JP2004011936A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004011936A
JP2004011936A JP2002161894A JP2002161894A JP2004011936A JP 2004011936 A JP2004011936 A JP 2004011936A JP 2002161894 A JP2002161894 A JP 2002161894A JP 2002161894 A JP2002161894 A JP 2002161894A JP 2004011936 A JP2004011936 A JP 2004011936A
Authority
JP
Japan
Prior art keywords
heat exchanger
fin forming
flat plate
members
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002161894A
Other languages
Japanese (ja)
Inventor
Kenji Miyamoto
宮本 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002161894A priority Critical patent/JP2004011936A/en
Publication of JP2004011936A publication Critical patent/JP2004011936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of a heat exchanger formed by laminating plate materials each other to form fluid flow passages between these plate materials. <P>SOLUTION: Both of a surface and a back surface of a fin forming member 17 are formed with a plurality of recessed and projecting parts, and when laminating a plurality of fin forming members 17 in the plate thickness direction, both of the projecting parts 17a of the adjacent fin forming members 17 are joined to each other. High-temperature fluid flow passages 19 and low-temperature fluid flow passages 21 are respectively formed between the fin forming members 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、板材相互を積層してその板材相互間に流体流路を形成する熱交換器に関する。
【0002】
【従来の技術】
例えば特開平7−167580号公報に記載されているような従来の熱交換器を図12に示す。この熱交換器は、全体が直方体形状を呈しており、プレート1と、図13に斜視図として示すような波型の凹凸形状を有するフィン3とが、図12中で上下方向に交互に積層されて構成されている。
【0003】
フィン3が収容されるプレート1,1相互の空間に、上記した積層方向に高温流体流路5と低温流体流路7とが交互に形成され、各流体流路5,7に高温流体と低温流体とがそれぞれ流れることで、高温流体と低温流体との間で熱交換が行われる。
【0004】
上記したプレート1とフィン3とは、相互の接触部にて溶接やろう付けなどによって接合固定されている。また、高温流体流路5の両側部は側板9,11により塞がれ、低温流体流路7の両側部は、側板13,15により塞がれている。
【0005】
【発明が解決しようとする課題】
ところで、当然ながら、高温流体と低温流体との間には温度差があり、また高温流体の入口部付近と出口部付近との間あるいは、高温流体の入口部付近と低温流体の入口部付近との間にも、温度差がそれぞれ生じるので、これらの間で、熱膨張差が発生する。この結果、プレート1およびフィン3は、互いに接合されていることから上記した熱膨張差に起因して熱応力が発生し、亀裂が発生しやすく、耐久性の低下を招く。
【0006】
特に、フィン3は、図13に示すように、座標軸を互いに直交するXとYとに定義すると、X方向の変形が比較的自由であるのに対し、Y方向については変形しくいので、このY方向の変形が拘束されて亀裂が発生しやすくなる。
【0007】
そこで、この発明は、熱交換器の耐久性を向上させることを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、板状のフィン形成部材の表裏両面に、凹凸部を複数形成し、前記フィン形成部材をその板厚方向に複数積層する際に、互いに隣接するフィン形成部材の凸部同士を接合して、前記フィン形成部材相互間に流体流路を形成した構成としてある。
【0009】
請求項2の発明は、請求項1の発明の構成において、前記凹凸部における凸部の先端は、凸曲面に形成されている構成としてある。
【0010】
請求項3の発明は、請求項1の発明の構成において、前記凹凸部における凸部の先端は、平面に形成されている構成としてある。
【0011】
請求項4の発明は、請求項1ないし3のいずれかの発明の構成において、互いに接合される前記凸部の一方の先端に、他方の凸部の先端が入り込む収容凹部を設けた構成としてある。
【0012】
請求項5の発明は、請求項1ないし4のいずれかの発明の構成において、前記フィン形成部材となる平板部材をその板厚方向に複数積層し、この各平板部材の隣接するもの同士の複数箇所をあらかじめ互いに接合しておき、前記凸部同士の接合部は、前記隣接する平板部材相互間に液圧を付与して前記接合部周囲を膨らませることで形成される構成としてある。
【0013】
請求項6の発明は、請求項5の発明の構成において、前記平板部材は、あらかじめ接合した部位の周囲の平板部材相互間に空間が形成されるよう曲面状に形成する構成としてある。
【0014】
【発明の効果】
請求項1の発明によれば、隣接するフィン形成部材の凸部同士を接合して、フィン形成部材相互間に流体流路を形成するようにしたので、フィン形成部材は、必要な熱交換機能を確保しつつ、多軸方向への高い伸縮性によって熱膨張差に起因する変形を吸収でき、熱応力が低減されて亀裂発生を回避でき、熱交換器として耐久性の向上を図ることができる。
【0015】
請求項2の発明によれば、隣接するフィン形成部材の凸部先端の凸曲面同士を接合して、フィン形成部材相互間に流体流路を形成するようにしたので、フィン形成部材は、必要な熱交換機能を確保しつつ、多軸方向への高い伸縮性によって熱膨張差に起因する変形を吸収でき、熱応力が低減されて亀裂発生を回避でき、熱交換器として耐久性の向上を図ることができる。
【0016】
請求項3の発明によれば、隣接するフィン形成部材の凸部先端の平面同士を接合して、フィン形成部材相互間に流体流路を形成するようにしたので、フィン形成部材は、必要な熱交換機能を確保しつつ、多軸方向への高い伸縮性によって熱膨張差に起因する変形を吸収でき、熱応力が低減されて亀裂発生を回避でき、熱交換器として耐久性の向上を図ることができる。また、フィン形成部材相互の接合部が平面での面接触となるので、凸曲面同士が接合される場合に比べ接触面積が大きくとれ、接合部における熱伝導性能を向上させることができる。
【0017】
請求項4の発明によれば、互いに接合される凸部の一方の先端に設けた収容凹部に、他方の凸部の先端が入り込むようにしたので、フィン形成部材相互を積層する際に、位置合わせが容易かつ確実となる。
【0018】
請求項5の発明によれば、凸部同士の接合部となる部位が、あらかじめ接合されているので、フィン形成部材相互を積層して位置合わせを行うという煩雑な作業が不要となる。
【0019】
請求項6の発明によれば、平板部材を、あらかじめ相互間に空間が形成されるよう曲面状に形成してあるので、液圧による膨らむ部分をほぼ均一とすることができる。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0021】
図1は、この発明の第1の実施形態に係わる熱交換器の内部構造を示す斜視図である。この熱交換器は、板状のフィン形成部材17を図中で上下方向に複数積層してあるが、この各フィン形成部材17は、図1のA−AまたはB−B断面図である図2に示すように、フィン形成部材17の面と平行な方向で、かつ互いに直交する図1中でX方向およびY方向に沿ってほぼ正弦波形を形成するような凹凸形状を備えている。つまり、ここでのフィン形成部材17の凸部17aの先端は凸曲面に形成されている。
【0022】
これにより、このフィン形成部材17は、前記図13に示した従来のフィン3のように変形しやすい方向が一方向(X方向)のみではなく、Y方向にも変形しやすく多軸方向への伸縮性が高いものとなっている。
【0023】
そして、このフィン形成部材17の上下に隣接するもの相互の凸部17a同士を、図3に示すように、接着剤や抵抗溶接などによって互いに接合してある。これにより、図1に示すように高温流体流路19と低温流体流路21とが積層方向に交互に形成される。高温流体流路19のX方向両側部は側板23,25で塞がれ、低温流体流路21のY方向両側部は側板27,29で塞がれている。
【0024】
上記した各流体流路19,21に高温流体と低温流体とがそれぞれ流れることで、高温流体と低温流体との間で熱交換が行われる。このような熱交換動作がなされる過程において、当然ながら、高温流体と低温流体との間には温度差があり、また高温流体の入口部付近と出口付近との間あるいは、高温流体の入口部付近と低温流体の入口部付近との間にも、温度差がそれぞれ生じるので、これらの間で、熱膨張差が発生する。
【0025】
しかしながら、ここでは、表裏両面を凹凸形状として多軸方向へ変形しやすいいフィン形成部材17をフィンとして使用しているので、上記した熱膨張差が発生しても、必要な熱交換機能を確保しつつ、多軸方向への高い伸縮性によって、フィン形成部材17同士の互いの拘束力が弱められて熱膨張差に起因する変形を吸収でき、フィン形成部材17の熱応力が低減されて亀裂発生を回避でき、熱交換器として耐久性が向上する。
【0026】
図4は、この発明の第2の実施形態を示している。この実施形態におけるフィン形成部材31は、図4のC−CまたはD−D断面図である図5に示すように、フィン形成部材31の面と平行な方向で、かつ互いに直交する図4でX方向およびY方向に沿って、上下が互いに逆となる台形が繰り返し形成されるような凹凸形状を備えている。すなわち、ここでのフィン形成部材31は、凹凸形状の凸部31aの先端が平面31bに形成されている。
【0027】
そして、このフィン形成部材31を、その板厚方向に多数積層して、図6に示すように、凸部31aの平面31b同士を、図1のものと同様にして接着剤や抵抗溶接などによって互いに接合する。
【0028】
この第2の実施形態による熱交換器おいても、高温部位と低温部位との間で熱膨張差が発生しても、必要な熱交換機能を確保しつつ、多軸方向への高い伸縮性によって、フィン形成部材31同士の互いの拘束力が弱められて熱膨張差に起因する変形を吸収でき、熱応力が低減されて亀裂発生を回避でき、熱交換器として耐久性の向上を図ることができる。
【0029】
また、この第2の実施形態においては、フィン形成部材31相互の接合部が平面31bでの面接触となっているので、接触面積が図1のものに比べて大きくとれ、接合部における熱伝導性能が向上する。
【0030】
図7は、この発明の第3の実施形態を示す。この実施形態におけるフィン形成部材33は、前記図1〜図3に示した第1の実施形態におけるフィン形成部材17に対し、凸部33a相互の接合部において、一方の凸部33aに他方の凸部33aが入り込む収容凹部33bを形成する点が異なっている。その他の構成は、第1の実施形態と同様である。
【0031】
この第3の実施形態の場合は、第1の実施形態と同様の効果を有するほか、フィン形成部材33相互を重ね合わせる際に、他方の凸部33aが一方の凸部33aの収容凹部33bに入り込むので、フィン形成部材33相互の位置合わせ作業が容易かつ確実に行えるという効果がある。また、この例においても、第2の実施形態と同様に、互いの接触部が面接触となるので、接触面積が図1のものに比べて大きくとれ、接合部における熱伝導性能が向上する。
【0032】
なお、前記図4〜図6に示した第2の実施形態においても、互いに接合される凸部31a先端の平面31bの対向面に、互いに嵌合する凹部およ凸部を設けることで、フィン形成部材31相互の位置合わせ作業が容易かつ確実に行えるという、上記図7に示した第3の実施形態と同様の効果が得られる。
【0033】
図8は〜図10は、この発明の第4の実施形態を示している。この実施形態は、図8に示すように、フィン形成部材となる平板部材35をその板厚方向に複数積層し、この各平板部材35の互いに隣接する2枚一組のもの同士の複数箇所を、あらかじめ接着剤やレーザ溶接あるいはスポット溶接により互いに接合して接合部37を形成しておく。この各接合部37は、互いの間隔がほぼ同程度となるよう全体に均等な位置に形成する。平板部材35の互いに接合した2枚一組相互間は、接合部37を除く部位、例えば接合部37相互のほぼ中間部位を互いに接合固定しておく。
【0034】
また、平板部材35の互いに対向する2箇所の側縁35a,35bは、その全長にわたり接着剤やレーザ溶接により接合し、密閉状態としておく。そして、上記した平板部材35の2枚一組のものは、上下に隣接するもの同士の側縁35a,35bが、互いに直交する側となるよう互い違いに配置する。
【0035】
この状態で、図8中で最上部の平板部材35とその下部の平板部材35との間に液圧を付与する。以下同様にして、平板部材35のさらに下部の平板部材35とその下部の平板部材35との間、平板部材35と35との間に、順次液圧を付与する。この液圧付与は、上記密閉状態とした2箇所の側縁35a,35bと直交する側の2箇所の平板部材35相互の合わせ部から行う。
【0036】
上記した、各平板部材35と35との間、平板部材35と35との間、平板部材35と35との間……にそれぞれ付与された液圧によって、図9に示すように、前記した接合部37および側縁35a,35bの接合状態が保持されたまま、接合部37および側縁35a,35b以外の部分が互いに離れて、接合部37周囲が膨らんだ状態となり、高温流体流路41および低温流体流路43がそれぞれ形成されることになる。
【0037】
図10は、液圧付与後の一組の平板部材35の断面図であり、接合部37にて平板部材35相互が接合され、この接合部37には互いに向かい合う方向に突出する凸部35cが形成されるものとなる。
【0038】
液圧を付与しない平板部材35と35との間、平板部材35と35との間……は、前述したように接合部37を除く適宜部位同士を接合してあり、ほぼ密着した状態のままである。なお、平板部材35と35との間、平板部材35と35との間……にも、液圧を付与し、すべての平板部材35相互間に流体流路を形成するようにしてもよい。
【0039】
上記した第4の実施形態によれば、平板部材35相互は接合部37にてあらかじめ接合されているので、第1〜第3の実施形態で行うような凸部同士の位置合わせが不要となる。
【0040】
なお、第4の実施形態においては、前記図7に示した第3の実施形態のように、接合部37に凸部および凸部が収容される収容凹部をあらかじめ形成しておいてもよい。
【0041】
図11は、この発明の第5の実施形態を示している。この実施形態は、前記第4の実施形態における図8の平板部材35に代えて、なめらかな曲面となるよう予加工した曲面部材47を用い、これをフィン形成部材としている。その他の構成は第4の実施形態と同様である。
【0042】
上記予加工してある曲面部材47に対し、曲面部材47相互間に液圧を付与することで、第4の実施形態と同様に、接合部37および側縁47a,47bの接合状態が保持されたまま、接合部37および側縁47a,47b以外の部分が互いに離れた状態となり、前記図9に示したように、高温流体流路41および低温流体流路43がそれぞれ形成されることになる。
【0043】
上記した第5の実施形態によれば、第4の実施形態と同様の効果を有するほか、あらかじめ相互間に空間が形成されるよう曲面状に形成した曲面部材47を用いて、液圧を付与するようにしているので、液圧による膨らむ部分をほぼ均一とすることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係わる熱交換器の内部構造を示す斜視図である。
【図2】図1のA−AまたはB−B断面図である。
【図3】図1のフィン形成部材相互の接合部を示す断面図である。
【図4】この発明の第2の実施形態に係わる熱交換器の内部構造を示す斜視図である。
【図5】図4のC−CまたはD−D断面図である。
【図6】図4のフィン形成部材相互の接合部を示す断面図である。
【図7】この発明の第3の実施形態に係わるフィン形成部材相互の接合部を示す断面図である。
【図8】この発明の第4の実施形態を示す液圧付与前の平板部材の斜視図である。
【図9】図8の平板部材相互間に液圧を付与した後の状態を示す斜視図である。
【図10】図9における互い接合されている一組の平板部材の断面図である。
【図11】この発明の第5の実施形態を示す液圧付与前の曲面部材の斜視図である。
【図12】従来の熱交換器の全体構成を示す斜視図である。
【図13】図12の熱交換器に使用されているフィンの斜視図である。
【符号の説明】
17,31,33 フィン形成部材
17a,31a,33a,35c 凸部
19,41 高温流体流路
21,43 低温流体流路
31b 平面
33b 収容凹部
35 平板部材(フィン形成部材)
37 接合部
47 曲面部材(フィン形成部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger in which plate members are stacked to form a fluid flow path between the plate members.
[0002]
[Prior art]
FIG. 12 shows a conventional heat exchanger as described in, for example, JP-A-7-167580. This heat exchanger has a rectangular parallelepiped shape as a whole, and a plate 1 and fins 3 having a corrugated shape as shown in a perspective view in FIG. 13 are alternately stacked in the vertical direction in FIG. It is configured.
[0003]
In the space between the plates 1 and 1 in which the fins 3 are accommodated, high-temperature fluid channels 5 and low-temperature fluid channels 7 are alternately formed in the above-described laminating direction. The flow of the fluid causes heat exchange between the high-temperature fluid and the low-temperature fluid.
[0004]
The above-mentioned plate 1 and fin 3 are joined and fixed to each other by welding, brazing, or the like at a mutual contact portion. Both sides of the high-temperature fluid flow path 5 are closed by side plates 9 and 11, and both sides of the low-temperature fluid flow path 7 are closed by side plates 13 and 15.
[0005]
[Problems to be solved by the invention]
By the way, naturally, there is a temperature difference between the high-temperature fluid and the low-temperature fluid, and between the vicinity of the high-temperature fluid inlet and the vicinity of the outlet, or between the high-temperature fluid inlet and the low-temperature fluid inlet. , A temperature difference occurs between them, so that a thermal expansion difference occurs between them. As a result, since the plate 1 and the fin 3 are joined to each other, thermal stress is generated due to the difference in thermal expansion described above, cracks are easily generated, and the durability is reduced.
[0006]
In particular, as shown in FIG. 13, when the fins 3 are defined with coordinate axes X and Y orthogonal to each other, deformation in the X direction is relatively free, but deformation in the Y direction is unlikely. The deformation in the Y direction is restricted, and cracks are likely to occur.
[0007]
Then, this invention aims at improving the durability of a heat exchanger.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that a plurality of uneven portions are formed on both front and back surfaces of a plate-shaped fin forming member, and when a plurality of the fin forming members are stacked in the plate thickness direction, In this configuration, the protrusions of the adjacent fin forming members are joined to form a fluid flow path between the fin forming members.
[0009]
According to a second aspect of the present invention, in the configuration of the first aspect, a tip of the convex portion in the uneven portion is formed as a convex curved surface.
[0010]
According to a third aspect of the present invention, in the configuration according to the first aspect of the present invention, a tip of the convex portion in the concave-convex portion is formed in a plane.
[0011]
According to a fourth aspect of the present invention, in the configuration of any one of the first to third aspects of the present invention, one end of the projections joined to each other is provided with an accommodation recess into which the tip of the other projection enters. .
[0012]
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, a plurality of flat members serving as the fin forming members are laminated in a thickness direction thereof, and a plurality of the flat members are adjacent to each other. The portions are joined to each other in advance, and the joint between the convex portions is formed by applying a liquid pressure between the adjacent flat plate members to expand around the joint.
[0013]
According to a sixth aspect of the present invention, in the configuration of the fifth aspect, the flat plate member is formed in a curved shape so that a space is formed between the flat plate members around a previously joined portion.
[0014]
【The invention's effect】
According to the first aspect of the present invention, since the convex portions of the adjacent fin forming members are joined to form a fluid flow path between the fin forming members, the fin forming member has a necessary heat exchange function. High elasticity in the multi-axial direction can absorb the deformation caused by the difference in thermal expansion, the thermal stress can be reduced, cracks can be avoided, and the durability of the heat exchanger can be improved. .
[0015]
According to the second aspect of the present invention, the convex curved surfaces at the tips of the convex portions of the adjacent fin forming members are joined to form a fluid flow path between the fin forming members. High heat exchange function while absorbing the deformation caused by the difference in thermal expansion due to the high elasticity in the multi-axial direction, reducing thermal stress and avoiding cracks, and improving the durability as a heat exchanger. Can be planned.
[0016]
According to the third aspect of the present invention, the flat surfaces of the tips of the protruding portions of the adjacent fin forming members are joined to form a fluid flow path between the fin forming members. While maintaining the heat exchange function, the deformation caused by the difference in thermal expansion can be absorbed by the high elasticity in the multi-axial direction, the thermal stress is reduced, cracks can be avoided, and the durability as a heat exchanger is improved. be able to. Further, since the joints between the fin forming members are in planar contact with each other, the contact area can be increased as compared with the case where the convex curved surfaces are joined, and the heat conduction performance at the joints can be improved.
[0017]
According to the fourth aspect of the present invention, the distal end of the other convex portion is inserted into the accommodating concave portion provided at one distal end of the convex portion joined to each other. The alignment is easy and reliable.
[0018]
According to the fifth aspect of the present invention, since the portions to be the joining portions of the convex portions are joined in advance, a complicated operation of laminating the fin forming members and performing positioning is unnecessary.
[0019]
According to the sixth aspect of the present invention, since the flat plate members are formed in a curved surface so that a space is formed between them in advance, the swelling portion due to the hydraulic pressure can be made substantially uniform.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a perspective view showing the internal structure of the heat exchanger according to the first embodiment of the present invention. In this heat exchanger, a plurality of plate-shaped fin forming members 17 are vertically stacked in the figure, and each fin forming member 17 is a sectional view taken along the line AA or BB in FIG. As shown in FIG. 2, the fin-forming member 17 has a concavo-convex shape that forms a substantially sinusoidal waveform in a direction parallel to the surface of the fin forming member 17 and in the X direction and the Y direction in FIG. That is, the tip of the convex portion 17a of the fin forming member 17 here is formed in a convex curved surface.
[0022]
Accordingly, the fin forming member 17 is easily deformed not only in one direction (X direction) but also in Y direction as in the conventional fin 3 shown in FIG. It has high elasticity.
[0023]
The projecting portions 17a of the fin forming member 17 which are vertically adjacent to each other are joined to each other by an adhesive or resistance welding as shown in FIG. Thereby, as shown in FIG. 1, the high-temperature fluid channels 19 and the low-temperature fluid channels 21 are alternately formed in the laminating direction. Both sides of the high-temperature fluid flow path 19 in the X direction are closed by side plates 23 and 25, and both sides of the low-temperature fluid flow path 21 in the Y direction are closed by side plates 27 and 29.
[0024]
The high-temperature fluid and the low-temperature fluid flow through the fluid flow paths 19 and 21, respectively, so that heat is exchanged between the high-temperature fluid and the low-temperature fluid. In the course of such a heat exchange operation, there is naturally a temperature difference between the high-temperature fluid and the low-temperature fluid, and between the vicinity of the inlet of the high-temperature fluid and the vicinity of the outlet or the inlet of the high-temperature fluid. Since a temperature difference is also generated between the vicinity and the vicinity of the inlet of the low-temperature fluid, a difference in thermal expansion occurs between them.
[0025]
However, in this case, the fin forming member 17 that is easily deformed in the multiaxial direction is used as the fin because both the front and back surfaces are uneven, so that the necessary heat exchange function is secured even if the above-described difference in thermal expansion occurs. In addition, due to the high elasticity in the multiaxial directions, the binding force between the fin forming members 17 is weakened, so that the deformation caused by the difference in thermal expansion can be absorbed. Generation can be avoided, and the durability of the heat exchanger is improved.
[0026]
FIG. 4 shows a second embodiment of the present invention. The fin forming member 31 in this embodiment is, as shown in FIG. 5 which is a cross-sectional view taken along line CC or DD in FIG. 4, in a direction parallel to the surface of the fin forming member 31 and orthogonal to each other in FIG. It has an irregular shape such that a trapezoid whose top and bottom are opposite to each other is repeatedly formed along the X direction and the Y direction. That is, in the fin forming member 31 here, the tip of the convex portion 31a having the uneven shape is formed on the flat surface 31b.
[0027]
Then, a large number of the fin forming members 31 are stacked in the thickness direction thereof, and as shown in FIG. 6, the flat surfaces 31b of the convex portions 31a are bonded to each other by an adhesive or resistance welding in the same manner as in FIG. Join each other.
[0028]
In the heat exchanger according to the second embodiment, even if a thermal expansion difference occurs between a high-temperature portion and a low-temperature portion, high elasticity in a multiaxial direction is ensured while securing a necessary heat exchange function. Thereby, the binding force between the fin forming members 31 is weakened, the deformation caused by the difference in thermal expansion can be absorbed, the thermal stress can be reduced, cracks can be avoided, and the durability of the heat exchanger can be improved. Can be.
[0029]
Further, in the second embodiment, since the joint between the fin forming members 31 is in surface contact with the flat surface 31b, the contact area can be larger than that in FIG. Performance is improved.
[0030]
FIG. 7 shows a third embodiment of the present invention. The fin forming member 33 in this embodiment is different from the fin forming member 17 in the first embodiment shown in FIGS. The difference is that a recess 33b into which the portion 33a enters is formed. Other configurations are the same as those of the first embodiment.
[0031]
In the case of the third embodiment, in addition to having the same effect as the first embodiment, when the fin forming members 33 are overlapped with each other, the other convex portion 33a is fitted into the accommodation concave portion 33b of the one convex portion 33a. Since it enters, there is an effect that the positioning operation between the fin forming members 33 can be performed easily and reliably. Also in this example, as in the second embodiment, the contact portions are in surface contact with each other, so that the contact area can be larger than that in FIG. 1 and the heat conduction performance at the joint portion is improved.
[0032]
In the second embodiment shown in FIGS. 4 to 6 as well, the fins are formed by providing the recesses and the projections that fit each other on the opposing surfaces of the flat surface 31b at the tips of the projections 31a that are joined to each other. An effect similar to that of the third embodiment shown in FIG. 7 described above is obtained in that the positioning operation between the forming members 31 can be performed easily and reliably.
[0033]
8 to 10 show a fourth embodiment of the present invention. In this embodiment, as shown in FIG. 8, a plurality of flat plate members 35 serving as fin forming members are stacked in the thickness direction thereof, and a plurality of places of a pair of two flat plate members 35 adjacent to each other are set. First, the bonding portion 37 is formed by bonding with an adhesive, laser welding or spot welding in advance. The joints 37 are formed at even positions as a whole so that the intervals between them are substantially the same. Between the two sets of the flat plate members 35 joined to each other, a portion excluding the joining portion 37, for example, a substantially intermediate portion between the joining portions 37 is joined and fixed to each other.
[0034]
The two side edges 35a and 35b of the flat plate member 35 facing each other are joined together by an adhesive or laser welding over the entire length thereof, and are kept in a sealed state. The two flat plate members 35 are alternately arranged so that the side edges 35a and 35b of the vertically adjacent ones are orthogonal to each other.
[0035]
In this state, the hydraulic pressure is applied between the Figure 8 in at the top of the plate member 35 1 and the flat plate member 35 2 thereunder. In the same manner, between the further lower portion of the flat plate member 35 3 of the flat plate member 35 2 and the flat plate member 35 4 thereunder, between the flat plate members 35 5 and 35 6, to impart sequential hydraulic. The application of the hydraulic pressure is performed from the joint of the two flat plate members 35 on the side orthogonal to the two side edges 35a and 35b in the closed state.
[0036]
Above, between the flat plate members 35 1 and 35 2, between the flat plate member 35 3 and 35 4, the hydraulic pressure is applied respectively ...... between the flat plate members 35 5 and 35 6, in FIG. 9 As shown in the drawing, while the bonding state of the bonding portion 37 and the side edges 35a and 35b is maintained, the portions other than the bonding portion 37 and the side edges 35a and 35b are separated from each other, and the periphery of the bonding portion 37 is expanded. , A high-temperature fluid channel 41 and a low-temperature fluid channel 43 are formed.
[0037]
FIG. 10 is a cross-sectional view of a pair of flat plate members 35 after the application of the hydraulic pressure. The flat plate members 35 are joined to each other at a joining portion 37, and the joining portion 37 has a convex portion 35c protruding in a direction facing each other. Will be formed.
[0038]
Between the flat plate member 35 2 without applying fluid pressure and 35 3, ... between the flat plate member 35 4 and 35 5, Yes by joining appropriate sites with each other except for the joint portions 37 as described above, substantially close contact It remains as it was. Incidentally, between the flat plate member 35 2 and 35 3, also between ...... the flat plate member 35 4 and 35 5, impart fluid pressure, so as to form a fluid flow path to all of the flat plate member 35 therebetween You may.
[0039]
According to the above-described fourth embodiment, since the flat plate members 35 are joined to each other at the joining portion 37 in advance, it is not necessary to perform positioning of the convex portions as in the first to third embodiments. .
[0040]
Note that, in the fourth embodiment, as in the third embodiment shown in FIG. 7, a convex portion and an accommodation concave portion in which the convex portion is accommodated may be formed in advance in the joint portion 37.
[0041]
FIG. 11 shows a fifth embodiment of the present invention. In this embodiment, instead of the flat plate member 35 in FIG. 8 in the fourth embodiment, a curved member 47 pre-processed to have a smooth curved surface is used as a fin forming member. Other configurations are the same as those of the fourth embodiment.
[0042]
By applying a hydraulic pressure to the pre-processed curved member 47 between the curved members 47, the joined state of the joint portion 37 and the side edges 47a and 47b is maintained as in the fourth embodiment. The portions other than the joining portion 37 and the side edges 47a and 47b are separated from each other, and the high-temperature fluid passage 41 and the low-temperature fluid passage 43 are respectively formed as shown in FIG. .
[0043]
According to the above-described fifth embodiment, in addition to having the same effects as the fourth embodiment, the hydraulic pressure is applied by using the curved member 47 which has been formed into a curved surface so that a space is formed between them in advance. Therefore, the swelling portion due to the liquid pressure can be made substantially uniform.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an internal structure of a heat exchanger according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA or BB in FIG.
FIG. 3 is a cross-sectional view showing a joint between the fin forming members of FIG. 1;
FIG. 4 is a perspective view showing an internal structure of a heat exchanger according to a second embodiment of the present invention.
FIG. 5 is a sectional view taken along the line CC or DD in FIG. 4;
FIG. 6 is a cross-sectional view showing a joint between the fin forming members of FIG. 4;
FIG. 7 is a cross-sectional view showing a joint between fin forming members according to a third embodiment of the present invention.
FIG. 8 is a perspective view of a flat plate member before hydraulic pressure application, showing a fourth embodiment of the present invention.
9 is a perspective view showing a state after a liquid pressure is applied between the flat plate members of FIG. 8;
FIG. 10 is a sectional view of a pair of flat plate members joined to each other in FIG. 9;
FIG. 11 is a perspective view of a curved member before applying hydraulic pressure, showing a fifth embodiment of the present invention.
FIG. 12 is a perspective view showing the overall configuration of a conventional heat exchanger.
FIG. 13 is a perspective view of a fin used in the heat exchanger of FIG.
[Explanation of symbols]
17, 31, 33 Fin-forming members 17a, 31a, 33a, 35c Convex portions 19, 41 High-temperature fluid flow passages 21, 43 Low-temperature fluid flow passages 31b Flat surface 33b Housing recess 35 Flat plate member (fin-forming member)
37 Joint 47 Curved surface member (fin forming member)

Claims (6)

板状のフィン形成部材の表裏両面に、凹凸部を複数形成し、前記フィン形成部材をその板厚方向に複数積層する際に、互いに隣接するフィン形成部材の凸部同士を接合して、前記フィン形成部材相互間に流体流路を形成したことを特徴とする熱交換器。On the front and back surfaces of the plate-shaped fin forming member, a plurality of uneven portions are formed, and when stacking a plurality of the fin forming members in the thickness direction thereof, the protrusions of the adjacent fin forming members are joined to each other, A heat exchanger wherein a fluid flow path is formed between fin forming members. 前記凹凸部における凸部の先端は、凸曲面に形成されていることを特徴とする請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein a tip of the convex portion in the concave / convex portion is formed in a convex curved surface. 前記凹凸部における凸部の先端は、平面に形成されていることを特徴とする請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein a tip of the convex portion in the concave / convex portion is formed in a plane. 互いに接合される前記凸部の一方の先端に、他方の凸部の先端が入り込む収容凹部を設けたことを特徴とする請求項1ないし3のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 3, wherein one end of the projections joined to each other is provided with a housing recess into which the tip of the other projection enters. 前記フィン形成部材となる平板部材をその板厚方向に複数積層し、この各平板部材の隣接するもの同士の複数箇所をあらかじめ互いに接合しておき、前記凸部同士の接合部は、前記隣接する平板部材相互間に液圧を付与して前記接合部周囲を膨らませることで形成されることを特徴とする請求項1ないし4のいずれかに記載の熱交換器。A plurality of flat plate members serving as the fin forming members are stacked in the thickness direction thereof, and a plurality of adjacent portions of each flat plate member are bonded to each other in advance, and a bonding portion between the convex portions is adjacent to each other. The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is formed by applying a liquid pressure between the plate members to expand around the joint. 前記平板部材は、あらかじめ接合した部位の周囲の平板部材相互間に空間が形成されるよう曲面状に形成してあることを特徴とする請求項5記載の熱交換器。6. The heat exchanger according to claim 5, wherein the flat plate member is formed in a curved shape so that a space is formed between the flat plate members around a previously joined portion.
JP2002161894A 2002-06-03 2002-06-03 Heat exchanger Pending JP2004011936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161894A JP2004011936A (en) 2002-06-03 2002-06-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161894A JP2004011936A (en) 2002-06-03 2002-06-03 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004011936A true JP2004011936A (en) 2004-01-15

Family

ID=30430831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161894A Pending JP2004011936A (en) 2002-06-03 2002-06-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004011936A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255826A (en) * 2006-03-24 2007-10-04 Hisaka Works Ltd Plate type heat exchanger
JP2008512631A (en) * 2004-09-08 2008-04-24 イーピー テクノロジー エービー Heat exchanger with indentation pattern
WO2009057623A1 (en) * 2007-10-31 2009-05-07 Calsonic Kansei Corporation Heat exchanger
JP2009163152A (en) * 2008-01-10 2009-07-23 Panasonic Corp Display apparatus
JP2013083436A (en) * 2011-10-07 2013-05-09 Visteon Global Technologies Inc Internal heat exchanger with external manifold
JP2014016144A (en) * 2012-07-05 2014-01-30 Airec Ab Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
EP2455695A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
EP2455694A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
JPWO2012143998A1 (en) * 2011-04-18 2014-07-28 三菱電機株式会社 Plate heat exchanger and heat pump device
JP2021164193A (en) * 2020-03-30 2021-10-11 住友重機械工業株式会社 Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512631A (en) * 2004-09-08 2008-04-24 イーピー テクノロジー エービー Heat exchanger with indentation pattern
US8091619B2 (en) 2004-09-08 2012-01-10 Ep Technology Ab Heat exchanger with indentation pattern
JP4891246B2 (en) * 2004-09-08 2012-03-07 ダンフォス アクティーゼルスカブ Heat exchanger with indentation pattern
EP1794529B1 (en) * 2004-09-08 2018-07-04 Danfoss A/S Heat exchanger with indentation pattern
JP2007255826A (en) * 2006-03-24 2007-10-04 Hisaka Works Ltd Plate type heat exchanger
JP4481263B2 (en) * 2006-03-24 2010-06-16 株式会社日阪製作所 Plate heat exchanger
WO2009057623A1 (en) * 2007-10-31 2009-05-07 Calsonic Kansei Corporation Heat exchanger
JP2009163152A (en) * 2008-01-10 2009-07-23 Panasonic Corp Display apparatus
US10473403B2 (en) 2010-11-19 2019-11-12 Danfoss A/S Heat exchanger
EP2455695A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
EP2455694A3 (en) * 2010-11-19 2014-04-02 Danfoss A/S Heat exchanger
CN106123655A (en) * 2010-11-19 2016-11-16 丹佛斯公司 Heat exchanger
JP5932777B2 (en) * 2011-04-18 2016-06-08 三菱電機株式会社 Plate heat exchanger and heat pump device
US9448013B2 (en) 2011-04-18 2016-09-20 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus
JPWO2012143998A1 (en) * 2011-04-18 2014-07-28 三菱電機株式会社 Plate heat exchanger and heat pump device
JP2013083436A (en) * 2011-10-07 2013-05-09 Visteon Global Technologies Inc Internal heat exchanger with external manifold
JP2014016144A (en) * 2012-07-05 2014-01-30 Airec Ab Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
JP2021164193A (en) * 2020-03-30 2021-10-11 住友重機械工業株式会社 Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor
JP7402102B2 (en) 2020-03-30 2023-12-20 住友重機械工業株式会社 Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method

Similar Documents

Publication Publication Date Title
JP5254244B2 (en) Plate heat exchanger
CN207491429U (en) For cooling down multiple layers of electronic module of heat exchanger assemblies and heat exchanger module
JP5282112B2 (en) Cold plate assembly and method of manufacturing cold plate assembly
TW201028337A (en) Fill pack assembly and method with bonded sheet pairs
CN110081765A (en) Heat exchanger
JP2004011936A (en) Heat exchanger
WO2015131758A1 (en) Heat exchange plate used for plate-type heat exchanger and plate-type heat exchanger provided with the heat exchange plate
US10744603B2 (en) Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same
JP6528283B2 (en) Heat exchanger
RU2012148703A (en) EXCHANGE HEAT EXCHANGER CONTAINING EXTERNAL HEAT EXCHANGE PLATES WITH IMPROVED ACCESSORIES TO THE SIDE PANELS
JP4600506B2 (en) Manufacturing method of heat exchanger
JPH0126479B2 (en)
TWI421460B (en) Heat exchange element
US10629794B2 (en) Thermoelectric power generation device and method for manufacturing same
JP2019190796A (en) Tank structure of composite heat exchanger
JP4827909B2 (en) Plate heat exchanger
JP6191414B2 (en) Laminate heat exchanger
JP2000220971A (en) Plate type heat exchanger
WO2023286110A1 (en) Heat exchange element
JP2021081158A (en) Heat exchanger
JPH01106768U (en)
GB2384299A (en) Automotive heat exchanger
JP5129719B2 (en) Laminated louver device and manufacturing method thereof
JP2003185377A (en) Plate fin-type heat exchanger
JP2014066411A (en) Plate type heat exchanger