WO2023286227A1 - Method for manufacturing hollow engine valve - Google Patents

Method for manufacturing hollow engine valve Download PDF

Info

Publication number
WO2023286227A1
WO2023286227A1 PCT/JP2021/026549 JP2021026549W WO2023286227A1 WO 2023286227 A1 WO2023286227 A1 WO 2023286227A1 JP 2021026549 W JP2021026549 W JP 2021026549W WO 2023286227 A1 WO2023286227 A1 WO 2023286227A1
Authority
WO
WIPO (PCT)
Prior art keywords
umbrella
semi
die
diameter
finished product
Prior art date
Application number
PCT/JP2021/026549
Other languages
French (fr)
Japanese (ja)
Inventor
晃二 久島
徹弥 小関
大雅 佐々木
Original Assignee
フジオーゼックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジオーゼックス株式会社 filed Critical フジオーゼックス株式会社
Priority to PCT/JP2021/026549 priority Critical patent/WO2023286227A1/en
Priority to JP2023534531A priority patent/JPWO2023286227A1/ja
Publication of WO2023286227A1 publication Critical patent/WO2023286227A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/24Safety means or accessories, not provided for in preceding sub- groups of this group

Definitions

  • the present invention relates to a method for manufacturing hollow engine valves.
  • engine valves which allow intake gas to flow into the combustion chamber of engines such as automobiles and ships and discharge exhaust gas, have a hollow inside to contain a coolant such as metallic sodium to suppress temperature rise.
  • a hollow engine valve hereinafter also simply referred to as an engine valve
  • Patent Document 1 a hollow engine valve provided with a hollow portion
  • FIG. 10 there is a method of manufacturing such an engine valve in which a solid round bar 1 as a raw material is molded into an intermediate 2 or an intermediate 4 to form a semi-finished product 6.
  • the semi-finished product 6 has an umbrella-shaped portion 5 with an enlarged diameter on one end side and a cylindrical portion 8 extending in the axial direction and having a hollow hole 7 opened at the other end side.
  • the intermediate body 2 is provided with the umbrella-shaped portion 5 by umbrella molding after the hollow hole 3 is provided by drilling, and the intermediate body 4 is provided with the umbrella-shaped portion 5 by umbrella molding first.
  • hollow holes 7 are provided by drilling.
  • JP 2017-190759 A Japanese Patent No. 4390291
  • the conventional method is a solid circle. If the shaft diameters of the rod 1 and the semi-finished product 6 were not approximately the same, machining could not be performed. Therefore, it was necessary to set the shaft diameter of the solid round bar 1 to be the same as that of the semi-finished product 6 (for example, ⁇ a) in advance. . Therefore, when there are a plurality of engine valves with different shaft diameter specifications in the production plan, it is necessary to prepare solid round bars 1 according to the number of specifications, which complicates production management.
  • the present invention has been made in view of the above problems, and its object is to provide a method for manufacturing hollow engine valves that facilitates production management.
  • a first aspect of the present invention is a hollow engine comprising a shaft portion, an umbrella portion expanding in diameter like an umbrella at a proximal end of the shaft portion, and a hollow portion provided at least inside the shaft portion.
  • a method for manufacturing a valve comprising: a heat treatment step in which a solid round bar made of special steel is heated to a temperature higher than a recrystallization temperature; An extruding step of forming an intermediate body by reducing the diameter of the trunk portion excluding it, a umbrella forming step of expanding the diameter of the relatively expanded one end side of the intermediate body into an umbrella shape, and the umbrella forming step.
  • the configuration (1) above it is possible to form an intermediate body having a trunk portion with a different outer diameter from a solid round bar in the squeezing process.
  • the outer diameter of the intermediate body can be adjusted accordingly, so the outer diameter of the solid round bar prepared in advance can be unified. Therefore, the production control cost can be reduced, and the degree of freedom in designing the hollow engine valve can be increased without being restricted by the outer diameter of the solid round bar.
  • the structures (crystal grains) of the body and umbrella of the intermediate and semi-finished product are controlled to be small. can do.
  • the cold workability in the cold forging process is improved, the surface of the workpiece after the cold forging process becomes smooth, and the quality can be improved.
  • FIG. 3 is a schematic diagram showing a molding process up to a semi-finished product of a conventional hollow engine valve.
  • the tip end side of the shaft portion 111 (shaft end member 120 side) is upward.
  • the base end side of the shaft portion 111 (head portion 112 side) will be described below.
  • a hollow engine valve (hereinafter simply referred to as an engine valve) 100 is a valve body provided in a cylinder head of an engine (not shown) of an automobile or the like and arranged inside an intake port and an exhaust port communicating with a combustion chamber. When the engine is actually running, it moves vertically to open and close the intake port and the exhaust port.
  • the engine valve 100 enables intake gas to be supplied from the intake port into the combustion chamber by opening the intake port, and enables exhaust gas in the combustion chamber to be discharged from the exhaust port to the outside of the combustion chamber by opening the exhaust port.
  • the engine valve 100 includes a valve head portion 110 that is a body portion and a shaft end member 120 that is a lid portion.
  • the valve head portion 110 includes a round bar-shaped shaft portion 111 and a head portion 112 that is continuously provided at the lower end portion of the shaft portion 111 and expands concentrically downward in an umbrella shape.
  • a hollow portion 115 with an upper opening is provided from the shaft portion 111 to the head portion 112.
  • the hollow portion 115 has a bottom, the hollow portion 115 of the shaft portion 111 has a constant inner diameter, and the hollow portion 115 of the head portion 112 expands downward (bottom portion).
  • the valve head portion 110 includes a getter material such as titanium in the hollow portion 115 and a coolant such as metallic sodium (illustrated) that suppresses the temperature rise in the hollow portion 115 in a coolant enclosing process performed after molding the valve head portion 110 .
  • a getter material such as titanium in the hollow portion 115
  • a coolant such as metallic sodium (illustrated) that suppresses the temperature rise in the hollow portion 115 in a coolant enclosing process performed after molding the valve head portion 110 .
  • the shaft end member 120 is joined (for example, by friction welding) to the upper end portion of the shaft portion 111 to close the opening of the shaft portion 111 .
  • the hollow portion 115 is sealed, and the coolant and the like are enclosed in the hollow portion 115 .
  • the shaft end member 120 is integrated (unseparable) with the shaft portion 111 to form the shaft portion 111, and the engine valve 100 is completed.
  • all or part of the engine valve 100 may be heat-insulated with a metal having low thermal conductivity such as ceramic. may be applied, or surface treatment such as nitriding or polishing may be applied.
  • the solid round bar 10 the first intermediate body 20, the second intermediate body 30, the semi-finished product 200, and the valve head portion 110, which are the states before machining of the engine valve 100 (hereinafter, these are simply referred to as workpieces). ) will be explained.
  • the solid round bar 10 shown in FIG. 2(a) is a cylindrical material made of special steel and has a constant outer diameter ( ⁇ A).
  • ⁇ A constant outer diameter
  • a round bar 10 should be prepared.
  • the first intermediate body 20 shown in FIG. 2(b) includes a body portion 21 having an outer diameter ( ⁇ B) smaller than the outer diameter ( ⁇ A) of the solid round bar 10, and an outer diameter ( ⁇ A) of the solid round bar 10 at the base end.
  • a head portion 22 having an outer diameter equal to or slightly larger than the diameter is provided.
  • the second intermediate body 30 shown in FIG. 2(c) includes a body portion 31 having an outer diameter ( ⁇ C) slightly larger than the outer diameter ( ⁇ B) of the body portion 21 of the first intermediate body 20, and and an umbrella-like portion 32 concentrically expanding in diameter toward the end.
  • a semi-finished product 200 shown in FIG. 2D includes a cylindrical portion 201 having a bottomed cylindrical hole 205 with an open tip, and an umbrella-like portion 32 of the second intermediate body 30 having the same shape as the umbrella-like portion 32 of the second intermediate body 30 at the base end.
  • a section 202 is provided. Note that the outer diameter of the tubular portion 201 in the semi-finished product 200 and the outer diameter of the trunk portion 31 in the second intermediate 30 are equal ( ⁇ C).
  • the valve head portion 110 shown in FIG. 2E includes a shaft portion 111 having an outer diameter ( ⁇ D) smaller than the outer diameter ( ⁇ C) of a cylindrical portion 201 of the semi-finished product 200 and a head portion 202 at the base end. and a hollow portion 115 formed from the shaft portion 111 to the umbrella portion 112 and having an inner diameter smaller than the inner diameter of the cylindrical hole 205 in the semi-finished product 200 .
  • valve head portion 110 is formed from the solid round bar 10 by means of a forging device 300 shown in FIG. 3, a boring device (not shown), and a necking device 400 shown in FIGS.
  • the forging apparatus 300 heats the solid round bar 10 heat-treated to the recrystallization temperature or higher to form the second intermediate 30 by subjecting the solid round bar 10 to extrusion processing and umbrella forming, which will be described later. Forging is performed.
  • the one-shot forging apparatus 300 includes, as an upper die, a punch holder 311 fixed to a slide (not shown) that reciprocates vertically by a mechanical press or the like, and a punch holder 311 that protrudes downward from the lower surface of the punch holder 311. It has a first punch 312 used in the squeezing process described later and a second punch 313 used in umbrella forming described later.
  • the one-shot forging device 300 includes, as lower molds, a pressing die 322 provided with a first forming hole 321 used in the pressing process described later, and a second forming hole used in umbrella forming described later. 323 is provided, and a die holder 325 to which the expression die 322 and the umbrella die 324 are fixed.
  • the first punch 312 has an outer diameter slightly smaller than the inner diameter of the first forming hole 321 and has a long columnar shape to the extent that the solid round bar 10 can be pushed deep into the first forming hole 321 .
  • the second punch 313 has an outer diameter that is at least larger than that of a later-described umbrella forming portion 323a of the second forming hole 323, and has a short columnar shape.
  • the first forming hole 321 includes a guide portion 321a that expands concentrically upward in diameter into a mortar shape, and an insertion portion 321b that is connected to the lower portion of the guide portion 321a and has an inner diameter larger than the outer diameter of the solid round bar 10. and a squeezed portion 321d having an inner diameter ( ⁇ B) smaller than the outer diameter ( ⁇ A) of the solid round bar 10, which is connected to the lower portion of the insertion portion 321b via a tapered portion 321c whose diameter decreases downward. .
  • the second forming hole 323 is connected to a canopy forming portion 323a that expands concentrically upward in a substantially saucer-like diameter, and to the lower portion of the cap forming portion 323a. and a barrel forming portion 323b with a large inner diameter ( ⁇ C).
  • the single forging device 300 is a solid round bar transported into the first forming hole 321 of the squeezing die 322 by a work transport device (not shown) such as a known picking robot capable of picking and transporting the work. 10 and the first intermediate 20 conveyed into the second forming hole 323 of the canopy forming die 324 are simultaneously pressed from above by the first punch 312 and the second punch 313, and are used for squeezing. The first intermediate 20 and the second intermediate 30 are simultaneously molded in the die 322 and the umbrella-forming die 324, respectively. That is, the single-shot forging device 300 simultaneously performs squeezing and umbrella forming.
  • the first intermediate body 20 and the second intermediate body 30 molded in this manner are provided with a work discharging device (illustrated as a ) is discharged from the first and second forming holes 321 and 323 .
  • the work conveying device conveys the first preform 20 discharged from the first forming hole 321 to the second forming hole 323 of the umbrella forming die 324, and the second preform 30 discharged from the second forming hole 323. It is conveyed to a drilling device (not shown) for drilling in the next step.
  • the drilling device includes a jig (not shown) capable of fixing the second intermediate body 30, and a bottomed hole (cylindrical shape) extending along the axis from the tip of the trunk portion 31 of the second intermediate body 30 fixed by the jig. 201) and a drill (not shown) capable of drilling.
  • the drilling device forms a semi-finished product 200 by drilling the second intermediate 30 with a drill, and the work conveying device is a necking device for cold forging the semi-finished product 200 in the next process. Transport to 400.
  • the necking device 400 thins the shaft by drawing the semi-finished product 200 in a plurality of steps at room temperature, and performs cold forging to form the valve head portion 110 .
  • the necking device 400 performs nine drawing steps #1 to #9 on the semi-finished product 200 using three drawing devices (first drawing device 400A, second drawing device 400B, and third drawing device 400B).
  • the 3-squeeze device 400C enables three processes to be processed simultaneously.
  • the necking device 400 is provided between each of the first to third drawing devices 400A to 400C, in other words, every three processes, in order to reduce the actual temperature of the work that has risen due to the drawing.
  • a carrier device 460A and a second cooling carrier device 460B (cooling process) are provided.
  • the semi-finished product 200 will be explained as semi-finished products 210 to 280 according to the outer diameter of the tubular portion 201 which changes in the drawing process.
  • the first drawing device 400A includes a first die unit 410A having a plurality of dies for drawing the semifinished product 200 in a plurality of stages, and a first die unit 410A.
  • a first height adjusting device 420A capable of adjusting the height of the semifinished products 200 to 220 and pressing the semifinished products 200 to 220 into the first to third dies d1 to d3 to form the semifinished products 210 to 230.
  • a pressing device 440A, a first conveying device 450A capable of conveying the semi-finished products 200 to 230, and a lubricating oil (illustrated ) to the die of the first die unit 410A.
  • the second drawing device 400B has a plurality of dies for drawing the semifinished product 230 conveyed from the first conveying device 450A in a plurality of stages.
  • 260 a second conveying device 450B capable of conveying semi-finished products 230 to 260, and connected to the second conveying device 450B to supply lubricating oil to the die of the second die unit 410B. and a second lubricating oil adding device 470B that can be added.
  • the third drawing device 400C has a plurality of dies for drawing the semi-finished product 260 conveyed from the second conveying device 450B in a plurality of stages.
  • 270, 280 and the valve head portion 110 a third conveying device 450C capable of conveying the semi-finished products 260 to 280 and the valve head portion 110, and the third conveying device 450C.
  • a third lubricating oil adding device 470C capable of adding lubricating oil (not shown) to the die of the third die unit 410C for reducing friction between the work and the die during drawing.
  • the first die unit 410A includes first to third dies d1 to d3 (hereinafter simply referred to as dies d1 to d3) and a die holder D1 that supports the dies d1 to d3.
  • the second die unit 410B includes fourth to sixth dies d4 to d6 (hereinafter simply referred to as dies d4 to d6) and a die holder D2 that supports the dies d4 to d6.
  • the third die unit 410C includes seventh to ninth dies d7 to d9 (hereinafter simply referred to as dies d7 to d9) and a die holder D3 that supports the dies d7 to d9.
  • the first to ninth dies d1 to d9 have cylindrical hole-shaped forming holes h1 to h9 and enlarged diameter portions w1 to w9 connected to the upper portions of the forming holes h1 to h9 and expanding upward in a mortar shape. set each.
  • the inner diameter ⁇ is set in each of the forming holes h1 to h9 (hn) of the dies d1 to d9 (dn), and the enlarged diameter portions w1 to w9 (wn) are: (the angle of the slope (inclination) plane when the forming hole hn in the die dn shown in the upper column of FIG. 8 is used as the reference plane) and the depth ⁇ (the upper end of the die dn shown in the upper column of FIG. 8). from the part to the lower end where the gradient (inclination) of the enlarged diameter part wn disappears) is set.
  • the die d1 has a forming hole h1 with an inner diameter ⁇ 1 and an enlarged diameter portion w1 with an inclination angle ⁇ 2 and a depth ⁇ 3.
  • the die d2 has a forming hole h2 with an inner diameter ⁇ 2 and an enlarged diameter portion w2 with an inclination angle ⁇ 2 and a depth ⁇ 3.
  • the die d3 has a forming hole h3 with an inner diameter ⁇ 3 and an enlarged diameter portion w3 with an inclination angle ⁇ 2 and a depth ⁇ 3.
  • the die d4 has a forming hole h4 with an inner diameter ⁇ 4 and an enlarged diameter portion w4 with an inclination angle ⁇ 3 and a depth ⁇ 3.
  • the die d5 has a forming hole h5 with an inner diameter ⁇ 5 and an enlarged diameter portion w5 with an inclination angle ⁇ 3 and a depth ⁇ 3.
  • the die d6 has a forming hole h6 with an inner diameter of ⁇ 6 and an enlarged diameter portion w6 with an inclination angle of ⁇ 4 and a depth of ⁇ 3.
  • the die d7 has a forming hole h7 with an inner diameter ⁇ 7 and an enlarged diameter portion w7 with an inclination angle ⁇ 4 and a depth ⁇ 3.
  • the die d8 has a forming hole h8 with an inner diameter of ⁇ 8 and an enlarged diameter portion w8 with an inclination angle of ⁇ 5 and a depth of ⁇ 3.
  • the die d9 has a forming hole h9 with an inner diameter ⁇ 9 and an enlarged diameter portion w9 with an inclination angle ⁇ 6 and a depth ⁇ 3.
  • the relationship of the inner diameters ⁇ of the molding holes h1 to h9 is ⁇ 1> ⁇ 2> ⁇ 3> ⁇ 4> ⁇ 5> ⁇ 6> ⁇ 7> ⁇ 8> ⁇ 9. That is, the diameters of the forming holes h1 to h9 of the dies d1 to d9 are reduced in later steps.
  • the relationship of the gradient angles ⁇ of the enlarged diameter portions w1 to w9 is ⁇ 2> ⁇ 3> ⁇ 4> ⁇ 5> ⁇ 6. That is, the enlarged diameter portions w1 to w9 of the dies d1 to d9 become steeper in later steps. Further, all of the enlarged diameter portions w1 to w9 have a depth of ⁇ 3.
  • the desired shape of the valve head portion 110 can be formed.
  • the first to third height adjustment devices 420A to 420C include a support plate 421 that supports the first to third die units 410A to 410C from below, and the support plate 421 moves up and down.
  • a driving means 422 comprising a hydraulic, pneumatic, electric cylinder, or the like is provided.
  • the first to third height adjusting devices 420A to 420C are connected to the die-side control section 480, respectively, and the heights of the first to third die units 410A to 410C can be adjusted under the control of the die-side control section 480. ing.
  • the first height adjusting device 420A can adjust the height of the dies d1 to d3, and the second height adjusting device 420B can adjust the height of the dies d4 to d6.
  • the third height adjusting device 420C can adjust the height of the dies d7 to d9.
  • the heights of the dies d1 to d9 may be adjusted by attaching and detaching spacers such as plates without using the driving means 422. FIG.
  • the first to third pressing devices 440A to 440C include a slide (not shown) that reciprocates vertically by a mechanical press such as a crank mechanism, and a punch fixed to the slide.
  • a holder 441 and a plurality of (for example, three) first to third press conveying units 442a to 442c are arranged on the bottom surface of the punch holder 441 along the arrangement of the dies d1 to d9.
  • the first pressing and conveying portion 442a is arranged on the left side in FIGS.
  • the portion 442c is also arranged on the right side.
  • the first to third pressure conveying units 442a to 442c are conveyed by first to third conveying devices 450A to 450C described later (only the first conveying device 450A is shown in FIG. 4).
  • a hook-shaped claw portion 446 capable of locking and lifting the umbrella-shaped portion 202 of the upside-down workpiece as shown in FIG. is pushed into the molding holes h1 to h9 of the dies d1 to d9 by moving downward to press and mold.
  • the first to third pressure transfer units 442a to 442c of the first to third pressure devices 440A to 440C receive and receive a plurality of (for example, three) works from the first to third transfer devices 450A to 450C described later.
  • the workpieces are respectively pushed into the forming holes h1 to h9 of the dies d1 to d9, pressed, lifted, and handed over to the first to third conveying devices 450A to 450C.
  • the first to third pressing devices 440A to 440C only perform vertical reciprocating motion while holding three workpieces respectively, (1) pushing the three workpieces into the molding holes h1 to h9, and ( 2) Pressing and molding, and (3) three molded workpieces can be pulled out from the molding holes h1 to h9. can increase
  • the first to third pressing devices 440A to 440C are connected to the work-side control unit 490, and the pressing speed and pressure applied to the work by the first to third pressing and conveying units 442a to 442c are controlled by Each of the first to third pressing devices 440A to 440C can be adjusted.
  • the first to third conveying devices 450A to 450C have a claw portion 451 having a pair of claws capable of pinching the cylindrical portion 201 of the work as a mechanism for moving the work. , a base 453 having a claw driving means (not shown) for opening and closing the claw portion 451, and a power source such as a motor capable of moving the base 453 in the advancing direction (horizontal direction) and the vertical direction (vertical direction) of the process.
  • a drive means 454 comprising a connected rack and pinion mechanism or the like is provided.
  • first to third conveying devices 450A to 450C are connected to first to third lubricating oil adding devices 470A to 470C, respectively, as part of a mechanism for adding lubricating oil.
  • a plurality of downward nozzles 474 capable of leading out lubricating oil downward are arranged at regular intervals (for example, between a pair of claws 451 except for the rightmost claw 451 in FIGS. 4 to 6). ).
  • first to third conveying devices 450A to 450C cooperate with the first to third lubricating oil adding devices 470A to 470C capable of storing and discharging lubricating oil (not shown), respectively, and the first to third die units Lubricating oil can be added to each of the dies 410A to 410C.
  • the first to third lubricating oil adding devices 470A to 470C include a storage tank 471 that can temporarily store lubricating oil, a supply means 472 such as a compressor that can output the lubricating oil in the storage tank 471 to the outside, and a storage It has a pipe 473 that connects the tank 471 and a plurality of nozzles 474 arranged on the base 453 . Although not shown in the drawing, the pipe 473 is connected to all the nozzles 474, and is arranged in a state in which it is bent enough to allow horizontal movement of the first to third conveying devices 450A to 450C.
  • the first to third lubricating oil adding devices 470A to 470C When the lubricating oil can be added to h1 to h9, the supply means 472 is operated to add the lubricating oil from the nozzle 474 through the pipe 473 to each of the dies immediately below. As shown in FIG. 7, the lubricating oil supply device 470 is connected to a work-side control section 490, and the work-side control section 490 controls the addition.
  • the first to third lubricating oil addition devices 470A to 470C control the operation timing and operation time of the supply means 472 by setting the timer 490a (see FIG. 7) provided in the work side control unit 490.
  • the timing of adding the lubricant to the forming holes h1 to h9 of the first to ninth dies d1 to d9 (for example, adding every N cycles (forging N times)) and the amount of lubricant to be added can be set to the first
  • Each of the to third lubricating oil adding devices 470A to 470C can be adjusted.
  • first to third lubricating oil adding devices 470A to 470C are incorporated in the bases 453 of the first to third conveying devices 450A to 450C, respectively, and integrated with the first to third conveying devices 450A to 450C. good too.
  • the first to third conveying devices 450A to 450C transport a plurality of workpieces that have been lifted after being molded by the first to third pressing conveying units 442a to 442c of the first to third pressing devices 440A to 440C. It is received and slid in the direction of the next process (right direction in FIGS. 4 to 6).
  • the first to third conveying devices 450A to 450C transfer the workpieces received from the first and second pressure conveying units 442a and 442b to the second and third pressure conveying units 442b and 442c, respectively, and the third pressure conveying units
  • the work received from the section 442c is delivered to the first cooling transfer device 460A, the second cooling transfer device 460B, or the next process (for example, coolant sealing process), which will be described later.
  • the first conveying device 450A receives the work conveyed from the previous drilling process and transfers it to the first pressing conveying section 442a of the first pressing device 440A.
  • the second conveying device 450B receives the work conveyed from the first cooling conveying device 460A, which will be described later, and delivers it to the first pressing conveying section 442a of the second pressing device 440B.
  • the third conveying device 450C receives a work conveyed from a second cooling conveying device 460B, which will be described later, and delivers the work to the first pressing conveying section 442a of the third pressing device 440C.
  • the first to third conveying devices 450A to 450C are capable of simultaneously conveying (receiving and handing over) four works.
  • first and second cooling transfer devices 460A and 460B include a claw portion 461 having the same shape as the claw portion 446 of the pressure conveying portion 442, and a claw portion 461 that can be opened and closed.
  • a driving means 462 is provided which allows vertical and horizontal movement of the claw 461 itself.
  • the first cooling transfer device 460A lifts the semi-finished product 230 that has been transferred by the first transfer device 450A after the drawing process by the first drawing device 400A is completed.
  • the product 230 is cooled, and after a certain period of time has passed, the semi-finished product 230 is transferred to the second expansion device 400B.
  • the second cooling and conveying device 460B lifts the semi-finished product 260 that has been conveyed by the second conveying device 450B after the drawing process by the second drawing device 400B is completed.
  • the product 260 is cooled, and after a certain period of time has passed, the semi-finished product 260 is transferred to the third expansion device 400C.
  • the first and second cooling transfer devices 460A and 460B are connected to the work-side control unit 490, and their waiting times can be adjusted.
  • a blower or the like may be used for rapid cooling.
  • the necking device 400 includes a die-side control unit 480 that controls the operations of the first to third height adjustment devices 420A to 420C, and the first to third expansion devices 400A to 400C.
  • Third pressing devices 440A to 440C, first to third conveying devices 450A to 450C, first and second cooling and conveying devices 460A and 460B, and first to third lubricating oil adding devices 470A to 470C work for controlling the operation and a side control unit 490 .
  • first conveying device 450A uses the semi-finished product 200 conveyed from the previous drilling process and the dies d1 and d2.
  • the molded semi-finished products 210 and 220 are delivered to the first to third pressing conveying parts 442a to 442c of the first pressing device 440A, respectively, and the semi-finished product 230 molded by the die d3 is shown in FIGS. 4 and 5 ( It is delivered to the first cooling transfer device 460A where cooling processing is performed in II).
  • the first to third pressing and conveying portions 442a to 442c of the first pressing device 440A push the semi-finished products 200 to 220 received from the first conveying device 450A into the forming holes h1 to h3 of the dies d1 to d3, respectively, and press them. Then, semifinished products 210 to 230 are molded at once. After that, the first to third pressing conveying units 442a to 442c lift the molded semifinished products 210 to 230 and deliver them to the first conveying device 450A. By repeating this, the cylindrical portion 201 of the semi-finished product 200 conveyed from the previous drilling process can be thinned in three steps ( ⁇ 1 ⁇ 2 ⁇ 3) to form the semi-finished product 230. can.
  • the second conveying device 450B uses the semi-finished product 230 conveyed from the first cooling and conveying device 460A and the dies d4 and d5 to form the 5 and 6 (I ⁇ ) to the second cooling transfer device 460B where the cooling process is performed.
  • the first to third pressing and conveying units 442a to 442c of the second pressing device 440B push the semifinished products 230 to 250 received from the second conveying device 450B into the forming holes h4 to h6 of the dies d4 to d6, respectively, and press them. Then, semi-finished products 240 to 260 are molded at once.
  • the first to third pressing conveying units 442a to 442c lift the molded semifinished products 240 to 260 and deliver them to the second conveying device 450B.
  • the cylindrical portion 201 of the semi-finished product 230 conveyed by the first cooling and conveying device 460A can be thinned in three steps ( ⁇ 4 ⁇ 5 ⁇ 6) to form the semi-finished product 260. .
  • the third conveying device 450C forms the semi-finished product 260 conveyed from the second cooling and conveying device 460B and the dies d7 and d8.
  • the semi-finished products 270 and 280 thus obtained are delivered to the first to third pressing and conveying portions 442a to 442c of the third pressing device 440C, respectively, and the valve head portion 110 formed by the die d9 is transferred to the next coolant sealing step. hand over.
  • the first to third pressing and conveying units 442a to 442c of the third pressing device 440C push the semi-finished products 260 to 280 received from the third conveying device 450C into the forming holes h7 to h9 of the dies d7 to d9, respectively, and press them. Then, the semifinished products 270 and 280 and the valve head portion 110 are molded at once. After that, the first to third pressing conveying units 442a to 442c lift the molded semifinished products 270 and 280 and the valve head portion 110 and deliver them to the third conveying device 450C. By repeating this, the cylindrical portion 201 of the semi-finished product 270 conveyed by the second cooling and conveying device 460B can be thinned in three stages ( ⁇ 7 ⁇ 8 ⁇ 9) to form the valve head portion 110. .
  • the drawing is performed separately by the first to third drawing devices 400A to 400C instead of by a single device. It is possible to adjust the height of the die and the height of each die unit, which reduces the excessive load on the device and improves the precision of the drawing process.
  • the heights of the first to third die units 410A to 410C can be appropriately changed by the first to third height adjusters 420A to 420C.
  • each of the forming holes h1 to h9 of the dies d1 to d9 in each of the die units 410A to 410C is specifically can add lubricating oil at a set timing and in a set amount for each of the molding holes h1 to h3, the molding holes h4 to h6, and the molding holes h7 to h9.
  • first and second cooling and conveying devices 460A and 460B not only convey the work, but also allow the work to stand by for a certain period of time so that the drawing process can be performed while actively lowering the temperature. As a result, it is possible to reduce processing defects caused by temperature rise of the workpiece and to improve the life of the dies.
  • the first to third pressing devices 440A to 440C (pressing and conveying unit 442) and the first to third conveying device 450A are arranged in line with the linear arrangement of the dies d1 to d9 of the die holders D1 to D3.
  • 450C are arranged linearly, but when the dies d1 to d9 of the die holders D1 to D3 are arranged in an annular shape, these devices are arranged and moved in an annular shape along the dies d1 to d9. You may do so.
  • the forming process of the valve head portion 110 includes a hot forging process of forming an intermediate body 30 from the solid round bar 10 that has been heat-treated to the recrystallization temperature or higher in the heat treatment process, and a hot forging process of forming the intermediate body 30 into a semi-finished product 200, and a cold forging step of forming the valve head portion 110 from the semi-finished product 200 that has been annealed (softened) and then returned to room temperature.
  • the hot forging process consists of an extruding process and a canopy forming process, and the heat-treated solid round bar 10 is simultaneously extruded and canopy formed by the forging device 300 .
  • the first intermediate 20 conveyed to 323 is simultaneously pressed by the first punch 312 and the second punch 313 to form the first intermediate 20 in the first forming hole 321, and the second forming Umbrella forming for forming the second intermediate 30 in the hole 323 is performed at the same time.
  • the pressing process of FIGS. 2(a)-(b) and the umbrella-forming process of FIGS. 2(b)-(c) are performed simultaneously.
  • the outer diameter ( ⁇ A) of the solid round bar 10 is not the same as the outer diameter ( ⁇ C) of the cylindrical portion 201 of the semi-finished product 200 ( ⁇ A> ⁇ C)
  • the outer diameter ( ⁇ C) of the body portion 21 in the second intermediate 30 can be made the same as the outer diameter ( ⁇ C) of the tubular portion 201 in the semi-finished product 200 by the squeezing step.
  • one type of solid round bar 10 (for example, the outer diameter is ⁇ A) is prepared, and the squeezing die 322 is appropriately changed to match the solid round bar 10 to the specifications of the engine valve 100 (finished product).
  • the intermediate body 30 having the body portion 31 according to the request can be formed only by performing the squeezing process. As a result, there is no need to prepare various solid round bars 10 with different shaft diameters according to specifications, so production management can be facilitated and the outer diameter of the solid round bar 10 is limited. Therefore, the degree of freedom in designing the valve head portion 110 (engine valve 100) can be increased.
  • the lead time is not extended compared to the conventional engine valve manufacturing method that does not have the squeezing process.
  • the structure (crystal grains) can be managed to be small. This improves the cold workability in the cold forging process, smoothes the surface of the valve head portion 110 formed by cold forging, and improves the quality.
  • a cylindrical portion 201 is provided by drilling a cylindrical hole 205 in the axial direction from the tip of the second intermediate 30 using a drill of a drilling device. to form a semi-finished product 200.
  • the semi-finished product 200 is annealed (softened).
  • FIGS. Drawing is performed in the cold forging process shown in FIGS. , the valve head portion 110 is formed.
  • nine drawing processes are divided into three drawing devices 400A to 400C, and the valve head portion 110 is formed from the semi-finished product 200 by simultaneously performing three drawing processes on three works. do.
  • the first drawing device 400A reduces the outer diameter of the cylindrical portion 201 of the workpiece from ⁇ 1 to ⁇ 3 in three steps in the first drawing step, and the first cooling transfer device 460A
  • the work is cooled in the first cooling step
  • the second drawing device 400B reduces the outer diameter of the cylindrical portion 201 of the work from ⁇ 4 to ⁇ 6 in three stages in the second drawing step
  • the second cooling transfer device 460B The work is cooled in the second cooling process
  • the third throttling device 400C reduces the outer diameter of the cylindrical portion 201 of the work from ⁇ 7 to ⁇ 9 in three steps in the third throttling step, thereby reducing the valve head portion 110. to mold.
  • Drawing patterns (first drawing pattern and second drawing pattern) in the cold forging of this embodiment will be described with reference to FIGS.
  • medium carbon steel for example, the carbon content is 0.48 to 0.58%
  • the work to be narrowed down by the second drawing pattern is adopts low-carbon steel (for example, carbon content of 0.25 to 0.35) that is easier to draw than the first drawing pattern.
  • the semi-finished product 200 is drawn by a die d1 having a forming hole h1 with an inner diameter ⁇ 1 and an enlarged diameter portion w1 with an inclination angle ⁇ 2 and a depth ⁇ 3.
  • the processing forms a semi-finished product 210 .
  • the semi-finished product 210 is drawn by a die d2 having a forming hole h2 with a diameter of ⁇ 2 smaller than the inner diameter ⁇ 1 and an enlarged diameter portion w2 with an inclination angle ⁇ 2 and a depth ⁇ 3. 220 is molded.
  • the semi-finished product 220 is drawn by a die d3 having a forming hole h3 of ⁇ 3 smaller than the inner diameter ⁇ 2 and an enlarged diameter portion w3 of a slope angle ⁇ 2 and a depth ⁇ 3. 230 is molded.
  • the semi-finished product 230 is drawn by a die d4 having a forming hole h4 with a diameter of ⁇ 4 smaller than the inner diameter ⁇ 3, and an enlarged diameter portion w4 with a steeper slope ⁇ 3 than the inclination angle ⁇ 2 and a depth ⁇ 3.
  • a semi-finished product 240 is formed by drawing.
  • the semi-finished product 240 is drawn by a die d5 having a forming hole h5 with a diameter of ⁇ 5 smaller than the inner diameter ⁇ 4 and an enlarged diameter portion w5 with an inclination angle of ⁇ 3 and a depth of ⁇ 3. Mold 250.
  • the semi-finished product 250 is drawn by a die d6 having a forming hole h6 with a diameter of ⁇ 6 smaller than the inner diameter ⁇ 5 and an enlarged diameter portion w6 with a steeper slope ⁇ 4 than the slope angle ⁇ 3 and a depth ⁇ 3.
  • a semi-finished product 260 is formed by drawing.
  • the semi-finished product 260 is drawn by a die d7 having a forming hole h7 with a diameter of ⁇ 7 smaller than the inner diameter ⁇ 6 and an enlarged diameter portion w7 with an inclination angle of ⁇ 4 and a depth of ⁇ 3. 270 is molded.
  • the semi-finished product 270 is drawn by a die d8 having a forming hole h8 with a diameter of ⁇ 8 smaller than the inner diameter ⁇ 7 and an enlarged diameter portion w8 with a steeper slope ⁇ 5 than the slope angle ⁇ 4 and a depth ⁇ 3.
  • a semi-finished product 280 is formed by drawing.
  • the semifinished product 280 has a forming hole h9 with a diameter of ⁇ 9 smaller than the inner diameter ⁇ 8, and a die d9 having an enlarged diameter portion w9 with a steeper slope ⁇ 6 than the slope angle ⁇ 5 and a depth ⁇ 3.
  • the valve head portion 110 is formed by drawing with.
  • the inner diameter ⁇ of the molding holes h1 to h9, the gradient angle ⁇ of the enlarged diameter portions w1 to w9, and the depth ⁇ are set in the range of 5 mm to 20 mm, and ⁇ 6 to ⁇ 2. is set in the range of 10° to 3°, and ⁇ 3 is set in the range of 10 mm to 15 mm.
  • the second aperture pattern will be described with reference to FIG.
  • dies d41 to d46 are provided in die units 410A to 410C, drawing steps #1 to #6 are performed using dies d41 to d46, and semifinished product 200 is formed into valve head portion 110.
  • each of the dies d41 to d46 is connected to the upper portions of the cylindrical forming holes h41 to h46 and the forming holes h41 to h45 and expands upward in a mortar shape.
  • Sections w41 to w46 are provided respectively.
  • the inner diameter ⁇ is set in each of the forming holes h41 to h46 (hn) of the dies d41 to d46 (dn), and each of the enlarged diameter portions w41 to w46 (wn) has a gradient An angle ⁇ and a depth ⁇ are set.
  • the semi-finished product 200 is drawn by a die d41 having a forming hole h41 with an inner diameter of ⁇ 12 and an enlarged diameter portion w41 with an inclination angle of ⁇ 14 and a depth of ⁇ 13.
  • the processing forms a semi-finished product 210 .
  • the semi-finished product 210 is drawn by a die d42 having a forming hole h42 of ⁇ 14 smaller than the inner diameter ⁇ 12, and an enlarged diameter portion w42 having an inclination angle ⁇ 14 and a depth ⁇ 13. 220 is molded.
  • the semi-finished product 220 is drawn by a die d43 having a forming hole h43 with a diameter of ⁇ 16 smaller than the inner diameter ⁇ 14, and an enlarged diameter portion w43 with a steeper slope ⁇ 15 than the inclination angle ⁇ 14 and a depth ⁇ 13.
  • a semi-finished product 230 is formed by drawing.
  • the semi-finished product 230 is drawn by a die d44 having a forming hole h44 with a diameter of ⁇ 19 smaller than the inner diameter ⁇ 16 and an enlarged diameter portion w44 with an inclination angle ⁇ 15 and a depth ⁇ 13. Mold 250.
  • the semi-finished product 250 is processed by a die d45 having a forming hole h45 with a diameter of ⁇ 21 smaller than the inner diameter ⁇ 19, and an enlarged diameter portion w45 with a steeper slope ⁇ 16 than the slope angle ⁇ 15 and a depth ⁇ 13.
  • a semi-finished product 270 is formed by drawing.
  • the semi-finished product 270 is drawn by a die d46 having a forming hole h46 of ⁇ 24 smaller than the inner diameter ⁇ 21, and an enlarged diameter portion w46 having an inclination angle ⁇ 16 and a depth ⁇ 13. 110 is molded. That is, in the second drawing pattern, the valve head portion 110 is formed in six steps of drawing.
  • the relationship of the inner diameters ⁇ of the molding holes h41 to h46 is ⁇ 12> ⁇ 14> ⁇ 16> ⁇ 19> ⁇ 21> ⁇ 24.
  • the relationship of the gradient angles ⁇ of the enlarged diameter portions w41 to w46 of the second diaphragm pattern is ⁇ 14> ⁇ 15> ⁇ 16.
  • all of the enlarged diameter portions w41 to w46 of the dies d41 to d46 have a depth of ⁇ 13.
  • the valve head portion 110 As shown in the lower column of FIG. 9, the valve head portion 110 thus formed has an outer diameter of ⁇ 6 mm at the shaft portion 111 and an inner diameter of ⁇ 3 mm at the upper hollow portion 115a of the hollow portion 115 .
  • valve head portion 110 formed by the second throttle pattern has substantially the same shape as the valve head portion 110 formed by the first throttle pattern, but the first throttle portion 110 is formed in nine steps.
  • the valve head portion 110 is formed in six steps, which are fewer than the pattern.
  • the second drawing pattern by adjusting the die in each drawing process as described above, buckling and cracking due to unreasonableness in drawing each time do not occur, and the drawing process itself is smooth. proceed to
  • the drawing process by adjusting (changing) the values of the inner diameter ⁇ of the forming hole hn of the die dn, the gradient angle ⁇ of the enlarged diameter portion wn, and the depth ⁇ , the desired form of the valve can be obtained. Not only can the umbrella portion 110 be formed, but the drawing process (cold forging process) can be shortened.
  • a getter material or a coolant such as metallic sodium is introduced into the hollow portion 115 of the valve head portion 110 formed by the cold forging process, and the shaft end member 120 is placed on the upper end portion of the shaft portion 111.
  • the opening of the shaft portion 111 is closed, and the coolant and the like are enclosed in the hollow portion 115 .
  • heat insulating coating may be applied with a metal having low thermal conductivity, or surface treatment such as nitriding or polishing may be applied.
  • drawing steps are used, three drawing devices (first to third drawing devices 400A to 400C) are provided, and three dies are installed in each drawing device.
  • the drawing process is performed collectively, but it is not limited to this, and the drawing process may be, for example, 6 or more processes, the number of drawing devices is two or four or more, and the number of dies of the drawing device is two or more. It may be 4 or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forging (AREA)

Abstract

The present invention provides a method that is for manufacturing a hollow engine valve and that facilitates production management. This method is for manufacturing a hollow engine valve 100 that has a shaft part 111, an umbrella-shaped part 112 disposed at the base end of the shaft part 111 and grows in diameter in an umbrella-like manner, and a hollow part 115 which is provided at least inside the shaft part 111, said method comprising: a heat-treatment step for bringing a solid round bar 10, which is a raw material made of a special steel, to a high-temperature state; a squeezing step for shaping an intermediate product 20 by reducing the diameter of a shank 21 of a workpiece, except for a one-end side thereof, that has been brought into a high-temperature state in the heat-treating step; an umbrella-shape formation step for increasing the diameter of the one-end side of the intermediate product 20 having a relatively increased diameter so as to form into an umbrella-like shape; a boring step for boring a bottomed hole 205 from the other-end side of an intermediate product 30, along the axis line thereof, that has undergone the shaping in the umbrella-shape formation step so as to form a semifinished product 200; and a cold forging step for cold-drawing the semifinished product 200. The squeezing step and the umbrella-shape formation step are performed simultaneously.

Description

中空エンジンバルブの製造方法Manufacturing method of hollow engine valve
 本発明は、中空エンジンバルブの製造方法に関する。 The present invention relates to a method for manufacturing hollow engine valves.
 従来、自動車や船舶などのエンジンの燃焼室に吸気ガスを流入させ、排気ガスを排出させるためのエンジンバルブには、温度上昇を抑制する金属ナトリウムなどの冷却材を封入するために、内部を中空にした中空部を設けた中空エンジンバルブ(以下、単にエンジンバルブともいう)がある(特許文献1参照)。 Conventionally, engine valves, which allow intake gas to flow into the combustion chamber of engines such as automobiles and ships and discharge exhaust gas, have a hollow inside to contain a coolant such as metallic sodium to suppress temperature rise. There is a hollow engine valve (hereinafter also simply referred to as an engine valve) provided with a hollow portion (see Patent Document 1).
 このようなエンジンバルブの製造方法には、図10に示すように、素材である中実丸棒1を、中間体2、又は中間体4の成形を経て半完成品6を成形するものがある(特許文献2参考)。半完成品6は、一端側に傘状に拡径した傘状部5と、軸線方向に延伸して他端側が開口する中空孔7を有する筒状部8を設けている。中間体2は、先に穴明加工により中空孔3が設けられた後に、傘成形により傘状部5が設けられ、中間体4は、先に傘成形により傘状部5が設けられた後に、穴明加工により中空孔7が設けられる。 As shown in FIG. 10, there is a method of manufacturing such an engine valve in which a solid round bar 1 as a raw material is molded into an intermediate 2 or an intermediate 4 to form a semi-finished product 6. (Refer to Patent Document 2). The semi-finished product 6 has an umbrella-shaped portion 5 with an enlarged diameter on one end side and a cylindrical portion 8 extending in the axial direction and having a hollow hole 7 opened at the other end side. The intermediate body 2 is provided with the umbrella-shaped portion 5 by umbrella molding after the hollow hole 3 is provided by drilling, and the intermediate body 4 is provided with the umbrella-shaped portion 5 by umbrella molding first. , hollow holes 7 are provided by drilling.
特開2017-190759号公報JP 2017-190759 A 特許第4390291号公報Japanese Patent No. 4390291
 しかしながら、このようなエンジンバルブの製造方法の場合、半完成品6に至るまでの成形の順序(中間体2、4の形状)に相違はあるが、いずれの場合でも、従来工法では中実丸棒1と半完成品6の軸径がほぼ同一でないと加工ができなかった為、中実丸棒1の軸径を予め半完成品6の軸径と同一(例えばφa)にする必要がある。したがって、生産計画において軸径が異なる仕様のエンジンバルブが複数ある場合には、仕様の数に応じて中実丸棒1を用意する必要があり、生産管理が煩雑となっていた。 However, in the case of such an engine valve manufacturing method, although there is a difference in the order of molding up to the semi-finished product 6 (the shape of the intermediate bodies 2 and 4), in either case, the conventional method is a solid circle. If the shaft diameters of the rod 1 and the semi-finished product 6 were not approximately the same, machining could not be performed. Therefore, it was necessary to set the shaft diameter of the solid round bar 1 to be the same as that of the semi-finished product 6 (for example, φa) in advance. . Therefore, when there are a plurality of engine valves with different shaft diameter specifications in the production plan, it is necessary to prepare solid round bars 1 according to the number of specifications, which complicates production management.
 本発明は上記課題を鑑みてなされたものであり、その目的は、生産管理が容易な中空エンジンバルブの製造方法を提供することである。 The present invention has been made in view of the above problems, and its object is to provide a method for manufacturing hollow engine valves that facilitates production management.
 (1)本発明の第1の態様は、軸部と、前記軸部の基端に傘状に拡径する傘部と、少なくとも前記軸部の内部に設けられた中空部とを備える中空エンジンバルブの製造方法であって、特殊鋼からなる素材である中実丸棒を再結晶温度以上の高温状態とする加熱処理工程と、前記加熱処理工程で前記高温状態となったワークの一端側を除く胴部を縮径して中間体を成形する搾出加工工程と、前記中間体において相対的に拡径した前記一端側を傘状に拡径する傘成形工程と、前記傘成形工程で成形された前記中間体の他端側から軸線に沿って有底の穴を穿設して半完成品を成形する穴明加工工程と、前記半完成品を冷間で絞り上げる冷間鍛造工程とを含み、前記搾出加工工程と前記傘成形工程とを同時に行う。 (1) A first aspect of the present invention is a hollow engine comprising a shaft portion, an umbrella portion expanding in diameter like an umbrella at a proximal end of the shaft portion, and a hollow portion provided at least inside the shaft portion. A method for manufacturing a valve, comprising: a heat treatment step in which a solid round bar made of special steel is heated to a temperature higher than a recrystallization temperature; An extruding step of forming an intermediate body by reducing the diameter of the trunk portion excluding it, a umbrella forming step of expanding the diameter of the relatively expanded one end side of the intermediate body into an umbrella shape, and the umbrella forming step. A drilling step of drilling a bottomed hole along the axis from the other end side of the intermediate body to form a semi-finished product, and a cold forging step of cold-squeezing the semi-finished product. and performing the squeezing process and the umbrella forming process at the same time.
 上記(1)の構成によれば、搾出加工工程において、中実丸棒から外径が異なる胴部を有する中間体を成形することができる。これにより、複数種類のバルブの成形を行う場合であっても、それに応じて中間部の胴部の外径を調整することができるため、予め用意する中実丸棒の外径を統一することができ、生産管理コストを削減することができるとともに、中実丸棒の外径に制限されることなく、中空エンジンバルブの設計の自由度を高めることができる。 According to the configuration (1) above, it is possible to form an intermediate body having a trunk portion with a different outer diameter from a solid round bar in the squeezing process. As a result, even when molding multiple types of valves, the outer diameter of the intermediate body can be adjusted accordingly, so the outer diameter of the solid round bar prepared in advance can be unified. Therefore, the production control cost can be reduced, and the degree of freedom in designing the hollow engine valve can be increased without being restricted by the outer diameter of the solid round bar.
 また、ワークの高温状態を維持したまま、搾出加工工程と傘成形工程とを同時に行うことにより、中間体及び半完成品の胴部及び傘部の組織(結晶粒)が小さくなるように管理することができる。これにより、冷間鍛造工程において冷間加工性が向上し、冷間鍛造工程後のワークの肌面がなめらかになり、品質の向上を図ることができる。 In addition, by simultaneously carrying out the squeezing process and the umbrella forming process while maintaining the workpiece at a high temperature, the structures (crystal grains) of the body and umbrella of the intermediate and semi-finished product are controlled to be small. can do. As a result, the cold workability in the cold forging process is improved, the surface of the workpiece after the cold forging process becomes smooth, and the quality can be improved.
 本発明によれば、生産管理が容易な中空エンジンバルブの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a hollow engine valve that facilitates production management.
本実施形態における中空エンジンバルブの縦断面図である。It is a longitudinal section of a hollow engine valve in this embodiment. 同じく中空エンジンバルブの弁傘部までの成形工程を示す模式図である。It is a schematic diagram similarly showing the molding process up to the valve head portion of the hollow engine valve. 同じく一気鍛造装置の正面一部縦断面図である。Similarly, it is a front partial vertical cross-sectional view of the one-shot forging device. 同じく、ネッキング装置の正面一部縦断面図である。Similarly, it is a front partial vertical cross-sectional view of the necking device. 同じく、ネッキング装置の正面一部縦断面図である。Similarly, it is a front partial vertical cross-sectional view of the necking device. 同じく、ネッキング装置の正面一部縦断面図である。Similarly, it is a front partial vertical cross-sectional view of the necking device. 同じく、ネッキング装置のブロック図である。Similarly, it is a block diagram of the necking device. 第1絞りパターンに係るダイや成形後の弁傘部の寸法等を表した図である。It is a figure showing the dimension etc. of the die|dye which concerns on a 1st drawing pattern, and the valve head part after molding. 第2絞りパターンに係るダイや成形後の弁傘部の寸法等を表した図である。It is a figure showing the dimension etc. of the die|dye which concerns on a 2nd drawing pattern, and the valve head part after molding. 従来の中空エンジンバルブの半完成品までの成形工程を示す模式図である。FIG. 3 is a schematic diagram showing a molding process up to a semi-finished product of a conventional hollow engine valve.
 以下、図1~図9を参照し、発明の一実施形態を通じて本発明を詳説するが、以下の実施形態は例示であり、特許請求の範囲に係る発明を限定するものではない。 Hereinafter, the present invention will be described in detail through one embodiment of the invention with reference to FIGS. 1 to 9, but the following embodiments are examples and do not limit the invention according to the claims.
 なお、本実施形態の中空エンジンバルブ100、その成形段階の中間体20、30、半完成品200及び弁傘部110の方向については、軸部111の先端側(軸端部材120側)が上、軸部111の基端側(傘部112側)が下を基準として説明する。 Regarding the directions of the hollow engine valve 100, the intermediate bodies 20 and 30 in the molding stage thereof, the semi-finished product 200, and the valve head portion 110 of the present embodiment, the tip end side of the shaft portion 111 (shaft end member 120 side) is upward. , the base end side of the shaft portion 111 (head portion 112 side) will be described below.
(中空エンジンバルブ100)
 中空エンジンバルブ(以下、単にエンジンバルブという)100は、自動車等のエンジン(図示略)のシリンダヘッドに設けられ、かつ燃焼室に連通した吸気ポート及び排気ポートの内部に配置される弁体であって、エンジン実動時に上下方向へ移動して吸気ポート及び排気ポートを開閉可能とする。エンジンバルブ100は、吸気ポートを開放することによって吸気ガスを吸気ポートから燃焼室内に供給可能とし、排気ポートを開放することによって燃焼室内の排気ガスを排気ポートから燃焼室外に排出可能とする。
(Hollow engine valve 100)
A hollow engine valve (hereinafter simply referred to as an engine valve) 100 is a valve body provided in a cylinder head of an engine (not shown) of an automobile or the like and arranged inside an intake port and an exhaust port communicating with a combustion chamber. When the engine is actually running, it moves vertically to open and close the intake port and the exhaust port. The engine valve 100 enables intake gas to be supplied from the intake port into the combustion chamber by opening the intake port, and enables exhaust gas in the combustion chamber to be discharged from the exhaust port to the outside of the combustion chamber by opening the exhaust port.
 図1に示すように、エンジンバルブ100は、本体部分である弁傘部110と、蓋体部分である軸端部材120とを備える。 As shown in FIG. 1, the engine valve 100 includes a valve head portion 110 that is a body portion and a shaft end member 120 that is a lid portion.
 弁傘部110は、丸棒状の軸部111と、軸部111の下端部に連続して設けられ、下方に向かって同心状かつ傘状に拡径した傘部112とを備える。 The valve head portion 110 includes a round bar-shaped shaft portion 111 and a head portion 112 that is continuously provided at the lower end portion of the shaft portion 111 and expands concentrically downward in an umbrella shape.
 弁傘部110の内部には、上部が開口し軸部111から傘部112に亘って中空部115が設けられている。中空部115は有底であって、軸部111の中空部115は一定の内径を有しており、傘部112の中空部115は下方(底部)に向かって拡径している。 Inside the valve head portion 110, a hollow portion 115 with an upper opening is provided from the shaft portion 111 to the head portion 112. The hollow portion 115 has a bottom, the hollow portion 115 of the shaft portion 111 has a constant inner diameter, and the hollow portion 115 of the head portion 112 expands downward (bottom portion).
 弁傘部110は、弁傘部110の成形後に行われる冷却材封入工程において、中空部115へチタン等のゲッタ材や、中空部115内の温度上昇を抑制する金属ナトリウム等の冷却材(図示略)が投入された後、軸端部材120が軸部111の上端部に接合(例えば、摩擦圧接)されて固着されることにより、軸部111の開口が閉塞される。これにより、中空部115は密閉され、冷却材等は中空部115内に封入される。これにより、軸端部材120は、軸部111と一体的(分離不能)になって、軸部111となって、エンジンバルブ100が完成する。 The valve head portion 110 includes a getter material such as titanium in the hollow portion 115 and a coolant such as metallic sodium (illustrated) that suppresses the temperature rise in the hollow portion 115 in a coolant enclosing process performed after molding the valve head portion 110 . ) is inserted, the shaft end member 120 is joined (for example, by friction welding) to the upper end portion of the shaft portion 111 to close the opening of the shaft portion 111 . As a result, the hollow portion 115 is sealed, and the coolant and the like are enclosed in the hollow portion 115 . As a result, the shaft end member 120 is integrated (unseparable) with the shaft portion 111 to form the shaft portion 111, and the engine valve 100 is completed.
 なお、必要に応じて、エンジンバルブ100の全部又は一部(傘部112の一部や全部、軸部111の全部や一部)に、例えばセラミックのような熱伝導率が低い金属によって断熱コーティングを施したり、窒化処理や研磨などの表面処理を施すようにしてもよい。 If necessary, all or part of the engine valve 100 (part or all of the head portion 112, all or part of the shaft portion 111) may be heat-insulated with a metal having low thermal conductivity such as ceramic. may be applied, or surface treatment such as nitriding or polishing may be applied.
 ここで、エンジンバルブ100の加工前の状態である、中実丸棒10、第1中間体20、第2中間体30、半完成品200、及び弁傘部110(以下、これらを単にワークともいう)について説明する。 Here, the solid round bar 10, the first intermediate body 20, the second intermediate body 30, the semi-finished product 200, and the valve head portion 110, which are the states before machining of the engine valve 100 (hereinafter, these are simply referred to as workpieces). ) will be explained.
 図2(a)に示す中実丸棒10は、特殊鋼からなる円柱状の素材であって一定の外径(φA)を有する。本実施形態では、軸部111の外径が異なる複数のエンジンバルブ100(弁傘部110)を成形するような場合であっても、後述するように外径が統一された一種類の中実丸棒10を用意すればよい。 The solid round bar 10 shown in FIG. 2(a) is a cylindrical material made of special steel and has a constant outer diameter (φA). In this embodiment, even when a plurality of engine valves 100 (valve head portions 110) having shaft portions 111 with different outer diameters are formed, one type of solid body having a uniform outer diameter is used as described later. A round bar 10 should be prepared.
 図2(b)に示す第1中間体20は、中実丸棒10の外径(φA)よりも小さい外径(φB)の胴部21と、基端部に中実丸棒10の外径と同じ又は僅かに大きい外径のヘッド部22とを設ける。 The first intermediate body 20 shown in FIG. 2(b) includes a body portion 21 having an outer diameter (φB) smaller than the outer diameter (φA) of the solid round bar 10, and an outer diameter (φA) of the solid round bar 10 at the base end. A head portion 22 having an outer diameter equal to or slightly larger than the diameter is provided.
 図2(c)に示す第2中間体30は、第1中間体20の胴部21の外径(φB)よりも僅かに大きい外径(φC)の胴部31と、基端部に下方に向かって同心状かつ傘状に拡径した傘状部32とを設ける。 The second intermediate body 30 shown in FIG. 2(c) includes a body portion 31 having an outer diameter (φC) slightly larger than the outer diameter (φB) of the body portion 21 of the first intermediate body 20, and and an umbrella-like portion 32 concentrically expanding in diameter toward the end.
 図2(d)に示す半完成品200は、先端が開口する有底の円筒穴205を有する筒状部201と、基端部に第2中間体30の傘状部32と同形の傘状部202とを設ける。なお、半完成品200における筒状部201の外径と、第2中間体30における胴部31の外径とは等しい(φC)。 A semi-finished product 200 shown in FIG. 2D includes a cylindrical portion 201 having a bottomed cylindrical hole 205 with an open tip, and an umbrella-like portion 32 of the second intermediate body 30 having the same shape as the umbrella-like portion 32 of the second intermediate body 30 at the base end. A section 202 is provided. Note that the outer diameter of the tubular portion 201 in the semi-finished product 200 and the outer diameter of the trunk portion 31 in the second intermediate 30 are equal (φC).
