WO2023284353A1 - 镜头、投影光机以及近眼显示设备 - Google Patents

镜头、投影光机以及近眼显示设备 Download PDF

Info

Publication number
WO2023284353A1
WO2023284353A1 PCT/CN2022/088459 CN2022088459W WO2023284353A1 WO 2023284353 A1 WO2023284353 A1 WO 2023284353A1 CN 2022088459 W CN2022088459 W CN 2022088459W WO 2023284353 A1 WO2023284353 A1 WO 2023284353A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sub
glued
incident
light
Prior art date
Application number
PCT/CN2022/088459
Other languages
English (en)
French (fr)
Inventor
尹超
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023284353A1 publication Critical patent/WO2023284353A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of display and projection technologies, and in particular to a lens, a projection light engine and a near-eye display device.
  • augmented reality devices such as smart glasses or smart masks are widely accepted and applied by users.
  • Augmented reality devices usually include a projection light machine, which can generate a virtual image, and the light of the virtual image and the light of the real environment can be simultaneously injected into the pupil of the user wearing the augmented reality device, so that the user wearing the augmented reality device can not only see Seeing real things, you can also see virtual images.
  • a light projection machine usually includes a display device and a lens. The light emitted by the display device becomes parallel light after being modulated by the lens.
  • the existing lenses have the problem of large aberrations resulting in poor imaging quality.
  • Embodiments of the present application provide a lens, a projection light engine, and a near-eye display device, and the lens has relatively high imaging quality.
  • the embodiment of the present application provides a lens, the lens is used to receive the incident light signal sent by the display device and modulate the incident light signal; the lens includes first lens, a second lens, a third lens, a fourth lens, and a fifth lens, the first lens is used to converge the incident light signal emitted by the display device to form a first transmitted light signal, and the second lens uses Converging the first transmitted light signal to form a second transmitted light signal, the third lens is used to diverge the second transmitted light signal to form a third transmitted light signal, and the fourth lens is used to converge the The third transmitted light signal is used to form a fourth transmitted light signal, and the fifth lens is used for converging the fourth transmitted light signal to form a fifth transmitted light signal.
  • an embodiment of the present application provides a light projection machine, including a display device and a lens, the lens is the above-mentioned lens, the display device is used to send out incident light signals, and the display device is arranged on the One side of the lens, and the display device is adjacent to the first lens so that the incident light signal can enter the first lens.
  • the embodiment of the present application also provides a near-eye display device, including a projection light machine and a transmission element, the projection light machine is the above-mentioned projection light machine, and the transmission element is set at the lens away from the On one side of the display device, the transmission element is used to receive the light beam transmitted from the lens and convert the light beam into a virtual image.
  • FIG. 1 is a schematic diagram of the first structure of the projection light machine provided by the embodiment of the present application.
  • FIG. 2 is a diagram of the modulation transfer function of the imaging of the red optical path of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 3 is a diagram of the modulation transfer function of the green optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 4 is a diagram of the modulation transfer function of the blue optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 5 is a field curvature diagram of imaging in the red optical path of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 6 is a field curvature diagram of the green optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 7 is a field curvature diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 8 is a distortion curve diagram of imaging in the red optical path of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 9 is a distortion curve diagram of imaging in the green optical path of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 10 is a distortion curve diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • FIG. 11 is a schematic diagram of the second structure of the projection light machine provided by the embodiment of the present application.
  • FIG. 12 is a diagram of the modulation transfer function of the imaging of the red optical path of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 13 is a diagram of the modulation transfer function of the green optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 14 is a diagram of the modulation transfer function of the blue optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 15 is a field curvature diagram of imaging in the red optical path of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 16 is a field curvature diagram of the green optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 17 is a field curvature diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 18 is a distortion curve diagram of imaging in the red optical path of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 19 is a distortion curve diagram of the green optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 20 is a distortion curve diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 11 .
  • FIG. 21 is a schematic structural diagram of a near-eye display device provided by an embodiment of the present application.
  • FIG. 1 is a schematic view of the first structure of the projection light machine provided by the embodiment of the present application.
  • the light projection machine 100 may include a display device 110 and a lens 120 , the display device 110 is used to send out incident light signals, and the display device 110 is disposed on one side of the lens 120 .
  • the lens 120 may include a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, and a fifth lens 50 arranged in sequence along the optical axis direction (or the transmission direction of an optical signal).
  • the display devices 110 are disposed adjacently. It can be understood that the first lens 10, the second lens 20, the third lens 30, the fourth lens 40 and the fifth lens 50 are from the image source side (the side where the display device 110 is located) to the imaging side (where the aperture stop 130 is located) side) in order.
  • the first lens 10 can receive the incident light signal sent by the display device 110, and converge the incident light signal to form the first transmitted light signal
  • the second lens 20 can receive and converge the first transmitted light signal to form the second transmitted light signal.
  • the third lens 30 can receive and diverge the second transmitted light signal to form a third transmitted light signal
  • the fourth lens 40 can receive and converge the third transmitted light signal to form a fourth transmitted light signal
  • the fifth lens 50 can receive and converging the fourth transmitted light signal to form a fifth transmitted light signal.
  • the first lens 10 is a lens with positive refractive power, which has a converging effect on the optical signal, and the optical signal can form the first transmitted optical signal after passing through the first lens 10;
  • the second lens 20 can be a cemented lens and the combined optical focus of the cemented lens
  • the power is a positive value, which has a converging effect on the light signal, and the first transmitted light signal can form a second transmitted light signal after passing through the second lens 20;
  • the transmitted light signal has a divergent effect, and the second transmitted light signal can form a third transmitted light signal after passing through the third lens 30;
  • the fourth lens 40 can be a cemented lens and the combined refractive power of the cemented lens is a positive value, and the fourth lens 40 Converging the third transmitted light signal,
  • the fifth lens 50 may be a positive power lens, converging the fourth transmitted light signal, and the fourth transmitted light signal passes through the fifth lens 50 to form a fifth transmitted light signal.
  • the first lens 10 and the third lens 30 compensate each other for spherical aberration
  • the second lens 20 compensate each other for field curvature
  • the aberration distribution among the lenses is balanced, which can ensure the imaging quality while ensuring the imaging quality. Better to reduce the tolerance sensitivity of the system.
  • the second lens 20 can be formed by gluing two single lenses.
  • the second lens 20 may include a first sub-lens 21 and a second sub-lens 22, and one surface of the first sub-lens 21 is adapted to a surface of the second sub-lens 22, so that in the first sub-lens 21 One surface of the sub-lens 22 and one surface of the second sub-lens 22 may be cemented together.
  • the first sub-lens 21 is located between the second sub-lens 22 and the first lens 10 , the first sub-lens 21 is a lens with a positive refractive power, and has a converging effect on the first transmitted light signal.
  • the second sub-lens 22 is located between the first sub-lens 21 and the third lens 30 .
  • the second sub-lens 22 is a lens with a negative refractive power and has a diverging effect on the optical signal transmitted through the first sub-lens 21 .
  • the first sub-lens 21 may include a first incident surface S211 and a first cementing surface S212 disposed opposite to each other, the first incident surface S211 faces the first lens 10 and the first incident surface S211 is a convex surface, and the first cementing surface S212 is a convex surface;
  • the second sub-lens 22 includes a second glued surface S221 and a first exit surface S222 arranged opposite to each other. The second glued surface S221 is glued with the first glued surface S212.
  • the second glued surface S221 is concave and the shape of the second glued surface S221 is Compatible with the shape of the first glued surface S212, the first outgoing surface S222 faces the third lens 30, and the first outgoing surface S222 is a concave surface.
  • the second transmitted light signal is incident from the first incident surface S211, passes through the first glued surface S212 and the second glued surface S221 in sequence, and exits from the first outgoing surface S222 to form a third transmitted light signal.
  • the first glued surface S212 is a surface that is convex from the image source side to the imaging side
  • the second glued surface S221 is a surface that is concave from the image source side to the imaging side
  • the first incident surface S211 is a surface that is convex from the imaging side The surface protrudes toward the image source side
  • the first exit surface S222 is a concave surface from the imaging side toward the image source side.
  • the fourth lens 40 can be formed by gluing two single lenses.
  • the fourth lens 40 may include a third sub-lens 41 and a fourth sub-lens 42, one surface of the third sub-lens 41 is adapted to one surface of the fourth sub-lens 42, so that in the third sub-lens 41 One surface of the sub-lens 42 and one surface of the fourth sub-lens 42 may be cemented together.
  • the third sub-lens 41 is located between the fourth sub-lens 42 and the third lens 30 , the third sub-lens 41 is a lens with negative refractive power, and has a diverging effect on the third transmitted light signal.
  • the fourth sub-lens 42 is located between the third sub-lens 41 and the fifth lens 50 , the fourth sub-lens 42 is a lens with a positive refractive power, and has a converging effect on the optical signal transmitted through the third sub-lens 41 . It should be noted that the combination of the fourth lens 40 with a positive lens with low refractive index and low dispersion and a negative lens with high refractive index and high dispersion can well compensate for chromatic aberration and further improve the imaging quality of the lens 120 .
  • the third sub-lens 41 may include a second incident surface S411 and a third cemented surface S412 arranged opposite to each other, the second incident surface S411 faces the third lens 30 and the second incident surface S411 is a concave surface, and the third cemented surface S412 is a concave surface;
  • the fourth sub-lens 42 includes a fourth glued surface S421 and a second exit surface S422 oppositely arranged, the fourth glued surface S421 is glued with the third glued surface S412, the fourth glued surface S421 is a convex surface and the shape of the fourth glued surface S421 is Compatible with the shape of the third glued surface S412, the second outgoing surface S422 faces the fifth lens 50, and the second outgoing surface S422 is a convex surface; the third transmitted optical signal enters from the second incident surface S411, and passes through the third glued surface in sequence surface S412 and the fourth glued surface S421, and emerge from the second exit surface S422
  • the third glued surface S412 is a surface that is concave from the imaging side toward the image source side
  • the fourth glued surface S421 is a surface that is convex from the imaging side toward the image source side
  • the second incident surface S411 is a surface from the image source side.
  • the side is concave toward the imaging side
  • the second exit surface S422 is a surface convex from the image source side toward the imaging side.
  • the first lens 10 may include a third incident surface S11 and a third exit surface S12 disposed opposite to each other, the third incident surface S11 is disposed toward and close to the display device 110, and the third exit surface S12 is disposed towards the second lens 20,
  • the third incident surface S11 is a convex surface
  • the third outgoing surface S12 is a convex surface.
  • the incident light signal emitted by the display device 110 enters from the third incident surface S11 and exits from the third outgoing surface S12 to form a first transmitted light signal.
  • the first lens 10 is a spherical lens
  • the third incident surface S11 is a surface protruding from the imaging side toward the image source side
  • the third exit surface S12 is a surface protruding from the image source side toward the imaging side.
  • the third lens 30 may include a fourth incident surface S31 and a fourth exit surface S32 arranged opposite to each other, the fourth incident surface S31 is arranged towards the second lens 20, the fourth exit surface S32 is arranged towards the fourth lens 40, and the fourth incident surface S32 is arranged towards the fourth lens 40.
  • S31 is a concave surface
  • the fourth outgoing surface S32 is a concave surface.
  • the first transmitted optical signal enters from the fourth incident surface S31 and exits from the fourth outgoing surface S32 to form a second transmitted optical signal.
  • the third lens 30 is a spherical lens
  • the fourth incident surface S31 is a surface concave from the image source side toward the imaging side
  • the fourth exit surface S32 is a concave surface from the imaging side toward the image source side.
  • the fifth lens 50 may include a fifth incident surface S51 and a fifth outgoing surface S52 arranged opposite to each other, the fifth incident surface S51 is arranged toward the fourth lens 40, the fifth incident surface S51 is a plane or concave surface, and the fifth outgoing surface S52 is Convex, the fourth transmitted light signal enters from the fifth incident surface S51 and exits from the fifth outgoing surface S52 to form a fifth transmitted light signal.
  • the fifth lens 50 is a spherical lens
  • the fifth incident surface S51 is a surface that may be flat or concave from the image source side toward the imaging side
  • the fifth exit surface S52 is convex from the image source side toward the imaging side s surface.
  • the diagonal field angle FOV (Field of View) of the lens 120 in the embodiment of the present application is 28°-32°.
  • the thickness of the fifth lens 50 is 0.9 mm
  • the distance between the fifth lens 50 and the fourth lens 40 is 0.1 mm
  • the thickness of the fourth sub-lens 42 is 1.05 mm
  • the third sub-lens 41 The thickness is 0.6 mm
  • the distance between the fourth lens 40 and the third lens 30 is 0.81 mm
  • the thickness of the third lens 30 is 0.6 mm
  • the distance between the third lens 30 and the second lens 20 is 0.5 mm
  • the thickness of the second sub-lens 22 is 0.55 mm
  • the thickness of the first sub-lens 21 is 1.21 mm
  • the distance between the second lens 20 and the first lens 10 is 0.1 mm
  • the thickness of the first lens 10 is 1.5 mm
  • the thickness of the second sub-lens 21 is 1.5 mm.
  • the distance between a lens 10 and the display device 110 is 0.1 mm.
  • adding a negative sign before the value of the radius of curvature indicates that the mirror surface is curved from the imaging side to the image source side, and when no negative sign is added before the value of the radius of curvature, it indicates that the mirror surface is curved from the image source side to the image source side.
  • the FOV of the lens in the diagonal direction is 28°
  • the maximum optical aperture is 5.8 mm
  • the diameter of the entrance pupil is 4 mm.
  • FIGS. 2 to 10 In order to illustrate the effect of the lens 120 of the embodiment in Table 1, please refer to FIGS. 2 to 10:
  • Figure 2 is the modulation transfer function diagram of the imaging of the red optical path of the lens in the projection optical machine shown in Figure 1
  • Figure 3 is the modulation transfer function of the imaging of the green optical path of the lens in the projection optical machine shown in Figure 1
  • Fig. 4 is a diagram of the modulation transfer function of the blue optical path imaging of the lens in the projection light machine shown in Fig. 1.
  • the Modulation Transfer Function (MTF) diagram can be used to evaluate the imaging quality of the lens, reflecting the ability of the lens to restore image contours and details. It can be seen from Fig. 2 to Fig. 4 that at 125/mm, the OTF modulus values in Fig. 2, Fig. 3, and Fig. 4 are all above 0.2, indicating that the lens 120 of the embodiment of the present application has better imaging definition, and the image Contours and details have a strong ability to restore.
  • MTF Modulation Transfer Function
  • FIG. 5 is the field curvature diagram of the imaging of the red optical path of the lens in the projection optical machine shown in Fig. 1
  • Fig. 6 is the field curvature diagram of the imaging of the green optical path of the lens in the projection optical machine shown in Fig. 1
  • FIG. 7 is a field curvature diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 1 .
  • the field curvature diagram can express the curvature and warpage of the imaging surface of the lens. It can be seen from FIG. 5 to FIG. 7 that in FIG. 5 , FIG. 6 , and FIG. 7 , the curvature of the images imaged by the lens 120 is small, and the curvature of field has been well corrected.
  • Fig. 8 is the distortion curve of the imaging of the red light path of the lens in the projection light machine shown in Fig. 1
  • Fig. 9 is the distortion curve of the imaging of the green light path of the lens in the projection light machine shown in Fig. 1
  • FIG. 10 is a distortion curve of the blue optical path imaging of the lens in the projection light machine shown in FIG. 1
  • the distortion graph can represent the degree of distortion of the lens imaging picture. It can be seen from FIG. 8 to FIG. 10 that the distortion of the images imaged by the lens 120 in FIG. 8 , FIG. 9 , and FIG. 10 is all within 2.0%, indicating that the distortion degree of the images imaged by the lens 120 in the embodiment of the present application is very low.
  • the lens 120 of the embodiment of the present application adopts the "waist-belly" shaped optical path trend and the layout of the first lens 10, the second lens 20, the third lens 30, the fourth lens 40 and the fifth lens 50, so that the display device
  • the lens 120 can modulate the incident light signal to reduce aberration, improve the imaging quality of the virtual image projected by the projector 100, and effectively reduce the tolerance sensitivity of the lens 120.
  • the lens of the lens 120 adopts a spherical surface and can be a common glass material with low cost and good processability.
  • the light projection machine 100 of the embodiment of the present application may also include an aperture stop 130 , and the function of the aperture stop 130 is to restrict the exit pupil diameter of the light projection machine 100 so that the distance between the light projection machine 100 and the waveguide plate Better pupil matching.
  • the aperture stop 130 is arranged along the optical axis, and is arranged on the side of the fifth lens 50 away from the fourth lens 40.
  • the fifth lens 50 is arranged between the aperture stop 130 and the fourth lens 40, and the aperture stop 130 is connected to the fourth lens 40.
  • the distance between the five lenses 50 is greater than 0.5 mm and less than 1 mm, so as to complete the pupil matching between the lens 120 and the optical waveguide while ensuring the compact structure of the lens 120 .
  • the distance between the aperture stop 130 and the fifth lens 50 may be 0.6 mm, 0.8 mm, 1.0 mm and so on.
  • the distance between the aperture stop 130 and the fifth lens 50 refers to the distance from the aperture stop 130 to the apex of the fifth exit surface S52 of the fifth lens 50 .
  • the aperture stop 130 may include a shielding area and a light-transmitting area, the shielding area surrounds the light-transmitting area, and the light-transmitting area enables the aperture stop 130 to adjust the optical signal passing through the lens 120 .
  • the shape of the light-transmitting area can be circular, and the diameter D of the light-transmitting area satisfies: 4mm ⁇ D ⁇ 5mm.
  • the diameter D of the light-transmitting area can be 4mm, 4.5mm, 5mm, etc.
  • the light-transmitting region may be a through hole.
  • the shape of the light-transmitting region may also be a rectangle, a trapezoid or other shapes.
  • the display device 110 may include a first light emitting element 111, a second light emitting element 112, a third light emitting element 113 and a color combining prism 114; the wavelength range of light emitted by the first light emitting element 111, the second light emitting element The wavelength range of the light emitted by 112 and the wavelength range of the light emitted by the third light emitting element 113 do not overlap with each other.
  • the color combining prism 114 is bonded by four identical isosceles rectangular prisms 104.
  • the color combining prism 114 has a first bonding surface, a second bonding surface, a third bonding surface and a fourth bonding surface, and the first bonding surface and the second bonding surface
  • the two bonding surfaces are located on the same diagonal surface
  • the third bonding surface and the fourth bonding surface are located on the same diagonal surface
  • the first bonding surface and the second bonding surface are provided with a first coating layer 105
  • the third bonding surface and the fourth bonding surface are located on the same diagonal surface.
  • a second coating layer 106 is provided on the fourth bonding surface;
  • the lens 120, the first light emitting element 111, the second light emitting element 112 and the third light emitting element 113 are all arranged on the outer periphery of the color combining prism 114, and the second light emitting element 112 is arranged opposite to the lens 120, and the first light emitting element 111 and the third light emitting element 111 are arranged opposite to the lens 120.
  • the light emitting elements 113 are arranged oppositely;
  • the first coating layer 105 can reflect the light emitted by the first light emitting element 111 and transmit the light emitted by the second light emitting element 112 and the light emitted by the third light emitting element 113;
  • the second coating layer 106 can reflect the light emitted by the third light emitting element 113 and transmit the light emitted by the first light emitting element 111 and the light emitted by the second light emitting element 112 .
  • the light emitted by the first light-emitting element 111 , the second light-emitting element 112 and the third light-emitting element 113 are combined by the color combining prism 114 to form a color image, and then the color image enters the lens 120 for modulation.
  • the light emitted from different positions on the first light-emitting element 111, the second light-emitting element 112, and the third light-emitting element 113 passes through the color combining prism 114 and five lenses, and passes through the aperture stop 130 at different angles. Parallel exit.
  • the first light emitting element 111 is a red Micro LED display
  • the second light emitting element 112 is a green Micro LED display
  • the third light emitting element 113 is a blue Micro LED display.
  • the red Micro LED display, the green Micro LED display, and the blue Micro LED display can be used directly, or a protective glass can be added to the display surface.
  • This solution uses the color combining prism 114 to integrate the three light beams of the red Micro LED display, the green Micro LED display, and the blue Micro LED display to achieve a color scheme, which makes up for the scarcity of the current full-color Micro LED display. question.
  • the diagonal dimensions of the respective effective light-emitting areas of the red Micro LED display screen, the green Micro LED display screen, and the third light-emitting element 113 can be 3.2 mm to 3.3 mm, and the aspect ratios of the respective effective light-emitting areas are the same. It can be 4:3, and the number of effective pixels can be 640H*480V; or, the diagonal size of the effective light-emitting areas of the red Micro LED display, green Micro LED display, and blue Micro LED display is 5.5 mm to 5.6 mm, the aspect ratio of each effective light-emitting area can be 16:9, and the number of effective pixels can be 1920*1080.
  • the size of each of the red Micro LED display, the green Micro LED display, and the blue Micro LED display is 2.64mm*2mm.
  • the appearance of the color combining prism 114 is a cube or a cuboid.
  • the length of the edge of the color combining prism 114 is 5.6 mm to 7.4 mm, such as 5.6 mm, 6 mm, 6.5 mm, 7 mm, 7.4 mm Wait.
  • the overall system length OAL (OverAll Length) of the projector 100 shown in FIG. 1 is less than 20 mm, and its structure is compact. When used in combination with a waveguide, it can be used as an optical-mechanical display module for lightweight AR glasses.
  • the projection optical engine shown in Figure 1 can achieve a total system length of 14.74mm and a maximum lens aperture of 5.8mm, which ensures a small volume of the optical engine module while realizing full-color display.
  • FIG. 11 is a schematic diagram of the second structure of the projection light machine provided by the embodiment of the present application.
  • the light projection machine 100' may include a display device 110' and a lens 120', the display device 110' is used to send out incident light signals, and the display device 110' is arranged on one side of the lens 120'.
  • the lens 120' may include a first lens 10', a second lens 20', a third lens 30', a fourth lens 40' and a fifth lens 50' arranged in sequence along the optical axis direction (or the transmission direction of the optical signal).
  • the first lens 10' is disposed adjacent to the display device 110'. It can be understood that the first lens 10', the second lens 20', the third lens 30', the fourth lens 40' and the fifth lens 50' are from the image source side (the side where the display device 110' is located) to the imaging side (the side where the aperture stop 130' is located) are arranged in sequence.
  • the first lens 10' can receive the incident light signal sent by the display device 110', and converge the incident light signal to form the first transmitted light signal
  • the second lens 20' can receive and converge the first transmitted light signal to form the first transmitted light signal.
  • Two transmitted light signals the third lens 30' can receive and diverge the second transmitted light signal to form a third transmitted light signal
  • the fourth lens 40' can receive and converge the third transmitted light signal to form a fourth transmitted light signal
  • the first The five lenses 50' can receive and converge the fourth transmitted light signal to form a fifth transmitted light signal.
  • the first lens 10' is a lens with positive refractive power, which has a converging effect on the optical signal, and the optical signal can form a first transmitted optical signal after passing through the first lens 10';
  • the second lens 20' can be a cemented lens and the cemented lens
  • the combined focal power is a positive value, which has a converging effect on the optical signal, and the first transmitted optical signal can form a second transmitted optical signal after passing through the second lens 20';
  • the third lens 30' can be a lens with negative refractive power, and the third The lens 30' has a divergent effect on the second transmitted light signal, and the second transmitted light signal can form a third transmitted light signal after passing through the third lens 30';
  • the fourth lens 40' can be a cemented lens and the combined refractive power of the cemented lens is a positive value, the fourth lens 40' has a converging effect on the third transmitted light signal,
  • the fifth lens 50' can be a positive power lens, and has a converging effect on
  • the first lens 10' and the third lens 30' compensate each other for spherical aberration
  • the second lens 20', the third lens 30', and the fourth lens 40' compensate each other for field curvature, and the aberration distribution between the lenses is balanced, ensuring imaging While improving the quality, it can well reduce the tolerance sensitivity of the system.
  • the second lens 20' may include a first incident surface S21' and a first outgoing surface S22' disposed opposite to each other, the first incident surface S21' faces the display device 110' and is disposed close to the display device 110',
  • the first outgoing surface S22' is set toward the second lens 20', the first incident surface S21' is a convex surface, and the first outgoing surface S22' is a concave surface, and the incident light signal emitted by the display device 110' enters from the first incident surface S21'.
  • the second lens 20' is a spherical lens
  • the first incident surface S21' is a surface that protrudes from the imaging side toward the image source side.
  • the first The exit surface S22' is a surface concave from the imaging side toward the image source side.
  • the fourth lens 40' can be formed by gluing two single lenses.
  • the fourth lens 40' may include a third sub-lens 41' and a fourth sub-lens 42', and one surface of the third sub-lens 41' is adapted to one surface of the fourth sub-lens 42', so that the first One surface of the third sub-lens 41' and one surface of the fourth sub-lens 42' may be cemented together.
  • the third sub-lens 41' is located between the fourth sub-lens 42' and the third lens 30', and the third sub-lens 41' is a negative power lens, which has a diverging effect on the third transmitted light signal.
  • the fourth sub-lens 42' is located between the third sub-lens 41' and the fifth lens 50', the fourth sub-lens 42' is a positive power lens, and has a converging effect on the optical signal transmitted through the third sub-lens 41'. It should be noted that the combination of the fourth lens 40' using a positive lens with low refractive index and low dispersion and a negative lens with high refractive index and high dispersion can well compensate for chromatic aberration and further improve the imaging quality of the lens 120'.
  • the third sub-lens 41' may include a second incident surface S411' and a third glued surface S412' oppositely disposed, the second incident surface S411' faces the third lens 30' and the second incident surface S411' is a concave surface, and the third The glued surface S412' is a concave surface;
  • the fourth sub-lens 42' includes a fourth glued surface S421' and a second outgoing surface S422' oppositely arranged, the fourth glued surface S421' is glued with the third glued surface S412', and the fourth glued surface S421' is glued with the third glued surface S412', and the fourth glued surface
  • the surface S421' is convex and the shape of the fourth glued surface S421' matches the shape of the third glued surface S412', the second outgoing surface S422' faces the fifth lens 50', and the second outgoing surface S422' is convex;
  • the third transmitted light signal
  • the third glued surface S412' is a surface that is concave from the imaging side toward the image source side
  • the fourth glued surface S421' is a surface that is convex from the imaging side toward the image source side
  • the second incident surface S411' is The surface is concave from the image source side to the imaging side
  • the second exit surface S422' is a convex surface from the image source side to the imaging side.
  • the first lens 10' may include a third incident surface S11' and a third outgoing surface S12' disposed opposite to each other, the third incident surface S11' faces the display device 110' and is disposed close to the display device 110', and the third outgoing surface S12' Set towards the second lens 20', the third incident surface S11' is a convex surface, the third outgoing surface S12' is a convex surface, and the incident light signal sent by the display device 110 enters from the third incident surface S11' and passes through the third outgoing surface S12'
  • the first lens 10' is a spherical lens
  • the third incident surface S11' is a surface protruding from the imaging side toward the image source side
  • the third outgoing surface S12' is a surface from the image source side.
  • the third lens 30' may include a fourth incident surface S31 and a fourth outgoing surface S32' disposed opposite to each other, the fourth incident surface S31 is arranged toward the second lens 20', and the fourth outgoing surface S32' is arranged toward the fourth lens 40' , the fourth incident surface S31' is a concave surface, and the fourth outgoing surface S32' is a concave surface.
  • FIG. transmitted light signal As shown in FIG. transmitted light signal. It can be understood that the third lens 30' is a spherical lens, the fourth incident surface S31' is a surface concave from the image source side toward the imaging side, and the fourth exit surface S32' is concave from the imaging side toward the image source side. surface.
  • the fifth lens 50' may include a fifth incident surface S51' and a fifth outgoing surface S52' disposed opposite to each other, the fifth incident surface S51' is disposed toward the fourth lens 40', the fifth incident surface S51' is a plane or a convex surface, The fifth outgoing surface S52 is a convex surface, and the fourth transmitted light signal enters from the fifth incident surface S51' and exits from the fifth outgoing surface S52' to form a fifth transmitted optical signal.
  • the fifth lens 50' is a spherical lens
  • the fifth incident surface S51' is a surface that can be flat or concave from the image source side toward the imaging side
  • the fifth exit surface S52' is from the image source side toward the imaging side. side convex surface.
  • the diagonal field angle FOV (Field of View) of the lens 120' in the embodiment of the present application is 28°-32°.
  • the fifth lens 50' has a thickness of 0.95 mm
  • the distance between the fifth lens 50' and the fourth lens 40' is 0.61 mm
  • the fourth sub-lens 42' has a thickness of 1.8 mm.
  • the thickness of the three sub-lenses 41' is 1.4 mm
  • the distance between the fourth lens 40' and the third lens 30' is 1.2 mm
  • the thickness of the third lens 30' is 0.7 mm
  • the distance between the third lens 30' and the second lens The distance between 20' is 0.5 mm
  • the thickness of the second lens 20' is 1.5 mm
  • the distance between the second lens 20' and the first lens 10' is 0.8 mm
  • the thickness of the first lens 10' is 1.5 mm
  • the distance between the first lens 10' and the display device 110' is 0.2 mm.
  • the FOV of the lens in the diagonal direction is 30°
  • the maximum optical aperture is 7 mm
  • the diameter of the entrance pupil is 5 mm.
  • Figure 12 is the modulation transfer function diagram of the imaging of the red optical path of the lens in the projection optical machine shown in Figure 11, and Figure 13 is the modulation transfer function of the imaging of the green optical path of the lens in the projection optical machine shown in Figure 11
  • Fig. 14 is a diagram of the modulation transfer function of the blue optical path imaging of the lens in the projection light machine shown in Fig. 11 . It can be seen that at 200/mm, the OTF modulus values in Fig. 12, Fig. 13, and Fig. 14 are all above 0.3, indicating that the lens 120' in the embodiment of the present application has better imaging definition and has a better effect on image contours and details. Strong restoring ability.
  • Fig. 15 is the field curvature diagram of the imaging of the red optical path of the lens in the projection optical machine shown in Fig. 11, and Fig. 16 is the field curvature diagram of the imaging of the green optical path of the lens in the projection optical machine shown in Fig. 11.
  • FIG. 17 is a field curvature diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 11 . It can be seen that in Fig. 15, Fig. 16, and Fig. 17, the curvature of the imaging picture of the lens 120' is small, and the curvature of field has been well corrected.
  • Figure 18 is the distortion curve of the red light path imaging of the lens in the projection light machine shown in Figure 11
  • Figure 19 is the distortion curve of the lens green light path imaging in the projection light machine shown in Figure 11
  • FIG. 20 is a distortion curve diagram of the blue optical path imaging of the lens in the projection light machine shown in FIG. 11 . It can be seen that the distortions of the imaging images of the lens 120' in Fig. 18, Fig. 19, and Fig. 20 are all within 1.2%, indicating that the distortion of the imaging images of the lens 120' in the embodiment of the present application is very low.
  • the lens 120' of the embodiment of the present application adopts a "waist-belly" optical path trend and the first lens 10', the second lens 20', the third lens 30', the fourth lens 40' and the fifth lens 50' layout, so that when the incident light signal emitted by the display device 110' passes through the lens 120', the lens 120' can modulate the incident light signal to reduce aberration and improve the imaging quality of the virtual image projected by the projector 100' , and can effectively reduce the tolerance sensitivity of the lens 120'.
  • the lens of the lens 120' adopts a spherical surface and can be a common glass material. While ensuring the performance of the projector 100', it has low cost and good processability.
  • the projection light machine 100' may further include a display device 110' and an aperture stop 130.
  • the display device 110' in the projection light machine 100' shown in FIG. 11 is the same as the display device 110 in the projection light machine 100 shown in FIG. 1, and the aperture stop 130' in the projection light machine 100' shown in FIG.
  • the aperture stop 130 in the shown projection light engine 100 is the same, and will not be repeated here.
  • the overall system length OAL (OverAll Length) of the optical projection machine 100' shown in Fig. 11 is less than 20 mm, and its structure is compact. When used in combination with a waveguide, it can be used as an optical-mechanical display module for lightweight AR glasses.
  • the projection optical engine shown in Figure 1 can achieve a total system length of 18.86 mm and a maximum lens aperture of 7 mm, which ensures a small volume of the optical engine module while realizing full-color display.
  • the embodiment of the present application also provides a near-eye display device.
  • FIG. 21 is a schematic structural diagram of a near-eye display device provided by an embodiment of the present application.
  • the near-eye display device 20 may include the above-mentioned projection light machine 100 (also may be the projection light machine 100') and a transmission element 600.
  • the transmission element 600 is arranged on the side of the lens 120 away from the display device 110.
  • the transmission element 600 is used to receive the light from the lens 120.
  • the transmitted light beam is transmitted to the eye.
  • the lens 120 is arranged between the display device 110 and the transmission element 600, and the lens 120 is arranged on one side of the outgoing light of the display device 110, and the lens 120 can modulate the incident light signal sent by the display device 110, and the transmission element 600 600 is located on the side of the light emitted by the lens 120, and the transmission element 600 can transmit the light beam transmitted by the lens 120 to the eye.
  • the transmission element 600 is an optical waveguide element.
  • the positional relationship between the light projection machine 100 and the transmission element 600 may be parallel to each other, but it is not limited to the parallel relationship, and there may be a certain angle between the light projection machine 100 and the transmission element 600, for example 15°, 30°, 45°, 60°, etc.
  • the near-eye display device may be an augmented reality (Augmented Reality, AR) display device or a virtual reality (Virtual Reality, VR) display device, such as AR glasses, VR glasses, and the like.
  • augmented reality Augmented Reality, AR
  • VR Virtual Reality

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种镜头(120,120')、投影光机(100,100')以及近眼显示设备(20)。镜头(120,120')包括沿光轴方向依次排列的第一透镜(10,10')、第二透镜(20,20')、第三透镜(30,30')、第四透镜(40,40')和第五透镜(50,50'),显示装置(110,110')发出的入射光信号依次经过五个透镜(10,10',20,20',30,30',40,40', 50,50'),五个透镜(10,10',20,20',30,30',40,40',50,50')可对入射光信号进行调制以减少像差,提高成像质量。

Description

镜头、投影光机以及近眼显示设备
本申请要求于2021年07月16日提交中国专利局、申请号为202110808198.6、申请名称为“镜头、投影光机以及近眼显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示投影技术领域,特别涉及一种镜头、投影光机以及近眼显示设备。
背景技术
随着增强现实技术的不断发展,诸如智能眼镜或智能面罩等头戴式增强现实设备被用户广泛接受和应用。
增强现实设备通常可以包括投影光机,投影光机可以生成虚拟图像,虚拟图像的光线和现实环境的光线可以同时射入佩戴增强现实设备的用户瞳孔内,使得佩戴增强现实设备的用户不仅能够看到现实的事物,还能够看到虚拟的图像。投影光机通常可以包括显示装置和镜头,显示装置发出的光经由镜头调制后变为平行光,然而现有的镜头存在像差较大导致成像质量较差的问题。
发明内容
本申请实施例提供一种镜头、投影光机以及近眼显示设备,所述镜头具有较高的成像质量。
第一方面,本申请实施例提供一种镜头,所述镜头用于接收显示装置发出的入射光信号并对所述入射光信号进行调制;所述镜头包括沿光轴方向依次排列设置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,所述第一透镜用于会聚所述显示装置所发出的入射光信号以形成第一透射光信号,所述第二透镜用于会聚所述第一透射光信号以形成第二透射光信号,所述第三透镜用于发散所述第二透射光信号以形成第三透射光信号,所述第四透镜用于会聚所述第三透射光信号以形成第四透射光信号,所述第五透镜用于会聚所述第四透射光信号以形成第五透射光信号。
第二方面,本申请实施例提供一种投影光机,包括显示装置和镜头,所述镜头为如上所述的镜头,所述显示装置用于发出入射光信号,所述显示装置设于所述镜头的一侧,且所述显示装置与所述第一透镜相邻以使得所述入射光信号可射入所述第一透镜。
第三方面,本申请实施例还提供一种近眼显示设备,包括投影光机与传输元件,所述投影光机为如上所述的投影光机,所述传输元件设于所述镜头背离所述显示装置的一侧,所述传输元件用于接收从所述镜头透射出的光束,并将所述光束转换为虚拟图像。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的投影光机的第一种结构意图。
图2为图1所示投影光机中镜头红色光路成像的调制传递函数图。
图3为图1所示投影光机中镜头绿色光路成像的调制传递函数图。
图4为图1所示投影光机中镜头蓝色光路成像的调制传递函数图。
图5为图1所示投影光机中镜头红色光路成像的场曲图。
图6为图1所示投影光机中镜头绿色光路成像的场曲图。
图7为图1所示投影光机中镜头蓝色光路成像的场曲图。
图8为图1所示投影光机中镜头红色光路成像的畸变曲线图。
图9为图1所示投影光机中镜头绿色光路成像的畸变曲线图。
图10为图1所示投影光机中镜头蓝色光路成像的畸变曲线图。
图11为本申请实施例提供的投影光机的第二种结构意图。
图12为图11所示投影光机中镜头的红色光路成像的调制传递函数图。
图13为图11所示投影光机中镜头的绿色光路成像的调制传递函数图。
图14为图11所示投影光机中镜头的蓝色光路成像的调制传递函数图。
图15为图11所示投影光机中镜头红色光路成像的场曲图。
图16为图11所示投影光机中镜头绿色光路成像的场曲图。
图17为图11所示投影光机中镜头蓝色光路成像的场曲图。
图18为图11所示投影光机中镜头红色光路成像的畸变曲线图。
图19为图11所示投影光机中镜头绿色光路成像的畸变曲线图。
图20为图11所示投影光机中镜头蓝色光路成像的畸变曲线图。
图21为本申请实施例提供的近眼显示设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种投影光机,该投影光机用于生成虚拟图像。请参阅图1,图1为本申请实施例提供的投影光机的第一种结构意图。投影光机100可以包括显示装置110和镜头120,显示装置110用于发出入射光信号,显示装置110设于镜头120的一侧。
镜头120可以包括沿光轴方向(或者说光信号的传输方向)依次排列的第一透镜10、第二透镜20、第三透镜30、第四透镜40和第五透镜50,第一透镜10与显示装置110相邻设置。可以理解的是,第一透镜10、第二透镜20、第三透镜30、第四透镜40和第五透镜50从像源侧(显示装置110所在一侧)至成像侧(孔径光阑130所在一侧)依次排列。
其中,第一透镜10可以接收显示装置110所发出的入射光信号,并会聚入射光信号以形成第一透射光信号,第二透镜20可以接收并会聚第一透射光信号以形成第二透射光信号,第三透镜30可以接收并发散第二透射光信号以形成第三透射光信号,第四透镜40可以接收并会聚第三透射光信号以形成第四透射光信号,第五透镜50可以接收并会聚第四透射光信号以形成第五透射光信号。例如,第一透镜10为正光焦度透镜,对光信号有会聚作用,光信号经过第一透镜10后可形成第一透射光信号;第二透镜20可以为胶合透镜且胶合透镜的组合光焦度为正值,对光信号具有会聚作用,第一透射光信号经过第二透镜20后可形成第二透射光信号;第三透镜30可以为负光焦度透镜,第三透镜30对第二透射光信号有发散作用,第二透射光信号经过第三透镜30后可形成第三透射光信号;第四透镜40可以为胶合透镜且胶合透镜的组合光焦度为正值,第四透镜40对第三透射光信号有会聚作用,第五透镜50可以为正光焦度透镜,对第四透射光信号有会聚作用,第四透射光信号经过第五透镜50后可形成第五透射光信号。
第一透镜10和第三透镜30相互补偿球差,第二透镜20、第三透镜30、第四透镜40相互补偿场曲,各透镜之间像差分配均衡,在保证成像质量的同时能够很好地降低系统的公差敏感性。
请继续参阅图1,第二透镜20可以由两个单片镜片通过胶合而成。比如第二透镜20可以包括第一子透镜21和第二子透镜22,第一子透镜21中的一个表面和第二子透镜22中的一个表面相适配,以使得第一子透镜21中的一个表面和第二子透镜22中的一个表面可以相互胶合在一起。第一子透镜21位于第二子透镜22和第一透镜10之间,第一子透镜21为正光焦度透镜,对第一透射光信号具有会聚作用。第二子透镜22位于第一子透镜21和第三透镜30之间,第二子透镜22为负光焦度透镜,对透射过第一子透镜21的光信号具有发散作用。
第一子透镜21可以包括相背设置的第一入射面S211和第一胶合面S212,第一入射面S211朝向第一透镜10且第一入射面S211为凸面,第一胶合面S212为凸面;第二子透镜22包括相背设置的第二胶合面S221和第一出射面S222,第二胶合面S221与第一胶合面S212胶合,第二胶合面S221为凹面且第二胶合面 S221的形状与第一胶合面S212的形状相适配,第一出射面S222朝向第三透镜30,且第一出射面S222为凹面。第二透射光信号从第一入射面S211入射,依次经过第一胶合面S212和第二胶合面S221,并从第一出射面S222出射以形成第三透射光信号。可以理解的是,第一胶合面S212为从像源侧朝向成像侧凸出的表面,第二胶合面S221为从像源侧朝向成像侧凹入的表面;第一入射面S211为从成像侧朝向像源侧凸出的表面,第一出射面S222为从成像侧朝向像源侧凹入的表面。
第四透镜40可以由两个单片镜片通过胶合而成。比如第四透镜40可以包括第三子透镜41和第四子透镜42,第三子透镜41中的一个表面和第四子透镜42中的一个表面相适配,以使得第三子透镜41中的一个表面和第四子透镜42中的一个表面可以相互胶合在一起。第三子透镜41位于第四子透镜42和第三透镜30之间,第三子透镜41为负光焦度透镜,对第三透射光信号具有发散作用。第四子透镜42位于第三子透镜41和第五透镜50之间,第四子透镜42为正光焦度透镜,对透射过第三子透镜41的光信号具有会聚作用。需要说明的是,第四透镜40采用低折射率低色散的正透镜和高折射率高色散的负透镜配合可以很好地补偿色差,进一步提高镜头120的成像质量。
第三子透镜41可以包括相背设置的第二入射面S411和第三胶合面S412,第二入射面S411朝向第三透镜30且第二入射面S411为凹面,第三胶合面S412为凹面;第四子透镜42包括相背设置的第四胶合面S421和第二出射面S422,第四胶合面S421与第三胶合面S412胶合,第四胶合面S421为凸面且第四胶合面S421的形状与第三胶合面S412的形状相适配,第二出射面S422朝向第五透镜50,且第二出射面S422为凸面;第三透射光信号从第二入射面S411入射,依次经过第三胶合面S412和第四胶合面S421,并从第二出射面S422出射以形成第四透射光信号。可以理解的是,第三胶合面S412为从成像侧朝向像源侧凹入的表面,第四胶合面S421为从成像侧朝向像源侧凸出的表面;第二入射面S411为从像源侧朝向成像侧凹入的表面,第二出射面S422为从像源侧朝向成像侧凸出的表面。
第一透镜10可以包括相背设置的第三入射面S11和第三出射面S12,第三入射面S11朝向显示装置110并靠近显示装置110设置,第三出射面S12朝向第二透镜20设置,第三入射面S11为凸面,第三出射面S12为凸面,显示装置110发出的入射光信号从第三入射面S11射入从第三出射面S12出射形成第一透射光信号,可以理解的是,第一透镜10为球面透镜,第三入射面S11为从成像侧朝向像源侧凸出的表面,第三出射面S12为从像源侧朝向成像侧凸出的表面。
第三透镜30可以包括相背设置的第四入射面S31和第四出射面S32,第四入射面S31朝向第二透镜20设置,第四出射面S32朝向第四透镜40设置,第四入射面S31为凹面,第四出射面S32为凹面,如图1所示,第一透射光信号从第四入射面S31射入从第四出射面S32出射形成第二透射光信号。可以理解的是, 第三透镜30为球面透镜,第四入射面S31为从像源侧朝向成像侧凹入的表面,第四出射面S32为从成像侧朝向像源侧凹入的表面。
第五透镜50可以包括相背设置的第五入射面S51和第五出射面S52,第五入射面S51朝向第四透镜40设置,第五入射面S51为平面或凹面,第五出射面S52为凸面,第四透射信号从第五入射面S51射入从第五出射面S52出射形成第五透射光信号。可以理解的是,第五透镜50为球面透镜,第五入射面S51为可以为平面或者从像源侧朝向成像侧凹入的表面,第五出射面S52为从像源侧朝向成像侧凸出的表面。
示例性地,本申请实施例的镜头120的对角线方向视场角FOV(Field of View)为28°~32°。
示例性地,本申请实施例的镜头120中各镜片的参数如下表1所示:
表1
Figure PCTCN2022088459-appb-000001
从表1可以看出,第五透镜50的厚度为0.9毫米,第五透镜50与第四透镜40之间的距离为0.1毫米,第四子透镜42的厚度为1.05毫米,第三子透镜41的厚度为0.6毫米,第四透镜40与第三透镜30之间的距离为0.81毫米,第三透镜30的厚度为0.6毫米,第三透镜30与第二透镜20之间的距离为0.5毫米,第二子透镜22的厚度为0.55毫米,第一子透镜21的厚度为1.21毫米,第二透镜20与第一透镜10之间的距离为0.1毫米,第一透镜10的厚度为1.5毫米,第一透镜10与显示装置110之间的距离为0.1毫米。表1的曲率半径的数值 中,曲率半径数值前添加负号时表示镜面从成像侧朝向像源侧弯曲,曲率半径数值前未添加负号时表示镜面从像源侧朝向成像侧弯曲。
表1实施例中,镜头的对角线方向视场角FOV为28°,最大光学口径为5.8毫米,入瞳直径为4毫米。
为了说明表1实施例镜头120的效果,请参阅图2至图10:
首先,请参阅图2至图4,图2为图1所示投影光机中镜头红色光路成像的调制传递函数图,图3为图1所示投影光机中镜头绿色光路成像的调制传递函数图,图4为图1所示投影光机中镜头蓝色光路成像的调制传递函数图。调制传递函数(Modulation Transfer Function,MTF)图可以用于评价镜头的成像质量,体现镜头对图像轮廓和细节的还原能力。从图2至图4可以看出,125/mm时,图2、图3、图4中的OTF模值均在0.2以上,说明本申请实施例的镜头120成像的清晰度较好,对图像轮廓和细节具有较强的还原能力。
其次,请参阅图5至图7,图5为图1所示投影光机中镜头红色光路成像的场曲图,图6为图1所示投影光机中镜头绿色光路成像的场曲图,图7为图1所示投影光机中镜头蓝色光路成像的场曲图。场曲图可以表现镜头所成像面的弯曲度及翘曲度。从图5至图7可以看出,图5、图6、图7中镜头120成像画面的弯曲度较小,场曲得到了良好的矫正。
第三,请参阅图8至图10,图8为图1所示投影光机中镜头红色光路成像的畸变曲线图,图9为图1所示投影光机中镜头绿色光路成像的畸变曲线图,图10为图1所示投影光机中镜头蓝色光路成像的畸变曲线图。畸变曲线图可以表示镜头成像画面的变形程度。从图8至图10可以看出,图8、图9、图10中镜头120成像画面的畸变量均在2.0%以内,说明本申请实施例的镜头120成像画面的变形程度非常低。
本申请实施例的镜头120采用了“腰-肚”形的光路走势及及第一透镜10、第二透镜20、第三透镜30、第四透镜40以及第五透镜50的布局,使显示装置110所发出的入射光信号经过镜头120时,镜头120可以对入射光信号进行调制,以减少像差,提高投影光机100所投射的虚拟图像的成像质量,并且能够有效降低镜头120的公差敏感性。镜头120的镜片采用球面面型,可以为常见的玻璃材料,成本较低且具有良好的可加工性。
请继续参阅图1,本申请实施例的投影光机100还可以包括孔径光阑130,孔径光阑130的作用在于约束投影光机100的出瞳直径,使投影光机100与波导片之间更好的完成光瞳匹配。孔径光阑130沿光轴设置,设置在第五透镜50背离第四透镜40的一侧,第五透镜50设置于孔径光阑130和第四透镜40之间,而且,孔径光阑130与第五透镜50之间的距离大于0.5毫米且小于1毫米,以便在保证镜头120结构紧凑的情况下完成镜头120与光波导的光瞳匹配。示例性地,孔径光阑130与第五透镜50之间的距离可以为0.6 毫米、0.8毫米、1.0毫米等。其中,孔径光阑130与第五透镜50之间的距离指的孔径光阑130至第五透镜50的第五出射面S52的顶点的距离。
孔径光阑130可以包括遮挡区域和透光区域,遮挡区域围设在透光区域的周缘,透光区域可以使孔径光阑130对透过镜头120的光信号进行调节。透光区域的形状可以为圆形,透光区域的直径D满足:4毫米≤D≤5毫米,例如透光区域的直径D可以为4毫米、4.5毫米、5毫米等数值。示例性地,透光区域可以为通孔。除圆形以外,透光区域的形状也可以为矩形、梯形等其它形状。
请继续参阅图1,显示装置110可以包括第一发光元件111、第二发光元件112、第三发光元件113以及合色棱镜114;第一发光元件111发出的光线的波长范围、第二发光元件112发出的光线的波长范围、第三发光元件113发出的光线的波长范围互不重叠。
合色棱镜114由四个相同的等腰直角棱镜104粘合而成,合色棱镜114具有第一结合面、第二结合面、第三结合面以及第四结合面,第一结合面与第二结合面位于同一个对角面,第三结合面与第四结合面位于同一个对角面,第一结合面与第二结合面上均设有第一镀膜层105,第三结合面与第四结合面上均设有第二镀膜层106;
镜头120、第一发光元件111、第二发光元件112以及第三发光元件113均设置于合色棱镜114的外周,且第二发光元件112与镜头120相对设置,第一发光元件111与第三发光元件113相对设置;
第一镀膜层105能够反射第一发光元件111发出的光线,并且透射第二发光元件112发出的光线以及第三发光元件113发出的光线;
第二镀膜层106能够反射第三发光元件113发出的光线,并且透射第一发光元件111发出的光线以及第二发光元件112发出的光线。
可以理解的是,第一发光元件111、第二发光元件112以及第三发光元件113各自发出的光线经由合色棱镜114进行合光后形成彩色图像,之后彩色图像进入镜头120进行调制。如图1所示,第一发光元件111、第二发光元件112以及第三发光元件113上不同位置发出的光经过合色棱镜114及五个透镜后,以不同的角度在孔径光阑130处平行出射。
示例性地,第一发光元件111为红色Micro LED显示屏,第二发光元件112为绿色Micro LED显示屏,第三发光元件113为蓝色Micro LED显示屏。红色Micro LED显示屏、绿色Micro LED显示屏、蓝色Micro LED显示屏可以直接使用,也可以在显示屏表面加保护玻璃。该方案利用合色棱镜114将红色Micro LED显示屏、绿色Micro LED显示屏、蓝色Micro LED显示屏的三路光束整合至一起,以实现彩色方案,弥补了目前全彩Micro LED显示屏稀缺的问题。
示例性地,红色Micro LED显示屏、绿色Micro LED显示屏、第三发光元件113各自的有效发光区域的对角线尺寸均可以为3.2毫米~3.3毫米,各自的有效发光区域的长宽比均可以为4:3,各自的有效像素数均可以为640H*480V;或者,红色Micro LED显示屏、绿色Micro LED显示屏、蓝色Micro LED显示屏各自的有效发光区域的对角线尺寸为5.5毫米~5.6毫米,各自的有效发光区域的长宽比均可以为16:9,各自的有效像素数均可以为1920*1080。
示例性地,红色Micro LED显示屏、绿色Micro LED显示屏、蓝色Micro LED显示屏各自的尺寸均为2.64毫米*2毫米。
可以理解的是,合色棱镜114的外观为正方体或长方体,示例性地,合色棱镜114的棱的长度为5.6毫米~7.4毫米,例如5.6毫米、6毫米、6.5毫米、7毫米、7.4毫米等。
需要说明的是,图1所示的投影光机100的系统总长OAL(OverAll Length)小于20毫米,其结构紧凑,与波导片结合使用时可以作为轻量型AR眼镜的光机显示模块。示例性地,图1所示的投影光机可以实现14.74毫米的系统总长,5.8毫米的最大镜片口径,在实现全彩显示的同时保证光机模块体积较小。
请参阅图11,图11为本申请实施例提供的投影光机的第二种结构示意图。投影光机100’可以包括显示装置110’和镜头120’,显示装置110’用于发出入射光信号,显示装置110’设于镜头120’的一侧。
镜头120’可以包括沿光轴方向(或者说光信号的传输方向)依次排列的第一透镜10’、第二透镜20’、第三透镜30’、第四透镜40’和第五透镜50’,第一透镜10’与显示装置110’相邻设置。可以理解的是,第一透镜10’、第二透镜20’、第三透镜30’、第四透镜40’和第五透镜50’从像源侧(显示装置110’所在一侧)至成像侧(孔径光阑130’所在一侧)依次排列。
其中,第一透镜10’可以接收显示装置110’所发出的入射光信号,并会聚入射光信号以形成第一透射光信号,第二透镜20’可以接收并会聚第一透射光信号以形成第二透射光信号,第三透镜30’可以接收并发散第二透射光信号以形成第三透射光信号,第四透镜40’可以接收并会聚第三透射光信号以形成第四透射光信号,第五透镜50’可以接收并会聚第四透射光信号以形成第五透射光信号。例如,第一透镜10’为正光焦度透镜,对光信号有会聚作用,光信号经过第一透镜10’后可形成第一透射光信号;第二透镜20’可以为胶合透镜且胶合透镜的组合光焦度为正值,对光信号具有会聚作用,第一透射光信号经过第二透镜20’后可形成第二透射光信号;第三透镜30’可以为负光焦度透镜,第三透镜30’对第二透射光信号有发散作用,第二透射光信号经过第三透镜30’后可形成第三透射光信号;第四透镜40’可以为胶合透镜且胶合透镜的组合光焦度为正值,第四透镜40’对第三透射光信号有会聚作用,第五透镜50’可以为正光焦度透镜,对第四透射光信号有会聚作用,第四透射光信号经过第五透镜50’后可形成第五透射光信 号。
第一透镜10’和第三透镜30’相互补偿球差,第二透镜20’、第三透镜30’、第四透镜40’相互补偿场曲,各透镜之间像差分配均衡,在保证成像质量的同时能够很好地降低系统的公差敏感性。
请继续参阅图11,第二透镜20’可以包括相背设置的第一入射面S21’和第一出射面S22’,第一入射面S21’朝向显示装置110’并靠近显示装置110’设置,第一出射面S22’朝向第二透镜20’设置,第一入射面S21’为凸面,第一出射面S22’为凹面,显示装置110’发出的入射光信号从第一入射面S21’射入从第一出射面S22’出射形成第一透射光信号,可以理解的是,第二透镜20’为球面透镜,第一入射面S21’为从成像侧朝向像源侧凸出的表面,第一出射面S22’为从成像侧朝向像源侧凹入的表面。
第四透镜40’可以由两个单片镜片通过胶合而成。比如第四透镜40’可以包括第三子透镜41’和第四子透镜42’,第三子透镜41’中的一个表面和第四子透镜42’中的一个表面相适配,以使得第三子透镜41’中的一个表面和第四子透镜42’中的一个表面可以相互胶合在一起。第三子透镜41’位于第四子透镜42’和第三透镜30’之间,第三子透镜41’为负光焦度透镜,对第三透射光信号具有发散作用。第四子透镜42’位于第三子透镜41’和第五透镜50’之间,第四子透镜42’为正光焦度透镜,对透射过第三子透镜41’的光信号具有会聚作用。需要说明的是,第四透镜40’采用低折射率低色散的正透镜和高折射率高色散的负透镜配合可以很好地补偿色差,进一步提高镜头120’的成像质量。
第三子透镜41’可以包括相背设置的第二入射面S411’和第三胶合面S412’,第二入射面S411’朝向第三透镜30’且第二入射面S411’为凹面,第三胶合面S412’为凹面;第四子透镜42’包括相背设置的第四胶合面S421’和第二出射面S422’,第四胶合面S421’与第三胶合面S412’胶合,第四胶合面S421’为凸面且第四胶合面S421’的形状与第三胶合面S412’的形状相适配,第二出射面S422’朝向第五透镜50’,且第二出射面S422’为凸面;第三透射光信号从第二入射面S411’入射,依次经过第三胶合面S412’和第四胶合面S421’,并从第二出射面S422’出射以形成第四透射光信号。可以理解的是,第三胶合面S412’为从成像侧朝向像源侧凹入的表面,第四胶合面S421’为从成像侧朝向像源侧凸出的表面;第二入射面S411’为从像源侧朝向成像侧凹入的表面,第二出射面S422’为从像源侧朝向成像侧凸出的表面。
第一透镜10’可以包括相背设置的第三入射面S11’和第三出射面S12’,第三入射面S11’朝向显示装置110’并靠近显示装置110’设置,第三出射面S12’朝向第二透镜20’设置,第三入射面S11’为凸面,第三出射面S12’为凸面,显示装置110发出的入射光信号从第三入射面S11’射入从第三出射面S12’出射形成第一透射光信号,可以理解的是,第一透镜10’为球面透镜,第三入射面S11’为从成像侧朝向像源侧凸出的表面,第三出射面S12’为从像源侧朝向成像侧凸出的表面。
第三透镜30’可以包括相背设置的第四入射面S31和第四出射面S32’,第四入射面S31朝向第二透镜20’设置,第四出射面S32’朝向第四透镜40’设置,第四入射面S31’为凹面,第四出射面S32’为凹面,如图11所示,第一透射光信号从第四入射面S31’射入从第四出射面S32’出射形成第二透射光信号。可以理解的是,第三透镜30’为球面透镜,第四入射面S31’为从像源侧朝向成像侧凹入的表面,第四出射面S32’为从成像侧朝向像源侧凹入的表面。
第五透镜50’可以包括相背设置的第五入射面S51’和第五出射面S52’,第五入射面S51’朝向第四透镜40’设置,第五入射面S51’为平面或凸面,第五出射面S52为凸面,第四透射信号从第五入射面S51’射入从第五出射面S52’出射形成第五透射光信号。可以理解的是,第五透镜50’为球面透镜,第五入射面S51’为可以为平面或者从像源侧朝向成像侧凹入的表面,第五出射面S52’为从像源侧朝向成像侧凸出的表面。
示例性地,本申请实施例的镜头120’的对角线方向视场角FOV(Field of View)为28°~32°。
示例性地,本申请实施例的镜头120’中各镜片的参数如下表2所示:
表2
Figure PCTCN2022088459-appb-000002
从表2可以看出,第五透镜50’的厚度为0.95毫米,第五透镜50’与第四透镜40’之间的距离为0.61毫米,第四子透镜42’的厚度为1.8毫米,第三子透镜41’的厚度为1.4毫米,第四透镜40’与第三透镜30’之间的距离为1.2毫米,第三透镜30’的厚度为0.7毫米,第三透镜30’与第二透镜20’之间的距离为0.5毫米,第 二透镜20’的厚度为1.5毫米,第二透镜20’与第一透镜10’之间的距离为0.8毫米,第一透镜10’的厚度为1.5毫米,第一透镜10’与显示装置110’之间的距离为0.2毫米。表2的曲率半径的数值中,曲率半径数值前添加负号时表示镜面从成像侧朝向像源侧弯曲,曲率半径数值前未添加负号时表示镜面从像源侧朝向成像侧弯曲。
表2实施例中,镜头的对角线方向视场角FOV为30°,最大光学口径为7毫米,入瞳直径为5毫米。
为了说明表2实施例镜头120’的效果,请参阅图12至图20:
首先,请参阅图12至图14,图12为图11所示投影光机中镜头红色光路成像的调制传递函数图,图13为图11所示投影光机中镜头绿色光路成像的调制传递函数图,图14为图11所示投影光机中镜头蓝色光路成像的调制传递函数图。可以看出,200/mm时,图12、图13、图14中的OTF模值均在0.3以上,说明本申请实施例的镜头120’成像的清晰度较好,对图像轮廓和细节具有较强的还原能力。
其次,请参阅图15至图17,图15为图11所示投影光机中镜头红色光路成像的场曲图,图16为图11所示投影光机中镜头绿色光路成像的场曲图,图17为图11所示投影光机中镜头蓝色光路成像的场曲图。可以看出,图15、图16、图17中镜头120’成像画面的弯曲度较小,场曲得到了良好的矫正。
第三,请参阅图18至图20,图18为图11所示投影光机中镜头红色光路成像的畸变曲线图,图19为图11所示投影光机中镜头绿色光路成像的畸变曲线图,图20为图11所示投影光机中镜头蓝色光路成像的畸变曲线图。可以看出,图18、图19、图20中镜头120’成像画面的畸变量均在1.2%以内,说明本申请实施例的镜头120’成像画面的变形程度非常低。
本申请实施例的镜头120’采用了“腰-肚”形的光路走势及及第一透镜10’、第二透镜20’、第三透镜30’、第四透镜40’以及第五透镜50’的布局,使显示装置110’所发出的入射光信号经过镜头120’时,镜头120’可以对入射光信号进行调制,以减少像差,提高投影光机100’所投射的虚拟图像的成像质量,并且能够有效降低镜头120’的公差敏感性。镜头120’的镜片采用球面面型,可以为常见的玻璃材料,在保证投影光机100’性能的同时,成本较低且具有良好的可加工性。
请继续参阅图11,投影光机100’还可以包括显示装置110’和孔径光阑130。图11所示投影光机100’中的显示装置110’与图1所示投影光机100中的显示装置110相同,图11所示投影光机100’中的孔径光阑130’与图1所示投影光机100中的孔径光阑130相同,在此不再赘述。
需要说明的是,图11所示的投影光机100’的系统总长OAL(OverAll Length)小于20毫米,其结构紧凑,与波导片结合使用时可以作为轻量型AR眼镜的光机显示模块。示例性地,图1所示的投影光机可以实现18.86毫米的系统总长,7毫米的最大镜片口径,在实现全彩显示的同时保证光机模块体积较小。
本申请实施例还提供一种近眼显示设备。请参阅图21,图21为本申请实施例提供的近眼显示设备的结构示意图。近眼显示设备20可以包括上述投影光机100(也可以是投影光机100’)以及传输元件600,传输元件600设置在镜头120背离显示装置110的一侧,传输元件600用于接收从镜头120透射出的光束,并将光束传输至眼睛中。可以理解的是,镜头120设置在显示装置110与传输元件600之间,镜头120设于显示装置110的出射光的一侧,镜头120可以对显示装置110发出的入射光信号进行调制,传输元件600位于镜头120的出射光的一侧,传输元件600可以将镜头120透射出的光束传输至眼睛中。
示例性地,传输元件600为光波导元件。
示例性地,投影光机100和传输元件600之间的位置关系可以为相互平行,但是并不局限于相互平行的关系,投影光机100和传输元件600之间还可以具有一定夹角,例如15°、30°、45°、60°等。
示例性地,近眼显示设备可以为增强现实(Augmented Reality,AR)显示设备或者虚拟现实(Virtual Reality,VR)显示设备,例如AR眼镜、VR眼镜等。
以上对本申请实施例提供的镜头、投影光机以及近眼显示设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种镜头,其中,所述镜头用于接收显示装置发出的入射光信号并对所述入射光信号进行调制;所述镜头包括沿光轴方向依次排列设置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,所述第一透镜用于会聚所述显示装置所发出的入射光信号以形成第一透射光信号,所述第二透镜用于会聚所述第一透射光信号以形成第二透射光信号,所述第三透镜用于发散所述第二透射光信号以形成第三透射光信号,所述第四透镜用于会聚所述第三透射光信号以形成第四透射光信号,所述第五透镜用于会聚所述第四透射光信号以形成第五透射光信号。
  2. 根据权利要求1所述的镜头,其中,所述第二透镜包括相互胶合的第一子透镜和第二子透镜,所述第一子透镜位于所述第二子透镜和所述第一透镜之间且所述第一子透镜为正光焦度透镜,所述第二子透镜位于所述第三透镜和所述第一子透镜之间且所述第二子透镜为负光焦度透镜。
  3. 根据权利要求2所述的镜头,其中,所述第一子透镜包括相背设置的第一入射面和第一胶合面,所述第一入射面朝向所述第一透镜且所述第一入射面为凸面,所述第一胶合面为凸面;
    所述第二子透镜包括相背设置的第二胶合面和第一出射面,所述第二胶合面与所述第一胶合面胶合,所述第二胶合面为凹面且所述第二胶合面的形状与所述第一胶合面的形状相适配,所述第一出射面朝向所述第三透镜,且所述第一出射面为凹面;
    所述第一透射光信号从所述第一入射面入射,依次经过所述第一胶合面和第二胶合面,并从所述第一出射面出射以形成所述第二透射光信号。
  4. 根据权利要求1所述的镜头,其中,所述第二透镜包括相背设置的第一入射面和第一出射面,所述第一入射面朝向所述第一透镜,所述第一出射面朝向所述第三透镜,所述第一入射面为凸面,所述第一出射面为凹面,所述第一透射光信号从所述第一入射面入射从所述第一出射面出射以形成所述第二透射光信号。
  5. 根据权利要求1所述的镜头,其中,所述第四透镜包括相互胶合的第三子透镜和第四子透镜,所述第三子透镜位于所述第四子透镜和所述第三透镜之间且所述第三子透镜为负光焦度透镜,所述第四子透镜位于所述第五透镜和所述第三子透镜之间且所述第四子透镜为正光焦度透镜。
  6. 根据权利要求5所述的镜头,其中,所述第三子透镜包括相背设置的第二入射面和第三胶合面,所述第二入射面朝向所述第三透镜且所述第二入射面为凹面,所述第三胶合面为凹面;
    所述第四子透镜包括相背设置的第四胶合面和第二出射面,所述第四胶合面与所述第三胶合面胶合,所述第四胶合面为凸面且所述第四胶合面的形状与所述第三胶合面的形状相适配,所述第二出射面朝向所述第五透镜,且所述第二出射面为凸面;
    所述第三透射光信号从所述第二入射面入射,依次经过所述第三胶合面和第四胶合面,并从所述第二出射面出射以形成所述第四透射光信号。
  7. 根据权利要求1所述的镜头,其中,所述第一透镜包括相背设置的第三入射面和第三出射面,所述第三入射面朝向所述显示装置设置,所述第三入射面为凸面,所述第三出射面为凸面,所述第一透射光信号从所述第三入射面射入从所述第三出射面出射形成所述第二透射光信号。
  8. 根据权利要求1所述的镜头,其中,所述第三透镜包括相背设置的第四入射面和第四出射面,所述第四入射面朝向所述第二透镜设置,所述第四出射面朝向所述第四透镜设置,所述第四入射面为凹面,所述第四出射面为凹面,所述第三透射光信号从所述第四入射面射入从所述第四出射面出射形成所述第四透射光信号。
  9. 根据权利要求1所述的镜头,其中,所述第五透镜包括相背设置的第五入射面和第五出射面,所述第五入射面朝向所述第四透镜设置,所述第五入射面为平面或凹面,所述第五出射面为凸面,所述第四透射光信号从所述第五入射面射入从所述第五出射面出射形成所述第五透射光信号。
  10. 一种投影光机,其中,包括显示装置和镜头,所述镜头为如权利要求1所述的镜头,所述显示装置用于发出入射光信号,所述显示装置设于所述镜头的一侧,且所述显示装置与所述第一透镜相邻以使得所述入射光信号可射入所述第一透镜。
  11. 根据权利要求10所述的投影光机,其中,所述投影光机还包括孔径光阑,所述孔径光阑沿所述光轴设置,所述第五透镜设置于所述孔径光阑和所述第四透镜之间,所述孔径光阑用于对所述第五透射光信号进行调制以使得透过所述孔径光阑的透射光信号以预设口径平行出射。
  12. 根据权利要求11所述的投影光机,其中,所述孔径光阑的透光区域的孔径为4毫米~5毫米;和/或
    所述孔径光阑与所述第五透镜的距离大于等于0.5毫米,且小于1毫米。
  13. 根据权利要求10所述的投影光机,其中,所述显示装置包括第一发光元件、第二发光元件、第三发光元件以及合色棱镜;第一发光元件发出的光线的波长范围、第二发光元件发出的光线的波长范围、第三发光元件发出的光线的波长范围互不重叠;
    所述合色棱镜由四个相同的等腰直角棱镜粘合而成,所述合色棱镜具有第一结合面、第二结合面、第三结合面以及第四结合面,所述第一结合面与所述第二结合面位于同一个对角面,所述第三结合面与所述第四结合面位于同一个对角面,所述第一结合面与所述第二结合面上均设有第一镀膜层,所述第三结合面与所述第四结合面上均设有第二镀膜层;
    所述镜头、所述第一发光元件、所述第二发光元件以及所述第三发光元件均设置于所述合色棱镜的 外周,且所述第二发光元件与所述镜头相对设置,所述第一发光元件与所述第三发光元件相对设置;
    所述第一镀膜层能够反射所述第一发光元件发出的光线,并且透射所述第二发光元件发出的光线以及所述第三发光元件发出的光线;
    所述第二镀膜层能够反射所述第三发光元件发出的光线,并且透射所述第一发光元件发出的光线以及所述第二发光元件发出的光线。
  14. 根据权利要求10所述的投影光机,其中,所述镜头的对角线方向视场角为28°~32°;和/或
    所述投影光机的系统总长小于20毫米。
  15. 根据权利要求10所述的投影光机,其中,所述第二透镜包括相互胶合的第一子透镜和第二子透镜,所述第一子透镜位于所述第二子透镜和所述第一透镜之间且所述第一子透镜为正光焦度透镜,所述第二子透镜位于所述第三透镜和所述第一子透镜之间且所述第二子透镜为负光焦度透镜。
  16. 根据权利要求10所述的投影光机,其中,所述第一子透镜包括相背设置的第一入射面和第一胶合面,所述第一入射面朝向所述第一透镜且所述第一入射面为凸面,所述第一胶合面为凸面;
    所述第二子透镜包括相背设置的第二胶合面和第一出射面,所述第二胶合面与所述第一胶合面胶合,所述第二胶合面为凹面且所述第二胶合面的形状与所述第一胶合面的形状相适配,所述第一出射面朝向所述第三透镜,且所述第一出射面为凹面;
    所述第一透射光信号从所述第一入射面入射,依次经过所述第一胶合面和第二胶合面,并从所述第一出射面出射以形成所述第二透射光信号。
  17. 根据权利要求10所述的投影光机,其中,所述第二透镜包括相背设置的第一入射面和第一出射面,所述第一入射面朝向所述第一透镜,所述第一出射面朝向所述第三透镜,所述第一入射面为凸面,所述第一出射面为凹面,所述第一透射光信号从所述第一入射面入射从所述第一出射面出射以形成所述第二透射光信号。
  18. 根据权利要求10所述的投影光机,其中,所述第四透镜包括相互胶合的第三子透镜和第四子透镜,所述第三子透镜位于所述第四子透镜和所述第三透镜之间且所述第三子透镜为负光焦度透镜,所述第四子透镜位于所述第五透镜和所述第三子透镜之间且所述第四子透镜为正光焦度透镜。
  19. 根据权利要求10所述的投影光机,其中,所述第三子透镜包括相背设置的第二入射面和第三胶合面,所述第二入射面朝向所述第三透镜且所述第二入射面为凹面,所述第三胶合面为凹面;
    所述第四子透镜包括相背设置的第四胶合面和第二出射面,所述第四胶合面与所述第三胶合面胶合,所述第四胶合面为凸面且所述第四胶合面的形状与所述第三胶合面的形状相适配,所述第二出射面朝向所述第五透镜,且所述第二出射面为凸面;
    所述第三透射光信号从所述第二入射面入射,依次经过所述第三胶合面和第四胶合面,并从所述第二出射面出射以形成所述第四透射光信号。
  20. 一种近眼显示设备,其中,包括投影光机与传输元件,所述投影光机为如权利要求10所述的投影光机,所述传输元件设于所述镜头背离所述显示装置的一侧,所述传输元件用于接收从所述镜头透射出的光束,并将所述光束传输至眼睛中。
PCT/CN2022/088459 2021-07-16 2022-04-22 镜头、投影光机以及近眼显示设备 WO2023284353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110808198.6 2021-07-16
CN202110808198.6A CN113568141B (zh) 2021-07-16 2021-07-16 镜头、投影光机以及近眼显示设备

Publications (1)

Publication Number Publication Date
WO2023284353A1 true WO2023284353A1 (zh) 2023-01-19

Family

ID=78165197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088459 WO2023284353A1 (zh) 2021-07-16 2022-04-22 镜头、投影光机以及近眼显示设备

Country Status (2)

Country Link
CN (1) CN113568141B (zh)
WO (1) WO2023284353A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568141B (zh) * 2021-07-16 2022-10-21 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609208A (zh) * 2009-07-20 2009-12-23 北京理工大学 目镜
WO2017022670A1 (ja) * 2015-07-31 2017-02-09 日東光学株式会社 接眼光学系および電子ビューファインダー
CN110914741A (zh) * 2017-03-09 2020-03-24 亚利桑那大学评议会 自由形式棱镜和具有增加视场的头戴式显示器
CN111158147A (zh) * 2020-01-15 2020-05-15 贾怀昌 一种高分辨率大视场角及大出瞳直径的ar光学系统
CN111258053A (zh) * 2020-03-16 2020-06-09 深圳珑璟光电技术有限公司 一种目镜镜头及近眼显示系统
CN211698430U (zh) * 2019-07-29 2020-10-16 上海鲲游科技有限公司 基于Micro LED的AR显示装置
CN112162382A (zh) * 2020-10-14 2021-01-01 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统
CN113568141A (zh) * 2021-07-16 2021-10-29 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187311B2 (ja) * 1998-07-09 2008-11-26 マミヤ・デジタル・イメージング株式会社 中望遠レンズ
JP2001021812A (ja) * 1999-07-08 2001-01-26 Olympus Optical Co Ltd 顕微鏡対物レンズ
CN204575946U (zh) * 2015-05-13 2015-08-19 马彪 一种镜头的光路系统
CN212060718U (zh) * 2020-06-03 2020-12-01 厦门力鼎光电股份有限公司 一种大通光高分辨率的光学成像镜头
CN212623313U (zh) * 2020-10-14 2021-02-26 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609208A (zh) * 2009-07-20 2009-12-23 北京理工大学 目镜
WO2017022670A1 (ja) * 2015-07-31 2017-02-09 日東光学株式会社 接眼光学系および電子ビューファインダー
CN110914741A (zh) * 2017-03-09 2020-03-24 亚利桑那大学评议会 自由形式棱镜和具有增加视场的头戴式显示器
CN211698430U (zh) * 2019-07-29 2020-10-16 上海鲲游科技有限公司 基于Micro LED的AR显示装置
CN111158147A (zh) * 2020-01-15 2020-05-15 贾怀昌 一种高分辨率大视场角及大出瞳直径的ar光学系统
CN111258053A (zh) * 2020-03-16 2020-06-09 深圳珑璟光电技术有限公司 一种目镜镜头及近眼显示系统
CN112162382A (zh) * 2020-10-14 2021-01-01 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统
CN113568141A (zh) * 2021-07-16 2021-10-29 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示设备

Also Published As

Publication number Publication date
CN113568141B (zh) 2022-10-21
CN113568141A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
US10690912B2 (en) Prismatic AR display device
WO2022247370A1 (zh) 镜头、投影光机以及近眼显示系统
CN112180552B (zh) 镜头、投影光机以及近眼显示系统
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
WO2023070811A1 (zh) 光学系统及投影装置
WO2019104915A1 (zh) 一种投影系统及tir棱镜组
WO2020119421A1 (zh) 投影成像系统及激光投影设备
CN212623313U (zh) 镜头、投影光机以及近眼显示系统
JP2019113842A (ja) 投影装置
CN212781467U (zh) 镜头、投影光机以及近眼显示系统
WO2022267383A1 (zh) 投影镜头
WO2019024205A1 (zh) 全景光学系统和电子设备
CN114967160B (zh) 投影显示组件和增强现实显示设备
WO2022078025A1 (zh) 镜头、投影光机以及近眼显示系统
WO2023284353A1 (zh) 镜头、投影光机以及近眼显示设备
CN112162382A (zh) 镜头、投影光机以及近眼显示系统
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
CN112162383A (zh) 镜头、投影光机以及近眼显示系统
CN207424510U (zh) 一种rtir光学元件组及其投影系统
WO2022078023A1 (zh) 镜头、投影光机以及近眼显示系统
CN115047591B (zh) 投影镜头以及投影装置
CN114200647B (zh) 镜头、投影光机及增强现实设备
CN114690377B (zh) 一种光学投影系统以及电子设备
CN110187470A (zh) 投影镜头、投影光学系统及投影设备
WO2021243777A1 (zh) 光学系统及增强现实设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE