WO2023070811A1 - 光学系统及投影装置 - Google Patents

光学系统及投影装置 Download PDF

Info

Publication number
WO2023070811A1
WO2023070811A1 PCT/CN2021/133890 CN2021133890W WO2023070811A1 WO 2023070811 A1 WO2023070811 A1 WO 2023070811A1 CN 2021133890 W CN2021133890 W CN 2021133890W WO 2023070811 A1 WO2023070811 A1 WO 2023070811A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
focal length
effective focal
light
Prior art date
Application number
PCT/CN2021/133890
Other languages
English (en)
French (fr)
Inventor
程发超
宁静
王中亮
郭恒琳
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023070811A1 publication Critical patent/WO2023070811A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present application relates to the technical field of projection imaging, in particular to an optical system and a projection device.
  • DLP Digital Light Processing
  • DMD Digital Micromirror Device
  • the angle of the micro-mirror element in the DMD is divided into two states of "on” and "off". In the "on” state, the reflected light is imaged on the projection screen through the optical system, and in the "off” state, the light is absorbed by the absorber.
  • the "on” and “off” states change rapidly alternately to achieve various gray levels of the image.
  • the projector uses DLP technology to make the projected picture more delicate, so that people can feel more realistic intuitively.
  • the lens group in the projection device usually needs to be used in combination with a large number of multiple lenses, resulting in an increase in the volume of the projection device.
  • the main purpose of the application is to propose an optical system, aiming to keep the volume size of the optical system small.
  • the present application proposes an optical system, which sequentially includes an image source, a sixth lens, a fifth lens, a fourth lens, a third lens, a second lens and a first lens along the light transmission direction;
  • the first lens, the second lens and the third lens form a first lens group, and the fourth lens, fifth lens and sixth lens form a second lens group;
  • the first lens group has negative optical power
  • the second lens group has positive optical power
  • the first lens, the second lens and the fifth lens all have negative refractive power
  • the third lens, the fourth lens and the sixth lens all have positive refractive power
  • the optical system satisfies the following relationship: 0.5 ⁇ TL/D ⁇ 5.75;
  • the TL is the total length of the optical system
  • the D is the largest lens aperture in the optical system.
  • opposite surfaces of the fourth lens and the fifth lens are cemented together.
  • the optical system satisfies the following relationship: 5.5mm ⁇ f00 ⁇ 6.8mm, -65.6mm ⁇ f11 ⁇ -57.6mm, 10mm ⁇ f22 ⁇ 15.5mm;
  • the f00 is the effective focal length of the optical system
  • the f11 is the effective focal length of the first lens group
  • the f22 is the effective focal length of the second lens group.
  • the optical system satisfies the following relationship: -10.2mm ⁇ f1 ⁇ -18.5mm, -10.6mm ⁇ f2 ⁇ -20.6mm, 13mm ⁇ f3 ⁇ 21.1mm, 11.5mm ⁇ f4 ⁇ 17.7mm, -12.2mm ⁇ f5 ⁇ -20.7mm, 9.6mm ⁇ f6 ⁇ 16.6mm;
  • the f1 is the effective focal length of the first lens
  • the f2 is the effective focal length of the second lens
  • the f3 is the effective focal length of the third lens
  • the f4 is the effective focal length of the fourth lens
  • the effective focal length of the f5 is the effective focal length of the fifth lens
  • the f6 is the effective focal length of the sixth lens.
  • the first lens and the sixth lens are all aspheric lenses
  • the second lens, the third lens, the fourth lens and the fifth lens are all spherical lenses.
  • the first lens is made of optical plastic material
  • the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are all made of optical glass.
  • the optical system further includes an aperture disposed between the third lens and the fourth lens.
  • the present application further proposes a projection device, which includes a casing and the optical system according to any one of the above embodiments, and the optical system is arranged in the casing.
  • the optical system sequentially includes an image source, a sixth lens, a fifth lens, a fourth lens, a third lens, a second lens and a first lens along the direction of light transmission, and the first lens group has a negative optical focus Degree, the second lens group has positive refractive power, for the entire optical system, the main function of the first lens group is to eliminate the distortion and aberration in the imaging process, and converge the beam (if according to the actual projection effect, it is to diverge the beam ), and the main function of the second lens group is to eliminate chromatic aberration and control telecentricity, so that the optical system meets the imaging requirements while having a small number of lenses and a compact structure, thereby ensuring that the optical system is small in size and easy to carry and use.
  • Fig. 1 is the structural representation of the optical system of the present application
  • Fig. 2 is a modulation transfer function diagram of the first embodiment of the optical system of Fig. 1;
  • Fig. 3 is a field curvature diagram and a distortion diagram of the first embodiment of the optical system of Fig. 1;
  • FIG. 4 is a vertical axis chromatic aberration diagram of the first embodiment of the optical system in FIG. 1 .
  • the present application proposes an optical system 100 .
  • the optical system 100 sequentially includes an image source 70, a sixth lens 60, a fifth lens 50, a fourth lens 40, a third lens 30, and a second lens along the direction of light transmission. 20 and the first lens 10;
  • the first lens 10, the second lens 20 and the third lens 30 form a first lens group, and the fourth lens 40, the fifth lens 50 and the sixth lens 60 form a second lens group;
  • the first lens group has negative optical power and the second lens group has positive optical power.
  • the optical system 100 of the present application is applied to a projection device, including the reduction side and the enlargement side along the light transmission direction, the image source 70, the sixth lens 60, the fifth lens 50, and the fourth lens 40 in the optical system 100 , the third lens 30 , the second lens 20 and the first lens 10 are sequentially arranged between the reduction side and the enlargement side along the same optical axis.
  • the reduction side is the side where the image source 70 (such as a DMD chip) generating projection light is located during the projection process (as shown at B in the figure), i.e.
  • the image side; the enlargement side is the projection process for displaying The side where the projection surface (such as a projection screen) of the projected image is located (as shown at A in the figure), that is, the object side.
  • the transmission direction of the projection light is from the reduction side to the enlargement side.
  • the projected light is emitted from the image source 70, is emitted from the reduction side to the enlargement side, and passes through the sixth lens 60, the fifth lens 50, the fourth lens 40, the third lens 30, the second lens 20 and the first lens 10 in sequence. , and finally output to the projection surface on the side of the first lens 10 facing away from the second lens 20 , so as to display the projected image.
  • the image source 70 may be a digital micromirror device (Digital Micromirror Device, DMD) chip.
  • DMD Digital Micromirror Device
  • DMD is composed of many digital micro-mirrors arranged in a matrix. When working, each micro-mirror can be deflected and locked in two directions, so that the light is projected in a predetermined direction, and at a frequency of tens of thousands of hertz By swinging, the light beam from the illumination source is reflected by the flip of the micro-mirror and enters the optical system 100 to be imaged on the screen.
  • DMD has the advantages of high resolution and no need for digital-to-analog conversion of signals.
  • the image source 70 can also be selected from a liquid crystal on silicon (Liquid Crystal On Silicon, LCOS) chip or other devices that can be used for emitting
  • LCOS liquid crystal on Silicon
  • the main function of the first lens group is to eliminate the distortion and aberration in the imaging process, and to converge the beam (if according to the actual projection effect, it is to diverge the beam); and the second lens group
  • the main function is to eliminate chromatic aberration and control telecentricity, so that the optical system meets the imaging requirements while having a small number of lenses and a compact structure, thereby ensuring that the optical system is small in size and easy to carry and use.
  • first lens 10 , the second lens 20 and the fifth lens 50 all have negative refractive power
  • third lens 30 , the fourth lens 40 and the sixth lens 60 all have positive refractive power
  • the focal power is the difference between the convergence degree of the image beam and the object beam convergence, which represents the ability of the optical system 100 to deflect light.
  • a negative power lens is a kind of lens with a thin center and a thick periphery, also known as a concave lens, which has the function of diverging light;
  • a positive power lens is a kind of lens with a thick center and a thin periphery, also known as a convex lens, which has the function of converging light .
  • the first lens 10 with positive refractive power, the second lens 20 with negative refractive power and the third lens 30 with positive refractive power can eliminate distortion and aberration in the imaging process
  • the fourth lens with positive refractive power The doublet lens formed by the combination of the lens 40 and the fifth lens 50 with negative refractive power and the sixth lens 60 with positive refractive power can eliminate chromatic aberration and control the telecentricity, thereby ensuring the imaging quality.
  • optical system 100 satisfies the following relationship: 0.5 ⁇ TL/D ⁇ 5.75;
  • TL is the total length of the optical system 100
  • D is the largest lens aperture in the optical system 100 .
  • the optical system 100 adopts six lenses, the number of lenses is small.
  • the total length TL of the optical system 100 and the maximum lens aperture D in the optical system 100 to satisfy: 0.5 ⁇ TL/D ⁇ 5.75, the total length of the optical system 100 can be controlled and the radius make the structure of the optical system 100 compact, thereby ensuring a small size of the optical system 100 to a certain extent, making the optical system 100 easy to carry and use.
  • the total length of the optical system 100 refers to the distance between the apex of the light emitting surface of the first lens 10 and the back of the image source 70 (the surface facing away from the sixth lens 60 ) along the optical axis.
  • the largest lens aperture in the optical system 100 is the aperture of the first lens 10.
  • the projection lens is that the lens aperture at both ends is larger than the lens aperture in the middle part.
  • This structure is convenient for lens assembly and structural design.
  • the total length TL of the optical system 100 is between 45 mm and 60 mm.
  • the optical system 100 sequentially includes an image source 70, a sixth lens 60 with positive refractive power, a fifth lens 50 with negative refractive power, a fourth lens 40 with positive refractive power, and a positive optical power along the light transmission direction.
  • the power of the third lens 30, the negative power of the second lens 20 and the negative power of the first lens 10, and the total length TL of the optical system 100 and the maximum lens diameter D in the optical system 100 satisfy: 0.5 ⁇ TL/D ⁇ 5.75 makes the optical system 100 meet the imaging requirements while having a small number of lenses and a compact structure, thereby ensuring that the optical system 100 is small in size and easy to carry and use.
  • the light exit surface of the first lens 10 is convex, and the light incident surface is concave;
  • the light emitting surface of the second lens 20 is concave, and the light incident surface is concave;
  • the light exit surface of the third lens 30 is a convex surface, and the light incident surface is a convex surface;
  • the light emitting surface of the fourth lens 40 is concave, and the light incident surface is convex;
  • the light emitting surface of the fifth lens 50 is concave, and the light incident surface is convex;
  • the light emitting surface of the sixth lens 60 is convex, and the light incident surface is convex.
  • opposite surfaces of the fourth lens 40 and the fifth lens 50 are cemented together.
  • the result obtained by non-paraxial ray tracing is inconsistent with the result obtained by paraxial ray tracing, and the deviation from the ideal state of Gaussian optics (first-order approximation theory or paraxial ray) is called aberration .
  • Aberrations are mainly divided into distortion, field curvature, chromatic aberration, spherical aberration, coma, astigmatism, etc. Aberrations will affect the imaging quality of the projection lens. Therefore, when designing the projection lens, it is necessary to eliminate as much as possible the aberrations generated during the imaging of the optical system 100 .
  • the first lens 10 is a meniscus lens with negative power
  • the second lens 20 is a biconcave lens with negative power
  • the third lens 30 is a biconvex lens with positive power.
  • the four lens 40 has a concave-convex lens with a positive focal length
  • the fifth lens 50 has a negative refractive power and is a meniscus lens
  • the fourth lens 40 and the fifth lens 50 are doublet lenses combined together
  • the sixth lens 60 It is a biconvex lens with positive power.
  • the doublet lens composed of the fourth lens 40 and the fifth lens 50 can effectively reduce the chromatic aberration produced in the optical imaging process; the meniscus-shaped first lens 10 can realize a large field of view, which mainly plays a role in optical design.
  • the function of gathering light (when designing, the projection screen is set as the object plane, and the light is incident from the object plane side of the first lens 10, and if the actual projection effect is to diverge the light beam), the first lens 10 also has a very important The role of is to eliminate distortion, so as to ensure the image quality.
  • the optical system 100 satisfies the following relationships: -10.2mm ⁇ f1 ⁇ -18.5mm, -10.6mm ⁇ f2 ⁇ -20.6mm, 13mm ⁇ f3 ⁇ 21.1mm, 11.5mm ⁇ f4 ⁇ 17.7mm, -12.2mm ⁇ f5 ⁇ -20.7mm, 9.6mm ⁇ f6 ⁇ 16.6mm;
  • f1 is the effective focal length of the first lens
  • f2 is the effective focal length of the second lens
  • f3 is the effective focal length of the third lens
  • f4 is the effective focal length of the fourth lens 40
  • f5 is the effective focal length of the fifth lens 50
  • f6 is the effective focal length of the sixth lens 60 .
  • the optical system 100 satisfies the following relationship: 5.5mm ⁇ f00 ⁇ 6.8mm, -65.6mm ⁇ f11 ⁇ -57.6mm, 10mm ⁇ f22 ⁇ 15.5mm;
  • f00 is the effective focal length of the optical system 100
  • f11 is the effective focal length of the first lens group
  • f22 is the effective focal length of the second lens group.
  • the first lens 10 and the sixth lens 60 are all aspheric lenses, and the second lens 20 , the third lens 30 , the fourth lens 40 and the fifth lens 50 are all spherical lenses.
  • the light-emitting surface (the surface facing the magnification side) and the light-incident surface (the surface facing the reduction side) of the first lens 10 are both aspheric structures
  • the light-emitting surface (the surface facing the magnification side) and the light-incident surface of the sixth lens 60 are both aspheric structures.
  • the light surface (the surface facing the reduction side) is an aspherical structure
  • the light exit surface (the surface facing the enlargement side) and the light incident surface (the surface facing the reduction side) of the second lens 20 are both spherical structures
  • the third lens 30 Both the light-emitting surface (the surface facing the enlargement side) and the light-incident surface (the surface facing the reduction side) are spherical structures
  • the light-emitting surface (the surface facing the magnifying side) and the light-incident surface (the surface facing the reducing side) of the fifth lens 50 are both spherical structures.
  • the peripheral aberration of the lens can be effectively reduced, thereby improving the performance of the optical system 100 and improving the imaging quality.
  • the aspherical structure the effect of correcting the aberration of multiple spherical lenses can be effectively realized, and it is also beneficial to realize the miniaturization of the optical system 100 .
  • the use of the spherical lens can effectively reduce the processing difficulty and production cost of the lens, thereby reducing the cost of the optical system 100 .
  • the first lens 10 is made of optical plastic
  • the second lens 20 , the third lens 30 , the fourth lens 40 , the fifth lens 50 and the sixth lens 60 are all made of optical glass.
  • the image source 70 When the image source 70 is powered on, it emits projected light. When the image source 70 emits projected light, the image source 70 itself generates heat.
  • the lens made of glass has higher high temperature resistance characteristics and is also That is, at the same temperature, the heat distortion rate of glass material is much lower than that of plastic material, and has better stability, while plastic lens is easily deformed under the influence of high temperature, and even volatilizes toxic gases.
  • the second lens 20 , the third lens 30 , the fourth lens 40 , the fifth lens 50 and the sixth lens 60 of the image source 70 are made of glass, so as to minimize the impact of high temperature on the imaging of the optical system 100 .
  • the first lens 10 is the farthest from the image source 70 and is least affected by temperature. At the same time, considering that the cost of plastic material is lower than that of glass material, the first lens 10 is made of plastic material, which is beneficial to reduce costs.
  • the optical system 100 further includes an aperture 80 disposed between the third lens 30 and the fourth lens 40 .
  • the diaphragm 80 is specifically an aperture diaphragm 80, and the diaphragm 80 is used to limit the diameter of the projected light passing through, adjust the luminous flux exiting the optical system 100, and reduce the stray light interference generated by other lenses through reflection, so that The imaging of projected light is clearer.
  • the aperture of the diaphragm 80 is a fixed value.
  • the diaphragm 80 can also be set in a manner that can adjust the aperture size.
  • the optical system 100 further includes a turning prism 72 , and the turning prism 72 is arranged between the sixth lens 60 and the image source 70 .
  • image source 70 sometimes needs to be passively illuminated. Therefore, it is necessary to provide additional illumination to the image source 70 by means of an external light source and a turning prism 72 .
  • the prism can be a right-angle prism, the slope of the right-angle prism faces the image source 70, and one of the right-angle faces of the right-angle prism faces the sixth lens 60.
  • the light source corresponds to the slope of the right-angle prism, and the slope of the right-angle prism is provided with a semipermeable membrane.
  • the external light source When in use, the external light source emits illuminating light, shoots to the slope of the right-angle prism, and shoots to the image source 70 after being reflected by the semi-reflective and semi-transparent film, thereby providing light for the image source 70.
  • the film After the film is transmitted, it emits to the sixth lens 60, and passes through the sixth lens 60, the fifth lens 50, the fourth lens 40, the third lens 30, the second lens 20 and the first lens 10 in sequence, thereby displaying on the projection screen. projected image.
  • the optical system 100 further includes a vibrating mirror 90 disposed between the sixth lens 60 and the image source 70 .
  • the vibration mirror 90 is a transparent glass plate, and the vibration of the vibration mirror 90 is usually around the horizontal axis or the vertical axis of the middle position (taking the optical axis as the Z axis, then the horizontal axis is the X axis, and the vertical axis is the Y axis) turn.
  • the vibrating mirror 90 is at rest, the projected light enters the vibrating mirror 90 along the optical axis perpendicular to the incident surface of the vibrating mirror 90 , and passes through the vibrating mirror 90 .
  • the incident angle formed by the projected light and the incident surface of the vibrating mirror 90 is less than 90°, so that the projected light is refracted after passing through the vibrating mirror 90, and the imaging position of the projected light also changes. That is, the projected light passes through the rotating galvanometer 90, and another position around the original imaging position is also imaged and displayed. As a result, another pixel is formed around the original pixel. Due to the high-frequency vibration of the vibrating mirror 90, the vibration period is at the level of microseconds, and the interval between the formation of two pixel points is very short.
  • the human eye has the characteristic of persistence of vision, and the number of picture frames that the human eye can recognize is 24 frames. To put it simply, after the next pixel is formed, the human eye captures the picture and stays on the previous pixel, so the two pixels are combined to form a larger resolution picture.
  • the light emitted by the image source 70 is deflected along the vibration direction, so that the resolution of the image source 70 is fixed, and the light emitted by the image source 70 can be projected to the different positions, so as to increase the resolution of the projection device corresponding to the optical system 100 and improve user experience.
  • the optical system 100 further includes a transparent protective layer 71 , and the transparent protective layer 71 covers a side of the image source 70 facing the sixth lens 60 .
  • the transparent protective layer 71 is specifically a cover glass, the thickness of the cover glass is 1.1 mm, and the cover glass is set on the light-emitting surface of the image source 70, which can effectively Protect the image source 70, prevent external dust from entering the image source 70, and also prevent other lenses in the optical system 100 from bumping the image source 70 due to vibration, and protect the image source 70 from the impact of the external environment or other elements.
  • the present application also proposes a projection device, which includes an optical system 100 and a casing.
  • a projection device which includes an optical system 100 and a casing.
  • the optical system 100 is disposed in the casing.
  • the first embodiment of the optical system 100 of the present application is proposed. Please refer to Table 1 to illustrate the surface type, radius of curvature and thickness of each lens, and the glass material (refractive index and A) of each lens. Shell number), semi-diameter. Wherein, the thickness at the space between two adjacent lenses is represented as the distance between two adjacent lenses.
  • the light exit surface (the surface facing the magnification side) S1 and the light incident surface (the surface facing the reduction side) S2 of the first lens 10 are all aspheric surfaces, and the aspheric surface formula is as follows:
  • the parameters of the optical system 100 are as follows:
  • the effective focal length f1 of the first lens 10 -16.964mm
  • the effective focal length f2 of the second lens 20 -16.654mm
  • the effective focal length f3 of the third lens 30 16.128mm
  • the effective focal length f5 of the fifth lens 50 -17.269mm
  • the effective focal length of the first lens group f11 -61.64mm
  • the effective focal length f22 of the second lens group 12.205mm
  • the total length TL of the optical system 100 is 52.5 mm.
  • FIG. 2 is a modulation transfer function diagram of each field of view chip surface of the optical system 100 of the first embodiment, that is, an MTF (ModulationTransferFunction) diagram, and the MTF diagram is used to refer to the modulation degree and each in the image.
  • MTF ModulationTransferFunction
  • the relationship between millimeter line logarithms is used to evaluate the ability to restore the details of the scene.
  • the projection angle is the frequency coordinate between samples of the field of view, and the ordinate is the MTF value of the transfer function.
  • FIG. 3 is a field curvature and distortion diagram of the optical system 100 of the first embodiment, wherein the field curvature refers to the curvature of the image field, and is mainly used to indicate the intersection point of the entire light beam in the optical component The degree of misalignment with the ideal image point. Distortion refers to the aberration of different parts of the object with different magnifications when the object is imaged by the optical component. The distortion will cause the similarity of the object image to deteriorate, but it will not affect the clarity of the image.
  • FIG. 4 is a vertical-axis chromatic aberration diagram of the optical system 100 of the first embodiment, wherein the vertical-axis chromatic aberration refers to the chromatic aberration of magnification, and mainly refers to a complex color on the image side
  • the chief ray due to the dispersion of the refraction system, becomes multiple rays when it emerges from the object space, and the difference between the focus positions of the hydrogen blue light and the hydrogen red light on the image plane.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),沿光线传输方向依次包括图像源(70)、第六透镜(60)、第五透镜(50)、第四透镜(40)、第三透镜(30)、第二透镜(20)以及第一透镜(10);第一透镜(10)、第二透镜(20)和第三透镜(30)组成第一透镜组,第四透镜(40)、第五透镜(50)和第六透镜(60)组成第二透镜组;第一透镜组具有负光焦度,第二透镜组具有正光焦度。光学系统(100)的体积尺寸小。

Description

光学系统及投影装置
本申请要求于2021年10月29日提交中国专利局、申请号为202111287172.8、申请名称为“投影光机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影成像技术领域,特别涉及一种光学系统及投影装置。
背景技术
随着技术发展以及人们生活水平的提高,投影装置也相继越发成熟,家庭影院式投影仪成为人们追求高质量生活媒介的其中一种。其中,DLP(Digital Light Processing)技术通过控制DMD(Digital Micromirror Device)中的多个微镜元反转倾斜,达到不同角度反射光线的效果。DMD中微镜元的角度分为“on”和“off”两种状态,“on”态时被反射出去的光线通过光学系统成像在投影屏幕上,“off”态光则被吸收器吸收。“on”与“off”态快速交替变化从而实现图像多种灰度。投影仪利用DLP技术可使投影画面更加细腻,从而使人直观感受更加逼真。
目前,为了提高投影装置的成像质量,投影装置中的镜组通常需要由数目较多的多个透镜组合使用,导致投影装置的体积加大。
申请内容
申请的主要目的是提出一种光学系统,旨在保证光学系统的体积尺寸小。
为实现上述目的,本申请提出一种光学系统,所述光学系统沿光线传输方向依次包括图像源、第六透镜、第五透镜、第四透镜、第三透镜、第二透镜以及第一透镜;所述第一透镜、第二透镜和第三透镜组成第一透镜组,所述第四透镜、第五透镜和第六透镜组成第二透镜组;
所述第一透镜组具有负光焦度,所述第二透镜组具有正光焦度。
可选地,所述第一透镜、所述第二透镜和所述第五透镜均具有负光焦度,所述第三透镜、所述第四透镜和所述第六透镜均具有正光焦度。
可选地,所述光学系统满足以下关系:0.5<TL/D<5.75;
其中,所述TL为所述光学系统的总长,所述D为所述光学系统中的最大透镜口径。
可选地,所述第四透镜和所述第五透镜相对的表面相互胶合。
可选地,所述光学系统满足以下关系:5.5mm<f00<6.8mm,-65.6mm<f11<-57.6mm,10mm<f22<15.5mm;
其中,所述f00为所述光学系统的有效焦距,所述f11为所述第一透镜组的有效焦距,所述f22为所述第二透镜组的有效焦距。
可选地,所述光学系统满足以下关系:-10.2mm<f1<-18.5mm,-10.6mm<f2<-20.6mm,13mm<f3<21.1mm,11.5mm<f4<17.7mm,-12.2mm<f5<-20.7mm,9.6mm<f6<16.6mm;
其中,所述f1为所述第一透镜的有效焦距,所述f2为所述第二透镜的有效焦距,所述f3为所述第三透镜的有效焦距,所述f4为所述第四透镜的有效焦距,所述f5为所述第五透镜的有效焦距,所述f6为所述第六透镜的有效焦距。
可选地,所述第一透镜和所述第六透镜均为非球面透镜,所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜均为球面透镜。
可选地,所述第一透镜为光学塑料材质,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为光学玻璃材质。
可选地,所述光学系统还包括光阑,所述光阑设于所述第三透镜和所述第四透镜之间。
为实现上述目的,本申请还提出一种投影装置,所述投影装置包括壳体和如上实施例中任一项所述的光学系统,所述光学系统设于所述壳体内。
本申请技术方案中,光学系统沿光线传输方向依次包括图像源、第六透镜、第五透镜、第四透镜、第三透镜、第二透镜以及第一透镜,且第一透镜组具有负光焦度,第二透镜组具有正光焦度,对于整个光学系统来说,第一透镜组的主要作用是消除成像过程中的畸变和像差,将光束收敛(若按实际投影效果则为将光束发散),而第二透镜组的主要作用是消除色差并控制远心度,使得光学系统在满足成像要求的同时,透镜数目少、结构紧凑,从而 保证光学系统的体积尺寸小,便于携带和使用。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请光学系统的结构示意图;
图2为图1光学系统第一实施例的调制传递函数图;
图3为图1光学系统第一实施例的场曲图与畸变图;
图4为图1光学系统第一实施例的垂轴色差图图。
附图标号说明:
标号 名称 标号 名称
100 光学系统 60 第六透镜
10 第一透镜 70 图像源
20 第二透镜 71 透明保护层
30 第三透镜 72 转折棱镜
40 第四透镜 80 光阑
50 第五透镜 90 振镜
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种光学系统100。
在本申请实施例中,如图1所示,该光学系统100沿光线传输方向依次包括图像源70、第六透镜60、第五透镜50、第四透镜40、第三透镜30、第二透镜20以及第一透镜10;
第一透镜10、第二透镜20和第三透镜30组成第一透镜组,第四透镜40、第五透镜50和第六透镜60组成第二透镜组;
第一透镜组具有负光焦度,第二透镜组具有正光焦度。
需要说明的是,本申请的光学系统100应用于投影装置,沿光线传输方向包括缩小侧和放大侧,光学系统100中的图像源70、第六透镜60、第五透镜50、第四透镜40、第三透镜30、第二透镜20以及第一透镜10沿同一光轴依次设于缩小侧和放大侧之间。其中,缩小侧为投影过程中,生成投影光线的图像源70(比如DMD芯片)所在的一侧(如图中B处所示),也即像方;放大侧为投影过程中,用于显示投影图像的投影面(比如投影屏幕)所在的一侧(如图中A处所示),也即物方。投影光线的传输方向为由缩小侧至放大侧。
具体地,投影光线由图像源70发出,自缩小侧朝放大侧发射,依次经过第六透镜60、第五透镜50、第四透镜40、第三透镜30、第二透镜20以及第一透镜10,最终输出至位于第一透镜10背离第二透镜20一侧的投影面上,从而显示出投影图像。
本申请实施例中,图像源70可选用数字微镜元件(Digital Micromirror Device,DMD)芯片。DMD是由很多矩阵排列的数字微反射镜组成,工作时每个微反射镜都能够朝正反两个方向进行偏转并锁定,从而使光线按既定的方向进行投射,并且以数万赫兹的频率进行摆动,将来自照明光源的光束通过微反射镜的翻转反射进入光学系统100成像在屏幕上。DMD具有分辨率高,信号无需数模转换等优点。本实施例采用0.23”DMD,尺寸大小为5.184mm*2.916mm,投射比范围在1.2-1.5。当然,图像源70也可以选用硅上液晶(Liquid Crystal On Silicon,LCOS)芯片或其他可用于出射光线的显示元件,本申请对此不作限制。
其中,对于整个光学系统100来说,第一透镜组的主要作用是消除成像过程中的畸变和像差,将光束收敛(若按实际投影效果则为将光束发散);而第二透镜组的主要作用是消除色差并控制远心度,使得光学系统在满足成像要求的同时,透镜数目少、结构紧凑,从而保证光学系统的体积尺寸小,便于携带和使用。
进一步地,第一透镜10、第二透镜20和第五透镜50均具有负光焦度,第三透镜30、第四透镜40和第六透镜60均具有正光焦度。
其中,光焦度为像方光束会聚度与物方光束会聚度之差,表征光学系统100偏折光线的能力。负光焦度透镜是中间薄、周边厚的一种透镜,又称凹透镜,具有发散光线的作用;正光焦度透镜是中间厚、周边薄的一种透镜,又称凸透镜,具有汇聚光线的作用。本申请技术方案中,正光焦度的第一透镜10、负光焦度的第二透镜20以及正光焦度的第三透镜30可消除成像过程中的畸变和像差,正光焦度的第四透镜40和负光焦度的第五透镜50组合形成的双胶合透镜以及正光焦度的第六透镜60可消除色差并控制远心度,从而保证成像质量。
进一步地,光学系统100满足以下关系:0.5<TL/D<5.75;
其中,TL为光学系统100的总长,D为光学系统100中最大的透镜口径。
由于光学系统100采用六个透镜,透镜数目少,同时,通过设置光学系统100的总长TL和光学系统100中的最大透镜口径D满足:0.5<TL/D<5.75,可控制光学系统100的总长和半径,使得光学系统100的结构紧凑, 从而在一定程度上保证光学系统100的体积尺寸小,使光学系统100便于携带和使用。其中,光学系统100的总长是指:沿光轴方向,第一透镜10的出光面的顶点与图像源70的背面(背向第六透镜60一侧的表面)之间的距离。本实施例中,光学系统100中的最大透镜口径为第一透镜10的口径,一般来说,投影镜头都是两头透镜口径大于中间部位的透镜口径,这种结构便于镜头组装,也方便结构设计。作为一种实施方式,光学系统100的总长TL在45㎜~60㎜之间。
因此,本申请技术方案中,光学系统100沿光线传输方向依次包括图像源70、正光焦度的第六透镜60、负光焦度的第五透镜50、正光焦度的第四透镜40、正光焦度的第三透镜30、负光焦度的第二透镜20以及负光焦度的第一透镜10,且设置光学系统100的总长TL和光学系统100中的最大透镜口径D满足:0.5<TL/D<5.75,使得光学系统100在满足成像要求的同时,透镜数目少、结构紧凑,从而保证光学系统100的体积尺寸小,便于携带和使用。
进一步地,第一透镜10的出光面为凸面,入光面为凹面;
第二透镜20的出光面为凹面,入光面为凹面;
第三透镜30的出光面为凸面,入光面为凸面;
第四透镜40的出光面为凹面,入光面为凸面;
第五透镜50的出光面为凹面,入光面为凸面;
第六透镜60的出光面为凸面,入光面为凸面。
进一步地,第四透镜40和第五透镜50相对的表面相互胶合。
在光学系统100中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差,称为像差。像差主要分为畸变、场曲、色差、球差、彗差、像散等。像差会影响投影镜头的成像质量,因此,在设计投影镜头时,需要尽可能地消除光学系统100成像时产生的像差。
具体地,第一透镜10为具有负光焦度的弯月型透镜,第二透镜20为具有负光焦度的双凹型透镜,第三透镜30为具有正光焦度的双凸型透镜,第四透镜40具有正焦距的凹凸型透镜,第五透镜50具有负光焦度的为弯月型透镜,且第四透镜40与第五透镜50是组合在一起的双胶合透镜,第六透镜60 为具有正光焦度的双凸型透镜。由第四透镜40和第五透镜50组成的双胶合透镜,能够有效消减光学成像过程中产生的色差;弯月型的第一透镜10可实现大视场角,在光学设计中主要起到一个聚集光线的作用(设计时是将投影画面设置为物面,光线从第一透镜10的物面侧入射,若按实际投影效果则为将光束发散),同时第一透镜10还有个很重要的作用就是消除畸变,从而保证成像质量。
具体地,光学系统100满足以下关系:-10.2mm<f1<-18.5mm,-10.6mm<f2<-20.6mm,13mm<f3<21.1mm,11.5mm<f4<17.7mm,-12.2mm<f5<-20.7mm,9.6mm<f6<16.6mm;
其中,f1为第一透镜10的有效焦距,f2为第二透镜20的有效焦距,f3为第三透镜30的有效焦距,f4为第四透镜40的有效焦距,f5为第五透镜50的有效焦距,f6为第六透镜60的有效焦距。
具体地,光学系统100满足以下关系:5.5mm<f00<6.8mm,-65.6mm<f11<-57.6mm,10mm<f22<15.5mm;
其中,f00为光学系统100的有效焦距,f11为第一透镜组的有效焦距,f22为第二透镜组的有效焦距。
作为可选的实施方式,第一透镜10和第六透镜60均为非球面透镜,第二透镜20、第三透镜30、第四透镜40和第五透镜50均为球面透镜。
具体地,第一透镜10的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为非球面结构,第六透镜60的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为非球面结构,第二透镜20的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为球面结构,第三透镜30的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为球面结构,第四透镜40的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为球面结构,第五透镜50的出光面(朝向放大侧的表面)及入光面(朝向缩小侧的表面)均为球面结构。
当透镜表面为非球面结构时,能够有效的减小透镜的边缘像差,从而提高光学系统100的性能,提升成像质量。通过非球面结构,有效地实现对多 个球面透镜校正像差的效果,也有利于实现光学系统100的小型化。而球面透镜的使用,能够有效降低透镜的加工难度及生产成本,从而减少光学系统100的成本。
作为可选的实施方式,第一透镜10为光学塑料材质,第二透镜20、第三透镜30、第四透镜40、第五透镜50和第六透镜60均为光学玻璃材质。
图像源70在接通电源的情况下,发射投影光线,在图像源70发射投影光线的情况下,图像源70本身产生热量,通常来说,玻璃材质的透镜具有更高的耐高温特性,也即,在同等温度下,玻璃材质的受热畸变率远远低于塑料材质,具有较好的稳定性,而塑胶材质的透镜在高温的影响下容易变形,甚至挥发有毒气体,因此,可以将靠近图像源70的第二透镜20、第三透镜30、第四透镜40、第五透镜50即第六透镜60设置为玻璃材质,从而最大程度上减少高温对光学系统100成像的影响。而第一透镜10距离图像源70最远,受温度影响最小,同时,考虑到塑胶材质的成本比玻璃材质的成本低,因此,将第一透镜10设置为塑胶材质,有利于降低成本。
作为可选的实施方式,所述光学系统100还包括光阑80,所述光阑80设于所述第三透镜30和所述第四透镜40之间。
具体地,光阑80具体为孔径光阑80,光阑80用于限制通过的投影光线的直径,调节射出所述光学系统100的光通量,同时减少其他透镜经过反射产生的杂散光干扰,从而使投影光线的成像更加清晰。通常,光阑80的孔径为一个固定值,当然,为了灵活调整成像清晰度,使投影镜头能够更好的适应高低分辨率的切换,还可以将光阑80设置为可以调整孔径大小的方式。
作为可选的实施方式,光学系统100还包括转折棱镜72,转折棱镜72设于第六透镜60和图像源70之间。
在一些实施例中,图像源70有时需要被动发光。因此,需要借助外部光源和转折棱镜72给图像源70提供额外的照明。具体地,棱镜可以为直角棱镜,直角棱镜的斜面朝向图像源70,直角棱镜的其中一个直角面朝向第六透镜60,同时,光源对应直角棱镜的斜面设置,且直角棱镜的斜面设置有半反半透膜。使用时,外部光源发出照明光线,射向直角棱镜的斜面,经半反半 透膜反射后射向图像源70,从而为图像源70提供光线,光线经图像源70调制后经半反半透膜透射后向第六透镜60射出,并依次经过第六透镜60、第五透镜50、第四透镜40、第三透镜30、第二透镜20以及第一透镜10,从而在投影屏幕上显示出投影图像。
作为可选的实施方式,光学系统100还包括振镜90,振镜90设于第六透镜60和图像源70之间。
具体地,振镜90为一块透明的玻璃板,振镜90的振动通常是围绕中间位置的横轴或者纵轴(以光轴为Z轴,则横轴为X轴,纵轴为Y轴)转动。振镜90在静止时,投影光线是沿光轴方向垂直于振镜90的入光面射入振镜90的,并穿透于振镜90。振镜90在转动时,投影光线和振镜90的入光面形成的入射角小于90°,由此投影光线在经过振镜90后发生折射,投影光线的成像位置也发生变化。即投影光线经过转动的振镜90,在原来成像位置周边另一位置也成像显示。由此,在原来的像素点周边,又形成另一个像素点。由于振镜90的高频振动,振动周期在微秒级别,两个像素点形成的间隔时间很短。而人眼具有视觉暂留特性,人眼能够识别的画面帧数是24帧数。简单来说,在下一个像素点形成后,人眼获取画面还停留在上一个像素点上,因此两个像素点组合在一起,进而形成一个更大的分辨率画面。
因此,通过振镜90的周期性振动,使图像源70发出的光线沿振动方向偏折,使得在图像源70的分辨率固定,能够通过振镜90的振动将图像源70发出的光线投射至不同位置,从而增大光学系统100对应的投影装置的分辨率,提升用户的使用体验。
作为可选的实施方式,光学系统100还包括透明保护层71,透明保护层71盖设于图像源70朝向第六透镜60的一侧。
具体地,透明保护层71具体为一盖玻片,盖玻片的厚度为1.1㎜,盖玻片盖设于图像源70的出光面,能够在保证很好的透光率的前提下,有效保护图像源70,防止外界的灰尘进入图像源70,并且,还能够避免光学系统100中的其他透镜因振动对图像源70造成磕碰,保护图像源70免受外界环境或其他元件的冲击影响。
本申请还提出一种投影装置,该投影装置包括光学系统100和壳体,该光学系统100的具体结构参照上述实施例,由于本投影装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,光学系统100设于壳体内。
为了进一步优化光学系统100的性能,提出本申请光学系统100的第一实施例,请参阅表1,举例说明各个透镜的面类型、曲率半径和厚度,以及各个透镜的玻璃材料(折射率和阿贝数)、半口径。其中,相邻两个透镜间隔位置的厚度表示为相邻两个透镜之间的距离。
表1:
Figure PCTCN2021133890-appb-000001
Figure PCTCN2021133890-appb-000002
同时,请参阅表2,举例说明第一透镜10和第六透镜60的非球面结构。其中,第一透镜10的出光面(朝向放大侧的表面)S1及入光面(朝向缩小侧的表面)S2、第六透镜60的出光面(朝向放大侧的表面)S11及入光面(朝向缩小侧的表面)S12均为非球面,非球面公式如下:
Figure PCTCN2021133890-appb-000003
其中,Z表示非球面上的点离非球面顶点在光轴方向的距离;r表示非表面上的点到光轴的距离;c表示非球面的中心曲率;k表示圆锥率;a4、a6、a8、a10表示非球面高次项系数,具体如表2所示。
表2:
Figure PCTCN2021133890-appb-000004
在第一实施例中,光学系统100各参数如下:
第一透镜10的有效焦距f1=-16.964mm,
第二透镜20的有效焦距f2=-16.654mm,
第三透镜30的有效焦距f3=16.128mm,
第四透镜40的有效焦距f4=14.747mm,
第五透镜50的有效焦距f5=-17.269mm,
第六透镜60的有效焦距f6=13.635mm;
光学系统100的有效焦距f00=6.218mm,
第一透镜组的有效焦距f11=-61.64mm,
第二透镜组的有效焦距f22=12.205mm;
光学系统100的总长TL为52.5mm。
基于上述参数数据,请参阅图2,图2为第一实施例的光学系统100的各视场芯片面调制传递函数图,即MTF(ModulationTransferFunction)图,MTF图用于是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力。以投影角度为视场取样间频率坐标,纵坐标为传递函数MTF值。
基于上述参数数据,请参阅图3,图3为第一实施例的光学系统100的场曲与畸变图,其中,场曲是指像场弯曲,主要用于表示光学组件中,整个光束的交点与理想像点的不重合程度。畸变是指物体通过光学组件成像时,物体不同部分有不同的放大率的像差,畸变会导致物像的相似性变坏,但不影响像的清晰度。
基于上述参数数据,请参阅图4,图4为第一实施例的光学系统100的垂轴色差图,其中,垂轴色差是指又称为倍率色差,主要是指像方的一根复色主光线,因折射系统存在色散,在物方出射时变成多根光线,氢蓝光与氢红光在像面上的焦点位置的差值。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种光学系统,其特征在于,所述光学系统沿光线传输方向依次包括图像源、第六透镜、第五透镜、第四透镜、第三透镜、第二透镜以及第一透镜;所述第一透镜、第二透镜和第三透镜组成第一透镜组,所述第四透镜、第五透镜和第六透镜组成第二透镜组;
    所述第一透镜组具有负光焦度,所述第二透镜组具有正光焦度。
  2. 如权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜和所述第五透镜均具有负光焦度,所述第三透镜、所述第四透镜和所述第六透镜均具有正光焦度。
  3. 如权利要求1所述的光学系统,其特征在于,
    所述光学系统满足以下关系:0.5<TL/D<5.75;
    其中,所述TL为所述光学系统的总长,所述D为所述光学系统中的最大透镜口径。
  4. 如权利要求1所述的光学系统,其特征在于,所述第四透镜和所述第五透镜相对的表面相互胶合。
  5. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足以下关系:5.5mm<f00<6.8mm,-65.6mm<f11<-57.6mm,10mm<f22<15.5mm;
    其中,所述f00为所述光学系统的有效焦距,所述f11为所述第一透镜组的有效焦距,所述f22为所述第二透镜组的有效焦距。
  6. 如权利要求1所述的光学系统,其特征在于,所述光学系统满足以下关系:-10.2mm<f1<-18.5mm,-10.6mm<f2<-20.6mm,13mm<f3<21.1mm,11.5mm<f4<17.7mm,-12.2mm<f5<-20.7mm,9.6mm<f6<16.6mm;
    其中,所述f1为所述第一透镜的有效焦距,所述f2为所述第二透镜的有效焦距,所述f3为所述第三透镜的有效焦距,所述f4为所述第四透镜的有效焦距,所述f5为所述第五透镜的有效焦距,所述f6为所述第六透镜的有效焦距。
  7. 如权利要求1至6中任一项所述的光学系统,其特征在于,所述第一透镜和所述第六透镜均为非球面透镜,所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜均为球面透镜。
  8. 如权利要求1至6中任一项所述的光学系统,其特征在于,所述第一透镜为光学塑料材质,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为光学玻璃材质。
  9. 如权利要求1至6中任一项所述的光学系统,其特征在于,所述光学系统还包括光阑,所述光阑设于所述第三透镜和所述第四透镜之间。
  10. 一种投影装置,其特征在于,所述投影装置包括壳体和如权利要求1至9中任一项所述的光学系统,所述光学系统设于所述壳体内。
PCT/CN2021/133890 2021-10-29 2021-11-29 光学系统及投影装置 WO2023070811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111287172.8 2021-10-29
CN202111287172.8A CN114047613B (zh) 2021-10-29 2021-10-29 光学系统及投影装置

Publications (1)

Publication Number Publication Date
WO2023070811A1 true WO2023070811A1 (zh) 2023-05-04

Family

ID=80206820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133890 WO2023070811A1 (zh) 2021-10-29 2021-11-29 光学系统及投影装置

Country Status (2)

Country Link
CN (1) CN114047613B (zh)
WO (1) WO2023070811A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740600A (zh) * 2022-03-31 2022-07-12 歌尔光学科技有限公司 一种光学投影系统以及电子设备
CN114924380B (zh) * 2022-04-29 2023-08-04 歌尔光学科技有限公司 一种光学投影系统以及电子设备
CN115047591B (zh) * 2022-05-30 2023-09-05 歌尔光学科技有限公司 投影镜头以及投影装置
CN115220199B (zh) * 2022-09-20 2023-02-28 江西联创电子有限公司 投影镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177435A (ja) * 2002-11-22 2004-06-24 Ricoh Co Ltd 広角レンズ、カメラおよび投写型表示装置
CN103576290A (zh) * 2013-10-30 2014-02-12 宁波舜宇车载光学技术有限公司 一种广角镜头
CN106842520A (zh) * 2017-03-30 2017-06-13 中山联合光电科技股份有限公司 一种高清全景环视光学成像系统
US20170293111A1 (en) * 2016-04-12 2017-10-12 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
JP2018136476A (ja) * 2017-02-23 2018-08-30 富士フイルム株式会社 撮像レンズおよび撮像装置
CN111323895A (zh) * 2018-12-14 2020-06-23 光芒光学股份有限公司 镜头及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI534462B (zh) * 2014-06-17 2016-05-21 信泰光學(深圳)有限公司 投影鏡頭
WO2017086052A1 (ja) * 2015-11-20 2017-05-26 ソニー株式会社 撮像レンズ
JP6665587B2 (ja) * 2016-03-02 2020-03-13 株式会社リコー 結像レンズ、カメラ装置、及びセンシング装置
JP6985647B2 (ja) * 2018-03-22 2021-12-22 コニカミノルタ株式会社 光学系、レンズユニット、及び撮像装置
CN110703414A (zh) * 2019-10-21 2020-01-17 东莞市宇瞳光学科技股份有限公司 一种大光圈定焦镜头和拍摄装置
CN111538200A (zh) * 2020-04-27 2020-08-14 歌尔光学科技有限公司 光学系统及投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177435A (ja) * 2002-11-22 2004-06-24 Ricoh Co Ltd 広角レンズ、カメラおよび投写型表示装置
CN103576290A (zh) * 2013-10-30 2014-02-12 宁波舜宇车载光学技术有限公司 一种广角镜头
US20170293111A1 (en) * 2016-04-12 2017-10-12 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
JP2018136476A (ja) * 2017-02-23 2018-08-30 富士フイルム株式会社 撮像レンズおよび撮像装置
CN106842520A (zh) * 2017-03-30 2017-06-13 中山联合光电科技股份有限公司 一种高清全景环视光学成像系统
CN111323895A (zh) * 2018-12-14 2020-06-23 光芒光学股份有限公司 镜头及其制造方法

Also Published As

Publication number Publication date
CN114047613A (zh) 2022-02-15
CN114047613B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2023070811A1 (zh) 光学系统及投影装置
CN101441313B (zh) 投影透镜及使用其的投影型显示装置
CN201740911U (zh) 投射用广角变焦透镜及投射型显示装置
CN207529010U (zh) 广角透镜、投射型显示装置及摄像装置
TWI795592B (zh) 投影鏡頭及投影機
WO2022267383A1 (zh) 投影镜头
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
JP2015108797A (ja) 広角投影光学システム
WO2020119421A1 (zh) 投影成像系统及激光投影设备
CN109870791B (zh) 短焦图像投影装置
CN113419333B (zh) 投影镜组和投影装置
CN109407288B (zh) 一种折反式超短焦投影镜头系统
CN107490846A (zh) 一种投影镜头
CN113359277B (zh) 光学系统及投影设备
CN110879457B (zh) 投影光学系统及投影设备
WO2023231111A1 (zh) 投影镜头以及投影装置
CN109491060B (zh) 一种用于桌面投影的超短焦物镜
WO2023206784A1 (zh) 一种光学投影系统以及电子设备
CN105759405B (zh) 能增大视场角的光学系统及投影镜头
CN107817593B (zh) 一种超短焦投影镜头
CN110187470A (zh) 投影镜头、投影光学系统及投影设备
CN214504006U (zh) 投影镜头、投影显示系统及投影显示装置
CN214751069U (zh) 投影镜头和投影设备
CN105785553B (zh) 可小型化的短焦投影镜头
CN208013527U (zh) 一种可实现内部调焦功能的光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962155

Country of ref document: EP

Kind code of ref document: A1