WO2023286110A1 - Heat exchange element - Google Patents

Heat exchange element Download PDF

Info

Publication number
WO2023286110A1
WO2023286110A1 PCT/JP2021/026095 JP2021026095W WO2023286110A1 WO 2023286110 A1 WO2023286110 A1 WO 2023286110A1 JP 2021026095 W JP2021026095 W JP 2021026095W WO 2023286110 A1 WO2023286110 A1 WO 2023286110A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat transfer
exchange element
heat
strip
Prior art date
Application number
PCT/JP2021/026095
Other languages
French (fr)
Japanese (ja)
Inventor
覚司 脇田
佑一郎 池内
史恭 三宅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21950054.3A priority Critical patent/EP4372304A4/en
Priority to CN202180100277.XA priority patent/CN117651841A/en
Priority to CA3226203A priority patent/CA3226203A1/en
Priority to PCT/JP2021/026095 priority patent/WO2023286110A1/en
Priority to US18/559,975 priority patent/US20240240880A1/en
Priority to JP2023534435A priority patent/JPWO2023286110A1/ja
Publication of WO2023286110A1 publication Critical patent/WO2023286110A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/065Fastening; Joining by welding by ultrasonic or vibration welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/04Means for preventing wrong assembling of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium

Definitions

  • the present disclosure relates to a counterflow heat exchange element formed by stacking heat transfer plates.
  • Patent Literature 1 discloses a heat exchange element formed into a hexagonal prism by stacking hexagonal heat transfer plates.
  • a part of the side surface serves as an inlet/outlet for heat exchange air.
  • the edges other than the edge facing the side surface serving as the air inlet/outlet are bonded between the stacked heat transfer plates to prevent air leakage from the heat exchange element.
  • Edge-to-edge bonding is accomplished by heat welding or gluing using epoxy.
  • An object of the present invention is to obtain a heat exchange element which can be easily performed.
  • the joint edges of the plurality of stacked heat transfer plates are in contact with each other and are joined by ultrasonic welding, and the joint edges include a first protrusion that protrudes along the stacking direction, A concave portion into which the first convex portion of the adjacent heat transfer plate is fitted is formed.
  • a heat exchange element in which the positions of the heat transfer plates can be accurately and easily positioned without displacement even when the heat transfer plates constituting the heat transfer element are fixed to each other by ultrasonic welding. Obtainable.
  • FIG. 1 is a perspective view of a heat exchange element according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of the heat exchange element according to the first embodiment.
  • FIG. 3 is a perspective view of part of the heat exchange element according to the first embodiment.
  • the heat exchange element 50 is formed by alternately stacking hexagonal first heat transfer plates 1 and second heat transfer plates 2 to form a hexagonal prism as a whole.
  • the lamination direction of the first heat transfer plate 1 and the second heat transfer plate 2 is simply referred to as the lamination direction.
  • the heat exchange element 50 has a first inflow surface 61 that serves as an inflow port for air into the heat exchange element 50 , one of the six rectangular side surfaces.
  • a side surface facing the opposite direction to the first inflow surface 61 serves as a first outflow surface 71 through which the air flowing in from the first inflow surface 61 flows out.
  • an air passage 3 connecting the first inflow surface 61 and the first outflow surface 71 is formed inside the heat exchange element 50.
  • One of the two side surfaces adjacent to the first outflow surface 71 is the second inflow surface 62 that serves as an air inlet into the heat exchange element 50 .
  • a side surface facing the opposite direction to the second inflow surface 62 serves as a second outflow surface 72 through which the air flowing in from the second inflow surface 62 flows out.
  • the first inflow surface 61 and the second outflow surface 72 are adjacent to each other.
  • an air passage 4 connecting the second inflow surface 62 and the second outflow surface 72 is formed inside the heat exchange element 50 . The air passages 3 and 4 do not intersect inside the heat exchange element 50 .
  • the heat exchange element 50 is provided, for example, inside a ventilation device, and allows an exhaust air flow from the room to the outside to pass through the air passage 3, and an air supply flow from the outdoor to the room to pass through the air passage 4. and the exhaust stream.
  • FIG. 4 is a plan view of the first heat transfer plate in Embodiment 1.
  • the first heat transfer plate 1 has a hexagonal shape in plan view.
  • the air passage 3 is formed on one side of the first heat transfer plate 1
  • the air passage 4 is formed on the first heat transfer plate 1.
  • the first heat transfer plate 1 is provided with a heat exchange portion 5 for exchanging heat between the air passing through the air passage 3 and the air passing through the air passage 4 .
  • the heat exchanging portion 5 has a side surface on which the first inflow surface 61, the first outflow surface 71, the second inflow surface 62, and the second outflow surface 72 are not formed among the side surfaces of the heat exchange element 50.
  • the heat exchanging portion 5 is formed in a corrugated shape having a plurality of unevenness.
  • the air passing through the air passage 3 and the air passing through the air passage 4 pass in parallel and in opposite directions.
  • the first heat transfer plate 1 is provided with a first header portion 6a having a triangular shape in plan view.
  • the first header portion 6 a has a side 1 c facing the first inflow surface 61 of the heat exchange element 50 and a side 1 d facing the second outflow surface 72 .
  • the first heat transfer plate 1 is formed with a second header portion 6b having a triangular shape in plan view.
  • the second header portion 6 b has a side 1 e facing the first outflow surface 71 of the heat exchange element 50 and a side 1 f facing the second inflow surface 62 .
  • the first header portion 6a and the second header portion 6b are provided on one side and the other side with the heat exchange portion 5 interposed therebetween.
  • the sides 1a and 1b of the first heat transfer plate 1 are sides that are not in contact with the first header portion 6a and the second header portion 6b.
  • a rib 8 is formed on the first header portion 6a and the second header portion 6b.
  • a rib 8 formed in the first header portion 6a extends toward the heat exchange portion 5 from the side 1c.
  • the ribs 8 formed in the first header portion 6a extend substantially parallel to the side 1d, and smoothly pass the air flowing in from the first inflow surface 61, that is, the side 1c toward the heat exchange portion 5. .
  • a step 41 is provided in order to allow the inflow of air from the side 1c and prevent the inflow of air from the side 1d.
  • the outflow of air from the side 1e is allowed, and in order to prevent the outflow of air from the side 1f, there is a gap between the strip-shaped plane portion 23 and the strip-shaped plane portion 24 along the stacking direction.
  • a step 42 is provided.
  • the strip-shaped plane portion 23 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 24 is formed at a position above the strip-shaped plane portion 23 . It should be noted that the strip-shaped plane portion 23 and the region where the ribs 8 are formed may be formed on the same plane.
  • strip-shaped plane portions 25 and 26 which are strip-shaped plane regions extending along the side 1a, are provided.
  • the strip-shaped plane portion 25 and the strip-shaped plane portion 26 are formed with a step 43 provided between them at an intermediate portion in the direction along the side 1a.
  • the flat strip portion 26 is formed above the flat strip portion 25 .
  • strip-shaped plane portions 27 and 28 which are strip-shaped plane regions extending along the side 1b, are provided.
  • the strip-shaped plane portion 27 and the strip-shaped plane portion 28 are formed with a step 44 provided between them at an intermediate portion in the direction along the side 1b.
  • the flat strip portion 28 is formed above the flat strip portion 27 .
  • the first heat transfer plate 1 has a point-symmetrical shape about the center position of a hexagon in plan view.
  • FIG. 5 is a plan view of the second heat transfer plate in Embodiment 1.
  • FIG. The second heat transfer plate 2 has a hexagonal shape in plan view. Components similar to those of the first heat transfer plate 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second heat transfer plate 2 is a mirror image of the first heat transfer plate 1 .
  • the air passage 4 is formed on one side of the second heat transfer plate 2, and the air passage 3 is formed on the second heat transfer plate 2. is formed on the other side of the
  • the second heat transfer plate 2 is provided with a heat exchange portion 5 for exchanging heat between the air passing through the air passage 3 and the air passing through the air passage 4 .
  • the heat exchange portion 5 includes the first inflow surface 61 , the first outflow surface 71 , the second inflow surface 62 , the second outflow surface among the side surfaces of the heat exchange element 50 . It is formed of a rectangular region whose short sides are sides 2a and 2b facing the side surfaces where 72 is not formed.
  • the second heat transfer plate 2 is provided with a third header portion 6c having a triangular shape in plan view.
  • the third header portion 6 c has a side 2 c facing the first inflow surface 61 of the heat exchange element 50 and a side 2 d facing the second outflow surface 72 .
  • the second heat transfer plate 2 is formed with a fourth header portion 6d having a triangular shape in plan view.
  • the fourth header portion 6 d has a side 2 e facing the first outflow surface 71 of the heat exchange element 50 and a side 2 f facing the second inflow surface 62 .
  • the third header portion 6c and the fourth header portion 6d are provided on one side and the other side with the heat exchange portion 5 interposed therebetween.
  • the sides 2a and 2b of the second heat transfer plate 2 are sides that do not contact the third header portion 6c and the fourth header portion 6d.
  • a rib 8 is formed on the third header portion 6c and the fourth header portion 6d.
  • a rib 8 formed in the third header portion 6c extends toward the heat exchange portion 5 from the side 2d.
  • the ribs 8 formed on the third header portion 6c extend substantially parallel to the side 2c, allowing the air from the heat exchange portion 5 to pass smoothly toward the side 2d.
  • the rib 8 formed in the fourth header portion 6d extends from the side 2f toward the heat exchange portion 5.
  • the ribs 8 formed on the fourth header portion 6d extend substantially parallel to the side 2e, and smoothly pass the air flowing in from the second inflow surface 62, that is, the side 2f toward the heat exchanging portion 5. .
  • a step 51 is provided in the second heat transfer plate 2, in order to allow the air to flow out from the side 2d and prevent the air to flow out from the side 2c.
  • the strip-shaped plane portion 32 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 31 is formed at a position above the strip-shaped plane portion 32 . It should be noted that the strip-shaped plane portion 32 and the region where the ribs 8 are formed may be formed on the same plane.
  • a strip-shaped plane portion 33 which is a strip-shaped plane region extending along the side 2e, is provided on the outer edge of the fourth header portion 6d.
  • a strip-shaped plane portion 34 which is a strip-shaped plane region extending along the side 2f, is provided on the outer edge of the fourth header portion 6d.
  • the inflow of air from the side 2f is allowed, and in order to prevent the inflow of air from the side 2e, there is a gap between the strip-shaped plane portion 33 and the strip-shaped plane portion 34 along the stacking direction.
  • a step 52 is provided.
  • strip-shaped plane portions 35 and 36 which are strip-shaped plane regions extending along the side 2a, are provided.
  • the strip-shaped plane portion 35 and the strip-shaped plane portion 36 are formed with a step 53 provided at an intermediate portion in the direction along the side 2a.
  • the strip-shaped flat portion 35 is formed above the strip-shaped flat portion 36 .
  • strip-shaped plane portions 37 and 38 which are strip-shaped plane regions extending along the side 2b, are provided.
  • the strip-shaped plane portion 37 and the strip-shaped plane portion 38 are formed with a step 54 provided between them at the intermediate portion in the direction along the side 2b.
  • the flat strip portion 37 is formed above the flat strip portion 38 .
  • the second heat transfer plate 2 has a point-symmetrical shape about the center position of the hexagon in plan view.
  • FIG. 6 is a partially enlarged sectional view enlarging the protrusion and the base portion in the heat exchange element according to the first embodiment.
  • FIG. 7 is a partially enlarged perspective cross-sectional view of the heat exchange element according to the first embodiment, in which the projection and the base portion are enlarged.
  • 8 is a plan view of the pedestal according to Embodiment 1.
  • the protrusion 13 is formed so as to protrude downward.
  • the protrusion 13 is a second protrusion.
  • the rear surface of the protrusion 13 is a recess.
  • a plurality of protrusions 13 are formed along sides 1c, 1e, 2d, and 2f serving as air inlets and outlets.
  • a plurality of projections 13 are formed on each side 1c, 1e, 2d and 2f.
  • the projections 13 are formed at positions dividing the lengths of the sides 1c, 1e, 2d, and 2f at equal intervals.
  • the height of the projection 13 has a ratio of 1 or less to the diameter at the root of the projection 13 . With this ratio, when the heat transfer plates 1 and 2 are formed by vacuum forming, it is possible to prevent the material from becoming too thin and forming holes.
  • the pedestal 14 is formed so as to protrude upward.
  • the pedestal 14 has a trapezoidal cross-sectional shape.
  • a flat area is provided on the top of the pedestal 14, and a recess 14a that is recessed downward is formed in the flat area.
  • the planar shape of the pedestal 14 is a diamond shape.
  • the recess 14a has an elongated hole shape whose longitudinal direction is the direction toward the center of the heat transfer plates 1 and 2 in a plan view.
  • the width of the recess 14a along the width direction is a width in which the protrusion 13 is fitted.
  • the projection 13 and the base 14 are formed at positions that overlap each other in a plan view when the first heat transfer plate 1 and the second heat transfer plate 2 are stacked. As shown in FIGS. 6 and 7 , when the heat transfer plates 1 and 2 are stacked, the planar area of the top of the pedestal 14 contacts the heat transfer plates 1 and 2 stacked above. Also, the projection 13 fits into the recess 14a of the base 14. As shown in FIG. Since the protrusion 13 is fitted in the recess 14a, it is not exposed to the air paths 3 and 4. - ⁇ Note that the projection 13 may protrude upward and the pedestal 14 may protrude downward.
  • the cone cover 15 is formed on the strip-shaped plane portions 25, 27, 36, 38 of the heat transfer plates 1, 2.
  • a plurality of cone covers 15 are formed for each of the strip-shaped plane portions 25 , 27 , 36 , 38 .
  • the cone cover 15 is formed at a position that divides the length of each strip-shaped plane portion 25, 27, 36, 38 into equal intervals.
  • the cone cover 15 is formed at a position closer to the heat exchanging portion 5 than the widthwise center of each of the flat strip portions 25 , 27 , 36 , 38 .
  • the cone 16 is a first convex part that is convex upward.
  • the cone 16 is formed in a conical shape with a curved tip.
  • the flat strip portion 21 contacts the flat strip portion 31 below.
  • the flat strip portion 22 abuts on the flat strip portion 32 above.
  • the flat strip portion 23 contacts the flat strip portion 33 below.
  • the flat strip portion 24 abuts on the flat strip portion 34 above.
  • the flat strip portion 25 contacts the flat strip portion 35 below.
  • the flat strip portion 26 abuts on the flat strip portion 36 above.
  • the flat strip portion 27 abuts on the flat strip portion 37 below.
  • the flat strip portion 28 contacts the flat strip portion 38 above.
  • the contacting flat strips 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, and 38 are joined by ultrasonic welding. It becomes the joint edge that is connected.
  • the cone cover 15 and the cone 16 are formed at positions that overlap each other in plan view when the heat transfer plates 1 and 2 are laminated.
  • the cone 16 fits into the recess of the cone cover 15.
  • the concave portion of the cone cover 15 may be concaved downward, and the cone 16 may be convex downward.
  • 13 to 16 are diagrams showing manufacturing steps of the heat exchange element according to the first embodiment.
  • the protrusion 13 fits into the hole of the receiving base 17 and is positioned.
  • the tips of the guide pins 18 are fitted into the recesses on the rear surface of the protrusions 13 of the second heat transfer plate 2 to be laminated next, and then, as shown in FIG.
  • the heat transfer plates 2 are laminated.
  • the belt-like plane portions 22, 24, 26, 28, 32, 34, 36, and 38 that are in contact with each other are arranged in a state in which both the upper and lower heat transfer plates 1 and 2 are positioned by the manufacturing apparatus. is fixed by ultrasonic welding.
  • the first heat transfer plate 1 to be laminated next is laminated while being positioned using guide pins 19 .
  • the tips of the guide pins 18 and 19 are fitted into the concave portions on the back surface of the protrusion 13, and the upper heat transfer plates 1 and 2 are pressed against the lower heat transfer plates 1 and 2, so that the protrusion 13 is fitted. Frictional resistance is generated between the flat portion of the pedestal 14 and the areas of the header portions 6a, 6b, 6c, 6d that contact the flat portion of the pedestal 14. As shown in FIG. This improves the reliability of ultrasonic welding and improves the yield.
  • the protrusions 13, the pedestal 14, the cone cover 15, and the cone 16 formed on the heat transfer plates 1 and 2 make it difficult for misalignment to occur in the stacked state. Therefore, the heat transfer plates 1 and 2 are less likely to be misaligned even by ultrasonic welding that vibrates the heat transfer plates 1 and 2 . Further, simply by stacking the heat transfer plates 1 and 2, the protrusions 13 are fitted into the recesses 14a of the pedestal 14, and the cones 16 are fitted into the cone cover 15, so that positioning can be performed accurately and easily. Further, if the projection 13 is tightly fitted in the recess 14a of the base 14 and the cone 16 is tightly fitted in the cone cover 15, it is possible to further prevent misalignment.
  • the heat transfer plates 1 and 2 shrink toward the center after molding. Since the recess 14a has an elongated hole shape whose longitudinal direction is the direction toward the center of the heat transfer plates 1 and 2 in plan view, the position of the pedestal 14 is shifted by the contraction toward the center of the heat transfer plates 1 and 2. Even if it is displaced, the projection 13 is easily fitted into the recess 14a. Further, since the heat transfer plates 1 and 2 are prevented from being displaced in a direction different from the direction toward the center of the heat transfer plates 1 and 2 due to the contact between the protrusions 13 and the recesses 14a, the positioning accuracy can be improved. be done.
  • the projection 13 and the base 14 are located near the belt-like plane portions 22, 24, 31, and 33 even within the areas of the header portions 6a, 6b, 6c, and 6d. Since it is in the parts 25, 26, 27, 28, 35, 36, 37, 38, even if a force to shift the heat transfer plates 1, 2 by ultrasonic welding acts, the bending stress generated in the heat transfer plates 1, 2 stays within a short distance, it is possible to make it difficult for the heat transfer plate to bend.
  • the protrusion 13, the pedestal 14, the cone cover 15, and the cone 16 each have a belt-like plane portion 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, By forming a plurality of grooves with respect to 38, it becomes even more difficult for misalignment to occur.
  • the base 14 is provided so that the longer diagonal of the two diagonals of the rhombus is aligned with the direction of air flow, and the top of the base 14 is in contact with the adjacent heat transfer plates 1 and 2. Therefore, the pedestal 14 is less likely to obstruct the flow of air.
  • the flow of air around the base 14 and the sides 1d, 1f, 2c, and 2e is reduced compared to the case where no gap is provided. turbulence can be reduced, and the occurrence of pressure loss can be suppressed.
  • the pedestals 14 linearly in the air flow direction, it is possible to similarly reduce turbulence in the air flow and suppress the occurrence of pressure loss. By arranging the pedestal 14 and the sides 1d, 1f, 2c and 2e as close to each other as possible with a gap therebetween, the distance between the welding point and the pedestal 14 becomes as short as possible, and positioning during welding can be made more effective.
  • the bases 14 are provided on the header portions 6a, 6b, 6c, and 6d, the bases 14 are provided on the flat strip portions 21, 22, 23, 24, 31, 32, 33, and 34, respectively.
  • the width of 21, 22, 23, 24, 31, 32, 33, 34 can be narrowed. If the heat transfer plates 1 and 2 are of the same size, the narrower the width of the flat strip portions 21, 22, 23, 24, 31, 32, 33, 34, the wider the header portions 6a, 6b, 6c, 6d. .
  • the pedestal 14 is provided in the flow path, the pedestal 14 can be attached to the strip-shaped plane portions 21, 22, 23, 24, 31, 32, 33, and 34 by widening the header portions 6a, 6b, 6c, and 6d.
  • the pressure loss of the heat exchange element 50 can be made lower than when it is provided.
  • the configuration shown in the above embodiment shows an example of the content of the present disclosure.
  • the configuration of the embodiment can be combined with another known technique. A part of the configuration of the embodiment can be omitted or changed without departing from the gist of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchange element is formed by stacking a plurality of heat transfer plates (1), each of the heat transfer plates (1) having a heat exchange unit (5) for allowing air that has passed by one stacking-direction side of the plurality of heat transfer plates (1) and air that has passed by the other stacking-direction side of the heat transfer plates (1) to pass therethrough in mutually opposite directions and carrying out heat exchange, header parts (6a, 6b) provided to the one side and the other side sandwiching the heat exchange unit (5) as seen along the stacking direction, and joining edge parts (25-28) provided along a side of the heat exchange unit (5) that does not touch the header parts (6a, 6b). The joining edge parts (25-28) provided to the stacked plurality of heat transfer plates (1) are brought into contact with one another and are joined to one another through ultrasonic welding. A first protrusion (16) that protrudes along the stacking direction, and a recess (15) into which a first protrusion (16) of an adjacent heat transfer plate fits, are formed on the joining edge parts (25-28).

