, adduct modified products, and carbodiimide modified products.
  • the isocyanate group-containing compound (B) preferably contains an isocyanurate modified product.
  • the modified isocyanurate By using the modified isocyanurate, it has excellent miscibility with the hydroxyl group-containing compound (A), and can improve uniformity of hardness of the cured polyurethane resin composition.
  • the isocyanurate modified product include an isocyanurate modified product of the aliphatic polyisocyanate compound (B1), an isocyanurate modified product of the alicyclic polyisocyanate compound (B2), and an isocyanurate modified product of the aromatic polyisocyanate compound (B3). mentioned.
  • Preferred is the isocyanurate modified form of the aliphatic polyisocyanate compound (B1), and more preferred is HDI isocyanurate.
  • the isocyanate group-containing compound (B) preferably contains HDI.
  • HDI and the modified isocyanurate may be used in combination, or HDI and HDI isocyanurate may be used in combination.
  • the isocyanate group-containing compound (B) may contain MDI.
  • MDI may be monomeric MDI or polymeric MDI (crude MDI).
  • MDI and the above HD I and/or modified isocyanurate preferably HDI isocyanurate may be used in combination.
  • the content of the isocyanate group-containing compound (B) in the polyurethane resin composition is not particularly limited. parts, 10 to 40 parts by mass, or 15 to 30 parts by mass.
  • the ratio of the hydroxyl group-containing compound (A) and the isocyanate group-containing compound (B) is not particularly limited.
  • the ratio NCO/OH (index) may be from 0.6 to 1.5, from 0.7 to 1.3, or from 0.8 to 1.2.
  • the polyurethane resin composition according to the present embodiment may optionally contain, for example, a catalyst, an antioxidant, a foam stabilizer, a diluent, a flame retardant, an ultraviolet absorber, a colorant, Various additives such as fillers and plasticizers can be added as long as the purpose of the present embodiment is not impaired.
  • the catalyst for example, metal catalysts such as organic tin catalysts, organic lead catalysts, and organic bismuth catalysts, and various urethane polymerization catalysts such as amine catalysts can be used.
  • the content of the catalyst is not particularly limited, and may be, for example, 0.0001 to 0.1% by mass or 0.001 to 0.01% by mass with respect to 100% by mass of the polyurethane resin composition.
  • the polyurethane resin composition according to the present embodiment is configured as a two-component polyurethane resin composition containing a first liquid containing a hydroxyl group-containing compound (A) and a second liquid containing an isocyanate group-containing compound (B).
  • A a hydroxyl group-containing compound
  • B an isocyanate group-containing compound
  • Such a two-pack type polyurethane resin composition may further comprise a third liquid containing the other components as well as the first and second liquids.
  • the two-component polyurethane resin composition can be produced by preparing a first liquid and a second liquid, respectively, that is, the first liquid and the second liquid may be filled in separate containers. .
  • the first liquid and the second liquid filled in separate containers are mixed at the time of use, whereby the hydroxyl group-containing compound (A) and the isocyanate group-containing compound (B) react to form a polyurethane resin, which is cured. good too. At that time, it may be cured by heating.
  • the polyurethane resin composition according to this embodiment may be obtained by mixing the first liquid and the second liquid, may be in a liquid state before curing, or may be in a cured state.
  • the first liquid may be composed only of the hydroxyl group-containing compound (A), and in addition to the hydroxyl group-containing compound (A), if necessary, for example, a catalyst, an antioxidant, a foam stabilizer, a diluent , flame retardants, ultraviolet absorbers, colorants, fillers, plasticizers, and other additives.
  • the first liquid contains a hydroxyl group-containing compound (A) and a catalyst.
  • the second liquid may be composed only of the isocyanate group-containing compound (B), and in addition to the isocyanate group-containing compound (B), if necessary, for example, an antioxidant, a foam stabilizer, a diluent , flame retardants, ultraviolet absorbers, colorants, fillers, plasticizers, and other additives.
  • an antioxidant for example, an antioxidant, a foam stabilizer, a diluent , flame retardants, ultraviolet absorbers, colorants, fillers, plasticizers, and other additives.
  • the use of the polyurethane resin composition according to the present embodiment is not particularly limited, but it is preferably used as an electrical insulating sealant in electrical and electronic parts.
  • electric/electronic components include, but are not limited to, transformers such as transformer coils, choke coils and reactor coils, equipment control boards, sensors, and wireless communication components.
  • Electrical and electronic components resin-sealed using the polyurethane resin composition according to the present embodiment include, for example, electric washing machines, toilet seats, water heaters, water purifiers, baths, dishwashers, solar panels, power tools, and automobiles. , can be used for motorcycles, etc.
  • polyurethane resin composition will be described in detail below based on Examples and Comparative Examples, but the present invention is not limited thereto.
  • Polybutadiene polyol 1 number average molecular weight 2800, hydroxyl value 47 mgKOH / g, functional group number 2.3, product name: Poly bd R-45HTLO, manufactured by Clay Valley ⁇
  • Polybutadiene polyol 2 number average molecular weight 1600, hydroxyl value 80 mgKOH / g
  • Azeotropic mixture 105 containing 150 parts by mass of 1,3-butadiene, 88% by mass of isopropanol and 12% by mass of water in a stirred reactor in which the system is purged with nitrogen, with a functional group number of 2.3.
  • Parts by mass and 30 parts by mass of a 60% aqueous hydrogen peroxide solution were charged.
  • the contents of the reactor were heated to 120° C. with continuous stirring and maintained at 120° C. to 130° C. with stirring for 2 hours to carry out the polymerization reaction.
  • the reactor contents are cooled, the reaction product is removed from the reactor, unreacted monomer is removed from the reaction product, and the product is washed with water to remove residual isopropanol and unreacted hydrogen peroxide. removed.
  • This product was vacuum dried to obtain a polybutadiene polyol having a viscosity of 5000 mPa ⁇ s at 25°C.
  • BO-based polyol 1 Polybutylene glycol obtained by addition polymerization of butylene oxide using propylene glycol as an initiator according to Synthesis Example 1 below (number average molecular weight: 3000, number of functional groups: 2, butylene oxide units among all alkylene oxide units amount of 100 mol%)
  • Synthesis Example 1 2.53 parts by mass of propylene glycol, 0.55 parts by mass of 48% KOH and 10.8 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after replacing with nitrogen, the pressure in the autoclave was reduced. and heated. After the BO introduction reaction was carried out at 120 ⁇ 5° C. and the maximum pressure of 0.2 MPa, the BO aging reaction was carried out at 120 ⁇ 5° C.
  • BO-based polyol 2 In Synthesis Example 1 above, the amount of BO added after the BO aging reaction in the first stage was set to 40 parts by mass, and the others were the same as in Synthesis Example 1, butylene oxide was added using propylene glycol as an initiator. Polybutylene glycol obtained by addition polymerization (number average molecular weight: 1600, number of functional groups: 2, amount of butylene oxide units in all alkylene oxide units: 100 mol%) BO-based polyol 3: In Synthesis Example 1 above, the amount of BO added after the BO ripening reaction in the first stage was set to 13.3 parts by mass, and the other methods were the same as in Synthesis Example 1, butylene glycol was used as an initiator.
  • Polybutylene glycol obtained by addition polymerization of oxide (number average molecular weight 800, number of functional groups 2, amount of butylene oxide units in all alkylene oxide units 100 mol%)
  • BO-based polyol 4 Polybutylene glycol obtained by addition polymerization of butylene oxide using propylene glycol as an initiator according to Synthesis Example 2 below (number average molecular weight: 400, number of functional groups: 2, butylene oxide units among all alkylene oxide units amount of 100 mol%)
  • Synthesis Example 2 19 parts by mass of propylene glycol, 0.83 parts by mass of 48% KOH and 81 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave and replaced with nitrogen. bottom.
  • the BO introduction reaction was carried out at 120 ⁇ 5° C. and the maximum pressure of 0.2 MPa
  • the BO aging reaction was carried out at 120 ⁇ 5° C. for 240 minutes.
  • the pressure was reduced to 20 mmHg (2.7 kPa) at 100 ⁇ 5° C., followed by purification and filtration to obtain bifunctional polybutylene glycol.
  • BO-based polyol 5 According to Synthesis Example 3 below, butylene oxide was addition-polymerized using propylene glycol as an initiator, and ethylene oxide was added to the end of the polybutylene glycol with EO added (number average molecular weight: 1250, functional radix 2, amount of butylene oxide units in all alkylene oxide units: 57 mol%, amount of ethylene oxide units: 43 mol%)
  • Synthesis Example 3 6.08 parts by mass of propylene glycol, 0.55 parts by mass of 48% KOH, and 25.9 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after purging with nitrogen, the pressure in the autoclave was reduced. and heated.
  • the BO aging reaction was carried out at 120 ⁇ 5° C. for 240 minutes. Then, after cooling to 80°C, it was withdrawn, and the pressure was reduced to 10 mmHg or less at 90 to 110°C. After that, 38.0 parts by mass of BO was added, and after performing BO introduction reaction at 120 ⁇ 5° C. and maximum pressure of 0.4 MPa, BO aging reaction was performed at 120 ⁇ 5° C. for 360 minutes.
  • ethylene oxide ethylene oxide
  • 30.0 parts by mass of ethylene oxide (EO) was added, and an EO introduction reaction was performed at 120 ⁇ 5°C and a maximum pressure of 0.4 MPa, and then an EO aging reaction was performed at 120 ⁇ 5°C for 360 minutes. .
  • the pressure was reduced to 20 mmHg (2.7 kPa) at 100 ⁇ 5° C., followed by purification and filtration to obtain EO-terminated polybutylene glycol.
  • BO-based polyol 6 Polybutylene glycol obtained by addition polymerization of butylene oxide using glycerin as an initiator according to Synthesis Example 4 below (number average molecular weight of 1100, number of functional groups of 3, number of butylene oxide units in all alkylene oxide units amount 100 mol%)
  • Synthesis Example 4 To 8.37 parts by mass of glycerin, 0.5 parts by mass of 48% KOH and 28.1 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after purging with nitrogen, the pressure in the autoclave was reduced. , raised the temperature. After the BO introduction reaction was carried out at 120 ⁇ 5° C.
  • the BO aging reaction was carried out at 120 ⁇ 5° C. for 240 minutes. After cooling to 80°C, the pressure was reduced to 10 mmHg or less at 90 to 110°C. After that, 63.62 parts by mass of BO was added, and after performing BO introduction reaction at 120 ⁇ 5° C. and maximum pressure of 0.4 MPa, BO aging reaction was performed at 120 ⁇ 5° C. for 360 minutes. After cooling, the pressure was reduced to 20 mmHg (2.7 kPa) at 100 ⁇ 5° C., followed by purification and filtration to obtain trifunctional polybutylene glycol.
  • - BO-based polyol 7 According to Synthesis Example 5 below, butylene oxide is addition-polymerized using glycerin as an initiator, and ethylene oxide is added to the end of the polybutylene glycol (number average molecular weight: 1,120, number of functional groups 3, the amount of butylene oxide units in all alkylene oxide units is 84 mol%, and the amount of ethylene oxide units is 16 mol%)
  • Synthesis Example 5 In Synthesis Example 4 above, 55.24 parts by mass of BO was added in the second-stage BO aging reaction, 10.2 parts by mass of ethylene oxide (EO) was added, and the temperature was adjusted to 120°C ⁇ 5°C and the maximum pressure of 0.
  • EO ethylene oxide
  • EO aging reaction was performed at 120 ⁇ 5° C. for 360 minutes. After cooling without EO, the pressure was reduced to 20 mmHg (2.7 kPa) at 100 ⁇ 5° C., followed by purification and filtration to obtain trifunctional EO-terminated polybutylene glycol.
  • ⁇ PO polyol 1 number average molecular weight 700, functional group 2 polypropylene glycol, product name: Hiflex D-700, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • PO polyol 2 number average molecular weight 1000, functional group 2 Polypropylene glycol, product name: Hiflex D-1000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • PO-based polyol 3 polyoxyethylene polyoxypropylene glycol with a number average molecular weight of 1,300 and a number of functional groups of 2, product name: Epan 410, No. Ichi Kogyo Seiyaku Co., Ltd.
  • PO polyol 4 number average molecular weight 1000, functional group 3 polypropylene glycol, product name: X-2116, Daiichi Kogyo Seiyaku Co., Ltd.
  • PO polyol 5 number average molecular weight 3000 , Polypropylene glycol with a functional number of 3, Product name: Hiflex G-3000, Daiichi Kogyo Seiyaku Co., Ltd.
  • Castor oil-based polyol Number average molecular weight 938, Functional group number 2.7, Product name: Castor oil D, Ito oil ( Co., Ltd. [catalyst] ⁇ Catalyst: dioctyl tin, product name: Neostan U-810, manufactured by Nitto Kasei Co., Ltd.
  • the defoamed polyurethane resin composition was poured into a mold of 5 cm long ⁇ 5 cm wide ⁇ 1 cm high and cured in a curing furnace at 80° C. for 48 hours to prepare resin pieces.
  • the resin piece was treated in a high temperature and high humidity bath at a temperature of 121 ° C., a humidity of 100%, and a humidity of 2 atm, and after 500 hours and 1000 hours, the hardness was measured with a type A durometer in accordance with JIS K6253-3. The change from 0.01 to 0.000 was confirmed and evaluated according to the following criteria.
  • a resin piece having the same durability as described above was prepared, and the resin piece was treated in a high-temperature and high-humidity bath at a temperature of 121 ° C., a humidity of 100%, and 2 atm.
  • the specific resistance was measured according to JIS K6911 (measured voltage: 500 V) and evaluated according to the following criteria.
  • a JIS type 2 comb-shaped electrode substrate was placed on a glass petri dish, and an anode and a cathode were wired.
  • the defoamed polyurethane resin composition was poured onto the mold and cured in a curing oven at 80° C. for 48 hours to prepare a test piece.
  • the test piece was subjected to a migration test by applying a voltage of 100 V in a moist heat bath at a temperature of 85° C. and a humidity of 85%, and whether or not the current was applied within 1000 hours was evaluated according to the following criteria. As the amount of water around the electrode increases, copper ions are eluted from the anode, migrate to the cathode, and deposit on the cathode side. If the deposit grows, it causes insulation failure, and finally short-circuits between wiring patterns. This is a test of whether or not such a short circuit occurs.
  • Comparative Examples 1 to 5 using PO-based polyols 1 to 5 as polyols used in combination with polybutadiene polyol were excellent in durability (hardness change) after wet heat treatment, but the volume resistivity after wet heat treatment was excellent. The deterioration was large, the migration property was poor, and the wet heat resistance was poor.
  • Comparative Example 6 in which a castor oil-based polyol was used as the polyol used in combination with the polybutadiene polyol, the migration properties after the wet heat treatment were excellent, but the durability (hardness change) after the wet heat treatment was poor, and the volume resistivity was poor. also showed a downward trend. Moreover, when a castor oil-based polyol was used, curability was also inferior.
  • Examples 1 to 10 in which polybutadiene polyol and BO-based polyol were used in combination were excellent in durability (hardness change), volume resistivity and migration properties after wet heat treatment, and were superior to Comparative Examples 1 to 6. It was excellent in heat and humidity resistance.

Abstract

Provided is a polyurethane resin composition having excellent resistance to wet heat. A polyurethane resin composition according to one embodiment contains a hydroxyl group-containing compound (A) and an isocyanate group-containing compound (B). The hydroxyl group-containing compound (A) includes a polybutadiene polyol (A1) and a butylene oxide-based polyol (A2) in which 50 mol% or more of alkylene oxide units are butylene oxide units. The number average molecular weight of the butylene oxide-based polyol (A2) is 400-3000 inclusive.

Description

ポリウレタン樹脂組成物Polyurethane resin composition
 本発明の実施形態は、ポリウレタン樹脂組成物に関する。 An embodiment of the present invention relates to a polyurethane resin composition.
 従来、例えば、電子回路基板や電子部品は、外的要因から保護するためにポリウレタン樹脂組成物を用いて封止することが行われており、ポリウレタン樹脂組成物のポリオールとしてポリブタジエンポリオールを用いることが知られている。 Conventionally, for example, electronic circuit boards and electronic components are sealed using a polyurethane resin composition in order to protect them from external factors, and polybutadiene polyol can be used as the polyol of the polyurethane resin composition. Are known.
 例えば、特許文献1には、水酸基含有化合物、イソシアネート基含有化合物、金属水酸化物および可塑剤を含有するポリウレタン樹脂組成物であって、前記水酸基含有化合物がポリブタジエンポリオールおよびひまし油系ポリオールを含有し、前記金属水酸化物が水酸化アルミニウムおよび/または水酸化マグネシウムである、ポリウレタン樹脂組成物が開示されている。 For example, Patent Document 1 discloses a polyurethane resin composition containing a hydroxyl group-containing compound, an isocyanate group-containing compound, a metal hydroxide and a plasticizer, wherein the hydroxyl group-containing compound contains polybutadiene polyol and castor oil-based polyol, A polyurethane resin composition is disclosed wherein the metal hydroxide is aluminum hydroxide and/or magnesium hydroxide.
特開2016-20439公報Japanese Patent Application Laid-Open No. 2016-20439
 電気電子部品においては、その長寿命化に伴い、長期にわたって湿熱下で使用されることから、優れた耐湿熱性が求められており、例えば電気絶縁用の封止剤として用いられるポリウレタン樹脂組成物にも更なる耐湿熱性の向上が望まれる。 In electrical and electronic parts, as they are used for a long time under moist heat, along with the extension of their life, excellent moist heat resistance is required. For example, polyurethane resin compositions used as sealants for electrical insulation are required. Further improvement in wet heat resistance is desired.
 本発明の実施形態は、耐湿熱性に優れるポリウレタン樹脂組成物を提供することを目的とする。 An object of the embodiments of the present invention is to provide a polyurethane resin composition that is excellent in heat and humidity resistance.
 本発明は以下に示される実施形態を含む。
[1] 水酸基含有化合物(A)およびイソシアネート基含有化合物(B)を含むポリウレタン樹脂組成物であって、前記水酸基含有化合物(A)が、ポリブタジエンポリオール(A1)と、アルキレンオキシド単位の50モル%以上がブチレンオキシド単位であるブチレンオキシド系ポリオール(A2)とを含み、前記ブチレンオキシド系ポリオール(A2)の数平均分子量が400以上3000以下である、ポリウレタン樹脂組成物。
[2] 前記水酸基含有化合物(A)100質量%における前記ブチレンオキシド系ポリオール(A2)の含有量が10質量%以上80質量%以下である、[1]に記載のポリウレタン樹脂組成物。
[3] 前記ブチレンオキシド系ポリオール(A2)の数平均分子量が600以上1600以下であり、前記水酸基含有化合物(A)100質量%における前記ブチレンオキシド系ポリオール(A2)の含有量が20質量%以上60質量%以下である、[1]または[2]に記載のポリウレタン樹脂組成物。
[4] 前記イソシアネート基含有化合物(B)がイソシアヌレート変性体を含む、[1]~[3]のいずれか1項に記載のポリウレタン樹脂組成物。
[5] 前記水酸基含有化合物(A)を含む第1液と、前記イソシアネート基含有化合物(B)を含む第2液と、を含む二液型である、[1]~[4]のいずれか1項に記載のポリウレタン樹脂組成物。
[6] 電気絶縁用封止剤として用いられる[1]~[5]のいずれか1項に記載のポリ
ウレタン樹脂組成物。
The present invention includes embodiments shown below.
[1] A polyurethane resin composition containing a hydroxyl group-containing compound (A) and an isocyanate group-containing compound (B), wherein the hydroxyl group-containing compound (A) is a polybutadiene polyol (A1) and 50 mol% of alkylene oxide units A polyurethane resin composition comprising a butylene oxide-based polyol (A2) in which the above is a butylene oxide unit, and wherein the butylene oxide-based polyol (A2) has a number average molecular weight of 400 or more and 3,000 or less.
[2] The polyurethane resin composition according to [1], wherein the content of the butylene oxide-based polyol (A2) in 100% by mass of the hydroxyl group-containing compound (A) is 10% by mass or more and 80% by mass or less.
[3] The butylene oxide-based polyol (A2) has a number average molecular weight of 600 or more and 1600 or less, and the content of the butylene oxide-based polyol (A2) in 100% by mass of the hydroxyl group-containing compound (A) is 20% by mass or more. The polyurethane resin composition according to [1] or [2], which is 60% by mass or less.
[4] The polyurethane resin composition according to any one of [1] to [3], wherein the isocyanate group-containing compound (B) contains an isocyanurate modified product.
[5] Any one of [1] to [4], which is a two-pack type containing a first liquid containing the hydroxyl group-containing compound (A) and a second liquid containing the isocyanate group-containing compound (B). 2. The polyurethane resin composition according to item 1.
[6] The polyurethane resin composition according to any one of [1] to [5], which is used as an electrical insulating sealant.
 本発明の実施形態によれば、耐湿熱性に優れるポリウレタン樹脂組成物を提供することができる。 According to the embodiment of the present invention, it is possible to provide a polyurethane resin composition with excellent resistance to moist heat.
 本実施形態に係るポリウレタン樹脂組成物は、水酸基含有化合物(A)と、イソシアネート基含有化合物(B)と、を含有する。 The polyurethane resin composition according to this embodiment contains a hydroxyl group-containing compound (A) and an isocyanate group-containing compound (B).
 [水酸基含有化合物(A)]
 水酸基含有化合物(A)としては、1分子中に2つ以上の水酸基を有するポリオール化合物を用いることができ、本実施形態では、水酸基含有化合物(A)は、ポリブタジエンポリオール(A1)とブチレンオキシド系ポリオール(A2)とを含む。
[Hydroxyl group-containing compound (A)]
As the hydroxyl group-containing compound (A), a polyol compound having two or more hydroxyl groups in one molecule can be used. In the present embodiment, the hydroxyl group-containing compound (A) is a polybutadiene polyol (A1) and a butylene oxide and a polyol (A2).
 ポリブタジエンポリオール(A1)としては、特に限定されず、分子中に1,4-結合型、1,2-結合型またはそれらが混在したポリブタジエン構造と少なくとも2つの水酸基を有するものが好ましい。より好ましくは、ポリブタジエン構造の両末端にそれぞれ水酸基を有するものである。ポリブタジエンポリオール(A1)としては、その不飽和二重結合の一部または全てが水添された水添ポリブタジエンポリオールでもよく、未水添のものと水添されたものを併用してもよい。また、分子量や官能基数の異なるポリブタジエンポリオールを2種以上併用してもよい。 The polybutadiene polyol (A1) is not particularly limited, and preferably has a 1,4-bonded type, 1,2-bonded type, or a mixture of these polybutadiene structures and at least two hydroxyl groups in the molecule. More preferably, both ends of the polybutadiene structure have hydroxyl groups. The polybutadiene polyol (A1) may be a hydrogenated polybutadiene polyol in which some or all of its unsaturated double bonds are hydrogenated, or a combination of non-hydrogenated and hydrogenated polybutadiene polyols. Moreover, two or more polybutadiene polyols having different molecular weights and functional group numbers may be used in combination.
 ポリブタジエンポリオール(A1)の分子量は特に限定されず、例えば、数平均分子量(Mn)が600~15000でもよく、800~9000でもよく、1000~7000でもよく、1300~5000でもよく、1400~3000でもよい。 The molecular weight of the polybutadiene polyol (A1) is not particularly limited. good.
 ポリブタジエンポリオール(A1)の官能基数は特に限定されず、例えば2.0~4.0でもよく、2.0~2.5でもよい。 The number of functional groups of polybutadiene polyol (A1) is not particularly limited, and may be, for example, 2.0 to 4.0 or 2.0 to 2.5.
 ポリブタジエンポリオール(A1)の水酸基価は特に限定されず、例えば10~200mgKOH/gでもよく、15~150mgKOH/gでもよく、20~120mgKOH/gでもよく、25~100mgKOH/gでもよく、40~90mgKOH/gでもよい。 The hydroxyl value of the polybutadiene polyol (A1) is not particularly limited, and may be, for example, 10 to 200 mgKOH/g, 15 to 150 mgKOH/g, 20 to 120 mgKOH/g, 25 to 100 mgKOH/g, or 40 to 90 mgKOH. /g.
 本明細書において、ポリブタジエンポリオール(A1)の数平均分子量(Mn)は、GPC法(ゲルパーミエーションクロマトグラフィー法)により測定し、標準ポリスチレンによる検量線を用いて算出した値である。GPCの条件は、例えば、カラム:東ソー(株)製「TSKgel GMHHR-H」、溶媒:THF、流速:0.6mL/分、測定温度:40℃である。ポリブタジエンポリオール(A1)の水酸基価はJIS K1557-1:2007のA法に準じて測定される値であり、ポリオール1g中の水酸基(OH基)をアセチル化する酢酸と反応する、水酸化カリウム(KOH)のmg数である。ポリブタジエンポリオール(A1)の官能基数は、下記式により算出される値である。 In this specification, the number average molecular weight (Mn) of polybutadiene polyol (A1) is a value measured by the GPC method (gel permeation chromatography method) and calculated using a standard polystyrene calibration curve. GPC conditions are, for example, column: "TSKgel GMHHR-H" manufactured by Tosoh Corporation, solvent: THF, flow rate: 0.6 mL/min, measurement temperature: 40°C. The hydroxyl value of polybutadiene polyol (A1) is a value measured according to A method of JIS K1557-1:2007. Potassium hydroxide ( KOH) in mg. The number of functional groups of polybutadiene polyol (A1) is a value calculated by the following formula.
 官能基数={(水酸基価)×(Mn)}/(56.1×1000)
 ポリブタジエンポリオール(A1)の含有量は特に限定されないが、水酸基含有化合物(A)100質量%に対して、20~90質量%であることが好ましく、より好ましくは40~80質量%であり、さらに好ましくは50~80質量%である。
Number of functional groups = {(hydroxyl value) x (Mn)}/(56.1 x 1000)
The content of the polybutadiene polyol (A1) is not particularly limited, but is preferably 20 to 90% by mass, more preferably 40 to 80% by mass, based on 100% by mass of the hydroxyl group-containing compound (A). It is preferably 50 to 80% by mass.
 ブチレンオキシド系ポリオール(A2)は、アルキレンオキシド単位の50モル%以上
がブチレンオキシド単位であるポリオールである。より詳細には、ブチレンオキシド系ポリオール(A2)は、当該ポリオールを形成するのに使用される全アルキレンオキシドの50モル%以上がブチレンオキシドであるポリアルキレングリコールであり、広義のポリブチレングリコールである。水酸基含有化合物(A)として、かかるブチレンオキシド系ポリオール(A2)を上記ポリブタジエンポリオール(A1)とともに併用することにより、ポリウレタン樹脂組成物の耐湿熱性を向上することができる。また、ひまし油系ポリオールを用いた場合に比べて、ポリウレタン樹脂組成物の製造時の混合粘度を低くして作業性を向上することができる。
The butylene oxide-based polyol (A2) is a polyol in which 50 mol % or more of the alkylene oxide units are butylene oxide units. More specifically, the butylene oxide-based polyol (A2) is a polyalkylene glycol in which 50 mol% or more of the total alkylene oxide used to form the polyol is butylene oxide, and is a broadly defined polybutylene glycol. . By using the butylene oxide polyol (A2) together with the polybutadiene polyol (A1) as the hydroxyl group-containing compound (A), the moist heat resistance of the polyurethane resin composition can be improved. In addition, compared to the case of using a castor oil-based polyol, it is possible to lower the mixed viscosity during the production of the polyurethane resin composition, thereby improving the workability.
 ブチレンオキシド系ポリオール(A2)において、全アルキレンオキシド単位に対するブチレンオキシド単位の量は、耐湿熱性およびポリブタジエンポリオール(A1)との相溶性の観点から、60モル%以上であることが好ましく、より好ましくは70モル%以上であり、80モル%以上でもよく、90モル%以上でもよく、100モル%でもよい。ブチレンオキシド単位以外のアルキレンオキシド単位を有する場合、当該他のアルキレンオキシド単位としては、特に限定されず、例えばエチレンオキシド単位および/またはプロピレンオキシド単位が挙げられる。 In the butylene oxide-based polyol (A2), the amount of butylene oxide units relative to all alkylene oxide units is preferably 60 mol% or more, more preferably 60 mol% or more, from the viewpoint of wet heat resistance and compatibility with the polybutadiene polyol (A1). It may be 70 mol % or more, may be 80 mol % or more, may be 90 mol % or more, or may be 100 mol %. When having alkylene oxide units other than butylene oxide units, the other alkylene oxide units are not particularly limited, and examples include ethylene oxide units and/or propylene oxide units.
 好ましい一実施形態において、ブチレンオキシド系ポリオール(A2)は、アルキレンオキシド単位が100モル%のブチレンオキシド単位からなるポリブチレングリコールでもよい。 In a preferred embodiment, the butylene oxide-based polyol (A2) may be a polybutylene glycol composed of 100 mol% of alkylene oxide units and of butylene oxide units.
 本実施形態では、ブチレンオキシド系ポリオール(A2)として、数平均分子量(Mn)が400~3000のものを用いる。ブチレンオキシド系ポリオール(A2)の数平均分子量が400以上であることにより、ポリブタジエンポリオール(A1)との相溶性を向上することができる。また、3000以下であることにより、ポリウレタン樹脂組成物の硬化性を向上することができる。ブチレンオキシド系ポリオール(A2)の数平均分子量は600以上であることが好ましく、より好ましくは800以上である。該数平均分子量は、2000以下であることが好ましく、より好ましくは1600以下であり、1300以下でもよい。 In this embodiment, a butylene oxide-based polyol (A2) having a number average molecular weight (Mn) of 400 to 3000 is used. When the butylene oxide polyol (A2) has a number average molecular weight of 400 or more, compatibility with the polybutadiene polyol (A1) can be improved. Moreover, when it is 3000 or less, the curability of the polyurethane resin composition can be improved. The butylene oxide polyol (A2) preferably has a number average molecular weight of 600 or more, more preferably 800 or more. The number average molecular weight is preferably 2000 or less, more preferably 1600 or less, and may be 1300 or less.
 ブチレンオキシド系ポリオール(A2)の水酸基価は特に限定されず、例えば37~500mgKOH/gでもよく、50~300mgKOH/gでもよく、60~200mgKOH/gでもよい。 The hydroxyl value of the butylene oxide-based polyol (A2) is not particularly limited, and may be, for example, 37-500 mgKOH/g, 50-300 mgKOH/g, or 60-200 mgKOH/g.
 本明細書において、ブチレンオキシド系ポリオール(A2)の数平均分子量(Mn)は、下記式により、水酸基価と官能基数から換算される値である。 In this specification, the number average molecular weight (Mn) of the butylene oxide-based polyol (A2) is a value converted from the hydroxyl value and the number of functional groups according to the following formula.
 数平均分子量=56.1×1000×官能基数/水酸基価
 ブチレンオキシド系ポリオール(A2)の水酸基価は、JIS K1557-1:2007のA法に準じて測定される値(mgKOH/g)である。ブチレンオキシド系ポリオール(A2)の官能基数は、下記のように開始剤としての活性水素原子含有化合物における活性水素の数から求められる。
Number average molecular weight = 56.1 × 1000 × number of functional groups / hydroxyl value The hydroxyl value of the butylene oxide polyol (A2) is a value (mgKOH/g) measured according to A method of JIS K1557-1:2007. . The number of functional groups of the butylene oxide-based polyol (A2) is obtained from the number of active hydrogen atoms in the active hydrogen atom-containing compound as an initiator as described below.
 ブチレンオキシド系ポリオール(A2)の構造は特に限定されず、例えば、2~8個の活性水素原子を有する化合物を開始剤として、これにブチレンオキシドを含むアルキレンオキシドを付加重合させた構造を有してもよい。ブチレンオキシドとしては、1,2-ブチレンオキシドおよび/または2,3-ブチレンオキシドが用いられるが、好ましくは1,2-ブチレンオキシドである。 The structure of the butylene oxide-based polyol (A2) is not particularly limited. For example, it has a structure obtained by addition polymerization of an alkylene oxide containing butylene oxide to a compound having 2 to 8 active hydrogen atoms as an initiator. may As the butylene oxide, 1,2-butylene oxide and/or 2,3-butylene oxide are used, preferably 1,2-butylene oxide.
 上記開始剤として、例えばエチレングリコールやプロピレングリコールなどの2個の活
性水素原子を持つ化合物(ジオール)を用いれば、2官能のブチレンオキシド系ポリオール(A2)が得られる。また、開始剤として、例えばグリセリンやトリメチロールプロパンなどの3個の活性水素原子を持つ化合物(トリオール)を用いれば、3官能のブチレンオキシド系ポリオール(A2)が得られる。3官能の方が2官能よりも硬化が速くなると考えられるため、より速い硬化が求められる場合、3官能のブチレンオキシド系ポリオール(A2)を使用してもよい。ブチレンオキシド系ポリオール(A2)の官能基数は特に限定されず、2~8でもよく、2~4でもよい。好ましくは、ブチレンオキシド系ポリオール(A2)は、2官能または3官能であり、2官能のものと3官能のものを併用してもよい。
If a compound (diol) having two active hydrogen atoms such as ethylene glycol or propylene glycol is used as the initiator, a bifunctional butylene oxide polyol (A2) can be obtained. If a compound (triol) having three active hydrogen atoms such as glycerin or trimethylolpropane is used as the initiator, a trifunctional butylene oxide polyol (A2) can be obtained. Since it is believed that tri-functionality cures faster than di-functionality, a tri-functional butylene oxide polyol (A2) may be used when faster curing is desired. The number of functional groups of the butylene oxide-based polyol (A2) is not particularly limited, and may be 2-8 or 2-4. Preferably, the butylene oxide-based polyol (A2) is bifunctional or trifunctional, and a combination of bifunctional and trifunctional may be used.
 また、上記付加重合の形態として、ブチレンオキシドとともに他のアルキレンオキシドを共重合させる場合、ランダム共重合でもよく、ブロック共重合でもよい。一実施形態において、開始剤にブチレンオキシドを付加重合させた後、当該ポリブチレンオキシド鎖の末端にエチレンオキシドを付加させた構造を持つ、末端エチレンオキシド付加ポリブチレングリコールを用いてもよい。末端にエチレンオキシドを付加させることにより、硬化性を高めることができる。 In addition, as the form of the addition polymerization, when butylene oxide is copolymerized with other alkylene oxide, random copolymerization or block copolymerization may be used. In one embodiment, a terminal ethylene oxide-added polybutylene glycol having a structure in which butylene oxide is added to an initiator and then ethylene oxide is added to the end of the polybutylene oxide chain may be used. Curability can be enhanced by adding ethylene oxide to the terminal.
 なお、ブチレンオキシド系ポリオール(A2)としては、上記の構成を持つものをいずれか1種用いてもよく、また、数平均分子量や構造等が異なる2種以上のものを併用してもよい。 As the butylene oxide-based polyol (A2), any one of those having the above structure may be used, or two or more of those having different number average molecular weights, structures, etc. may be used in combination.
 ブチレンオキシド系ポリオール(A2)の含有量は特に限定されないが、水酸基含有化合物(A)100質量%に対して、10~80質量%であることが好ましい。ブチレンオキシド系ポリオール(A2)の含有量が10質量%以上であることにより、ポリウレタン樹脂組成物の製造時の混合粘度を低くすることができる。また該含有量が80質量%以下であることにより、硬化性を向上することができる。ブチレンオキシド系ポリオール(A2)の含有量は、より好ましくは20~60質量%であり、さらに好ましくは20~50質量%である。 Although the content of the butylene oxide-based polyol (A2) is not particularly limited, it is preferably 10 to 80% by mass with respect to 100% by mass of the hydroxyl group-containing compound (A). When the content of the butylene oxide-based polyol (A2) is 10% by mass or more, the mixed viscosity during production of the polyurethane resin composition can be lowered. Further, when the content is 80% by mass or less, the curability can be improved. The content of the butylene oxide-based polyol (A2) is more preferably 20 to 60% by mass, still more preferably 20 to 50% by mass.
 ポリブタジエンポリオール(A1)とブチレンオキシド系ポリオール(A2)との質量比は特に限定されないが、(A2)/(A1)が0.1~3.5であることが好ましく、より好ましくは0.2~1.0である。 The mass ratio of the polybutadiene polyol (A1) and the butylene oxide polyol (A2) is not particularly limited, but (A2)/(A1) is preferably 0.1 to 3.5, more preferably 0.2. ~1.0.
 本実施形態において、水酸基含有化合物(A)は、ポリブタジエンポリオール(A1)とブチレンオキシド系ポリオール(A2)のみで構成されてもよいが、他の水酸基含有化合物を含んでもよい。水酸基含有化合物(A)100質量%に対するポリブタジエンポリオール(A1)とブチレンオキシド系ポリオール(A2)との合計量(A1+A2)は特に限定されないが、70質量%以上であることが好ましく、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、100質量%でもよい。 In the present embodiment, the hydroxyl group-containing compound (A) may consist only of the polybutadiene polyol (A1) and the butylene oxide-based polyol (A2), but may also contain other hydroxyl group-containing compounds. Although the total amount (A1+A2) of the polybutadiene polyol (A1) and the butylene oxide polyol (A2) relative to 100% by mass of the hydroxyl group-containing compound (A) is not particularly limited, it is preferably 70% by mass or more, more preferably 80% by mass. It is at least 90% by mass, more preferably at least 90% by mass, and may be 100% by mass.
 上記他の水酸基含有化合物としては、各種ポリオールが用いられ、特に限定されない。例えば、ひまし油、ひまし油脂肪酸、及びこれらに水素付加した水添ひまし油や水添ひまし油脂肪酸を用いて製造されたヒマシ油系ポリオールが挙げられる。また、その他のポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ダイマー酸ポリオール、ポリカプロラクトンポリオール、アクリルポリオール、ポリイソプレンポリオールなどが挙げられる。さらに、一般に架橋剤として用いられている低分子量ポリオールでもよく、具体的には、N,N-ビス(2-ヒドロキシプロピル)アニリン、ヒドロキノン-ビス(β-ヒドロキシエチル)エーテル、レゾルシノール-ビス(β-ヒドロキシエチル)エーテル等の芳香族アルコール、エチレングリコール、1,4-ブタンジオール、オクタンジオール、トリメチロールプロパン、トリイソプロパノールアミン等の脂肪
族アルコールが挙げられる。
Various polyols are used as the other hydroxyl group-containing compound, and there is no particular limitation. Examples thereof include castor oil, castor oil fatty acids, hydrogenated castor oils obtained by hydrogenating these, and castor oil-based polyols produced using hydrogenated castor oil fatty acids. Further, other polyester polyols, polyether polyols, polycarbonate polyols, dimer acid polyols, polycaprolactone polyols, acrylic polyols, polyisoprene polyols, and the like are included. Furthermore, low-molecular-weight polyols that are commonly used as cross-linking agents may be used. Specifically, N,N-bis(2-hydroxypropyl)aniline, hydroquinone-bis(β-hydroxyethyl)ether, resorcinol-bis(β -hydroxyethyl) ether, and aliphatic alcohols such as ethylene glycol, 1,4-butanediol, octanediol, trimethylolpropane, and triisopropanolamine.
 [イソシアネート基含有化合物(B)]
 イソシアネート基含有化合物(B)としては、1分子中に2つ以上のイソシアネート基を有する種々のポリイソシアネート化合物を用いることができる。イソシアネート基含有化合物(B)としては、例えば、脂肪族ポリイソシアネート化合物(B1)、脂環式ポリイソシアネート化合物(B2)、および芳香族ポリイソシアネート化合物(B3)、ならびにこれらの変性体および多核体が挙げられ、いずれか1種用いても2種以上併用してもよい。
[Isocyanate group-containing compound (B)]
Various polyisocyanate compounds having two or more isocyanate groups in one molecule can be used as the isocyanate group-containing compound (B). Examples of the isocyanate group-containing compound (B) include an aliphatic polyisocyanate compound (B1), an alicyclic polyisocyanate compound (B2), an aromatic polyisocyanate compound (B3), and modified and polynuclear compounds thereof. Any one of them may be used, or two or more may be used in combination.
 脂肪族ポリイソシアネート化合物(B1)としては、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネートなどが挙げられる。 Examples of the aliphatic polyisocyanate compound (B1) include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like.
 脂環式ポリイソシアネート化合物(B2)としては、例えば、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサンなどが挙げられる。 Examples of the alicyclic polyisocyanate compound (B2) include isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3 -Bis(isocyanatomethyl)cyclohexane and the like.
 芳香族ポリイソシアネート化合物(B3)としては、例えば、トリレンジイソシアネート(TDI、例えば2,4-TDI、2,6-TDI)、ジフェニルメタンジイソシアネート(MDI、例えば2,2’-MDI、2,4’-MDI、4,4’-MDI)、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート(XDI)、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネートなどが挙げられる。 Examples of the aromatic polyisocyanate compound (B3) include tolylene diisocyanate (TDI, such as 2,4-TDI, 2,6-TDI), diphenylmethane diisocyanate (MDI, such as 2,2'-MDI, 2,4' -MDI, 4,4'-MDI), 4,4'-dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate (XDI), 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, etc. mentioned.
 これらのポリイソシアネート化合物(B1)~(B3)の変性体としては、例えば、イソシアヌレート変性体、アロファネート変性体、ビウレット変性体、アダクト変性体、カルボジイミド変性体などが挙げられる。 Modified products of these polyisocyanate compounds (B1) to (B3) include, for example, isocyanurate modified products, allophanate modified products, biuret modified products, adduct modified products, and carbodiimide modified products.
 一実施形態において、イソシアネート基含有化合物(B)は、イソシアヌレート変性体を含むことが好ましい。イソシアヌレート変性体を用いることにより、上記水酸基含有化合物(A)との混合性に優れ、ポリウレタン樹脂組成物の硬化後における硬度の均一性を向上することができる。イソシアヌレート変性体としては、脂肪族ポリイソシアネート化合物(B1)のイソシアヌレート変性体、脂環式ポリイソシアネート化合物(B2)のイソシアヌレート変性体、芳香族ポリイソシアネート化合物(B3)のイソシアヌレート変性体が挙げられる。好ましくは脂肪族ポリイソシアネート化合物(B1)のイソシアヌレート変性体であり、より好ましくはHDIイソシアヌレートである。 In one embodiment, the isocyanate group-containing compound (B) preferably contains an isocyanurate modified product. By using the modified isocyanurate, it has excellent miscibility with the hydroxyl group-containing compound (A), and can improve uniformity of hardness of the cured polyurethane resin composition. Examples of the isocyanurate modified product include an isocyanurate modified product of the aliphatic polyisocyanate compound (B1), an isocyanurate modified product of the alicyclic polyisocyanate compound (B2), and an isocyanurate modified product of the aromatic polyisocyanate compound (B3). mentioned. Preferred is the isocyanurate modified form of the aliphatic polyisocyanate compound (B1), and more preferred is HDI isocyanurate.
 他の一実施形態において、イソシアネート基含有化合物(B)は、HDIを含むことが好ましい。イソシアネート基含有化合物(B)としては、HDIと上記イソシアヌレート変性体を併用してもよく、HDIとHDIイソシアヌレートを併用してもよい。 In another embodiment, the isocyanate group-containing compound (B) preferably contains HDI. As the isocyanate group-containing compound (B), HDI and the modified isocyanurate may be used in combination, or HDI and HDI isocyanurate may be used in combination.
 さらに他の一実施形態において、イソシアネート基含有化合物(B)は、MDIを含んでもよい。MDIとしてはモノメリックMDIでもよく、ポリメリックMDI(クルードMDI)でもよい。イソシアネート基含有化合物(B)としては、MDIと、上記のHD
Iおよび/またはイソシアヌレート変性体(好ましくはHDIイソシアヌレート)を併用してもよい。
In yet another embodiment, the isocyanate group-containing compound (B) may contain MDI. MDI may be monomeric MDI or polymeric MDI (crude MDI). As the isocyanate group-containing compound (B), MDI and the above HD
I and/or modified isocyanurate (preferably HDI isocyanurate) may be used in combination.
 ポリウレタン樹脂組成物における、イソシアネート基含有化合物(B)の含有量は、特に限定されず、例えば、水酸基含有化合物(A)100質量部に対して、5~60質量部でもよく、8~50質量部でもよく、10~40質量部でもよく、15~30質量部でもよい。 The content of the isocyanate group-containing compound (B) in the polyurethane resin composition is not particularly limited. parts, 10 to 40 parts by mass, or 15 to 30 parts by mass.
 水酸基含有化合物(A)とイソシアネート基含有化合物(B)との比は、特に限定されず、例えば、イソシアネート基含有化合物(B)の持つイソシアネート基と水酸基含有化合物(A)の持つ水酸基とのモル比NCO/OH(インデックス)が、0.6~1.5でもよく、0.7~1.3でもよく、0.8~1.2でもよい。 The ratio of the hydroxyl group-containing compound (A) and the isocyanate group-containing compound (B) is not particularly limited. The ratio NCO/OH (index) may be from 0.6 to 1.5, from 0.7 to 1.3, or from 0.8 to 1.2.
 [その他の成分]
 本実施形態に係るポリウレタン樹脂組成物には、上記した各成分の他に、必要に応じて、例えば、触媒、酸化防止剤、整泡剤、希釈剤、難燃剤、紫外線吸収剤、着色剤、充填剤、可塑剤などの各種添加剤を、本実施形態の目的を損なわない範囲で加えることができる。
[Other ingredients]
In addition to the components described above, the polyurethane resin composition according to the present embodiment may optionally contain, for example, a catalyst, an antioxidant, a foam stabilizer, a diluent, a flame retardant, an ultraviolet absorber, a colorant, Various additives such as fillers and plasticizers can be added as long as the purpose of the present embodiment is not impaired.
 触媒としては、例えば、有機スズ触媒、有機鉛触媒、有機ビスマス触媒などの金属触媒、アミン触媒などの各種ウレタン重合触媒を用いることができる。触媒の含有量は、特に限定されず、例えば、ポリウレタン樹脂組成物100質量%に対して0.0001~0.1質量%でよく、0.001~0.01質量%でもよい。 As the catalyst, for example, metal catalysts such as organic tin catalysts, organic lead catalysts, and organic bismuth catalysts, and various urethane polymerization catalysts such as amine catalysts can be used. The content of the catalyst is not particularly limited, and may be, for example, 0.0001 to 0.1% by mass or 0.001 to 0.01% by mass with respect to 100% by mass of the polyurethane resin composition.
 [ポリウレタン樹脂組成物]
 本実施形態に係るポリウレタン樹脂組成物は、水酸基含有化合物(A)を含む第1液と、イソシアネート基含有化合物(B)を含む第2液と、を含む二液型ポリウレタン樹脂組成物として構成されてもよい。かかる二液型ポリウレタン樹脂組成物は、第1液および第2液とともに、上記その他の成分を含む第3液をさらに備えてもよい。
[Polyurethane resin composition]
The polyurethane resin composition according to the present embodiment is configured as a two-component polyurethane resin composition containing a first liquid containing a hydroxyl group-containing compound (A) and a second liquid containing an isocyanate group-containing compound (B). may Such a two-pack type polyurethane resin composition may further comprise a third liquid containing the other components as well as the first and second liquids.
 該二液型ポリウレタン樹脂組成物は、第1液と第2液をそれぞれ調製することにより製造することができ、すなわち、第1液と第2液はそれぞれ別の容器に充填されたものでもよい。別々の容器に充填された第1液と第2液は、使用時に混合されることにより水酸基含有化合物(A)とイソシアネート基含有化合物(B)が反応してポリウレタン樹脂が形成され、硬化してもよい。その際、加熱により硬化させてもよい。本実施形態に係るポリウレタン樹脂組成物は、第1液と第2液を混合して得られたものであってもよく、硬化前の液状でもよく、硬化したものであってもよい。 The two-component polyurethane resin composition can be produced by preparing a first liquid and a second liquid, respectively, that is, the first liquid and the second liquid may be filled in separate containers. . The first liquid and the second liquid filled in separate containers are mixed at the time of use, whereby the hydroxyl group-containing compound (A) and the isocyanate group-containing compound (B) react to form a polyurethane resin, which is cured. good too. At that time, it may be cured by heating. The polyurethane resin composition according to this embodiment may be obtained by mixing the first liquid and the second liquid, may be in a liquid state before curing, or may be in a cured state.
 第1液は、水酸基含有化合物(A)のみで構成されてもよく、また、水酸基含有化合物(A)の他に、必要に応じて、例えば、触媒、酸化防止剤、整泡剤、希釈剤、難燃剤、紫外線吸収剤、着色剤、充填剤、可塑剤などの各種添加剤が配合されてもよい。好ましくは、第1液は水酸基含有化合物(A)および触媒を含むことである。 The first liquid may be composed only of the hydroxyl group-containing compound (A), and in addition to the hydroxyl group-containing compound (A), if necessary, for example, a catalyst, an antioxidant, a foam stabilizer, a diluent , flame retardants, ultraviolet absorbers, colorants, fillers, plasticizers, and other additives. Preferably, the first liquid contains a hydroxyl group-containing compound (A) and a catalyst.
 第2液は、イソシアネート基含有化合物(B)のみで構成されてもよく、また、イソシアネート基含有化合物(B)の他に、必要に応じて、例えば、酸化防止剤、整泡剤、希釈剤、難燃剤、紫外線吸収剤、着色剤、充填剤、可塑剤などの各種添加剤が配合されてもよい。 The second liquid may be composed only of the isocyanate group-containing compound (B), and in addition to the isocyanate group-containing compound (B), if necessary, for example, an antioxidant, a foam stabilizer, a diluent , flame retardants, ultraviolet absorbers, colorants, fillers, plasticizers, and other additives.
 [ポリウレタン樹脂組成物の用途]
 本実施形態に係るポリウレタン樹脂組成物の用途は、特に限定されないが、電気電子部
品における電気絶縁用封止剤として用いることが好ましい。電気電子部品としては、特に限定されないが、例えば、トランスコイル、チョークコイルおよびリアクトルコイルなどの変圧器、機器制御基板、センサ、無線通信部品などが挙げられる。
[Applications of Polyurethane Resin Composition]
The use of the polyurethane resin composition according to the present embodiment is not particularly limited, but it is preferably used as an electrical insulating sealant in electrical and electronic parts. Examples of electric/electronic components include, but are not limited to, transformers such as transformer coils, choke coils and reactor coils, equipment control boards, sensors, and wireless communication components.
 本実施形態に係るポリウレタン樹脂組成物を用いて樹脂封止された電気電子部品は、例えば、電気洗濯機、便座、湯沸し器、浄水器、風呂、食器洗浄機、太陽光パネル、電動工具、自動車、バイクなどに使用することができる。 Electrical and electronic components resin-sealed using the polyurethane resin composition according to the present embodiment include, for example, electric washing machines, toilet seats, water heaters, water purifiers, baths, dishwashers, solar panels, power tools, and automobiles. , can be used for motorcycles, etc.
 以下、実施例及び比較例に基づいて、ポリウレタン樹脂組成物について詳細に説明するが、本発明はこれにより限定されない。 The polyurethane resin composition will be described in detail below based on Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例及び比較例において使用する各成分の詳細を以下に示す。 Details of each component used in Examples and Comparative Examples are shown below.
 [水酸基含有化合物(A)]
・ポリブタジエンポリオール1:数平均分子量2800、水酸基価47mgKOH/g、官能基数2.3、製品名:Poly bd R-45HTLO、クレイバレー社製
・ポリブタジエンポリオール2:数平均分子量1600、水酸基価80mgKOH/g、官能基数2.3、下記製法による調製品
 窒素で系内を置換した攪拌反応器に150質量部の1,3-ブタジエン、イソプロパノール88質量%と水12質量%とを含有する共沸混合物105質量部、および60%過酸化水素水溶液30質量部を仕込んだ。その反応器の内容物を連続的に攪拌しながら120℃になるまで加熱し、攪拌しながら120℃から130℃に保ち2時間重合反応を行った。所定時間完了後、その反応器の内容物を冷却し、その反応生成物を反応器から取り出し、未反応モノマーを反応生成物から取り除き、その生成物を水洗して残留イソプロパノール及び未反応過酸化水素を除去した。この生成物を真空乾燥して、粘度が25℃で5000mPa・sのポリブタジエンポリオールを得た。
・BO系ポリオール1:下記合成例1に従い、プロピレングリコールを開始剤としてブチレンオキシドを付加重合して得られたポリブチレングリコール(数平均分子量3000、官能基数2、全アルキレンオキシド単位中のブチレンオキシド単位の量100モル%)
 合成例1:プロピレングリコール2.53質量部に48%KOH0.55質量部と1,2-ブチレンオキシド(BO)10.8質量部をステンレス製オートクレーブに仕込み、窒素置換した後、釜内を減圧し、昇温した。そして、120℃±5℃および最高圧0.2MPaにてBO導入反応を行った後、120±5℃で240分間、BO熟成反応を行った。次いで、80℃まで冷却後、90~110℃で10mmHg以下に減圧した。その後、BOを86.67質量部追加し、120℃±5℃および最高圧0.4MPaにてBO導入反応を行った後、120±5℃で360分間、BO熟成反応を行った。冷却後、100±5℃にて20mmHg(2.7kPa)到達まで減圧し、次いで、精製・ろ過して、2官能のポリブチレングリコールを得た。
・BO系ポリオール2:上記合成例1において1段目のBO熟成反応後に追加するBOの量を40質量部とし、その他は合成例1と同様の方法に従い、プロピレングリコールを開始剤としてブチレンオキシドを付加重合して得られたポリブチレングリコール(数平均分子量1600、官能基数2、全アルキレンオキシド単位中のブチレンオキシド単位の量100モル%)
・BO系ポリオール3:上記合成例1において1段目のBO熟成反応後に追加するBOの量を13.3質量部とし、その他は合成例1と同様の方法に従い、プロピレングリコールを開始剤としてブチレンオキシドを付加重合して得られたポリブチレングリコール(数平均分子量800、官能基数2、全アルキレンオキシド単位中のブチレンオキシド単位の量100モル%)
・BO系ポリオール4:下記合成例2に従い、プロピレングリコールを開始剤としてブチ
レンオキシドを付加重合して得られたポリブチレングリコール(数平均分子量400、官能基数2、全アルキレンオキシド単位中のブチレンオキシド単位の量100モル%)
 合成例2:プロピレングリコール19質量部に48%KOH0.83質量部と1,2-ブチレンオキシド(BO)81質量部をステンレス製オートクレーブに仕込み、窒素置換した後、釜内を減圧し、昇温した。そして、120℃±5℃および最高圧0.2MPaにてBO導入反応を行った後、120±5℃で240分間、BO熟成反応を行った。脱BO冷却後、100±5℃にて20mmHg(2.7kPa)到達まで減圧し、次いで、精製・ろ過して、2官能のポリブチレングリコールを得た。
・BO系ポリオール5:下記合成例3に従い、プロピレングリコールを開始剤としてブチレンオキシドを付加重合し、さらにその末端にエチレンオキシドを付加して得られた末端EO付加ポリブチレングリコール(数平均分子量1250、官能基数2、全アルキレンオキシド単位中のブチレンオキシド単位の量57モル%、エチレンオキシド単位の量43モル%)
 合成例3:プロピレングリコール6.08質量部に48%KOH0.55質量部と1,2-ブチレンオキシド(BO)25.9質量部をステンレス製オートクレーブに仕込み、窒素置換した後、釜内を減圧し、昇温した。そして、120℃±5℃および最高圧0.2MPaにてBO導入反応を行った後、120±5℃で240分間、BO熟成反応を行った。次いで、80℃まで冷却後、抜き取り、90~110℃で10mmHg以下に減圧した。その後、BOを38.0質量部追加し、120℃±5℃および最高圧0.4MPaにてBO導入反応を行った後、120±5℃で360分間、BO熟成反応を行った。その後、エチレンオキシド(EO)を30.0質量部追加し、120℃±5℃および最高圧0.4MPaにてEO導入反応を行った後、120±5℃で360分間、EO熟成反応を行った。脱EO冷却後、100±5℃にて20mmHg(2.7kPa)到達まで減圧し、次いで、精製・ろ過して、EO末端付加ポリブチレングリコールを得た。
・BO系ポリオール6:下記合成例4に従い、グリセリンを開始剤としてブチレンオキシドを付加重合して得られたポリブチレングリコール(数平均分子量1100、官能基数3、全アルキレンオキシド単位中のブチレンオキシド単位の量100モル%)
 合成例4:グリセリン8.37質量部に48%KOH0.5質量部と1,2-ブチレンオキシド(BO)28.1質量部をステンレス製オートクレーブに仕込み、窒素置換した後、釜内を減圧し、昇温した。そして、120℃±5℃および最高圧0.2MPaにてBO導入反応を行った後、120±5℃で240分間、BO熟成反応を行った。次いで、80℃まで冷却後、90~110℃で10mmHg以下に減圧した。その後、BOを63.62質量部追加し、120℃±5℃および最高圧0.4MPaにてBO導入反応を行った後、120±5℃で360分間、BO熟成反応を行った。冷却後、100±5℃にて20mmHg(2.7kPa)到達まで減圧し、次いで、精製・ろ過して、3官能のポリブチレングリコールを得た。
・BO系ポリオール7:下記合成例5に従い、グリセリンを開始剤としてブチレンオキシドを付加重合し、さらにその末端にエチレンオキシドを付加して得られた末端EO付加ポリブチレングリコール(数平均分子量1120、官能基数3、全アルキレンオキシド単位中のブチレンオキシド単位の量84モル%、エチレンオキシド単位の量16モル%)
 合成例5:上記合成例4において、2段目のBO熟成反応でBOを55.24質量部追加し、エチレンオキシド(EO)を10.2質量部追加し、120℃±5℃および最高圧0.4MPaにてEO導入反応を行った後、120±5℃で360分間、EO熟成反応を行った。脱EO冷却後、100±5℃にて20mmHg(2.7kPa)到達まで減圧し、次いで、精製・ろ過して、3官能のEO末端付加ポリブチレングリコールを得た。
・PO系ポリオール1:数平均分子量700、官能基数2のポリプロピレングリコール、製品名:ハイフレックスD-700、第一工業製薬(株)製
・PO系ポリオール2:数平均分子量1000、官能基数2のポリプロピレングリコール、製品名:ハイフレックスD-1000、第一工業製薬(株)製
・PO系ポリオール3:数平均分子量1300、官能基数2のポリオキシエチレンポリオ
キシプロピレングリコール、製品名:エパン410、第一工業製薬(株)製
・PO系ポリオール4:数平均分子量1000、官能基数3のポリプロピレングリコール、製品名:X-2116、第一工業製薬(株)製
・PO系ポリオール5:数平均分子量3000、官能基数3のポリプロピレングリコール、製品名:ハイフレックスG-3000、第一工業製薬(株)製
・ひまし油系ポリオール:数平均分子量938、官能基数2.7、製品名:ひまし油D、伊藤製油(株)製
 [触媒]
・触媒:ジオクチル錫、製品名:ネオスタンU-810、日東化成(株)製
 [イソシアネート基含有化合物(B)]
・ポリイソシアネート1:HDIイソシアヌレート、製品名:デュラネートTPA-100、旭化成(株)製
・ポリイソシアネート2:HDI、製品名:デュラネートD-201、旭化成(株)製
・ポリイソシアネート3:クルードMDI、製品名:ルプラネートM5S、BASF INOAC ポリウレタン(株)製
 [実施例1~10及び比較例1~6]
 下記表1および表2に示す配合(質量部)により、各実施例および各比較例のポリウレタン樹脂組成物を調製した。調製に際しては、表1および表2に示す第1液を所定量秤量し、適宜熱をかけて溶かし込みながら攪拌混合を行い、混合後、25℃に調整した。続いて、この混合物に25℃に調整した第2液(イソシアネート基含有化合物(B))を表1および表2に記載のとおりに加えて攪拌混合し、脱泡した。
[Hydroxyl group-containing compound (A)]
· Polybutadiene polyol 1: number average molecular weight 2800, hydroxyl value 47 mgKOH / g, functional group number 2.3, product name: Poly bd R-45HTLO, manufactured by Clay Valley · Polybutadiene polyol 2: number average molecular weight 1600, hydroxyl value 80 mgKOH / g Azeotropic mixture 105 containing 150 parts by mass of 1,3-butadiene, 88% by mass of isopropanol and 12% by mass of water in a stirred reactor in which the system is purged with nitrogen, with a functional group number of 2.3. Parts by mass and 30 parts by mass of a 60% aqueous hydrogen peroxide solution were charged. The contents of the reactor were heated to 120° C. with continuous stirring and maintained at 120° C. to 130° C. with stirring for 2 hours to carry out the polymerization reaction. After the predetermined time period is complete, the reactor contents are cooled, the reaction product is removed from the reactor, unreacted monomer is removed from the reaction product, and the product is washed with water to remove residual isopropanol and unreacted hydrogen peroxide. removed. This product was vacuum dried to obtain a polybutadiene polyol having a viscosity of 5000 mPa·s at 25°C.
BO-based polyol 1: Polybutylene glycol obtained by addition polymerization of butylene oxide using propylene glycol as an initiator according to Synthesis Example 1 below (number average molecular weight: 3000, number of functional groups: 2, butylene oxide units among all alkylene oxide units amount of 100 mol%)
Synthesis Example 1: 2.53 parts by mass of propylene glycol, 0.55 parts by mass of 48% KOH and 10.8 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after replacing with nitrogen, the pressure in the autoclave was reduced. and heated. After the BO introduction reaction was carried out at 120±5° C. and the maximum pressure of 0.2 MPa, the BO aging reaction was carried out at 120±5° C. for 240 minutes. After cooling to 80°C, the pressure was reduced to 10 mmHg or less at 90 to 110°C. After that, 86.67 parts by mass of BO was added, and after performing BO introduction reaction at 120±5° C. and maximum pressure of 0.4 MPa, BO aging reaction was performed at 120±5° C. for 360 minutes. After cooling, the pressure was reduced to 20 mmHg (2.7 kPa) at 100±5° C., followed by purification and filtration to obtain bifunctional polybutylene glycol.
BO-based polyol 2: In Synthesis Example 1 above, the amount of BO added after the BO aging reaction in the first stage was set to 40 parts by mass, and the others were the same as in Synthesis Example 1, butylene oxide was added using propylene glycol as an initiator. Polybutylene glycol obtained by addition polymerization (number average molecular weight: 1600, number of functional groups: 2, amount of butylene oxide units in all alkylene oxide units: 100 mol%)
BO-based polyol 3: In Synthesis Example 1 above, the amount of BO added after the BO ripening reaction in the first stage was set to 13.3 parts by mass, and the other methods were the same as in Synthesis Example 1, butylene glycol was used as an initiator. Polybutylene glycol obtained by addition polymerization of oxide (number average molecular weight 800, number of functional groups 2, amount of butylene oxide units in all alkylene oxide units 100 mol%)
BO-based polyol 4: Polybutylene glycol obtained by addition polymerization of butylene oxide using propylene glycol as an initiator according to Synthesis Example 2 below (number average molecular weight: 400, number of functional groups: 2, butylene oxide units among all alkylene oxide units amount of 100 mol%)
Synthesis Example 2: 19 parts by mass of propylene glycol, 0.83 parts by mass of 48% KOH and 81 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave and replaced with nitrogen. bottom. After the BO introduction reaction was carried out at 120±5° C. and the maximum pressure of 0.2 MPa, the BO aging reaction was carried out at 120±5° C. for 240 minutes. After cooling to remove BO, the pressure was reduced to 20 mmHg (2.7 kPa) at 100±5° C., followed by purification and filtration to obtain bifunctional polybutylene glycol.
BO-based polyol 5: According to Synthesis Example 3 below, butylene oxide was addition-polymerized using propylene glycol as an initiator, and ethylene oxide was added to the end of the polybutylene glycol with EO added (number average molecular weight: 1250, functional radix 2, amount of butylene oxide units in all alkylene oxide units: 57 mol%, amount of ethylene oxide units: 43 mol%)
Synthesis Example 3: 6.08 parts by mass of propylene glycol, 0.55 parts by mass of 48% KOH, and 25.9 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after purging with nitrogen, the pressure in the autoclave was reduced. and heated. After the BO introduction reaction was carried out at 120±5° C. and the maximum pressure of 0.2 MPa, the BO aging reaction was carried out at 120±5° C. for 240 minutes. Then, after cooling to 80°C, it was withdrawn, and the pressure was reduced to 10 mmHg or less at 90 to 110°C. After that, 38.0 parts by mass of BO was added, and after performing BO introduction reaction at 120±5° C. and maximum pressure of 0.4 MPa, BO aging reaction was performed at 120±5° C. for 360 minutes. After that, 30.0 parts by mass of ethylene oxide (EO) was added, and an EO introduction reaction was performed at 120 ± 5°C and a maximum pressure of 0.4 MPa, and then an EO aging reaction was performed at 120 ± 5°C for 360 minutes. . After cooling without EO, the pressure was reduced to 20 mmHg (2.7 kPa) at 100±5° C., followed by purification and filtration to obtain EO-terminated polybutylene glycol.
BO-based polyol 6: Polybutylene glycol obtained by addition polymerization of butylene oxide using glycerin as an initiator according to Synthesis Example 4 below (number average molecular weight of 1100, number of functional groups of 3, number of butylene oxide units in all alkylene oxide units amount 100 mol%)
Synthesis Example 4: To 8.37 parts by mass of glycerin, 0.5 parts by mass of 48% KOH and 28.1 parts by mass of 1,2-butylene oxide (BO) were charged into a stainless steel autoclave, and after purging with nitrogen, the pressure in the autoclave was reduced. , raised the temperature. After the BO introduction reaction was carried out at 120±5° C. and the maximum pressure of 0.2 MPa, the BO aging reaction was carried out at 120±5° C. for 240 minutes. After cooling to 80°C, the pressure was reduced to 10 mmHg or less at 90 to 110°C. After that, 63.62 parts by mass of BO was added, and after performing BO introduction reaction at 120±5° C. and maximum pressure of 0.4 MPa, BO aging reaction was performed at 120±5° C. for 360 minutes. After cooling, the pressure was reduced to 20 mmHg (2.7 kPa) at 100±5° C., followed by purification and filtration to obtain trifunctional polybutylene glycol.
- BO-based polyol 7: According to Synthesis Example 5 below, butylene oxide is addition-polymerized using glycerin as an initiator, and ethylene oxide is added to the end of the polybutylene glycol (number average molecular weight: 1,120, number of functional groups 3, the amount of butylene oxide units in all alkylene oxide units is 84 mol%, and the amount of ethylene oxide units is 16 mol%)
Synthesis Example 5: In Synthesis Example 4 above, 55.24 parts by mass of BO was added in the second-stage BO aging reaction, 10.2 parts by mass of ethylene oxide (EO) was added, and the temperature was adjusted to 120°C ± 5°C and the maximum pressure of 0. After performing the EO introduction reaction at 4 MPa, the EO aging reaction was performed at 120±5° C. for 360 minutes. After cooling without EO, the pressure was reduced to 20 mmHg (2.7 kPa) at 100±5° C., followed by purification and filtration to obtain trifunctional EO-terminated polybutylene glycol.
・ PO polyol 1: number average molecular weight 700, functional group 2 polypropylene glycol, product name: Hiflex D-700, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. ・ PO polyol 2: number average molecular weight 1000, functional group 2 Polypropylene glycol, product name: Hiflex D-1000, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. PO-based polyol 3: polyoxyethylene polyoxypropylene glycol with a number average molecular weight of 1,300 and a number of functional groups of 2, product name: Epan 410, No. Ichi Kogyo Seiyaku Co., Ltd. PO polyol 4: number average molecular weight 1000, functional group 3 polypropylene glycol, product name: X-2116, Daiichi Kogyo Seiyaku Co., Ltd. PO polyol 5: number average molecular weight 3000 , Polypropylene glycol with a functional number of 3, Product name: Hiflex G-3000, Daiichi Kogyo Seiyaku Co., Ltd. Castor oil-based polyol: Number average molecular weight 938, Functional group number 2.7, Product name: Castor oil D, Ito oil ( Co., Ltd. [catalyst]
・ Catalyst: dioctyl tin, product name: Neostan U-810, manufactured by Nitto Kasei Co., Ltd. [Isocyanate group-containing compound (B)]
・Polyisocyanate 1: HDI isocyanurate, product name: Duranate TPA-100, manufactured by Asahi Kasei Co., Ltd. ・Polyisocyanate 2: HDI, product name: Duranate D-201, manufactured by Asahi Kasei Co., Ltd. ・Polyisocyanate 3: Crude MDI, Product name: Luplanate M5S, manufactured by BASF INOAC Polyurethane Co., Ltd. [Examples 1 to 10 and Comparative Examples 1 to 6]
Polyurethane resin compositions of Examples and Comparative Examples were prepared according to the formulations (parts by mass) shown in Tables 1 and 2 below. For the preparation, a predetermined amount of the first liquid shown in Tables 1 and 2 was weighed, and stirred and mixed while being melted by heating appropriately. After mixing, the temperature was adjusted to 25°C. Subsequently, the second liquid (isocyanate group-containing compound (B)) adjusted to 25° C. was added to the mixture as shown in Tables 1 and 2, and the mixture was stirred and mixed to degas.
 各実施例および各比較例について、相溶性、硬化性、耐久性、体積固有抵抗およびマイグレーション特性を測定・評価した。測定・評価方法は以下のとおりである。 Compatibility, curability, durability, volume resistivity and migration properties were measured and evaluated for each example and each comparative example. The measurement and evaluation methods are as follows.
 [相溶性]
 水酸基含有化合物である、ポリブタジエンポリオールと、BO系ポリオール、PO系ポリオールまたはひまし油系ポリオールとを混合した後、室温で7日間放置し、放置後の液の状態を下記基準により評価した。
[Compatibility]
After mixing polybutadiene polyol, which is a hydroxyl group-containing compound, with BO-based polyol, PO-based polyol or castor oil-based polyol, the mixture was allowed to stand at room temperature for 7 days, and the state of the liquid after standing was evaluated according to the following criteria.
 A:透明
 B:濁りあり
 C:分離
 [硬化性]
 上記脱泡後のポリウレタン樹脂組成物を、縦5cm×横5cm×高さ3cmの容器に流し込み、80℃の硬化炉で1時間放置後、樹脂の硬度を測定した。硬度は、JIS K6253-3に準拠したタイプAデュロメータおよびJIS K7312に準拠したタイプC硬さ試験機で測定し、下記基準により評価した。なお、硬化性は速く硬化するか否かの評価である。
A: Transparent B: Turbidity C: Separation [Curability]
The polyurethane resin composition after defoaming was poured into a container of 5 cm long×5 cm wide×3 cm high, left in a curing oven at 80° C. for 1 hour, and then the hardness of the resin was measured. The hardness was measured with a type A durometer conforming to JIS K6253-3 and a type C hardness tester conforming to JIS K7312, and evaluated according to the following criteria. The curability is an evaluation of whether or not the composition cures quickly.
 A:タイプAデュロメータ硬さが0以上、
 B:タイプAデュロメータ硬さが0未満(タイプAデュロメータでは測定不可)かつタイプC硬さが0以上
 C:硬化発現なし、または液状
 [耐久性]
 上記脱泡後のポリウレタン樹脂組成物を、縦5cm×横5cm×高さ1cmの型に流し込み、80℃の硬化炉で48時間硬化させて樹脂片を作製した。該樹脂片を温度121℃、湿度100%、2atmの高温高湿槽で処理し、500時間経過後、1000時間経過後に硬度をJIS K6253-3に準拠したタイプAデュロメータにより測定し、初期の硬度からの変化を確認し、下記基準により評価した。
A: type A durometer hardness of 0 or more,
B: Type A durometer hardness is less than 0 (cannot be measured with type A durometer) and type C hardness is 0 or more C: No curing or liquid [Durability]
The defoamed polyurethane resin composition was poured into a mold of 5 cm long×5 cm wide×1 cm high and cured in a curing furnace at 80° C. for 48 hours to prepare resin pieces. The resin piece was treated in a high temperature and high humidity bath at a temperature of 121 ° C., a humidity of 100%, and a humidity of 2 atm, and after 500 hours and 1000 hours, the hardness was measured with a type A durometer in accordance with JIS K6253-3. The change from 0.01 to 0.000 was confirmed and evaluated according to the following criteria.
 A:1000時間経過後の硬度変化が10%未満
 B:500時間経過後の硬度変化が10%未満かつ1000時間経過後の硬度変化が10%以上
 C:500時間経過後の硬度変化が10%以上
 [体積固有抵抗]
 上記の耐久性と同様の樹脂片を作製し、該樹脂片を温度121℃、湿度100%、2atmの高温高湿槽で処理し、500時間経過後、750時間経過後、1000時間経過後に体積固有抵抗をJIS K6911により測定し(測定電圧:500V)、下記基準により評価した。
A: Less than 10% change in hardness after 1000 hours B: Less than 10% change in hardness after 500 hours and 10% or more change in hardness after 1000 hours C: 10% change in hardness after 500 hours [Volume specific resistance]
A resin piece having the same durability as described above was prepared, and the resin piece was treated in a high-temperature and high-humidity bath at a temperature of 121 ° C., a humidity of 100%, and 2 atm. The specific resistance was measured according to JIS K6911 (measured voltage: 500 V) and evaluated according to the following criteria.
 A:1000時間経過後の体積固有抵抗が10Ω・cm以上
 B:1000時間経過後の体積固有抵抗が10Ω・cm未満かつ750時間経過後の体積固有抵抗が10Ω・cm以上
 C:750時間経過後の体積固有抵抗が10Ω・cm未満かつ500時間経過後の体積固有抵抗が10Ω・cm以上
 [マイグレーション特性]
 ガラスシャーレにJIS2型くし形電極基板を配置し、陽極および陰極を配線した。その上に、上記脱泡後のポリウレタン樹脂組成物を注型し、80℃の硬化炉で48時間硬化させて試験片を作製した。該試験片を温度85℃、湿度85%の湿熱槽にて、100Vの電圧を印加してマイグレーション試験を実施し、1000時間経過までに通電するか否かを、下記基準により評価した。電極周囲の水分が多いほど、陽極から銅イオンが溶出し、陰極へ移動、陰極側で析出する。析出分が成長すると絶縁不良となり、最終的には配線パターン間がショートする。かかるショートが発生するか否かの試験である。
A: Volume resistivity after 1000 hours is 10 9 Ω·cm or more B: Volume resistivity is less than 10 9 Ω·cm after 1000 hours and volume resistivity is 10 9 Ω·cm or more after 750 hours C: The volume resistivity after 750 hours is less than 10 9 Ω·cm and the volume resistivity after 500 hours is 10 9 Ω·cm or more [migration property]
A JIS type 2 comb-shaped electrode substrate was placed on a glass petri dish, and an anode and a cathode were wired. The defoamed polyurethane resin composition was poured onto the mold and cured in a curing oven at 80° C. for 48 hours to prepare a test piece. The test piece was subjected to a migration test by applying a voltage of 100 V in a moist heat bath at a temperature of 85° C. and a humidity of 85%, and whether or not the current was applied within 1000 hours was evaluated according to the following criteria. As the amount of water around the electrode increases, copper ions are eluted from the anode, migrate to the cathode, and deposit on the cathode side. If the deposit grows, it causes insulation failure, and finally short-circuits between wiring patterns. This is a test of whether or not such a short circuit occurs.
 A:通電なし
 C:通電あり
A: Not energized C: Energized
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 結果は表1および表2に示すとおりである。ポリブタジエンポリオールと併用するポリオールとしてPO系ポリオール1~5を用いた比較例1~5であると、湿熱処理後の耐久性(硬度変化)には優れていたものの、湿熱処理後の体積固有抵抗の低下が大きく、またマイグレーション特性にも劣っており、耐湿熱性に劣っていた。
Figure JPOXMLDOC01-appb-T000002
The results are shown in Tables 1 and 2. Comparative Examples 1 to 5 using PO-based polyols 1 to 5 as polyols used in combination with polybutadiene polyol were excellent in durability (hardness change) after wet heat treatment, but the volume resistivity after wet heat treatment was excellent. The deterioration was large, the migration property was poor, and the wet heat resistance was poor.
 ポリブタジエンポリオールと併用するポリオールとしてひまし油系ポリオールを用いた比較例6では、湿熱処理後のマイグレーション特性には優れていたものの、湿熱処理後の耐久性(硬度変化)が劣っており、体積固有抵抗についても低下傾向が見られた。また、ひまし油系ポリオールを用いた場合、硬化性にも劣っていた。 In Comparative Example 6, in which a castor oil-based polyol was used as the polyol used in combination with the polybutadiene polyol, the migration properties after the wet heat treatment were excellent, but the durability (hardness change) after the wet heat treatment was poor, and the volume resistivity was poor. also showed a downward trend. Moreover, when a castor oil-based polyol was used, curability was also inferior.
 これに対し、ポリブタジエンポリオールとBO系ポリオールを併用した実施例1~10であると、湿熱処理後の耐久性(硬度変化)、体積固有抵抗およびマイグレーション特性に優れており、比較例1~6に対して耐湿熱性に優れていた。 On the other hand, Examples 1 to 10 in which polybutadiene polyol and BO-based polyol were used in combination were excellent in durability (hardness change), volume resistivity and migration properties after wet heat treatment, and were superior to Comparative Examples 1 to 6. It was excellent in heat and humidity resistance.
 なお、明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。また、「X~Y」との数値範囲の記載は、X以上Y以下を意味する。 It should be noted that the various numerical ranges described in the specification can be arbitrarily combined with their upper and lower limits, and all combinations thereof are described in this specification as preferred numerical ranges. Further, the description of the numerical range "X to Y" means X or more and Y or less.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省
略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 
Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments, their omissions, replacements, modifications, etc., are included in the invention described in the scope of claims and equivalents thereof, as well as being included in the scope and gist of the invention.

Claims (6)

  1.  水酸基含有化合物(A)およびイソシアネート基含有化合物(B)を含むポリウレタン樹脂組成物であって、
     前記水酸基含有化合物(A)が、ポリブタジエンポリオール(A1)と、アルキレンオキシド単位の50モル%以上がブチレンオキシド単位であるブチレンオキシド系ポリオール(A2)とを含み、
     前記ブチレンオキシド系ポリオール(A2)の数平均分子量が400以上3000以下である、ポリウレタン樹脂組成物。
    A polyurethane resin composition containing a hydroxyl group-containing compound (A) and an isocyanate group-containing compound (B),
    The hydroxyl group-containing compound (A) contains a polybutadiene polyol (A1) and a butylene oxide polyol (A2) in which 50 mol% or more of the alkylene oxide units are butylene oxide units,
    A polyurethane resin composition, wherein the butylene oxide-based polyol (A2) has a number average molecular weight of 400 or more and 3,000 or less.
  2.  前記水酸基含有化合物(A)100質量%における前記ブチレンオキシド系ポリオール(A2)の含有量が10質量%以上80質量%以下である、請求項1記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1, wherein the content of the butylene oxide-based polyol (A2) in 100% by mass of the hydroxyl group-containing compound (A) is 10% by mass or more and 80% by mass or less.
  3.  前記ブチレンオキシド系ポリオール(A2)の数平均分子量が600以上1600以下であり、前記水酸基含有化合物(A)100質量%における前記ブチレンオキシド系ポリオール(A2)の含有量が20質量%以上60質量%以下である、請求項1または2に記載のポリウレタン樹脂組成物。 The number average molecular weight of the butylene oxide-based polyol (A2) is 600 or more and 1600 or less, and the content of the butylene oxide-based polyol (A2) in 100% by mass of the hydroxyl group-containing compound (A) is 20% by mass or more and 60% by mass. The polyurethane resin composition according to claim 1 or 2, wherein:
  4.  前記イソシアネート基含有化合物(B)がイソシアヌレート変性体を含む、請求項1~3のいずれか1項に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to any one of claims 1 to 3, wherein the isocyanate group-containing compound (B) contains an isocyanurate modified product.
  5.  前記水酸基含有化合物(A)を含む第1液と、前記イソシアネート基含有化合物(B)を含む第2液と、を含む二液型である、請求項1~4のいずれか1項に記載のポリウレタン樹脂組成物。 The first liquid containing the hydroxyl group-containing compound (A) and the second liquid containing the isocyanate group-containing compound (B), which is a two-component type according to any one of claims 1 to 4. Polyurethane resin composition.
  6.  電気絶縁用封止剤として用いられる請求項1~5のいずれか1項に記載のポリウレタン樹脂組成物。
     
    The polyurethane resin composition according to any one of claims 1 to 5, which is used as an electrical insulating sealant.
PCT/JP2022/025875 2021-07-13 2022-06-29 Polyurethane resin composition WO2023286595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115944 2021-07-13
JP2021115944A JP7108756B1 (en) 2021-07-13 2021-07-13 Polyurethane resin composition

Publications (1)

Publication Number Publication Date
WO2023286595A1 true WO2023286595A1 (en) 2023-01-19

Family

ID=82610388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025875 WO2023286595A1 (en) 2021-07-13 2022-06-29 Polyurethane resin composition

Country Status (3)

Country Link
JP (1) JP7108756B1 (en)
TW (1) TW202321333A (en)
WO (1) WO2023286595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009308A (en) * 2012-06-29 2014-01-20 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin formative composition and polyurethane resin
JP2015131883A (en) * 2014-01-10 2015-07-23 第一工業製薬株式会社 polyurethane resin composition
JP2016020439A (en) * 2014-07-15 2016-02-04 第一工業製薬株式会社 Polyurethane resin composition
JP2016098328A (en) * 2014-11-21 2016-05-30 サンユレック株式会社 Polyurethane resin composition
JP2016210932A (en) * 2015-05-12 2016-12-15 サンユレック株式会社 Polyurethane resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732080B2 (en) 2017-06-15 2023-08-22 Ddp Specialty Electronics Materials Us, Inc. Compositions containing hydrophobic modified isocyanate functional prepolymer containing adhesives
EP3774970A1 (en) 2018-04-02 2021-02-17 DDP Specialty Electronic Materials US, Inc. Two-component polyurethane adhesive compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009308A (en) * 2012-06-29 2014-01-20 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin formative composition and polyurethane resin
JP2015131883A (en) * 2014-01-10 2015-07-23 第一工業製薬株式会社 polyurethane resin composition
JP2016020439A (en) * 2014-07-15 2016-02-04 第一工業製薬株式会社 Polyurethane resin composition
JP2016098328A (en) * 2014-11-21 2016-05-30 サンユレック株式会社 Polyurethane resin composition
JP2016210932A (en) * 2015-05-12 2016-12-15 サンユレック株式会社 Polyurethane resin composition

Also Published As

Publication number Publication date
JP2023012346A (en) 2023-01-25
JP7108756B1 (en) 2022-07-28
TW202321333A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
KR101787616B1 (en) Polyol composition for producing polyurethane resin composition
CN103351456B (en) Wet method polyurethane resin for clothing leather, and preparation method thereof
JP6916404B1 (en) Two-component curable polyurethane resin composition
JP7108756B1 (en) Polyurethane resin composition
WO2024057899A1 (en) Two-component curable polyurethane resin composition
JP7108757B1 (en) Polyurethane resin composition
JP5784210B1 (en) Polyurethane resin composition
JP6905135B1 (en) Polyurethane resin composition
JP2011001397A (en) Aliphatic polyurea resin composition and aliphatic polyurea resin
JP5946555B1 (en) Polyurethane resin composition
JP6157709B1 (en) Polyurethane resin composition
JP7209890B1 (en) Two-component curable polyurethane resin composition
JP7174877B1 (en) Two-component curable polyurethane resin composition
JP2023149146A (en) Two-component curable polyurethane resin composition
JP2023173478A (en) Two-component curable polyurethane resin composition
JP6177382B1 (en) Polyurethane resin composition
JPH0762052A (en) Potting agent for electrical insulation
JP2023102105A (en) Two-liquid curing type polyurethane resin composition
JPH1025413A (en) Flame-retardant liquid polymer composition
JPS6071626A (en) Electrically insulating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE