WO2023286447A1 - 機器の異常診断方法 - Google Patents

機器の異常診断方法 Download PDF

Info

Publication number
WO2023286447A1
WO2023286447A1 PCT/JP2022/020685 JP2022020685W WO2023286447A1 WO 2023286447 A1 WO2023286447 A1 WO 2023286447A1 JP 2022020685 W JP2022020685 W JP 2022020685W WO 2023286447 A1 WO2023286447 A1 WO 2023286447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
diagnosis
abnormality
diagnosing
image
Prior art date
Application number
PCT/JP2022/020685
Other languages
English (en)
French (fr)
Inventor
史紀 加藤
正則 杉本
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023286447A1 publication Critical patent/WO2023286447A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an abnormality diagnosis method for equipment
  • Patent Document 1 There is a technique described in Patent Document 1 as a method of diagnosing abnormalities from driving sounds with high reliability without relying only on human senses.
  • Patent Document 1 describes "a display unit capable of displaying an image, a photographing unit that converts an image of an object to be photographed into an image signal that is an electric signal, and a sound collector that converts the sound of the surrounding environment into an acoustic signal that is an electric signal.
  • a storage unit capable of recording the data of the image signal, the data of the acoustic signal, and the data of a reference image captured in advance; reading the data of the reference image recorded in the storage unit; an image processing unit that compares and displays a diagnostic image currently captured by the imaging unit; a signal processing unit that records data of the acoustic signal of the diagnostic sound collected by the sound unit in the storage unit; a signal analysis unit that analyzes the diagnostic sound using preset analysis conditions;
  • An acoustic diagnostic device comprising:
  • Patent Document 1 describes that "the image processing unit transmits and superimposes at least one of the reference image and the diagnostic image currently captured by the imaging unit to the display unit. display and compare", "at least one of the reference image and the diagnostic image is an image obtained by extracting an edge portion of the image captured by the imaging unit", "the reference image and the At least one of the diagnostic image is an image obtained by extracting the edge portion of the image captured by the imaging unit and then binarized," and "the similarity between the reference image and the diagnostic image is It further includes an image information similarity calculator for calculating.”
  • an acoustic diagnostic device that diagnoses a device based on the operating sound of the device.
  • the object of comparison is the operation data of the equipment to be diagnosed in the past. If there is no past sound measurement data, abnormality diagnosis cannot be performed.
  • An object of the present invention is to solve these problems and to provide a method for diagnosing an abnormality in a device that can accurately diagnose an abnormality in the device even if there is no past sound measurement data.
  • the present invention is configured as follows.
  • a device abnormality diagnosis method for diagnosing a device using a terminal device wherein the terminal device comprises imaging means, sound collecting means, display means, and input means, and the display means displays an image of the device. a step of displaying candidates; a step of identifying the device from the displayed candidates of the device by input from an operator; and a step of displaying on the display means an imaging screen with a guide corresponding to the identified device. and after the position of the terminal device is adjusted so that the image of the device is displayed on the display means along the guide, the image and sound of the device are acquired by the imaging means and the sound collecting means. and a step of diagnosing the state of the device using the acquired image and sound information of the device and displaying the diagnosis result on the display means.
  • the present invention it is possible to provide a method for diagnosing an abnormality of a device that can accurately diagnose an abnormality of the device even if there is no past sound measurement data.
  • Equipment abnormalities can be determined without contact. Furthermore, by allowing the user to select a device and displaying a guide screen corresponding to the device, it is possible to specify an appropriate distance for sound collection, thereby improving not only imaging accuracy but also sound collection accuracy. If an application can perform a free diagnosis and determine whether or not to call a service person depending on the results, it will meet the customer's needs.
  • FIG. 2 is a diagram showing an outline of a device abnormality diagnosis method according to the first embodiment
  • FIG. 2 is a diagram showing a display/input unit of a smartphone, which is a terminal device
  • 1 is a diagram showing a camera and a sound collector of a smartphone that is a terminal device
  • FIG. FIG. 10 is a diagram showing another example of a sound collector of a smartphone, which is a terminal device
  • 10 is a flowchart of diagnosis target machine settings that are set before diagnosis by an abnormality diagnosis application.
  • FIG. 10 is a diagram showing an example of automatically setting a diagnosis target machine
  • FIG. 10 is a diagram showing another example of automatically setting a diagnostic target machine
  • FIG. 10 is a display screen when diagnosing an abnormality diagnosis application according to the first embodiment
  • FIG. 10 is a diagram when the diagnosis distance is determined not for the entire product but for parts in the abnormality diagnosis application; 11B is an enlarged view of the gas compressor and guide of FIG. 11A; FIG. FIG.
  • FIG. 10 is a diagram schematically showing the positional relationship among a diagnostic target machine, a diagnostician, and a smartphone on which a diagnostic application is installed when performing an abnormality diagnosis according to the second embodiment; It is explanatory drawing of a gas compressor with a soundproof box.
  • FIG. 11 is a display screen when diagnosing an abnormality diagnosis application according to the second embodiment;
  • FIG. 10 is a flow chart until the abnormality diagnosis of the abnormality diagnosis application of the second embodiment is completed; It is a display screen during diagnosis by the abnormality diagnosis application of the second embodiment, and is a screen when the diagnostic measurement distance is appropriate.
  • FIG. 16 is an enlarged view of parts and guides of the gas compressor of FIG. 15;
  • FIG. 11 is a diagram schematically showing the positional relationship among a diagnostic target machine, a diagnostician, a tablet terminal in which a diagnostic application is installed, and a smartphone serving as a child device when performing an abnormality diagnosis according to the third embodiment; It is an application screen for instructing the placement of the smartphone that serves as a child device. This is the application screen when the determination of the placement position of the smartphone serving as the child device is appropriate.
  • FIG. 12 is a flow chart until the abnormality diagnosis of the abnormality diagnosis application of the fourth embodiment is completed;
  • FIG. FIG. 4 is a diagram showing that a smartphone is connected to a server through a network in Examples 1 to 4;
  • Example 1 In this embodiment, a gas compressor is used as an example of a device, and a smart phone is used as an example of a terminal device.
  • FIG. 1 is a diagram showing an overview of the device abnormality diagnosis method according to the first embodiment.
  • a measurer (operator) 2 runs an abnormality diagnosis application installed on a smartphone 4, which is a terminal device, at a position away from the gas compressor 1 by a distance L3. Used to diagnose the state of the gas compressor 1 .
  • the diagnostic target may be any device that generates operating noise during mechanical operation.
  • the terminal device (hardware) where the application is installed is a device equipped with a microphone (sound collection means), a camera (imaging means), a display (display means), an input means, smart glasses, etc. such as a tablet terminal other than a smartphone.
  • a microphone may also be combined with a device that renders an image on a pair of eyeglasses.
  • the display may serve as both display means and input means, such as a touch panel.
  • FIG. 2A is a diagram showing the display 41 that is the display/input unit of the smartphone 4.
  • FIG. 2B is a diagram showing the camera 42 and the sound collector (microphone) 43A of the smartphone 4
  • FIG. 2C is a diagram showing another example of the sound collector 43B of the example shown in FIG. 2B.
  • the example shown in FIG. 2C is a sound collector 43B formed on the side portion of the smartphone 4 .
  • the threshold for determination and the guide shape (displayed on the display 41) for determining the measurement position change for each set model.
  • FIG. 3 is a flowchart for setting the model to be diagnosed using the smartphone 4, and changing the diagnosis target will be explained using FIG.
  • step S1 of FIG. 3 the model to be diagnosed is selected and set (specified) from the candidate devices displayed on the application screen of the smartphone 4, or as shown in FIG.
  • a discrimination seal (QR code (registered trademark)) 5 provided for discrimination may be read as an image and automatically set, or characteristic portions of each model as shown in FIG. 5 (for example, characteristic portion 6 in FIG. 5) may be automatically determined and set.
  • step S2 a guide 7 (shown in FIG. 6) matching the selected model is displayed.
  • the screen for diagnosing the application of the smartphone 4 will be explained using the application screen for diagnosis shown in FIG.
  • FIG. 6 a guide 7 showing the general shape of the product of the gas compressor 1 to be diagnosed on the display 41 of the smartphone 4, a sound wave gauge 8 displaying the waveform of the sound collected by the microphone 43A of the smartphone 4, a diagnosis A diagnostic button 9 is provided to start the
  • the shape of the guide changes according to the set model like the guide 11 shown in FIG. 7 depending on the setting of the model to be diagnosed.
  • the diagnosis is started (step S11) by pressing the diagnosis button 9 (step S10), and the diagnostic measurement position is determined. Then, the distance to the diagnosis target is determined (step S13). As for the distance determination in step S13, it is determined whether or not the general shapes of the guide 7a and the product 12a depicted on the display 41 match as shown in FIG. 9 (step S14).
  • the sound wave gauge 8 displays the operating sound waveform of the equipment to be diagnosed.
  • step S14 when the outlines of the guide 7a and the product 12a do not match ("No" in step S14), the sound picked up by the microphone 43A or the microphone 43B cannot be correctly measured and diagnosed.
  • the display 41 displays or blinks a message to align the outline of 1 with the guide 7a (step S15). Then, the process returns to step S13 to determine the distance from the diagnosis target. Further, the determination of the measurement distance L3 is not based on the general shape of the product 12a, but is based on whether the general shape 12d of the part of the product matches the guide 7d, as shown in FIGS. 11A and 11B. It's okay.
  • step S14 If the guide 7a and the general shape of the product 12a drawn on the display 41 match, it is determined that the measurement position is appropriate ("Yes” in step S14), the operating sound of the object to be measured is measured, and an abnormality is determined (step S16).
  • the sound recorded by the smartphone 4 exceeds the threshold value, it is determined to be abnormal ("Yes” in step S17), and a message (diagnostic result) prompting the customer to contact the purchaser or the nearest service station is displayed (step S18). . If the recorded sound pressure is equal to or less than the threshold ("No" in step S17), a message (diagnostic result) is displayed to inform that the device is normal (step S19). Then, the diagnosis ends.
  • the application installed in the terminal device such as the smartphone 4 according to the first embodiment can set the sound measurement position at the time of abnormality diagnosis of the equipment to a position with high reproducibility, it is possible to set the operating sound sound pressure threshold of the equipment to be constant. can be diagnosed, and even a person who does not have sufficient knowledge of the equipment to be diagnosed can accurately determine the presence or absence of an abnormality in the equipment.
  • the first embodiment it is possible to provide a method for diagnosing an abnormality of a device that can accurately diagnose an abnormality of the device even if there is no past sound measurement data.
  • Example 2 An overview of diagnosis in the second embodiment will be described with reference to FIG. 12 .
  • the device to be diagnosed is a case-type gas compressor 15 equipped with a soundproof box and a short-range wireless function (such as Bluetooth).
  • the measurer 2 uses an abnormality diagnosis application installed on the smartphone 4 at a position separated by a distance L3 to diagnose the state of the housing type gas compressor 15 .
  • the diagnosis is performed with the part 16 of the soundproof cover of the enclosure-type compressor 15 shown in FIG. 13 removed.
  • the hardware for installing the application may be a combination of a microphone and a camera such as a tablet terminal, a device equipped with a display, or a device such as smart glasses that draws an image on glasses.
  • a compatible device such as a tablet terminal
  • a compatible device such as smart glasses
  • the setting method is the same as in the first embodiment.
  • the screen for diagnosing this application will be described using the application screen for diagnosing shown in FIG.
  • a guide 17 showing the outline of parts of the gas compressor to be diagnosed On the display 41 of the smartphone 4, a guide 17 showing the outline of parts of the gas compressor to be diagnosed, a sound waveform gauge 8 displaying the sound waves collected by the microphone 43A of the smartphone 4, and a diagnosis button 9 for starting diagnosis are provided. ing. Further, the shape of the guide 17 changes according to the model set by setting the model to be diagnosed.
  • the operation data of the gas compressor 15 (operating time, date of manufacture, start/stop duty, current value, power consumption, temperature) and an operation signal indicating whether the gas compressor 15 is operating (step S20).
  • the diagnosis button 9 is activated (step S22), and when the diagnosis button 9 is pressed (step S23), diagnosis starts (step S24), and measurement of driving sound starts (step S25). ), and start determination of the diagnostic measurement position (step S26).
  • FIG. 16A is a diagram showing the display 41 of the smartphone 4 for determining whether or not the general shape of the part 20 of the gas compressor 15 matches, and FIG. It is an enlarged view.
  • the determination of the measurement position is made by determining whether or not the outline of the part 20 of the gas compressor 15 depicted on the guide 17 and the display 41 match (steps S26, S27, S28). If the general shape of the guide 17 and the part 20 do not match, the sound picked up by the microphone 43A cannot be correctly measured and diagnosed. S28).
  • step S29 If the guide 17 and the general shape of the part 20 drawn on the display 41 match, it is determined that the measurement position is appropriate, the operating sound of the object to be measured is measured, and an abnormality is determined (step S29).
  • step S30 When the sound pressure measured by the smartphone 4 exceeds the threshold, it is judged to be abnormal ("Yes” in step S30), and a message prompting the purchaser or the nearest service station to contact is displayed (step S31). If the recorded sound pressure is equal to or less than the threshold ("No" in step S30), the process proceeds to step S32, and it is determined whether or not the measured sound data measured this time is higher than the measured sound data in the past (step S32). If "No” in step S32, a message is displayed to inform that the system is normal (step S34).
  • step S32 If “yes” in step S32, a message saying "the operating noise is getting louder. It is recommended that you request an inspection from the place of purchase or the nearest service station" is displayed (step S33). ).
  • Measured sound data and driving data acquired during diagnosis are uploaded to the cloud (step S35).
  • the smart phone 4 or an application on the cloud compares the driving sound, current value, and temperature data on the cloud with the latest measured sound, current value, temperature data, and other driving data.
  • the temperature data measured by the temperature sensor provided in the gas compressor 15 is uploaded to the cloud.
  • the temperature data provided on the cloud and the temperature estimated from the thermography of the image of the gas compressor 15 captured by the smartphone 4 are compared, and the gas compressor 15 is detected in the same manner as the abnormality determination based on the operation sound. abnormal diagnosis can be performed. Current values can be determined from operational data uploaded to the cloud.
  • the same effect as in the first embodiment can be obtained, and deterioration of the gas compressor 15 can be detected by comparing the latest operation data and measured sound with the past data and considering the tendency. It can be recognized earlier than the one of 1, and the reduction of maintenance man-hours is possible.
  • Example 3 of the present invention will be described.
  • a smartphone 18 (another terminal device) installed near the compressor 1 is used to diagnose the state of the gas compressor 1 .
  • the smartphone 18 (another terminal device) is placed closer to the gas compressor 1 as a device than the tablet terminal device 44 (terminal device), acquires the sound of the gas compressor 1, and Send to
  • the model setting method is the same as in the first embodiment.
  • another smart phone 18 having a diagnostic application installed is used. This other smartphone 18 is paired with the tablet terminal device 44 possessed by the measurer 2 via short-range wireless communication or the like (mutual communication is enabled).
  • the placement position of the smartphone 18 is indicated by a guide 19 displayed on the tablet terminal device 44, as shown in FIG.
  • the determination of the placement position of the smartphone 18 is made by determining that the outlines of the guide 7a and the gas compressor 1 match on the photograph or video data taken by the camera of the tablet terminal device 44, and that the guide 19 and the smartphone 18 are aligned. If the general shapes match, it is determined that the arrangement position is correct.
  • the diagnosis screen of this application and the process up to abnormality diagnosis are the same as in the first embodiment.
  • the main frequency of the driving sound is calculated from the data measured by the smartphone 18, and the calculated frequency is transmitted to the tablet terminal device 44 side.
  • the tablet terminal device 44 determines abnormality based on the magnitude of sound pressure in the received frequency band.
  • Example 3 as in Example 2, the measured sound data and the driving data acquired during diagnosis are uploaded to the cloud.
  • the smart phone 4 or an application on the cloud compares the driving sound, current value, and temperature data on the cloud with the latest measured sound, current value, temperature data, and other driving data.
  • Example 4 of the present invention will be described.
  • the outline of the failure diagnosis of the gas compressor 1 of the fourth embodiment is the same as that of the first embodiment.
  • the model setting before the diagnosis is the same as in the first embodiment, but the frame rate or the flash function of the camera is used in advance before the diagnosis, and the rotation speed of the electric motor, which is the power of the device measured from the strobe effect, is estimated. Input to the application of the smart phone 4.
  • the rotation speed data of the gas compressor 1 equipped with a control board compatible with near-field wireless communication may be input to the application of the smartphone 4 via communication.
  • the application screen at the time of diagnosis is the same as that of the first embodiment.
  • Step S40 Input the measured rotation speed N of the gas compressor 1 to the application (step S40), or acquire the rotation speed N via the short-range wireless communication function in the case of the gas compressor 1 equipped with a control board compatible with short-range wireless communication.
  • Step S41 Diagnosis is started by pressing the diagnosis button, and determination of the diagnostic measurement position is started (steps S42 to S47). Diagnosis measurement position determination is the same as in the first embodiment.
  • step S51 If “yes” in step S51, a message saying "the operating noise is getting louder. It is recommended that you ask the place of purchase or the nearest service station for inspection" is displayed (step S52). ).
  • Measured sound data and driving data acquired during diagnosis are uploaded to the cloud (step S54).
  • the smart phone 4 or an application on the cloud compares the operating sound, current value, and temperature data on the cloud with the latest measured sound and operating data.
  • the rotation speed of the electric motor that powers the equipment is estimated, and the sound information of the equipment is calculated from the estimated rotation speed. Since it is possible to extract the main frequency sound in the operating sound, it is possible to diagnose in a room with a lot of reverberant sound.
  • the smartphone 4 is connected to the server via the network 45 in the fourth embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

過去の音測定データが無い場合であっても、正確に機器の異常を診断することが可能な機器の異常診断方法を提供する。端末装置4を用いて機器1を診断する機器の異常診断方法である。端末装置4は、撮像手段42と、集音手段43Aと、表示手段41と、入力手段41とを備え、表示手段41に機器1の候補を表示するステップと、表示した機器1の候補から操作者2からの入力によって機器1を特定するステップと、特定された機器1に対応するガイド11付きの撮像画面を表示手段41に表示するステップと、ガイド11にそって表示手段41に機器1の画像が表示されるように端末装置4の位置が調整された後、撮像手段42及び集音手段43Aによって機器1の画像及び音を取得するステップと、取得した機器1の画像及び音の情報を用いて機器1の状態を診断し、診断結果を表示手段41に表示するステップと、を有する。

Description

機器の異常診断方法
 本発明は、機器の異常診断方法に関する
 空気圧縮機などの機器は、運転音の大きさや音色から機器の状態を診断することが可能である。従来、音から機器の状態診断をするには、整備作業者に十分な知識や経験が要求され、経験の浅い作業者や一般的な機器の使用者には正確な診断が不可能であり、人間の感性に頼っているため、正確な診断が行えない。制御基板の無い製品も、監視や診断等ができるようにしたいというニーズがある。また、廉価な価格帯の製品のためセンサ等をつけるのはコスト的に避けたいという事情もある。
 さらに、故障等のたびにサービスマンを呼ぶのは、費用が掛かるため回避したいという要望もある。
 運転音から異常を人間の感覚のみに頼らず高い信頼性で診断する方法として、特許文献1に記載された技術がある。
 特許文献1には、「画像を表示可能な表示部と、撮影対象の画像を電気信号である画像信号に変換する撮影部と、周囲環境の音を電気信号である音響信号に変換する集音部と、前記画像信号のデータ、前記音響信号のデータ、および予め撮影した基準画像のデータを記録可能な記憶部と、前記記憶部に記録された基準画像のデータを読み出し、前記基準画像と、前記撮影部にて現在撮影されている診断用画像とを比較表示させる画像処理部と、前記基準画像と前記診断用画像とを表示している際に、利用者の操作に基づいて、前記集音部にて集音された診断用音の前記音響信号のデータを前記記憶部に記録する信号処理部と、前記診断用音を予め設定された解析条件を用いて解析する信号解析部と、を備えた音響診断装置。」が開示されている。
 また、特許文献1には、「前記画像処理部は、前記基準画像と、前記撮影部にて現在撮影されている前記診断用画像との少なくとも一方を透過させて重ねた画像を前記表示部に表示させて比較すること」、「前記基準画像と前記診断用画像との少なくとも一方は、前記撮影部にて撮影された画像のエッジ部分を抽出した画像であること」、「前記基準画像と前記診断用画像との少なくとも一方は、前記撮影部にて撮影された画像のエッジ部分を抽出した後、二値化した画像であること」および「前記基準画像と前記診断用画像との類似性を算出する画像情報類似性算出部を更に備えたこと」が記載されている。
特開2019-207224号公報
 特許文献1に記載の技術によれば、機器の運転音から機器の診断を行う音響診断装置が提供される。
 特許文献1に記載の技術では、予め撮影した機器の画像データと診断時の診断場所から撮影した写真を比較し、予め撮影した機器の画像データと一致するかを判定し、一致した場合、診断を行い診断時の再現性を高めることで、過去からの音測定データを正確に比較することが可能とし、診断の信頼性を高めている。
 しかし、特許文献1に記載の技術にあっては、比較対象が、過去の診断対象となる機器の運転データであり、今まで一度も診断したことのない機器の異常を診断したくても、過去の音測定データが無い場合は、異常診断を行うことができなかった。
 そこで、簡便に、後付けの部品なく、過去の音測定データが無い場合であっても機器の異常診断を行うことができる方法が望まれる。
 本発明は、これらの課題を解決し、過去の音測定データが無い場合であっても、正確に機器の異常を診断することが可能な機器の異常診断方法を提供することを目的とする。
 上記目的を達成するため、本発明は次のように構成される。
 端末装置を用いて機器を診断する機器の異常診断方法であって、前記端末装置は、撮像手段と、集音手段と、表示手段と、入力手段とを備え、前記表示手段に、前記機器の候補を表示するステップと、表示した前記機器の候補から、操作者からの入力によって前記機器を特定するステップと、特定された前記機器に対応するガイド付きの撮像画面を前記表示手段に表示するステップと、前記ガイドにそって前記表示手段に前記機器の画像が表示されるように前記端末装置の位置が調整された後、前記撮像手段および前記集音手段によって前記機器の画像および音を取得するステップと、取得した前記機器の画像および音の情報を用いて、前記機器の状態を診断し、診断結果を前記表示手段に表示するステップと、を有する。
 本発明によれば、過去の音測定データが無い場合であっても、正確に機器の異常を診断することが可能な機器の異常診断方法を提供することができる。
 非接触で機器の異常を判定できる。さらに、機器を選択させて機器に応じたガイド画面を表示することで、集音するのに適切な距離を指定することができ、撮像だけでなく集音の精度も向上させることができる。アプリケーションで無料診断しその結果次第でサービスマンを呼ぶ・呼ばないを判断できれば顧客の要望にかなう。
実施例1による機器の異常診断方法の概要を示す図である。 端末装置であるスマートフォンの表示/入力部を示す図である。 端末装置であるスマートフォンのカメラ及び集音機を示す図である。 端末装置であるスマートフォンの集音機の他の例を示す図である。 異常診断アプリケーションで診断前に設定する診断対象機設定のフローチャートである。 診断対象機設定を自動で行う場合の例を示す図である。 診断対象機設定を自動で行う場合の他の例を示す図である。 実施例1の異常診断アプリケーション診断時の表示画面である。 機種設定で診断対象機種を変更した場合の異常診断アプリケーションの診断時の表示画面である。 実施例1の異常診断アプリケーションの測定ボタンを開始してから異常診断を完了するまでのフローチャートである。 実施例1の異常診断アプリケーションで診断中の表示画面で、診断測定距離が適正の場合の画面である。 実施例1の異常診断アプリケーションで診断中の表示画面で、診断測定距離が不適の場合の画面である。 異常診断アプリケーションで診断距離の判定を製品全体ではなく部品で行った場合の図である。 図11Aの気体圧縮機とガイドを拡大した図である。 実施例2の異常診断を行う際の診断対象機械と診断者と診断アプリケーションがインストールされたスマートフォンの位置関係を概略的に表す図である。 防音箱付き気体圧縮機の説明図である。 実施例2の異常診断アプリケーション診断時の表示画面である。 実施例2の異常診断アプリケーションの異常診断を完了するまでのフローチャートである。 実施例2の異常診断アプリケーションで診断中の表示画面で、診断測定距離が適正の場合の画面である。 図15の気体圧縮機の部品とガイドを拡大した図である。 実施例3の異常診断を行う際の診断対象機械と診断者と診断アプリケーションがインストールされたタブレット端末と子機となるスマートフォンの位置関係を概略的に表す図である。 子機となるスマートフォンの配置を指示するアプリ画面である。 子機となるスマートフォンの配置位置の判定において適正の場合のアプリケーション画面である。 実施例4の異常診断アプリケーションの異常診断を完了するまでのフローチャートである。 実施例1~4において、スマートフォンがネットワークを通じてサーバと接続されていることを示す図である。
 以下、添付図面を参照して本発明の実施形態について説明する。
 (実施例1)
 本実施例では、機器の一例として気体圧縮機を、端末装置の一例としてスマートフォンを用いて説明する。
 図1は、実施例1による機器の異常診断方法の概要を示す図である。
 図1において、診断対象の気体圧縮機1の運転中に測定者(操作者)2は、気体圧縮機1から距離L3離れた位置で、端末装置であるスマートフォン4にインストールされた異常診断アプリケーションを使用し、気体圧縮機1の状態を診断する。
 なお、診断対象は気体圧縮機1以外に機械運転時に動作音が発生する機器全般でもよい。また、アプリケーションをインストールする端末装置(ハードウェア)は、スマートフォン以外にタブレット端末などのマイクロフォン(集音手段)とカメラ(撮像手段)、ディスプレイ(表示手段)、入力手段を備えたデバイスやスマートグラス等の眼鏡上に画像を描写するデバイスにマイクロフォンを組み合わせたものでもよい。ディスプレイは例えばタッチパネルのように表示手段と入力手段とを兼ねるものであってもよい。
 図2Aは、スマートフォン4の表示/入力部であるディスプレイ41を示す図である。また、図2Bは、スマートフォン4のカメラ42及び集音機(マイクロフォン)43Aを示す図であり、図2Cは図2Bに示した例の他の例の集音機43Bを示す図である。図2Cに示した例は、スマートフォン4の側面部に形成された集音機43Bである。
 気体圧縮機1の診断開始前に診断対象となる機種を選択する。診断対象機種の設定により、設定した機種毎に判定の閾値や測定位置を判定するガイド形状(ディスプレイ41に表示される)が変化する。
 図3は、スマートフォン4を用いて行う診断対象機種設定のフローチャートであり、診断対象変更について図3を用いて説明する。
 図3のステップS1において、診断対象となる機種を、スマートフォン4のアプリケーション画面に表示された機器の候補から選択し設定する(特定する)、もしくは図4に示すように、気体圧縮機1上に設けた判別用のシール(QRコード(登録商標))5を画像として読み取り自動的に設定するのでもよいし、図5に示すように各機種の特徴部分(例えば図5中の特徴部分6)から自動的に判別し設定するのでもよい。そして、ステップS2において、選択した機種に合わせたガイド7(図6に示す)が表示される。
 スマートフォン4のアプリケーションの診断時の画面について図6に示した診断時アプリケーション画面を用いて説明する。
 図6において、スマートフォン4のディスプレイ41上に診断対象物となる気体圧縮機1の製品の概形を示すガイド7、スマートフォン4のマイクロフォン43Aで採取した音の波形を表示する音波形ゲージ8、診断を開始する診断ボタン9を設けている。
 また、ディスプレイ41の背景10には、スマートフォン4のカメラ42で撮影した画像もしくは動画を描写する。また、診断対象機種の設定により図7に示すガイド11のように設定した機種に合わせてガイド形状が変化する。
 スマートフォン4のアプリケーションによる異常診断までのプロセスを、図8に示す診断までのフローチャートを用いて説明する。
 図8において、診断ボタン9を押す(ステップS10)ことで診断が開始し(ステップS11)、診断測定位置を判定する。そして、診断対象との距離を判定する(ステップS13)。ステップS13の、距離判定は図9に示すようにガイド7aとディスプレイ41上に描写された製品12aの概形が一致するか否かで判定する(ステップS14)。なお、音波ゲージ8には、診断対象機器の運転音波形が表示される。
 図10に示すように、ガイド7aと製品12aの概形が不一致の場合(ステップS14の「いいえ」)は、マイクロフォン43Aまたはマイクロフォン43Bで採取する音が正しく測定できず診断できないため、気体圧縮機1の概形とガイド7aとを合わせるメッセージをディスプレイ41に表示もしくは点滅する(ステップS15)。そして、ステップS13に戻り、診断対象との距離を判定する。また、測定距離L3の判定は、製品12aの概形から判定するのではなく、図11Aと図11Bに示すように、製品の一部分の形状12dの概形がガイド7dと一致するかで判定するのでもよい。
 ガイド7aとディスプレイ41上に描写された製品12aの概形が一致した場合、測定位置が適正と判定(ステップS14の「はい」)、測定対象物の運転音を測定し異常判定を行う(ステップS16)。異常判定はスマートフォン4で録音した音が閾値を超えると異常と判定し(ステップS17の「はい」)、購入先もしくは最寄りのサービスステーションに連絡を促すメッセージ(診断結果)を表示する(ステップS18)。録音した音圧が閾値以下の場合(ステップS17の「いいえ」)は正常であることを伝えるメッセージ(診断結果)を表示する(ステップS19)。そして、診断終了となる。
 本実施例1によるスマートフォン4等の端末装置にインストールしたアプリケーションは、機器の異常診断時の音測定位置が再現性の高い位置とすることができるので、機器の運転音音圧閾値を一定として異常を診断することが可能となり、診断対象機器の知識を十分に有していない者でも機器の異常有無判定を正確に行うことが可能となる。
 つまり、本実施例1によれば、過去の音測定データが無い場合であっても、正確に機器の異常を診断することが可能な機器の異常診断方法を提供することができる。
 (実施例2)
 次に、本発明の実施例2について説明する。 
 本実施例2の診断時の概要について図12を用いて説明する。図12において、診断対象である機器は、防音箱を備え、近距離無線機能(Bluetooth等)を搭載した筐体型気体圧縮機15である。筐体型気体圧縮機15の運転中に測定者2は距離L3だけ離れた位置でスマートフォン4にインストールされた異常診断アプリケーションを使用し、筐体型気体圧縮機15の状態を診断する。このとき、図13に示す筐体型圧縮機15の防音カバーの一部16を取り外した状態で診断する。なお、アプリケーションをインストールするハードウェアは、スマートフォン4以外にタブレット端末などのマイクロフォンとカメラ、ディスプレイを備えたデバイスやスマートグラス等の眼鏡上に画像を描写するデバイスにマイクロフォンを組み合わせたのでもよい。
 本診断用アプリケーションをデバイスにインストール後、初期設定として使用するハードウェアの種類としてスマートフォンを設定する。なお、タブレット端末の場合はタブレット端末、スマートグラスの場合はスマートグラス等対応する機器を設定する。
 診断開始前に診断対象となる機種を選択する。設定方法については実施例1と同様である。
 このアプリケーションの診断時の画面について図14に示した診断時アプリケーション画面を用いて説明する。スマートフォン4のディスプレイ41上に診断対象物となる気体圧縮機の部品概形を示すガイド17、スマートフォン4のマイクロフォン43Aで採取した音波を表示する音波形ゲージ8、診断を開始する診断ボタン9を設けている。また、診断対象機種の設定により設定した機種に合わせガイド17の形状は変化する。
 アプリケーションの異常診断までのプロセスを図15に示したフローチャートを用いて説明する。
 図15において、気体圧縮機15の制御基板に搭載された近距離無線通信機能を介し、気体圧縮機15の運転データ(運転時間、製造年月日、起動/停止Duty、電流値、消費電力、温度)と気体圧縮機15が運転しているかの運転信号を取得する(ステップS20)。運転信号がある場合(ステップS21)、診断ボタン9が活動し(ステップS22)、診断ボタン9を押す(ステップS23)ことで診断が開始(ステップS24)、運転音の測定を開始し(ステップS25)、診断測定位置判定を開始する(ステップS26)。
 図16Aは、気体圧縮機15の一部品20の概形が一致するか否かを判定するスマートフォン4のディスプレイ41を示す図であり、図16Bは、ディスプレイ41に表示された気体圧縮機15の拡大図である。測定位置判定は図16Aに示すように、ガイド17とディスプレイ41上に描写された気体圧縮機15の一部品20の概形が一致するか否かで判定する(ステップS26、S27、S28)。ガイド17と部品20の概形が不一致の場合は、マイクロフォン43Aで採取する音が正しく測定できず診断できないため、部品20の概形とガイド17を合わせるメッセージをディスプレイ41に表示もしくは点滅する(ステップS28)。
 ガイド17とディスプレイ41上に描写された部品20の概形が一致した場合、測定位置が適正と判定、測定対象物の運転音を測定し異常判定を行う(ステップS29)。
 異常判定はスマートフォン4で測定した音圧が閾値を超えると異常と判定し(ステップS30の「はい」)、購入先もしくは最寄りのサービスステーションに連絡を促すメッセージを表示する(ステップS31)。録音した音圧が閾値以下の場合(ステップS30の「いいえ」)は、ステップS32に進み、今回測定した測定音データが過去の測定音データより上昇したか否かを判定する(ステップS32)。ステップS32において、「いいえ」であれば 、正常であることを伝えるメッセージを表示する(ステップS34)。
 また、ステップS32において、「はい」であれば、“運転音が大きくなっています。購入先もしくは最寄りのサービスステーションに点検を依頼することをお勧めします”と言うメッセージを表示する(ステップS33)。
 測定した音データと診断時に取得した運転データはクラウド上にあげられる(ステップS35)。これらクラウド上の運転音や電流値、温度データと最新の測定音や電流値、温度データ等の運転データをスマートフォン4もしくはクラウド上のアプリケーションが比較する。
 温度データは気体圧縮機15に備えられた温度センサにより測定されたデータがクラウド上にあげられる。クラウド上にあげられた温度データと、スマートフォン4が撮像した気体圧縮機15の画像のサームグラフィから推定して得られる温度とが比較され、運転音による異常判定と同様にして、気体圧縮機15の異常診断を行うことができる。電流値は、クラウドに上げられた運転データから判定することができる。
 本実施例2においても、実施例1と同様な効果を得ることができる他、最新の運転データや測定音と過去のものを比較し傾向を考慮することで気体圧縮機15の劣化を実施例1のものより早く認知することができ、整備工数の削減が可能となる。
 (実施例3)
 次に、本発明の実施例3について説明する。
 本実施例3の診断時の概要を図17、図18及び図19を用いて説明する。診断対象の気体圧縮機1の運転中に測定者2は距離L3だけ離れた位置で異常診断アプリケーションがインストールされた測定者2が手に持つ端末装置であるタブレット端末装置44(端末装置)と気体圧縮機1の近傍に設置するスマートフォン18(他の端末装置)を使用し、気体圧縮機1の状態を診断する。スマートフォン18(他の端末装置)は、タブレット端末装置44(端末装置)より機器である気体圧縮機1の近辺に配置され、気体圧縮機1の音を取得し、タブレット端末装置44(端末装置)に送信する。
 診断開始前に診断対象となる機種を選択する。機種設定方法については実施例1と同様である。また、本実施例3では診断アプリケーションをインストールしたもう一台のスマートフォン18を使用する。このもう一台のスマートフォン18は測定者2が持つタブレット端末装置44と近距離無線通信等を介してペアリングをする(相互通信可能とする)。
 スマートフォン18の配置位置は図18に示すように、タブレット端末装置44に表示されたガイド19で指示される。スマートフォン18の配置位置の判定は図19に示すように、タブレット端末装置44のカメラで撮影した写真もしくは動画データ上においてガイド7aと気体圧縮機1の概形が一致し、ガイド19とスマートフォン18の概形が一致することで、配置位置が正しいと判定される。
 このアプリケーションの診断時画面、異常診断までのプロセスは実施例1と同様である。ただし、測定する音のデータは、スマートフォン18から測定したデータから主となる周波数の運転音を算出し、算出した周波数をタブレット端末装置44側に送信する。タブレット端末装置44は受信した周波数帯の音圧の大小で異常の判定を行う。
 本実施例3においては、実施例1と同様な効果が得られる他、気体圧縮機1の運転音の中で主となる周波数帯の音を抽出することができるため、反響音の多い部屋での診断が可能となる。
 実施例3においても、実施例2と同様に、測定した音データと診断時に取得した運転データはクラウド上にあげられる。これらクラウド上の運転音や電流値、温度データと最新の測定音や電流値、温度データ等の運転データをスマートフォン4もしくはクラウド上のアプリケーションが比較する。
 (実施例4)
 次に、本発明の実施例4について説明する。
 本実施例4の気体圧縮機1の故障診断時の概要については、実施例1と同様である。本実施例4では診断前の機種設定は実施例1と同様だが、診断前にあらかじめカメラのフレームレートもしくはフラッシュ機能を用い、ストロボ効果から計測した機器の動力である電動機の回転速度を推定してスマートフォン4のアプリケーションに入力する。
 機器の回転速度については、実測ではなく、近距離無線通信対応制御基板搭載気体圧縮機1の回転速度データを、通信を介してスマートフォン4のアプリケーションに入力するのでもよい。診断時のアプリケーション画面は実施例1と同様である。
 アプリケーションの異常診断までのプロセスを図20に示したフローチャートを用いて説明する。
 実測した気体圧縮機1の回転速度Nをアプリケーションに入力(ステップS40)もしくは近距離無線通信対応制御基板搭載の気体圧縮機1の場合は、近距離無線通信機能を介し、回転速度Nを取得する(ステップS41)。診断ボタンを押すことで診断を開始し、診断測定位置の判定を開始する(ステップS42~S47)。診断測定位置判定は実施例1と同様である。
 次に、測定対象物の運転音を測定し異常判定を行う(ステップS48)。異常判定はスマートフォン4で測定した音圧から予め入力した回転速度Nとした場合、次式(1)で定義した周波数fの範囲内の音圧(音の情報)が閾値を超えると異常と判定し、購入先もしくは最寄りのサービスステーションに連絡を促すメッセージを表示する(ステップS49、S50)。 
 0.97kN≦f≦1.03kN [Hz] (k=1、2、3…)・・・(1)
 録音した音圧が閾値以下の場合は、ステップS51に進み、今回測定した測定音データが過去の測定音データより上昇したか否かを判定する(ステップS51)。ステップS51において、「いいえ」であれば、正常であることを伝えるメッセージを表示する(ステップS53)。
 また、ステップS51において、「はい」であれば、“運転音が大きくなってます。購入先もしくは最寄りのサービスステーションに点検を依頼するのをお勧めします”と言うメッセージを表示する(ステップS52)。
 測定した音データと診断時に取得した運転データはクラウド上にあげられる(ステップS54)。これらクラウド上の運転音や電流値、温度データと最新の測定音と運転データをスマートフォン4もしくはクラウド上のアプリケーションが比較する。
 本実施例4では、機器の動力である電動機の回転速度を推定し、推定した回転速度から、機器の音の情報を算出するように構成したので、実施例1と同様な効果が得られる他、運転音の中で主となる周波数態の音を抽出することができるため、反響音の多い部屋での診断が可能となる。
 なお、図21に示すように、本発明の実施例4においては、スマートフォン4は、ネットワーク45を介してサーバと接続されている。
 1、15・・・気体圧縮機、2・・・測定者(操作者)、3・・・距離L、4、18・・・スマートフォン、5・・・判別用のシール、6・・・特徴部分、7、7a、7d・・・概形を示すガイド、8・・・音波形ゲージ、9・・・診断ボタン、10・・・背景、11、17、19・・・ガイド、12a・・・製品、12d・・・製品の一部分の形状、16・・・防音カバーの一部、20・・・部品、41・・・ディスプレイ、42・・・カメラ、43A、43B・・・集音機(マイクロフォン)、44・・・タブレット端末装置、45・・・ネットワーク

Claims (5)

  1.  端末装置を用いて機器を診断する機器の異常診断方法であって、
     前記端末装置は、撮像手段と、集音手段と、表示手段と、入力手段とを備え、
     前記表示手段に、前記機器の候補を表示するステップと、
     表示した前記機器の候補から、操作者からの入力によって前記機器を特定するステップと、
     特定された前記機器に対応するガイド付きの撮像画面を前記表示手段に表示するステップと、
     前記ガイドにそって前記表示手段に前記機器の画像が表示されるように前記端末装置の位置が調整された後、前記撮像手段および前記集音手段によって前記機器の画像および音を取得するステップと、
     取得した前記機器の画像および音の情報を用いて、前記機器の状態を診断し、診断結果を前記表示手段に表示するステップと、
     を有する機器の異常診断方法。
  2.  請求項1において、
     取得した前記機器の画像から、前記機器の温度または、前記機器の動力である電動機の回転速度を推定して前記機器の状態の診断に用いる機器の異常診断方法。
  3.  請求項1において、
     前記取得した機器の音の情報と、過去の前記機器の音の情報とを比較して前記機器の状態を診断し、診断結果を前記表示手段に表示する機器の異常診断方法。
  4.  請求項1において、
     前記端末装置とペアリングされる他の端末装置を備え、
     前記他の端末装置は、前記端末装置より前記機器の近辺に配置され、前記機器の音を取得し、前記端末装置に送信する機器の異常診断方法。
  5.  請求項1において、
     前記機器の動力である電動機の回転速度を推定し、推定した前記回転速度から、前記機器の音の情報を算出する機器の異常診断方法。
PCT/JP2022/020685 2021-07-14 2022-05-18 機器の異常診断方法 WO2023286447A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116683 2021-07-14
JP2021116683A JP2023012920A (ja) 2021-07-14 2021-07-14 機器の異常診断方法

Publications (1)

Publication Number Publication Date
WO2023286447A1 true WO2023286447A1 (ja) 2023-01-19

Family

ID=84919200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020685 WO2023286447A1 (ja) 2021-07-14 2022-05-18 機器の異常診断方法

Country Status (2)

Country Link
JP (1) JP2023012920A (ja)
WO (1) WO2023286447A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016199A (ja) * 2012-07-06 2014-01-30 Toshiba Industrial Products Manufacturing Corp 携帯端末、振動音響計測システム及び振動音響計測方法
WO2016009932A1 (ja) * 2014-07-18 2016-01-21 Ntn株式会社 機械部品診断システムおよびそのサーバ
JP2019207224A (ja) * 2018-05-29 2019-12-05 東芝産業機器システム株式会社 音響診断装置
JP2020085836A (ja) * 2018-11-30 2020-06-04 東芝産業機器システム株式会社 分析装置および分析プログラム
JP2021096209A (ja) * 2019-12-19 2021-06-24 ネクストウェア株式会社 状態変化検知システム及び状態変化検知プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016199A (ja) * 2012-07-06 2014-01-30 Toshiba Industrial Products Manufacturing Corp 携帯端末、振動音響計測システム及び振動音響計測方法
WO2016009932A1 (ja) * 2014-07-18 2016-01-21 Ntn株式会社 機械部品診断システムおよびそのサーバ
JP2019207224A (ja) * 2018-05-29 2019-12-05 東芝産業機器システム株式会社 音響診断装置
JP2020085836A (ja) * 2018-11-30 2020-06-04 東芝産業機器システム株式会社 分析装置および分析プログラム
JP2021096209A (ja) * 2019-12-19 2021-06-24 ネクストウェア株式会社 状態変化検知システム及び状態変化検知プログラム

Also Published As

Publication number Publication date
JP2023012920A (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
US8707785B2 (en) On-board ultrasonic frequency spectrum and image generation
JP6594993B2 (ja) カメラ付きバッテリテストシステム
KR100969384B1 (ko) 차량용 소음/진동 진단장치 및 그것의 운용방법
JP5037732B2 (ja) 点検支援装置、点検支援システム、点検支援方法、及び点検支援プログラム
US20170193461A1 (en) System and method for guided printer servicing
CN106961514B (zh) 终端装置和信息输出方法
JP6130088B1 (ja) 点検支援端末、点検支援方法及びプログラム
JP6827379B2 (ja) 電力機器の保守支援装置、システムおよびプログラム
JP6972070B2 (ja) プログラム、点検支援端末及び点検支援方法
CN108613728B (zh) 人体数据测量装置和方法
JP5985281B2 (ja) 携帯端末、振動音響計測システム及び振動音響計測方法
JP2022054521A (ja) 巡視点検作業評価システム、巡視点検作業評価装置、操作端末、位置検出端末、及び巡視点検作業評価方法
JP6113901B1 (ja) 点検支援端末、点検支援方法及びプログラム
WO2023286447A1 (ja) 機器の異常診断方法
JP3693644B2 (ja) 設備の運転状態音響監視方法および設備の運転状態音響監視装置
JP7313895B2 (ja) 音響診断装置
CN117038051A (zh) 基于智能听诊器的远程听诊方法、装置、远程听诊系统
CN109698998B (zh) 一种音响系统的故障诊断系统及其诊断方法
JP7439519B2 (ja) 処理装置、処理方法及びプログラム
JP4255415B2 (ja) 音情報取得システム、音情報取得装置、非接触診断システム、及び非接触診断方法
CN210990247U (zh) 一种血压检测系统
JP2020042472A (ja) 省エネルギー診断システム
WO2023199904A1 (ja) 異常診断システム及びプログラム
JP2022029352A (ja) 音響診断装置
CN112813749B (zh) 钢轨位移观测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841794

Country of ref document: EP

Kind code of ref document: A1