Description

熱交換素子heat exchange element
 本開示は、伝熱板を積層させて形成された対向流型の熱交換素子に関する。 The present disclosure relates to a counterflow heat exchange element formed by stacking heat transfer plates.
 対向流型の熱交換素子では、樹脂シートで形成された伝熱板を積層させたものがある。例えば、特許文献1には、六角形形状の伝熱板を積層させて六角柱に形成された熱交換素子が開示されている。六角柱の熱交換素子では、側面の一部が熱交換する空気の出入り口となる。また、伝熱板の縁部のうち空気の出入口となる側面に面する縁部以外の縁部は、積層される伝熱板同士で接合され、熱交換素子からの空気の漏れが防がれる。縁部同士の接合は、熱溶着またはエポキシを使用した接着によって行われる。  In the counterflow type heat exchange element, there is one in which heat transfer plates formed of resin sheets are laminated. For example, Patent Literature 1 discloses a heat exchange element formed into a hexagonal prism by stacking hexagonal heat transfer plates. In a hexagonal columnar heat exchange element, a part of the side surface serves as an inlet/outlet for heat exchange air. In addition, of the edges of the heat transfer plate, the edges other than the edge facing the side surface serving as the air inlet/outlet are bonded between the stacked heat transfer plates to prevent air leakage from the heat exchange element. . Edge-to-edge bonding is accomplished by heat welding or gluing using epoxy.
特開2004-293862号公報JP 2004-293862 A
 近年では、伝熱板同士の接合方法に超音波溶着が用いられる場合がある。超音波溶着を用いることで、伝熱板同士の接合時間の短縮を図ることができる。超音波溶着では、縁部を挟んだ工具を通して縁部に超音波振動が伝えられる。超音波溶着を用いた伝熱板同士の接合では、超音波振動によって伝熱板の位置がずれてしまうという問題があった。 In recent years, ultrasonic welding is sometimes used to join heat transfer plates together. By using ultrasonic welding, it is possible to shorten the bonding time between the heat transfer plates. In ultrasonic welding, ultrasonic vibrations are transmitted to the edge through a tool that clamps the edge. In joining heat transfer plates using ultrasonic welding, there is a problem that the heat transfer plates are displaced due to ultrasonic vibration.
 本開示は、上記に鑑みてなされたものであって、熱交換素子を構成する伝熱板同士の固定を超音波溶着で行っても位置がずれることがなく、伝熱板同士の位置決めを正確かつ容易に行なえる熱交換素子を得ることを目的とする。 The present disclosure has been made in view of the above. An object of the present invention is to obtain a heat exchange element which can be easily performed.
 上述した課題を解決し、目的を達成するために、本開示にかかる熱交換素子は、複数の伝熱板が積層されて形成された熱交換素子であって、伝熱板は、複数の伝熱板の積層方向の一方側を通過する空気と積層方向の他方側を通る空気とを互いに対向する方向で通過させて熱交換させる熱交換部と、積層方向に沿って見て熱交換部を挟んで一方側と他方側とに設けられたヘッダ部と、熱交換部のうちヘッダ部と接しない辺に沿って設けられた接合縁部と、を有する。積層された複数の伝熱板が有する接合縁部同士は、互いに接触して超音波溶着によって接合されており、接合縁部には、積層方向に沿って凸となる第1の凸部と、隣接する伝熱板の第1の凸部が嵌まる凹部とが形成されている。 In order to solve the above-described problems and achieve the object, a heat exchange element according to the present disclosure is a heat exchange element formed by stacking a plurality of heat transfer plates, wherein the heat transfer plate includes a plurality of heat transfer plates. A heat exchange part that allows air passing through one side of the hot plate in the stacking direction and air passing through the other side of the stacking direction to pass in opposite directions to exchange heat, and a heat exchange part viewed along the stacking direction It has a header portion provided on one side and the other side of the heat exchange portion, and a joint edge portion provided along a side of the heat exchange portion that does not contact the header portion. The joint edges of the plurality of stacked heat transfer plates are in contact with each other and are joined by ultrasonic welding, and the joint edges include a first protrusion that protrudes along the stacking direction, A concave portion into which the first convex portion of the adjacent heat transfer plate is fitted is formed.
 本開示によれば、熱交換素子を構成する伝熱板同士の固定を超音波溶着で行っても位置がずれることがなく、伝熱板同士の位置決めを正確かつ容易に行なえる熱交換素子を得ることができる。 According to the present disclosure, there is provided a heat exchange element in which the positions of the heat transfer plates can be accurately and easily positioned without displacement even when the heat transfer plates constituting the heat transfer element are fixed to each other by ultrasonic welding. Obtainable.
実施の形態1にかかる熱交換素子の斜視図1 is a perspective view of a heat exchange element according to Embodiment 1. FIG. 実施の形態1にかかる熱交換素子の分解斜視図1 is an exploded perspective view of a heat exchange element according to Embodiment 1. FIG. 実施の形態1にかかる熱交換素子の一部を抜き出した斜視図FIG. 2 is a perspective view of a part of the heat exchange element according to the first embodiment; 実施の形態1における第1の伝熱板の平面図Plan view of the first heat transfer plate in Embodiment 1 実施の形態1における第2の伝熱板の平面図Plan view of the second heat transfer plate in Embodiment 1 実施の形態1にかかる熱交換素子における突起と台座部分を拡大した部分拡大断面図FIG. 4 is a partially enlarged cross-sectional view enlarging the protrusion and the base portion in the heat exchange element according to the first embodiment; 実施の形態1にかかる熱交換素子における突起と台座部分を拡大した部分拡大斜視断面図Partially enlarged perspective cross-sectional view enlarging the protrusion and the base portion in the heat exchange element according to the first embodiment 実施の形態1における台座の平面図Plan view of the pedestal in Embodiment 1 実施の形態1にかかる熱交換素子におけるコーンカバーとコーン部分を拡大した部分拡大断面図FIG. 4 is a partially enlarged sectional view enlarging the cone cover and the cone portion in the heat exchange element according to the first embodiment; 実施の形態1にかかる熱交換素子におけるコーンカバーとコーン部分を拡大した部分拡大斜視断面図Partially enlarged perspective cross-sectional view enlarging the cone cover and the cone portion in the heat exchange element according to the first embodiment 実施の形態1にかかる熱交換素子の製造装置の概略構成を示す図1 is a diagram showing a schematic configuration of a heat exchange element manufacturing apparatus according to a first embodiment; FIG. 図11に示したガイドピンが突起に嵌まった状態を示す斜視断面図FIG. 12 is a perspective cross-sectional view showing a state in which the guide pin shown in FIG. 11 is fitted in the projection; 実施の形態1にかかる熱交換素子の製造工程を示す図4A to 4C show manufacturing steps of the heat exchange element according to the first embodiment; 実施の形態1にかかる熱交換素子の製造工程を示す図4A to 4C show manufacturing steps of the heat exchange element according to the first embodiment; 実施の形態1にかかる熱交換素子の製造工程を示す図4A to 4C show manufacturing steps of the heat exchange element according to the first embodiment; 実施の形態1にかかる熱交換素子の製造工程を示す図4A to 4C show manufacturing steps of the heat exchange element according to the first embodiment;
 以下に、実施の形態にかかる熱交換素子を図面に基づいて詳細に説明する。 The heat exchange element according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる熱交換素子の斜視図である。図2は、実施の形態1にかかる熱交換素子の分解斜視図である。図3は、実施の形態1にかかる熱交換素子の一部を抜き出した斜視図である。熱交換素子50は、六角形形状の第1の伝熱板1と第2の伝熱板2とが交互に積層されて、全体が六角柱に形成されている。なお、以下の説明では、第1の伝熱板1と第2の伝熱板2との積層方向を単に積層方向と称する。また、図1の紙面上での上下方向を熱交換素子50における上下方向として説明する。
Embodiment 1.
FIG. 1 is a perspective view of a heat exchange element according to Embodiment 1. FIG. 2 is an exploded perspective view of the heat exchange element according to the first embodiment. FIG. 3 is a perspective view of part of the heat exchange element according to the first embodiment. FIG. The heat exchange element 50 is formed by alternately stacking hexagonal first heat transfer plates 1 and second heat transfer plates 2 to form a hexagonal prism as a whole. In the following description, the lamination direction of the first heat transfer plate 1 and the second heat transfer plate 2 is simply referred to as the lamination direction. Also, the up-down direction on the paper surface of FIG.
 熱交換素子50は、方形形状となる6つの側面のうちの1つの側面が、熱交換素子50の内部への空気の流入口となる第1の流入面61となる。第1の流入面61と反対方向を向く側面が、第1の流入面61から流入した空気が流出する第1の流出面71となる。熱交換素子50の内部には、第1の流入面61と第1の流出面71とを結ぶ風路3が形成される。 The heat exchange element 50 has a first inflow surface 61 that serves as an inflow port for air into the heat exchange element 50 , one of the six rectangular side surfaces. A side surface facing the opposite direction to the first inflow surface 61 serves as a first outflow surface 71 through which the air flowing in from the first inflow surface 61 flows out. Inside the heat exchange element 50, an air passage 3 connecting the first inflow surface 61 and the first outflow surface 71 is formed.
 第1の流出面71と隣接する2つの側面のうちの一方の側面が、熱交換素子50の内部への空気の流入口となる第2の流入面62となる。第2の流入面62と反対方向を向く側面が、第2の流入面62から流入した空気が流出する第2の流出面72となる。第1の流入面61と第2の流出面72は互いに隣接する。熱交換素子50の内部には、第2の流入面62と第2の流出面72とを結ぶ風路4が形成される。熱交換素子50の内部で風路3と風路4とは交わらない。 One of the two side surfaces adjacent to the first outflow surface 71 is the second inflow surface 62 that serves as an air inlet into the heat exchange element 50 . A side surface facing the opposite direction to the second inflow surface 62 serves as a second outflow surface 72 through which the air flowing in from the second inflow surface 62 flows out. The first inflow surface 61 and the second outflow surface 72 are adjacent to each other. Inside the heat exchange element 50, an air passage 4 connecting the second inflow surface 62 and the second outflow surface 72 is formed. The air passages 3 and 4 do not intersect inside the heat exchange element 50 .
 熱交換素子50は、例えば換気装置の内部に設けられて、室内から室外に向かう排気流を風路3に通過させ、室外から室内に向かい給気流を風路4に通過させることで、給気流と排気流との間で熱交換させることができる。 The heat exchange element 50 is provided, for example, inside a ventilation device, and allows an exhaust air flow from the room to the outside to pass through the air passage 3, and an air supply flow from the outdoor to the room to pass through the air passage 4. and the exhaust stream.
 図4は、実施の形態1における第1の伝熱板の平面図である。第1の伝熱板1は、平面視において六角形形状となっている。第1の伝熱板1と第2の伝熱板2との積層によって、風路3は第1の伝熱板1の一方面側に形成され、風路4は第1の伝熱板1の他方面側に形成される。第1の伝熱板1には、風路3を通過する空気と風路4を通過する空気との間で熱交換をさせる熱交換部5が設けられている。熱交換部5は、熱交換素子50の側面のうち、第1の流入面61、第1の流出面71、第2の流入面62、第2の流出面72が形成されていない側面に面する辺1a,1bを短辺とする長方形の領域で形成されている。詳細な構造の説明は省略するが、熱交換部5には複数の凹凸を有する波形形状が形成されている。熱交換部5では、風路3を通過する空気と風路4を通過する空気とが互いに平行かつ反対向きに通過する。 FIG. 4 is a plan view of the first heat transfer plate in Embodiment 1. FIG. The first heat transfer plate 1 has a hexagonal shape in plan view. By laminating the first heat transfer plate 1 and the second heat transfer plate 2, the air passage 3 is formed on one side of the first heat transfer plate 1, and the air passage 4 is formed on the first heat transfer plate 1. is formed on the other side of the The first heat transfer plate 1 is provided with a heat exchange portion 5 for exchanging heat between the air passing through the air passage 3 and the air passing through the air passage 4 . The heat exchanging portion 5 has a side surface on which the first inflow surface 61, the first outflow surface 71, the second inflow surface 62, and the second outflow surface 72 are not formed among the side surfaces of the heat exchange element 50. It is formed of a rectangular area with sides 1a and 1b as short sides. Although a detailed description of the structure is omitted, the heat exchanging portion 5 is formed in a corrugated shape having a plurality of unevenness. In the heat exchange section 5, the air passing through the air passage 3 and the air passing through the air passage 4 pass in parallel and in opposite directions.
 第1の伝熱板1には、平面視において三角形形状である第1のヘッダ部6aが設けられている。第1のヘッダ部6aは、熱交換素子50における第1の流入面61に面する辺1cと、第2の流出面72に面する辺1dとを有する。 The first heat transfer plate 1 is provided with a first header portion 6a having a triangular shape in plan view. The first header portion 6 a has a side 1 c facing the first inflow surface 61 of the heat exchange element 50 and a side 1 d facing the second outflow surface 72 .
 第1の伝熱板1には、平面視において三角形形状である第2のヘッダ部6bが形成されている。第2のヘッダ部6bには、熱交換素子50における第1の流出面71に面する辺1eと、第2の流入面62に面する辺1fとを有する。第1のヘッダ部6aと第2のヘッダ部6bとは、熱交換部5を挟んだ一方側と他方側に設けられている。第1の伝熱板1の辺1a,1bは第1のヘッダ部6aと第2のヘッダ部6bと接しない辺である。 The first heat transfer plate 1 is formed with a second header portion 6b having a triangular shape in plan view. The second header portion 6 b has a side 1 e facing the first outflow surface 71 of the heat exchange element 50 and a side 1 f facing the second inflow surface 62 . The first header portion 6a and the second header portion 6b are provided on one side and the other side with the heat exchange portion 5 interposed therebetween. The sides 1a and 1b of the first heat transfer plate 1 are sides that are not in contact with the first header portion 6a and the second header portion 6b.
 第1のヘッダ部6aおよび第2のヘッダ部6bにはリブ8が形成されている。第1のヘッダ部6aに形成されたリブ8は、辺1cから熱交換部5に向かって延びている。第1のヘッダ部6aに形成されたリブ8は、辺1dとほぼ平行に延びており、第1の流入面61すなわち辺1c側から流入した空気を熱交換部5に向けて円滑に通過させる。 A rib 8 is formed on the first header portion 6a and the second header portion 6b. A rib 8 formed in the first header portion 6a extends toward the heat exchange portion 5 from the side 1c. The ribs 8 formed in the first header portion 6a extend substantially parallel to the side 1d, and smoothly pass the air flowing in from the first inflow surface 61, that is, the side 1c toward the heat exchange portion 5. .
 第2のヘッダ部6bに形成されたリブ8は、辺1eから熱交換部5に向かって延びている。第2のヘッダ部6bに形成されたリブ8は、辺1fとほぼ平行に延びており、熱交換部5からの空気を辺1eに向けて円滑に通過させる。 The rib 8 formed on the second header portion 6b extends from the side 1e toward the heat exchange portion 5. The ribs 8 formed in the second header portion 6b extend substantially parallel to the side 1f, allowing the air from the heat exchange portion 5 to smoothly pass toward the side 1e.
 第1のヘッダ部6aの外縁には、辺1cに沿って延びる帯状の平面領域である帯状平面部21が設けられている。第1のヘッダ部6aの外縁には、辺1dに沿って延びる帯状の平面領域である帯状平面部22が設けられている。第1の伝熱板1では、辺1cからの空気の流入は可能とし、辺1dからの空気の流入は防ぐため、帯状平面部21と帯状平面部22との間には積層方向に沿った段差41が設けられている。より具体的には、帯状平面部21はリブ8が形成された領域よりも下方となる位置に形成され、帯状平面部22は帯状平面部21よりも上方となる位置に形成されている。なお、帯状平面部21と、リブ8が形成された領域とが同一面で形成されていてもよい。 A strip-shaped plane portion 21, which is a strip-shaped plane region extending along the side 1c, is provided on the outer edge of the first header portion 6a. A strip-shaped plane portion 22, which is a strip-shaped plane region extending along the side 1d, is provided on the outer edge of the first header portion 6a. In the first heat transfer plate 1, in order to allow the inflow of air from the side 1c and prevent the inflow of air from the side 1d, there is a gap between the strip-shaped plane portion 21 and the strip-shaped plane portion 22 along the stacking direction. A step 41 is provided. More specifically, the strip-shaped plane portion 21 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 22 is formed at a position above the strip-shaped plane portion 21 . It should be noted that the strip-shaped flat portion 21 and the region where the ribs 8 are formed may be formed on the same plane.
 第2のヘッダ部6bの外縁には、辺1eに沿って延びる帯状の平面領域である帯状平面部23が設けられている。第2のヘッダ部6bの外縁には、辺1fに沿って延びる帯状の平面領域である帯状平面部24が設けられている。第1の伝熱板1では、辺1eからの空気の流出は可能とし、辺1fからの空気の流出を防ぐために、帯状平面部23と帯状平面部24との間には積層方向に沿った段差42が設けられている。より具体的には、帯状平面部23はリブ8が形成された領域よりも下方となる位置に形成され、帯状平面部24は帯状平面部23よりも上方となる位置に形成されている。なお、帯状平面部23と、リブ8が形成された領域とが同一平面で形成されていてもよい。 A strip-shaped plane portion 23, which is a strip-shaped plane region extending along the side 1e, is provided on the outer edge of the second header portion 6b. A strip-shaped plane portion 24, which is a strip-shaped plane region extending along the side 1f, is provided on the outer edge of the second header portion 6b. In the first heat transfer plate 1, the outflow of air from the side 1e is allowed, and in order to prevent the outflow of air from the side 1f, there is a gap between the strip-shaped plane portion 23 and the strip-shaped plane portion 24 along the stacking direction. A step 42 is provided. More specifically, the strip-shaped plane portion 23 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 24 is formed at a position above the strip-shaped plane portion 23 . It should be noted that the strip-shaped plane portion 23 and the region where the ribs 8 are formed may be formed on the same plane.
 熱交換部5の外縁には、辺1aに沿って延びる帯状の平面領域である帯状平面部25,26が設けられている。帯状平面部25と帯状平面部26とは、辺1aに沿った方向の中間部分で互いに段差43を設けて形成されている。帯状平面部26のほうが帯状平面部25よりも上方に形成されている。 At the outer edge of the heat exchanging portion 5, strip-shaped plane portions 25 and 26, which are strip-shaped plane regions extending along the side 1a, are provided. The strip-shaped plane portion 25 and the strip-shaped plane portion 26 are formed with a step 43 provided between them at an intermediate portion in the direction along the side 1a. The flat strip portion 26 is formed above the flat strip portion 25 .
 熱交換部5の外縁には、辺1bに沿って延びる帯状の平面領域である帯状平面部27,28が設けられている。帯状平面部27と帯状平面部28とは、辺1bに沿った方向の中間部分で互いに段差44を設けて形成されている。帯状平面部28のほうが帯状平面部27よりも上方に形成されている。第1の伝熱板1は、平面視において六角形形状の中心位置を中心とする点対称な形状となっている。 At the outer edge of the heat exchanging portion 5, strip-shaped plane portions 27 and 28, which are strip-shaped plane regions extending along the side 1b, are provided. The strip-shaped plane portion 27 and the strip-shaped plane portion 28 are formed with a step 44 provided between them at an intermediate portion in the direction along the side 1b. The flat strip portion 28 is formed above the flat strip portion 27 . The first heat transfer plate 1 has a point-symmetrical shape about the center position of a hexagon in plan view.
 図5は、実施の形態1における第2の伝熱板の平面図である。第2の伝熱板2は、平面視において六角形形状となっている。第1の伝熱板1と同様の構成については同じ符号を付して詳細な説明を省略する。第2の伝熱板2は、第1の伝熱板1と鏡像関係となっている。 FIG. 5 is a plan view of the second heat transfer plate in Embodiment 1. FIG. The second heat transfer plate 2 has a hexagonal shape in plan view. Components similar to those of the first heat transfer plate 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The second heat transfer plate 2 is a mirror image of the first heat transfer plate 1 .
 第1の伝熱板1と第2の伝熱板2との積層によって、風路4は第2の伝熱板2の一方面側に形成され、風路3は第2の伝熱板2の他方面側に形成される。第2の伝熱板2には、風路3を通過する空気と風路4を通過する空気との間で熱交換をさせる熱交換部5が設けられている。第2の伝熱板2では、熱交換部5は、熱交換素子50の側面のうち、第1の流入面61、第1の流出面71、第2の流入面62、第2の流出面72が形成されていない側面に面する辺2a,2bを短辺とする長方形の領域で形成されている。 By laminating the first heat transfer plate 1 and the second heat transfer plate 2, the air passage 4 is formed on one side of the second heat transfer plate 2, and the air passage 3 is formed on the second heat transfer plate 2. is formed on the other side of the The second heat transfer plate 2 is provided with a heat exchange portion 5 for exchanging heat between the air passing through the air passage 3 and the air passing through the air passage 4 . In the second heat transfer plate 2 , the heat exchange portion 5 includes the first inflow surface 61 , the first outflow surface 71 , the second inflow surface 62 , the second outflow surface among the side surfaces of the heat exchange element 50 . It is formed of a rectangular region whose short sides are sides 2a and 2b facing the side surfaces where 72 is not formed.
 第2の伝熱板2には、平面視において三角形形状である第3のヘッダ部6cが設けられている。第3のヘッダ部6cは、熱交換素子50における第1の流入面61に面する辺2cと、第2の流出面72に面する辺2dとを有する。 The second heat transfer plate 2 is provided with a third header portion 6c having a triangular shape in plan view. The third header portion 6 c has a side 2 c facing the first inflow surface 61 of the heat exchange element 50 and a side 2 d facing the second outflow surface 72 .
 第2の伝熱板2には、平面視において三角形形状である第4のヘッダ部6dが形成されている。第4のヘッダ部6dには、熱交換素子50における第1の流出面71に面する辺2eと、第2の流入面62に面する辺2fとを有する。第3のヘッダ部6cと第4のヘッダ部6dとは、熱交換部5を挟んだ一方側と他方側に設けられている。第2の伝熱板2の辺2a,2bは第3のヘッダ部6cと第4のヘッダ部6dと接しない辺である。 The second heat transfer plate 2 is formed with a fourth header portion 6d having a triangular shape in plan view. The fourth header portion 6 d has a side 2 e facing the first outflow surface 71 of the heat exchange element 50 and a side 2 f facing the second inflow surface 62 . The third header portion 6c and the fourth header portion 6d are provided on one side and the other side with the heat exchange portion 5 interposed therebetween. The sides 2a and 2b of the second heat transfer plate 2 are sides that do not contact the third header portion 6c and the fourth header portion 6d.
 第3のヘッダ部6cおよび第4のヘッダ部6dにはリブ8が形成されている。第3のヘッダ部6cに形成されたリブ8は、辺2dから熱交換部5に向かって延びている。第3のヘッダ部6cに形成されたリブ8は、辺2cとほぼ平行に延びており、熱交換部5からの空気を辺2d側に向けて円滑に通過させる。 A rib 8 is formed on the third header portion 6c and the fourth header portion 6d. A rib 8 formed in the third header portion 6c extends toward the heat exchange portion 5 from the side 2d. The ribs 8 formed on the third header portion 6c extend substantially parallel to the side 2c, allowing the air from the heat exchange portion 5 to pass smoothly toward the side 2d.
 第4のヘッダ部6dに形成されたリブ8は、辺2fから熱交換部5に向かって延びている。第4のヘッダ部6dに形成されたリブ8は、辺2eとほぼ平行に延びており、第2の流入面62すなわち辺2f側から流入した空気を熱交換部5に向けて円滑に通過させる。 The rib 8 formed in the fourth header portion 6d extends from the side 2f toward the heat exchange portion 5. The ribs 8 formed on the fourth header portion 6d extend substantially parallel to the side 2e, and smoothly pass the air flowing in from the second inflow surface 62, that is, the side 2f toward the heat exchanging portion 5. .
 第3のヘッダ部6cの外縁には、辺2cに沿って延びる帯状の平面領域である帯状平面部31が設けられている。第3のヘッダ部6cの外縁には、辺2dに沿って延びる帯状の平面領域である帯状平面部32が設けられている。第2の伝熱板2では、辺2dからの空気の流出は可能とし、辺2cからの空気の流出は防ぐため、帯状平面部31と帯状平面部32との間には積層方向に沿った段差51が設けられている。より具体的には、帯状平面部32はリブ8が形成された領域よりも下方となる位置に形成され、帯状平面部31は帯状平面部32よりも上方となる位置に形成されている。なお、帯状平面部32と、リブ8が形成された領域とが同一平面で形成されていてもよい。 A strip-shaped plane portion 31, which is a strip-shaped plane region extending along the side 2c, is provided on the outer edge of the third header portion 6c. A strip-shaped plane portion 32, which is a strip-shaped plane region extending along the side 2d, is provided on the outer edge of the third header portion 6c. In the second heat transfer plate 2, in order to allow the air to flow out from the side 2d and prevent the air to flow out from the side 2c, there is a gap between the flat strip portion 31 and the flat strip portion 32 along the stacking direction. A step 51 is provided. More specifically, the strip-shaped plane portion 32 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 31 is formed at a position above the strip-shaped plane portion 32 . It should be noted that the strip-shaped plane portion 32 and the region where the ribs 8 are formed may be formed on the same plane.
 第4のヘッダ部6dの外縁には、辺2eに沿って延びる帯状の平面領域である帯状平面部33が設けられている。第4のヘッダ部6dの外縁には、辺2fに沿って延びる帯状の平面領域である帯状平面部34が設けられている。第2の伝熱板2では、辺2fからの空気の流入は可能とし、辺2eからの空気の流入を防ぐために、帯状平面部33と帯状平面部34との間には積層方向に沿った段差52が設けられている。より具体的には、帯状平面部34はリブ8が形成された領域よりも下方となる位置に形成され、帯状平面部33は帯状平面部34よりも上方となる位置に形成されている。なお、帯状平面部34と、リブ8が形成された領域とが同一平面で形成されていてもよい。 A strip-shaped plane portion 33, which is a strip-shaped plane region extending along the side 2e, is provided on the outer edge of the fourth header portion 6d. A strip-shaped plane portion 34, which is a strip-shaped plane region extending along the side 2f, is provided on the outer edge of the fourth header portion 6d. In the second heat transfer plate 2, the inflow of air from the side 2f is allowed, and in order to prevent the inflow of air from the side 2e, there is a gap between the strip-shaped plane portion 33 and the strip-shaped plane portion 34 along the stacking direction. A step 52 is provided. More specifically, the strip-shaped plane portion 34 is formed at a position below the region where the ribs 8 are formed, and the strip-shaped plane portion 33 is formed at a position above the strip-shaped plane portion 34 . It should be noted that the strip-shaped plane portion 34 and the region where the ribs 8 are formed may be formed on the same plane.
 熱交換部5の外縁には、辺2aに沿って延びる帯状の平面領域である帯状平面部35,36が設けられている。帯状平面部35と帯状平面部36とは、辺2aに沿った方向の中間部分で互いに段差53を設けて形成されている。帯状平面部35のほうが帯状平面部36よりも上方に形成されている。 At the outer edge of the heat exchanging portion 5, strip-shaped plane portions 35 and 36, which are strip-shaped plane regions extending along the side 2a, are provided. The strip-shaped plane portion 35 and the strip-shaped plane portion 36 are formed with a step 53 provided at an intermediate portion in the direction along the side 2a. The strip-shaped flat portion 35 is formed above the strip-shaped flat portion 36 .
 熱交換部5の外縁には、辺2bに沿って延びる帯状の平面領域である帯状平面部37,38が設けられている。帯状平面部37と帯状平面部38とは、辺2bに沿った方向の中間部分で互いに段差54を設けて形成されている。帯状平面部37のほうが帯状平面部38よりも上方に形成されている。第2の伝熱板2は、平面視において六角形形状の中心位置を中心とする点対称な形状となっている。 At the outer edge of the heat exchanging portion 5, strip-shaped plane portions 37 and 38, which are strip-shaped plane regions extending along the side 2b, are provided. The strip-shaped plane portion 37 and the strip-shaped plane portion 38 are formed with a step 54 provided between them at the intermediate portion in the direction along the side 2b. The flat strip portion 37 is formed above the flat strip portion 38 . The second heat transfer plate 2 has a point-symmetrical shape about the center position of the hexagon in plan view.
 次に、第1の伝熱板1および第2の伝熱板2に形成されている突起13、台座14、コーンカバー15、コーン16について説明する。 Next, the protrusions 13, bases 14, cone covers 15, and cones 16 formed on the first heat transfer plate 1 and the second heat transfer plate 2 will be described.
 突起13および台座14は、ヘッダ部6a,6b,6c,6dに形成されている。図6は、実施の形態1にかかる熱交換素子における突起と台座部分を拡大した部分拡大断面図である。図7は、実施の形態1にかかる熱交換素子における突起と台座部分を拡大した部分拡大斜視断面図である。図8は、実施の形態1における台座の平面図である。 The projections 13 and the bases 14 are formed on the header portions 6a, 6b, 6c, 6d. FIG. 6 is a partially enlarged sectional view enlarging the protrusion and the base portion in the heat exchange element according to the first embodiment. FIG. 7 is a partially enlarged perspective cross-sectional view of the heat exchange element according to the first embodiment, in which the projection and the base portion are enlarged. 8 is a plan view of the pedestal according to Embodiment 1. FIG.
 突起13は、下方に向けて凸となるように形成されている。突起13は、第2の凸部である。突起13の裏面は凹みとなっている。図4および図5に戻って、突起13は、空気の出入口となる辺1c,1e,2d,2fに沿って複数形成されている。各辺1c,1e,2d,2fに対して複数の突起13が形成されている。突起13は、各辺1c,1e,2d,2fの長さを等間隔に分ける位置に形成されている。突起13の高さは、突起13の根元での直径に対して比率が1以下となっている。この比率によって、伝熱板1,2を真空成形で成形した場合に、素材が薄くなりすぎて孔があくことを防ぐことができる。 The protrusion 13 is formed so as to protrude downward. The protrusion 13 is a second protrusion. The rear surface of the protrusion 13 is a recess. Returning to FIGS. 4 and 5, a plurality of protrusions 13 are formed along sides 1c, 1e, 2d, and 2f serving as air inlets and outlets. A plurality of projections 13 are formed on each side 1c, 1e, 2d and 2f. The projections 13 are formed at positions dividing the lengths of the sides 1c, 1e, 2d, and 2f at equal intervals. The height of the projection 13 has a ratio of 1 or less to the diameter at the root of the projection 13 . With this ratio, when the heat transfer plates 1 and 2 are formed by vacuum forming, it is possible to prevent the material from becoming too thin and forming holes.
 図6および図7に示すように、台座14は、上方に向けて凸となるように形成されている。台座14は、断面形状が台形形状となっている。台座14の頂部には平面である領域が設けられており、その平面である領域には下方に凹む凹み14aが形成されている。図8に示すように、台座14の平面形状はひし形形状となっている。凹み14aは、平面視において伝熱板1,2の中心に向かう方向を長手方向とする長穴形状となっている。凹み14aの短手方向に沿った幅は、突起13が嵌まる幅となっている。 As shown in FIGS. 6 and 7, the pedestal 14 is formed so as to protrude upward. The pedestal 14 has a trapezoidal cross-sectional shape. A flat area is provided on the top of the pedestal 14, and a recess 14a that is recessed downward is formed in the flat area. As shown in FIG. 8, the planar shape of the pedestal 14 is a diamond shape. The recess 14a has an elongated hole shape whose longitudinal direction is the direction toward the center of the heat transfer plates 1 and 2 in a plan view. The width of the recess 14a along the width direction is a width in which the protrusion 13 is fitted.
 台座14は、ひし形の2本の対角線のうち長いほうの対角線が、その台座14が沿う辺1d,1f,2c,2eと平行となるように設けられる。すなわち、ひし形の2本の対角線のうち長いほうの対角線を空気の流れ方向に沿わせて台座14が設けられていればよい。台座14は、帯状平面部22,24,31,33に可能な限り近傍であるが間に空隙を設け、台座14と帯状平面部22,24,31,33とが重ならない程度に離れた位置に空気の流れ方向と概ね平行となる一直線上に設けられている。なお、本実施の形態では、台座14は、帯状平面部22,24,31,33と概ね平行となる一直線上に配置されているとも言い換えできる。 The pedestal 14 is provided so that the longer diagonal of the two diagonals of the rhombus is parallel to the sides 1d, 1f, 2c, 2e along which the pedestal 14 extends. In other words, the pedestal 14 may be provided such that the longer diagonal of the two diagonals of the rhombus is aligned with the direction of air flow. The pedestal 14 is located as close as possible to the flat strips 22, 24, 31, 33, but with a gap therebetween, and is positioned far enough away from the flat strips 22, 24, 31, 33 so that the pedestal 14 and the flat strips 22, 24, 31, 33 do not overlap. are provided on a straight line substantially parallel to the direction of air flow. In addition, in the present embodiment, it can be said that the base 14 is arranged on a straight line substantially parallel to the flat strip portions 22 , 24 , 31 , 33 .
 突起13と台座14とは、第1の伝熱板1と第2の伝熱板2とを積層したときに、平面視において互いに重なる位置に形成されている。図6および図7に示すように、伝熱板1,2を積層させたとき、台座14の頂部の平面となる領域は上方に積層された伝熱板1,2に当接する。また、突起13は台座14の凹み14aに嵌まる。突起13は凹み14aに嵌まるので風路3,4には露出しない。なお、突起13が上方に凸となり、台座14が下方に凸となっていてもよい。 The projection 13 and the base 14 are formed at positions that overlap each other in a plan view when the first heat transfer plate 1 and the second heat transfer plate 2 are stacked. As shown in FIGS. 6 and 7 , when the heat transfer plates 1 and 2 are stacked, the planar area of the top of the pedestal 14 contacts the heat transfer plates 1 and 2 stacked above. Also, the projection 13 fits into the recess 14a of the base 14. As shown in FIG. Since the protrusion 13 is fitted in the recess 14a, it is not exposed to the air paths 3 and 4. - 特許庁Note that the projection 13 may protrude upward and the pedestal 14 may protrude downward.
 図4および図5に示すように、コーンカバー15は、伝熱板1,2の帯状平面部25,27,36,38に形成されている。コーンカバー15は、各帯状平面部25,27,36,38に対して複数形成されている。コーンカバー15は、各帯状平面部25,27,36,38の長さを等間隔に分ける位置に形成されている。コーンカバー15は、各帯状平面部25,27,36,38の幅方向中心よりも熱交換部5に近い位置に形成されている。  As shown in Figs. 4 and 5, the cone cover 15 is formed on the strip-shaped plane portions 25, 27, 36, 38 of the heat transfer plates 1, 2. A plurality of cone covers 15 are formed for each of the strip-shaped plane portions 25 , 27 , 36 , 38 . The cone cover 15 is formed at a position that divides the length of each strip-shaped plane portion 25, 27, 36, 38 into equal intervals. The cone cover 15 is formed at a position closer to the heat exchanging portion 5 than the widthwise center of each of the flat strip portions 25 , 27 , 36 , 38 .
 図9は、実施の形態1にかかる熱交換素子におけるコーンカバーとコーン部分を拡大した部分拡大断面図である。図10は、実施の形態1にかかる熱交換素子におけるコーンカバーとコーン部分を拡大した部分拡大斜視断面図である。コーンカバー15は、下方から上方に向けて凹んだ凹部である。コーンカバー15は、凹部の裏面側では凸となっている。コーンカバー15は、先端が平面となる円錐状で形成されている。コーンカバー15の高さは、熱交換部5とコーンカバー15との隙間距離に対して比率1以下となっている。この比率によって、伝熱板1,2を真空成形で成形した場合に、素材が薄くなりすぎて孔があくことを防ぐことができる。コーンカバー15の凹部は、各帯状平面部25,27,36,38の長さ方向に延びた長穴形状となっている。 FIG. 9 is a partially enlarged sectional view enlarging the cone cover and the cone portion in the heat exchange element according to the first embodiment. 10 is a partially enlarged perspective cross-sectional view showing an enlarged cone cover and cone portion in the heat exchange element according to the first embodiment. FIG. The cone cover 15 is a recess that is recessed upward from below. The cone cover 15 is convex on the back side of the recess. The cone cover 15 is formed in a conical shape with a flat tip. The height of the cone cover 15 has a ratio of 1 or less to the gap distance between the heat exchange part 5 and the cone cover 15 . With this ratio, when the heat transfer plates 1 and 2 are formed by vacuum forming, it is possible to prevent the material from becoming too thin and forming holes. The concave portion of the cone cover 15 has an elongated hole shape extending in the longitudinal direction of each of the belt-like flat portions 25, 27, 36, and 38. As shown in FIG.
 図4および図5に示すように、コーン16は、伝熱板1,2の帯状平面部26,28,35,37に形成されている。コーン16は、各帯状平面部26,28,35,37に対して複数形成されている。コーン16は、各帯状平面部26,28,35,37の長さを等間隔に分ける位置に形成されている。コーン16は、各帯状平面部26,28,35,37の幅方向中心よりも熱交換部5に近い位置に形成されている。コーン16の高さは、熱交換部5とコーン16との隙間距離に対して比率1以下となっている。この比率によって、伝熱板1,2を真空成形で成形した場合に、素材が薄くなりすぎて孔があくことを防ぐことができる。  As shown in Figs. 4 and 5, the cones 16 are formed on the strip-shaped plane portions 26, 28, 35, 37 of the heat transfer plates 1, 2. A plurality of cones 16 are formed for each of the belt-shaped plane portions 26 , 28 , 35 , 37 . The cones 16 are formed at positions dividing the lengths of the strip-shaped plane portions 26, 28, 35, 37 at equal intervals. The cone 16 is formed at a position closer to the heat exchanging portion 5 than the widthwise center of each of the flat strip portions 26 , 28 , 35 , 37 . The height of the cone 16 has a ratio of 1 or less to the gap distance between the heat exchanging portion 5 and the cone 16 . With this ratio, when the heat transfer plates 1 and 2 are formed by vacuum forming, it is possible to prevent the material from becoming too thin and forming holes.
 図9および図10に示すようにコーン16は、上方に向けて凸となる第1の凸部である。コーン16は、先端が曲面となる円錐状で形成されている。  As shown in Figs. 9 and 10, the cone 16 is a first convex part that is convex upward. The cone 16 is formed in a conical shape with a curved tip.
 伝熱板1,2を積層したときに、帯状平面部21は下方の帯状平面部31と当接する。帯状平面部22は上方の帯状平面部32と当接する。帯状平面部23は下方の帯状平面部33と当接する。帯状平面部24は上方の帯状平面部34と当接する。帯状平面部25は下方の帯状平面部35と当接する。帯状平面部26は上方の帯状平面部36と当接する。帯状平面部27は下方の帯状平面部37と当接する。帯状平面部28は上方の帯状平面部38と当接する。後に詳説するが、当接した帯状平面部21,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38同士は、超音波溶着によって接合される接合縁部となる。 When the heat transfer plates 1 and 2 are stacked, the flat strip portion 21 contacts the flat strip portion 31 below. The flat strip portion 22 abuts on the flat strip portion 32 above. The flat strip portion 23 contacts the flat strip portion 33 below. The flat strip portion 24 abuts on the flat strip portion 34 above. The flat strip portion 25 contacts the flat strip portion 35 below. The flat strip portion 26 abuts on the flat strip portion 36 above. The flat strip portion 27 abuts on the flat strip portion 37 below. The flat strip portion 28 contacts the flat strip portion 38 above. As will be described in detail later, the contacting flat strips 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, and 38 are joined by ultrasonic welding. It becomes the joint edge that is connected.
 コーンカバー15とコーン16とは、伝熱板1,2を積層したときに平面視において互いに重なる位置に形成されている。図9および図10に示すように伝熱板1,2を積層したときに、コーン16がコーンカバー15の凹部に嵌まる。なお、コーンカバー15の凹部が下方に凹んでおり、コーン16が下方に凸となっていてもよい。 The cone cover 15 and the cone 16 are formed at positions that overlap each other in plan view when the heat transfer plates 1 and 2 are laminated. When the heat transfer plates 1 and 2 are stacked as shown in FIGS. 9 and 10, the cone 16 fits into the recess of the cone cover 15. As shown in FIG. In addition, the concave portion of the cone cover 15 may be concaved downward, and the cone 16 may be convex downward.
 次に、熱交換素子の製造工程について説明する。図11は、実施の形態1にかかる熱交換素子の製造装置の概略構成を示す図である。製造装置は、伝熱板1,2を置くための受け台17を備えている。受け台17には伝熱板1,2を吸着などの方法で保持する機能の他、突起13と同じ位置となる箇所に位置決めのための穴(図示を省略)が設けられている。さらに製造装置の上方には突起13と同じ位置となる箇所にガイドピン18とガイドピン19を備えている。図12は、図11に示したガイドピンが突起に嵌まった状態を示す斜視断面図である。ガイドピン18は上下に移動可能となっており、下方に移動することで図12に示すようにその先端が突起13の裏面の凹みに差し込まれる。これは、ガイドピン19も同様である。 Next, the manufacturing process of the heat exchange element will be explained. FIG. 11 is a diagram showing a schematic configuration of a heat exchange element manufacturing apparatus according to the first embodiment. The manufacturing apparatus includes a cradle 17 on which the heat transfer plates 1 and 2 are placed. The cradle 17 has a function of holding the heat transfer plates 1 and 2 by means of adsorption or the like, and also has holes (not shown) for positioning at the same positions as the projections 13 . Furthermore, guide pins 18 and 19 are provided at the same positions as the projections 13 above the manufacturing apparatus. FIG. 12 is a perspective cross-sectional view showing a state in which the guide pin shown in FIG. 11 is fitted in the protrusion. The guide pin 18 is vertically movable, and by moving downward, the tip thereof is inserted into the recess on the back surface of the projection 13 as shown in FIG. This is the same for the guide pin 19 as well.
 熱交換素子50の製造工程では、第1の伝熱板1と第2の伝熱板2の積層と固定が繰り返される。図13から図16は、実施の形態1にかかる熱交換素子の製造工程を示す図である。 In the manufacturing process of the heat exchange element 50, the lamination and fixing of the first heat transfer plate 1 and the second heat transfer plate 2 are repeated. 13 to 16 are diagrams showing manufacturing steps of the heat exchange element according to the first embodiment.
 熱交換素子50の製造工程では、図13に示すように、まず、積層の1枚目となる第1の伝熱板1を受け台17に置く、このとき、突起13を受け台17の穴に合せることで、突起13が受け台17の穴に嵌って位置決めがなされる。 In the manufacturing process of the heat exchange element 50, as shown in FIG. , the protrusion 13 fits into the hole of the receiving base 17 and is positioned.
 次に、図14に示すように、ガイドピン18の先端を、次に積層する第2の伝熱板2の突起13の裏面の凹部に嵌めてから、図15に示すように、第2の伝熱板2を積層する。こうすることで、上層、下層のどちらの伝熱板1,2も製造装置によって位置決めされた状態で、当接している帯状平面部22,24,26,28,32,34,36,38同士を超音波溶着で固定する。次に、図16に示すように、次に積層する第1の伝熱板1に対してガイドピン19を用いて位置決めしながら積層する。このように、第1の伝熱板1と第2の伝熱板2との積層と固定を交互に繰り返して任意の高さまで積層する。製造工程の説明で分かるように、ガイドピン18は第2の伝熱板2の位置決めに用いられ、ガイドピン19は第1の伝熱板1の位置決めに用いられる。 Next, as shown in FIG. 14, the tips of the guide pins 18 are fitted into the recesses on the rear surface of the protrusions 13 of the second heat transfer plate 2 to be laminated next, and then, as shown in FIG. The heat transfer plates 2 are laminated. By doing so, the belt- like plane portions 22, 24, 26, 28, 32, 34, 36, and 38 that are in contact with each other are arranged in a state in which both the upper and lower heat transfer plates 1 and 2 are positioned by the manufacturing apparatus. is fixed by ultrasonic welding. Next, as shown in FIG. 16, the first heat transfer plate 1 to be laminated next is laminated while being positioned using guide pins 19 . In this way, the lamination and fixing of the first heat transfer plate 1 and the second heat transfer plate 2 are alternately repeated to stack them up to an arbitrary height. As can be seen from the description of the manufacturing process, the guide pins 18 are used for positioning the second heat transfer plate 2 and the guide pins 19 are used for positioning the first heat transfer plate 1 .
 また、ガイドピン18,19の先端が突起13の裏面の凹部に嵌まって、上層の伝熱板1,2を下方の伝熱板1,2に押し当てていることで、突起13が嵌まった台座14の平面部と、ヘッダ部6a,6b,6c,6dのうち台座14の平面部に当接する領域との間に摩擦抵抗が発生する。これにより、超音波溶着の確実性が向上し、歩留まりが向上する。 Also, the tips of the guide pins 18 and 19 are fitted into the concave portions on the back surface of the protrusion 13, and the upper heat transfer plates 1 and 2 are pressed against the lower heat transfer plates 1 and 2, so that the protrusion 13 is fitted. Frictional resistance is generated between the flat portion of the pedestal 14 and the areas of the header portions 6a, 6b, 6c, 6d that contact the flat portion of the pedestal 14. As shown in FIG. This improves the reliability of ultrasonic welding and improves the yield.
 以上に示した熱交換素子50によれば、伝熱板1,2に形成された突起13、台座14、コーンカバー15、コーン16によって、積層された状態での位置ずれが発生しにくくなる。したがって、伝熱板1,2に振動を与える超音波溶着によっても伝熱板1,2に位置ずれが発生しにくくなる。また、伝熱板1,2を重ねるだけで、突起13が台座14の凹み14aに嵌まり、コーン16がコーンカバー15に嵌まるので、位置決めを正確かつ容易に行うことができる。また、突起13が台座14の凹み14aにきつく嵌まり、コーン16がコーンカバー15にきつく嵌まるようにすれば、より一層位置ずれを生じにくくすることができる。また、伝熱板1,2は、成型後にその中心に向かって収縮する。凹み14aが平面視において伝熱板1,2の中心に向かう方向を長手方向とする長穴形状となっていることで、伝熱板1,2の中心に向かった収縮によって台座14の位置が変位した場合であっても、突起13が凹み14aに嵌まりやすくなっている。また、突起13が凹み14aとの当接により、伝熱板1,2の中心に向かう方向と異なる方向への伝熱板1,2同士のずれが防がれるので、位置決め精度の向上も図られる。 According to the heat exchange element 50 described above, the protrusions 13, the pedestal 14, the cone cover 15, and the cone 16 formed on the heat transfer plates 1 and 2 make it difficult for misalignment to occur in the stacked state. Therefore, the heat transfer plates 1 and 2 are less likely to be misaligned even by ultrasonic welding that vibrates the heat transfer plates 1 and 2 . Further, simply by stacking the heat transfer plates 1 and 2, the protrusions 13 are fitted into the recesses 14a of the pedestal 14, and the cones 16 are fitted into the cone cover 15, so that positioning can be performed accurately and easily. Further, if the projection 13 is tightly fitted in the recess 14a of the base 14 and the cone 16 is tightly fitted in the cone cover 15, it is possible to further prevent misalignment. Moreover, the heat transfer plates 1 and 2 shrink toward the center after molding. Since the recess 14a has an elongated hole shape whose longitudinal direction is the direction toward the center of the heat transfer plates 1 and 2 in plan view, the position of the pedestal 14 is shifted by the contraction toward the center of the heat transfer plates 1 and 2. Even if it is displaced, the projection 13 is easily fitted into the recess 14a. Further, since the heat transfer plates 1 and 2 are prevented from being displaced in a direction different from the direction toward the center of the heat transfer plates 1 and 2 due to the contact between the protrusions 13 and the recesses 14a, the positioning accuracy can be improved. be done.
 また、突起13と台座14は、ヘッダ部6a,6b,6c,6dの領域内にあっても帯状平面部22,24,31,33に近い位置にあり、コーンカバー15とコーン16も帯状平面部25,26,27,28,35,36,37,38にあるので、超音波溶着によって伝熱板1,2をずらそうとする力が働いても伝熱板1,2に生じる曲げ応力は短い距離の範囲に留まるので伝熱板がたわむ状態になり難くすることができる。 Moreover, the projection 13 and the base 14 are located near the belt- like plane portions 22, 24, 31, and 33 even within the areas of the header portions 6a, 6b, 6c, and 6d. Since it is in the parts 25, 26, 27, 28, 35, 36, 37, 38, even if a force to shift the heat transfer plates 1, 2 by ultrasonic welding acts, the bending stress generated in the heat transfer plates 1, 2 stays within a short distance, it is possible to make it difficult for the heat transfer plate to bend.
 また、突起13、台座14、コーンカバー15、およびコーン16は各帯状平面部21,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38に対して複数形成されていることによって、より一層位置ずれが生じにくくなる。 Moreover, the protrusion 13, the pedestal 14, the cone cover 15, and the cone 16 each have a belt- like plane portion 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, By forming a plurality of grooves with respect to 38, it becomes even more difficult for misalignment to occur.
 また、突起13が先細り形状であること、コーンカバー15が円錐状であること、コーン16が円錐状であることから、伝熱板1,2同士または伝熱板と製造装置との位置決めの際に芯出しがしやすくなり、伝熱板1,2同士の位置決めを容易に行なうことができる。 In addition, since the protrusion 13 is tapered, the cone cover 15 is conical, and the cone 16 is conical, the positioning of the heat transfer plates 1 and 2 or between the heat transfer plates and the manufacturing apparatus Centering becomes easy, and the positioning of the heat transfer plates 1 and 2 can be easily performed.
 また、正確に位置決めされた状態で超音波溶着を行うことで、溶着される範囲が他の範囲に及んでしまったり、溶着不良となる箇所が発生したりしにくくなる。これにより、余分な溶着による目詰まり、および熱交換素子50からの空気の漏れを防ぐことができる。 In addition, by performing ultrasonic welding in a state of being accurately positioned, it is less likely that the welded range will extend to other areas or that defective welding will occur. As a result, clogging due to excess welding and air leakage from the heat exchange element 50 can be prevented.
 また、台座14がひし形の2本の対角線のうち長いほうの対角線を空気の流れ方向に沿わせて設けられていること、台座14の頂部が隣接する伝熱板1,2に当接していることから、台座14が空気の流れの妨げになりにくい。また、台座14と帯状平面部22,24,31,33との間に空隙を設けることで、空隙を設けない場合に比べて台座14および辺1d,1f,2c,2eの周辺の風の流れの乱れを少なくでき圧力損失の発生を抑制できる。また、台座14を空気の流れ方向に直線状に配置することで同様に流れの乱れを少なくでき、圧力損失の発生を抑制できる。また、台座14と辺1d,1f,2c,2eとを空隙を挟んで極力近傍に配置することで、溶着点と台座14との距離が極力短くなり、溶着時に位置決めをより効果的にできる。 In addition, the base 14 is provided so that the longer diagonal of the two diagonals of the rhombus is aligned with the direction of air flow, and the top of the base 14 is in contact with the adjacent heat transfer plates 1 and 2. Therefore, the pedestal 14 is less likely to obstruct the flow of air. In addition, by providing gaps between the base 14 and the belt-shaped plane portions 22, 24, 31, and 33, the flow of air around the base 14 and the sides 1d, 1f, 2c, and 2e is reduced compared to the case where no gap is provided. turbulence can be reduced, and the occurrence of pressure loss can be suppressed. Further, by arranging the pedestals 14 linearly in the air flow direction, it is possible to similarly reduce turbulence in the air flow and suppress the occurrence of pressure loss. By arranging the pedestal 14 and the sides 1d, 1f, 2c and 2e as close to each other as possible with a gap therebetween, the distance between the welding point and the pedestal 14 becomes as short as possible, and positioning during welding can be made more effective.
 また、台座14をヘッダ部6a,6b,6c,6dに設けているので、帯状平面部21,22,23,24,31,32,33,34に台座14を設ける場合に比べて帯状平面部21,22,23,24,31,32,33,34の幅を狭くすることができる。同じサイズの伝熱板1,2であれば帯状平面部21,22,23,24,31,32,33,34の幅が狭いほうがヘッダ部6a,6b,6c,6dを広くすることができる。台座14が流路に設けられることになるものの、ヘッダ部6a,6b,6c,6dが広くなることで、帯状平面部21,22,23,24,31,32,33,34に台座14を設けた場合よりも熱交換素子50の圧力損失を低くすることができる。 Moreover, since the bases 14 are provided on the header portions 6a, 6b, 6c, and 6d, the bases 14 are provided on the flat strip portions 21, 22, 23, 24, 31, 32, 33, and 34, respectively. The width of 21, 22, 23, 24, 31, 32, 33, 34 can be narrowed. If the heat transfer plates 1 and 2 are of the same size, the narrower the width of the flat strip portions 21, 22, 23, 24, 31, 32, 33, 34, the wider the header portions 6a, 6b, 6c, 6d. . Although the pedestal 14 is provided in the flow path, the pedestal 14 can be attached to the strip-shaped plane portions 21, 22, 23, 24, 31, 32, 33, and 34 by widening the header portions 6a, 6b, 6c, and 6d. The pressure loss of the heat exchange element 50 can be made lower than when it is provided.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものである。実施の形態の構成は、別の公知の技術と組み合わせることが可能である。本開示の要旨を逸脱しない範囲で、実施の形態の構成の一部を省略または変更することが可能である。 The configuration shown in the above embodiment shows an example of the content of the present disclosure. The configuration of the embodiment can be combined with another known technique. A part of the configuration of the embodiment can be omitted or changed without departing from the gist of the present disclosure.
 1 第1の伝熱板、1a,1b,1c,1d,1e,1f 辺、2 第2の伝熱板、2a,2b,2c,2d,2e,2f 辺、3,4 風路、5 熱交換部、6a 第1のヘッダ部、6b 第2のヘッダ部、6c 第3のヘッダ部、6d 第4のヘッダ部、8 リブ、13 突起、14 台座、14a 凹み、15 コーンカバー、16 コーン、17 受け台、18,19 ガイドピン、21,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38 帯状平面部、41,42,43,44,51,52,53,54 段差、50 熱交換素子、61 第1の流入面、62 第2の流入面、71 第1の流出面、72 第2の流出面。 1 first heat transfer plate, 1a, 1b, 1c, 1d, 1e, 1f side, 2 second heat transfer plate, 2a, 2b, 2c, 2d, 2e, 2f side, 3, 4 air passage, 5 heat replacement part, 6a first header part, 6b second header part, 6c third header part, 6d fourth header part, 8 rib, 13 projection, 14 base, 14a recess, 15 cone cover, 16 cone, 17 Cradle, 18, 19 Guide pin, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38 Belt-shaped plane part, 41, 42, 43 , 44, 51, 52, 53, 54 steps, 50 heat exchange elements, 61 first inflow surface, 62 second inflow surface, 71 first outflow surface, 72 second outflow surface.

Claims (7)

  1.  複数の伝熱板が積層されて形成された熱交換素子であって、
     前記伝熱板は、複数の前記伝熱板の積層方向の一方側を通過する空気と前記積層方向の他方側を通る空気とを互いに対向する方向で通過させて熱交換させる熱交換部と、前記積層方向に沿って見て前記熱交換部を挟んで一方側と他方側とに設けられたヘッダ部と、前記熱交換部のうち前記ヘッダ部と接しない辺に沿って設けられた接合縁部と、を有し、
     積層された複数の前記伝熱板が有する前記接合縁部同士は、互いに接触して超音波溶着によって接合されており、
     前記接合縁部には、前記積層方向に沿って凸となる第1の凸部と、隣接する前記伝熱板の前記第1の凸部が嵌まる凹部とが形成されていることを特徴とする熱交換素子。
    A heat exchange element formed by stacking a plurality of heat transfer plates,
    The heat exchanger plate includes a heat exchange unit that allows air passing through one side of the plurality of heat exchanger plates in the stacking direction and air passing through the other side of the heat exchanger plate to pass in opposite directions to exchange heat; Header portions provided on one side and the other side of the heat exchange portion when viewed along the stacking direction, and a joint edge provided along a side of the heat exchange portion not in contact with the header portion. and
    The joint edges of the plurality of stacked heat transfer plates are in contact with each other and are joined by ultrasonic welding,
    The joint edge is formed with a first convex portion that protrudes along the stacking direction and a concave portion into which the first convex portion of the adjacent heat transfer plate is fitted. heat exchange element.
  2.  前記ヘッダ部には、前記積層方向に沿って凸となり、その頂部に凹みが形成された台座と、隣接する前記伝熱板の前記凹みに嵌まる第2の凸部とが形成されていることを特徴とする請求項1に記載の熱交換素子。 The header portion is formed with a pedestal that protrudes along the stacking direction and has a recess formed at the top thereof, and a second protrusion that fits into the recess of the adjacent heat transfer plate. The heat exchange element according to claim 1, characterized by:
  3.  前記台座の頂部には平面領域が設けられており、隣接する前記伝熱板に前記平面領域が当接することを特徴とする請求項2に記載の熱交換素子。 The heat exchange element according to claim 2, wherein a flat area is provided on the top of the pedestal, and the flat area abuts on the adjacent heat transfer plate.
  4.  前記伝熱板は前記積層方向に沿って見て六角形形状であり、
     前記第1の凸部および前記台座は前記六角形形状のいずれかの辺に沿って設けられており、
     前記第1の凸部および前記台座は、前記第1の凸部および前記台座が沿う辺に対して複数形成されていることを特徴とする請求項2または3に記載の熱交換素子。
    The heat transfer plate has a hexagonal shape when viewed along the stacking direction,
    The first convex portion and the pedestal are provided along one side of the hexagonal shape,
    4. The heat exchange element according to claim 2, wherein a plurality of said first protrusions and said pedestals are formed along a side along which said first protrusions and said pedestals are formed.
  5.  複数の前記第1の凸部および前記台座は、前記第1の凸部および前記台座が沿う辺の長さを等間隔に分ける位置に設けられていることを特徴とする請求項4に記載の熱交換素子。 5. The method according to claim 4, wherein the plurality of first protrusions and the pedestals are provided at positions that divide the length of the side along which the first protrusions and the pedestals are aligned at equal intervals. heat exchange element.
  6.  前記台座は、前記積層方向に沿って見てひし形の形状であり、2本の対角線のうち長いほうの対角線を、前記ヘッダ部を通過する空気の流れ方向に沿わせて形成されていることを特徴とする請求項2から5のいずれか1つに記載の熱交換素子。 The pedestal has a rhombic shape when viewed along the stacking direction, and is formed such that the longer diagonal of two diagonals is aligned with the flow direction of the air passing through the header section. 6. The heat exchange element according to any one of claims 2 to 5.
  7.  前記第1の凸部の高さは、前記第1の凸部の根元での直径に対する比率が1以下であることを特徴とする請求項1から6のいずれか1つに記載の熱交換素子。 7. The heat exchange element according to any one of claims 1 to 6, wherein the ratio of the height of the first protrusion to the diameter at the root of the first protrusion is 1 or less. .
PCT/JP2021/026095 2021-07-12 2021-07-12 Heat exchange element WO2023286110A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21950054.3A EP4372304A4 (en) 2021-07-12 2021-07-12 Heat exchange element
CN202180100277.XA CN117651841A (en) 2021-07-12 2021-07-12 Heat exchange element
CA3226203A CA3226203A1 (en) 2021-07-12 2021-07-12 Heat exchange element
PCT/JP2021/026095 WO2023286110A1 (en) 2021-07-12 2021-07-12 Heat exchange element
US18/559,975 US20240240880A1 (en) 2021-07-12 2021-07-12 Heat exchange element
JP2023534435A JPWO2023286110A1 (en) 2021-07-12 2021-07-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026095 WO2023286110A1 (en) 2021-07-12 2021-07-12 Heat exchange element

Publications (1)

Publication Number Publication Date
WO2023286110A1 true WO2023286110A1 (en) 2023-01-19

Family

ID=84919145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026095 WO2023286110A1 (en) 2021-07-12 2021-07-12 Heat exchange element

Country Status (6)

Country Link
US (1) US20240240880A1 (en)
EP (1) EP4372304A4 (en)
JP (1) JPWO2023286110A1 (en)
CN (1) CN117651841A (en)
CA (1) CA3226203A1 (en)
WO (1) WO2023286110A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003824A (en) * 2002-03-28 2004-01-08 Matsushita Ecology Systems Co Ltd Heat exchanger
JP2004293862A (en) 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007285691A (en) * 2006-03-22 2007-11-01 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008107071A (en) * 2006-09-28 2008-05-08 Matsushita Electric Ind Co Ltd Heat exchanging element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724225B1 (en) * 2005-11-30 2007-05-31 마쓰시타 에코시스테무즈 가부시키가이샤 Heat exchanger
KR100783599B1 (en) * 2007-03-09 2007-12-07 충남대학교산학협력단 Heat exchanger for ventilation system
CN102183077A (en) * 2011-01-30 2011-09-14 霍尼韦尔(中国)有限公司 Energy recovery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003824A (en) * 2002-03-28 2004-01-08 Matsushita Ecology Systems Co Ltd Heat exchanger
JP2004293862A (en) 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007285691A (en) * 2006-03-22 2007-11-01 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008107071A (en) * 2006-09-28 2008-05-08 Matsushita Electric Ind Co Ltd Heat exchanging element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4372304A4

Also Published As

Publication number Publication date
CA3226203A1 (en) 2023-01-19
JPWO2023286110A1 (en) 2023-01-19
US20240240880A1 (en) 2024-07-18
CN117651841A (en) 2024-03-05
EP4372304A1 (en) 2024-05-22
EP4372304A4 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
JP6590917B2 (en) Plate stack heat exchanger
KR101353716B1 (en) Plate heat exchanger
JP4816517B2 (en) Heat exchange element
JP2009521658A (en) Heat conduction plate for plate heat exchanger that evenly distributes load in port area
JP5282112B2 (en) Cold plate assembly and method of manufacturing cold plate assembly
JP2007528978A (en) Heat exchange plate and plate package
JP5724710B2 (en) Plate stack type cooler
CA2484856A1 (en) Cross-over rib plate pair for heat exchanger
WO2023286110A1 (en) Heat exchange element
JPH0126479B2 (en)
JP2004184075A (en) Heat-transfer plate and plate-type heat-exchanger
JP6249611B2 (en) Laminated structure
JP2004011936A (en) Heat exchanger
KR100918607B1 (en) Joint equipment and method plate heat exchange of plate type heat exchanger, and joint structure plate heat exchange of plate type heat exchanger thereby
KR101317920B1 (en) Printed circuit heat exchanger and method for making the same
KR101980359B1 (en) Stacked plate type heat exchanger
JP2006317026A (en) Stacked heat exchanger and its manufacturing method
JP6545920B2 (en) Heat exchanger
JP2547545Y2 (en) Stacked heat exchanger
JP2005207725A (en) Heat exchanger
JP7210646B2 (en) heat sinks and heat exchangers
JP7481146B2 (en) Manufacturing method of the joint body
JPH0464894A (en) Heat exchanger
JP2023165569A (en) Plate type heat exchanger
JP2584745Y2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023534435

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18559975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3226203

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180100277.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021950054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021950054

Country of ref document: EP

Effective date: 20240212