 図2(e)に示す弁傘部110は、半完成品200の筒状部201の外径(φC)よりも小さい外径(φD)の軸部111と、基端部に傘状部202と同形の傘部112と、軸部111から傘部112に亘って形成されるとともに、半完成品200における円筒穴205の内径よりも小さい内径の中空部115とを有する。 The valve head portion 110 shown in FIG. 2E includes a shaft portion 111 having an outer diameter (φD) smaller than the outer diameter (φC) of a cylindrical portion 201 of the semi-finished product 200 and a head portion 202 at the base end. and a hollow portion 115 formed from the shaft portion 111 to the umbrella portion 112 and having an inner diameter smaller than the inner diameter of the cylindrical hole 205 in the semi-finished product 200 .
 本実施形態では、図3に示す一気鍛造装置300、穴明装置(図示略)、及び図4~図7に示すネッキング装置400によって、中実丸棒10から弁傘部110を成形する。 In this embodiment, the valve head portion 110 is formed from the solid round bar 10 by means of a forging device 300 shown in FIG. 3, a boring device (not shown), and a necking device 400 shown in FIGS.
(一気鍛造装置300)
 図3に示すように、一気鍛造装置300は、再結晶温度以上まで加熱処理された中実丸棒10に後述する搾出加工、及び傘成形を施すことによって第2中間体30を成形する熱間鍛造を行う。
(Immediate forging device 300)
As shown in FIG. 3, the forging apparatus 300 heats the solid round bar 10 heat-treated to the recrystallization temperature or higher to form the second intermediate 30 by subjecting the solid round bar 10 to extrusion processing and umbrella forming, which will be described later. Forging is performed.
 具体的に一気鍛造装置300は、上側の金型として、機械式プレス等により上下方向に往復運動するスライド(図示略)に固定されるパンチホルダ311と、パンチホルダ311の下面に下方へ突出するように設けられ、後述する搾出加工において用いられる第1パンチ312と、後述する傘成形において用いられる第2パンチ313とを有する。 Specifically, the one-shot forging apparatus 300 includes, as an upper die, a punch holder 311 fixed to a slide (not shown) that reciprocates vertically by a mechanical press or the like, and a punch holder 311 that protrudes downward from the lower surface of the punch holder 311. It has a first punch 312 used in the squeezing process described later and a second punch 313 used in umbrella forming described later.
 また、一気鍛造装置300は、下側の金型として、後述する搾出加工において用いられる第1成形孔321が設けられた搾出用ダイ322と、後述する傘成形において用いられる第2成形孔323が設けられた傘成形用ダイ324と、搾出用ダイ322及び傘成形用ダイ324を固定するダイホルダ325とを有する。 In addition, the one-shot forging device 300 includes, as lower molds, a pressing die 322 provided with a first forming hole 321 used in the pressing process described later, and a second forming hole used in umbrella forming described later. 323 is provided, and a die holder 325 to which the expression die 322 and the umbrella die 324 are fixed.
 第1パンチ312は、第1成形孔321の内径よりもわずかに小さい外径で、かつ中実丸棒10を第1成形孔321の奥まで押し込める程度に長寸の円柱状をなしている。第2パンチ313は、少なくとも第2成形孔323の後述する傘成形部323aよりも大きい外径で、かつ短寸の円柱状をなしている。 The first punch 312 has an outer diameter slightly smaller than the inner diameter of the first forming hole 321 and has a long columnar shape to the extent that the solid round bar 10 can be pushed deep into the first forming hole 321 . The second punch 313 has an outer diameter that is at least larger than that of a later-described umbrella forming portion 323a of the second forming hole 323, and has a short columnar shape.
 第1成形孔321は、上方に向かって同心状かつすり鉢状に拡径した誘導部321aと、誘導部321aの下部に連接され、中実丸棒10の外径よりも内径が大きい挿入部321bと、挿入部321bの下部に下方に向かって縮径するテーパ部321cを介して連接され、中実丸棒10の外径(φA)よりも小さい内径(φB)の搾出部321dとを有する。 The first forming hole 321 includes a guide portion 321a that expands concentrically upward in diameter into a mortar shape, and an insertion portion 321b that is connected to the lower portion of the guide portion 321a and has an inner diameter larger than the outer diameter of the solid round bar 10. and a squeezed portion 321d having an inner diameter (φB) smaller than the outer diameter (φA) of the solid round bar 10, which is connected to the lower portion of the insertion portion 321b via a tapered portion 321c whose diameter decreases downward. .
 第2成形孔323は、上方に向かって同心状かつ略受皿状に拡径した傘成形部323aと、傘成形部323aの下部に連接され、第1成形孔321における搾出部321dの内径よりも大きい内径(φC)の胴成形部323bとを有する。 The second forming hole 323 is connected to a canopy forming portion 323a that expands concentrically upward in a substantially saucer-like diameter, and to the lower portion of the cap forming portion 323a. and a barrel forming portion 323b with a large inner diameter (φC).
 一気鍛造装置300は、ワークのピッキング及び搬送を可能とする公知のピッキングロボット等のワーク搬送装置(図示略)によって、搾出用ダイ322の第1成形孔321内に搬送された中実丸棒10、及び傘成形用ダイ324の第2成形孔323内に搬送された第1中間体20を、第1パンチ312及び第2パンチ313によって、上方から同時にプレス(押圧)して、搾出用ダイ322において第1中間体20、傘成形用ダイ324において第2中間体30をそれぞれ同時に成形する。すなわち、一気鍛造装置300は、搾出加工及び傘成形を同時に行う。 The single forging device 300 is a solid round bar transported into the first forming hole 321 of the squeezing die 322 by a work transport device (not shown) such as a known picking robot capable of picking and transporting the work. 10 and the first intermediate 20 conveyed into the second forming hole 323 of the canopy forming die 324 are simultaneously pressed from above by the first punch 312 and the second punch 313, and are used for squeezing. The first intermediate 20 and the second intermediate 30 are simultaneously molded in the die 322 and the umbrella-forming die 324, respectively. That is, the single-shot forging device 300 simultaneously performs squeezing and umbrella forming.
 このように成形された第1中間体20、及び第2中間体30は、第1、第2成形孔321、323のそれぞれの下方から孔内に進退可能に設けられるピンロッド有するワーク排出装置(図示略)によって、第1、第2成形孔321、323から排出される。ワーク搬送装置は、第1成形孔321から排出された第1中間体20を傘成形用ダイ324の第2成形孔323に搬送し、第2成形孔323から排出された第2中間体30を次工程において穴明加工を行う穴明装置(図示略)に搬送する。 The first intermediate body 20 and the second intermediate body 30 molded in this manner are provided with a work discharging device (illustrated as a ) is discharged from the first and second forming holes 321 and 323 . The work conveying device conveys the first preform 20 discharged from the first forming hole 321 to the second forming hole 323 of the umbrella forming die 324, and the second preform 30 discharged from the second forming hole 323. It is conveyed to a drilling device (not shown) for drilling in the next step.
 穴明装置は、第2中間体30を固定可能な治具(図示略)と、治具によって固定された第2中間体30の胴部31の先端から軸線に沿って有底穴(筒状部201)を穿設可能なドリル(図示略)とを有する。穴明装置は、第2中間体30をドリルによって穿設する穴明加工を施すことにより半完成品200を成形し、ワーク搬送装置は半完成品200を次工程の冷間鍛造を行うネッキング装置400に搬送する。 The drilling device includes a jig (not shown) capable of fixing the second intermediate body 30, and a bottomed hole (cylindrical shape) extending along the axis from the tip of the trunk portion 31 of the second intermediate body 30 fixed by the jig. 201) and a drill (not shown) capable of drilling. The drilling device forms a semi-finished product 200 by drilling the second intermediate 30 with a drill, and the work conveying device is a necking device for cold forging the semi-finished product 200 in the next process. Transport to 400.
(ネッキング装置400)
 ネッキング装置400は、常温下で半完成品200に対して複数段階に分けた絞り加工を施すことにより細軸化を図り、弁傘部110を成形する冷間鍛造を行う。
(Necking device 400)
The necking device 400 thins the shaft by drawing the semi-finished product 200 in a plurality of steps at room temperature, and performs cold forging to form the valve head portion 110 .
 図4~図6等に示すようにネッキング装置400は、半完成品200に対する9段階の絞り工程#1~#9を、3つの絞り装置(第1絞り装置400A、第2絞り装置400B、第3絞り装置400C)によって、3工程ずつ同時に処理が可能となっている。また、ネッキング装置400は、第1~第3絞り装置400A~400Cの各装置間に、換言すると3工程ごとに、絞り加工によって上昇したワークの実体温度の低下を図るために後述する第1冷却搬送装置460A、及び第2冷却搬送装置460B(冷却工程)を設ける。
 なお、以下の説明の便宜上、半完成品200については、絞り加工において変化する筒状部201の外径に応じて半完成品210~280として説明する。
As shown in FIGS. 4 to 6 and the like, the necking device 400 performs nine drawing steps #1 to #9 on the semi-finished product 200 using three drawing devices (first drawing device 400A, second drawing device 400B, and third drawing device 400B). The 3-squeeze device 400C) enables three processes to be processed simultaneously. In addition, the necking device 400 is provided between each of the first to third drawing devices 400A to 400C, in other words, every three processes, in order to reduce the actual temperature of the work that has risen due to the drawing. A carrier device 460A and a second cooling carrier device 460B (cooling process) are provided.
For convenience of explanation below, the semi-finished product 200 will be explained as semi-finished products 210 to 280 according to the outer diameter of the tubular portion 201 which changes in the drawing process.
(第1~第3絞り装置400A~400C)
 図4、図7に示すように、第1絞り装置400Aは、半完成品200に対して複数段階で絞り加工を行うための複数のダイスを有する第1ダイユニット410Aと、第1ダイユニット410Aの高さを調整可能な第1高さ調整装置420Aと、半完成品200~220を第1~第3ダイd1~d3に押し込むとともにプレスして半完成品210~230を成形可能な第1押圧装置440Aと、半完成品200~230を搬送可能な第1搬送装置450Aと、第1搬送装置450Aに接続され、絞り加工時のワークとダイとの摩擦を緩和するための潤滑油(図示略)を第1ダイユニット410Aのダイに添加可能な第1潤滑油添加装置470Aとを備える。
(First to Third Expansion Devices 400A to 400C)
As shown in FIGS. 4 and 7, the first drawing device 400A includes a first die unit 410A having a plurality of dies for drawing the semifinished product 200 in a plurality of stages, and a first die unit 410A. a first height adjusting device 420A capable of adjusting the height of the semifinished products 200 to 220 and pressing the semifinished products 200 to 220 into the first to third dies d1 to d3 to form the semifinished products 210 to 230. A pressing device 440A, a first conveying device 450A capable of conveying the semi-finished products 200 to 230, and a lubricating oil (illustrated ) to the die of the first die unit 410A.
 図5、図7に示すように、第2絞り装置400Bは、第1搬送装置450Aから搬送された半完成品230に対して複数段階で絞り加工を行うための複数のダイスを有する第2ダイユニット410Bと、第2ダイユニット410Bの高さを調整な第2高さ調整装置420Bと、半完成品230~250を第4~第6ダイd4~d6に押し込むとともにプレスして半完成品240~260を成形可能な第2押圧装置440Bと、半完成品230~260を搬送可能な第2搬送装置450Bと、第2搬送装置450Bに接続され、潤滑油を第2ダイユニット410Bのダイに添加可能な第2潤滑油添加装置470Bとを備える。 As shown in FIGS. 5 and 7, the second drawing device 400B has a plurality of dies for drawing the semifinished product 230 conveyed from the first conveying device 450A in a plurality of stages. A unit 410B, a second height adjusting device 420B for adjusting the height of the second die unit 410B, and pressing the semi-finished products 230 to 250 into the fourth to sixth dies d4 to d6 to form a semi-finished product 240. 260, a second conveying device 450B capable of conveying semi-finished products 230 to 260, and connected to the second conveying device 450B to supply lubricating oil to the die of the second die unit 410B. and a second lubricating oil adding device 470B that can be added.
 図6、図7に示すように、第3絞り装置400Cは、第2搬送装置450Bから搬送された半完成品260に対して複数段階で絞り加工を行うための複数のダイスを有する第3ダイユニット410Cと、第3ダイユニット410Cの高さを調整可能な第3高さ調整装置420Cと、半完成品260~280を第7~第9ダイd7~d9に押し込むとともにプレスして半完成品270、280及び弁傘部110を成形可能な第3押圧装置440Cと、半完成品260~280、及び弁傘部110を搬送可能な第3搬送装置450Cと、第3搬送装置450Cに接続され、絞り加工時のワークとダイとの摩擦を緩和するための潤滑油(図示略)を第3ダイユニット410Cのダイに添加可能な第3潤滑油添加装置470Cとを備える。 As shown in FIGS. 6 and 7, the third drawing device 400C has a plurality of dies for drawing the semi-finished product 260 conveyed from the second conveying device 450B in a plurality of stages. A unit 410C, a third height adjusting device 420C capable of adjusting the height of the third die unit 410C, and pressing the semifinished products 260 to 280 into the seventh to ninth dies d7 to d9 to produce semifinished products. 270, 280 and the valve head portion 110, a third conveying device 450C capable of conveying the semi-finished products 260 to 280 and the valve head portion 110, and the third conveying device 450C. , and a third lubricating oil adding device 470C capable of adding lubricating oil (not shown) to the die of the third die unit 410C for reducing friction between the work and the die during drawing.
(第1~第3ダイユニット410A~410C)
 図4~図6に示すように、第1ダイユニット410Aは、第1~第3ダイd1~d3(以下、単にダイd1~d3という)と、ダイd1~d3を支持するダイホルダD1とを備える。第2ダイユニット410Bは、第4~第6ダイd4~d6(以下、単にダイd4~d6という)と、ダイd4~d6を支持するダイホルダD2とを備える。第3ダイユニット410Cは、第7~第9ダイd7~d9(以下、単にダイd7~d9という)と、ダイd7~d9を支持するダイホルダD3とを備える。
(First to third die units 410A to 410C)
As shown in FIGS. 4 to 6, the first die unit 410A includes first to third dies d1 to d3 (hereinafter simply referred to as dies d1 to d3) and a die holder D1 that supports the dies d1 to d3. . The second die unit 410B includes fourth to sixth dies d4 to d6 (hereinafter simply referred to as dies d4 to d6) and a die holder D2 that supports the dies d4 to d6. The third die unit 410C includes seventh to ninth dies d7 to d9 (hereinafter simply referred to as dies d7 to d9) and a die holder D3 that supports the dies d7 to d9.
 第1~第9ダイd1~d9は、円筒孔状の成形孔h1~h9と、成形孔h1~h9の上部に連接され上方に向かってすり鉢状に拡径する拡径部w1~w9とをそれぞれ設ける。図8の上欄に示すように、ダイd1~d9(dn)の成形孔h1~h9(hn)には、内径φがそれぞれ設定されており、拡径部w1~w9(wn)には、それぞれ勾配角θ(図8の上欄に示すダイdnにおける成形孔hnを基準面とした場合の勾配(傾斜)面の角度)と、深さΓ(図8の上欄に示すダイdnの上端部から拡径部wnの勾配(傾斜)が無くなる下端部までの距離)とが設定されている。 The first to ninth dies d1 to d9 have cylindrical hole-shaped forming holes h1 to h9 and enlarged diameter portions w1 to w9 connected to the upper portions of the forming holes h1 to h9 and expanding upward in a mortar shape. set each. As shown in the upper column of FIG. 8, the inner diameter φ is set in each of the forming holes h1 to h9 (hn) of the dies d1 to d9 (dn), and the enlarged diameter portions w1 to w9 (wn) are: (the angle of the slope (inclination) plane when the forming hole hn in the die dn shown in the upper column of FIG. 8 is used as the reference plane) and the depth Γ (the upper end of the die dn shown in the upper column of FIG. 8). from the part to the lower end where the gradient (inclination) of the enlarged diameter part wn disappears) is set.
 具体的に、ダイd1は、内径φ1の成形孔h1と、勾配角θ2、深さΓ3の拡径部w1とを設ける。ダイd2は、内径φ2の成形孔h2と、勾配角θ2、深さΓ3の拡径部w2とを設ける。ダイd3は、内径φ3の成形孔h3と、勾配角θ2、深さΓ3の拡径部w3とを設ける。ダイd4は、内径φ4の成形孔h4と、勾配角θ3、深さΓ3の拡径部w4とを設ける。ダイd5は、内径φ5の成形孔h5と、勾配角θ3、深さΓ3の拡径部w5とを設ける。ダイd6は、内径φ6の成形孔h6と、勾配角θ4、深さΓ3の拡径部w6とを設ける。ダイd7は、内径φ7の成形孔h7と、勾配角θ4、深さΓ3の拡径部w7とを設ける。ダイd8は、内径φ8の成形孔h8と、勾配角θ5、深さΓ3の拡径部w8とを設ける。ダイd9は、内径φ9の成形孔h9と勾配角θ6、深さΓ3の拡径部w9とを設ける。 Specifically, the die d1 has a forming hole h1 with an inner diameter φ1 and an enlarged diameter portion w1 with an inclination angle θ2 and a depth Γ3. The die d2 has a forming hole h2 with an inner diameter φ2 and an enlarged diameter portion w2 with an inclination angle θ2 and a depth Γ3. The die d3 has a forming hole h3 with an inner diameter φ3 and an enlarged diameter portion w3 with an inclination angle θ2 and a depth Γ3. The die d4 has a forming hole h4 with an inner diameter φ4 and an enlarged diameter portion w4 with an inclination angle θ3 and a depth Γ3. The die d5 has a forming hole h5 with an inner diameter φ5 and an enlarged diameter portion w5 with an inclination angle θ3 and a depth Γ3. The die d6 has a forming hole h6 with an inner diameter of φ6 and an enlarged diameter portion w6 with an inclination angle of θ4 and a depth of Γ3. The die d7 has a forming hole h7 with an inner diameter φ7 and an enlarged diameter portion w7 with an inclination angle θ4 and a depth Γ3. The die d8 has a forming hole h8 with an inner diameter of φ8 and an enlarged diameter portion w8 with an inclination angle of θ5 and a depth of Γ3. The die d9 has a forming hole h9 with an inner diameter φ9 and an enlarged diameter portion w9 with an inclination angle θ6 and a depth Γ3.
 各成形孔h1~h9の内径φの関係は、φ1>φ2>φ3>φ4>φ5>φ6>φ7>φ8>φ9となっている。すなわち、ダイd1~d9の成形孔h1~h9は後の工程のほど縮径している。 The relationship of the inner diameters φ of the molding holes h1 to h9 is φ1>φ2>φ3>φ4>φ5>φ6>φ7>φ8>φ9. That is, the diameters of the forming holes h1 to h9 of the dies d1 to d9 are reduced in later steps.
 また、各拡径部w1~w9の勾配角θの関係は、θ2>θ3>θ4>θ5>θ6となっている。すなわち、ダイd1~d9の拡径部w1~w9は後の工程ほど急勾配になっている。また、各拡径部w1~w9は全て深さΓ3となっている。 Also, the relationship of the gradient angles θ of the enlarged diameter portions w1 to w9 is θ2>θ3>θ4>θ5>θ6. That is, the enlarged diameter portions w1 to w9 of the dies d1 to d9 become steeper in later steps. Further, all of the enlarged diameter portions w1 to w9 have a depth of Γ3.
 このように、絞り加工において、ダイd1~d9の成形孔h1~h9の内径φ、拡径部w1~w9の勾配角θ、及び深さΓをそれぞれ調整する(変化させる)ことにより、後述するように所望の形態の弁傘部110を成形することができる。 In this way, in the drawing process, by adjusting (changing) the inner diameter φ of the forming holes h1 to h9 of the dies d1 to d9, the gradient angle θ of the enlarged diameter portions w1 to w9, and the depth Γ, respectively, Thus, the desired shape of the valve head portion 110 can be formed.
(第1~第3高さ調整装置420A~420C)
 図4~図7に示すように、第1~第3高さ調整装置420A~420Cは、第1~第3ダイユニット410A~410Cを下方から支持する支持プレート421と、支持プレート421を上下動させる油圧、空圧又は電動シリンダなどからなる駆動手段422とをそれぞれ設ける。第1~第3高さ調整装置420A~420Cは、ダイ側制御部480にそれぞれ接続され、ダイ側制御部480の制御により第1~第3ダイユニット410A~410Cの高さ調整が可能となっている。したがって、第1高さ調整装置420Aは、ダイd1~d3の高さを調整可能となっており、第2高さ調整装置420Bは、ダイd4~d6の高さを調整可能となっており、第3高さ調整装置420Cは、ダイd7~d9の高さを調整可能となっている。なお、駆動手段422を用いずにプレート等のスペーサの着脱によってダイd1~d9の高さを調整してもよい。
(First to third height adjustment devices 420A to 420C)
As shown in FIGS. 4 to 7, the first to third height adjustment devices 420A to 420C include a support plate 421 that supports the first to third die units 410A to 410C from below, and the support plate 421 moves up and down. A driving means 422 comprising a hydraulic, pneumatic, electric cylinder, or the like is provided. The first to third height adjusting devices 420A to 420C are connected to the die-side control section 480, respectively, and the heights of the first to third die units 410A to 410C can be adjusted under the control of the die-side control section 480. ing. Therefore, the first height adjusting device 420A can adjust the height of the dies d1 to d3, and the second height adjusting device 420B can adjust the height of the dies d4 to d6. The third height adjusting device 420C can adjust the height of the dies d7 to d9. The heights of the dies d1 to d9 may be adjusted by attaching and detaching spacers such as plates without using the driving means 422. FIG.
(第1~第3押圧装置440A~440C)
 図4~図6に示すように、第1~第3押圧装置440A~440Cは、クランク機構などの機械式プレス等により上下方向に往復運動するスライド(図示略)と、スライドに固定されるパンチホルダ441と、パンチホルダ441の底面にダイd1~d9の配列に沿って複数(例えば、3基)配設される第1~第3押圧搬送部442a~442cとを備える。第1~第3押圧装置440A~440Cにおいて、第1押圧搬送部442aは、図4~図6における左側に配設され、第2押圧搬送部442bは同じく中央に配設され、第3押圧搬送部442cは同じく右側に配設されている。
(First to third pressing devices 440A to 440C)
As shown in FIGS. 4 to 6, the first to third pressing devices 440A to 440C include a slide (not shown) that reciprocates vertically by a mechanical press such as a crank mechanism, and a punch fixed to the slide. A holder 441 and a plurality of (for example, three) first to third press conveying units 442a to 442c are arranged on the bottom surface of the punch holder 441 along the arrangement of the dies d1 to d9. In the first to third pressing devices 440A to 440C, the first pressing and conveying portion 442a is arranged on the left side in FIGS. The portion 442c is also arranged on the right side.
 第1~第3押圧搬送部442a~442cは、例えば、図4に示すように、後述する第1~第3搬送装置450A~450C(図4には第1搬送装置450Aのみ記載)によって搬送された逆さ状態のワークの傘状部202を、図5に示すように係止して吊り上げ可能な鉤状の爪部446と、爪部446によって吊り上げられたワークを、図6に示すようにスライドの下方への移動により、ダイd1~d9の成形孔h1~h9内に押し込み、プレスして成形する押圧部447とを有する。 For example, as shown in FIG. 4, the first to third pressure conveying units 442a to 442c are conveyed by first to third conveying devices 450A to 450C described later (only the first conveying device 450A is shown in FIG. 4). A hook-shaped claw portion 446 capable of locking and lifting the umbrella-shaped portion 202 of the upside-down workpiece as shown in FIG. is pushed into the molding holes h1 to h9 of the dies d1 to d9 by moving downward to press and mold.
 第1~第3押圧装置440A~440Cの第1~第3押圧搬送部442a~442cは、後述する第1~第3搬送装置450A~450Cから複数(例えば3つ)のワークを受け取り、受け取ったワークを、ダイd1~d9の成形孔h1~h9にそれぞれ押し込み、プレスし、吊り上げて、第1~第3搬送装置450A~450Cに引き渡す。 The first to third pressure transfer units 442a to 442c of the first to third pressure devices 440A to 440C receive and receive a plurality of (for example, three) works from the first to third transfer devices 450A to 450C described later. The workpieces are respectively pushed into the forming holes h1 to h9 of the dies d1 to d9, pressed, lifted, and handed over to the first to third conveying devices 450A to 450C.
 このように第1~第3押圧装置440A~440Cは、それぞれ3つのワークを保持した状態で上下の往復運動を行うだけで、(1)3つワークを成形孔h1~h9へ押し込むとともに、(2)プレスして成形し、(3)成形した3つワークを成形孔h1~h9から引き抜くことができるため、上記(1)~(3)の処理をそれぞれ異なる装置で行う場合よりも製造効率を高めることができる。 In this way, the first to third pressing devices 440A to 440C only perform vertical reciprocating motion while holding three workpieces respectively, (1) pushing the three workpieces into the molding holes h1 to h9, and ( 2) Pressing and molding, and (3) three molded workpieces can be pulled out from the molding holes h1 to h9. can increase
 本実施形態では、第1~第3押圧装置440A~440Cは、ワーク側制御部490に接続されており、第1~第3押圧搬送部442a~442cのワークへの押し込みスピードや加圧力を、第1~第3押圧装置440A~440C毎に調整することができるようになっている。 In this embodiment, the first to third pressing devices 440A to 440C are connected to the work-side control unit 490, and the pressing speed and pressure applied to the work by the first to third pressing and conveying units 442a to 442c are controlled by Each of the first to third pressing devices 440A to 440C can be adjusted.
(第1~第3搬送装置450A~450C)
 図4~図6に示すように、第1~第3搬送装置450A~450Cは、ワークを移動させるための機構として、ワークの筒状部201を挟持可能な一対の爪を有する爪部451と、爪部451を開閉させる爪駆動手段(図示略)を有するベース453と、ベース453を工程の進行方向(水平方向)及び上下方向(垂直方向)に移動可能な、例えばモータ等の動力源に接続されるラックアンドピニオン機構などからなる駆動手段454とを備える。また、第1~第3搬送装置450A~450Cのベース453の前面には、潤滑油を添加するための機構の一部として、後述する第1~第3潤滑油添加装置470A~470Cにそれぞれ接続されるとともに、潤滑油を下方に向かって導出可能な下向きの複数のノズル474が一定の間隔(例えば、図4~図6における最右の爪部451を除く爪部451の一対の爪の間)で配設されている。
(First to third conveying devices 450A to 450C)
As shown in FIGS. 4 to 6, the first to third conveying devices 450A to 450C have a claw portion 451 having a pair of claws capable of pinching the cylindrical portion 201 of the work as a mechanism for moving the work. , a base 453 having a claw driving means (not shown) for opening and closing the claw portion 451, and a power source such as a motor capable of moving the base 453 in the advancing direction (horizontal direction) and the vertical direction (vertical direction) of the process. A drive means 454 comprising a connected rack and pinion mechanism or the like is provided. In addition, the front surfaces of the bases 453 of the first to third conveying devices 450A to 450C are connected to first to third lubricating oil adding devices 470A to 470C, respectively, as part of a mechanism for adding lubricating oil. Also, a plurality of downward nozzles 474 capable of leading out lubricating oil downward are arranged at regular intervals (for example, between a pair of claws 451 except for the rightmost claw 451 in FIGS. 4 to 6). ).
 また、第1~第3搬送装置450A~450Cは、潤滑油(図示略)を貯留、排出可能な第1~第3潤滑油添加装置470A~470Cとそれぞれ連携して第1~第3ダイユニット410A~410Cの各ダイに潤滑油を添加可能となっている。 In addition, the first to third conveying devices 450A to 450C cooperate with the first to third lubricating oil adding devices 470A to 470C capable of storing and discharging lubricating oil (not shown), respectively, and the first to third die units Lubricating oil can be added to each of the dies 410A to 410C.
 第1~第3潤滑油添加装置470A~470Cは、潤滑油を一時的に貯留可能な貯留タンク471と、貯留タンク471内の潤滑油を外部に出力可能なコンプレッサ等の供給手段472と、貯留タンク471とベース453に配設されている複数のノズル474とを接続する配管473とを有する。配管473は、図面では省略されているが全てのノズル474に接続され、第1~第3搬送装置450A~450Cの水平方向の移動を許容する程度に撓みがある状態で配設される。 The first to third lubricating oil adding devices 470A to 470C include a storage tank 471 that can temporarily store lubricating oil, a supply means 472 such as a compressor that can output the lubricating oil in the storage tank 471 to the outside, and a storage It has a pipe 473 that connects the tank 471 and a plurality of nozzles 474 arranged on the base 453 . Although not shown in the drawing, the pipe 473 is connected to all the nozzles 474, and is arranged in a state in which it is bent enough to allow horizontal movement of the first to third conveying devices 450A to 450C.
 第1~第3潤滑油添加装置470A~470Cは、第1~第3搬送装置450A~450Cが、それぞれ、各ノズル474が各ダイの直上に位置しているとき(ダイd1~d9の成形孔h1~h9に潤滑油を添加可能な位置にあるとき)に供給手段472が作動することによって、配管473を介して潤滑油をノズル474から直下のダイにそれぞれ添加するようになっている。図7に示すように潤滑油供給装置470は、ワーク側制御部490に接続されており、ワーク側制御部490によって添加に関する制御が行われる。 When the nozzles 474 of the first to third conveying devices 450A to 450C are located directly above the dies (forming holes of the dies d1 to d9), the first to third lubricating oil adding devices 470A to 470C When the lubricating oil can be added to h1 to h9, the supply means 472 is operated to add the lubricating oil from the nozzle 474 through the pipe 473 to each of the dies immediately below. As shown in FIG. 7, the lubricating oil supply device 470 is connected to a work-side control section 490, and the work-side control section 490 controls the addition.
 具体的に第1~第3潤滑油添加装置470A~470Cは、ワーク側制御部490に設けられているタイマ490a(図7参照)の設定により供給手段472の作動のタイミングや作動時間を制御することによって、潤滑油の第1~第9ダイd1~d9の成形孔h1~h9への添加のタイミング(例えば、Nサイクル(鍛造N回)毎に添加)や、潤滑油の添加量を第1~第3潤滑油添加装置470A~470C毎にそれぞれ調整可能となっている。 Specifically, the first to third lubricating oil addition devices 470A to 470C control the operation timing and operation time of the supply means 472 by setting the timer 490a (see FIG. 7) provided in the work side control unit 490. By doing so, the timing of adding the lubricant to the forming holes h1 to h9 of the first to ninth dies d1 to d9 (for example, adding every N cycles (forging N times)) and the amount of lubricant to be added can be set to the first Each of the to third lubricating oil adding devices 470A to 470C can be adjusted.
 なお、第1~第3潤滑油添加装置470A~470Cを第1~第3搬送装置450A~450Cのベース453内にそれぞれ組み込んで、第1~第3搬送装置450A~450Cと一体に構成してもよい。 In addition, the first to third lubricating oil adding devices 470A to 470C are incorporated in the bases 453 of the first to third conveying devices 450A to 450C, respectively, and integrated with the first to third conveying devices 450A to 450C. good too.
 第1~第3搬送装置450A~450Cは、第1~第3押圧装置440A~440Cの第1~第3押圧搬送部442a~442cにより成形が完了して、吊り上げられた状態の複数のワークを受け取って、次工程の方向(図4~図6における右方向)にスライド移動する。そして、第1~第3搬送装置450A~450Cは、第1、第2押圧搬送部442a、442bから受け取ったワークを、第2、第3押圧搬送部442b、442cにそれぞれ引き渡し、第3押圧搬送部442cから受け取ったワークを、後述する第1冷却搬送装置460A、第2冷却搬送装置460B、又は次工程(例えば、冷却材封入工程)へ引き渡す。 The first to third conveying devices 450A to 450C transport a plurality of workpieces that have been lifted after being molded by the first to third pressing conveying units 442a to 442c of the first to third pressing devices 440A to 440C. It is received and slid in the direction of the next process (right direction in FIGS. 4 to 6). Then, the first to third conveying devices 450A to 450C transfer the workpieces received from the first and second pressure conveying units 442a and 442b to the second and third pressure conveying units 442b and 442c, respectively, and the third pressure conveying units The work received from the section 442c is delivered to the first cooling transfer device 460A, the second cooling transfer device 460B, or the next process (for example, coolant sealing process), which will be described later.
 第1搬送装置450Aは、前工程の穴明加工工程から搬送されたワークを受け取って、第1押圧装置440Aの第1押圧搬送部442aに引き渡す。第2搬送装置450Bは、後述する第1冷却搬送装置460Aから搬送されたワークを受け取って、第2押圧装置440Bの第1押圧搬送部442aに引き渡す。第3搬送装置450Cは、後述する第2冷却搬送装置460Bから搬送されたワークを受け取って、第3押圧装置440Cの第1押圧搬送部442aに引き渡す。 The first conveying device 450A receives the work conveyed from the previous drilling process and transfers it to the first pressing conveying section 442a of the first pressing device 440A. The second conveying device 450B receives the work conveyed from the first cooling conveying device 460A, which will be described later, and delivers it to the first pressing conveying section 442a of the second pressing device 440B. The third conveying device 450C receives a work conveyed from a second cooling conveying device 460B, which will be described later, and delivers the work to the first pressing conveying section 442a of the third pressing device 440C.
 上記のようにして第1~第3搬送装置450A~450Cは、4つのワークを同時に搬送(受け取り、引き渡し)可能となっている。 As described above, the first to third conveying devices 450A to 450C are capable of simultaneously conveying (receiving and handing over) four works.
(第1、第2冷却搬送装置460A、460B)
 図4~図6に示すように、第1、第2冷却搬送装置460A、460Bは、押圧搬送部442の爪部446と同様の形態の爪部461と、爪部461を開閉可能とし、また爪部461自体の垂直及び水平方向の移動を可能とする駆動手段462とを設ける。
(First and second cooling transfer devices 460A and 460B)
As shown in FIGS. 4 to 6, the first and second cooling transfer devices 460A and 460B include a claw portion 461 having the same shape as the claw portion 446 of the pressure conveying portion 442, and a claw portion 461 that can be opened and closed. A driving means 462 is provided which allows vertical and horizontal movement of the claw 461 itself.
 第1冷却搬送装置460Aは、第1絞り装置400Aでの絞り加工が完了して第1搬送装置450Aにより搬送された半完成品230を吊り上げた後、常温環境化において一定時間待機させて半完成品230を冷却し、一定時間経過後、半完成品230を第2絞り装置400Bへ搬送する。 The first cooling transfer device 460A lifts the semi-finished product 230 that has been transferred by the first transfer device 450A after the drawing process by the first drawing device 400A is completed. The product 230 is cooled, and after a certain period of time has passed, the semi-finished product 230 is transferred to the second expansion device 400B.
 第2冷却搬送装置460Bは、第2絞り装置400Bでの絞り加工が完了して第2搬送装置450Bにより搬送された半完成品260を吊り上げた後、常温環境化において一定時間待機させて半完成品260を冷却し、一定時間経過後、半完成品260を第3絞り装置400Cへ搬送する。 The second cooling and conveying device 460B lifts the semi-finished product 260 that has been conveyed by the second conveying device 450B after the drawing process by the second drawing device 400B is completed. The product 260 is cooled, and after a certain period of time has passed, the semi-finished product 260 is transferred to the third expansion device 400C.
 図7に示すように、第1、第2冷却搬送装置460A、460Bは、ワーク側制御部490に接続されており、それぞれ待機時間が調整可能となっている。なお、急速に冷却するために送風機等を用いてもよい。 As shown in FIG. 7, the first and second cooling transfer devices 460A and 460B are connected to the work-side control unit 490, and their waiting times can be adjusted. A blower or the like may be used for rapid cooling.
(制御部480、490)
 図7に示すように、ネッキング装置400は、第1~第3高さ調整装置420A~420Cの作動を制御するダイ側制御部480と、第1~第3絞り装置400A~400Cの第1~第3押圧装置440A~440C、第1~第3搬送装置450A~450C、第1、第2冷却搬送装置460A、460B、及び第1~第3潤滑油添加装置470A~470Cの作動を制御するワーク側制御部490とを有する。
(control units 480, 490)
As shown in FIG. 7, the necking device 400 includes a die-side control unit 480 that controls the operations of the first to third height adjustment devices 420A to 420C, and the first to third expansion devices 400A to 400C. Third pressing devices 440A to 440C, first to third conveying devices 450A to 450C, first and second cooling and conveying devices 460A and 460B, and first to third lubricating oil adding devices 470A to 470C work for controlling the operation and a side control unit 490 .
(第1絞り装置400Aによる第1絞り加工)
 図4(I)に示す第1絞り装置400Aが実行する第1絞り加工において、第1搬送装置450Aは、前工程の穴明加工工程から搬送された半完成品200、及びダイd1、d2で成形された半完成品210、220を、第1押圧装置440Aの第1~第3押圧搬送部442a~442cにそれぞれ引き渡し、ダイd3で成形された半完成品230を、図4、図5(II)において冷却処理が行われる第1冷却搬送装置460Aへ引き渡す。第1押圧装置440Aの第1~第3押圧搬送部442a~442cは、第1搬送装置450Aから受け取った半完成品200~220を、ダイd1~d3の成形孔h1~h3にそれぞれ押し込み、プレスして、半完成品210~230を一気に成形する。その後、第1~第3押圧搬送部442a~442cは、成形した半完成品210~230を吊り上げて、第1搬送装置450Aに引き渡す。これを繰り返すことによって、前工程の穴明加工工程から搬送された半完成品200の筒状部201を3段階(φ1→φ2→φ3)で細軸化して半完成品230を成形することができる。
(First drawing by first drawing device 400A)
In the first drawing performed by the first drawing device 400A shown in FIG. 4(I), the first conveying device 450A uses the semi-finished product 200 conveyed from the previous drilling process and the dies d1 and d2. The molded semi-finished products 210 and 220 are delivered to the first to third pressing conveying parts 442a to 442c of the first pressing device 440A, respectively, and the semi-finished product 230 molded by the die d3 is shown in FIGS. 4 and 5 ( It is delivered to the first cooling transfer device 460A where cooling processing is performed in II). The first to third pressing and conveying portions 442a to 442c of the first pressing device 440A push the semi-finished products 200 to 220 received from the first conveying device 450A into the forming holes h1 to h3 of the dies d1 to d3, respectively, and press them. Then, semifinished products 210 to 230 are molded at once. After that, the first to third pressing conveying units 442a to 442c lift the molded semifinished products 210 to 230 and deliver them to the first conveying device 450A. By repeating this, the cylindrical portion 201 of the semi-finished product 200 conveyed from the previous drilling process can be thinned in three steps (φ1→φ2→φ3) to form the semi-finished product 230. can.
(第2絞り装置400Bよる第2絞り加工)
 図5(III)に示す第2絞り装置400Bが実行する第2絞り加工において、第2搬送装置450Bは、第1冷却搬送装置460Aから搬送された半完成品230、及びダイd4、d5で成形された半完成品240、250を、第2押圧装置440Bの第1~第3押圧搬送部442a~442cにそれぞれ引き渡し、ダイd6で成形された半完成品260を、図5、図6(I∨)において冷却処理が行われる第2冷却搬送装置460Bへ引き渡す。第2押圧装置440Bの第1~第3押圧搬送部442a~442cは、第2搬送装置450Bから受け取った半完成品230~250を、ダイd4~d6の成形孔h4~h6にそれぞれ押し込み、プレスして、半完成品240~260を一気に成形する。その後、第1~第3押圧搬送部442a~442cは、成形した半完成品240~260を吊り上げて、第2搬送装置450Bに引き渡す。これを繰り返すことによって、第1冷却搬送装置460Aによって搬送された半完成品230の筒状部201を3段階(φ4→φ5→φ6)で細軸化して半完成品260を成形することができる。
(Second drawing by second drawing device 400B)
In the second drawing performed by the second drawing device 400B shown in FIG. 5(III), the second conveying device 450B uses the semi-finished product 230 conveyed from the first cooling and conveying device 460A and the dies d4 and d5 to form the 5 and 6 (I ∨) to the second cooling transfer device 460B where the cooling process is performed. The first to third pressing and conveying units 442a to 442c of the second pressing device 440B push the semifinished products 230 to 250 received from the second conveying device 450B into the forming holes h4 to h6 of the dies d4 to d6, respectively, and press them. Then, semi-finished products 240 to 260 are molded at once. After that, the first to third pressing conveying units 442a to 442c lift the molded semifinished products 240 to 260 and deliver them to the second conveying device 450B. By repeating this, the cylindrical portion 201 of the semi-finished product 230 conveyed by the first cooling and conveying device 460A can be thinned in three steps (φ4→φ5→φ6) to form the semi-finished product 260. .
(第3絞り装置400Cによる第3絞り加工)
 図6(∨)に示す第3絞り装置400Cが実行する第3絞り加工において、第3搬送装置450Cは、第2冷却搬送装置460Bから搬送された半完成品260、及びダイd7、d8で成形された半完成品270、280を、第3押圧装置440Cの第1~第3押圧搬送部442a~442cにそれぞれ引き渡し、ダイd9で成形された弁傘部110を次工程の冷却材封入工程へ引き渡す。第3押圧装置440Cの第1~第3押圧搬送部442a~442cは、第3搬送装置450Cから受け取った半完成品260~280を、ダイd7~d9の成形孔h7~h9にそれぞれ押し込み、プレスして、半完成品270、280、及び弁傘部110を一気に成形する。その後、第1~第3押圧搬送部442a~442cは、成形した半完成品270、280、及び弁傘部110を吊り上げて、第3搬送装置450Cに引き渡す。これを繰り返すことによって、第2冷却搬送装置460Bによって搬送された半完成品270の筒状部201を3段階(φ7→φ8→φ9)で細軸化して弁傘部110を成形することができる。
(Third drawing by third drawing device 400C)
In the third drawing process performed by the third drawing device 400C shown in FIG. 6(∨), the third conveying device 450C forms the semi-finished product 260 conveyed from the second cooling and conveying device 460B and the dies d7 and d8. The semi-finished products 270 and 280 thus obtained are delivered to the first to third pressing and conveying portions 442a to 442c of the third pressing device 440C, respectively, and the valve head portion 110 formed by the die d9 is transferred to the next coolant sealing step. hand over. The first to third pressing and conveying units 442a to 442c of the third pressing device 440C push the semi-finished products 260 to 280 received from the third conveying device 450C into the forming holes h7 to h9 of the dies d7 to d9, respectively, and press them. Then, the semifinished products 270 and 280 and the valve head portion 110 are molded at once. After that, the first to third pressing conveying units 442a to 442c lift the molded semifinished products 270 and 280 and the valve head portion 110 and deliver them to the third conveying device 450C. By repeating this, the cylindrical portion 201 of the semi-finished product 270 conveyed by the second cooling and conveying device 460B can be thinned in three stages (φ7→φ8→φ9) to form the valve head portion 110. .
 このように絞り加工を、単一の装置ではなく第1~第3絞り装置400A~400Cに分けて行うことによって、半完成品230、260を積極的に冷却するだけでなく、潤滑油の給油やダイの高さ調整をダイユニット単位で行うことが可能となり、装置への過度な負荷を軽減させ、絞り加工の精度を高めることができる。 In this way, the drawing is performed separately by the first to third drawing devices 400A to 400C instead of by a single device. It is possible to adjust the height of the die and the height of each die unit, which reduces the excessive load on the device and improves the precision of the drawing process.
 具体的には、第1~第3高さ調整装置420A~420Cによって、第1~3ダイユニット410A~410Cの高さ、すなわち、ダイd1~d9の高さを適宜変更することができるため、プレス側の下死点を微調整することができる。これにより、各ダイユニット410A~410Cの各ダイd1~d9におけるワークの適性の押し込み量をダイユニット410A~410Cごとに微調整することができ、ダイd1~d9への過度な負荷を避けることができるため、ダイユニット410A~410C全体の耐用年数の延長を図ることができる。 Specifically, the heights of the first to third die units 410A to 410C, that is, the heights of the dies d1 to d9 can be appropriately changed by the first to third height adjusters 420A to 420C. You can fine-tune the bottom dead center on the press side. As a result, it is possible to finely adjust the appropriate pushing amount of the workpiece in each of the dies d1 to d9 of each of the die units 410A to 410C for each of the die units 410A to 410C, thereby avoiding excessive loads on the dies d1 to d9. Therefore, it is possible to extend the service life of the die units 410A to 410C as a whole.
 また、第1~第3搬送装置450A~450C、及び第1~第3潤滑油添加装置470A~470Cによって、各ダイユニット410A~410Cにおけるダイd1~d9の成形孔h1~h9ごと、具体的には、成形孔h1~h3、成形孔h4~h6、成形孔h7~h9毎に、設定したタイミングや設定した量で潤滑油を添加することができる。これにより、各ダイユニット410A~410Cにおいてワークのプレス時等の摩擦により生じる熱の上昇を適切に抑えることができ、安定して冷間鍛造を行うことができる。 Further, by the first to third conveying devices 450A to 450C and the first to third lubricating oil adding devices 470A to 470C, each of the forming holes h1 to h9 of the dies d1 to d9 in each of the die units 410A to 410C is specifically can add lubricating oil at a set timing and in a set amount for each of the molding holes h1 to h3, the molding holes h4 to h6, and the molding holes h7 to h9. As a result, it is possible to appropriately suppress an increase in heat generated by friction during pressing of the workpiece in each of the die units 410A to 410C, so that cold forging can be performed stably.
 また、第1、第2冷却搬送装置460A、460Bによって、ワークを搬送するだけでなく、ワークを一定期間待機させることによって、温度を積極的に下げながら絞り加工を行うことができる。これにより、ワークの温度上昇に伴う加工不具合の減少やダイス寿命の向上を図ることができる。 In addition, the first and second cooling and conveying devices 460A and 460B not only convey the work, but also allow the work to stand by for a certain period of time so that the drawing process can be performed while actively lowering the temperature. As a result, it is possible to reduce processing defects caused by temperature rise of the workpiece and to improve the life of the dies.
 なお、本実施形態では、ダイホルダD1~D3のダイd1~d9の直線的な配列に合わせて、第1~第3押圧装置440A~440C(押圧搬送部442)、第1~第3搬送装置450A~450Cを直線的に配列しているが、ダイホルダD1~D3のダイd1~d9を円環状に配置した場合には、それらの装置をダイd1~d9に沿って円環状に配設、移動させるようにしてもよい。 In addition, in this embodiment, the first to third pressing devices 440A to 440C (pressing and conveying unit 442) and the first to third conveying device 450A are arranged in line with the linear arrangement of the dies d1 to d9 of the die holders D1 to D3. 450C are arranged linearly, but when the dies d1 to d9 of the die holders D1 to D3 are arranged in an annular shape, these devices are arranged and moved in an annular shape along the dies d1 to d9. You may do so.
(エンジンバルブ100における弁傘部110の製造方法)
 図2に示すように、弁傘部110の成形工程は、加熱処理工程において再結晶温度以上まで加熱処理された中実丸棒10を中間体30に成形する熱間鍛造工程と、中間体30を半完成品200に成形する穴明加工工程と、一旦焼鈍(軟化処理)が行われた後、常温に戻った半完成品200を弁傘部110に成形する冷間鍛造工程からなる。
(Manufacturing method of valve head portion 110 in engine valve 100)
As shown in FIG. 2, the forming process of the valve head portion 110 includes a hot forging process of forming an intermediate body 30 from the solid round bar 10 that has been heat-treated to the recrystallization temperature or higher in the heat treatment process, and a hot forging process of forming the intermediate body 30 into a semi-finished product 200, and a cold forging step of forming the valve head portion 110 from the semi-finished product 200 that has been annealed (softened) and then returned to room temperature.
(熱間鍛造工程)
 熱間鍛造工程は、搾出加工工程及び傘成形工程からなり、加熱処理された中実丸棒10に対して、一気鍛造装置300により搾出加工及び傘成形を同時に行う。
 具体的には、図3に示すように、一気鍛造装置300は、搾出用ダイ322の第1成形孔321に搬送された中実丸棒10と、傘成形用ダイ324の第2成形孔323に搬送された第1中間体20とを、第1パンチ312及び第2パンチ313によって同時に押圧して、第1成形孔321において第1中間体20を成形する搾出加工と、第2成形孔323において第2中間体30を成形する傘成形とを同時に実行する。このようにして、図2(a)~(b)の搾出加工工程及び図2(b)~(c)の傘成形工程は同時行われる。
(Hot forging process)
The hot forging process consists of an extruding process and a canopy forming process, and the heat-treated solid round bar 10 is simultaneously extruded and canopy formed by the forging device 300 .
Specifically, as shown in FIG. The first intermediate 20 conveyed to 323 is simultaneously pressed by the first punch 312 and the second punch 313 to form the first intermediate 20 in the first forming hole 321, and the second forming Umbrella forming for forming the second intermediate 30 in the hole 323 is performed at the same time. In this manner, the pressing process of FIGS. 2(a)-(b) and the umbrella-forming process of FIGS. 2(b)-(c) are performed simultaneously.
 ここで、エンジンバルブ100の製造方法においては、エンジンバルブ100の軸部111の軸径等に応じて、冷間鍛造前の半完成品200の筒状部201の外径を変更する必要がある。そのため、従来のエンジンバルブの製造方法では、図10に示すように、予め中実丸棒1の外径(φa)を半完成品6の筒状部8の外径(φa)と同一にする必要があった。しかしながら、本実施形態では、図2に示すように、中実丸棒10の外径(φA)が半完成品200の筒状部201の外径(φC)と同一としなくても(φA>φC)、搾出加工工程によって、第2中間体30における胴部21の外径(φC)を半完成品200における筒状部201の外径(φC)と同一にすることができる。すなわち、一種類の中実丸棒10(例えば外径がφA)を用意して、中実丸棒10をエンジンバルブ100(完成品)の仕様に合わせて搾出用ダイ322を適宜変更して搾出加工をするだけで、要求に応じた胴部31を有する中間体30を成形することができる。これにより、仕様に応じて軸径が異なる種々の中実丸棒10を用意する必要がなくなるため、生産管理の容易化を図ることができるとともに、中実丸棒10の外径に制限されることなく、弁傘部110(エンジンバルブ100)の設計の自由度を高めることができる。 Here, in the method for manufacturing the engine valve 100, it is necessary to change the outer diameter of the cylindrical portion 201 of the semifinished product 200 before cold forging according to the shaft diameter of the shaft portion 111 of the engine valve 100. . Therefore, in the conventional engine valve manufacturing method, as shown in FIG. I needed it. However, in this embodiment, as shown in FIG. 2, even if the outer diameter (φA) of the solid round bar 10 is not the same as the outer diameter (φC) of the cylindrical portion 201 of the semi-finished product 200 (φA> φC), the outer diameter (φC) of the body portion 21 in the second intermediate 30 can be made the same as the outer diameter (φC) of the tubular portion 201 in the semi-finished product 200 by the squeezing step. That is, one type of solid round bar 10 (for example, the outer diameter is φA) is prepared, and the squeezing die 322 is appropriately changed to match the solid round bar 10 to the specifications of the engine valve 100 (finished product). The intermediate body 30 having the body portion 31 according to the request can be formed only by performing the squeezing process. As a result, there is no need to prepare various solid round bars 10 with different shaft diameters according to specifications, so production management can be facilitated and the outer diameter of the solid round bar 10 is limited. Therefore, the degree of freedom in designing the valve head portion 110 (engine valve 100) can be increased.
 また、本実施形態では、搾出加工工程と傘成形工程とを同時に行うことにより、搾出加工工程がない従来のエンジンバルブの製造方法と比べてもリードタイムは延長しない。 In addition, in this embodiment, by performing the squeezing process and the umbrella forming process at the same time, the lead time is not extended compared to the conventional engine valve manufacturing method that does not have the squeezing process.
 また、ワークを高温状態に維持したまま、短時間で搾出加工工程と傘成形工程とを行うことにより、弁傘部110の成形途中である第2中間体30以降のワーク全体の組織(結晶粒)が小さくなるように管理することができる。これにより、冷間鍛造工程において冷間加工性が向上し、冷間鍛造によって成形された弁傘部110の肌面がなめらかになり、品質の向上を図ることができる。 In addition, by performing the squeezing process and the head forming process in a short time while maintaining the work in a high temperature state, the structure (crystal grains) can be managed to be small. This improves the cold workability in the cold forging process, smoothes the surface of the valve head portion 110 formed by cold forging, and improves the quality.
(穴明加工工程)
 図2(c)~(d)に示す穴明加工工程では、第2中間体30の先端から、穴明装置のドリルなどにより軸線方向に円筒穴205を穿設して筒状部201を設けて半完成品200を成形する。穴明加工工程後、半完成品200に対して焼鈍(軟化処理)が行われる。
(Drilling process)
In the drilling process shown in FIGS. 2(c) to (d), a cylindrical portion 201 is provided by drilling a cylindrical hole 205 in the axial direction from the tip of the second intermediate 30 using a drill of a drilling device. to form a semi-finished product 200. After the drilling process, the semi-finished product 200 is annealed (softened).
(冷間鍛造工程)
 図2(d)~(e)に示す冷間鍛造工程では絞り加工が行われ、図6に示すネッキング装置400によって、半完成品200に対する複数工程の絞り加工を複数の装置に分けて行うことにより、弁傘部110を成形する。本実施形態では、例えば9つの絞り工程を3つの絞り装置400A~400Cに分けて、3つのワークに対して3工程ずつ絞り加工を同時に行うことにより、半完成品200から弁傘部110を成形する。
(Cold forging process)
Drawing is performed in the cold forging process shown in FIGS. , the valve head portion 110 is formed. In the present embodiment, for example, nine drawing processes are divided into three drawing devices 400A to 400C, and the valve head portion 110 is formed from the semi-finished product 200 by simultaneously performing three drawing processes on three works. do.
 具体的に冷間鍛造工程では、第1絞り装置400Aが、ワークの筒状部201の外径を、第1絞り工程において3段階でφ1からφ3まで縮径し、第1冷却搬送装置460Aが第1冷却工程においてワークを冷却し、第2絞り装置400Bが、ワークの筒状部201の外径を第2絞り工程において3段階でφ4からφ6まで縮径し、第2冷却搬送装置460Bが第2冷却工程においてワークを冷却し、第3絞り装置400Cが、ワークの筒状部201の外径を第3絞り工程において3段階でφ7からφ9まで縮径することによって、弁傘部110を成形する。 Specifically, in the cold forging process, the first drawing device 400A reduces the outer diameter of the cylindrical portion 201 of the workpiece from φ1 to φ3 in three steps in the first drawing step, and the first cooling transfer device 460A The work is cooled in the first cooling step, the second drawing device 400B reduces the outer diameter of the cylindrical portion 201 of the work from φ4 to φ6 in three stages in the second drawing step, and the second cooling transfer device 460B The work is cooled in the second cooling process, and the third throttling device 400C reduces the outer diameter of the cylindrical portion 201 of the work from φ7 to φ9 in three steps in the third throttling step, thereby reducing the valve head portion 110. to mold.
 このように、第1~第3絞り装置400A~400Cによって、絞り工程を装置毎に分けることによって、第1~第3ダイユニット410A~410Cの高さ調整、潤滑油の投入に係る調整、又はワークへの加圧力や押し込みスピードの調整を行うことができるとともに、絞り工程間に冷却工程を加入することができ、ワークの温度を積極的に下げながら絞り加工を行うことができるため、ワークの温度上昇に伴う加工の不具合の減少やダイス寿命の向上を図ることができる。 In this way, by dividing the drawing process for each device by the first to third drawing devices 400A to 400C, the height adjustment of the first to third die units 410A to 410C, the adjustment related to the introduction of lubricating oil, or In addition to being able to adjust the pressure applied to the workpiece and the pushing speed, a cooling process can be added between the drawing processes, and the temperature of the workpiece can be actively lowered while drawing. It is possible to reduce defects in processing due to temperature rise and to improve the life of dies.
(絞り加工)
 図8~図9を参照して、本実施形態の冷間鍛造における絞り加工のパターン(第1絞りパターン及び第2絞りパターン)について説明する。本実施形態では、第1絞りパターンの絞り込みの対象となるワークには絞り難い中炭素鋼(例えば炭素含有率が0.48~0.58%)を採用し、第2絞りパターンの絞り込みの対象となるワークには、第1絞りパターンよりも絞り易い低炭素鋼(例えば炭素含有率が0.25から0.35)を採用している。
(drawing)
Drawing patterns (first drawing pattern and second drawing pattern) in the cold forging of this embodiment will be described with reference to FIGS. In this embodiment, medium carbon steel (for example, the carbon content is 0.48 to 0.58%), which is difficult to narrow down, is used as the work to be narrowed down by the first drawing pattern, and the work to be narrowed down by the second drawing pattern is adopts low-carbon steel (for example, carbon content of 0.25 to 0.35) that is easier to draw than the first drawing pattern.
(第1絞りパターン)
 図8の中欄の表に示すように、第1絞りパターンでは、ダイユニット410A~410Cの各ダイd1~d9を用いた絞り工程#1~#9において絞り加工を行い、半完成品200を弁傘部110に成形する。
(First aperture pattern)
As shown in the table in the middle column of FIG. 8 , in the first drawing pattern, drawing is performed in drawing steps #1 to #9 using dies d1 to d9 of die units 410A to 410C, and a semifinished product 200 is obtained. The valve head portion 110 is molded.
 具体的に、第1絞りパターンでは、絞り工程#1において、半完成品200に対して、内径φ1の成形孔h1、及び勾配角θ2、深さΓ3の拡径部w1を有するダイd1による絞り加工によって半完成品210を成形する。 Specifically, in the first drawing pattern, in the drawing step #1, the semi-finished product 200 is drawn by a die d1 having a forming hole h1 with an inner diameter φ1 and an enlarged diameter portion w1 with an inclination angle θ2 and a depth Γ3. The processing forms a semi-finished product 210 .
 次いで絞り工程#2において、半完成品210に対して、内径φ1より小径のφ2の成形孔h2、及び勾配角θ2、深さΓ3の拡径部w2を有するダイd2による絞り加工によって半完成品220を成形する。 Next, in the drawing step #2, the semi-finished product 210 is drawn by a die d2 having a forming hole h2 with a diameter of φ2 smaller than the inner diameter φ1 and an enlarged diameter portion w2 with an inclination angle θ2 and a depth Γ3. 220 is molded.
 次いで絞り工程#3において、半完成品220に対して、内径φ2より小径のφ3の成形孔h3、及び勾配角θ2、深さΓ3の拡径部w3を有するダイd3による絞り加工によって半完成品230を成形する。 Next, in the drawing process #3, the semi-finished product 220 is drawn by a die d3 having a forming hole h3 of φ3 smaller than the inner diameter φ2 and an enlarged diameter portion w3 of a slope angle θ2 and a depth Γ3. 230 is molded.
 次いで絞り工程#4において、半完成品230に対して、内径φ3より小径のφ4の成形孔h4、及び勾配角θ2よりも急勾配のθ3、深さΓ3の拡径部w4を有するダイd4による絞り加工によって半完成品240を成形する。 Next, in the drawing process #4, the semi-finished product 230 is drawn by a die d4 having a forming hole h4 with a diameter of φ4 smaller than the inner diameter φ3, and an enlarged diameter portion w4 with a steeper slope θ3 than the inclination angle θ2 and a depth Γ3. A semi-finished product 240 is formed by drawing.
 次いで絞り工程#5において、半完成品240に対して、内径φ4より小径のφ5の成形孔h5、及び勾配角θ3、深さΓ3の拡径部w5を有するダイd5による絞り加工によって半完成品250を成形する。 Next, in the drawing process #5, the semi-finished product 240 is drawn by a die d5 having a forming hole h5 with a diameter of φ5 smaller than the inner diameter φ4 and an enlarged diameter portion w5 with an inclination angle of θ3 and a depth of Γ3. Mold 250.
 次いで絞り工程#6において、半完成品250に対して、内径φ5より小径のφ6の成形孔h6、及び勾配角θ3よりも急勾配のθ4、深さΓ3の拡径部w6を有するダイd6による絞り加工によって半完成品260を成形する。 Next, in the drawing step #6, the semi-finished product 250 is drawn by a die d6 having a forming hole h6 with a diameter of φ6 smaller than the inner diameter φ5 and an enlarged diameter portion w6 with a steeper slope θ4 than the slope angle θ3 and a depth Γ3. A semi-finished product 260 is formed by drawing.
 次いで絞り工程#7において、半完成品260に対して、内径φ6より小径のφ7の成形孔h7、及び勾配角θ4、深さΓ3の拡径部w7を有するダイd7による絞り加工によって半完成品270を成形する。 Next, in the drawing step #7, the semi-finished product 260 is drawn by a die d7 having a forming hole h7 with a diameter of φ7 smaller than the inner diameter φ6 and an enlarged diameter portion w7 with an inclination angle of θ4 and a depth of Γ3. 270 is molded.
 次いで絞り工程#8において、半完成品270に対して、内径φ7より小径のφ8の成形孔h8、及び勾配角θ4よりも急勾配のθ5、深さΓ3の拡径部w8を有するダイd8による絞り加工によって半完成品280を成形する。 Next, in the drawing step #8, the semi-finished product 270 is drawn by a die d8 having a forming hole h8 with a diameter of φ8 smaller than the inner diameter φ7 and an enlarged diameter portion w8 with a steeper slope θ5 than the slope angle θ4 and a depth Γ3. A semi-finished product 280 is formed by drawing.
 最終の絞り工程#9において、半完成品280に対して、内径φ8より小径のφ9の成形孔h9、及び勾配角θ5よりも急勾配のθ6、深さΓ3の拡径部w9を有するダイd9による絞り加工によって弁傘部110を成形する。 In the final drawing process #9, the semifinished product 280 has a forming hole h9 with a diameter of φ9 smaller than the inner diameter φ8, and a die d9 having an enlarged diameter portion w9 with a steeper slope θ6 than the slope angle θ5 and a depth Γ3. The valve head portion 110 is formed by drawing with.
 第1絞りパターンでは、例えば、成形孔h1~h9の内径φ、及び拡径部w1~w9の勾配角θ、深さΓについて、φ9~φ1を5mm~20mmの範囲で設定し、θ6~θ2を10°~3°の範囲で設定し、Γ3を10mm~15mmの範囲で設定する。これにより、第1絞りパターンで成形される弁傘部110は、図8の下欄に示すように、軸部111の外径はφ6mmとなり、中空部115における上中空部115aの内径はφ3mmとなる。 In the first drawing pattern, for example, the inner diameter φ of the molding holes h1 to h9, the gradient angle θ of the enlarged diameter portions w1 to w9, and the depth Γ are set in the range of 5 mm to 20 mm, and θ6 to θ2. is set in the range of 10° to 3°, and Γ3 is set in the range of 10 mm to 15 mm. As a result, in the valve head portion 110 formed according to the first throttle pattern, as shown in the lower column of FIG. Become.
(第2絞りパターン)
 図9を参照して第2絞りパターンについて説明する。
 第2絞りパターンでは、ダイユニット410A~410Cにダイd41~d46を設け、ダイd41~d46を用いた絞り工程#1~#6を行い、半完成品200を弁傘部110に成形する。
(Second aperture pattern)
The second aperture pattern will be described with reference to FIG.
In the second drawing pattern, dies d41 to d46 are provided in die units 410A to 410C, drawing steps #1 to #6 are performed using dies d41 to d46, and semifinished product 200 is formed into valve head portion 110.
 図9の中欄に示すように、各ダイd41~d46は、円筒孔状の成形孔h41~h46と、成形孔h41~h45の上部に連接され上方に向かってすり鉢状に拡径する拡径部w41~w46とをそれぞれ設ける。図9の上欄に示すように、ダイd41~d46(dn)の成形孔h41~h46(hn)には、内径φがそれぞれ設定され、拡径部w41~w46(wn)には、それぞれ勾配角θ、及び深さΓが設定されている。 As shown in the middle column of FIG. 9, each of the dies d41 to d46 is connected to the upper portions of the cylindrical forming holes h41 to h46 and the forming holes h41 to h45 and expands upward in a mortar shape. Sections w41 to w46 are provided respectively. As shown in the upper column of FIG. 9, the inner diameter φ is set in each of the forming holes h41 to h46 (hn) of the dies d41 to d46 (dn), and each of the enlarged diameter portions w41 to w46 (wn) has a gradient An angle θ and a depth Γ are set.
 具体的に、第2絞りパターンでは、絞り工程#1において、半完成品200に対して、内径φ12の成形孔h41、及び勾配角θ14、深さΓ13の拡径部w41を有するダイd41による絞り加工によって半完成品210を成形する。 Specifically, in the second drawing pattern, in the drawing step #1, the semi-finished product 200 is drawn by a die d41 having a forming hole h41 with an inner diameter of φ12 and an enlarged diameter portion w41 with an inclination angle of θ14 and a depth of Γ13. The processing forms a semi-finished product 210 .
 次いで絞り工程#2において、半完成品210に対して、内径φ12より小径のφ14の成形孔h42、及び勾配角θ14、深さΓ13の拡径部w42を有するダイd42による絞り加工によって半完成品220を成形する。 Next, in the drawing process #2, the semi-finished product 210 is drawn by a die d42 having a forming hole h42 of φ14 smaller than the inner diameter φ12, and an enlarged diameter portion w42 having an inclination angle θ14 and a depth Γ13. 220 is molded.
 次いで絞り工程#3において、半完成品220に対して、内径φ14より小径のφ16の成形孔h43、及び勾配角θ14よりも急勾配のθ15、深さΓ13の拡径部w43を有するダイd43による絞り加工によって半完成品230を成形する。 Next, in the drawing process #3, the semi-finished product 220 is drawn by a die d43 having a forming hole h43 with a diameter of φ16 smaller than the inner diameter φ14, and an enlarged diameter portion w43 with a steeper slope θ15 than the inclination angle θ14 and a depth Γ13. A semi-finished product 230 is formed by drawing.
 次いで絞り工程#4において、半完成品230に対して、内径φ16より小径のφ19の成形孔h44、及び勾配角θ15、深さΓ13の拡径部w44を有するダイd44による絞り加工によって半完成品250を成形する。 Next, in the drawing step #4, the semi-finished product 230 is drawn by a die d44 having a forming hole h44 with a diameter of φ19 smaller than the inner diameter φ16 and an enlarged diameter portion w44 with an inclination angle θ15 and a depth Γ13. Mold 250.
 次いで絞り工程#5において、半完成品250に対して、内径φ19より小径のφ21の成形孔h45、及び勾配角θ15よりも急勾配のθ16、深さΓ13の拡径部w45を有するダイd45による絞り加工によって半完成品270を成形する。 Next, in the drawing step #5, the semi-finished product 250 is processed by a die d45 having a forming hole h45 with a diameter of φ21 smaller than the inner diameter φ19, and an enlarged diameter portion w45 with a steeper slope θ16 than the slope angle θ15 and a depth Γ13. A semi-finished product 270 is formed by drawing.
 次いで絞り工程#6において、半完成品270に対して、内径φ21より小径のφ24の成形孔h46、及び勾配角θ16、深さΓ13の拡径部w46を有するダイd46による絞り加工によって弁傘部110を成形する。すなわち、第2絞りパターンでは、絞り加工を6工程で弁傘部110を成形する。 Next, in the drawing step #6, the semi-finished product 270 is drawn by a die d46 having a forming hole h46 of φ24 smaller than the inner diameter φ21, and an enlarged diameter portion w46 having an inclination angle θ16 and a depth Γ13. 110 is molded. That is, in the second drawing pattern, the valve head portion 110 is formed in six steps of drawing.
 各成形孔h41~h46の内径φの関係は、φ12>φ14>φ16>φ19>φ21>φ24となっている。 The relationship of the inner diameters φ of the molding holes h41 to h46 is φ12>φ14>φ16>φ19>φ21>φ24.
 したがって、第2絞りパターンでは、最終の絞り工程#6において、第1絞りパターンの最終の絞り工程#9の絞り寸法の範囲(φ8→φ9)よりも、絞り寸法の範囲を大とした(φ21→φ24)絞り加工を行っている。 Therefore, in the second drawing pattern, in the final drawing process #6, the drawing size range (φ21 →φ24) Drawing is performed.
 また、第2絞りパターンの各拡径部w41~w46の勾配角θの関係は、θ14>θ15>θ16となっている。 Also, the relationship of the gradient angles θ of the enlarged diameter portions w41 to w46 of the second diaphragm pattern is θ14>θ15>θ16.
 また、ダイd41~d46の拡径部w41~w46は全て深さΓ13となっている。 Further, all of the enlarged diameter portions w41 to w46 of the dies d41 to d46 have a depth of Γ13.
 第2絞りパターンでは、例えば、成形孔hnの内径φ、及び拡径部wnの勾配角θ、深さΓについて、φ24、φ21、φ19、φ16、φ14、φ12を6mm~15mmの範囲で設定し、拡径部wnの勾配角θについて、θ16~θ14を8°~10°の範囲で設定し、拡径部wnの深さΓについて、Γ13を13mm~14mmの範囲で設定する。これにより成形される弁傘部110は、図9の下欄に示すように、軸部111の外径はφ6mmとなり、中空部115における上中空部115aの内径はφ3mmとなる。 In the second drawing pattern, for example, φ24, φ21, φ19, φ16, φ14, and φ12 are set in the range of 6 mm to 15 mm for the inner diameter φ of the forming hole hn, the gradient angle θ, and the depth Γ of the expanded diameter portion wn. , .theta.16 to .theta.14 are set in the range of 8.degree. to 10.degree. for the gradient angle .theta. As shown in the lower column of FIG. 9, the valve head portion 110 thus formed has an outer diameter of φ6 mm at the shaft portion 111 and an inner diameter of φ3 mm at the upper hollow portion 115a of the hollow portion 115 .
 すなわち、第2絞りパターンで成形される弁傘部110は、第1絞りパターンで成形した弁傘部110の形状とほぼ同一であるが、9工程で弁傘部110が成形される第1絞りパターンよりも少ない6工程で弁傘部110が形成される。また、第2絞りパターンでは、上記のように各絞り工程において、ダイを調整することによって、1回ごとの絞り上げに無理が生じて座屈やクラックを生じることはなく、絞り工程そのものが円滑にすすむ。 That is, the valve head portion 110 formed by the second throttle pattern has substantially the same shape as the valve head portion 110 formed by the first throttle pattern, but the first throttle portion 110 is formed in nine steps. The valve head portion 110 is formed in six steps, which are fewer than the pattern. In addition, in the second drawing pattern, by adjusting the die in each drawing process as described above, buckling and cracking due to unreasonableness in drawing each time do not occur, and the drawing process itself is smooth. proceed to
 以上のように、絞り工程において、ダイdnの成形孔hnの内径φ、拡径部wnの勾配角θ、及び深さΓの値をそれぞれ調整する(変化させる)ことにより、所望の形態の弁傘部110を成形できるだけでなく、絞り工程(冷間鍛造工程)の短縮化を図ることができる。 As described above, in the drawing process, by adjusting (changing) the values of the inner diameter φ of the forming hole hn of the die dn, the gradient angle θ of the enlarged diameter portion wn, and the depth Γ, the desired form of the valve can be obtained. Not only can the umbrella portion 110 be formed, but the drawing process (cold forging process) can be shortened.
(冷却材封入工程、表面加工工程)
 冷却材封入工程においては、冷間鍛造工程によって成形された弁傘部110の中空部115にゲッタ材や、金属ナトリウム等の冷却材を投入し、軸端部材120を軸部111の上端部に接合して固着することにより、軸部111の開口が閉塞され、冷却材等は中空部115内に封入される。
(Coolant sealing process, surface processing process)
In the coolant filling process, a getter material or a coolant such as metallic sodium is introduced into the hollow portion 115 of the valve head portion 110 formed by the cold forging process, and the shaft end member 120 is placed on the upper end portion of the shaft portion 111. By joining and fixing, the opening of the shaft portion 111 is closed, and the coolant and the like are enclosed in the hollow portion 115 .
 これにより、エンジンバルブ100が完成する。なお、必要に応じて表面加工工程において、熱伝導率が低い金属によって断熱コーティングを施したり、窒化処理や研磨などの表面処理を施してもよい。 Thus, the engine valve 100 is completed. In addition, in the surface processing step, if necessary, heat insulating coating may be applied with a metal having low thermal conductivity, or surface treatment such as nitriding or polishing may be applied.
 以上、本発明の実施形態について説明したが、下記の変形例を採用することができる。 Although the embodiments of the present invention have been described above, the following modifications can be adopted.
 本実施形態では、絞り工程を9工程とし、絞り装置(第1~第3絞り装置400A~400C)を3基とし、各絞り装置に設置されているダイの数を3つとして、3工程ずつ纏めて絞り加工を行うようにしているが、それに限定されず、絞り工程は、例えば6工程以上であればよく、絞り装置を2基又は4基以上とし、絞り装置のダイの数を2又は4以上としてもよい。 In this embodiment, nine drawing steps are used, three drawing devices (first to third drawing devices 400A to 400C) are provided, and three dies are installed in each drawing device. The drawing process is performed collectively, but it is not limited to this, and the drawing process may be, for example, 6 or more processes, the number of drawing devices is two or four or more, and the number of dies of the drawing device is two or more. It may be 4 or more.
D1~D3   ダイユニット
dn      ダイ
hn      成形孔
wn      拡径部
10      中実丸棒
20      第1中間体
21      胴部
22      ヘッド部
30      第2中間体
31      胴部
32      傘状部
100     中空エンジンバルブ
110     弁傘部
111     軸部
112     傘部
115     中空部
120     軸端部材
200     半完成品
201     筒状部
202     傘状部
210~280 半完成品
300     一気鍛造装置
311     パンチホルダ
312     第1パンチ
313     第2パンチ
321     第1成形孔
321a    誘導部
321b    挿入部
321c    テーパ部
321d    搾出部
322     搾出用ダイ
323     第2成形孔
323a    傘成形部
323b    胴成形部
324     傘成形用ダイ
325     ダイホルダ
400     ネッキング装置
400A    第1絞り装置
400B    第2絞り装置
400C    第3絞り装置
410A    第1ダイユニット
410B    第2ダイユニット
410C    第3ダイユニット
420A    第1高さ調整装置
420B    第2高さ調整装置
420C    第3高さ調整装置
421     支持プレート
422     駆動手段
440A    第1押圧装置
440B    第2押圧装置
440C    第3押圧装置
441     パンチホルダ
442a    第1押圧搬送部
442b    第2押圧搬送部
442c    第3押圧搬送部
446     爪部
447     押圧部
450A    第1搬送装置
450B    第2搬送装置
450C    第3搬送装置
451     爪部
453     ベース
454     駆動手段
460A    第1冷却搬送装置
460B    第2冷却搬送装置
461     爪部
462     駆動手段
470A    第1潤滑油添加装置
470B    第2潤滑油添加装置
470C    第3潤滑油添加装置
471     貯留タンク
472     供給手段
473     配管
474     ノズル
480     ダイ側制御部
490     ワーク側制御部
490a    タイマ
D1 to D3 die unit dn die hn forming hole wn enlarged diameter portion 10 solid round bar 20 first intermediate body 21 body portion 22 head portion 30 second intermediate body 31 body portion 32 canopy portion 100 hollow engine valve 110 valve head portion 111 Shaft portion 112 Head portion 115 Hollow portion 120 Shaft end member 200 Semi-finished product 201 Cylindrical portion 202 Head-shaped portions 210 to 280 Semi-finished product 300 Single forging device 311 Punch holder 312 First punch 313 Second punch 321 First forming Hole 321a Guiding portion 321b Insertion portion 321c Tapered portion 321d Extracting portion 322 Extracting die 323 Second forming hole 323a Head forming portion 323b Body forming portion 324 Head forming die 325 Die holder 400 Necking device 400A First drawing device 400B Second Diaphragm device 400C Third diaphragm device 410A First die unit 410B Second die unit 410C Third die unit 420A First height adjustment device 420B Second height adjustment device 420C Third height adjustment device 421 Support plate 422 Driving means 440A First pressing device 440B Second pressing device 440C Third pressing device 441 Punch holder 442a First pressing conveying portion 442b Second pressing conveying portion 442c Third pressing conveying portion 446 Claw portion 447 Pressing portion 450A First conveying device 450B Second conveying Device 450C Third conveying device 451 Claw portion 453 Base 454 Driving means 460A First cooling and conveying device 460B Second cooling and conveying device 461 Claw portion 462 Driving means 470A First lubricating oil adding device 470B Second lubricating oil adding device 470C Third lubricating device Oil addition device 471 Storage tank 472 Supply means 473 Piping 474 Nozzle 480 Die side controller 490 Work side controller 490a Timer

Claims (1)

  1.  軸部と、前記軸部の基端に傘状に拡径する傘部と、少なくとも前記軸部の内部に設けられた中空部とを備える中空エンジンバルブの製造方法であって、
     特殊鋼からなる素材である中実丸棒を再結晶温度以上の高温状態とする加熱処理工程と、
     前記加熱処理工程で前記高温状態となったワークの一端側を除く胴部を縮径して中間体を成形する搾出加工工程と、
     前記中間体において相対的に拡径した前記一端側を傘状に拡径する傘成形工程と、
     前記傘成形工程で成形された前記中間体の他端側から軸線に沿って有底の穴を穿設して半完成品を成形する穴明加工工程と、
     前記半完成品を冷間で絞り上げる冷間鍛造工程とを含み、
     前記搾出加工工程と前記傘成形工程とを同時に行うことを特徴とする中空エンジンバルブの製造方法。
    A method for manufacturing a hollow engine valve comprising: a shaft portion; a head portion expanding in diameter like an umbrella at a proximal end of the shaft portion; and a hollow portion provided at least inside the shaft portion,
    A heat treatment step in which a solid round bar, which is a material made of special steel, is brought to a high temperature state above the recrystallization temperature,
    A squeezing step of forming an intermediate body by reducing the diameter of the body portion excluding one end side of the work that has been brought to a high temperature state in the heat treatment step;
    an umbrella forming step of enlarging the diameter of the one end side of the intermediate body, which is relatively enlarged, into an umbrella shape;
    A drilling step of drilling a bottomed hole along the axis from the other end of the intermediate body formed in the umbrella forming step to form a semi-finished product;
    A cold forging step of cold-squeezing the semi-finished product,
    A method for manufacturing a hollow engine valve, wherein the squeezing step and the umbrella forming step are performed simultaneously.
PCT/JP2021/026549 2021-07-15 2021-07-15 Method for manufacturing hollow engine valve WO2023286227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026549 WO2023286227A1 (en) 2021-07-15 2021-07-15 Method for manufacturing hollow engine valve
JP2023534531A JPWO2023286227A1 (en) 2021-07-15 2021-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026549 WO2023286227A1 (en) 2021-07-15 2021-07-15 Method for manufacturing hollow engine valve

Publications (1)

Publication Number Publication Date
WO2023286227A1 true WO2023286227A1 (en) 2023-01-19

Family

ID=84919791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026549 WO2023286227A1 (en) 2021-07-15 2021-07-15 Method for manufacturing hollow engine valve

Country Status (2)

Country Link
JP (1) JPWO2023286227A1 (en)
WO (1) WO2023286227A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179846A (en) * 1986-02-05 1987-08-07 Fuji Valve Kk Production of engine valve
JPH10128486A (en) * 1996-10-28 1998-05-19 Aisan Ind Co Ltd Hot extruding and forging die for titanium
JP2000033453A (en) * 1998-07-17 2000-02-02 Fuji Oozx Inc Press apparatus for work
JP2000033452A (en) * 1998-07-17 2000-02-02 Fuji Oozx Inc Press apparatus for work
JP2010094732A (en) * 2008-09-18 2010-04-30 Yoshimura Company:Kk Method of manufacturing umbrella portion of hollow engine valve and hollow engine valve
JP2016047537A (en) * 2014-08-27 2016-04-07 三菱重工業株式会社 Hollow engine valve and method for manufacturing the same
US20200149442A1 (en) * 2017-06-29 2020-05-14 Federal-Mogul Valvetrain Gmbh Process for manufacturnig an internally cooled valve having a cooling structure, and valve manufactured by said method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179846A (en) * 1986-02-05 1987-08-07 Fuji Valve Kk Production of engine valve
JPH10128486A (en) * 1996-10-28 1998-05-19 Aisan Ind Co Ltd Hot extruding and forging die for titanium
JP2000033453A (en) * 1998-07-17 2000-02-02 Fuji Oozx Inc Press apparatus for work
JP2000033452A (en) * 1998-07-17 2000-02-02 Fuji Oozx Inc Press apparatus for work
JP2010094732A (en) * 2008-09-18 2010-04-30 Yoshimura Company:Kk Method of manufacturing umbrella portion of hollow engine valve and hollow engine valve
JP2016047537A (en) * 2014-08-27 2016-04-07 三菱重工業株式会社 Hollow engine valve and method for manufacturing the same
US20200149442A1 (en) * 2017-06-29 2020-05-14 Federal-Mogul Valvetrain Gmbh Process for manufacturnig an internally cooled valve having a cooling structure, and valve manufactured by said method

Also Published As

Publication number Publication date
JPWO2023286227A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
CN212042201U (en) Safety protection and sealing module for metal pipe bulging and rapid cooling strengthening process
EP2716378B1 (en) Hot press molding method and hot press molding die
CN109693083B (en) Plastic forming method of titanium alloy shell with large length-diameter ratio
CN110869590B (en) Method for manufacturing hollow valve
CN104624918B (en) Manufacture the method for gear and for manufacturing the forging apparatus of gear
CN1193839C (en) Superplastic forming process of titanium alloy corrugated pipe
CN101352799A (en) Long shaft blocking forward extrusion forming method
CN102686330A (en) Method for manufacturing hollow engine valve
CN102172658A (en) Semitrailer integral axle tube extrusion moulding equipment and method
WO2023286227A1 (en) Method for manufacturing hollow engine valve
EP1844875B1 (en) Method and device for upsetting cylindrical material
CN114589284B (en) One-fire cogging die and method for alloy bar stock and upsetting-extruding-upsetting large deformation method
CN214735971U (en) Temperature-controlled cold treatment device for high-temperature forge piece
CN113798424B (en) Cold extrusion forming equipment and process for pinion of speed reducer
CN209890489U (en) Double-tunnel hot bending furnace and hot bending forming equipment
CN114178455A (en) Hot-cold composite forming process for large-caliber thin-wall elastomer
CN107350409A (en) New-energy automobile slidably engages set back extrusion concave
CN110125336B (en) Casting die utensil of double gooseneck plug
CN219141479U (en) Carbon-point sintering device
CN110788227B (en) Double-station closing-in forming device for large and medium caliber cannon and using method thereof
CN215966114U (en) Die for producing titanium alloy cylinder forging
CN115722626B (en) Combined step extrusion die and forming method
CN216065071U (en) Hot-air expansion forming process system for steel pipe
CN100436101C (en) Method and device for the secondary treatment and the cooling of preforms
CN112828117B (en) Cold forging forming process and forming die for thin-wall deep-hole flanged part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023534531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE