WO2023286265A1 - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
WO2023286265A1
WO2023286265A1 PCT/JP2021/026743 JP2021026743W WO2023286265A1 WO 2023286265 A1 WO2023286265 A1 WO 2023286265A1 JP 2021026743 W JP2021026743 W JP 2021026743W WO 2023286265 A1 WO2023286265 A1 WO 2023286265A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
processing
laser beam
intensity distribution
optical axis
Prior art date
Application number
PCT/JP2021/026743
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 石川
正記 瀬口
正人 河▲崎▼
達也 山本
健太 藤井
智毅 桂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/026743 priority Critical patent/WO2023286265A1/en
Priority to JP2023534564A priority patent/JPWO2023286265A1/ja
Publication of WO2023286265A1 publication Critical patent/WO2023286265A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present disclosure relates to a laser processing apparatus and a laser processing method for irradiating an object to be processed with a laser beam to process the object.
  • a device for processing a material using a laser beam in the processing direction disclosed in Patent Document 1 has a condensing optical system that converges the laser beam on the object to be processed and defines an optical axis.
  • the apparatus includes an adjustment mechanism comprising a first adjustment device for the laser beam that adjusts the power density distribution of the laser beam perpendicular to the processing direction to be asymmetric and the density distribution of the gas jet perpendicular to the processing direction to be asymmetric. and/or a second adjustment device for the gas jet that adjusts such that
  • the beam mode of the laser beam irradiated to the workpiece and the energy ratio of the intensity distribution in the beam cross section of the laser beam irradiated in the processing direction are used as processing parameters for cutting processing. There is a problem that it cannot be controlled in response to
  • the present disclosure has been made in view of the above, and the energy ratio of the intensity distribution in the beam cross section of the laser light irradiated in the processing direction and the beam mode of the laser light irradiated to the workpiece are cut. It is an object of the present invention to obtain a laser processing apparatus that can be controlled in accordance with the processing parameters of .
  • the laser processing apparatus includes a laser oscillator that outputs laser light based on an oscillator command, and a laser light that is focused by a focusing optical system for processing. It has a processing head that irradiates an irradiation position on an object, and a control unit that changes the relative position between the object to be processed and the processing head based on a drive command to move the irradiation position in the cutting direction.
  • a laser processing apparatus includes an intensity distribution adjustment unit that includes an optical component having an intensity distribution conversion characteristic that is rotationally symmetrical about one axis and changes the intensity distribution of a laser beam based on an intensity distribution adjustment command; and an optical axis adjuster for changing the incident position or the incident angle of the laser beam incident on the intensity distribution adjuster in accordance with the material of the object, the plate thickness of the object to be processed, and the cutting direction partly or wholly.
  • the control unit responds to part or all of the oscillator command, drive command, intensity distribution adjustment command, material of the object to be processed, plate thickness of the object to be processed, and cutting direction based on processing parameters, which are numerical parameters related to cutting. determines an optical axis adjustment command for controlling the optical axis adjustment unit.
  • the beam mode of the laser light irradiated to the workpiece and the energy ratio of the intensity distribution in the beam cross section of the laser light irradiated in the processing direction correspond to the processing parameters of the cutting processing.
  • FIG. 1 is a diagram showing an overview of a configuration of a laser processing apparatus according to Embodiment 1;
  • FIG. 1 is a diagram showing an example of a specific configuration of a laser processing apparatus according to Embodiment 1;
  • FIG. Diagram for explaining the amount of displacement of the position of the laser beam
  • FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2;
  • FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2;
  • FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2;
  • FIG. 2 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2;
  • FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2;
  • FIG. 2 shows an example of a specific usage of the laser processing apparatus according to Embodiment 1;
  • FIG. 4 shows another example of a specific usage of the laser processing apparatus according to Embodiment 1;
  • FIG. 2 is a diagram showing a configuration of part of the laser processing apparatus according to Embodiment 1 for explaining an example of ray tracing calculation results;
  • the beam intensity distribution near the focal point when the angle between the flat substrate of the laser processing apparatus according to the first embodiment and the optical axis of the laser beam is 90° and no optical component is inserted into the optical axis.
  • FIG. 4 is a diagram showing a beam intensity distribution near a focal point when the convex axicon lens of the intensity distribution adjustment unit is inserted into the optical axis in the laser processing apparatus according to Embodiment 1;
  • FIG. 4 is a diagram showing a laser beam intensity distribution when the angle formed by the planar substrate and the optical axis of the laser beam is 45° in the laser processing apparatus according to the first embodiment;
  • FIG. 4 is a diagram showing the relationship between the tilt angle of the flat substrate and the peak intensity of the laser beam in the processing progress direction side in the laser processing apparatus according to the first embodiment;
  • FIG. 2 is a diagram for explaining functions of the laser processing apparatus according to Embodiment 1;
  • FIG. 2 is a diagram showing an overview of the configuration of a laser processing apparatus according to Embodiment 2; The figure which shows the structure of the processing condition analyzer which the laser processing apparatus which concerns on Embodiment 3 has.
  • FIG. 11 shows a configuration of a neural network model according to Embodiment 3; The figure which shows the structure of the laser processing apparatus of the modification which concerns on Embodiment 3.
  • FIG. 10 shows a processor in which part or all of a processing result determination unit, a feature amount extraction unit, a machine learning device, and a processing condition change unit of a processing condition analyzer of a laser processing apparatus according to Embodiment 3 are realized by a processor; figure A processing circuit in which part or all of the processing result determination unit, the feature amount extraction unit, the machine learning device, and the processing condition change unit of the processing condition analyzer of the laser processing apparatus according to the third embodiment are realized by the processing circuit diagram showing
  • the wavelength of the laser beam L is appropriately selected in consideration of, for example, the absorptivity of the laser beam L to the object W to be processed and the reflectance of the laser beam L to the object W to be processed.
  • the wavelength of the laser beam L is anywhere from 0.193 ⁇ m to 11 ⁇ m.
  • the laser processing apparatus 100 further has a processing head 2 to which the laser beam L output from the laser oscillator 1 is supplied.
  • a laser beam L output from a laser oscillator 1 is supplied to a processing head 2 via an optical path.
  • the processing head 2 converges the laser beam L output from the laser oscillator 1 by a condensing optical system 6, which will be described later, and irradiates the irradiation position of the object W to be processed.
  • the irradiation position is a position on the workpiece W where the laser beam L is irradiated.
  • a processing gas is also supplied to the inside of the processing head 2, and the processing gas is jetted to the processing object W when the laser beam L is irradiated onto the processing object W. As shown in FIG.
  • the laser processing apparatus 100 further has a collimator lens 3 for collimating the laser beam L output from the laser oscillator 1 .
  • the collimating lens 3 is composed of one or more lenses.
  • the laser processing apparatus 100 further has an optical axis adjusting section 4 that adjusts the optical axis of the laser beam L collimated by the collimator lens 3 .
  • the collimating lens 3 and the optical axis adjusting section 4 are located inside the processing head 2 .
  • the laser processing apparatus 100 includes an intensity distribution adjusting unit 5 that adjusts the intensity distribution of the laser beam L whose optical axis has been adjusted by the optical axis adjusting unit 4, and the laser beam L whose intensity distribution has been adjusted by the intensity distribution adjusting unit 5. It further has a condensing optical system 6 for condensing light. A workpiece W is irradiated with the laser beam L condensed by the condensing optical system 6 .
  • the intensity distribution adjusting section 5 and the condensing optical system 6 are located inside the processing head 2 .
  • the laser processing apparatus 100 cuts the workpiece W by condensing the laser beam L and irradiating the workpiece W with the laser beam L. Also shown in FIG. 1 are arrows indicating the cutting direction.
  • the optical axis adjustment unit 4 corresponds to the material of the object W to be processed, the plate thickness of the object W to be processed, and a part or all of the cutting direction, and the incident position or angle of incidence of the laser beam L incident on the intensity distribution adjustment unit 5.
  • the machining head 2 has a machining nozzle 7 . An opening is formed in the processing nozzle 7 at a position between the condensing optical system 6 and the workpiece W and a part of the optical path of the laser beam L. As shown in FIG. The laser beam L and processing gas pass through the opening.
  • the laser processing apparatus 100 changes the relative position between the workpiece W and the processing head 2 based on the drive command, and moves the irradiation position, which is the position at which the laser beam L is irradiated onto the workpiece W, in the cutting direction. It further has a control unit 8 .
  • a motor and a motor driving device are provided on the shaft on which the processing head 2 is installed or on the processing table on which the workpiece W is arranged. , the laser processing apparatus 100 can change the relative position between the processing head 2 and the workpiece W.
  • the processing head 2 collimates a condensing diameter changing portion 3a that changes the condensing diameter of the laser beam L applied to the workpiece W by changing the beam diameter of the laser beam L incident on the condensing optical system 6. It may be replaced with the lens 3.
  • the type of laser oscillator 1 is not limited.
  • An example of the laser oscillator 1 is a fiber laser oscillator.
  • the laser oscillator 1 may be a direct diode laser, a carbon dioxide laser, a copper vapor laser, various ion lasers, or a solid-state laser.
  • An example of a solid-state laser is a laser that uses a YAG (Yttrium-Aluminum-Garnet) crystal as an excitation medium.
  • the laser processing apparatus 100 may have a wavelength conversion section that converts the wavelength of the laser light output from the laser oscillator 1 .
  • the control unit 8 controls the output of the laser beam output from the laser oscillator 1, the pulse frequency of the laser beam L, and the pulse frequency so that the laser beam L scans the machining path on the workpiece W according to the machining program and the machining parameters indicating the machining conditions. , an oscillator command that commands the pulse duty and oscillation timing, and a drive command that commands the feed speed and positioning of the motor drive device. Depending on the type of laser light used and the functions of the laser processing apparatus 100, what processing parameters to use are appropriately determined.
  • the optical axis adjustment unit 4 has an optical component and a driving unit that displaces the optical component with respect to the optical axis of the laser beam L.
  • FIG. 2 is a diagram showing a specific configuration example of the laser processing apparatus 100 according to Embodiment 1.
  • the optical component of the optical axis adjusting section 4 is the planar substrate 4a
  • the driving section is the hollow rotating stage 4b and the angle adjusting mechanism 4c.
  • the laser beam L is transmitted through the planar substrate 4a.
  • the hollow rotary stage 4b and the angle adjustment mechanism 4c are components for changing the tilt angle of the plane substrate 4a with respect to the optical axis of the laser beam L.
  • the hollow rotary stage 4b is a rotating mechanism that rotates the planar substrate 4a around the optical axis of the laser beam L corresponding to the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction partially or entirely.
  • the angle adjustment mechanism 4c is a mechanism for changing the relative angle between the flat substrate 4a and the optical axis of the laser beam L.
  • the hollow rotary stage 4b is a direct drive motor. Since the rotation stage has a higher acceleration than the displacement stage, the laser processing apparatus 100 can change the beam mode by following the processing speed. By tilting the plane substrate 4a with respect to the optical axis of the laser beam L, the incident position of the laser beam L incident on the intensity distribution adjusting section 5 is changed.
  • a laser oscillator 1 included in the laser processing apparatus 100 of FIG. 2 is a fiber laser.
  • a laser processing apparatus 100 in FIG. 2 has an optical fiber 9 for transmitting a laser beam L output from a laser oscillator 1 to a processing head 2 .
  • FIG. 3 is a diagram for explaining the amount of displacement ⁇ of the position of the laser beam L.
  • the laser processing apparatus 100 can change the incident position of the laser beam L on the intensity distribution adjustment unit 5 by changing the angle ⁇ of the plane substrate 4a with respect to the laser beam L.
  • the laser processing apparatus 100 needs to process not only straight lines but also circular or angular shapes.
  • the laser processing apparatus 100 rotates the planar substrate 4a with respect to the processing direction by the hollow rotary stage 4b, so that the displacement amount ⁇ of the incident position of the laser beam L on the intensity distribution adjustment unit 5 with respect to the processing direction is kept constant.
  • the direction of displacement of the position can be changed while maintaining.
  • the optical axis adjustment unit 4 may receive processing direction change information from the control unit 8 during processing, or may determine the timing of changing the processing direction before processing. You can leave it.
  • the angle adjustment mechanism 4c may be any component as long as it can change the angle ⁇ of the flat substrate 4a with respect to the optical axis of the laser beam L.
  • a tilting stage or a positioning stage may be used as the angle adjusting mechanism 4c.
  • the angle ⁇ of the flat substrate 4a with respect to the optical axis of the laser beam L may be changed during processing or may be set before processing.
  • the optical component of the optical axis adjusting section 4 is not limited to the planar substrate 4a.
  • the optical component of the optical axis adjustment unit 4 may be a wedge substrate or a refractive optical element having a plurality of wedge angles, or may be a reflective optical element having the same function as the wedge substrate or the refractive optical element.
  • An optical axis adjustment command for determining the amount of displacement of the hollow rotary stage 4b of the optical axis adjustment unit 4 and the value of the tilt angle of the angle adjustment mechanism 4c is issued by the control unit 8.
  • the intensity distribution adjustment unit 5 will be explained.
  • the intensity distribution adjusting section 5 has an optical component 5a and an optical path switching mechanism 5b that drives the optical component 5a.
  • the optical component 5 a is arranged between the optical axis adjusting section 4 and the condensing optical system 6 .
  • the optical component 5a has an intensity distribution conversion characteristic that is rotationally symmetric about one axis.
  • the intensity distribution adjustment unit 5 includes an optical component 5a and changes the intensity distribution of the laser beam L based on an intensity distribution adjustment command.
  • the optical component 5a is a component in which an axicon lens and a lens capable of generating spherical aberration to change the relationship between the circle of least confusion and the paraxial focus are combined, It is a component that makes the beam intensity distribution of the laser beam L in the vicinity of the object W not uniform.
  • a beam intensity distribution that is “not a uniform intensity distribution” is, for example, a ring mode distribution.
  • a diffractive optical element DOE diffractive Optical Element may be used as the optical component 5a.
  • FIGS. 4 to 7 is a diagram showing an example of the optical component 5a included in the intensity distribution adjusting section 5 of the laser processing apparatus 100 of FIG.
  • FIG. 4 shows a convex axicon lens, and the convex axicon lens can generate a ring mode on the processing head 2 side from the converging position.
  • FIG. 5 shows a concave axicon lens, and the concave axicon lens can generate a ring mode on the workpiece W side from the condensing position.
  • FIG. 6 shows an optical component combined with a plurality of lenses capable of generating spherical aberration and adjusting the relationship between the circle of least confusion and the paraxial focus.
  • the optics of FIG. 6 can transform the distribution of the laser beam L into a distribution such that the outside of the beam mode has a higher intensity distribution than the inside.
  • FIG. 7 shows an optical component in which a concave axicon lens and a convex axicon lens are combined, and the optical component in FIG. can be generated.
  • the optical component 5a may be an optical component in which two or more optical components shown in FIGS. 4 to 7 are combined.
  • An intensity distribution adjustment command for determining whether or not to insert the optical component 5a into the optical path is issued by the control unit 8.
  • the control unit 8 controls part or all of the oscillator command, the drive command, the intensity distribution adjustment command, the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction based on the machining parameters, which are numerical parameters related to the cutting process.
  • an optical axis adjustment command for controlling the optical axis adjustment unit 4 is determined.
  • the incident position of the laser beam L on the optical component 5a is adjusted by the optical axis adjusting section 4.
  • the optical axis of the laser beam L before entering the optical axis adjusting unit 4 is the same as the optical axis of the optical component 5a of the intensity distribution adjusting unit 5, let d be the beam diameter of the laser beam L entering the optical component 5a.
  • k is the ratio of the intensity distribution of the laser beam L to the center of the optical axis of the intensity distribution adjusting unit 5
  • the ratio k can be expressed by the following equation (2).
  • is the amount of displacement of the position of the laser beam L adjusted by the optical axis adjuster 4 .
  • the laser processing apparatus 100 can change the energy ratio of the intensity distribution of the laser beam L irradiated in the processing direction by adjusting the displacement amount ⁇ of the position of the laser beam L using the optical axis adjustment unit 4 .
  • the optical axis of the optical axis adjusting section 4 may be the central axis of the intensity distribution adjusting section 5 .
  • the position with respect to the optical axis or the angle with respect to the optical axis of the laser beam L incident on the intensity distribution adjusting section 5 may be changed.
  • the laser processing apparatus 100 adjusts the beam diameter, beam intensity, and divergence angle of the laser beam L to irradiate the workpiece W for each thickness and material of the workpiece W. Adjust and process.
  • An example of a metal is iron.
  • a user of the laser processing apparatus 100 needs to take out the cut object from the workpiece W as a product in the cutting process. When the beam diameter is large and the cutting groove is widened for processing, it becomes easier to take out the product.
  • the cross-sectional shape of the laser beam L is symmetrical with respect to the workpiece W, the intensity and beam diameter of the laser beam L are uniquely determined. In order to increase the beam diameter and increase the beam intensity during processing, the output of the laser oscillator 1 must be increased.
  • the laser processing apparatus 100 adjusts the intensity distribution of the laser beam L applied to the workpiece W by adjusting the displacement amount of the incident position of the laser beam L incident on the intensity distribution adjustment unit 5 by the optical axis adjustment unit 4. It is possible to generate an intensity distribution of the laser beam L that is asymmetric for tuning. Furthermore, the laser processing apparatus 100 can change the intensity of the laser beam L with the same laser output and beam diameter. In addition, the laser processing apparatus 100 generates an asymmetrical laser beam intensity distribution that increases the intensity of the laser beam L in the processing progress direction, thereby comparing the laser beam intensity distribution symmetrical with respect to the output of the laser oscillator 1. As a result, processing can be performed with a high laser beam intensity.
  • Patent Document 1 discloses a technique of arranging an optical element between a collimating lens and a beam source, but in Embodiment 1, the optical element is arranged between the collimating lens and the condensing optical system 6. ing. In the collimated portion, the size of the beam is constant and the distance can be set freely.
  • Embodiment 1 it is not necessary to displace the optical axis adjusting section 4 in the optical axis direction and the direction perpendicular to the optical axis, so it is easy to add a mechanism for removing or inserting the optical axis adjusting section 4 from the optical path. . Similarly, since it is not necessary to displace the intensity distribution adjusting section 5 in the direction of the optical axis and in the direction perpendicular to the optical axis, it is easy to add a mechanism for removing or inserting the intensity distribution adjusting section 5 from the optical path.
  • the laser processing apparatus 100 adjusts the angle of the laser beam L incident on the intensity distribution adjustment unit 5 when processing the object W to be processed. By changing in the part 4, the laser beam intensity and energy ratio in the processing direction are adjusted and processing is performed.
  • the processing speed is relatively high when the laser processing apparatus 100 processes the object W to be processed. is difficult to follow. Since the user wants to perform processing with a small beam diameter, the user may want to perform processing without the optical component 5a. In that case, as shown in FIG. 8, the user sets the angle formed by the flat substrate 4a and the optical axis of the laser beam L to 90° without tilting the flat substrate 4a, and operates the optical path switching mechanism 5b. The optical component 5a may be removed from the optical path by using the optical component 5a.
  • FIG. 8 is a diagram showing a specific example of how to use the laser processing apparatus 100 according to the first embodiment.
  • the optical path switching mechanism 5b is a component that inserts the optical part 5a into the optical axis of the laser beam L or removes it from the optical axis.
  • FIG. 9 is a diagram showing another example of a specific usage of the laser processing apparatus 100 according to the first embodiment.
  • the processing method for plates with different thicknesses is not limited to the above method.
  • the processing head 2 may have both a convex axicon lens and a concave axicon lens.
  • a convex axicon lens and a concave axicon lens may be used depending on one or both of the plate thickness and the type of processing gas.
  • FIG. 10 is a diagram showing a partial configuration of the laser processing apparatus 100 according to Embodiment 1 for explaining an example of ray tracing calculation results.
  • the laser oscillator 1 is a fiber laser with a laser output of 5 kW.
  • the fiber core diameter ⁇ is 0.1 mm, and NA (Numerical Aperture) is 0.08.
  • the focal length of the collimating lens 3 is 100 mm
  • the condensing optical system 6 is a condensing lens
  • the focal length of the condensing lens is 200 mm
  • the thickness of the planar substrate 4a of the optical axis adjustment unit 4 is 10 mm.
  • the apex angle of the convex axicon lens of the intensity distribution adjustment unit 5 is 179.5°.
  • FIG. 11 is a diagram illustrating the case where the angle formed by the flat substrate 4a of the laser processing apparatus 100 according to Embodiment 1 and the optical axis of the laser beam L is 90° and the optical component 5a is not inserted into the optical axis. It is a figure which shows beam intensity distribution near a light spot.
  • FIG. 12 is a diagram showing a cross section of the center axis XX' in the processing direction.
  • FIG. 11 shows the intensity distribution of the laser beam L in the cross section along the central axis XX' in the processing direction of FIG.
  • FIG. 13 is a diagram showing the beam intensity distribution near the focal point when the convex axicon lens of the intensity distribution adjusting unit 5 is inserted into the optical axis in the laser processing apparatus 100 according to Embodiment 1.
  • FIG. 13 When the convex axicon lens of the intensity distribution adjustment unit 5 is inserted into the optical axis, the beam diameter becomes larger than that of the top hat beam in FIG. is formed, there are two regions in the cross-section.
  • the machining direction in FIG. 13 is the positive direction of the X-axis shown in FIG.
  • the laser beam intensity of the area a on the processing progress side is equal to the laser beam intensity of the area b on the opposite side.
  • FIG. 14 is a diagram showing the laser beam intensity distribution when the angle ⁇ between the flat substrate 4a and the optical axis of the laser beam L is 45° in the laser processing apparatus 100 according to the first embodiment.
  • the two peak intensities of the laser beam L with respect to the processing direction are different. That is, the area a in the processing progress direction is larger than the area b.
  • FIG. 15 is a diagram showing the relationship between the tilt angle of the planar substrate 4a and the peak intensity of the laser beam L in the processing advancing direction side of the region a in the laser processing apparatus 100 according to the first embodiment. From FIG. 15, it can be seen that the laser beam intensity can be adjusted by tilting the plane substrate 4a with respect to the optical axis of the laser beam L. FIG. FIG. 15 shows that the peak intensity can be changed up to 1.8 times as much as when the tilt angle of the plane substrate 4a is 0°. Since the laser processing apparatus 100 can adjust the peak intensity by adjusting the tilt angle of the plane substrate 4a, it is possible to adjust the beam diameter d of the laser beam L incident on the intensity distribution adjusting section 5 to be small. The beam diameter d can be changed by the focal length of the collimating lens 3.
  • the beam diameter at the imaging point can be changed by changing the relationship between the fiber core diameter, the focal lengths of the collimating lens 3 and the condensing optical system 6, and the apex angle of the axicon lens.
  • FIG. 16 is a diagram for explaining functions of the laser processing apparatus 100 according to Embodiment 1.
  • the laser processing apparatus 100 drives each of the plurality of lenses independently to change the effective focal length of the collimating lens 3,
  • a condensed diameter changing part 3a for changing the condensed diameter with which the workpiece W is irradiated may be provided.
  • the laser processing apparatus 100 has the condensing diameter changing unit, the condensing diameter and the divergence angle of the laser beam L irradiated to the workpiece W are adjusted when the focal length of the condensing optical system 6 does not change. It becomes possible to change the beam intensity. Since the laser processing apparatus 100 can adjust the beam diameter, the divergence angle, and the beam intensity according to the plate thickness, the processing performance can be further improved.
  • the fiber core diameter is anywhere from 100 ⁇ m to 300 ⁇ m.
  • the laser processing apparatus 100 not only processes the object W by irradiating the object W with the laser beam L with the focal point aligned with the surface of the object W, but also in the z-direction, and the beam diameter is preferably anywhere from 0.1 mm to 2 mm.
  • the axicon angle is anywhere from 179.0° to 179.9°.
  • the z-direction is the thickness direction of the object W to be processed.
  • the condensing optical system 6 only needs to be able to condense the laser beam L, so it may be composed of a single lens, or may be a component in which a plurality of lenses are combined.
  • an aspherical lens with spherical aberration removed may be used, or a reflective optical system may be used.
  • the laser processing apparatus 100 includes the laser oscillator 1 that outputs the laser beam L based on the oscillator command, and the processing head 2 that irradiates the laser beam L to the irradiation position of the workpiece W. and a control unit 8 for changing the relative position between the workpiece W and the processing head 2 based on a drive command to move the irradiation position in the cutting direction.
  • the laser processing apparatus 100 includes an intensity distribution adjustment unit 5 that changes the intensity distribution of the laser beam L based on an intensity distribution adjustment command, and light that changes the incident position or the incident angle of the laser beam L incident on the intensity distribution adjustment unit 5. It further has an axis adjustment part 4 .
  • the control unit 8 controls part or all of the oscillator command, the drive command, the intensity distribution adjustment command, the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction based on the machining parameters, which are numerical parameters related to the cutting process. , an optical axis adjustment command for controlling the optical axis adjustment unit 4 is determined.
  • the laser processing apparatus 100 controls the beam mode of the laser beam L irradiated to the workpiece W and the energy ratio of the intensity distribution in the beam cross section of the laser beam L irradiated in the processing direction in accordance with the processing parameters of the cutting processing. can do.
  • the laser processing apparatus 100 can appropriately adjust the beam intensity of the laser beam L with which the workpiece W is irradiated.
  • the laser processing apparatus 100 can appropriately adjust the beam intensity of the laser beam L with which the groove width of the workpiece W is irradiated. As a result, productivity is improved.
  • FIG. 17 is a diagram showing an overview of the configuration of a laser processing apparatus 200 according to Embodiment 2.
  • the laser processing device 200 has components other than the optical axis adjusting unit 4 among all the components of the laser processing device 100 according to the first embodiment.
  • the laser processing device 200 has a galvanometer scanner 4d instead of the optical axis adjusting section 4 of the laser processing device 100 according to the first embodiment.
  • the galvanometer scanner 4d is an example of an optical axis adjusting section.
  • a difference between the second embodiment and the first embodiment is that the optical axis adjustment unit 4 of the first embodiment is replaced with a galvanometer scanner 4d.
  • differences from Embodiment 1 will be mainly described.
  • the galvanometer scanner 4d is preferably inserted between the collimating lens 3 and the intensity distribution adjusting section 5 and arranged at the entrance pupil position of the condensing optical system 6.
  • the arrow in FIG. 17 means that the galvanometer scanner 4d is rotatable.
  • a galvanometer scanner 4 d deflects the laser beam L collimated by the collimating lens 3 .
  • the incident position and incident angle of the laser beam L to the optical component 5a of the intensity distribution adjusting unit 5 are adjusted, and the laser processing apparatus 200 can adjust the beam intensity distribution in the processing direction with respect to the workpiece W. be possible.
  • the laser processing device 200 can adjust the intensity of the laser beam L that irradiates the cutting front. Thereby, the laser processing apparatus 200 can improve the processing efficiency even if the laser output is the same.
  • the scanning position of the laser beam L is f ⁇ tan ⁇
  • the laser processing apparatus 200 scans at a frequency of several hundred Hz or higher. , it becomes possible to adjust the beam diameter of the laser beam L with which the workpiece W is irradiated. In that case, the laser processing apparatus 200 can further improve processing performance.
  • the laser processing apparatus 200 drives each of the plurality of lenses independently to set the effective focal length of the collimating lens 3 to It may have a zoom function to change.
  • the laser processing apparatus 200 can adjust the beam diameter, divergence angle, and beam intensity of the laser beam L with which the workpiece W is irradiated. As a result, the laser processing apparatus 200 can contribute to improvement in processing performance.
  • the condensing optical system 6 only needs to be able to condense the laser beam L, so it may be composed of one lens, or may be a component in which a plurality of lenses are combined.
  • the focal length of the condensing optical system 6 is f and the deflection angle of the laser beam L is defined as ⁇
  • an f ⁇ lens that maintains the relationship that the scanning position of the condensing optical system 6 is f ⁇ is may be used, or reflective optics may be used.
  • a laser processing apparatus has all the components of laser processing apparatus 100 according to Embodiment 1, and a processing condition analyzer 12 shown in FIG.
  • FIG. 18 is a diagram showing the configuration of the processing condition analyzer 12 included in the laser processing apparatus according to Embodiment 3. As shown in FIG. In Embodiment 3, differences from Embodiment 1 will be mainly described. Note that the laser processing apparatus according to the third embodiment is a laser processing apparatus having all the components of the laser processing apparatus 200 according to the second embodiment and the processing condition analyzer 12 shown in FIG. good too.
  • the learning unit 17 learns pairs of inputs and results by machine learning. Any algorithm may be used as the machine learning algorithm of the learning unit 17. For example, a supervised learning algorithm is used.
  • the data acquisition unit 18 acquires the feature amount from the feature amount extraction unit 14 as an input to the learning unit 17 and inputs the acquired feature amount to the learning unit 17 .
  • An evaluation value by the worker is also input to the learning unit 17 .
  • the evaluation value by the operator is the result of judging the quality of the machining result, and may be a value indicating a stepwise level or a continuous numerical value. In other words, the evaluation value by the worker is a value determined by the worker corresponding to the combination pattern of the defective processing items.
  • the data acquisition unit 18 may acquire the processing conditions as an input to the learning unit 17.
  • the data acquisition unit 18 acquires the processing condition or the feature amount output from the feature amount extraction unit 14 as a state variable, and provides it to the learning unit 17 .
  • the learning unit 17 machine-learns processing conditions and processing results, or pass/fail results of defective processing items, using a data set composed of state variables and evaluation values.
  • a data set is data in which state variables and evaluation values are associated.
  • the machine learning device 15 is provided inside the machining condition analyzer 12, but the machine learning device 15 may be a separate device from the machining condition analyzer 12.
  • the machining condition analyzer 12 and the machine learning device 15 may be connected via a communication network.
  • the machine learner 15 may reside on a cloud server.
  • processing defects are not limited to the above examples.
  • processing defects may be determined by including discoloration of the workpiece W, the presence or absence of a vibrating surface, and other items of processing defects.
  • other items for determining processing defects may be determined.
  • the items for determining defective processing may be changed depending on some or all of the processing parameters such as the combination of laser output, processing speed, processing plate thickness, and type of processing gas.
  • a neural network consists of an input layer made up of multiple neurons, an intermediate layer made up of multiple neurons called a hidden layer, and an output layer made up of multiple neurons.
  • the intermediate layer only one intermediate layer may be present, or two or more intermediate layers may be present.
  • the output values from Y1 and Y2 are multiplied by any of the corresponding weights w21 to w26 and input to each of the output layer neurons Z1, Z2 and Z3.
  • the output layer adds the input values and outputs the result of addition as an output result.
  • the results output from each of Z1, Z2, and Z3 can be made to correspond to the evaluation results corresponding to the items for determining each processing defect.
  • the output result varies depending on each value from weight w11 to weight w16 and each value from weight w21 to weight w26.
  • each value from weight w11 to weight w16 and weight w21 to weight w26 are adjusted so that the output result of the above neural network approaches the correct evaluation result of processing quality. Learning is performed by adjusting each value of .
  • FIG. 19 shows an example of a neural network model, and the number of layers of the neural network model and the number of neurons belonging to each layer are not limited to the example of FIG.
  • the learning unit 17 can also learn the processing conditions and the processing quality evaluation results by so-called unsupervised learning using a neural network model.
  • Unsupervised learning is learning how the input data is distributed based only on a large amount of input data, and even if the corresponding supervised output data is not given, the input data can be compressed, It is a technique for learning how to do some or all of the classification and shaping.
  • Semi-supervised learning is learning where there are only some input and output data pairs and the rest are input-only data.
  • the learning unit 17 may implement machine learning by semi-supervised learning.
  • the machine learning device 15 may acquire data sets from a plurality of processing condition analyzers 12 and learn evaluation results of processing conditions and processing results.
  • Each of the plurality of machining condition analyzers 12 may have the same function as the machining condition analyzer 12 of the third embodiment.
  • the machine learning device 15 may acquire data sets from a plurality of processing condition analyzers 12 used at the same site, or acquire data sets from the processing condition analyzers 12 operating at different sites. good too.
  • the processing condition analyzer 12 from which the data set is acquired may be added in the middle, or the processing condition analyzer 12 from which the data set may be acquired may be removed in the middle.
  • a machine learning device is provided separately from the processing condition analyzer 12, and after the machine learning device learns from a data set acquired from a processing condition analyzer 12, it is connected to another processing condition analyzer 12 to perform another processing.
  • a data set may be acquired from the processing condition analyzer 12 and re-learned.
  • the data acquisition unit 18 receives, as input to the learning unit 17, not only the processing conditions or the feature amount output from the feature amount extraction unit 14, but also, for example, information indicating the thickness of the workpiece W and the material of the workpiece W. One or both of the indicated information may also be taken as input.
  • the learning unit 17 uses other known methods such as genetic programming, functional logic programming, etc. , support vector machines, Fisher's discriminant, subspace methods, or discriminant analysis using Mahalanobis space.
  • Examples of learning algorithms used in the learning unit 17 include decision trees, random forests, logistic regression, k-nearest neighbor method, subspace method, CLAFIC method (CLAss-Featuring Information Compression method), Isolation Forest, LOF (Local Outlier Factor), Boosting, AdaBoost, LogitBoost, One-Class SVM (Support Vector Machine), or Gaussian Mixture Mode may be used.
  • the laser processing apparatus has the optical axis adjustment unit 4, the number of processing parameters increases compared to a conventional laser processing machine. By searching for the machining parameters, the machining parameters can be adjusted with relatively high accuracy.
  • FIG. 20 is a diagram showing the configuration of a modified laser processing apparatus 300 according to the third embodiment.
  • the processing state monitoring sensor 19 an optical sensor that detects processing light, a CMOS (Complementary Metal Oxide Semiconductor) camera that captures an image of a processing point, or a sound sensor that detects processing sound may be used. Examples of light sensors are photodiodes and examples of sound sensors are microphones.
  • the laser processing apparatus 300 can detect the processing state during processing, it is possible to adjust the processing conditions according to the state change during processing. Furthermore, the laser processing apparatus 300 can determine the processing state and adjust the processing conditions, and can obtain the effect of suppressing defective processing.
  • One type of machining state monitoring sensor 19 may be used, or two types of machining state monitoring sensor 19 may be used.
  • the machining state monitoring sensor 19 may be arranged inside the machining head 2 or may be arranged outside the machining head 2 .
  • the time-series data acquired by the machining state monitoring sensor 19 may be input to the feature quantity extraction unit 14 .
  • FIG. 21 shows that part or all of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning unit 15, and the processing condition change unit 16 of the processing condition analyzer 12 of the laser processing apparatus according to Embodiment 3 are processors.
  • 9 shows a processor 91 as implemented by 91; FIG. That is, some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 may be realized by the processor 91 that executes the program stored in the memory 92. good.
  • the processor 91 is a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor).
  • Memory 92 is also shown in FIG.
  • the functions include the processor 91, software, firmware, Alternatively, it is implemented by a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92 .
  • the processor 91 reads out and executes the programs stored in the memory 92, thereby implementing some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16. do.
  • the memory 92 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
  • FIG. 22 shows that part or all of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning unit 15, and the processing condition change unit 16 of the processing condition analyzer 12 of the laser processing apparatus according to Embodiment 3 are processed.
  • FIG. 9 illustrates processing circuitry 93 as implemented by circuitry 93; That is, part or all of the processing result determination unit 13 , the feature quantity extraction unit 14 , the machine learning device 15 and the processing condition change unit 16 may be realized by the processing circuit 93 .
  • the processing circuit 93 is dedicated hardware.
  • the processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is.
  • a part of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 may be implemented by dedicated hardware separate from the rest.

Abstract

A laser processing device (100) comprises: a laser oscillator (1) that outputs a laser beam; a processing head (2) that condenses the laser beam by using a condensing optical system (6) and radiates the beam onto an irradiation position on a workpiece (W); a control unit (8) which, on the basis of a drive command, changes a relative position between the processing head (2) and the workpiece (W) and causes the irradiation position to move in a cutting direction; an intensity distribution adjustment unit (5) that includes an optical component (5a) having an intensity distribution conversion characteristic that is rotationally symmetrical with regard to one axis, and changes the intensity distribution of the laser beam on the basis of an intensity distribution adjustment command; and an optical axis adjustment unit (4) that changes the incident position or incident angle of the laser beam incident on the intensity distribution adjustment unit (5). On the basis of a numeric parameter pertaining to cutting, the control unit (8) determines an optical axis adjustment command for controlling the optical axis adjustment unit (4) so as to correspond to a portion or all of an oscillator command, the drive command, the intensity distribution adjustment command, the material of the workpiece (W), the sheet thickness of the workpiece (W), and the cutting direction.

Description

レーザ加工装置及びレーザ加工方法LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
 本開示は、レーザ光を加工対象物に照射して加工対象物を加工するレーザ加工装置及びレーザ加工方法に関する。 The present disclosure relates to a laser processing apparatus and a laser processing method for irradiating an object to be processed with a laser beam to process the object.
 特許文献1が開示している加工方向にレーザビームを用いて材料を加工するための装置は、加工対象物へとレーザビームを集光させ光学軸を規定する集光光学系を有する。当該装置は、加工方向に垂直なレーザビームのパワー密度分布を非対称になるように調節するレーザビーム用の第1の調節装置を備える調節機構と、加工方向に垂直なガスジェットの密度分布を非対称になるように調節するガスジェット用の第2の調節装置との一方又は双方を更に有する。 A device for processing a material using a laser beam in the processing direction disclosed in Patent Document 1 has a condensing optical system that converges the laser beam on the object to be processed and defines an optical axis. The apparatus includes an adjustment mechanism comprising a first adjustment device for the laser beam that adjusts the power density distribution of the laser beam perpendicular to the processing direction to be asymmetric and the density distribution of the gas jet perpendicular to the processing direction to be asymmetric. and/or a second adjustment device for the gas jet that adjusts such that
特表2020-508223号公報Japanese Patent Publication No. 2020-508223
 特許文献1が開示している装置には、加工対象物に照射されるレーザビームのビームモードと加工方向に照射されるレーザビームのビーム断面内の強度分布のエネルギ比率とを切断加工の加工パラメータに対応して制御することができないという課題がある。 In the apparatus disclosed in Patent Document 1, the beam mode of the laser beam irradiated to the workpiece and the energy ratio of the intensity distribution in the beam cross section of the laser beam irradiated in the processing direction are used as processing parameters for cutting processing. There is a problem that it cannot be controlled in response to
 本開示は、上記に鑑みてなされたものであって、加工対象物に照射されるレーザ光のビームモードと加工方向に照射されるレーザ光のビーム断面内の強度分布のエネルギ比率とを切断加工の加工パラメータに対応して制御することができるレーザ加工装置を得ることを目的とする。 The present disclosure has been made in view of the above, and the energy ratio of the intensity distribution in the beam cross section of the laser light irradiated in the processing direction and the beam mode of the laser light irradiated to the workpiece are cut. It is an object of the present invention to obtain a laser processing apparatus that can be controlled in accordance with the processing parameters of .
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ加工装置は、発振器指令に基づいてレーザ光を出力するレーザ発振器と、レーザ光を集光光学系によって集光して加工対象物の照射位置に照射する加工ヘッドと、駆動指令に基づいて加工対象物と加工ヘッドとの相対位置を変更して照射位置を切断方向に移動させる制御部とを有する。本開示に係るレーザ加工装置は、一つの軸に関して回転対称な強度分布変換特性を有する光学部品を含みレーザ光の強度分布を強度分布調整指令に基づいて変更する強度分布調整部と、加工対象物の材質、加工対象物の板厚及び切断方向の一部又は全部に対応して強度分布調整部に入射するレーザ光の入射位置又は入射角度を変更する光軸調整部とを更に有する。制御部は、切断加工に関する数値パラメータである加工パラメータに基づいて発振器指令、駆動指令、強度分布調整指令、加工対象物の材質、加工対象物の板厚及び切断方向の一部又は全部に対応して光軸調整部を制御するための光軸調整指令を決定する。 In order to solve the above-described problems and achieve the object, the laser processing apparatus according to the present disclosure includes a laser oscillator that outputs laser light based on an oscillator command, and a laser light that is focused by a focusing optical system for processing. It has a processing head that irradiates an irradiation position on an object, and a control unit that changes the relative position between the object to be processed and the processing head based on a drive command to move the irradiation position in the cutting direction. A laser processing apparatus according to the present disclosure includes an intensity distribution adjustment unit that includes an optical component having an intensity distribution conversion characteristic that is rotationally symmetrical about one axis and changes the intensity distribution of a laser beam based on an intensity distribution adjustment command; and an optical axis adjuster for changing the incident position or the incident angle of the laser beam incident on the intensity distribution adjuster in accordance with the material of the object, the plate thickness of the object to be processed, and the cutting direction partly or wholly. The control unit responds to part or all of the oscillator command, drive command, intensity distribution adjustment command, material of the object to be processed, plate thickness of the object to be processed, and cutting direction based on processing parameters, which are numerical parameters related to cutting. determines an optical axis adjustment command for controlling the optical axis adjustment unit.
 本開示に係るレーザ加工装置は、加工対象物に照射されるレーザ光のビームモードと加工方向に照射されるレーザ光のビーム断面内の強度分布のエネルギ比率とを切断加工の加工パラメータに対応して制御することができるという効果を奏する。 In the laser processing apparatus according to the present disclosure, the beam mode of the laser light irradiated to the workpiece and the energy ratio of the intensity distribution in the beam cross section of the laser light irradiated in the processing direction correspond to the processing parameters of the cutting processing. There is an effect that it can be controlled by
実施の形態1に係るレーザ加工装置の構成の概要を示す図1 is a diagram showing an overview of a configuration of a laser processing apparatus according to Embodiment 1; FIG. 実施の形態1に係るレーザ加工装置の具体的な構成の例を示す図1 is a diagram showing an example of a specific configuration of a laser processing apparatus according to Embodiment 1; FIG. レーザビームの位置の変位量を説明するための図Diagram for explaining the amount of displacement of the position of the laser beam 図2のレーザ加工装置の強度分布調整部が有する光学部品の例を示す図FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2; 図2のレーザ加工装置の強度分布調整部が有する光学部品の例を示す図FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2; 図2のレーザ加工装置の強度分布調整部が有する光学部品の例を示す図FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2; 図2のレーザ加工装置の強度分布調整部が有する光学部品の例を示す図FIG. 3 is a diagram showing an example of an optical component included in the intensity distribution adjustment unit of the laser processing apparatus in FIG. 2; 実施の形態1に係るレーザ加工装置の具体的な使用方法の例を示す図FIG. 2 shows an example of a specific usage of the laser processing apparatus according to Embodiment 1; 実施の形態1に係るレーザ加工装置の具体的な使用方法の別の例を示す図FIG. 4 shows another example of a specific usage of the laser processing apparatus according to Embodiment 1; 光線追跡の計算結果の例を説明するための実施の形態1に係るレーザ加工装置の一部の構成を示す図FIG. 2 is a diagram showing a configuration of part of the laser processing apparatus according to Embodiment 1 for explaining an example of ray tracing calculation results; 実施の形態1に係るレーザ加工装置が有する平面基板とレーザビームの光軸とが成す角度が90°であって光学部品が光軸に挿入されていない場合の集光点付近のビーム強度分布を示す図The beam intensity distribution near the focal point when the angle between the flat substrate of the laser processing apparatus according to the first embodiment and the optical axis of the laser beam is 90° and no optical component is inserted into the optical axis. diagram showing 加工方向の中心軸断面を示す図Diagram showing the central axis cross section in the machining direction 実施の形態1に係るレーザ加工装置において強度分布調整部の凸アキシコンレンズが光軸に挿入された場合の集光点付近のビーム強度分布を示す図FIG. 4 is a diagram showing a beam intensity distribution near a focal point when the convex axicon lens of the intensity distribution adjustment unit is inserted into the optical axis in the laser processing apparatus according to Embodiment 1; 実施の形態1に係るレーザ加工装置において平面基板とレーザビームの光軸とが成す角度が45°である場合のレーザビーム強度分布を示す図FIG. 4 is a diagram showing a laser beam intensity distribution when the angle formed by the planar substrate and the optical axis of the laser beam is 45° in the laser processing apparatus according to the first embodiment; 実施の形態1に係るレーザ加工装置において平面基板の傾斜角とレーザビームの加工進行方向側の領域のピーク強度との関係を示す図FIG. 4 is a diagram showing the relationship between the tilt angle of the flat substrate and the peak intensity of the laser beam in the processing progress direction side in the laser processing apparatus according to the first embodiment; 実施の形態1に係るレーザ加工装置の機能を説明するための図FIG. 2 is a diagram for explaining functions of the laser processing apparatus according to Embodiment 1; 実施の形態2に係るレーザ加工装置の構成の概要を示す図FIG. 2 is a diagram showing an overview of the configuration of a laser processing apparatus according to Embodiment 2; 実施の形態3に係るレーザ加工装置が有する加工条件解析器の構成を示す図The figure which shows the structure of the processing condition analyzer which the laser processing apparatus which concerns on Embodiment 3 has. 実施の形態3に係るニューラルネットワークモデルの構成を示す図FIG. 11 shows a configuration of a neural network model according to Embodiment 3; 実施の形態3に係る変形例のレーザ加工装置の構成を示す図The figure which shows the structure of the laser processing apparatus of the modification which concerns on Embodiment 3. 実施の形態3に係るレーザ加工装置の加工条件解析器が有する加工結果判定部、特徴量抽出部、機械学習器及び加工条件変更部の一部又は全部がプロセッサによって実現される場合のプロセッサを示す図10 shows a processor in which part or all of a processing result determination unit, a feature amount extraction unit, a machine learning device, and a processing condition change unit of a processing condition analyzer of a laser processing apparatus according to Embodiment 3 are realized by a processor; figure 実施の形態3に係るレーザ加工装置の加工条件解析器が有する加工結果判定部、特徴量抽出部、機械学習器及び加工条件変更部の一部又は全部が処理回路によって実現される場合の処理回路を示す図A processing circuit in which part or all of the processing result determination unit, the feature amount extraction unit, the machine learning device, and the processing condition change unit of the processing condition analyzer of the laser processing apparatus according to the third embodiment are realized by the processing circuit diagram showing
 以下に、実施の形態に係るレーザ加工装置及びレーザ加工方法を図面に基づいて詳細に説明する。 The laser processing apparatus and laser processing method according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1に係るレーザ加工装置100の構成の概要を示す図である。レーザ加工装置100は、レーザ光を加工対象物Wに照射して加工対象物Wを加工する装置であって、発振器指令に基づいてレーザ光を発振して出力するレーザ発振器1を有する。以下では、レーザ発振器1が発振して出力するレーザ光は、レーザビームLと記載される場合がある。図1には、加工対象物W及びレーザビームLも示されている。レーザビームLの波長は、例えば加工対象物WへのレーザビームLの吸収率と加工対象物Wに対するレーザビームLの反射率とが考慮されて適宜選択される。例えばレーザビームLの波長は、0.193μmから11μmまでのいずれかである。
Embodiment 1.
FIG. 1 is a diagram showing an overview of the configuration of a laser processing apparatus 100 according to Embodiment 1. As shown in FIG. A laser processing apparatus 100 is an apparatus for irradiating an object W to be processed with a laser beam to process the object W, and has a laser oscillator 1 that oscillates and outputs a laser beam based on an oscillator command. The laser beam emitted by the laser oscillator 1 may be referred to as a laser beam L hereinafter. A workpiece W and a laser beam L are also shown in FIG. The wavelength of the laser beam L is appropriately selected in consideration of, for example, the absorptivity of the laser beam L to the object W to be processed and the reflectance of the laser beam L to the object W to be processed. For example, the wavelength of the laser beam L is anywhere from 0.193 μm to 11 μm.
 レーザ加工装置100は、レーザ発振器1から出力されたレーザビームLが供給される加工ヘッド2を更に有する。レーザ発振器1から出力されたレーザビームLは、光路を介して、加工ヘッド2に供給される。加工ヘッド2は、レーザ発振器1から出力されたレーザビームLを後述される集光光学系6によって集光して加工対象物Wの照射位置に照射する。照射位置は、加工対象物WにおいてレーザビームLが照射される位置である。加工ヘッド2の内部には、加工ガスも供給され、レーザビームLが加工対象物Wへ照射される際、加工ガスが加工対象物Wへ噴射される。 The laser processing apparatus 100 further has a processing head 2 to which the laser beam L output from the laser oscillator 1 is supplied. A laser beam L output from a laser oscillator 1 is supplied to a processing head 2 via an optical path. The processing head 2 converges the laser beam L output from the laser oscillator 1 by a condensing optical system 6, which will be described later, and irradiates the irradiation position of the object W to be processed. The irradiation position is a position on the workpiece W where the laser beam L is irradiated. A processing gas is also supplied to the inside of the processing head 2, and the processing gas is jetted to the processing object W when the laser beam L is irradiated onto the processing object W. As shown in FIG.
 レーザ加工装置100は、レーザ発振器1から出力されたレーザビームLをコリメートするコリメートレンズ3を更に有する。コリメートレンズ3は、一つ又は複数のレンズで構成される。レーザ加工装置100は、コリメートレンズ3によってコリメートされたレーザビームLの光軸を調整する光軸調整部4を更に有する。コリメートレンズ3及び光軸調整部4は、加工ヘッド2の内部に位置している。 The laser processing apparatus 100 further has a collimator lens 3 for collimating the laser beam L output from the laser oscillator 1 . The collimating lens 3 is composed of one or more lenses. The laser processing apparatus 100 further has an optical axis adjusting section 4 that adjusts the optical axis of the laser beam L collimated by the collimator lens 3 . The collimating lens 3 and the optical axis adjusting section 4 are located inside the processing head 2 .
 レーザ加工装置100は、光軸調整部4によって光軸が調整されたレーザビームLの強度分布を調整する強度分布調整部5と、強度分布調整部5によって強度分布が調整されたレーザビームLを集光する集光光学系6とを更に有する。集光光学系6によって集光されたレーザビームLは、加工対象物Wに照射される。強度分布調整部5及び集光光学系6は、加工ヘッド2の内部に位置している。 The laser processing apparatus 100 includes an intensity distribution adjusting unit 5 that adjusts the intensity distribution of the laser beam L whose optical axis has been adjusted by the optical axis adjusting unit 4, and the laser beam L whose intensity distribution has been adjusted by the intensity distribution adjusting unit 5. It further has a condensing optical system 6 for condensing light. A workpiece W is irradiated with the laser beam L condensed by the condensing optical system 6 . The intensity distribution adjusting section 5 and the condensing optical system 6 are located inside the processing head 2 .
 例えば、レーザ加工装置100は、レーザビームLを集光してレーザビームLを加工対象物Wに照射することにより加工対象物Wを切断する。図1には、切断方向を示す矢印も示されている。光軸調整部4は、加工対象物Wの材質、加工対象物Wの板厚及び切断方向の一部又は全部に対応して強度分布調整部5に入射するレーザビームLの入射位置又は入射角度を変更する。加工ヘッド2は、加工ノズル7を有する。加工ノズル7には、集光光学系6と加工対象物Wとの間の位置であってレーザビームLの光路の一部となる位置に開口部が形成されている。レーザビームL及び加工ガスは、当該開口部を通過する。 For example, the laser processing apparatus 100 cuts the workpiece W by condensing the laser beam L and irradiating the workpiece W with the laser beam L. Also shown in FIG. 1 are arrows indicating the cutting direction. The optical axis adjustment unit 4 corresponds to the material of the object W to be processed, the plate thickness of the object W to be processed, and a part or all of the cutting direction, and the incident position or angle of incidence of the laser beam L incident on the intensity distribution adjustment unit 5. to change The machining head 2 has a machining nozzle 7 . An opening is formed in the processing nozzle 7 at a position between the condensing optical system 6 and the workpiece W and a part of the optical path of the laser beam L. As shown in FIG. The laser beam L and processing gas pass through the opening.
 レーザ加工装置100は、駆動指令に基づいて加工対象物Wと加工ヘッド2との相対位置を変更してレーザビームLが加工対象物Wに照射される位置である照射位置を切断方向に移動させる制御部8を更に有する。図示されていないモータ及びモータ駆動装置が、加工ヘッド2が設置される軸又は加工対象物Wが配置される加工テーブルに備えられ、制御部8による制御によってモータ駆動装置がモータを制御することにより、レーザ加工装置100は、加工ヘッド2と加工対象物Wとの相対位置を変更することができる。加工ヘッド2は、集光光学系6に入射するレーザビームLのビーム径を変更することによって加工対象物Wに照射されるレーザビームLの集光径を変更する集光径変更部3aをコリメートレンズ3に置き換えてもよい。 The laser processing apparatus 100 changes the relative position between the workpiece W and the processing head 2 based on the drive command, and moves the irradiation position, which is the position at which the laser beam L is irradiated onto the workpiece W, in the cutting direction. It further has a control unit 8 . A motor and a motor driving device (not shown) are provided on the shaft on which the processing head 2 is installed or on the processing table on which the workpiece W is arranged. , the laser processing apparatus 100 can change the relative position between the processing head 2 and the workpiece W. FIG. The processing head 2 collimates a condensing diameter changing portion 3a that changes the condensing diameter of the laser beam L applied to the workpiece W by changing the beam diameter of the laser beam L incident on the condensing optical system 6. It may be replaced with the lens 3.
 レーザ発振器1の種類は、限定されない。レーザ発振器1の一例は、ファイバレーザ発振器である。レーザ発振器1は、ダイレクトダイオードレーザ、炭酸ガスレーザ、銅蒸気レーザ、各種イオンレーザ、又は固体レーザであってもよい。固体レーザの一例は、YAG(Yttrium-Aluminum-Garnet)結晶を励起媒体とするレーザである。レーザ加工装置100は、レーザ発振器1が出力したレーザ光の波長を変換する波長変換部を有してもよい。 The type of laser oscillator 1 is not limited. An example of the laser oscillator 1 is a fiber laser oscillator. The laser oscillator 1 may be a direct diode laser, a carbon dioxide laser, a copper vapor laser, various ion lasers, or a solid-state laser. An example of a solid-state laser is a laser that uses a YAG (Yttrium-Aluminum-Garnet) crystal as an excitation medium. The laser processing apparatus 100 may have a wavelength conversion section that converts the wavelength of the laser light output from the laser oscillator 1 .
 制御部8は、加工プログラムと加工条件を示す加工パラメータとにしたがって、レーザビームLが加工対象物Wの上の加工経路を走査するように、レーザ発振器1が出力するレーザ光の出力、パルス周波数、パルスデューティ及び発振のタイミングを指令する発振器指令と、モータ駆動装置の送り速度及び位置決めを指令する駆動指令とを制御する。使用されるレーザ光の種別及びレーザ加工装置100が有する機能に対応して、加工パラメータとしてどのようなものを用いるかが適宜決定される。 The control unit 8 controls the output of the laser beam output from the laser oscillator 1, the pulse frequency of the laser beam L, and the pulse frequency so that the laser beam L scans the machining path on the workpiece W according to the machining program and the machining parameters indicating the machining conditions. , an oscillator command that commands the pulse duty and oscillation timing, and a drive command that commands the feed speed and positioning of the motor drive device. Depending on the type of laser light used and the functions of the laser processing apparatus 100, what processing parameters to use are appropriately determined.
 光軸調整部4について説明を行う。光軸調整部4は、光学部品と、光学部品をレーザビームLの光軸に対して変位させる駆動部とを有する。図2は、実施の形態1に係るレーザ加工装置100の具体的な構成の例を示す図である。図2の例では、光軸調整部4の光学部品は平面基板4aであり、駆動部は中空回転ステージ4b及び角度調整機構4cである。レーザビームLは、平面基板4aを透過する。中空回転ステージ4b及び角度調整機構4cは、平面基板4aのレーザビームLの光軸に対する傾斜角を変更する構成要素である。中空回転ステージ4bは、平面基板4aを、加工対象物Wの材質、加工対象物Wの板厚及び切断方向の一部又は全部に対応してレーザビームLの光軸を中心に回転させる回転機構である。角度調整機構4cは、平面基板4aとレーザビームLの光軸との相対角度を変更する機構である。 The optical axis adjustment unit 4 will be explained. The optical axis adjustment unit 4 has an optical component and a driving unit that displaces the optical component with respect to the optical axis of the laser beam L. As shown in FIG. FIG. 2 is a diagram showing a specific configuration example of the laser processing apparatus 100 according to Embodiment 1. As shown in FIG. In the example of FIG. 2, the optical component of the optical axis adjusting section 4 is the planar substrate 4a, and the driving section is the hollow rotating stage 4b and the angle adjusting mechanism 4c. The laser beam L is transmitted through the planar substrate 4a. The hollow rotary stage 4b and the angle adjustment mechanism 4c are components for changing the tilt angle of the plane substrate 4a with respect to the optical axis of the laser beam L. As shown in FIG. The hollow rotary stage 4b is a rotating mechanism that rotates the planar substrate 4a around the optical axis of the laser beam L corresponding to the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction partially or entirely. is. The angle adjustment mechanism 4c is a mechanism for changing the relative angle between the flat substrate 4a and the optical axis of the laser beam L. FIG.
 例えば、中空回転ステージ4bは、ダイレクトドライブモータである。回転ステージは変位ステージと比較して加速度が大きいため、レーザ加工装置100は、加工速度により追従してビームモードを変更することができる。平面基板4aがレーザビームLの光軸に対して傾斜することによって、強度分布調整部5に入射するレーザビームLの入射位置が変わる。図2のレーザ加工装置100が有するレーザ発振器1は、ファイバレーザである。図2のレーザ加工装置100は、レーザ発振器1から出力されたレーザビームLを加工ヘッド2に伝達するための光ファイバ9を有する。 For example, the hollow rotary stage 4b is a direct drive motor. Since the rotation stage has a higher acceleration than the displacement stage, the laser processing apparatus 100 can change the beam mode by following the processing speed. By tilting the plane substrate 4a with respect to the optical axis of the laser beam L, the incident position of the laser beam L incident on the intensity distribution adjusting section 5 is changed. A laser oscillator 1 included in the laser processing apparatus 100 of FIG. 2 is a fiber laser. A laser processing apparatus 100 in FIG. 2 has an optical fiber 9 for transmitting a laser beam L output from a laser oscillator 1 to a processing head 2 .
 平面基板4aがレーザビームLの光軸に対して直交していて、中空回転ステージ4bの回転中心軸がレーザビームLの光軸と一致している場合、図3に示されるように、平面基板4aの厚さがtであって、平面基板の屈折率がnであり、レーザビームLに対する平面基板4aの角度がαに変化するとき、レーザビームLの位置の変位量Δは下記の式(1)で表すことができる。図3は、レーザビームLの位置の変位量Δを説明するための図である。 When the plane substrate 4a is perpendicular to the optical axis of the laser beam L and the central axis of rotation of the hollow rotary stage 4b coincides with the optical axis of the laser beam L, the plane substrate 4a is as shown in FIG. When the thickness of the substrate 4a is t, the refractive index of the planar substrate is n, and the angle of the planar substrate 4a with respect to the laser beam L changes to α, the displacement amount Δ of the position of the laser beam L is expressed by the following equation ( 1). FIG. 3 is a diagram for explaining the amount of displacement Δ of the position of the laser beam L. In FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 レーザ加工装置100は、レーザビームLに対する平面基板4aの角度αを変更することによって、レーザビームLの強度分布調整部5への入射位置を変更することができる。 The laser processing apparatus 100 can change the incident position of the laser beam L on the intensity distribution adjustment unit 5 by changing the angle α of the plane substrate 4a with respect to the laser beam L.
 レーザ加工装置100は、直線だけでなく、円形又は角といった形状の加工を行う必要がある。レーザ加工装置100は、中空回転ステージ4bによって加工方向に対して平面基板4aを回転させることにより、加工方向に対してレーザビームLの強度分布調整部5に入射する位置の変位量Δを一定に保ったまま、当該位置の変位の方向を変更させることができる。 The laser processing apparatus 100 needs to process not only straight lines but also circular or angular shapes. The laser processing apparatus 100 rotates the planar substrate 4a with respect to the processing direction by the hollow rotary stage 4b, so that the displacement amount Δ of the incident position of the laser beam L on the intensity distribution adjustment unit 5 with respect to the processing direction is kept constant. The direction of displacement of the position can be changed while maintaining.
 レーザ加工装置100が形状加工を行う場合、光軸調整部4は、制御部8から加工方向の変更情報を加工中に受け取ってもよいし、加工前に加工方向を変更するタイミングを決定しておいてもよい。 When the laser processing apparatus 100 performs shape processing, the optical axis adjustment unit 4 may receive processing direction change information from the control unit 8 during processing, or may determine the timing of changing the processing direction before processing. You can leave it.
 角度調整機構4cは、平面基板4aのレーザビームLの光軸に対する角度αを変更することができる構成要素であればよい。角度調整機構4cとして、傾斜ステージが用いられてもよいし、位置決めステージが用いられてもよい。平面基板4aのレーザビームLの光軸に対する角度αは、加工中に変更されてもよいし、加工前に設定されてもよい。 The angle adjustment mechanism 4c may be any component as long as it can change the angle α of the flat substrate 4a with respect to the optical axis of the laser beam L. A tilting stage or a positioning stage may be used as the angle adjusting mechanism 4c. The angle α of the flat substrate 4a with respect to the optical axis of the laser beam L may be changed during processing or may be set before processing.
 光軸調整部4の光学部品は、平面基板4aに限定されない。光軸調整部4の光学部品は、ウェッジ基板又は複数のウェッジ角を持つ屈折光学素子であってもよいし、ウェッジ基板又は屈折光学素子と同様の機能を持つ反射光学素子であってもよい。 The optical component of the optical axis adjusting section 4 is not limited to the planar substrate 4a. The optical component of the optical axis adjustment unit 4 may be a wedge substrate or a refractive optical element having a plurality of wedge angles, or may be a reflective optical element having the same function as the wedge substrate or the refractive optical element.
 光軸調整部4の中空回転ステージ4bの変位量と角度調整機構4cの傾斜角の値とを決定する光軸調整指令は、制御部8によって発せられる。 An optical axis adjustment command for determining the amount of displacement of the hollow rotary stage 4b of the optical axis adjustment unit 4 and the value of the tilt angle of the angle adjustment mechanism 4c is issued by the control unit 8.
 強度分布調整部5についての説明を行う。図2の例では、強度分布調整部5は、光学部品5aと、光学部品5aを駆動する光路切替え機構5bとを有する。光学部品5aは、光軸調整部4と集光光学系6との間に配置される。光学部品5aは、一つの軸に関して回転対称な強度分布変換特性を有する。強度分布調整部5は、光学部品5aを含みレーザビームLの強度分布を強度分布調整指令に基づいて変更する。 The intensity distribution adjustment unit 5 will be explained. In the example of FIG. 2, the intensity distribution adjusting section 5 has an optical component 5a and an optical path switching mechanism 5b that drives the optical component 5a. The optical component 5 a is arranged between the optical axis adjusting section 4 and the condensing optical system 6 . The optical component 5a has an intensity distribution conversion characteristic that is rotationally symmetric about one axis. The intensity distribution adjustment unit 5 includes an optical component 5a and changes the intensity distribution of the laser beam L based on an intensity distribution adjustment command.
 例えば、光学部品5aは、アキシコンレンズと、球面収差を発生させて最小錯乱円と近軸焦点との関係を変更することが可能であるレンズとが組み合わせられた構成要素であって、加工対象物Wの付近でレーザビームLを一様な強度分布でないビーム強度分布にする構成要素である。「一様な強度分布でない」ビーム強度分布とは、例えばリングモードの分布である。光学部品5aとして、回折光学素子DOE(Diffractive Optical Element)が用いられてもよい。 For example, the optical component 5a is a component in which an axicon lens and a lens capable of generating spherical aberration to change the relationship between the circle of least confusion and the paraxial focus are combined, It is a component that makes the beam intensity distribution of the laser beam L in the vicinity of the object W not uniform. A beam intensity distribution that is “not a uniform intensity distribution” is, for example, a ring mode distribution. A diffractive optical element DOE (Diffractive Optical Element) may be used as the optical component 5a.
 図4から図7の各々は、図2のレーザ加工装置100の強度分布調整部5が有する光学部品5aの例を示す図である。図4は凸型のアキシコンレンズを示しており、凸型のアキシコンレンズは集光位置より加工ヘッド2の側にリングモードを生成することができる。図5は凹型のアキシコンレンズを示しており、凹型のアキシコンレンズは集光位置より加工対象物Wの側にリングモードを生成することができる。 Each of FIGS. 4 to 7 is a diagram showing an example of the optical component 5a included in the intensity distribution adjusting section 5 of the laser processing apparatus 100 of FIG. FIG. 4 shows a convex axicon lens, and the convex axicon lens can generate a ring mode on the processing head 2 side from the converging position. FIG. 5 shows a concave axicon lens, and the concave axicon lens can generate a ring mode on the workpiece W side from the condensing position.
 図6は、球面収差を発生させ、最小錯乱円と近軸焦点との関係を調整することが可能である複数のレンズが組み合わされた光学部品を示している。図6の光学部品は、レーザビームLの分布をビームモードの外側が内側より高い強度分布を持つような分布に変換することができる。図7は、凹型のアキシコンレンズと凸型のアキシコンレンズとが組み合わせられた光学部品を示しており、図7の光学部品は、集光点の前後のどちらにもリングモードのビーム強度分布を生成することができる。光学部品5aは、図4から図7までに示されている二つ以上の光学部品が組み合わせられた光学部品であってもよい。 FIG. 6 shows an optical component combined with a plurality of lenses capable of generating spherical aberration and adjusting the relationship between the circle of least confusion and the paraxial focus. The optics of FIG. 6 can transform the distribution of the laser beam L into a distribution such that the outside of the beam mode has a higher intensity distribution than the inside. FIG. 7 shows an optical component in which a concave axicon lens and a convex axicon lens are combined, and the optical component in FIG. can be generated. The optical component 5a may be an optical component in which two or more optical components shown in FIGS. 4 to 7 are combined.
 光学部品5aを光路に挿入するか否かの切替えを決定する強度分布調整指令は、制御部8によって発せられる。制御部8は、切断加工に関する数値パラメータである加工パラメータに基づいて発振器指令、駆動指令、強度分布調整指令、加工対象物Wの材質、加工対象物Wの板厚及び切断方向の一部又は全部に対応して光軸調整部4を制御するための光軸調整指令を決定する。 An intensity distribution adjustment command for determining whether or not to insert the optical component 5a into the optical path is issued by the control unit 8. The control unit 8 controls part or all of the oscillator command, the drive command, the intensity distribution adjustment command, the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction based on the machining parameters, which are numerical parameters related to the cutting process. , an optical axis adjustment command for controlling the optical axis adjustment unit 4 is determined.
 光学部品5aへのレーザビームLの入射位置は、光軸調整部4によって調整される。光軸調整部4に入射する前のレーザビームLの光軸が強度分布調整部5の光学部品5aの光軸と同じである場合、光学部品5aへ入射するレーザビームLのビーム直径をdとし、強度分布調整部5の光軸中心に対するレーザビームLの強度分布の割合をkとすると、当該割合kは下記の式(2)で表すことができる。Δは、光軸調整部4によって調整されたレーザビームLの位置の変位量である。 The incident position of the laser beam L on the optical component 5a is adjusted by the optical axis adjusting section 4. When the optical axis of the laser beam L before entering the optical axis adjusting unit 4 is the same as the optical axis of the optical component 5a of the intensity distribution adjusting unit 5, let d be the beam diameter of the laser beam L entering the optical component 5a. , where k is the ratio of the intensity distribution of the laser beam L to the center of the optical axis of the intensity distribution adjusting unit 5, the ratio k can be expressed by the following equation (2). Δ is the amount of displacement of the position of the laser beam L adjusted by the optical axis adjuster 4 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 レーザ加工装置100は、光軸調整部4によってレーザビームLの位置の変位量Δを調整することによって、加工方向に照射されるレーザビームLの強度分布のエネルギ比率を変更することができる。 The laser processing apparatus 100 can change the energy ratio of the intensity distribution of the laser beam L irradiated in the processing direction by adjusting the displacement amount Δ of the position of the laser beam L using the optical axis adjustment unit 4 .
 光軸調整部4の光軸は、強度分布調整部5の中心軸であってもよい。強度分布調整部5に入射するレーザビームLの光軸に対する位置又は光軸に対する角度は、変更されてもよい。 The optical axis of the optical axis adjusting section 4 may be the central axis of the intensity distribution adjusting section 5 . The position with respect to the optical axis or the angle with respect to the optical axis of the laser beam L incident on the intensity distribution adjusting section 5 may be changed.
 レーザ加工装置100は、金属を溶接する加工又は切断する加工を行う場合、加工対象物Wの板厚及び材質毎に加工対象物Wに照射するレーザビームLのビーム径、ビーム強度及び発散角を調整して加工を行う。金属の例は、鉄である。レーザ加工装置100のユーザは、切断加工において切断したものを加工対象物Wから製品として取り出す必要がある。ビーム径が大きく、切断溝が拡げられて加工されると、製品を取り出しやすくなる。レーザビームLの断面の形状が加工対象物Wに対して対称なビーム形状である場合、レーザビームLの強度とビーム径とは一意に決まる。ビーム径を大きくして加工進行中のビーム強度を高くするためには、レーザ発振器1を高出力化しなければならない。 When welding or cutting a metal, the laser processing apparatus 100 adjusts the beam diameter, beam intensity, and divergence angle of the laser beam L to irradiate the workpiece W for each thickness and material of the workpiece W. Adjust and process. An example of a metal is iron. A user of the laser processing apparatus 100 needs to take out the cut object from the workpiece W as a product in the cutting process. When the beam diameter is large and the cutting groove is widened for processing, it becomes easier to take out the product. When the cross-sectional shape of the laser beam L is symmetrical with respect to the workpiece W, the intensity and beam diameter of the laser beam L are uniquely determined. In order to increase the beam diameter and increase the beam intensity during processing, the output of the laser oscillator 1 must be increased.
 レーザ加工装置100は、強度分布調整部5に入射するレーザビームLの入射位置の変位量を光軸調整部4によって調整することにより、加工対象物Wに照射されるレーザビームLの強度分布を調整するために非対称なレーザビームLの強度分布を生成することが可能になる。更に言うと、レーザ加工装置100は、同じレーザ出力及びビーム径において、レーザビームLの強度を変更することが可能になる。加えて、レーザ加工装置100は、加工進行方向にレーザビームLの強度を上げるような非対称なレーザビーム強度分布を生成することにより、レーザ発振器1の出力に対して対称なレーザビーム強度分布と比較して、高いレーザビーム強度で加工を行うことが可能になる。 The laser processing apparatus 100 adjusts the intensity distribution of the laser beam L applied to the workpiece W by adjusting the displacement amount of the incident position of the laser beam L incident on the intensity distribution adjustment unit 5 by the optical axis adjustment unit 4. It is possible to generate an intensity distribution of the laser beam L that is asymmetric for tuning. Furthermore, the laser processing apparatus 100 can change the intensity of the laser beam L with the same laser output and beam diameter. In addition, the laser processing apparatus 100 generates an asymmetrical laser beam intensity distribution that increases the intensity of the laser beam L in the processing progress direction, thereby comparing the laser beam intensity distribution symmetrical with respect to the output of the laser oscillator 1. As a result, processing can be performed with a high laser beam intensity.
 特許文献1は、コリメートレンズとビーム源との間に光学要素を配置する技術を開示しているが、実施の形態1では、光学要素はコリメートレンズと集光光学系6との間に配置されている。コリメート部分では、ビームの大きさが一定で距離を自由にとることが可能であるので、特許文献1より実施の形態1の方が光学要素を容易に配置することができる。 Patent Document 1 discloses a technique of arranging an optical element between a collimating lens and a beam source, but in Embodiment 1, the optical element is arranged between the collimating lens and the condensing optical system 6. ing. In the collimated portion, the size of the beam is constant and the distance can be set freely.
 実施の形態1では、光軸方向及び光軸と垂直な方向に光軸調整部4を変位させる必要がないため、光軸調整部4を光路から取り出す又は挿入する機構を加えることが容易である。同様に、光軸方向及び光軸と垂直な方向に強度分布調整部5を変位させる必要がないため、強度分布調整部5を光路から取り出す又は挿入する機構を加えることが容易である。 In Embodiment 1, it is not necessary to displace the optical axis adjusting section 4 in the optical axis direction and the direction perpendicular to the optical axis, so it is easy to add a mechanism for removing or inserting the optical axis adjusting section 4 from the optical path. . Similarly, since it is not necessary to displace the intensity distribution adjusting section 5 in the direction of the optical axis and in the direction perpendicular to the optical axis, it is easy to add a mechanism for removing or inserting the intensity distribution adjusting section 5 from the optical path.
 加工対象物Wが3.2mm以上の厚みを有する板である場合、レーザ加工装置100は、加工対象物Wを加工するとき、強度分布調整部5に入射するレーザビームLの角度を光軸調整部4で変更することによって、加工方向へのレーザビーム強度及びエネルギ比率を調整して加工を行う。 When the object W to be processed is a plate having a thickness of 3.2 mm or more, the laser processing apparatus 100 adjusts the angle of the laser beam L incident on the intensity distribution adjustment unit 5 when processing the object W to be processed. By changing in the part 4, the laser beam intensity and energy ratio in the processing direction are adjusted and processing is performed.
 加工対象物Wが3.2mm以下の厚みを有する板である場合、レーザ加工装置100が加工対象物Wを加工するとき、加工速度が比較的速いので、中空回転ステージ4bの回転速度が加工速度に追従することは難しい。ユーザは、ビーム径を小さくして加工を行いたいため、光学部品5aを取り除いて加工を行いたい場合がある。その場合、図8に示されるように、ユーザは、平面基板4aを傾斜させずに、すなわち平面基板4aとレーザビームLの光軸とが成す角度を90°と設定し、光路切替え機構5bを用いて光学部品5aを光路から取り除いて加工を行えばよい。図8は、実施の形態1に係るレーザ加工装置100の具体的な使用方法の例を示す図である。光路切替え機構5bは、光学部品5aをレーザビームLの光軸に挿入する又は光軸から取り除く動作を行う構成要素である。 When the object W to be processed is a plate having a thickness of 3.2 mm or less, the processing speed is relatively high when the laser processing apparatus 100 processes the object W to be processed. is difficult to follow. Since the user wants to perform processing with a small beam diameter, the user may want to perform processing without the optical component 5a. In that case, as shown in FIG. 8, the user sets the angle formed by the flat substrate 4a and the optical axis of the laser beam L to 90° without tilting the flat substrate 4a, and operates the optical path switching mechanism 5b. The optical component 5a may be removed from the optical path by using the optical component 5a. FIG. 8 is a diagram showing a specific example of how to use the laser processing apparatus 100 according to the first embodiment. The optical path switching mechanism 5b is a component that inserts the optical part 5a into the optical axis of the laser beam L or removes it from the optical axis.
 ユーザは、図9に示されるように、平面基板4aを傾斜させずに、すなわち平面基板4aとレーザビームLの光軸とが成す角度を90°と設定し、強度分布調整部5をレーザビームLの光路から取り除かずに加工を行ってもよい。図9は、実施の形態1に係るレーザ加工装置100の具体的な使用方法の別の例を示す図である。 As shown in FIG. 9, the user sets the angle formed by the flat substrate 4a and the optical axis of the laser beam L to 90° without tilting the flat substrate 4a, and adjusts the intensity distribution adjustment unit 5 to the laser beam. Processing may be performed without removing from the optical path of L. FIG. 9 is a diagram showing another example of a specific usage of the laser processing apparatus 100 according to the first embodiment.
 厚みが異なる板についての加工方法は、上述の方法に限定されない。 The processing method for plates with different thicknesses is not limited to the above method.
 加工ヘッド2は、凸のアキシコンレンズと凹のアキシコンレンズとのうちのどちらも有していてもよい。凸のアキシコンレンズと凹のアキシコンレンズとは、板厚と加工ガス種との一方又は双方に対応して使い分けられてもよい。 The processing head 2 may have both a convex axicon lens and a concave axicon lens. A convex axicon lens and a concave axicon lens may be used depending on one or both of the plate thickness and the type of processing gas.
 例えば、加工ガスとして、酸素、窒素又はエアーが使用される。しかしながら、加工ガスは、酸素、窒素又はエアー以外のガスであってもよいし、2種類以上のガスを含んでいてもよい。 For example, oxygen, nitrogen or air is used as the processing gas. However, the processing gas may be gas other than oxygen, nitrogen, or air, and may contain two or more types of gases.
 図10は、光線追跡の計算結果の例を説明するための実施の形態1に係るレーザ加工装置100の一部の構成を示す図である。図10の例では、レーザ発振器1はファイバレーザであり、レーザ出力は5kWである。ファイバコア径Φは0.1mmであり、NA(Numerical Aperture)は0.08である。コリメートレンズ3の焦点距離は100mmであり、集光光学系6が集光レンズであって、当該集光レンズの焦点距離は200mmであり、光軸調整部4の平面基板4aの厚さは10mmであり、強度分布調整部5の凸アキシコンレンズの頂角は179.5°である。 FIG. 10 is a diagram showing a partial configuration of the laser processing apparatus 100 according to Embodiment 1 for explaining an example of ray tracing calculation results. In the example of FIG. 10, the laser oscillator 1 is a fiber laser with a laser output of 5 kW. The fiber core diameter Φ is 0.1 mm, and NA (Numerical Aperture) is 0.08. The focal length of the collimating lens 3 is 100 mm, the condensing optical system 6 is a condensing lens, the focal length of the condensing lens is 200 mm, and the thickness of the planar substrate 4a of the optical axis adjustment unit 4 is 10 mm. and the apex angle of the convex axicon lens of the intensity distribution adjustment unit 5 is 179.5°.
 図11は、実施の形態1に係るレーザ加工装置100が有する平面基板4aとレーザビームLの光軸とが成す角度が90°であって光学部品5aが光軸に挿入されていない場合の集光点付近のビーム強度分布を示す図である。図12は、加工方向の中心軸XX’断面を示す図である。図11は、図12の加工方向の中心軸XX’断面のレーザビームLの強度分布を示している。 FIG. 11 is a diagram illustrating the case where the angle formed by the flat substrate 4a of the laser processing apparatus 100 according to Embodiment 1 and the optical axis of the laser beam L is 90° and the optical component 5a is not inserted into the optical axis. It is a figure which shows beam intensity distribution near a light spot. FIG. 12 is a diagram showing a cross section of the center axis XX' in the processing direction. FIG. 11 shows the intensity distribution of the laser beam L in the cross section along the central axis XX' in the processing direction of FIG.
 光学部品5aが光軸に挿入されていない場合、図11に示されるように、トップハットビームといわれる一様分布が形成される。図13は、実施の形態1に係るレーザ加工装置100において強度分布調整部5の凸アキシコンレンズが光軸に挿入された場合の集光点付近のビーム強度分布を示す図である。強度分布調整部5の凸アキシコンレンズが光軸に挿入された場合、図11のトップハットビームと比較すると、ビーム径が大きくなり、加工対象物Wにビーム強度がほぼ等しい二つのリングモード分布が形成されるため、断面図に二つの領域が存在する。図13の加工方向は、図12に示されているX軸のプラス方向である。図13の領域aは、加工方向のレーザビームLの強度分布の領域であり、図13の領域bは、加工方向の反対側に照射されるレーザビームLの強度分布の領域である。加工進行側の領域aのレーザビーム強度は、反対側の領域bのレーザビーム強度と等しい。 When the optical component 5a is not inserted into the optical axis, a uniform distribution called top hat beam is formed as shown in FIG. FIG. 13 is a diagram showing the beam intensity distribution near the focal point when the convex axicon lens of the intensity distribution adjusting unit 5 is inserted into the optical axis in the laser processing apparatus 100 according to Embodiment 1. FIG. When the convex axicon lens of the intensity distribution adjustment unit 5 is inserted into the optical axis, the beam diameter becomes larger than that of the top hat beam in FIG. is formed, there are two regions in the cross-section. The machining direction in FIG. 13 is the positive direction of the X-axis shown in FIG. The area a in FIG. 13 is the intensity distribution area of the laser beam L in the processing direction, and the area b in FIG. 13 is the intensity distribution area of the laser beam L irradiated in the opposite direction to the processing direction. The laser beam intensity of the area a on the processing progress side is equal to the laser beam intensity of the area b on the opposite side.
 図14は、実施の形態1に係るレーザ加工装置100において平面基板4aとレーザビームLの光軸とが成す角度αが45°である場合のレーザビーム強度分布を示す図である。図14のレーザビーム強度分布では、加工方向に対するレーザビームLの二つのピーク強度が異なっている。つまり、加工進行方向の領域aは、領域bより大きい。 FIG. 14 is a diagram showing the laser beam intensity distribution when the angle α between the flat substrate 4a and the optical axis of the laser beam L is 45° in the laser processing apparatus 100 according to the first embodiment. In the laser beam intensity distribution of FIG. 14, the two peak intensities of the laser beam L with respect to the processing direction are different. That is, the area a in the processing progress direction is larger than the area b.
 図15は、実施の形態1に係るレーザ加工装置100において平面基板4aの傾斜角とレーザビームLの加工進行方向側の領域aのピーク強度との関係を示す図である。図15から、平面基板4aをレーザビームLの光軸に対して傾けることによりレーザビーム強度を調整することができることが分かる。図15は、平面基板4aの傾斜角が0°である場合に対してピーク強度を最大で1.8倍に変更させることが可能であることを示している。レーザ加工装置100は、平面基板4aの傾斜角度によってピーク強度を調整することができるので、強度分布調整部5に入射するレーザビームLのビーム径dを小さくする調整を行うことができる。ビーム径dは、コリメートレンズ3の焦点距離によって変更することが可能である。 FIG. 15 is a diagram showing the relationship between the tilt angle of the planar substrate 4a and the peak intensity of the laser beam L in the processing advancing direction side of the region a in the laser processing apparatus 100 according to the first embodiment. From FIG. 15, it can be seen that the laser beam intensity can be adjusted by tilting the plane substrate 4a with respect to the optical axis of the laser beam L. FIG. FIG. 15 shows that the peak intensity can be changed up to 1.8 times as much as when the tilt angle of the plane substrate 4a is 0°. Since the laser processing apparatus 100 can adjust the peak intensity by adjusting the tilt angle of the plane substrate 4a, it is possible to adjust the beam diameter d of the laser beam L incident on the intensity distribution adjusting section 5 to be small. The beam diameter d can be changed by the focal length of the collimating lens 3.
 結像点のビーム径は、ファイバコア径と、コリメートレンズ3及び集光光学系6の焦点距離と、アキシコンレンズの頂角の角度との関係を変更すると変更することができる。 The beam diameter at the imaging point can be changed by changing the relationship between the fiber core diameter, the focal lengths of the collimating lens 3 and the condensing optical system 6, and the apex angle of the axicon lens.
 図16は、実施の形態1に係るレーザ加工装置100の機能を説明するための図である。コリメートレンズ3が複数のレンズで構成されている場合、図16に示されるように、レーザ加工装置100は、複数のレンズの各々を独立に駆動してコリメートレンズ3の有効焦点距離を変更させ、加工対象物Wに照射される集光径を変更させる集光径変更部3aを有してもよい。レーザ加工装置100は、当該集光径変更部を有する場合、集光光学系6の焦点距離が変化しないとき、加工対象物Wに照射するレーザビームLの集光径と発散角とを調整することが可能になり、ビーム強度を変更することが可能になる。レーザ加工装置100は、板厚に対応して、ビーム径と、発散角と、ビーム強度とを調整することが可能であるので、加工性能をより向上させることができる。 FIG. 16 is a diagram for explaining functions of the laser processing apparatus 100 according to Embodiment 1. FIG. When the collimating lens 3 is composed of a plurality of lenses, as shown in FIG. 16, the laser processing apparatus 100 drives each of the plurality of lenses independently to change the effective focal length of the collimating lens 3, A condensed diameter changing part 3a for changing the condensed diameter with which the workpiece W is irradiated may be provided. When the laser processing apparatus 100 has the condensing diameter changing unit, the condensing diameter and the divergence angle of the laser beam L irradiated to the workpiece W are adjusted when the focal length of the condensing optical system 6 does not change. It becomes possible to change the beam intensity. Since the laser processing apparatus 100 can adjust the beam diameter, the divergence angle, and the beam intensity according to the plate thickness, the processing performance can be further improved.
 レーザ加工装置100が板金を加工する場合、レーザ発振器1がファイバレーザであるとき、ファイバコア径は、100μmから300μmまでのいずれかである。実際の加工では、レーザ加工装置100は、集光点を加工対象物Wの表面にあわせてレーザビームLを加工対象物Wに照射して加工対象物Wを加工するだけでなく、集光点をz方向において変更することによって加工を行うこともあり、ビーム径は、0.1mmから2mmまでのいずれかであることが望ましい。アキシコン角度は、179.0°から179.9°までのいずれかであることが望ましい。上記のz方向は、加工対象物Wの厚さ方向である。 When the laser processing apparatus 100 processes sheet metal, and the laser oscillator 1 is a fiber laser, the fiber core diameter is anywhere from 100 μm to 300 μm. In actual processing, the laser processing apparatus 100 not only processes the object W by irradiating the object W with the laser beam L with the focal point aligned with the surface of the object W, but also in the z-direction, and the beam diameter is preferably anywhere from 0.1 mm to 2 mm. Desirably, the axicon angle is anywhere from 179.0° to 179.9°. The z-direction is the thickness direction of the object W to be processed.
 光軸調整部4の平面基板4aが複数枚存在し、複数の平面基板4aの各々の傾斜角が独立して調整されてもよい。複数の平面基板4aの各々の傾斜角が独立して調整される場合、レーザ加工装置100は、レーザビームLの強度分布を複数の分布のいずれに調整することも可能になる。 There may be a plurality of flat substrates 4a of the optical axis adjustment unit 4, and the tilt angle of each of the plurality of flat substrates 4a may be adjusted independently. When the tilt angles of the plurality of planar substrates 4a are independently adjusted, the laser processing apparatus 100 can adjust the intensity distribution of the laser beam L to any of the plurality of distributions.
 集光光学系6は、レーザビームLを集光することができればよいので、1枚のレンズで構成されていてもよいし、複数枚のレンズを組み合わせられた構成要素であってもよい。集光光学系6としては、球面収差を取り除いた非球面レンズが用いられてもよいし、反射型光学系が用いられてもよい。 The condensing optical system 6 only needs to be able to condense the laser beam L, so it may be composed of a single lens, or may be a component in which a plurality of lenses are combined. As the condensing optical system 6, an aspherical lens with spherical aberration removed may be used, or a reflective optical system may be used.
 上述の通り、実施の形態1に係るレーザ加工装置100は、発振器指令に基づいてレーザビームLを出力するレーザ発振器1と、レーザビームLを加工対象物Wの照射位置に照射する加工ヘッド2と、駆動指令に基づいて加工対象物Wと加工ヘッド2との相対位置を変更して照射位置を切断方向に移動させる制御部8とを有する。レーザ加工装置100は、レーザビームLの強度分布を強度分布調整指令に基づいて変更する強度分布調整部5と、強度分布調整部5に入射するレーザビームLの入射位置又は入射角度を変更する光軸調整部4とを更に有する。制御部8は、切断加工に関する数値パラメータである加工パラメータに基づいて発振器指令、駆動指令、強度分布調整指令、加工対象物Wの材質、加工対象物Wの板厚及び切断方向の一部又は全部に対応して光軸調整部4を制御するための光軸調整指令を決定する。レーザ加工装置100は、加工対象物Wに照射するレーザビームLのビームモードと加工方向に照射するレーザビームLのビーム断面内の強度分布のエネルギ比率とを切断加工の加工パラメータに対応して制御することができる。レーザ加工装置100は、加工対象物Wに照射するレーザビームLのビーム強度を適切に調整することができる。レーザ加工装置100は、加工対象物Wの溝幅に照射するレーザビームLのビーム強度を適切に調整することができる。その結果、生産性が向上する。 As described above, the laser processing apparatus 100 according to the first embodiment includes the laser oscillator 1 that outputs the laser beam L based on the oscillator command, and the processing head 2 that irradiates the laser beam L to the irradiation position of the workpiece W. and a control unit 8 for changing the relative position between the workpiece W and the processing head 2 based on a drive command to move the irradiation position in the cutting direction. The laser processing apparatus 100 includes an intensity distribution adjustment unit 5 that changes the intensity distribution of the laser beam L based on an intensity distribution adjustment command, and light that changes the incident position or the incident angle of the laser beam L incident on the intensity distribution adjustment unit 5. It further has an axis adjustment part 4 . The control unit 8 controls part or all of the oscillator command, the drive command, the intensity distribution adjustment command, the material of the workpiece W, the plate thickness of the workpiece W, and the cutting direction based on the machining parameters, which are numerical parameters related to the cutting process. , an optical axis adjustment command for controlling the optical axis adjustment unit 4 is determined. The laser processing apparatus 100 controls the beam mode of the laser beam L irradiated to the workpiece W and the energy ratio of the intensity distribution in the beam cross section of the laser beam L irradiated in the processing direction in accordance with the processing parameters of the cutting processing. can do. The laser processing apparatus 100 can appropriately adjust the beam intensity of the laser beam L with which the workpiece W is irradiated. The laser processing apparatus 100 can appropriately adjust the beam intensity of the laser beam L with which the groove width of the workpiece W is irradiated. As a result, productivity is improved.
実施の形態2.
 図17は、実施の形態2に係るレーザ加工装置200の構成の概要を示す図である。レーザ加工装置200は、実施の形態1に係るレーザ加工装置100が有するすべての構成要素のうちの光軸調整部4以外の構成要素を有する。レーザ加工装置200は、実施の形態1に係るレーザ加工装置100が有する光軸調整部4の代わりにガルバノスキャナ4dを有する。ガルバノスキャナ4dは、光軸調整部の一例である。実施の形態1の光軸調整部4がガルバノスキャナ4dに置き換えられている点が、実施の形態2と実施の形態1との相違点である。実施の形態2では、実施の形態1との相違点を主に説明する。
Embodiment 2.
FIG. 17 is a diagram showing an overview of the configuration of a laser processing apparatus 200 according to Embodiment 2. As shown in FIG. The laser processing device 200 has components other than the optical axis adjusting unit 4 among all the components of the laser processing device 100 according to the first embodiment. The laser processing device 200 has a galvanometer scanner 4d instead of the optical axis adjusting section 4 of the laser processing device 100 according to the first embodiment. The galvanometer scanner 4d is an example of an optical axis adjusting section. A difference between the second embodiment and the first embodiment is that the optical axis adjustment unit 4 of the first embodiment is replaced with a galvanometer scanner 4d. In Embodiment 2, differences from Embodiment 1 will be mainly described.
 図17に示されるように、ガルバノスキャナ4dは、コリメートレンズ3と強度分布調整部5との間に挿入されて集光光学系6の入射瞳位置に配置されることが望ましい。図17の矢印は、ガルバノスキャナ4dが回転可能であることを意味する。ガルバノスキャナ4dは、コリメートレンズ3によってコリメートされたレーザビームLを偏向する。これにより、強度分布調整部5の光学部品5aへのレーザビームLの入射位置と入射角度とが調整され、レーザ加工装置200は、加工対象物Wに対する加工方向におけるビーム強度分布を調整することが可能になる。加えて、レーザ加工装置200は、切断フロントに照射するレーザビームLの強度を調整することが可能になる。これにより、レーザ加工装置200は、レーザ出力が同じであっても加工の効率を向上させることができる。 As shown in FIG. 17, the galvanometer scanner 4d is preferably inserted between the collimating lens 3 and the intensity distribution adjusting section 5 and arranged at the entrance pupil position of the condensing optical system 6. The arrow in FIG. 17 means that the galvanometer scanner 4d is rotatable. A galvanometer scanner 4 d deflects the laser beam L collimated by the collimating lens 3 . As a result, the incident position and incident angle of the laser beam L to the optical component 5a of the intensity distribution adjusting unit 5 are adjusted, and the laser processing apparatus 200 can adjust the beam intensity distribution in the processing direction with respect to the workpiece W. be possible. In addition, the laser processing device 200 can adjust the intensity of the laser beam L that irradiates the cutting front. Thereby, the laser processing apparatus 200 can improve the processing efficiency even if the laser output is the same.
 集光光学系6の焦点距離をfとすると共にガルバノスキャナ4dの偏向角をθとすると、レーザビームLの走査位置はf×tanθとなり、レーザ加工装置200は、数百Hz以上の周波数で走査を行えば、加工対象物Wに照射されるレーザビームLのビーム径を調整することが可能になる。その場合、レーザ加工装置200は、加工性能をより向上させることができる。 Assuming that the focal length of the condensing optical system 6 is f and the deflection angle of the galvano scanner 4d is θ, the scanning position of the laser beam L is f×tan θ, and the laser processing apparatus 200 scans at a frequency of several hundred Hz or higher. , it becomes possible to adjust the beam diameter of the laser beam L with which the workpiece W is irradiated. In that case, the laser processing apparatus 200 can further improve processing performance.
 ガルバノスキャナ4dはレーザビームLを偏向することができればよいので、ガルバノスキャナ4dとして、音響光学変調を利用した音響光学偏向器が用いられてもよい。ガルバノスキャナ4dは、MEMS(Micro Electro Mechanical Systems)ミラーに置き換えられてもよい。ガルバノスキャナ4d又はMEMSミラーは、制御部8によって制御される。実施の形態2に係るレーザ加工装置200は、加工する溝幅を適切に調整することができる。その結果、生産性が向上する。 The galvanometer scanner 4d only needs to be able to deflect the laser beam L, so an acoustooptic deflector using acoustooptic modulation may be used as the galvanoscanner 4d. The galvanometer scanner 4d may be replaced with a MEMS (Micro Electro Mechanical Systems) mirror. The galvanometer scanner 4d or MEMS mirror is controlled by the controller 8. FIG. The laser processing apparatus 200 according to Embodiment 2 can appropriately adjust the groove width to be processed. As a result, productivity is improved.
 実施の形態1で説明されたように、コリメートレンズ3が複数のレンズで構成されている場合、レーザ加工装置200は、複数のレンズの各々を独立に駆動し、コリメートレンズ3の有効焦点距離を変更させるズーム機能を有していてもよい。この場合、集光光学系6の焦点距離が変化しないとき、レーザ加工装置200は、加工対象物Wに照射するレーザビームLのビーム径、発散角及びビーム強度を調整することが可能になる。その結果、レーザ加工装置200は、加工性能の向上に寄与することが可能になる。 As described in Embodiment 1, when the collimating lens 3 is composed of a plurality of lenses, the laser processing apparatus 200 drives each of the plurality of lenses independently to set the effective focal length of the collimating lens 3 to It may have a zoom function to change. In this case, when the focal length of the condensing optical system 6 does not change, the laser processing apparatus 200 can adjust the beam diameter, divergence angle, and beam intensity of the laser beam L with which the workpiece W is irradiated. As a result, the laser processing apparatus 200 can contribute to improvement in processing performance.
 図17には、ガルバノスキャナ4dは、一つしか記載されていないが、2次元での走査が必要である場合、二つのガルバノスキャナ4dを配置する必要がある。 Although only one galvano-scanner 4d is shown in FIG. 17, two galvano-scanners 4d need to be arranged when two-dimensional scanning is required.
 集光光学系6は、レーザビームLを集光することができればよいので、1枚のレンズで構成されていてもよいし、複数枚のレンズが組み合わせられた構成要素であってもよい。集光光学系6の焦点距離がfであってレーザビームLの偏向角がθであると定義された場合、集光光学系6の走査位置がfθとなる関係を維持するようなfθレンズが用いられてもよいし、反射光学系が用いられてもよい。 The condensing optical system 6 only needs to be able to condense the laser beam L, so it may be composed of one lens, or may be a component in which a plurality of lenses are combined. When the focal length of the condensing optical system 6 is f and the deflection angle of the laser beam L is defined as θ, an fθ lens that maintains the relationship that the scanning position of the condensing optical system 6 is fθ is may be used, or reflective optics may be used.
実施の形態3.
 実施の形態3に係るレーザ加工装置は、実施の形態1に係るレーザ加工装置100が有するすべての構成要素と、図18に示される加工条件解析器12とを有する。図18は、実施の形態3に係るレーザ加工装置が有する加工条件解析器12の構成を示す図である。実施の形態3では、実施の形態1との相違点を主に説明する。なお、実施の形態3に係るレーザ加工装置は、実施の形態2に係るレーザ加工装置200が有するすべての構成要素と、図18に示される加工条件解析器12とを有するレーザ加工装置であってもよい。
Embodiment 3.
A laser processing apparatus according to Embodiment 3 has all the components of laser processing apparatus 100 according to Embodiment 1, and a processing condition analyzer 12 shown in FIG. FIG. 18 is a diagram showing the configuration of the processing condition analyzer 12 included in the laser processing apparatus according to Embodiment 3. As shown in FIG. In Embodiment 3, differences from Embodiment 1 will be mainly described. Note that the laser processing apparatus according to the third embodiment is a laser processing apparatus having all the components of the laser processing apparatus 200 according to the second embodiment and the processing condition analyzer 12 shown in FIG. good too.
 加工条件解析器12は、加工結果判定部13と、特徴量抽出部14と、機械学習器15と、加工条件変更部16とを有する。機械学習器15は、特徴量抽出部14により抽出された特徴量と、作業者が作成した評価値とを関連付けて学習する。作業者が作成した評価値は、作業者による評価値である。作業者による評価値は、例えば、図示されていない入力手段から入力されてもよいし、他の装置から送信されてもよい。 The machining condition analyzer 12 has a machining result determination unit 13, a feature amount extraction unit 14, a machine learning unit 15, and a machining condition change unit 16. The machine learning device 15 learns by associating the feature amount extracted by the feature amount extraction unit 14 with the evaluation value created by the operator. The evaluation value created by the worker is the evaluation value by the worker. The evaluation value by the worker may be input from, for example, input means (not shown), or may be transmitted from another device.
 機械学習器15は、学習部17と、データ取得部18とを有する。データ取得部18は、切断加工の加工条件、発振器指令、駆動指令、強度分布調整指令、及び加工パラメータを含む状態量を取得する。学習部17は、データ取得部18によって取得された状態量に基づいて、良い加工を得る加工条件を学習する。 The machine learning device 15 has a learning unit 17 and a data acquisition unit 18. The data acquisition unit 18 acquires state quantities including processing conditions for cutting, oscillator commands, drive commands, intensity distribution adjustment commands, and processing parameters. The learning unit 17 learns processing conditions for obtaining good processing based on the state quantities acquired by the data acquisition unit 18 .
 学習部17は、機械学習により、入力と結果との組を学習する。学習部17の機械学習のアルゴリズムとしては、どのようなものが用いられてもよいが、例えば、教師あり学習のアルゴリズムが用いられる。データ取得部18は、学習部17における入力として、特徴量抽出部14から特徴量を取得し、取得した特徴量を学習部17へ入力する。学習部17には、作業者による評価値も入力される。作業者による評価値は、加工結果の良否について判断された結果であり、段階的なレベルを示す値であってもよいし、連続した数値のいずれかであってもよい。すなわち、作業者による評価値は、加工不良項目の組み合わせパターンに相当するものを作業者が決定した値である。 The learning unit 17 learns pairs of inputs and results by machine learning. Any algorithm may be used as the machine learning algorithm of the learning unit 17. For example, a supervised learning algorithm is used. The data acquisition unit 18 acquires the feature amount from the feature amount extraction unit 14 as an input to the learning unit 17 and inputs the acquired feature amount to the learning unit 17 . An evaluation value by the worker is also input to the learning unit 17 . The evaluation value by the operator is the result of judging the quality of the machining result, and may be a value indicating a stepwise level or a continuous numerical value. In other words, the evaluation value by the worker is a value determined by the worker corresponding to the combination pattern of the defective processing items.
 データ取得部18は、加工条件を学習部17への入力として取得してもよい。データ取得部18は、加工条件又は特徴量抽出部14から出力される特徴量を、状態変数として取得し、学習部17へ与える。学習部17は、状態変数と評価値とで構成されるデータセットを用いて、加工条件と加工結果とを、又は加工不良項目の良否結果を機械学習する。データセットは、状態変数と評価値とが関連付けられたデータである。 The data acquisition unit 18 may acquire the processing conditions as an input to the learning unit 17. The data acquisition unit 18 acquires the processing condition or the feature amount output from the feature amount extraction unit 14 as a state variable, and provides it to the learning unit 17 . The learning unit 17 machine-learns processing conditions and processing results, or pass/fail results of defective processing items, using a data set composed of state variables and evaluation values. A data set is data in which state variables and evaluation values are associated.
 例えば、加工条件とは、加工速度、レーザ出力、加工ガス圧、集光光学系6の集光位置と加工対象物Wとの位置関係、集光光学系6によって集光された後のレーザビームLのビーム径、レーザのパルス周波数、レーザのパルスのデューティ比、集光光学系6の倍率、ノズル径、加工対象物Wと加工ノズル7との距離、レーザビームモードの種類、ノズル穴の中心とレーザビームLとの位置関係、光軸調整部4によって変位された強度分布調整部5に入射するレーザビームLの位置の変位量Δ、加工方向の変更に対して光軸調整部4がレーザビームLの光軸を調整するタイミング、及びガルバノスキャナ4dの偏向角の一部又は全部を特定するための条件である。 For example, the processing conditions include processing speed, laser output, processing gas pressure, the positional relationship between the condensing position of the condensing optical system 6 and the workpiece W, and the laser beam after being condensed by the condensing optical system 6. L beam diameter, laser pulse frequency, laser pulse duty ratio, magnification of condensing optical system 6, nozzle diameter, distance between workpiece W and machining nozzle 7, type of laser beam mode, center of nozzle hole and the laser beam L, the displacement amount Δ of the position of the laser beam L incident on the intensity distribution adjustment unit 5 displaced by the optical axis adjustment unit 4, the optical axis adjustment unit 4 changes the laser beam L with respect to the change in the processing direction These are the conditions for specifying the timing for adjusting the optical axis of the beam L and a part or all of the deflection angle of the galvanometer scanner 4d.
 学習部17は、機械学習による学習済みモデルを用いて、特徴量に対応する加工条件を出力する。これにより、実施の形態3に係るレーザ加工装置は、より高精度に条件を調整することができる。学習部17は、加工結果の良否と加工条件との関係を機械学習する機能と学習済モデルとしての機能との両方を有してもよい。学習済モデルを用いて評価値を出力する推論部が、学習部17と別に設けられてもよい。すなわち、加工条件解析器12は、学習部17により学習が行われた学習済モデルを用いてデータ処理部で処理された加工条件の組み合わせパターンを算出する推論部を有してもよい。 The learning unit 17 uses a machine-learned model to output processing conditions corresponding to feature amounts. Thereby, the laser processing apparatus according to Embodiment 3 can adjust the conditions with higher accuracy. The learning unit 17 may have both a function of machine-learning the relationship between the quality of the machining result and the machining conditions and a function of a learned model. An inference unit that outputs an evaluation value using a trained model may be provided separately from the learning unit 17 . That is, the processing condition analyzer 12 may have an inference unit that calculates a combination pattern of processing conditions processed by the data processing unit using a learned model trained by the learning unit 17 .
 図18に示される例では、機械学習器15は加工条件解析器12の内部に設けられているが、機械学習器15は加工条件解析器12とは別の装置であってもよい。例えば、加工条件解析器12と機械学習器15とが通信ネットワークを介して接続されてもよい。機械学習器15は、クラウドサーバに存在してもよい。 In the example shown in FIG. 18, the machine learning device 15 is provided inside the machining condition analyzer 12, but the machine learning device 15 may be a separate device from the machining condition analyzer 12. For example, the machining condition analyzer 12 and the machine learning device 15 may be connected via a communication network. The machine learner 15 may reside on a cloud server.
 上述したデータセットが用いられてある程度学習が進んだ後に加工結果判定部13による判定結果が修正された場合、学習部17は修正された判定結果を学習してもよい。例えば、加工結果判定部13が複数の加工不良を判定する項目の各々に対応する複数の評価値で構成される組み合わせパターンを算出し、作業者が評価値を修正し、修正された結果が機械学習器15へ入力される。この場合、加工結果判定部13における評価値を決定するためのアルゴリズムと、判定のための閾値とは、作業者により適宜変更可能であってもよい。 If the determination result by the processing result determination unit 13 is corrected after learning progresses to some extent using the above-described data set, the learning unit 17 may learn the corrected determination result. For example, the machining result judging unit 13 calculates a combination pattern composed of a plurality of evaluation values corresponding to each of a plurality of items for judging a machining defect, the operator corrects the evaluation values, and the corrected result is used by the machine. It is input to the learning device 15 . In this case, the algorithm for determining the evaluation value in the processing result determination unit 13 and the threshold value for determination may be changed as appropriate by the operator.
 加工不良を判定する項目の例は、レーザ切断中に溶融した金属が切断面に付着する症状で切断面の下端から発生するドロスという症状を示す項目、又は切断面の上部に周期的に発生する荒れを示す項目である。荒れが発生すると、荒れが発生しない場合に比べ、条痕の凹凸の深さが深くなる。条痕は切断に用いられる加工ガスが酸素である場合に生じ、条痕の凹凸は切断面に生じる酸化膜が剥れてしまう症状の有無で判定されてもよい。 Examples of items that determine processing defects are items that indicate the phenomenon of dross occurring from the lower end of the cut surface, which is a symptom of molten metal adhering to the cut surface during laser cutting, or items that periodically occur at the top of the cut surface. This item indicates roughness. When roughening occurs, the depth of unevenness of streaks becomes deeper than when roughening does not occur. Streaks are produced when the processing gas used for cutting is oxygen, and the unevenness of the streaks may be determined based on the presence or absence of the symptom of peeling of the oxide film produced on the cut surface.
 加工不良を判定する項目は、上述の例に限定されない。例えば、加工対象物Wの変色と、振動面の有無と、他の加工不良の項目とも含めて、加工不良は判定されてもよいし、上述した加工不良を判定する項目のうちの一部に替えて他の加工不良を判定する項目の判定が行われてもよい。レーザ出力、加工速度、加工板厚の組み合わせ、及び加工ガスの種類の一部又は全部の加工パラメータによって、加工不良を判定する項目は変更されてもよい。 Items for determining processing defects are not limited to the above examples. For example, processing defects may be determined by including discoloration of the workpiece W, the presence or absence of a vibrating surface, and other items of processing defects. Alternatively, other items for determining processing defects may be determined. The items for determining defective processing may be changed depending on some or all of the processing parameters such as the combination of laser output, processing speed, processing plate thickness, and type of processing gas.
 学習部17は、例えば、ニューラルネットワークモデルを用いて、いわゆる教師あり学習により加工条件と加工結果とを学習する。教師あり学習とは、入力と結果とのデータの複数の組である複数のデータセットにある特徴を学習し、入力から結果を推定する機械学習である。結果は、ラベルである。 The learning unit 17 uses, for example, a neural network model to learn processing conditions and processing results through so-called supervised learning. Supervised learning is machine learning that learns features in multiple data sets, which are multiple pairs of input and result data, and estimates the result from the input. The result is a label.
 ニューラルネットワークは、複数のニューロンからなる入力層と、複数のニューロンからなり隠れ層とも呼ばれる中間層と、複数のニューロンからなる出力層とで構成される。中間層については、1層の中間層だけが存在してもよいし、2層以上の中間層が存在してもよい。 A neural network consists of an input layer made up of multiple neurons, an intermediate layer made up of multiple neurons called a hidden layer, and an output layer made up of multiple neurons. As for the intermediate layer, only one intermediate layer may be present, or two or more intermediate layers may be present.
 図19は、実施の形態3に係るニューラルネットワークモデルの構成を示す図である。X1,X2及びX3は入力層のニューロンであり、Y1及びY2は中間層のニューロンであり、Z1,Z2及びZ3は出力層のニューロンである。図19に示されるような3層のニューラルネットワークモデルであれば、X1,X2及びX3の各々に入力値が入力されると、各入力値は、対応する重みw11から重みw16までのいずれかが乗算されて中間層のニューロンであるY1及びY2の各々に入力される。 FIG. 19 is a diagram showing the configuration of a neural network model according to Embodiment 3. FIG. X1, X2 and X3 are input layer neurons, Y1 and Y2 are intermediate layer neurons, and Z1, Z2 and Z3 are output layer neurons. In the case of a three-layer neural network model as shown in FIG. It is multiplied and input to each of Y1 and Y2, which are intermediate layer neurons.
 Y1及びY2からの出力値は、対応する重みw21から重みw26までのいずれかが乗算されて、出力層のニューロンであるZ1,Z2及びZ3の各々に入力される。出力層は、入力された値を加算し、加算した結果を出力結果として出力する。例えば、Z1,Z2及びZ3の各々から出力される結果を、各加工不良を判定する項目に対応する評価結果に対応させることができる。出力結果は、重みw11から重みw16までの各値と重みw21から重みw26までの各値とによって変わる。 The output values from Y1 and Y2 are multiplied by any of the corresponding weights w21 to w26 and input to each of the output layer neurons Z1, Z2 and Z3. The output layer adds the input values and outputs the result of addition as an output result. For example, the results output from each of Z1, Z2, and Z3 can be made to correspond to the evaluation results corresponding to the items for determining each processing defect. The output result varies depending on each value from weight w11 to weight w16 and each value from weight w21 to weight w26.
 実施の形態3では、上述のデータセットを用いて上述のニューラルネットワークの出力結果が正解である加工良否の評価結果に近づくように、重みw11から重みw16までの各値と重みw21から重みw26までの各値とが調整されることにより、学習が行われる。図19は、ニューラルネットワークモデルの一例を示しており、ニューラルネットワークモデルの層数及び各層に属するニューロンの数は、図19の例に限定されない。 In the third embodiment, using the above data set, each value from weight w11 to weight w16 and weight w21 to weight w26 are adjusted so that the output result of the above neural network approaches the correct evaluation result of processing quality. Learning is performed by adjusting each value of . FIG. 19 shows an example of a neural network model, and the number of layers of the neural network model and the number of neurons belonging to each layer are not limited to the example of FIG.
 学習部17は、ニューラルネットワークモデルを用いて、いわゆる教師なし学習によって、加工条件と加工良否の評価結果とを学習することもできる。教師なし学習とは、大量の入力データのみに基づいて入力データがどのような分布をしているのかを学習し、対応する教師出力データが与えられなくても、入力データに対して例えば圧縮、分類及び整形の一部又は全部を行う方法を学習する手法である。 The learning unit 17 can also learn the processing conditions and the processing quality evaluation results by so-called unsupervised learning using a neural network model. Unsupervised learning is learning how the input data is distributed based only on a large amount of input data, and even if the corresponding supervised output data is not given, the input data can be compressed, It is a technique for learning how to do some or all of the classification and shaping.
 例えば、教師なし学習では、入力データのなかの特徴が似ているデータ同士をクラスタリングすることができる。何らかの基準を設けてクラスタリングの結果を最適にするように、クラスタリングの結果に対して評価結果の割り当てを行うことで、評価結果の予測を実現することができる。 For example, in unsupervised learning, it is possible to cluster data with similar features in the input data. Prediction of the evaluation result can be achieved by assigning the evaluation result to the clustering result so as to optimize the clustering result by providing some criteria.
 教師なし学習と教師あり学習との中間的な問題設定として、半教師あり学習と呼ばれるものもある。半教師あり学習は、一部のみ入力と出力とのデータの組が存在し、残部は入力のみのデータである場合の学習である。学習部17は、半教師あり学習により機械学習を実現してもよい。 As an intermediate problem setting between unsupervised learning and supervised learning, there is also what is called semi-supervised learning. Semi-supervised learning is learning where there are only some input and output data pairs and the rest are input-only data. The learning unit 17 may implement machine learning by semi-supervised learning.
 機械学習器15は、複数の加工条件解析器12からデータセットを取得し、加工条件と加工結果との評価結果を学習してもよい。複数の加工条件解析器12の各々は、実施の形態3の加工条件解析器12と同じ機能を有していてもよい。機械学習器15は、同一の現場で使用される複数の加工条件解析器12からデータセットを取得してもよいし、異なる現場の各々で稼動する加工条件解析器12からデータセットを取得してもよい。データセットの取得元の加工条件解析器12が途中で追加されてもよいし、取得元の加工条件解析器12が途中で除去されてもよい。加工条件解析器12とは別に機械学習器が設けられ、当該機械学習器が、ある加工条件解析器12から取得したデータセットにより学習した後、別の加工条件解析器12と接続されて別の加工条件解析器12からデータセットを取得して再学習してもよい。 The machine learning device 15 may acquire data sets from a plurality of processing condition analyzers 12 and learn evaluation results of processing conditions and processing results. Each of the plurality of machining condition analyzers 12 may have the same function as the machining condition analyzer 12 of the third embodiment. The machine learning device 15 may acquire data sets from a plurality of processing condition analyzers 12 used at the same site, or acquire data sets from the processing condition analyzers 12 operating at different sites. good too. The processing condition analyzer 12 from which the data set is acquired may be added in the middle, or the processing condition analyzer 12 from which the data set may be acquired may be removed in the middle. A machine learning device is provided separately from the processing condition analyzer 12, and after the machine learning device learns from a data set acquired from a processing condition analyzer 12, it is connected to another processing condition analyzer 12 to perform another processing. A data set may be acquired from the processing condition analyzer 12 and re-learned.
 データ取得部18は、学習部17の入力として、加工条件又は特徴量抽出部14から出力される特徴量だけでなく、例えば加工対象物Wの板厚を示す情報及び加工対象物Wの材質を示す情報の一方又は双方も入力として取得してもよい。 The data acquisition unit 18 receives, as input to the learning unit 17, not only the processing conditions or the feature amount output from the feature amount extraction unit 14, but also, for example, information indicating the thickness of the workpiece W and the material of the workpiece W. One or both of the indicated information may also be taken as input.
 学習部17で用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する深層学習(Deep Learning)を用いることもでき、学習部17は、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシン、フィッシャー判別法、部分空間法又はマハラノビス空間を用いた判別分析にしたがって機械学習を実行してもよい。 As a learning algorithm used in the learning unit 17, it is possible to use deep learning for learning to extract the feature amount itself, and the learning unit 17 uses other known methods such as genetic programming, functional logic programming, etc. , support vector machines, Fisher's discriminant, subspace methods, or discriminant analysis using Mahalanobis space.
 学習部17で用いられる学習アルゴリズムとして、例えば、決定木、ランダムフォレスト、ロジスティック回帰、k近傍法、部分空間法、CLAFIC法(CLAss-Featuring Information Compression method)、Isolation Forest、LOF(Local Outlier Factor)、ブースティング、AdaBoost、LogitBoost、One-Class SVM(Support Vector Machine)、又はGaussian Mixture Modeが用いられてもよい。 Examples of learning algorithms used in the learning unit 17 include decision trees, random forests, logistic regression, k-nearest neighbor method, subspace method, CLAFIC method (CLAss-Featuring Information Compression method), Isolation Forest, LOF (Local Outlier Factor), Boosting, AdaBoost, LogitBoost, One-Class SVM (Support Vector Machine), or Gaussian Mixture Mode may be used.
 例えば、深層学習又は畳み込みニューラルネットワーク(Convolution Neural Network)のように、画像から特徴量を抽出する学習が行われる場合、特徴量抽出部14は設けられなくてもよい。機械学習器15は加工不良を判定する項目毎に設けられてもよいし、一つの機械学習器15が複数の加工不良を判定する項目に対応していてもよい。強化学習又はベイズ探索の探索アルゴリズムを用いたパラメータの探索が行われてもよい。 For example, when learning to extract feature values from an image is performed, such as deep learning or a convolution neural network, the feature value extraction unit 14 may not be provided. The machine learning device 15 may be provided for each item for determining defective processing, or one machine learning device 15 may correspond to a plurality of items for determining defective processing. A search for the parameters may be performed using a search algorithm of reinforcement learning or Bayesian search.
 実施の形態3に係るレーザ加工装置が光軸調整部4を有することにより従来のレーザ加工機と比較すると加工パラメータが多くなるが、実施の形態3に係るレーザ加工装置は、機械学習を行って加工パラメータを探索することによって加工パラメータを比較的高精度に調整することができる。 Since the laser processing apparatus according to Embodiment 3 has the optical axis adjustment unit 4, the number of processing parameters increases compared to a conventional laser processing machine. By searching for the machining parameters, the machining parameters can be adjusted with relatively high accuracy.
 加工の良否判定は、加工後に作業者によって行われてもよい。図20に示されるように、加工中に加工状態を監視する加工状態監視センサ19が設けられて監視結果が加工結果判定部13に入力されてもよい。図20は、実施の形態3に係る変形例のレーザ加工装置300の構成を示す図である。例えば、加工状態監視センサ19として、加工光を検知する光センサ、加工点の画像をとらえるCMOS(Complementary Metal Oxide Semiconductor)カメラ、又は加工音を検知する音センサが用いられてもよい。光センサの例はフォトダイオードであり、音センサの例はマイクである。 The quality of processing may be judged by the worker after processing. As shown in FIG. 20 , a machining state monitoring sensor 19 may be provided to monitor the machining state during machining, and the monitoring result may be input to the machining result determination unit 13 . FIG. 20 is a diagram showing the configuration of a modified laser processing apparatus 300 according to the third embodiment. For example, as the processing state monitoring sensor 19, an optical sensor that detects processing light, a CMOS (Complementary Metal Oxide Semiconductor) camera that captures an image of a processing point, or a sound sensor that detects processing sound may be used. Examples of light sensors are photodiodes and examples of sound sensors are microphones.
 レーザ加工装置300は、加工中に加工状態を検知することが可能なので加工中の状態変化に応じて加工条件を調整することが可能である。更に言うと、レーザ加工装置300は、加工状態を判定して加工条件を調整することが可能であり、加工不良を抑制する効果を得ることができる。 Since the laser processing apparatus 300 can detect the processing state during processing, it is possible to adjust the processing conditions according to the state change during processing. Furthermore, the laser processing apparatus 300 can determine the processing state and adjust the processing conditions, and can obtain the effect of suppressing defective processing.
 1種類の加工状態監視センサ19が用いられてもよいし、2種類の加工状態監視センサ19が用いられてもよい。加工状態監視センサ19は、加工ヘッド2の内部に配置されてもよいし、加工ヘッド2の外部に配置されてもよい。加工状態監視センサ19が取得した時系列のデータは、特徴量抽出部14に入力されてもよい。 One type of machining state monitoring sensor 19 may be used, or two types of machining state monitoring sensor 19 may be used. The machining state monitoring sensor 19 may be arranged inside the machining head 2 or may be arranged outside the machining head 2 . The time-series data acquired by the machining state monitoring sensor 19 may be input to the feature quantity extraction unit 14 .
 図21は、実施の形態3に係るレーザ加工装置の加工条件解析器12が有する加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部がプロセッサ91によって実現される場合のプロセッサ91を示す図である。つまり、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部の機能は、メモリ92に格納されるプログラムを実行するプロセッサ91によって実現されてもよい。プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図21には、メモリ92も示されている。 FIG. 21 shows that part or all of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning unit 15, and the processing condition change unit 16 of the processing condition analyzer 12 of the laser processing apparatus according to Embodiment 3 are processors. 9 shows a processor 91 as implemented by 91; FIG. That is, some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 may be realized by the processor 91 that executes the program stored in the memory 92. good. The processor 91 is a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor). Memory 92 is also shown in FIG.
 加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部の機能がプロセッサ91によって実現される場合、当該機能は、プロセッサ91と、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせとによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部の機能を実現する。 When some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 are realized by the processor 91, the functions include the processor 91, software, firmware, Alternatively, it is implemented by a combination of software and firmware. Software or firmware is written as a program and stored in memory 92 . The processor 91 reads out and executes the programs stored in the memory 92, thereby implementing some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16. do.
 加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部の機能がプロセッサ91によって実現される場合、実施の形態3に係るレーザ加工装置は、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16によって実行される複数のステップの一部又は全部が結果的に実行されることになるプログラムを格納するためのメモリ92を有する。メモリ92に格納されるプログラムは、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部をコンピュータに実行させるものであるともいえる。 When some or all of the functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 are realized by the processor 91, the laser processing apparatus according to Embodiment 3 performs processing A memory for storing a program in which part or all of a plurality of steps executed by the result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 are executed as a result has 92. It can be said that the program stored in the memory 92 causes the computer to execute part or all of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning unit 15, and the processing condition change unit 16.
 メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性若しくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。 The memory 92 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
 図22は、実施の形態3に係るレーザ加工装置の加工条件解析器12が有する加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部が処理回路93によって実現される場合の処理回路93を示す図である。つまり、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部又は全部は、処理回路93によって実現されてもよい。 FIG. 22 shows that part or all of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning unit 15, and the processing condition change unit 16 of the processing condition analyzer 12 of the laser processing apparatus according to Embodiment 3 are processed. FIG. 9 illustrates processing circuitry 93 as implemented by circuitry 93; That is, part or all of the processing result determination unit 13 , the feature quantity extraction unit 14 , the machine learning device 15 and the processing condition change unit 16 may be realized by the processing circuit 93 .
 処理回路93は、専用のハードウェアである。処理回路93は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の一部は、残部と別個の専用のハードウェアによって実現されてもよい。 The processing circuit 93 is dedicated hardware. The processing circuit 93 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is. A part of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16 may be implemented by dedicated hardware separate from the rest.
 加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、加工結果判定部13、特徴量抽出部14、機械学習器15及び加工条件変更部16の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。 For the plurality of functions of the processing result determination unit 13, the feature amount extraction unit 14, the machine learning device 15, and the processing condition change unit 16, some of the functions are realized by software or firmware, and the rest of the functions are It may be realized by dedicated hardware. Thus, the multiple functions of the processing result determination unit 13, the feature quantity extraction unit 14, the machine learning device 15, and the processing condition change unit 16 can be realized by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1 レーザ発振器、2 加工ヘッド、3 コリメートレンズ、3a 集光径変更部、4 光軸調整部、4a 平面基板、4b 中空回転ステージ、4c 角度調整機構、4d ガルバノスキャナ、5 強度分布調整部、5a 光学部品、5b 光路切替え機構、6 集光光学系、7 加工ノズル、8 制御部、9 光ファイバ、12 加工条件解析器、13 加工結果判定部、14 特徴量抽出部、15 機械学習器、16 加工条件変更部、17 学習部、18 データ取得部、19 加工状態監視センサ、91 プロセッサ、92 メモリ、93 処理回路、100,200,300 レーザ加工装置、L レーザビーム、W 加工対象物。 1 Laser oscillator, 2 Processing head, 3 Collimating lens, 3a Condensing diameter changing part, 4 Optical axis adjusting part, 4a Planar substrate, 4b Hollow rotary stage, 4c Angle adjusting mechanism, 4d Galvano scanner, 5 Intensity distribution adjusting part, 5a Optical component 5b Optical path switching mechanism 6 Condensing optical system 7 Processing nozzle 8 Control unit 9 Optical fiber 12 Processing condition analyzer 13 Processing result determination unit 14 Feature quantity extraction unit 15 Machine learning device 16 Machining condition change unit, 17 learning unit, 18 data acquisition unit, 19 machining state monitoring sensor, 91 processor, 92 memory, 93 processing circuit, 100, 200, 300 laser processing device, L laser beam, W object to be processed.

Claims (9)

  1.  発振器指令に基づいてレーザ光を出力するレーザ発振器と、
     前記レーザ光を集光光学系によって集光して加工対象物の照射位置に照射する加工ヘッドと、
     駆動指令に基づいて前記加工対象物と前記加工ヘッドとの相対位置を変更して前記照射位置を切断方向に移動させる制御部と、
     一つの軸に関して回転対称な強度分布変換特性を有する光学部品を含み前記レーザ光の強度分布を強度分布調整指令に基づいて変更する強度分布調整部と、
     前記加工対象物の材質、前記加工対象物の板厚及び前記切断方向の一部又は全部に対応して前記強度分布調整部に入射する前記レーザ光の入射位置又は入射角度を変更する光軸調整部とを備え、
     前記制御部は、切断加工に関する数値パラメータである加工パラメータに基づいて前記発振器指令、前記駆動指令、前記強度分布調整指令、前記材質、前記板厚及び前記切断方向の一部又は全部に対応して前記光軸調整部を制御するための光軸調整指令を決定する
     ことを特徴とするレーザ加工装置。
    a laser oscillator that outputs laser light based on an oscillator command;
    a processing head for condensing the laser beam with a condensing optical system and irradiating the irradiation position of the object to be processed;
    a control unit that changes the relative position between the workpiece and the processing head based on a drive command to move the irradiation position in the cutting direction;
    an intensity distribution adjustment unit that includes an optical component having an intensity distribution conversion characteristic that is rotationally symmetric about one axis and that changes the intensity distribution of the laser beam based on an intensity distribution adjustment command;
    Optical axis adjustment for changing the incident position or the incident angle of the laser beam incident on the intensity distribution adjustment unit corresponding to a part or all of the material of the workpiece, the plate thickness of the workpiece, and the cutting direction. and
    The control unit responds to some or all of the oscillator command, the drive command, the intensity distribution adjustment command, the material, the plate thickness, and the cutting direction based on processing parameters, which are numerical parameters related to cutting. A laser processing apparatus that determines an optical axis adjustment command for controlling the optical axis adjustment unit.
  2.  前記光軸調整部は、前記レーザ光が前記強度分布調整部に入射する位置と角度とを調整するガルバノスキャナ又はマイクロエレクトロメカニカルシステムミラーである
     ことを特徴とする請求項1に記載のレーザ加工装置。
    2. The laser processing apparatus according to claim 1, wherein the optical axis adjustment unit is a galvanometer scanner or a microelectromechanical system mirror that adjusts the position and angle at which the laser light enters the intensity distribution adjustment unit. .
  3.  前記光軸調整部は、
      前記レーザ光が透過する平面基板と、
      前記平面基板と前記レーザ光の光軸との相対角度を変更する機構と、
      前記平面基板を、前記材質、前記板厚及び前記切断方向の一部又は全部に対応して前記光軸を中心に回転させる回転機構とを有する
     ことを特徴とする請求項1に記載のレーザ加工装置。
    The optical axis adjusting section is
    a planar substrate through which the laser beam is transmitted;
    a mechanism for changing the relative angle between the planar substrate and the optical axis of the laser beam;
    2. The laser processing according to claim 1, further comprising a rotating mechanism that rotates the planar substrate about the optical axis corresponding to part or all of the material, the plate thickness, and the cutting direction. Device.
  4.  前記強度分布調整部は、前記光学部品を前記レーザ光の光軸に挿入する又は前記光軸から取り除く動作を行う光路切替え機構を更に含む
     ことを特徴とする請求項1から3のいずれか1項に記載のレーザ加工装置。
    4. The intensity distribution adjusting unit further includes an optical path switching mechanism that inserts or removes the optical component from the optical axis of the laser beam. The laser processing device according to .
  5.  前記記光学部品は、アキシコンレンズである
     ことを特徴とする請求項1から4のいずれか1項に記載のレーザ加工装置。
    The laser processing apparatus according to any one of Claims 1 to 4, wherein the optical component is an axicon lens.
  6.  前記光学部品は、球面収差を発生させ、最小錯乱円と近軸焦点との関係を変更することが可能である複数のレンズが組み合わされた光学部品である
     ことを特徴とする請求項1から4のいずれか1項に記載のレーザ加工装置。
    5. The optical component is an optical component combining a plurality of lenses capable of generating spherical aberration and changing the relationship between the circle of least confusion and the paraxial focus. The laser processing apparatus according to any one of 1.
  7.  前記加工ヘッドは、前記集光光学系に入射する前記レーザ光のビーム径を変更することによって前記加工対象物に照射される前記レーザ光の集光径を変更する集光径変更部を有する
     ことを特徴とする請求項1から6のいずれか1項に記載のレーザ加工装置。
    The processing head has a condensing diameter changing section that changes a condensing diameter of the laser beam irradiated onto the object to be processed by changing a beam diameter of the laser beam incident on the condensing optical system. The laser processing apparatus according to any one of claims 1 to 6, characterized by:
  8.  前記切断加工の加工条件、前記発振器指令、前記駆動指令、前記強度分布調整指令、及び前記加工パラメータを含む状態量を取得するデータ取得部と、前記状態量に基づいて、前記加工条件のもとで良い加工を得る加工条件を学習する学習部とを有する機械学習器
     を更に備えることを特徴とする請求項1から7のいずれか1項に記載のレーザ加工装置。
    a data acquisition unit for acquiring state quantities including the processing conditions for the cutting process, the oscillator command, the drive command, the intensity distribution adjustment command, and the processing parameters; 8. The laser processing apparatus according to any one of claims 1 to 7, further comprising a machine learning device that has a learning unit that learns processing conditions for obtaining good processing.
  9.  発振器指令に基づいてレーザ光を出力するレーザ発振器と、前記レーザ光を集光光学系によって集光して加工対象物の照射位置に照射する加工ヘッドとを有するレーザ加工装置を用いるレーザ加工方法であって、
     駆動指令に基づいて前記加工対象物と前記加工ヘッドとの相対位置を変更して前記照射位置を切断方向に移動させるステップと、
     一つの軸に関して回転対称な強度分布変換特性を有する光学部品を用いて前記レーザ光の強度分布を強度分布調整指令に基づいて変更するステップと、
     前記加工対象物の材質、前記加工対象物の板厚及び前記切断方向の一部又は全部に対応して、前記光学部品を含むと共に前記レーザ光の強度分布を変更する強度分布調整部に入射する前記レーザ光の入射位置又は入射角度を変更するステップと、
     切断加工に関する数値パラメータである加工パラメータに基づいて前記発振器指令、前記駆動指令、前記強度分布調整指令、前記材質、前記板厚及び前記切断方向の一部又は全部に対応して前記強度分布調整部に入射する前記レーザ光の入射位置又は入射角度を変更する光軸調整部を制御するための光軸調整指令を決定するステップと
     を含むことを特徴とするレーザ加工方法。
    A laser processing method using a laser processing apparatus having a laser oscillator for outputting a laser beam based on an oscillator command, and a processing head for condensing the laser beam with a condensing optical system and irradiating it onto an irradiation position of an object to be processed. There is
    moving the irradiation position in the cutting direction by changing the relative position between the workpiece and the processing head based on a drive command;
    changing the intensity distribution of the laser light based on an intensity distribution adjustment command using an optical component having an intensity distribution conversion characteristic that is rotationally symmetric about one axis;
    The light enters an intensity distribution adjustment unit that includes the optical component and changes the intensity distribution of the laser beam corresponding to the material of the object to be processed, the plate thickness of the object to be processed, and part or all of the cutting direction. changing the incident position or incident angle of the laser light;
    The strength distribution adjustment unit corresponding to part or all of the oscillator command, the drive command, the strength distribution adjustment command, the material, the plate thickness, and the cutting direction based on processing parameters, which are numerical parameters related to cutting. determining an optical axis adjustment command for controlling an optical axis adjusting unit that changes the incident position or incident angle of the laser beam incident on the laser beam.
PCT/JP2021/026743 2021-07-16 2021-07-16 Laser processing device and laser processing method WO2023286265A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026743 WO2023286265A1 (en) 2021-07-16 2021-07-16 Laser processing device and laser processing method
JP2023534564A JPWO2023286265A1 (en) 2021-07-16 2021-07-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026743 WO2023286265A1 (en) 2021-07-16 2021-07-16 Laser processing device and laser processing method

Publications (1)

Publication Number Publication Date
WO2023286265A1 true WO2023286265A1 (en) 2023-01-19

Family

ID=84918813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026743 WO2023286265A1 (en) 2021-07-16 2021-07-16 Laser processing device and laser processing method

Country Status (2)

Country Link
JP (1) JPWO2023286265A1 (en)
WO (1) WO2023286265A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (en) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp Optical transmitter device and light irradiation method
WO2012164663A1 (en) * 2011-05-30 2012-12-06 三菱重工業株式会社 Laser working head, laser working device, optical system for laser working device, laser working method, and laser focusing method
JP2016535675A (en) * 2013-10-17 2016-11-17 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Laser micromachining method and apparatus
WO2018012379A1 (en) * 2016-07-14 2018-01-18 三菱電機株式会社 Laser machining device
JP2020073284A (en) * 2019-10-07 2020-05-14 株式会社アマダホールディングス Laser cutting processing method of plated steel sheet
JP2020151725A (en) * 2019-03-18 2020-09-24 ファナック株式会社 Machine learning device, control device, laser beam machining machine and machine learning method
JP2020196036A (en) * 2019-06-05 2020-12-10 株式会社アマダ Processing program creation device and scattering direction determination method for molten metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (en) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp Optical transmitter device and light irradiation method
WO2012164663A1 (en) * 2011-05-30 2012-12-06 三菱重工業株式会社 Laser working head, laser working device, optical system for laser working device, laser working method, and laser focusing method
JP2016535675A (en) * 2013-10-17 2016-11-17 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Laser micromachining method and apparatus
WO2018012379A1 (en) * 2016-07-14 2018-01-18 三菱電機株式会社 Laser machining device
JP2020151725A (en) * 2019-03-18 2020-09-24 ファナック株式会社 Machine learning device, control device, laser beam machining machine and machine learning method
JP2020196036A (en) * 2019-06-05 2020-12-10 株式会社アマダ Processing program creation device and scattering direction determination method for molten metal
JP2020073284A (en) * 2019-10-07 2020-05-14 株式会社アマダホールディングス Laser cutting processing method of plated steel sheet

Also Published As

Publication number Publication date
JPWO2023286265A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP4386137B2 (en) Laser processing apparatus and laser processing method
US9346126B2 (en) Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
RU2750313C2 (en) Method for laser processing of metal material with a high level of dynamic control of the axes of movement of the laser beam along a pre-selected processing path, as well as a machine and a computer program for implementing this method
CN101784364B (en) Method for material removal and device for carrying out said method
WO2018047823A1 (en) Laser machining device
JP2007253203A (en) Optical apparatus for laser beam machining
JP6159428B2 (en) Laser processing system and method
JP6583771B2 (en) 3D modeling equipment
JP6831302B2 (en) Laser processed product manufacturing method and battery manufacturing method
KR102375426B1 (en) Laser processing apparatus and control method thereof
JP2009178720A (en) Laser beam machining apparatus
US20060000816A1 (en) System for and method of zoom processing
WO2023286265A1 (en) Laser processing device and laser processing method
US20230321750A1 (en) Laser machining apparatus
JP6895621B2 (en) Laser processing head and laser processing equipment
JP2000084689A (en) Laser beam machining device
WO2023170201A1 (en) Method and apparatus for laser cutting
JP3800795B2 (en) Laser processing condition automatic setting method and laser processing condition automatic setting device
CN107866639B (en) Laser processing device and laser processing method
US20170297146A1 (en) Piercing processing method and laser processing machine
JP2005324248A (en) Laser beam machining method and laser beam machining equipment
JP2001246489A (en) Laser material processing device
JP7396851B2 (en) Control device, control system, and program
US11697176B2 (en) Laser machining apparatus and laser machining method
KR102148012B1 (en) Apparatus for drilling hole using laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534564

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE