WO2023284602A1 - 多能源耦合互补和有序转化系统与方法 - Google Patents

多能源耦合互补和有序转化系统与方法 Download PDF

Info

Publication number
WO2023284602A1
WO2023284602A1 PCT/CN2022/104066 CN2022104066W WO2023284602A1 WO 2023284602 A1 WO2023284602 A1 WO 2023284602A1 CN 2022104066 W CN2022104066 W CN 2022104066W WO 2023284602 A1 WO2023284602 A1 WO 2023284602A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
storage tank
gas
solid oxide
synthesis gas
Prior art date
Application number
PCT/CN2022/104066
Other languages
English (en)
French (fr)
Inventor
肖刚
孙安苇
徐浩然
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023284602A1 publication Critical patent/WO2023284602A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of clean energy, in particular to a multi-energy coupling complementary and orderly conversion system and method.
  • Fossil energy is a hydrocarbon or its derivatives. It is deposited from the fossils of ancient organisms and is a primary energy source. After incomplete combustion of fossil fuels, toxic gases will be emitted; with the massive consumption of traditional fossil energy, environmental problems have become increasingly prominent, and the development of renewable energy has received extensive attention. Renewable energy can reduce dependence on fossil energy and meet Demand for sustainable energy. At the same time, global warming due to excessive CO2 levels in the atmosphere requires effective CO2 control strategies.
  • the reversible solid oxide cell is a promising energy conversion device that converts excess renewable energy into CO/H2 through CO2/H2O co-electrolysis when used as an electrolysis cell.
  • syngas provides a method of using captured carbon dioxide for syngas production, combining the production of syngas with a synthetic fuel production system to synthesize high-energy-density fuels such as various hydrocarbons; when used as a battery, it can be fed into CO/H2 synthesis gas can output stable electric energy; this technology can realize the recycling of CO2, reduce the greenhouse effect, and can also participate in peak regulation, which is of great significance to the construction of a low-carbon society.
  • biomass gasification has problems such as complex sources of biomass, high gasification energy consumption, and unstable product quality, resulting in low added value of biomass conversion products, which is not conducive to the wide utilization of biomass; rSOC has difficulties in thermal management, reaction Low utilization rate of components, poor economy, etc., and most of rSOC’s electric energy and thermal energy input during electrolysis are from fossil energy, and the production of green fuel has not been realized from the source; the fluctuation of renewable electric energy is large, the adjustment Problems such as difficulty in peak frequency modulation and high energy storage costs have seriously restricted the development of clean energy; at present, solar energy concentration and heat collection are still based on thermal conversion power generation methods, lacking orderly conversion coupled with thermochemistry/electrochemistry/photochemistry method, it is difficult to achieve further improvement in energy efficiency and energy economy.
  • the present invention provides a multi-energy coupling complementary and orderly conversion system and method, relying on solar high-temperature heat collection and storage, coupling biomass/coal air-separation-free gasification, high-temperature solid oxide electrolysis hydrogen production /Fuel cell power generation, photo/thermocatalytic synthesis of hydrocarbon fuels and other technical means, through thermochemical/electrochemical/photochemical coupling and complementarity, realize the integration of unstable and disordered renewable electric energy, disordered biomass energy and time disordered
  • the solar energy is converted into stable hydrocarbon fuels and electric energy, realizing the orderly conversion of "zero carbon emission" complementary to renewable energy and fossil energy.
  • a multi-energy coupling complementary and orderly conversion system including: a gasification reaction chamber, which provides the first source of synthesis gas through the gasification reaction of biomass/coal; reversible solid oxide battery, reversible solid oxide The inlet of the fuel electrode of the battery is connected with a raw material gas supply device.
  • the raw material gas is electrolyzed at the fuel electrode to generate the second source of synthesis gas; the synthesis reactor, the synthesis gas of the first source and the synthesis gas of the second source are in the synthesis reaction
  • the reaction in the container generates hydrocarbon fuel; the photothermal coupling catalytic reactor, when generating electricity, the photothermal coupling catalytic reactor is connected with the outlet of the fuel electrode of the reversible solid oxide battery, and the outlet of the gasification reaction chamber is connected with the inlet of the fuel electrode.
  • the gas flowing out of the fuel electrode passes through the photothermal coupling catalytic reactor to generate hydrocarbon fuel; the heat source required for the gasification reaction chamber and the reversible solid oxide battery, and the heat source and light source required for the photothermal coupling catalytic reactor are provided by solar energy, reversible
  • the electricity required for solid oxide battery electrolysis is provided by unsteady renewable energy electricity that abandons wind and light.
  • Biomass energy and solar energy are widely distributed and abundant sources of energy, but their energy density is low; it is difficult to absorb renewable electricity from abandoned wind and light.
  • the unstable renewable energy power of solar energy and abandoned wind and light provides the heat and electricity required for the electrolysis of reversible solid oxide batteries; the electric energy and heat input of the existing rSOC are provided by fossil energy and abandoned wind and light
  • solar energy provides the heat required for the biomass/coal gasification reaction, solves the technical problems of high energy consumption and low hydrogen-carbon ratio of syngas converted from biomass gasification into syngas, and realizes the production of clean syngas. It realizes the coupling and complementarity of biomass energy, solar energy and the unstable renewable energy power of abandoning wind and light, and converts them into hydrocarbon fuels in an orderly manner.
  • it also includes an oxygen-enriched air storage tank and an oxygen-deficient air storage tank.
  • air flows into the oxygen-enriched air storage tank through the oxygen pole from the outlet of the oxygen-depleted air storage tank; , the air flows from the outlet of the oxygen-enriched air storage tank through the oxygen pole into the oxygen-lean air storage tank.
  • air is introduced into the oxygen pole through the oxygen-depleted air storage tank, which can purge the oxygen generated on the surface of oxygen, reduce the overpotential of oxygen evolution reaction, reduce power consumption, and according to the absorption capacity of the reversible solid oxide battery
  • the exothermic state regulates the temperature of the battery; when generating electricity, air is introduced into the oxygen pole through the oxygen-enriched air storage tank, and the oxygen in the air can undergo electrochemical reactions.
  • the oxygen-enriched air storage tank and the oxygen-deficient air storage tank are set at the oxygen pole, which can conveniently and quickly control the air entering the reversible solid oxide battery, provide oxygen-deficient and oxygen-enriched conditions, and improve the efficiency of system operation and mode switching. Convenience.
  • the feed gas includes water vapor and carbon dioxide
  • the raw material gas supply device includes a steam generator, a CO2 storage tank and a raw material gas mixing chamber.
  • the steam generator and the CO2 storage tank are respectively connected with the raw material gas mixing chamber. It is connected with water vapor flowmeter, CO2 flowmeter and raw gas flowmeter.
  • the steam generator is used to provide water vapor
  • the CO2 storage tank is used to provide CO2
  • the raw gas mixing chamber is used to mix water vapor and CO2
  • the setting of the steam flowmeter, CO2 flowmeter and raw gas flowmeter can be convenient Control the water vapor/CO2 ratio and the flow rate of raw gas entering the solid oxide electrolytic cell.
  • the coal in the biomass/coal includes solid fossil fuels such as low-quality coal
  • the biomass in the biomass/coal includes straw, sawdust, rice husk or branches.
  • adding coal as an auxiliary material can, on the one hand, make up for the shortage of biomass raw materials caused by seasonal differences and meet the long-term stable operation of the system;
  • the controllability and optimization requirements of the coupling process; straw, wood chips, rice husks or branches are all renewable energy sources.
  • the use of renewable energy sources is conducive to protecting the environment, coping with climate change, and realizing green production, which is in line with the concept of sustainable development.
  • a gas purification device and a synthesis gas storage tank are also included;
  • the gas purification device is used to absorb CO2 and H2O, the inlet of the gas purification device is connected to the outlet of the gasification reaction chamber, and the outlet of the gas purification device is connected to the first inlet of the synthesis gas storage tank;
  • the second inlet of the synthesis gas storage tank communicates with the outlet of the fuel pole, and during power generation, at least one outlet of the synthesis gas storage tank communicates with the inlet of the fuel pole.
  • setting up a gas purification device can remove CO2 and H2O mixed in the synthesis gas, which is beneficial to improving the purity of the synthesis gas.
  • the setting of the syngas storage tank can conveniently store the produced syngas from the first source and the syngas from the second source for backup, which improves convenience.
  • the number of reversible solid oxide batteries can be 1 to more.
  • the reversible solid oxide batteries are connected in series or in parallel with The syngas storage tank is connected.
  • a plurality of reversible solid oxide batteries are provided to simultaneously produce syngas, which is beneficial to increase the output and production efficiency of syngas, and reduces the complexity of the system of the present invention.
  • the unstable renewable energy power of abandoning wind and light is provided by the power grid.
  • the power grid includes an input pipeline and an output pipeline, and a first electrical switch is arranged on the output pipeline, and There is a second electrical switch, the first electrical switch controls the conduction and interruption of the electric energy delivered by the unstable renewable energy power of abandoning wind and light to the reversible solid oxide battery; the second switch controls the power generation of the reversible solid oxide battery The conduction and interruption of electric energy output.
  • the setting of the input pipeline, the output pipeline, the first electrical switch and the second electrical switch can conveniently provide electric energy to the reversible solid oxide battery, and can also conveniently use the generated electric energy for power grid peak regulation , Improve energy utilization.
  • the solar energy is provided by a solar concentrated heat collection and heat storage device, and the solar concentrated heat collection and heat storage device is a tower type, a trough type or a butterfly type.
  • the solar concentrating heat collection and storage device can realize the high-grade storage of fluctuating solar energy, and further through the thermochemical process, it can realize the controllable release of heat energy and the optimization of energy flow inside the compound system, providing suitable for each reaction.
  • the temperature of the solar concentrating heat collector can be freely selected from the tower type, the trough type or the butterfly type, which increases the flexibility of the conversion system setting.
  • a fuel storage tank is also included, and the outlet of the photothermal coupling catalytic reactor and the outlet of the synthesis reactor are respectively communicated with the fuel storage tank.
  • the arrangement of the fuel storage tank can conveniently store the produced hydrocarbon fuel for use as required.
  • the present invention also provides a transformation method of a multi-energy coupling complementary and orderly transformation system, comprising the following steps:
  • the synthesis gas production step the gasification reaction chamber provides the first source of synthesis gas through the gasification of biomass/coal, and the heat required for the gasification of biomass/coal is provided by solar energy; the reversible solid oxide battery is used as an electrolytic cell, The unstable renewable energy power and solar energy that abandon wind and light provide the electric energy and heat energy required for the electrolysis of reversible solid oxide cells, and the raw material gas undergoes electrochemical reactions at the fuel electrode to generate a second source of synthesis gas;
  • Hydrocarbon fuel production step the synthesis gas from the first source and the synthesis gas from the second source are reacted in the synthesis reactor to generate hydrocarbon fuel; reversible solid oxide cell is used as the battery, the synthesis of the first source and/or the second source
  • the gas undergoes an electrochemical reaction at the fuel electrode, and the produced product and unreacted synthesis gas enter the photothermal coupling catalytic reactor to react to generate hydrocarbon fuel; the heat source and light source required by the photothermal coupling catalytic reactor are provided by solar energy.
  • Figure 1 is a schematic structural diagram of a multi-energy coupled complementary and ordered conversion system.
  • Fig. 2 is a schematic structural view of the reversible solid oxide battery of the present invention.
  • Fig. 3 is a structural schematic diagram of the electrolysis of the multi-energy coupling complementary and orderly conversion system during the electrolysis of the reversible solid oxide battery of the present invention.
  • Fig. 4 is a structural schematic diagram of the multi-energy coupling complementary and orderly conversion system for power generation when the reversible solid oxide battery of the present invention is generating power.
  • 1-reversible solid oxide battery 11-oxygen electrode; 12-fuel electrode; 13-electrolyte; 2-raw material gas supply device; 21-steam generator; 211-water vapor flow meter; 22-CO2 storage tank; 221- CO2 flow meter; 23-raw material gas mixing chamber; 231-raw material gas flow meter; 3-synthesis gas supply device 31-gasification reaction chamber; 32-gas purification device; 33-synthesis gas storage tank; 4-synthesis reactor; 5-photothermal coupling catalytic reactor; 51-gas mixture switch; 6-solar energy concentrating heat collection and storage device; 7-grid; 71-first electrical switch; 72-second electrical switch; 81-oxygen-enriched air storage tank; 82-oxygen-depleted air storage tank; 9-fuel storage tank.
  • the present invention provides a multi-energy coupling complementary and orderly conversion system, including: reversible solid oxide battery 1, raw material gas supply device 2, synthesis gas supply device 3, synthesis reactor 4, photothermal coupling Catalytic reactor 5, solar energy and unstable renewable energy power that abandons wind and light, among which,
  • the synthesis gas supply device 3 includes a gasification reaction chamber 31, and the gasification reaction chamber 31 provides the synthesis gas from the first source through the gasification reaction of biomass/coal;
  • the inlet of the fuel electrode 12 of the reversible solid oxide cell 1 is connected with a raw material gas supply device 2, and the raw material gas supply device 2 is used to provide raw material gas, and the raw material gas generates a second source of synthesis gas when the fuel electrode 12 is electrolyzed;
  • the synthesis gas from the first source and the synthesis gas from the second source are reacted in the synthesis reactor 4 to generate hydrocarbon fuel;
  • the outlet of the synthesis gas supply device 3 is connected to the inlet of the fuel electrode 12 of the reversible solid oxide cell 1;
  • the catalytic reactor 5 reacts to generate hydrocarbon fuel;
  • the heat source required by the gasification reaction chamber 31 and the reversible solid oxide battery 1, the heat source and light source required by the photothermal coupling catalytic reactor 5 are provided by solar energy, and the electric energy required for the electrolysis of the reversible solid oxide battery 1 is provided by abandoned wind and light Unstable renewable energy power supply.
  • biomass/coal gasification provides a stable heat source through solar energy, which is converted into syngas, and then converted into high value-added hydrocarbon fuels, such as methanol;
  • reversible solid oxide battery 1 utilizes fluctuating renewable energy that abandons light and wind
  • the electric energy provided by electricity and the stable heat source provided by solar energy electrolyze the raw material gas (CO2/H2O), convert the raw gas into syngas and then into high value-added hydrocarbon fuels, realize the recycling of CO2 and reduce the greenhouse effect;
  • reversible solid oxidation Biomass batteries can also use the synthesis gas produced by biomass/coal gasification and the stable heat source provided by solar energy to generate stable electrical energy, and the generated gas is converted into hydrocarbon fuel through photothermal coupled catalytic reactor 5 photo/thermal synergistic catalytic conversion, the whole system Zero carbon emission, orderly transform biomass energy, solar energy and fluctuating electric energy into high-density energy storage, improve energy utilization and conversion efficiency, and promote the development of clean energy.
  • solar energy to provide heat energy, compared to using fossil fuels to provide heat energy, solar energy is a clean energy source that is inexhaustible, does not produce waste gas, waste water and waste residue, is green and pollution-free, and can reduce the production cost of syngas. Improve production efficiency.
  • the use of unstable renewable energy power that abandons light and wind is conducive to alleviating the problem of wind and light abandonment, and can also store the unstable renewable power that abandons wind and light in the form of high-density hydrocarbon fuels, reducing energy storage cost.
  • the solar energy of the present invention provides the heat required for the biomass/coal gasification reaction, and the catalytic co-gasification of the biomass/coal in the gasification reaction chamber 31 can generate a certain proportion of gaseous fuels such as CO and H2, and the gasification reaction under photothermal conditions There is no heating section in the chamber 31, so there is no need to provide sufficient oxygen, the CO2 content in the product gas is as low as 4vol%, and the effective gas production H/C ratio is about 2.5:1, which effectively improves the H/C ratio of the synthesis gas, which is beneficial to
  • the synthesis of hydrocarbon fuels such as methanol solves the technical problems of high energy consumption and low hydrogen-to-carbon ratio of synthesis gas in the conversion of biomass gasification to synthesis gas, and realizes the production of clean synthesis gas.
  • the unstable renewable energy power of solar energy and abandoned wind and light provides the heat energy and electric energy required for the electrolysis of the reversible solid oxide battery 1, which solves the problem of high energy consumption during the electrolysis of the reversible solid oxide battery 1;
  • Energy, solar energy, and unstable renewable energy power with abandoned wind and light are coordinated together to realize the conversion of unstable and disordered renewable electricity, biomass energy with disordered sources, and solar energy with disordered time into stable hydrocarbons.
  • Fuel and electric energy realizing low-cost high energy density storage of biomass energy, solar energy and variable electric energy.
  • it also includes an oxygen-enriched air storage tank 81 and an oxygen-depleted air storage tank 82.
  • air flows into the oxygen-enriched air storage tank 81 through the oxygen pole 11 from the outlet of the oxygen-deficient air storage tank 82;
  • the outlet of the oxygen-enriched air storage tank 81 flows into the oxygen-deficient air storage tank 82 through the oxygen electrode 11 .
  • air is introduced into the oxygen electrode 11 through the oxygen-poor air storage tank 82, which can purge the oxygen generated on the surface of the oxygen electrode 11, reduce the overpotential of the oxygen evolution reaction, reduce the power consumption, and according to the absorption of the reversible solid oxide battery 1
  • the exothermic state regulates the temperature of the battery; when generating electricity, air is introduced into the oxygen electrode 11 through the oxygen-enriched air storage tank 81, and the oxygen in the air can undergo an electrochemical reaction.
  • the oxygen-enriched air storage tank 81 and the oxygen-deficient air storage tank 82 are arranged on the oxygen electrode 11, which can conveniently and quickly control the air entering the reversible solid oxide battery 1, provide oxygen-deficient and oxygen-enriched conditions, and improve the operation and performance of the system.
  • the raw gas includes water vapor and carbon dioxide;
  • the raw gas supply device 2 includes a steam generator 21, a CO storage tank 22 and a raw gas mixing chamber 23, and the steam generator 21 and the CO storage tank 22 are respectively connected with the raw gas mixing chamber 23
  • the outlet pipelines of the steam generator 21, the CO2 storage tank 22 and the raw gas mixing chamber 23 are respectively connected with a steam flow meter 211, a CO2 flow meter 221 and a raw gas flow meter 231.
  • the invention adopts CO2 as the raw material gas, which is beneficial to realize the recycling of CO2, reduces the greenhouse effect, and has a positive effect on realizing the goal of carbon neutrality.
  • the steam generator is used to provide water vapor
  • the CO2 storage tank is used to provide CO2
  • the raw gas mixing chamber is used to mix water vapor and CO2
  • the settings of water vapor flowmeter, CO2 flowmeter and raw gas flowmeter can easily control the reversible solid oxidation
  • the raw material gas supply device 2 includes a raw material gas circulation pipe (not shown in the figure), and a thermal insulation pipe (not shown in the figure) is sheathed on the outside of the raw material gas flow pipe.
  • the arrangement of the thermal insulation pipe of the present invention is beneficial to improve the thermal insulation and heat insulation performance of the raw material gas circulation pipeline, and is beneficial to improve the service life of the raw material gas circulation pipeline and reduce the cost; specifically, the thermal insulation pipe is a ceramic tube; the raw material The air flow pipe is stainless steel pipe.
  • the coal in the biomass/coal includes solid fossil fuels such as low-quality coal
  • the biomass in the biomass/coal includes straw, wood chips, rice husks or branches and other easily available and low-cost of biomass materials.
  • adding coal as an auxiliary material can make up for the shortage of biomass raw materials caused by seasonal differences, and satisfy the long-term stable operation of the system; Process controllability and optimization requirements; straw, wood chips, rice husks or branches are all renewable energy sources.
  • the use of renewable energy sources is conducive to protecting the environment, coping with climate change, and realizing green production, which is in line with the concept of sustainable development.
  • the synthesis gas supply device 3 also includes a gas purification device 32 and a synthesis gas storage tank 33; the gas purification device is used to absorb CO2 and H2O, and the inlet of the gas purification device 32 is connected to the gasification reaction
  • the outlet of the chamber 31 is connected, and the outlet of the gas purification device 32 is connected with the first inlet of the synthesis gas storage tank 33; during electrolysis, the second inlet of the synthesis gas storage tank 33 is connected with the outlet of the fuel electrode 12;
  • At least one outlet of the tank 33 is connected to the inlet of the fuel electrode 12, specifically, the second outlet of the synthesis gas storage tank 33 is connected to the inlet of the fuel electrode 12; as shown in Figures 1 and 3, during electrolysis, the right side of the fuel electrode 12 is Inlet, the left side of the fuel pole 12 is the outlet; as shown in Figure 1 and Figure 4, when generating electricity, the left side of the fuel pole 12 is the inlet, and the right side of the fuel pole 12 is the outlet.
  • the gas purification device is used
  • the installation of the gas purification device 32 can remove CO2 and H2O mixed in the synthesis gas, which is beneficial to improve the purity of the synthesis gas.
  • the gas purification device 32 is a tank filled with quicklime.
  • the arrangement of the synthesis gas storage tank 33 can conveniently store the produced synthesis gas from the first source and the synthesis gas from the second source for backup, which improves convenience.
  • the number of reversible solid oxide batteries 1 can be one to more. connected.
  • a plurality of reversible solid oxide batteries 1 are set, and the production of synthesis gas can be carried out at the same time.
  • the synthesis gas produced by the plurality of reversible solid oxide batteries 1 is passed into a synthesis gas storage tank 33, which is beneficial to improve the synthesis gas production capacity. output and production efficiency; it can also generate power at the same time, the reversible solid oxide battery 1 and the photothermal coupling catalytic reactor 5 of the present invention can be arranged in a many-to-one manner, and the mixed gas generated by multiple reversible solid oxide batteries 1 can pass through into a photothermal coupled catalytic reactor 5, reducing the complexity of the system of the present invention.
  • both the fuel electrode 12 and the oxygen electrode 11 are porous cermet components; the materials of the porous cermet components include zirconia-supported nickel, porous lanthanum-strontium-manganese composites, nickel-doped yttrium-stabilized zirconia, high electrochemical Active cobalt-based perovskite, etc.; further, as shown in Figure 2, the reversible solid oxide battery 1 of the present invention also includes an electrolyte 13, and the electrolyte 13 is arranged between the oxygen pole 11 and the fuel pole 12; the electrolyte 13 is a dense ceramic Components, materials for dense ceramic components include yttrium stabilized zirconia, samarium doped ceria, etc.
  • the outlet on the right side of the fuel electrode 12 is provided with a mixture gas switch 51 for controlling the on-off of the mixture gas.
  • the photothermal coupling catalytic reactor 5 provides light and heat through solar energy, generates hydrocarbon fuel through photochemical/thermochemical coupling process, basically realizes zero carbon emission of the whole system, and has significant significance for the control of greenhouse effect.
  • the solar energy is provided by the solar concentrating heat-collecting and heat-storage device 6, and the solar concentrating heat-collecting and heat-storage device 6 is tower-type, trough-type or dish-type.
  • the solar concentrating heat collection and storage device 6 can realize high-grade storage of fluctuating solar energy, and further through the thermochemical process, can realize the controllable release of heat energy and the optimization of energy flow inside the compound system, providing suitable conditions for each reaction. temperature.
  • the solar concentrating heat collection and heat storage device of the present invention can provide the heat source required by the gasification reaction chamber 31 and the reversible solid oxide battery 1, and the heat source and light source required for the reaction of the photothermal coupling catalytic reactor 5.
  • the energy source is universal, Harmless, large storage capacity, long-term use, etc., the solar concentrating heat collector and heat storage device 6 can store excess heat energy and use it when solar energy is insufficient, improving energy utilization and reducing production costs. Has significant economic benefits.
  • the unstable renewable energy power of abandoning wind and light is provided by the grid 7,
  • the grid 7 includes an input pipeline and an output pipeline, and a first electrical switch 71 is arranged on the output pipeline, and the input There is a second electrical switch 72 on the pipeline.
  • the first electrical switch controls the conduction and interruption of the unstable renewable energy power that abandons wind and light to the reversible solid oxide battery 1; the second switch controls the reversible solid oxide battery.
  • the conduction and interruption of power transmission to the grid, the power transmission to the grid can be used for peak regulation and frequency regulation, and improve the stability of the renewable energy grid.
  • the voltage provided by the unstable renewable energy power that abandons wind and light is set to an adjustable working voltage, and the current changes accordingly, which is convenient for controlling the electrochemical reaction efficiency in the reversible solid oxide battery 1 , so as to adjust the efficiency of the electrochemical reaction in the reversible solid oxide battery 1 , so that the synthesis gas with any H2/CO ratio can be obtained at the outlet of the fuel electrode 12 .
  • the embodiment of the present invention also includes a fuel storage tank 9, the outlet of the synthesis reactor 4 and the outlet of the photothermal coupling catalytic reactor 5 communicate with the fuel storage tank 9 respectively, and the outlet of the synthesis reactor 4 and the photothermal coupling catalytic reactor The hydrocarbon fuel flowing out of the outlet of the reactor 55 enters the fuel storage tank 9 for storage.
  • the mixed gas switch 51 and the second electrical switch 72 are closed, and the feed gas flowmeter switch 231 and the first electrical switch 71 are opened.
  • the raw gas (CO2 and H2O) provided by the raw gas supply device 2 electrochemically reacts at the fuel electrode 12 of the reversible solid oxide cell 1 to generate synthesis gas (CO and H2), and the synthesis gas enters the synthesis gas storage from the outlet of the fuel electrode 12.
  • the air provided by the tank 33 and the oxygen-deficient air storage tank 82 enters the oxygen pole 11 , can purge the oxygen generated on the surface of the oxygen pole 11 , and then enters the oxygen-enriched air storage tank 81 .
  • Biomass/coal is gasified in the gasification reaction chamber 31 to generate a certain proportion of gaseous fuels such as CO and H2; the generated gaseous fuel passes through the gas purification device 32 to remove CO2 and H2O to obtain pure synthesis gas, and the pure synthesis gas enters the synthesis Gas storage tank 33.
  • gaseous fuels such as CO and H2
  • the generated gaseous fuel passes through the gas purification device 32 to remove CO2 and H2O to obtain pure synthesis gas, and the pure synthesis gas enters the synthesis Gas storage tank 33.
  • the synthesis gas in the synthesis gas storage tank 33 further enters the synthesis reactor 4 to react to generate hydrocarbon fuel, and the generated hydrocarbon fuel enters the fuel storage tank 9 for storage.
  • the second electrical switch 72 and the mixed gas switch 51 are turned on, and the feed gas flow meter switch 231 and the first electrical switch 71 are turned off.
  • Biomass/coal is gasified in the gasification reaction chamber to generate a certain proportion of gaseous fuels such as CO and H2; the generated gaseous fuel passes through the gas purification device 32 to remove CO2 and H2O to obtain pure synthesis gas, and the pure synthesis gas enters the synthesis gas storage Tank 33; part of the synthesis gas in the synthesis gas storage tank 33 enters the synthesis reactor 4 through the first outlet to react to generate hydrocarbon fuel; the hydrocarbon fuel generated by the synthesis reactor 4 and the hydrocarbon fuel generated by the photothermal coupling catalytic reactor 5 Enter the fuel storage tank 9 for storage; part of the synthesis gas in the synthesis gas storage tank 33 enters the fuel electrode 12 through the second outlet to oxidize to generate CO2 and H2O and output stable electric energy.
  • gaseous fuels such as CO and H2
  • the CO2 and H2O produced by the fuel electrode 12 and reversible solid oxide Part of the incompletely reacted CO and H2 in the battery 1 enters the photothermal coupling catalytic reactor 5 through the gas mixture switch 51 to react to generate hydrocarbon fuel.
  • Oxygen in the air provided by the oxygen-enriched air storage tank 81 enters the oxygen electrode 11 to undergo an electrochemical reaction, and the reacted gas enters the oxygen-deficient air storage tank 82 .
  • the present invention also provides a transformation method of a multi-energy coupling complementary and orderly transformation system, comprising the following steps:
  • the gasification reaction chamber 31 provides the first source of synthesis gas through the gasification of biomass/coal, and the heat required for the gasification of biomass/coal is provided by solar energy;
  • the reversible solid oxide battery 1 is used for electrolysis
  • the unstable renewable energy power and solar energy that abandon wind and light provide the electric energy and heat energy required for the electrolysis of the reversible solid oxide battery 1 respectively, and the raw material gas undergoes an electrochemical reaction at the fuel electrode to generate a second source of synthesis gas;
  • the synthesis gas from the first source and the synthesis gas from the second source are reacted in the synthesis reactor 4 to generate hydrocarbon fuel; the reversible solid oxide battery 1 is used as a battery, the first source and/or the second source
  • the synthesis gas electrochemically reacts at the fuel electrode 12, and the generated product reacts with the unreacted synthesis gas to generate hydrocarbon fuel by entering the photothermal coupling catalytic reactor 5; the heat source required by the photothermal coupling catalytic reactor 5 and
  • the light source is provided by solar energy.
  • the present invention provides a stable heat source for the biomass/coal gasification reaction through the solar concentrating heat collection and heat storage device 6, without heat supply in the combustion section, without sufficient oxygen supply, and effectively improves the H/C ratio of the synthesis gas, which is beneficial to hydrocarbons such as methanol Synthesis of fuel; by using the unstable renewable energy power of abandoned wind and light and the stable heat source provided by the solar concentrating heat collector and heat storage device 6, electrolyze CO2/H2O to generate synthesis gas, and realize the recycling and consumption of CO2 Unstable renewable energy power generated by wind abandoned light; through photochemical/thermochemical coupling, high-efficiency catalytic reduction of CO/CO2/H2O/H2 discharged after power generation by reversible solid oxide battery 1 to synthesize high value-added methanol and other hydrocarbon fuels, basically Realize no carbon emission of the system and higher energy conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种多能源耦合互补和有序转化系统与方法,系统包括:可逆固体氧化物电池、气化反应室、合成反应器、光热耦合催化反应器,生物质/煤的气化提供第一来源的合成气;原料气电解产生第二来源的合成气;第一和第二来源的合成气在合成反应器内生成碳氢燃料;发电时,合成气进入燃料极反应,燃料极流出的气体经过光热耦合催化反应器生成碳氢燃料;气化、电解、发电及光热耦合催化所需要的热源、光源由太阳能提供,电解所需的电能由弃风弃光的不稳定可再生能源电力提供。通过耦合互补将来源无序的生物质能,时间无序的太阳能以及不稳定无序的可再生电能转化为稳定的碳氢燃料和电能,实现可再生能源和化石能源互补的"零碳排放"有序转化。

Description

多能源耦合互补和有序转化系统与方法 技术领域
本发明涉及清洁能源技术领域,具体为一种多能源耦合互补和有序转化系统与方法。
背景技术
化石能源是一种碳氢化合物或其衍生物。它由古代生物的化石沉积而来,是一次能源。化石燃料不完全燃烧后,都会散发出有毒的气体;随着传统化石能源的大量消耗,环境问题日益突出,可再生能源的发展受到了广泛关注,可再生能源能够减少对化石能源的依赖,满足对可持续能源的需求。与此同时,大气中二氧化碳含量过高而导致的全球变暖需要有效的二氧化碳控制策略。
太阳能作为储量最丰富的清洁能源,是未来可再生能源的发展重点,但同时也存在不稳定性等缺点,通过聚光集热储热,输出稳定热源,能更加有效的利用太阳能。生物质是一种理想的可再生能源,它分布广泛,数量巨大,低污染性,但也存在能量密度低的缺点,通过生物质气化技术可将其转化为高品位能源形式。可再生能源利用对改善大气酸雨环境,减少大气中二氧化碳含量从而减少“温室效应”都有极大的好处。
可逆固体氧化物电池(reversible Solid oxide cell,简称rSOC)是一种很有前途的能量转化装置,当用作电解池时,它通过CO2/H2O共电解将过剩的可再生能源转化为CO/H2合成气。它提供了一种使用捕获的二氧化碳进行合成气生产的方法,将合成气的生产与合成燃料生产系统相结合,合成各种碳氢化合物等高能量密度燃料;当用作电池时,能够通入CO/H2合成气,输出稳定电能;这项技术可以实现CO2的循环利用,降低温室效应,还能参与调峰,对构建低碳社会具有重要意义。
目前,生物质气化存在生物质来源复杂,气化能耗高,产物品质不稳定等问题,导致生物质转化产物附加值较低,不利于生物质的广泛利用;rSOC存在热管理困难、反应组分利用率低、经济性差等问题,且大部分rSOC在电解时的电能和热能输入都是来自化石能源,并没有从源头上实现绿色燃料的生产;可再生电能存在的波动性大、调峰调频困难、 储能成本高等问题,严重制约了清洁能源的发展;目前太阳能聚光集热仍是以热工转化的发电方式为核心,缺少与热化学/电化学/光化学耦合的有序转化方法,难以实现能量效率和能源经济型的进一步提高。
发明内容
针对以上问题,本发明提供了一种多能源耦合互补和有序转化系统与方法,以太阳能高温集热储热为依托,耦合生物质/煤无空分气化、高温固体氧化物电解制氢/燃料电池发电、碳氢燃料光/热催化合成等技术手段,通过热化学/电化学/光化学耦合互补,实现将不稳定无序的可再生电能、来源无序的生物质能以及时间无序的太阳能转化为稳定的碳氢燃料和电能,实现可再生能源和化石能源互补的“零碳排放”有序转化。
一种多能源耦合互补和有序转化系统,包括:气化反应室,气化反应室通过生物质/煤的气化反应提供第一来源的合成气;可逆固体氧化物电池,可逆固体氧化物电池的燃料极的入口连通有原料气供应装置,电解时,原料气在燃料极电解产生第二来源的合成气;合成反应器,第一来源的合成气和第二来源的合成气在合成反应器内反应生成碳氢燃料;光热耦合催化反应器,发电时,光热耦合催化反应器与可逆固体氧化物电池的燃料极的出口连通,气化反应室的出口与燃料极的入口连通,燃料极流出的气体经过光热耦合催化反应器反应生成碳氢燃料;气化反应室和可逆固体氧化物电池所需的热源,光热耦合催化反应器所需的热源、光源由太阳能提供,可逆固体氧化物电池电解所需的电能由弃风弃光的不稳定可再生能源电力提供。
生物质能,太阳能属于分布广,来源丰富的能源,但是能量密度低;弃风弃光的可再生电能难以消纳。根据该技术方案,太阳能和弃风弃光的不稳定可再生能源电力提供可逆固体氧化物电池电解所需的热能和电能;解决现有rSOC的电能、热能输入由化石能源提供和弃风弃光的问题;太阳能提供生物质/煤气化反应所需的热量,解决生物质气化转化成合成气能耗高,合成气氢碳比低的技术问题,并实现清洁合成气的生产。实现了生物质能、太阳能与弃风弃光的不稳定可再生能源电力的耦合互补,并有序转化为碳氢燃料。
进一步地,本发明的可选技术方案中,还包括富氧空气储罐和贫氧空气储罐,电解时,空气由贫氧空气储罐的出口经氧气极流入富氧空气 储罐;发电时,空气由富氧空气储罐的出口经氧气极流入贫氧空气储罐。
根据该技术方案,电解时,通过贫氧空气储罐在氧气极通入空气,能够吹扫氧气表面生成的氧气,降低氧析出反应过电位,减少电能消耗,并根据可逆固体氧化物电池的吸放热状态调节电池温度;发电时,通过富氧空气储罐在氧气极通入空气,空气中的氧气能够发生电化学反应。
根据该技术方案,在氧气极设置富氧空气储罐和贫氧空气储罐,能够方便快捷地控制空气进入可逆固体氧化物电池,提供贫氧和富氧的条件,提高系统运转和模式切换的便捷性。
进一步地,本发明的可选技术方案中,原料气包括水蒸气和二氧化碳;
原料气供应装置包括蒸汽发生器、CO2储罐及原料气混合室,蒸汽发生器和CO2储罐分别与原料气混合室连通,蒸汽发生器、CO2储罐及原料气混合室的出口管路上分别连接有水蒸气流量计、CO2流量计和原料气流量计。
根据该技术方案,蒸汽发生器用于提供水蒸气,CO2储罐用于提供CO2,原料气混合室用于混合水蒸气和CO2,水蒸气流量计、CO2流量计和原料气流量计的设置能够方便控制进入固体氧化物电解池内的水蒸气/CO2比例及原料气的流量。
进一步地,本发明的可选技术方案中,生物质/煤中的煤包括低品质煤等固体化石燃料,生物质/煤中的生物质包括秸秆、木屑、稻壳或树枝。
根据该技术方案,加入煤作为辅助材料,一方面可以弥补季节性差异导致的生物质原料短缺问题,满足系统的长期稳定运行,另一方面可以提高气化产物品质的稳定性,满足多反应系统耦合过程的可控与优化要求;秸秆、木屑、稻壳或树枝均为可再生能源,可再生能源的利用有利于保护环境、应对气候变化,实现绿色生产,符合可持续发展的理念。
进一步地,本发明的可选技术方案中,还包括气体净化装置与合成气储罐;
气体净化装置用于吸收CO2和H2O,气体净化装置的入口与气化反应室的出口连通,气体净化装置的出口与合成气储罐的第一入口连通;
电解时,合成气储罐的第二入口与燃料极出口连通,发电时,合成气储罐的至少一个出口连通燃料极的入口。
根据该技术方案,设置气体净化装置能够去除合成气中掺入的CO2 和H2O,有利于提高合成气的纯度。合成气储罐的设置能够方便地将生产的第一来源的合成气和第二来源的合成气进行储存备用,提高便捷性。
进一步地,本发明的可选技术方案中,可逆固体氧化物电池的数量可以为1到多个,当可逆固体氧化物电池的数量大于1时,可逆固体氧化物电池以串联方式或并联方式与合成气储罐连通。
根据该技术方案,设置多个可逆固体氧化物电池,能够同时进行合成气的生产,有利于提高合成气的产量及生产效率,且降低本发明系统的复杂性。
进一步地,本发明的可选技术方案中,弃风弃光的不稳定可再生能源电力由电网提供,电网包括输入管路和输出管路,输出管路上设有第一电气开关,输入管路上设有第二电气开关,第一电气开关控制弃风弃光的不稳定可再生能源电力向可逆固体氧化物电池输送的电能的导通与中断;第二开关控制所述可逆固体氧化物电池发电时电能输出的导通与中断。
根据该技术方案,输入管路、输出管路、第一电气开关机第二电气开关的设置,能够方便地对可逆固体氧化物电池提供电能,也能够方便地将产生的电能用于电网调峰,提高能源的利用率。
进一步地,本发明的可选技术方案中,太阳能通过太阳能聚光集热储热装置提供,太阳能聚光集热储热装置为塔式、槽式或蝶式。
根据该技术方案,太阳能聚光集热储热装置可以实现波动性太阳能的高品位存储,进一步通过热化学过程,可以实现热能的可控释放与复合系统内部的能流优化,为各反应提供适合的温度;太阳能聚光集热装置可以自由地选择塔式、槽式或蝶式,增加了转化系统设置的灵活性。
进一步地,本发明的可选技术方案中,还包括燃料储罐,光热耦合催化反应器的出口与合成反应器的出口分别与燃料储罐连通。
根据该技术方案,燃料储罐的设置能够方便地对生产的碳氢燃料进行储存,以便于根据需要使用。
本发明另提供一种的多能源耦合互补和有序转化系统的转化方法,包括以下步骤:
合成气生产步骤,气化反应室通过生物质/煤的气化提供第一来源的合成气,生物质/煤的气化所需的热量由太阳能提供;可逆固体氧化物电池用作电解池,弃风弃光的不稳定可再生能源电力和太阳能分别提供可 逆固体氧化物电池电解所需的电能和热能,原料气在燃料极发生电化学反应生成第二来源的合成气;
碳氢燃料生产步骤,第一来源的合成气和第二来源的合成气在合成反应器中反应生成碳氢燃料;可逆固体氧化物电池用作电池,第一来源和/或第二来源的合成气在燃料极发生电化学反应,生成的产物与未反应完的合成气通过进入光热耦合催化反应器内反应生成碳氢燃料;光热耦合催化反应器所需的热源与光源由太阳能提供。
附图说明
图1为多能源耦合互补和有序转化系统的结构示意图。
图2是本发明可逆固体氧化物电池的结构示意图。
图3是本发明可逆固体氧化物电池电解时多能源耦合互补和有序转化系统电解时的结构示意图。
图4是本发明可逆固体氧化物电池发电时多能源耦合互补和有序转化系统发电时的结构示意图。
附图标记:
1-可逆固体氧化物电池;11-氧气极;12-燃料极;13-电解质;2-原料气供应装置;21-蒸汽发生器;211-水蒸气流量计;22-CO2储罐;221-CO2流量计;23-原料气混合室;231-原料气流量计;3-合成气供给装置31-气化反应室;32-气体净化装置;33-合成气储罐;4-合成反应器;5-光热耦合催化反应器;51-混合气开关;6-太阳能聚光集热储热装置;7-电网;71-第一电气开关;72-第二电气开关;81-富氧空气储罐;82-贫氧空气储罐;9-燃料储罐。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种多能源耦合互补和有序转化系统,包 括:可逆固体氧化物电池1、原料气供应装置2、合成气供给装置3、合成反应器4、光热耦合催化反应器5、太阳能及弃风弃光的不稳定可再生能源电力,其中,
合成气供给装置3包括气化反应室31,气化反应室31通过生物质/煤的气化反应提供第一来源的合成气;
电解时,可逆固体氧化物电池1的燃料极12的入口连通有原料气供应装置2,原料气供应装置2用于提供原料气,原料气在燃料极12电解时产生第二来源的合成气;第一来源的合成气和第二来源的合成气在合成反应器4内反应生成碳氢燃料;
发电时,合成气供给装置3的出口与可逆固体氧化物电池1的燃料极12的入口连通;光热耦合催化反应器5与燃料极12的出口连通,燃料极12流出的气体经过光热耦合催化反应器5反应生成碳氢燃料;
气化反应室31和可逆固体氧化物电池1所需的热源,光热耦合催化反应器5所需的热源、光源由太阳能提供,可逆固体氧化物电池1电解所需的电能由弃风弃光的不稳定可再生能源电力提供。
通过上述方式,生物质/煤气化通过太阳能提供稳定热源,转化为合成气,再转化为高附加值的碳氢燃料,如甲醇;可逆固体氧化物电池1利用弃光弃风的波动可再生能源电力提供的电能与太阳能提供的稳定热源电解原料气(CO2/H2O),将原料气转化为合成气再转化为高附加值的碳氢燃料,实现CO2的循环利用,降低温室效应;可逆固体氧化物电池也可利用生物质/煤气化产生的合成气与太阳能提供的稳定热源产生稳定的电能,并且产生的气体通过光热耦合催化反应器5光/热协同催化转化为碳氢燃料,整个系统零碳排放,将生物质能、太阳能与波动性电能有序转化为高密度能源储存,提升能量利用转化效率,促进清洁能源发展。
采用太阳能提供热能,相比较采用化石燃料提供热能,太阳能作为一种清洁能源,取之不尽用之不竭,不会产生废气、废水和废渣,绿色无污染,能够降低合成气的生产成本,提高生产效益。采用弃光弃风的不稳定可再生能源电力,有利于缓解弃风弃光问题,并且还能将弃风弃光的不稳定可再生电力以高密度碳氢燃料的形式储存起来,降低储能成本。
本发明太阳能提供生物质/煤气化反应所需的热量,生物质/煤在气化 反应室31内催化共气化能够生成一定比例的CO和H2等气态燃料,在光热条件下气化反应室31内无燃烧段供热,因此无需充分提供氧气,产品气中CO2含量低至4vol%,有效产气H/C比约为2.5:1,有效提高了合成气的H/C比,利于甲醇等碳氢燃料合成,解决生物质气化转化成合成气存在能耗高,合成气氢碳比低的技术问题,并实现清洁合成气的生产。太阳能和弃风弃光的不稳定可再生能源电力提供可逆固体氧化物电池1电解所需的热能和电能,解决了可逆固体氧化物电池1电解时能耗高的问题;本发明通过将生物质能、太阳能以及弃风弃光的不稳定可再生能源电力协调在一起,实现了将不稳定无序的可再生电能、来源无序的生物质能以及时间无序的太阳能转化为稳定的碳氢燃料和电能,实现了生物质能、太阳能与波动性电能的低成本高能量密度储存。
具体来说,还包括富氧空气储罐81和贫氧空气储罐82,在电解时,空气由贫氧空气储罐82的出口经氧气极11流入富氧空气储罐81;发电时,空气由富氧空气储罐81的出口经氧气极11流入贫氧空气储罐82。
电解时,通过贫氧空气储罐82在氧气极11通入空气,能够吹扫氧气极11表面生成的氧气,降低氧析出反应过电位,减少电能消耗,并根据可逆固体氧化物电池1的吸放热状态调节电池温度;发电时,通过富氧空气储罐81在氧气极11通入空气,空气中的氧气能够发生电化学反应。
通过上述方式,在氧气极11设置富氧空气储罐81和贫氧空气储罐82,能够方便快捷地控制空气进入可逆固体氧化物电池1,提供贫氧和富氧的条件,提高系统运转和模式切换的便捷性。
具体来说,原料气包括水蒸气和二氧化碳;原料气供应装置2包括蒸汽发生器21、CO2储罐22及原料气混合室23,蒸汽发生器21和CO2储罐22分别与原料气混合室23连通,蒸汽发生器21、CO2储罐22及原料气混合室23的出口管路上分别连接有水蒸气流量计211、CO2流量计221和原料气流量计231。
本发明采用CO2作为原料气,有利于实现CO2的循环利用,降低温室效应,对实现碳中和目标具有积极促进作用。蒸汽发生器用于提供水蒸气,CO2储罐用于提供CO2,原料气混合室用于混合水蒸气和CO2,水蒸气流量计、CO2流量计和原料气流量计的设置能够方便控制进入可逆固体氧化物电池1内的水蒸气/CO2比值及原料气的流量。
优选地,原料气供应装置2包括原料气流通管道(图中未示出),原料气流通管道的外部套设有保温隔热管(图中未示出)。
本发明保温隔热管的设置,有利于提高原料气流通管道的保温及隔热性能,有利于提高原料气流通管道的使用寿命,降低成本;具体来说,保温隔热管为陶瓷管;原料气流通管道为不锈钢管道。
本发明的可选实施方式中,生物质/煤中的煤包括低品质煤等固态化石燃料,生物质/煤中的生物质包括秸秆、木屑、稻壳或树枝以及其它的易于取得且成本低廉的生物质材料。
通过以上方式,加入煤作为辅助材料,一方面可以弥补季节性差异导致的生物质原料短缺问题,满足系统的长期稳定运行,另一方面可以提高气化产物品质的稳定性,满足多反应系统耦合过程的可控与优化要求;秸秆、木屑、稻壳或树枝均为可再生能源,可再生能源的利用有利于保护环境、应对气候变化,实现绿色生产,符合可持续发展的理念。
进一步地,本发明的可选实施方式中,合成气供给装置3还包括气体净化装置32与合成气储罐33;气体净化装置用于吸收CO2和H2O,气体净化装置32的入口与气化反应室31的出口连通,气体净化装置32的出口与合成气储罐33的第一入口连通;电解时,合成气储罐33的第二入口与燃料极12的出口连通,发电时,合成气储罐33的至少一个出口连通燃料极12的入口,具体地,合成气储罐33的第二出口连通燃料极12的入口;如图1、图3所示,电解时,燃料极12的右边为入口,燃料极12的左边为出口;如图1、图4所示,发电时,燃料极12的左边为入口,燃料极12的右边为出口。在电解或发电时,合成气储罐33的第一出口始终与合成反应器4的入口连通,使得合成气能够持续进入合成反应器4发生反应。
通过以上方式,设置气体净化装置32能够去除合成气中掺入的CO2和H2O,有利于提高合成气的纯度,具体地,气体净化装置32为内部装填有生石灰的罐体。合成气储罐33的设置能够方便地将生产的第一来源的合成气和第二来源的合成气进行储存备用,提高便捷性。
具体来说,可逆固体氧化物电池1的数量可以为1到多个,当可逆固体氧化物电池1的数量大于1时,可逆固体氧化物电池1以串联方式或并联方式与合成气储罐33连通。
通过以上方式,设置多个可逆固体氧化物电池1,能够同时进行合 成气的生产,多个可逆固体氧化物电池1产生的合成气通入到一个合成气储罐33内,有利于提高合成气的产量及生产效率;也能够同时进行发电,本发明可逆固体氧化物电池1与光热耦合催化反应器5可以以多对一地方式设置,多个可逆固体氧化物电池1产生的混合气通入到一个光热耦合催化反应器5内,降低本发明系统的复杂性。
具体来说,燃料极12和氧气极11均为多孔金属陶瓷构件;多孔金属陶瓷构件的材料包括氧化锆负载的镍、多孔镧锶锰复合物、镍掺杂的钇稳定氧化锆、高电化学活性钴基钙钛矿等;进一步地,如图2所示,本发明可逆固体氧化物电池1还包括电解质13,电解质13设于氧气极极11和燃料极12之间;电解质13为致密陶瓷构件,致密陶瓷构件的材料包括钇稳定氧化锆、钐掺杂氧化铈等。
本发明的实施方式中,燃料极12的右侧出口设有控制混合气体通断的混合气开关51,发电时,燃料极12右侧出口流出的混合气体(CO2、H2O、CO、H2)进入光热耦合催化反应器5,经过太阳能提供光和热,经光化学/热化学耦合过程生成碳氢燃料,基本实现整个系统零碳排放,对于温室效应的控制具有显著意义。
本发明的实施方式中,太阳能由太阳能聚光集热储热装置6提供,太阳能聚光集热储热装置6为塔式、槽式或者碟式。
进一步地,太阳能聚光集热储热装置6可以实现波动性太阳能的高品位存储,进一步通过热化学过程,可以实现热能的可控释放与复合系统内部的能流优化,为各反应提供适合的温度。
本发明太阳能聚光集热储热装置能够提供气化反应室31和可逆固体氧化物电池1所需的热源,光热耦合催化反应器5反应所需的热源、光源,能量来源具有普遍性、无害、储量大、使用长久等优点,太阳能聚光集热储热装置6能够对多余的热能进行储存,并在太阳能不充足的情况下使用,提高能源的利用率,有利于降低生产成本,具有显著的经济效益。
进一步地,本发明的优选实施方式中,弃风弃光的不稳定可再生能源电力由电网7提供,电网7包括输入管路和输出管路,输出管路上设有第一电气开关71,输入管路上设有第二电气开关72,第一电气开关控制弃风弃光的不稳定可再生能源电力向可逆固体氧化物电池1输送电能的导通与中断;第二开关控制可逆固体氧化物电池向电网输送电能的 导通与中断,向电网输送的电能可用于调峰调频,提升可再生能源电网的稳定性。
通过以上方式,能够方便地向可逆固体氧化物电池1输送电能以及进行电能的输出利用,提高能源的利用率。
本发明的较佳实施例中,弃风弃光的不稳定可再生能源电力提供的电压设置为可调的工作电压,电流随之变化,便于控制可逆固体氧化物电池1内的电化学反应效率,从而调节可逆固体氧化物电池1内电化学反应的效率,从而在燃料极12的出口得到任意H2/CO比例的合成气。
进一步地,本发明实施方式中还包括燃料储罐9,合成反应器4的出口与光热耦合催化反应器5的出口分别与燃料储罐9连通,合成反应器4的出口和光热耦合催化反应器55的出口流出的碳氢燃料进入燃料储罐9进行存储。
以上具体说明了本发明多能源耦合互补和有序转化系统的结构,以下说明其工作原理。
如图3所示,可逆固体氧化物电池1电解时,混合气开关51,第二电气开关72关闭,原料气流量计开关231,第一电气开关71打开。
原料气供应装置2提供的原料气(CO2和H2O)在可逆固体氧化物电池1的燃料极12发生电化学反应生成合成气(CO和H2),合成气从燃料极12的出口进入合成气储罐33;贫氧空气储罐82提供的空气进入氧气极11,能够吹扫氧气极11表面生成的氧气,然后进入富氧空气储罐81。
生物质/煤在气化反应室31内气化生成一定比例的CO和H2等气态燃料;生成的气态燃料经过气体净化装置32去除CO2和H2O后得到纯净的合成气,纯净的合成气进入合成气储罐33。
合成气储罐33内的合成气进一步进入合成反应器4反应生成碳氢燃料,生成的碳氢燃料进入燃料储罐9储存。
如图4所示,可逆固体氧化物电池1发电时,第二电气开关72,混合气开关51打开,原料气流量计开关231,第一电气开关71关闭。
生物质/煤在气化反应室内气化生成一定比例的CO和H2等气态燃料;生成的气态燃料经过气体净化装置32去除CO2和H2O后得到纯净的合成气,纯净的合成气进入合成气储罐33;合成气储罐33内的合成气一部分通过第一出口进入合成反应器4反应生成碳氢燃料;合成反应 器4生成的碳氢燃料和光热耦合催化反应器5生成的碳氢燃料进入燃料储罐9进行存储;合成气储罐33内的合成气一部分通过第二出口进入燃料极12氧化生成CO2和H2O并输出稳定的电能,燃料极12产生的CO2和H2O和可逆固体氧化物电池1内部分未完全反应的CO和H2通过混合气开关51进入光热耦合催化反应器5反应生成碳氢燃料。富氧空气储罐81提供的空气中的氧气进入氧气极11发生电化学反应,反应后气体进入贫氧空气储罐82。
本发明另提供一种的多能源耦合互补和有序转化系统的转化方法,包括以下步骤:
合成气生产步骤,气化反应室31通过生物质/煤的气化提供第一来源的合成气,生物质/煤的气化所需的热量由太阳能提供;可逆固体氧化物电池1用作电解池,弃风弃光的不稳定可再生能源电力和太阳能分别提供可逆固体氧化物电池1电解所需的电能和热能,原料气在燃料极发生电化学反应生成第二来源的合成气;
碳氢燃料生产步骤,第一来源的合成气和第二来源的合成气在合成反应器4中反应生成碳氢燃料;可逆固体氧化物电池1用作电池,第一来源和/或第二来源的合成气在燃料极12发生电化学反应,生成的产物与未反应完的合成气通过进入光热耦合催化反应器5内反应生成碳氢燃料;光热耦合催化反应器5所需的热源和光源由太阳能提供。
本发明通过太阳能聚光集热储热装置6为生物质/煤气化反应提供稳定热源,无燃烧段供热,无需充分提供氧气,有效提高了合成气的H/C比,利于甲醇等碳氢燃料的合成;通过利用弃风弃光的不稳定可再生能源电力与太阳能聚光集热储热装置6提供的稳定热源,电解CO2/H2O,产生合成气,实现CO2的循环利用与消纳弃风弃光的不稳定可再生能源电力;通过光化学/热化学耦合,高效催化还原可逆固体氧化物电池1发电后排出的CO/CO2/H2O/H2合成高附加值的甲醇等碳氢燃料,基本实现系统无碳排放和更高的能量利用转化效率。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多能源耦合互补和有序转化系统,其特征在于,包括:
    气化反应室,所述气化反应室通过生物质/煤的气化反应提供第一来源的合成气;
    可逆固体氧化物电池,电解时,所述可逆固体氧化物电池的燃料极的入口连通有原料气供应装置,原料气在所述燃料极电解产生第二来源的合成气;
    合成反应器,第一来源的合成气和第二来源的合成气在所述合成反应器内反应生成碳氢燃料;
    光热耦合催化反应器,发电时,所述光热耦合催化反应器与所述可逆固体氧化物电池的燃料极的出口连通,所述气化反应室的出口与所述燃料极的入口连通,所述燃料极流出的气体经过光热耦合催化反应器反应生成碳氢燃料;
    所述气化反应室和可逆固体氧化物电池所需的热源,光热耦合催化反应器所需的热源、光源由太阳能提供,所述可逆固体氧化物电池电解所需的电能由弃风弃光的不稳定可再生能源电力提供。
  2. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,还包括富氧空气储罐和贫氧空气储罐,在电解时,空气由贫氧空气储罐的出口经氧气极流入富氧空气储罐;发电时,空气由富氧空气储罐的出口经氧气极流入贫氧空气储罐。
  3. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,所述原料气包括水蒸气和二氧化碳;
    所述原料气供应装置包括蒸汽发生器、CO 2储罐及原料气混合室,所述蒸汽发生器和所述CO 2储罐分别与所述原料气混合室连通,所述蒸汽发生器、所述CO 2储罐及原料气混合室的出口管路上分别连接有水蒸气流量计、CO 2流量计和原料气流量计。
  4. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,所述生物质/煤中的煤包括低品质煤,所述生物质/煤中的生物质包括秸秆、木屑、稻壳或树枝。
  5. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,还包括气体净化装置与合成气储罐;
    所述气体净化装置用于吸收CO 2和H 2O,所述气体净化装置的入口与所述气化反应室的出口连通,所述气体净化装置的出口与所述合成气储罐的第一入口连通;
    电解时,所述合成气储罐的第二入口与所述燃料极的出口连通,发电时,所述合成气储罐的出口连通所述燃料极的入口。
  6. 根据权利要求5所述的多能源耦合互补和有序转化系统,其特征在于,所述可逆固体氧化物电池的数量为1到多个,当所述可逆固体氧化物电池的数量大于1时,所述可逆固体氧化物电池以串联方式或并联方式与所述合成气储罐连通。
  7. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,所述弃风弃光的不稳定可再生能源电力由电网提供,所述电网包括输入管路和输出管路,所述输出管路上设有第一电气开关,所述输入管路上设有第二电气开关,所述第一电气开关控制所述弃风弃光的不稳定可再生能源电力向所述可逆固体氧化物电池输送电能的导通与中断;所述第二电气开关控制所述可逆固体氧化物电池发电时电能输出的导通与中断。
  8. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,所述太阳能通过太阳能聚光集热储热装置提供,所述太阳能聚光集热储热装置为塔式、槽式或蝶式。
  9. 根据权利要求1所述的多能源耦合互补和有序转化系统,其特征在于,还包括燃料储罐,所述光热耦合催化反应器的出口与所述合成反应器的出口分别与所述燃料储罐连通。
  10. 一种如权利要求1至9中任一项权利要求所述的多能源耦合互补和有序转化系统的转化方法,其特征在于,包括以下步骤:
    合成气生产步骤,所述气化反应室通过生物质/煤的气化提供第一来源的合成气,所述生物质/煤的气化所需的热量由太阳能提供;可逆固体氧化物电池用作电解池,弃风弃光的不稳定可再生能源电力和太阳能分别提供所述可逆固体氧化物电池所需的电能和热能,原料气在所述燃料极发生电化学反应生成第二来源的合成气;
    碳氢燃料生产步骤,第一来源的合成气和第二来源的合成气在所述合成反应器中反应生成碳氢燃料;可逆固体氧化物电池用作电池,第一来源和/或第二来源的合成气在所述燃料极发生电化学反应,生成的产物与未反应完的合成气通过进入光热耦合催化反应器内反应生成碳氢燃料;所述光热耦合催化反应器所需的热源、光源由太阳能提供。
PCT/CN2022/104066 2021-07-12 2022-07-06 多能源耦合互补和有序转化系统与方法 WO2023284602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110786233.9 2021-07-12
CN202110786233.9A CN113583712B (zh) 2021-07-12 2021-07-12 多能源耦合互补和有序转化系统与方法

Publications (1)

Publication Number Publication Date
WO2023284602A1 true WO2023284602A1 (zh) 2023-01-19

Family

ID=78247136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104066 WO2023284602A1 (zh) 2021-07-12 2022-07-06 多能源耦合互补和有序转化系统与方法

Country Status (2)

Country Link
CN (1) CN113583712B (zh)
WO (1) WO2023284602A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117962A (zh) * 2023-08-25 2023-11-24 西安交通大学 一种基于rsoc的多能互补建筑分布式供能系统及其运行方法
CN117411041A (zh) * 2023-10-21 2024-01-16 华北电力大学 一种风光电氢热储多能互补的零碳排放分布式能源系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583712B (zh) * 2021-07-12 2022-05-24 浙江大学 多能源耦合互补和有序转化系统与方法
CN115449406B (zh) * 2022-07-20 2024-01-30 陕西煤业新型能源科技股份有限公司 太阳能光伏-光热耦合强化的生物质气化系统
CN116282069A (zh) * 2023-02-16 2023-06-23 河北正元氢能科技有限公司 一种灰氢绿氢耦合制氨系统
CN116121786B (zh) * 2023-02-21 2023-11-21 华北电力大学 太阳能驱动的固体氧化物电解池分布式多联产系统及方法
CN116496141B (zh) * 2023-04-14 2024-04-16 中国天辰工程有限公司 一种绿色甲醇制备工艺及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235587A1 (en) * 2008-03-24 2009-09-24 Battelle Energy Alliance, Llc Methods and systems for producing syngas
CN104919023A (zh) * 2013-01-04 2015-09-16 沙特阿拉伯石油公司 利用太阳辐射通过合成气制备单元将二氧化碳转化为烃类燃料
WO2016124494A1 (en) * 2015-02-03 2016-08-11 Technische Universität München Fuel cell system and method for operating a fuel cell system
CN108954872A (zh) * 2018-07-18 2018-12-07 浙江大学 基于集热型光热化学循环材料的太阳能分级分质利用系统
CN210068320U (zh) * 2019-06-22 2020-02-14 康磊 一种太阳能驱动生物质气化的联合发电系统
CN113583712A (zh) * 2021-07-12 2021-11-02 浙江大学 多能源耦合互补和有序转化系统与方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108079B2 (ja) * 1990-07-05 2000-11-13 電源開発株式会社 燃料電池、炭酸ガス固定複合発電方法
CN101760248B (zh) * 2008-12-19 2015-04-15 新奥科技发展有限公司 一种煤基能源化工产品多联产系统及方法
US9415363B2 (en) * 2009-02-20 2016-08-16 Marine Power Products Corporation Method and apparatus for efficient on-demand production of H2 and O2 from water using waste heat and environmentally safe metals
CN103756741B (zh) * 2013-12-20 2016-02-10 清华大学 一种利用可再生电力的固体氧化物电解池制天然气的方法
CN107221695B (zh) * 2017-06-30 2023-05-30 北京理工大学 一种以生物质气化制氢的燃料电池系统及其发电方法
FR3075832A1 (fr) * 2017-12-22 2019-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fonctionnement en mode de demarrage ou en mode stand-by d'une unite power-to-gas comportant une pluralite de reacteurs d'electrolyse (soec) ou co-electrolyse a haute temperature
CN108275811B (zh) * 2018-01-10 2021-02-09 东北石油大学 一种利用太阳能通过光-电-热三场耦合降解有机废水的方法
CN109921060B (zh) * 2018-10-17 2021-09-21 清华大学 一种基于固体氧化物电池的储电及制合成气的系统和方法
CN109659590A (zh) * 2018-12-13 2019-04-19 中国华能集团清洁能源技术研究院有限公司 一种整体煤气化固体氧化物燃料电池发电系统及方法
CN109966691B (zh) * 2019-05-05 2024-04-19 清华大学 一种全天候废弃制冷剂光热协同降解系统
CN112833569B (zh) * 2021-01-08 2022-03-22 西安交通大学 一种一体化聚光太阳能光热协同催化反应装置
CN112973703A (zh) * 2021-01-26 2021-06-18 南京航空航天大学 一种直接光热协同催化甲醇制氢的方法
CN112871201B (zh) * 2021-03-15 2023-04-18 云南师范大学 一种光热耦合催化生物质制备航空煤油用多元/复合半导体光催化材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235587A1 (en) * 2008-03-24 2009-09-24 Battelle Energy Alliance, Llc Methods and systems for producing syngas
CN104919023A (zh) * 2013-01-04 2015-09-16 沙特阿拉伯石油公司 利用太阳辐射通过合成气制备单元将二氧化碳转化为烃类燃料
WO2016124494A1 (en) * 2015-02-03 2016-08-11 Technische Universität München Fuel cell system and method for operating a fuel cell system
CN108954872A (zh) * 2018-07-18 2018-12-07 浙江大学 基于集热型光热化学循环材料的太阳能分级分质利用系统
CN210068320U (zh) * 2019-06-22 2020-02-14 康磊 一种太阳能驱动生物质气化的联合发电系统
CN113583712A (zh) * 2021-07-12 2021-11-02 浙江大学 多能源耦合互补和有序转化系统与方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117962A (zh) * 2023-08-25 2023-11-24 西安交通大学 一种基于rsoc的多能互补建筑分布式供能系统及其运行方法
CN117117962B (zh) * 2023-08-25 2024-02-20 西安交通大学 一种基于rsoc的多能互补建筑分布式供能系统及其运行方法
CN117411041A (zh) * 2023-10-21 2024-01-16 华北电力大学 一种风光电氢热储多能互补的零碳排放分布式能源系统
CN117411041B (zh) * 2023-10-21 2024-04-02 华北电力大学 一种风光电氢热储多能互补的零碳排放分布式能源系统

Also Published As

Publication number Publication date
CN113583712B (zh) 2022-05-24
CN113583712A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023284602A1 (zh) 多能源耦合互补和有序转化系统与方法
CN109921060B (zh) 一种基于固体氧化物电池的储电及制合成气的系统和方法
CN108483396A (zh) 电-热化学循环耦合的太阳能燃料制备系统及方法
WO2022199327A1 (zh) 一种以甲醇为载体的多能互补发电系统及其工作方法
CN110690855A (zh) 一种基于氢储能的新型净零能耗建筑的能源系统
CN109950574B (zh) 一种基于自然能源的水氢发电系统
CN109217370A (zh) 一种风/光与生物质互补的发电和化学品储能系统及控制方法
CN113889648B (zh) 一种mw级热电联供燃料电池电站
CN218231881U (zh) 一种光热发电绿氨合成系统
CN113463113A (zh) 一种光伏与化学热泵耦合的太阳能高温电解水制氢系统及工艺
CN208955118U (zh) 一种基于固体氧化物电解池的固体氧化物燃料电池尾气处理系统
CN112993347A (zh) 一种基于固态氧化物电池的能源装置及发电系统
CN106086923A (zh) 一种耦合co2资源化利用的制氢储能装置
Fang et al. Electrochemical-thermochemical complementary hydrogen production system for efficient full-spectrum solar energy storage
CN113944544A (zh) 一种基于可再生能源与氢能甲醇化的能源系统及能源利用方法
CN116317175B (zh) 太阳能驱动的rsoc分布式多联产系统及其联产方法
CN210856090U (zh) 一种储能型分布式能源系统
CN210516883U (zh) 天然气自热重整质子交换膜燃料电池分布式热电联产系统
CN204794809U (zh) 一种能源互补自供电系统
CN113565681B (zh) 一种使用电加热气化炉的耦合系统及其多能转化方法
CN115354345A (zh) 光伏光热耦合共电解结合垃圾发电的综合能源系统及其工艺方法
CN110467948A (zh) 利用富余电力与沼气联合制生物天然气的电力储能系统及方法
CN115441013A (zh) 一种基于有机液体储氢的综合储供能系统及运行方法
CN112290570A (zh) 一种基于生物乙醇重整的清洁多能互补系统及方法
CN114725428A (zh) 一种以氨气为载体的零碳排放固体氧化物燃料电池与可再生能源联合发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE