WO2023284314A1 - 测试结构件和测试系统 - Google Patents

测试结构件和测试系统 Download PDF

Info

Publication number
WO2023284314A1
WO2023284314A1 PCT/CN2022/080659 CN2022080659W WO2023284314A1 WO 2023284314 A1 WO2023284314 A1 WO 2023284314A1 CN 2022080659 W CN2022080659 W CN 2022080659W WO 2023284314 A1 WO2023284314 A1 WO 2023284314A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
conductive
test structure
test
connector
Prior art date
Application number
PCT/CN2022/080659
Other languages
English (en)
French (fr)
Inventor
刘诗涛
毕煜
易毕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023284314A1 publication Critical patent/WO2023284314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/60Connections between or with tubular conductors

Definitions

  • Embodiments of the present disclosure relate to but are not limited to the field of testing communication equipment, and in particular, relate to a test structure and a test system including the test structure.
  • the connector is an important part of the communication system. Its main function is to electrically connect two electrical devices in the communication system and provide mechanical support for the connected electrical devices.
  • the structure of the communication system is becoming more and more complex, and there are more and more occasions where connectors are used.
  • the requirements for time delay and data processing volume in the communication process are getting higher and higher, correspondingly, the requirements for the electrical performance and indicators of the connectors in the communication system are becoming more and more stringent.
  • Embodiments of the present disclosure provide a test structure and a test system including the test structure.
  • test structure in one embodiment, wherein the test structure includes a universal matching piece, a connector matching piece, a plurality of signal transmission lines and at least one grounding signal line, wherein
  • the universal matching piece includes a matching plane and a reference plane opposite to the matching plane, and the ground signal line is electrically connected to the reference plane;
  • the connector matching part includes a reference housing and an impedance adjustment part, the impedance adjustment part is arranged in the impedance adjustment part, the top surface of the reference housing is electrically connected to the reference surface, and the connector to be tested
  • the conductive probe can be inserted into the reference housing at any position on the bottom end surface of the reference housing;
  • the ground signal line is arranged in the impedance adjustment part, and the ground signal line is electrically connected to the reference housing and the reference plane, and the signal transmission line runs through the universal matching part and the impedance adjustment part. part, the orientation of the end surface on the signal transmission line for electrical connection with the conductive probe of the connector to be tested is the same as that of the bottom end surface, and the first end of the signal transmission line passes through the matching plane.
  • the reference housing is made of a first conductive material whose hardness is lower than a first preset threshold, so that the conductive probe can be inserted into the bottom end surface of the reference housing middle.
  • the Shore hardness of the first preset threshold is between 70 and 90, the resistivity of the first conductive material does not exceed 100 ⁇ m, and the shielding effectiveness of the first conductive material is not low at 90dB.
  • the second end of the signal transmission line passes through the bottom end surface of the impedance adjustment part, and the distance between the second ends of two adjacent signal transmission lines is the same as that of the two adjacent conductive wires of the connector to be tested.
  • the intervals between the probes are matched, and the interval between the first ends of two adjacent signal transmission lines is greater than the interval between the second ends of the two adjacent signal transmission lines.
  • the signal transmission line includes a first signal transmission part and a second signal transmission part electrically connected, the first signal transmission part runs through the universal matching part, and the second signal transmission part runs through the impedance adjustment Ministry;
  • the first end of the first signal transmission part is formed as the first end of the signal transmission line
  • the second end of the first signal transmission part is located on the reference plane
  • two adjacent first signal transmission lines The distance between the first ends of the two adjacent first signal transmission parts is greater than the distance between the second ends of the two adjacent first signal transmission parts, the first end of the second signal transmission part and the second signal transmission part
  • the second end of the first signal transmission part of the signal transmission line is electrically connected, and the second end of the second signal transmission part is formed as the second end of the signal transmission line.
  • the universal matching piece includes a first plate part and a second plate part, the top main surface of the first plate part is formed as the matching surface, and the second plate part is made of metal material, so The first side of the second plate is connected to the bottom main surface of the first plate, the second side of the second plate is formed as the reference plane, the first side and the second side Relatively disposed, the first signal transmission part is insulated from the second board part.
  • the second plate portion includes a plurality of sub-plates stacked along its thickness direction.
  • the second signal transmission part includes a conductive connection part and a probe connection part
  • the conductive connection part is made of metal material
  • the first end of the conductive connection part is electrically connected to the first signal transmission part
  • the second end of the conductive connection part is electrically connected to the first end of the probe connection part
  • the probe connection part is configured to be inserted into the conductive probe of the connector and electrically connected to the inserted conductive probe. connect.
  • the probe connection part is made of a second conductive material whose hardness does not exceed a second preset threshold.
  • the Shore hardness of the second preset threshold is between 30 and 50, and the resistivity of the second conductive material is not more than 0.05 ⁇ m.
  • the second signal transmission part further includes a shielding tube, and the shielding tube is sheathed outside the probe connection part and fixedly connected to the conductive connection part.
  • the probe connection part includes a conductive cylindrical part and a plurality of elastic conductive contact pieces, one end of the conductive cylindrical part is electrically connected to the conductive connection part, and one end of the elastic conductive contact piece is formed on The other end of the conductive cylindrical part, the other ends of the plurality of elastic conductive contact pieces gather toward the central axis of the conductive cylindrical part, and there is a gap between the other ends of the plurality of elastic conductive contact pieces, for insertion of the conductive probe.
  • the elastic conductive contact piece includes an elastic piece body and a conductive protection member arranged on the inner surface of the elastic piece body, one end of the elastic piece body is formed as one end of the elastic conductive contact piece, the The conductive protector is arranged on the other end of the elastic sheet body to jointly form the other end of the elastic conductive contact sheet.
  • the dielectric constant of the impedance adjustment part is between 2 and 3.
  • the impedance adjustment part is a cavity formed in the reference housing.
  • test system in one embodiment, includes a network analyzer and two test structures, wherein the test structure is the first aspect of the present disclosure
  • the signal transmission line of one of the test structures is electrically connected to the positive wire of the network analyzer
  • the signal transmission line of the other test structure is electrically connected to the negative wire of the network analyzer.
  • the test signal output by the network analyzer can be transmitted to the connector through the signal transmission line.
  • the first ends of the multiple signal transmission lines are directly electrically connected to the wires leading out from the network analyzer.
  • the distance between the first ends of the adjacent signal transmission lines is relatively large, which is suitable for configuring the wires led out by the network analyzer.
  • the interval between the second ends of adjacent signal transmission lines matches the interval between the conductive probes of the connector to be tested, and is suitable for electrical connection with the conductive probes of the connector.
  • the conductive probes of the connector include grounding probes and signal transmission probes (the signal transmission probes further include input probes and output probes).
  • the grounding probe can be inserted into the reference housing at any position. Therefore, the test structure provided by the present disclosure can be used for different types of connectors carry out testing.
  • the electrical performance of the connector can be tested.
  • the grounding probe of the connector can be inserted into the reference housing at any position, so the test structure has good universality.
  • Different types of connectors can be tested by using the test structure provided by the present disclosure. In other words, when testing the electrical performance of different connectors, it is not necessary to customize the test structure specifically for the connector. Compared with the custom-made PCB for testing in the related art, the manufacturing cost of the test structure provided by the present application is lower.
  • the grounding probe of the connector can be inserted into the reference housing, reducing or even eliminating damage to the connector during the test.
  • FIG. 1 is a schematic structural view of a test structure provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a test system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of an embodiment of a connector mating part and a second signal transmission part
  • Fig. 4 is a schematic diagram of another embodiment of a connector mating part and a second signal transmission part
  • Fig. 5 is a schematic top view of a connector mating part and a second signal transmission part
  • Fig. 6 is a schematic structural diagram of a universal matching piece.
  • test structure provided by the present disclosure and the test system including the test structure will be described in detail below with reference to the accompanying drawings.
  • test structure includes a universal matching part 110, a connector matching part 120, a plurality of signal transmission lines 130 and at least one grounding signal line 140.
  • the universal matching member 110 includes a matching plane (upper surface in FIG. 1 ) and a reference plane (lower surface in FIG. 1 ) opposite to the matching plane, and the ground signal line 140 is electrically connected to the reference plane.
  • the connector matching part 120 includes a reference housing 121 and an impedance adjustment part 122.
  • the impedance adjustment part 122 is arranged in the impedance adjustment part 122.
  • the top surface of the reference housing 121 is electrically connected to the reference surface.
  • the connector to be tested The conductive probe 200 can be inserted into the reference housing 121 at any position on the bottom end surface of the reference housing 121 .
  • the ground signal line 140 is disposed in the impedance adjustment part 122 , and the ground signal line 140 is electrically connected to the reference housing 121 and the reference plane respectively.
  • the signal transmission line 130 runs through the universal matching member 110 and the impedance adjustment part 122 , and the orientation of the end surface of the signal transmission line 130 for electrical connection with the conductive probe of the connector to be tested is the same as that of the bottom end surface.
  • the first end of the signal transmission line 130 passes through the matching plane, and the second end of the signal transmission line 130 passes through the bottom end surface of the impedance adjustment part 122 .
  • a network analyzer 300 and a pair of test structures are required.
  • One of the two test structures e.g., the test structure on the left in FIG. 2
  • the negative test lead of the network analyzer is electrically connected to form a closed test loop.
  • Various electrical properties of the connector 200 can be determined by providing test signals through the network analyzer.
  • the test signal output by the network analyzer can be transmitted to the connector through the signal transmission line 130 .
  • the electrical connection between the connector 200 and the network analyzer 300 can be realized through the test structure.
  • the signal transmission line 130 passes through the impedance adjustment part 122 , so as to avoid a short circuit between the signal transmission lines 130 and complete the test.
  • the conductive probes of the connector include grounding probes 210 and signal transmission probes 220 (the signal transmission probes further include input probes and output probes).
  • the ground probe 210 can be inserted into the reference housing 121 at any position. Therefore, different types of connectors can be tested by using the test structure provided by the present disclosure.
  • the electrical performance of the connector 200 can be tested.
  • the ground probe 210 can be inserted into the reference housing 121 at any position. Therefore, the test structure has good versatility, and different types of connectors can be tested by using the test structure provided by the present disclosure. In other words, when performing electrical performance tests on different connectors, there is no need to customize the test structure specifically for the connector. Compared with the custom-made PCB for testing in the related art, the manufacturing cost of the test structure provided by the present application is lower. Moreover, the grounding probe of the connector can be inserted into the reference housing, reducing or even eliminating damage to the connector during the test.
  • the connector will be irreversibly damaged when the connector is tested by using the customized PCB board. Therefore, when testing mass-produced connectors, only sampling inspections can be performed. For the entire batch of connectors, the accuracy of sampling inspections is not 100%, which may cause defective products to flow into the market. possible. Moreover, irreversible damage occurs to the connector after the test, and when the damage is serious, the connector will be scrapped and resources are wasted.
  • the test structure provided by the present application has the advantage of "eliminating the damage to the connector during the test”
  • the reference housing 121 is made of a first conductive material, and the hardness of the first conductive material is lower than a first preset threshold. That is, the reference housing 121 must be relatively soft and able to conduct electricity.
  • conductive particles may be mixed into the soft resinous substance to obtain the first conductive material with lower hardness.
  • the conductive probes of the connector are usually made of metal material.
  • the Shore hardness of the first preset threshold is between 70 and 90. As long as the Shore hardness of the first conductive material is lower than the first preset threshold.
  • the resistivity of the first conductive material is not more than 100 ⁇ m, and the shielding effectiveness of the first conductive material is not lower than 90dB.
  • the distance between the second ends of two adjacent signal transmission lines 130 is the same as the distance between the two adjacent conductive probes of the connector to be tested. match the interval.
  • the size of the network analyzer 300 is relatively large, and the wires drawn from the positive terminal and the negative terminal are also relatively thick.
  • adjacent The distance between the first ends of two signal transmission lines 130 is greater than the distance between the second ends of two adjacent signal transmission lines 130 .
  • the first ends of the multiple signal transmission lines 130 are directly electrically connected to the wires leading out from the network analyzer 300 .
  • the distance between the first ends of adjacent signal transmission lines 130 is relatively large, which is suitable for configuring the wires led out from the network analyzer 300 .
  • the interval between the second ends of the adjacent signal transmission lines 130 matches the interval between the conductive probes of the connector to be tested, and is suitable for electrical connection with the conductive probes of the connector 200 .
  • the electrical connection between the connector and the network analyzer can be conveniently realized through the test structure. After setting the reference plane on the test connector and passing the signal transmission line through the impedance adjustment part, the test can be completed.
  • the specific structure of the signal transmission line 130 is not particularly limited.
  • the signal transmission line 130 may include a first signal transmission part 131 and a second The signal transmission part 132 , the first signal transmission part 131 penetrates the universal matching part 110 , and the second signal transmission part 132 penetrates the impedance adjustment part 122 .
  • the first end of the first signal transmission part 131 is formed as the first end of the signal transmission line 130, the second end of the first signal transmission part 131 is located on the reference plane, and the first ends of two adjacent first signal transmission parts 131 The distance between the ends is greater than the distance between the second ends of the two adjacent first signal transmission parts 131, the first end of the second signal transmission part 132 and the signal transmission line 130 including the second signal transmission part 132
  • the second end of the first signal transmission part 131 is electrically connected, and the second end of the second signal transmission part 132 is formed as the second end of the signal transmission part 130 including the second signal transmission part 132 .
  • the first signal transmission part 131 and the second signal transmission part 132 can be electrically connected by welding to form a complete signal transmission line 130 .
  • the interval between the second signal transmission parts 132 matches the interval between the conductive probes of the connector to be tested.
  • the signal output by the network analyzer can be sent to the second signal transmission part 132 by setting the first signal transmission part 131 .
  • the test structure includes two signal transmission lines 130, and the two signal transmission lines 130 form a substantially Y-shape.
  • the specific distribution form of the plurality of first signal transmission parts 131 in the universal matching part 110 is not specifically limited.
  • the two first signal transmission parts 131 may be formed in a Y shape or in a V shape.
  • the universal mating piece 110 includes a first plate portion 111 and a second plate portion 112, the top main surface of the first plate portion 111 is formed as the mating surface, and the second plate portion 112
  • the part 112 is made of metal material, the first side of the second plate part 112 is connected with the bottom main surface of the first plate part 111, the second side of the second plate part 112 is formed as the reference plane, the first side shown Opposite to the second side, the first signal transmission part 131 is insulated from the second plate part 112 .
  • the first plate portion 111 For a plate, it includes two main surfaces and sides connecting the two main surfaces.
  • the main surface of the first plate portion 111 at the top of the test structure is called the top main surface
  • the surface opposite to the top main surface on the first plate portion 111 is called the bottom main surface.
  • the first plate part 111 is generally arranged in a horizontal manner, and the second plate part 112 is generally arranged in an upright manner.
  • the first board part 111 can provide a matching surface with relatively large area, so as to facilitate the electrical connection with the network analyzer, and the second board part 112 can provide sufficient wiring space.
  • the signal transmission line may be covered with an insulating layer.
  • the second plate part 112 may include a plurality of sub-plates stacked along its thickness direction (the left-right direction in FIG. 6 ) to form a coplanar waveguide structure and realize the control of the overall impedance of the test structure. control.
  • the specific structure of the second signal transmission part 132 is not particularly limited, as long as it can respectively be electrically connected to the first signal transmission part 131 and the conductive probe and transmit signals.
  • the first plate portion 111 may be made of a metal material, and the first plate portion 111 is also insulated from the first signal transmission portion 131 .
  • the second signal transmission part 132 includes a conductive connection part 132a and a probe connection part 132b.
  • the conductive connection part 132a is made of metal material.
  • a first end of the conductive connection part 132a is electrically connected to the first signal transmission part 131, and a second end of the conductive connection part 132a is electrically connected to the first end of the probe connection part 132b.
  • the probe connection part 132b is configured to be inserted into the conductive probe (also called a fisheye connection part) of the connector and electrically connected to the inserted conductive probe.
  • a stable electrical connection can be formed with the signal transmission line 132 .
  • the probe connecting portion 132b can be inserted by a conductive probe.
  • the probe connection portion 132b may be made of a relatively soft conductive material.
  • the probe connection portion 132b is made of a second conductive material whose hardness does not exceed a second preset threshold.
  • first conductive material and the second conductive material need to withstand the plugging and unplugging of conductive probes, when selecting the first conductive material and the second conductive material, it should be ensured that their mass change after 200 plugging and unplugging is less than 20%.
  • the hardness of the probe connecting portion 132b is preferably less than the hardness of the reference housing 121 , and the Shore hardness value of the second preset threshold is between 30 and 50.
  • the resistivity of the second conductive material does not exceed 0.05 ⁇ m.
  • the second signal transmission part 132 further includes a shielding tube, which is sheathed outside the probe connection part 132b and connected to the conductive connection part 132a. Fixed connection.
  • the material of the shielding tube may be a metal material. Since the probe connecting portion 132b is relatively soft, the second conductive material can be shaped by using the shielding tube.
  • the probe connecting portion 132b includes a conductive cylindrical portion 132b1 and a plurality of elastic conductive contact pieces 132b2, and one end of the conductive cylindrical portion 132b1 is electrically connected to the conductive connecting portion 132a.
  • One end of the elastic conductive contact piece 132b2 is formed on the other end of the conductive cylindrical portion 132b1, and the other ends of the plurality of elastic conductive contact pieces 132b2 converge toward the central axis of the conductive cylindrical portion 132b1. There are gaps between the other ends of the plurality of elastic contact pieces 132b2 for insertion of the conductive probes.
  • the elastic conductive contact piece 132b2 includes an elastic piece body A and is arranged on the elastic piece The conductive protection part B on the inner surface of the body A, one end of the elastic sheet body A is formed as one end of the elastic conductive contact piece 132b2, and the conductive protection part B is arranged on the other end of the elastic sheet body A to jointly form the elastic conductive contact piece 132b2 another side.
  • the elastic sheet body A may be made of metal material
  • the conductive protection member B may be made of conductive flexible material.
  • the inclination direction of the part is opposite to the inclination direction of the elastic sheet A.
  • the specific impedance of the impedance adjustment part 122 is not specifically limited, as an optional implementation manner, the dielectric constant of the impedance adjustment part 122 is between 2 and 3.
  • the impedance adjustment part 122 is a cavity formed in the reference housing.
  • the specific form of the cavity is not particularly limited.
  • the cavity is a through hole, and in the embodiment shown in FIG. 4, the cavity is a counterbore.
  • a guide hole may be provided on the part of the reference housing 121 located at the bottom of the counterbore, so as to facilitate the insertion of the conductive probe.
  • the specific shape of the impedance adjustment portion 122 is not particularly limited.
  • the end surface of the impedance adjustment portion 122 is substantially elliptical.
  • the impedance of each part of the whole test structure can be determined first, and then the size of each component can be determined.
  • the size of the impedance adjustment part and the size of the second signal transmission part in the impedance adjustment part can be determined by the following formula (1):
  • Z 0 is the impedance of the impedance adjustment part
  • ⁇ 0 and ⁇ 0 are vacuum permeability, and both are natural constants
  • r b is the radius of the impedance adjustment part
  • r a is the radius of the cavity where the impedance adjustment part is set
  • ⁇ r is the dielectric constant of the impedance adjustment part, which can be obtained by checking the specification sheet of the material.
  • the size of the signal transmission line can be determined by the following formula (2):
  • Z0 is the impedance of the signal transmission line
  • W is the line width of the signal transmission line
  • T is the thickness of the signal transmission line
  • H is the distance from the signal transmission line to the nearest reference layer
  • ⁇ r is the dielectric constant of the signal transmission line
  • D is the distance between two signal transmission lines
  • B is the distance between two reference layers
  • C is the distance from the signal line to the farther reference layer.
  • the size of the universal matching part 110 shown in FIG. 3 is as follows:
  • the length of the first plate portion 111 (in FIG. 1 , the dimension in the left-right direction) is 40mm, the thickness of the first plate portion 111 is 4mm, and the width of the first plate portion 111 is 16mm;
  • the length of the second plate portion 112 (dimensions in the vertical direction in FIG. 1 ) is 13 mm, and the thickness of the second plate portion 112 is 3.2 mm;
  • the width of the ground signal line 140 is 0.8 mm, the distance between the ground signal line 140 and the edge of the reference housing is 1 mm, and the height of the ground signal line protruding from the reference housing is 1.5 mm;
  • the height of the second signal transmission part protruding from the reference housing is 1.5mm, and the width of the conductive connection part 132a is 0.8mm;
  • the distance between the side of the impedance adjustment part and the side of the reference housing is 1.6 mm, and the length of the impedance adjustment part is 4.4 mm;
  • the height of the reference shell is 4 mm, the length of the reference shell is 8 mm, and the width of the reference shell is 6 mm.
  • test structure with the above dimensions can be compatible with the performance test of all connectors whose conductive probe size is between 1.5mm.
  • the bandwidth of the above-mentioned test structure can reach more than 28GHz, and the above-mentioned structure size can meet extremely high test accuracy.
  • the width of the impedance adjustment part is 4mm, the distance between the bottom surface of the counterbore and the bottom end surface of the reference case is 3.3mm, the length of the counterbore is 6mm, the depth of the counterbore is 4.3mm, and the distance between the top of the counterbore and the case is The size of the part with the smallest distance is 1mm;
  • the height of the reference shell is 7.6mm, and the width of the reference shell is 8mm;
  • the width of the ground signal line is 0.7mm
  • the distance between the ground signal line and the edge of the reference case is 1.5mm;
  • the distance between the signal transmission line and the edge of the reference housing is 3.8 mm.
  • test structure with the above dimensions can be compatible with the performance test of all connectors whose conductive probe size is between 1.5mm.
  • the bandwidth of the above-mentioned test structure can reach more than 28 GHz, and the above-mentioned structure size can meet extremely high test accuracy.
  • a calibration piece with the same structure as the universal matching piece 110 can be designed, and the universal matching piece 110 can be calibrated by the calibration piece.
  • test system As a second aspect of the present disclosure, a test system is provided. As shown in FIG. 2 , the test system includes a network analyzer 300 and two test structures 200, wherein the test structures are provided by the present disclosure
  • the above test structure wherein the signal transmission line of one of the test structures is electrically connected to port 1 and port 2 of the network analyzer, and the signal transmission line of the other test structure is connected to port 3 of the network analyzer Connect to port 4.
  • one of the two test structures electrically connects the connector 200 to Port 1 and Port 2 of the network analyzer.
  • the other electrically connects the connector 200 with port 1 and port 2 of the network analyzer to form a closed test loop.
  • Various electrical properties of the connector 200 can be determined by providing test signals through the network analyzer.
  • the test signal output by the network analyzer can be transmitted to the connector through the signal transmission line 130 .
  • the first ends of the multiple signal transmission lines 130 are directly electrically connected to the wires leading out from the network analyzer 300 .
  • the distance between the first ends of adjacent signal transmission lines 130 is relatively large, which is suitable for configuring the wires led out from the network analyzer 300 .
  • the distance between the second ends of adjacent signal transmission lines 130 matches the distance between the conductive probes of the connector to be tested, and is suitable for electrical connection with the conductive probes of the connector 200 . In this way, the electrical connection between the connector 200 and the network analyzer 300 can be realized through the test structure. Setting a reference plane on the test connector 200 and passing the signal transmission line 130 through the impedance adjustment part 122 can avoid short circuit between the signal transmission lines 130 and complete the test.
  • the high-speed performance of the connector can be obtained through de-embedding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

一种测试结构件,包括通用匹配件(110)、连接器匹配件(120)、多条信号传输线(130)和至少一个接地信号线(140);通用匹配件(110)包括匹配平面和与匹配平面相对的参考面,接地信号线(140)与参考面电连接;连接器匹配件(120)包括参考壳体(121)和阻抗调节部(122),阻抗调节部(122)设置在参考壳体(121)中,待测试的连接器(200)的导电探针能够在参考壳体(121)的底端面的任意位置插入参考壳体(121)中;接地信号线(140)设置在阻抗调节部(122)中,信号传输线(130)贯穿通用匹配件(110)和阻抗调节部(122),且相邻两个信号传输线(130)的第一端之间的间隔大于该相邻两个信号传输线(130)的第二端之间的间隔。还提供一种测试系统,包括网络分析仪(300)和两个测试结构件,其中一个测试结构件的信号传输线与网络分析仪(300)的正极导线电连接,另一个测试结构件的信号传输线与网络分析仪(300)的负极导线电连接。

Description

测试结构件和测试系统
相关申请的交叉引用
本公开要求在2021年7月14日提交国家知识产权局、申请号为202110793721.2、发明名称为“测试结构件和测试系统”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开的实施例涉及但不限于通信设备的测试领域,具体地,涉及一种测试结构件和一种包括该测试结构件的测试系统。
背景技术
连接器是通信系统的重要组成部分,主要作用是将通信系统中的两个电气器件电连接、并为连接在一起的电气器件提供力学支撑。随着通信技术的发展,通信系统的结构也越来越复杂,用到连接器的场合也越来越多。随着通信过程中对时延要求、以及数据处理量要求越来越高,相应地,对通信系统中的连接器的电气性能和指标要求也越来越严格。
为了确定连接器的电气性能和指标,需要对连接器进行性能测试。在相关技术中,常用的测试方法如下:
利用待测试的连接器与定制好的至少两块测试用印刷电路板(PCB,Print Circuit Board)电连接,随后使用网络分析仪与测试用PCB电连接,通过网络分析仪分析连接器的电气性能和指标。
但是,利用上述测试方法时,需要针对连接器定子测试用PCB,提高了测试成本。并且,使用上述方法对连接器进行测试后,也对连接器造成了不可逆转的损伤。
发明内容
本公开的实施例提供一种测试结构件和一种包括该测试结构件的测试系统。
作为本公开的第一个方面,在一个实施例中提供一种测试结构件,其中,所述测试结构件包括通用匹配件、连接器匹配件、多条信号传输线和至少一个接地信号线,其中
所述通用匹配件包括匹配平面和与所述匹配平面相对的参考面,所述接地信号线与所述参考面电连接;
所述连接器匹配件包括参考壳体和阻抗调节部,所述阻抗调节部设置在所述阻抗调节部中,所述参考壳体的顶端面与所述参考面电连接,待测试的连接器的导电探针能够在所述参考壳体的底端面的任意位置插入所述参考壳体中;
所述接地信号线设置在所述阻抗调节部中,且所述接地信号线分别与所述参考壳体以及所述参考面电连接,所述信号传输线贯穿所述通用匹配件和所述阻抗调节部,所述信号传输线上用于与待测试的连接器的导电探针电连接的端面的朝向与所述底端面的朝向相同,所述信号传输线的第一端从所述匹配平面穿出。
可选地,所述参考壳体由第一导电材料制成,所述第一导电材料的硬度低于第一预设阈值,以使得所述导电探针能够插入所述参考壳体的底端面中。
可选地,所述第一预设阈值的肖氏硬度取值在70至90之间,所述第一导电材料的电阻率不超过100Ω·m,所述第一导电材料的屏蔽效能不低于90dB。
可选地,所述信号传输线的第二端从所述阻抗调节部的底端面穿出,相邻两个信号传输线的第二端之间的间隔与待测试的连接器的相邻两个导电探针之间的间隔相匹配,且相邻两个信号传输线的第一端之间的间隔大于该相邻两个信号传输线的第二端之间的间隔。
可选地,所述信号传输线包括电连接的第一信号传输部和第二信号传 输部,所述第一信号传输部贯穿所述通用匹配件,所述第二信号传输部贯穿所述阻抗调节部中;
所述第一信号传输部的第一端形成为所述信号传输线的第一端,所述第一信号传输部的第二端位于所述参考面上,相邻两个所述第一信号传输部的第一端之间的间距大于该相邻两个所述第一信号传输部的第二端之间的间距,所述第二信号传输部的第一端与包括该第二信号传输部的信号传输线的第一信号传输部的第二端电连接,所述第二信号传输部的第二端形成为所述信号传输线的第二端。
可选地,所述通用匹配件包括第一板部和第二板部,所述第一板部的顶主表面形成为所述匹配面,所述第二板部由金属材料制成,所述第二板部的第一侧面与所述第一板部的底主表面相连,所述第二板部的第二侧面形成为所述参考面,所述第一侧面和所述第二侧面相对设置,所述第一信号传输部与所述第二板部绝缘间隔。
可选地,所述第二板部包括沿其厚度方向叠置的多个子板。
可选地,所述第二信号传输部包括导电连接部和探针连接部,所述导电连接部由金属材料制成,所述导电连接部的第一端与第一信号传输部电连接,所述导电连接部的第二端与所述探针连接部的第一端电连接,所述探针连接部设置为供所述连接器的导电探针插入、并与插入的导电探针电连接。
可选地,所述探针连接部由硬度不超过第二预设阈值的第二导电材料制成。
可选地,所述第二预设阈值的肖氏硬度取值在30到50之间,所述第二导电材料的电阻率不超过0.05Ω·m。
可选地,所述第二信号传输部还包括屏蔽管,所述屏蔽管套设在所述探针连接部的外部,并与所述导电连接部固定连接。
可选地,所述探针连接部包括导电圆筒部和多个弹性导电接触片,所述导电圆筒部的一端与所述导电连接部电连接,所述弹性导电接触片的一端形成在所述导电圆筒部的另一端,多个所述弹性导电接触片的另一端向 所述导电圆筒部的中心轴线聚拢,且多个所述弹性导电接触片的另一端之间存在间隙,以供所述导电探针插入。
可选地,所述弹性导电接触片包括弹性片本体和设置在所述弹性片本体内表面上的导电保护件,所述弹性片本体的一端形成为所述弹性导电接触片的一端,所述导电保护件设置在所述弹性片本体的另一端,以共同形成弹性导电接触片的另一端。
可选地,所述阻抗调节部的介电常数在2至3之间。
可选地,所述阻抗调节部为形成在所述参考壳体中的空腔。
作为本公开的第二个方面,在一个实施例中提供一种测试系统,所述测试系统包括网络分析仪和两个测试结构件,其中,所述测试结构件为本公开第一个方面所提供的测试结构件,其中一个所述测试结构件的信号传输线与所述网络分析仪的正极导线电连接,另一个所述测试结构件的信号传输线与所述网络分析仪的负极导线电连接。
为了测试连接器的性能,需要向连接器的各个导电探针提供测试信号。相对于连接器而言,网络分析仪的尺寸比较大,从正极端子、以及负极端子引出的导线也较粗,无法直接与连接器相连。在本公开所提供的测试结构件中,通过信号传输线可以将网络分析仪输出的测试信号传输给连接器。具体地,多个信号传输线的第一端直接与网络分析仪引出的导线电连接。相邻信号传输线的第一端之间的间隔较大,适于配置网络分析仪引出的导线。相邻信号传输线的第二端之间的间隔与待测试的连接器的导电探针之间的间隔相匹配,适于与连接器的导电探针电连接。
所述连接器的导电探针包括接地探针和信号传输探针(信号传输探针又包括输入探针和输出探针)。在本公开中,将信号传输探针与相应的信号传输线电连接后,接地探针可以在任意位置插入参考壳体中,因此,利用本公开所提供的测试结构件可以对不同型号的连接器进行测试。
通过两个测试结构件将连接器与网络分析仪电连接后,可以测试连接器的电学性能。
如上文中所述,将连接器的信号传输探针与相应的信号传输线电连接后,连接器的接地探针可以在任意位置插入参考壳体中,因此,所述测试结构件具有很好的通用性,利用本公开所提供的测试结构件可以对不同型号的连接器进行测试,换言之,在对不同的连接器进行电学性能测试时,不需要专门针对该连接器定制测试结构件。与相关技术中定制PCB进行测试相比,本申请所提供的测试结构件的制造成本更低。并且,连接器的接地探针可以插入参考壳体中,降低甚至消除了测试过程中对连接器造成的损伤。
附图说明
图1是本公开的一个实施例所提供的测试结构件的结构示意图;
图2是本公开的一个实施例所提供的测试系统的示意图;
图3是连接器匹配件、以及第二信号传输部的一种实施方式的示意图;
图4是连接器匹配件、以及第二信号传输部的另一种实施方式的示意图;
图5是连接器匹配件、以及第二信号传输部的俯视示意图;
图6是通用匹配件的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的测试结构件、以及包括所述测试结构件的测试系统进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
作为本公开的一个方面,提供一种试结构件,其中,如图1所示,所述测试结构件包括通用匹配件110、连接器匹配件120、多条信号传输线130和至少一个接地信号线140。
通用匹配件110的包括匹配平面(图1中的上表面)和与该匹配平面相对的参考面(图1中的下表面),接地信号线140与所述参考面电连接。
连接器匹配件120包括参考壳体121和阻抗调节部122,该阻抗调节部122设置在阻抗调节部122中,参考壳体121的顶端面与所述参考面电连接,待测试的连接器的导电探针200能够在参考壳体121的底端面的任意位置插入该参考壳体121中。
接地信号线140设置在阻抗调节部122中,且接地信号线140分别与参考壳体121以及所述参考面电连接。
信号传输线130贯穿通用匹配件110和阻抗调节部122,信号传输线130上用于与待测试的连接器的导电探针电连接的端面的朝向与所述底端面的朝向相同。信号传输线130的第一端从所述匹配平面穿出,信号传输线130的第二端从阻抗调节部122的底端面穿出。
如图2所示,在对连接器200进行测试时,需要用到网络分析仪300和一对测试结构件。两个测试结构件中的一个(例如,图2中左侧的测试结构件)将连接器200与网络分析仪的正极测试线电连接、两个测试结构件中的另一个将连接器200与网络分析仪的负极测试线电连接,以构成测试闭环。通过网络分析仪提供测试信号,可以确定连接器200的各项电学性能。
在本公开所提供的测试结构件中,通过信号传输线130可以将网络分析仪输出的测试信号传输给连接器。这样,通过测试结构件可以实现连接器200与网络分析仪300的电连接。在测试连接器200上设置参考平面后,信号传输线130穿过阻抗调节部122,可以避免信号传输线130之间短路,并完成测试。
如图3和图4所示,所述连接器的导电探针包括接地探针210和信号传输探针220(信号传输探针又包括输入探针和输出探针)。在本公开中,将信号传输探针220与相应的信号传输线130电连接后,接地探针210可以在任意位置插入参考壳体121中。因此,利用本公开所提供的测试结构件可以对不同型号的连接器进行测试。
通过两个测试结构件将连接器200与网络分析仪300电连接后,可以测试连接器200的电学性能。
如上文中所述,将信号传输探针220与相应的信号传输线130电连接后,接地探针210可以在任意位置插入参考壳体121中。因此,所述测试结构件具有很好的通用性,利用本公开所提供的测试结构件可以对不同型号的连接器进行测试。换言之,在对不同的连接器进行电学性能测试时,不需要专门针对该连接器定制测试结构件。与相关技术中定制PCB进行测试相比,本申请所提供的测试结构件的制造成本更低。并且,连接器的接地探针可以插入参考壳体中,降低甚至消除了测试过程中对连接器造成的损伤。
如相关技术中描述,由于利用定制PCB板对连接器进行测试时会对连接器造成不可逆转的损伤。因此,在对批量生产的连接器进行测试时,只能抽样检测,对于整批连接器而言,抽样检测的准确率并非百分之一百, 这也造成了可能会有次品流入市场的可能。而且,测试后的连接器发生不可逆转损伤,损伤严重时会造成连接器报废,浪费了资源。鉴于本申请所提供的测试结构件具有上述“消除了测试过程中对连接器造成的损伤”这一优点,在利用本公开所提供的测试结构件对批量生产的连接器进行测试时,可以对连接器进行逐个检测,可以更准确地测出不合格产品,避免次品流入市场。
在本公开中,对参考壳体121的具体材料不做特殊的限定。为了便于导电探针的插入,可选的,参考壳体121由第一导电材料制成,所述第一导电材料的硬度低于第一预设阈值。也就是说,参考壳体121必须相对较软、且能够导电。作为一种可选实施方式,可以在较软的树脂类物质中掺入导电颗粒,以获得硬度较低的第一导电材料。
连接器的导电探针通常是金属材料制成。为了便于所述导电探针插入,作为一种可选实施方式,所述第一预设阈值的肖氏硬度取值在70至90之间。只要第一导电材料的肖氏硬度低与该第一预设阈值即可。
为了获得更准确的测试结果,可选地,所述第一导电材料的电阻率不超过100Ω·m,所述第一导电材料的屏蔽效能不低于90dB。
为了便于与待测试的连接器相连,作为一种可选实施方式,相邻两个信号传输线130的第二端之间的间隔与待测试的连接器的相邻两个导电探针之间的间隔相匹配。
为了测试连接器200的性能,需要向连接器200的各个导电探针提供测试信号。相对于连接器200而言,网络分析仪300的尺寸比较大,从正极端子、以及负极端子引出的导线也较粗,为了便于信号传输线130与网络分析仪的导线连接,可选地,相邻两个信号传输线130的第一端之间的间隔大于该相邻两个信号传输线130第二端之间的间隔。具体地,多个信号传输线130的第一端直接与网络分析仪300引出的导线电连接。相邻信号传输线130的第一端之间的间隔较大,适于配置网络分析仪300引出的导线。相邻信号传输线130的第二端之间的间隔与待测试的连接器的导电探针之间的间隔相匹配,适于与连接器200的导电探针电连接。
这样,通过测试结构件可以方便地实现连接器与网络分析仪的电连接。在测试连接器上设置参考平面、信号传输线穿过阻抗调节部后,可以完成测试。
在本公开中,对信号传输线130的具体结构也不做特殊限定,作为一种可选实施方式,如图1所示,信号传输线130可以包括互相电连接的第一信号传输部131和第二信号传输部132,第一信号传输部131贯穿通用匹配件110,第二信号传输部132贯穿阻抗调节部122。
第一信号传输部131的第一端形成为信号传输线130的第一端,第一信号传输部131的第二端位于所述参考面上,相邻两个第一信号传输部131的第一端之间的间距大于该相邻两个第一信号传输部131的第二端之间的间距,第二信号传输部132的第一端与包括该第二信号传输部132的信号传输线130的第一信号传输部131的第二端电连接,第二信号传输部132的第二端形成为包括该第二信号传输部132的信号传输部130的第二端。
在本公开中,可以通过焊接的方式将第一信号传输部131和第二信号传输132电连接,以形成完整的信号传输线130。第二信号传输部132之间的间隔与待测试的连接器的导电探针之间的间隔相匹配。通过设置第一信号传输部131可以将网络分析仪输出的信号输送至第二信号传输部132。
在图中所示的实施方式中,测试结构件包括两条信号传输线130,两条信号传输线130形成一个大致Y字形。
在本公开中,对多条第一信号传输部131在通用件匹配部110中的具体分布形式不做特殊的限定。例如,对于包括两条信号传输线的情况,在通用件匹配部110中,两个第一信号传输部131可以形成为Y字形,也可以形成V字形。
在本公开中,对通用匹配件110的具体结构没有特殊的限定,只要能够与网络分析仪的导线电连接即可。在图1和图6中所示的实施方式中,通用匹配件110包括第一板部111和第二板部112,第一板部111的顶主表面形成为所述匹配面,第二板部112由金属材料制成,第二板部112的第一侧面与第一板部111的底主表面相连,第二板部112的第二侧面形成 为所述参考面,所示第一侧面和所述第二侧面相对设置,第一信号传输部131与第二板部112绝缘间隔。
对于板状件而言,包括两个主表面和连接两个主表面的侧面。鉴于第一板部111的具体位置,将第一板部111上位于测试结构件顶部的主表面称为顶主表面,将第一板部111上与顶主表面相对的表面成为底主表面。
第一板部111大致上以平放的方式设置,第二板部112大致上以竖立的方式设置。第一板部111可以提供面积相对较大的匹配面,从而便于和网络分析仪电连接,第二板部112可以提供充足的走线空间。
在本公开中,对如何将第二板部112与信号传输线绝缘间隔不做特殊的限定,例如,可以在信号传输线的外部包覆绝缘层。
作为一种可选实施方式,第二板部112可以包括沿其厚度方向(图6中的左右方向)叠置的多个子板,以形成共面波导结构、并实现对测试结构件总体阻抗的控制。
在本公开中,对第二信号传输部132的具体结构也不做特殊的限定,只要能够起到分别与第一信号传输部131以及导电探针电连接、并传输信号即可。
为了获得更好的力学性能,作为一种可选实施方式,可以利用金属材料制成第一板部111,并且,第一板部111也与第一信号传输部131绝缘间隔。
为了便于在测试过程中与连接器形成稳定的电连接,可选地,如图3和图4所示,第二信号传输部132包括导电连接部132a和探针连接部132b。导电连接部132a由金属材料制成。导电连接部132a的第一端与第一信号传输部131电连接,导电连接部132a的第二端与探针连接部132b的第一端电连接。探针连接部132b设置为供所述连接器的导电探针(也成鱼眼连接部)插入、并与插入的导电探针电连接。
如上所述,导电探针插入探针连接部132b中后,可以与信号传输线132形成稳定的电连接。
在本公开中,对探针连接部132b如何实现能够被导电探针插入并不 做特殊的限定。例如,作为一种可选实施方式,可以利用相对较软的导电材料制成探针连接部132b。具体地,探针连接部132b由硬度不超过第二预设阈值的第二导电材料制成。
由于第一导电材料、以及第二导电材料需要承受导电探针的插拔,因此,选择第一导电材料和第二导电材料时,应当确保它们的200次插拔后质量变化小于20%。
在本公开中,探针连接部132b的硬度优选小于参考壳体121的硬度,第二预设阈值的肖氏硬度取值在30到50之间。为了避免信号传输过程中产生信号损耗,可选地,所述第二导电材料的电阻率不超过0.05Ω·m。
为了将探针连接部132b与导电连接部132a固定连接,可选地,第二信号传输部132还包括屏蔽管,该屏蔽管套设在探针连接部132b的外部,并与导电连接部132a固定连接。
在本公开中,屏蔽管的材料可以为金属材料。由于探针连接部132b较软,利用屏蔽管可以对第二导电材料进行定型。
作为本公开的另一种实施方式,如图4所示,探针连接部132b包括导电圆筒部132b1和多个弹性导电接触片132b2,导电圆筒部132b1的一端与导电连接部132a电连接,弹性导电接触片132b2的一端形成在导电圆筒部132b1的另一端,多个弹性导电接触片132b2的另一端向导电圆筒部132b1的中心轴线聚拢。多个弹性接触片132b2的另一端之间存在间隙,以供所述导电探针插入。
为了对所述导电探针进行保护以避免将导电探针插入探针连接部132b的过程中被磨损或者划伤,可选地,弹性导电接触片132b2包括弹性片本体A和设置在该弹性片本体A内表面上的导电保护件B,弹性片本体A的一端形成为弹性导电接触片132b2的一端,导电保护件B设置在弹性片本体A的另一端,以共同形成弹性导电接触片132b2的另一端。
在本公开中,可以利用金属材料制成弹性片本体A,利用导电柔性材料制成导电保护件B。
为了便于所述导电探针插入探针连接部132b,作为一种可选实施方式, 如图4中所示,可以在弹性片体A远离导电圆筒部132b1的一端设置引导部,所述引导部的倾斜方向与弹性片A的倾斜方向相反。
在本公开中,对阻抗调节部122的具体阻抗不做特殊的限定,作为一种可选实施方式,该阻抗调节部122的介电常数在2至3之间。
作为一种可选实施方式,阻抗调节部122为形成在所述参考壳体中的空腔。在本公开中,对空腔的具体形式也不做特殊限定。在图3中所示的实施方式中,所述空腔为通孔,在图4中所示的实施方式中,所述空腔为沉孔。在空腔为沉孔的实施方式中,可以在参考壳体121位于沉孔底部的部分上设置引导孔,以便于导电探针插入。
当然,也可以利用其他介电常数在2至3之间的材料制成阻抗调节部122。
在本公开中,对阻抗调节部122的具体形状并不做特殊的限定,在图5中所示的实施方式中,阻抗调节部122的端面为大致椭圆形。
在设计所述测试结构件时,可以先确定整个测试结构件各个部位的阻抗,然后再确定各个部件的尺寸。
例如,对于阻抗调节部122而言,可以通过以下公式(1)确定阻抗调节部的尺寸、以及阻抗调节部内的第二信号传输部的尺寸:
Figure PCTCN2022080659-appb-000001
其中,Z 0为阻抗调节部的阻抗;
μ 0和ε 0为真空磁导率,并且均为自然常数;
r b为阻抗调节部的半径;
r a为设置阻抗调节部的腔体的半径;
ε r为阻抗调节部的介电常数,可以通过查该材料的规格书获取。
可以通过以下公式(2)确定信号传输线的尺寸:
Figure PCTCN2022080659-appb-000002
其中,Z0为信号传输线的阻抗;
W为信号传输线的线宽;
T为信号传输线线的厚度;
H是信号传输线距离最近参考层的距离;
ε r为信号传输线的介电常数;
D为两条信号传输线之间的间距;
B是两个参考层之间的距离;
C是信号线到较远参考层的距离。
当测试结构件的阻抗为100Ω时,图3中所示的通用匹配件110的尺寸如下:
第一板部111的长度(图1中,左右方向的尺寸)为40mm,第一板部111的厚度为4mm,第一板部111的宽度为16mm;
第二板部112的长度(图1中上下方向的尺寸)为13mm,第二板部112的厚度为3.2mm;
接地信号线140的宽度为0.8mm,接地信号线140与参考壳体的边缘之间的距离为1mm,接地信号线从参考壳体上突出的高度为1.5mm;
第二信号传输部从参考壳体上突出的高度为1.5mm,导电连接部132a的宽度为0.8mm;
阻抗调节部的侧面与参考壳体的侧面之间的距离为1.6mm,阻抗调节部的长度为4.4mm;
参考壳体的高度为4mm,参考壳体的长度为8mm,参考壳体的宽度为6mm。
具有上述尺寸的测试结构件可以兼容导电探针尺寸在1.5mm之间的所有连接器的性能测试。
上述测试结构件的带宽可以达到28GHz以上,上述结构尺寸可以满足 极高的测试精度。
对于图4中所示的测试结构件而言,尺寸如下:
阻抗调节部的宽度为4mm,沉孔的底面与参考壳体的底端面之间的距离为3.3mm,沉孔的长度为6mm,沉孔的深度为4.3mm,沉孔上与壳体之间距离最小的部分的尺寸为1mm;
参考壳体的高度为7.6mm,参考壳体的宽度为8mm;
接地信号线的宽度为0.7mm;
接地信号线与参考壳体的边缘之间的距离为1.5mm;
信号传输线与参考壳体的边缘之间的距离为3.8mm。
具有上述尺寸的测试结构件可以兼容导电探针尺寸在1.5mm之间的所有连接器的性能测试。
上述测试结构件的带宽可以达到28GHz以上,上述结构尺寸可以满足极高的测试精度。
为了获得更加准确的测试结果,可以设计一个结构与通用匹配件110结构相同的校准件,通过校准件对通用匹配件110进行校准。
作为本公开的第二个方面,提供一种测试系统,如图2所示,所述测试系统包括网络分析仪300和两个测试结构件200,其中,所述测试结构件为本公开所提供的上述测试结构件,其中一个所述测试结构件的信号传输线与所述网络分析仪的端口1和端口2电连接,另一个所述测试结构件的信号传输线与所述网络分析仪的端口3和端口4电连接。
如上文中所述,两个测试结构件中的一个(例如,图2中左侧的测试结构件)将连接器200与网络分析仪的端口1和端口2电连接、两个测试结构件中的另一个将连接器200与网络分析仪的端口1和端口2电连接,以构成测试闭环。通过网络分析仪提供测试信号,可以确定连接器200的各项电学性能。
为了测试连接器200的性能,需要向连接器200的各个导电探针提供测试信号。相对于连接器200而言,网络分析仪300的尺寸比较大,从端口1和端口2、以及端口3和端口4引出的导线也较粗,无法直接与连接器200相连。在本公开所提供的测试结构件中,通过信号传输线130可以将网络分析仪输出的测试信号传输给连接器。具体地,多个信号传输线130的第一端直接与网络分析仪300引出的导线电连接。相邻信号传输线130的第一端之间的间隔较大,适于配置网络分析仪300引出的导线。相邻信号传输线130的第二端之间的间隔与待测试的连接器的导电探针之间的间隔相匹配,适于与连接器200的导电探针电连接。这样,通过测试结构件可以实现连接器200与网络分析仪300的电连接。在测试连接器200上设置参考平面、信号传输线130穿过阻抗调节部122,可以避免信号传输线130之间短路,并完成测试。
对于网络分析仪300而言,可以通过去嵌入的方式获取连接器的高速性能。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (16)

  1. 一种测试结构件,所述测试结构件包括通用匹配件、连接器匹配件、多条信号传输线和至少一个接地信号线,其中
    所述通用匹配件包括匹配平面和与所述匹配平面相对的参考面,所述接地信号线与所述参考面电连接;
    所述连接器匹配件包括参考壳体和阻抗调节部,所述参考壳体的顶端面与所述参考面电连接,待测试的连接器的导电探针能够在所述参考壳体的底端面的任意位置插入所述参考壳体中;
    所述接地信号线设置在所述阻抗调节部中,且所述接地信号线分别与所述参考壳体以及所述参考面电连接,所述信号传输线贯穿所述通用匹配件和所述阻抗调节部,所述信号传输线上用于与待测试的连接器的导电探针电连接的端面的朝向与所述底端面的朝向相同,所述信号传输线的第一端从所述匹配平面穿出,所述信号传输线的第二端从所述阻抗调节部的底端面穿出。
  2. 根据权利要求1所述的测试结构件,其中,所述参考壳体由第一导电材料制成,所述第一导电材料的硬度低于第一预设阈值,以使得所述导电探针能够插入所述参考壳体的底端面中。
  3. 根据权利要求2所述的测试结构件,其中,所述第一预设阈值的肖氏硬度取值在70至90之间,所述第一导电材料的电阻率不超过100Ω·m,所述第一导电材料的屏蔽效能不低于90dB。
  4. 根据权利要求1所述的测试结构件,其中,相邻两个所述信号传输线的第二端之间的间隔与待测试的连接器的相邻两个导电探针之间的间隔相匹配,且相邻两个信号传输线的第一端之间的间隔大于该相邻两个信号传输线的第二端之间的间隔。
  5. 根据权利要求4所述的测试结构件,其中,
    所述信号传输线包括电连接的第一信号传输部和第二信号传输部,所述第一信号传输部贯穿所述通用匹配件,所述第二信号传输部贯穿所述阻抗调节部中;
    所述第一信号传输部的第一端形成为所述信号传输线的第一端,所述第一信号传输部的第二端位于所述参考面上,相邻两个所述第一信号传输部的第一端之间的间距大于该相邻两个所述第一信号传输部的第二端之间的间距,所述第二信号传输部的第一端与包括该第二信号传输部的信号传输线的第一信号传输部的第二端电连接,所述第二信号传输部的第二端形成为所述信号传输线的第二端。
  6. 根据权利要求5所述的测试结构件,其中,所述通用匹配件包括第一板部和第二板部,所述第一板部的顶主表面形成为所述匹配面,所述第二板部由金属材料制成,所述第二板部的第一侧面与所述第一板部的底主表面相连,所述第二板部的第二侧面形成为所述参考面,所述第一侧面和所述第二侧面相对设置,所述第一信号传输部与所述第二板部绝缘间隔。
  7. 根据权利要求6所述的测试结构件,其中,所述第二板部包括沿其厚度方向叠置的多个子板。
  8. 根据权利要求5至7中任意一项所述的测试结构件,其中,所述第二信号传输部包括导电连接部和探针连接部,所述导电连接部由金属材料制成,所述导电连接部的第一端与第一信号传输部电连接,所述导电连接部的第二端与所述探针连接部的第一端电连接,所述探针连接部设置为供所述连接器的导电探针插入、并与插入的导电探针电连接。
  9. 根据权利要求8所述的测试结构件,其中,所述探针连接部由硬度不超过第二预设阈值的第二导电材料制成。
  10. 根据权利要求9所述的测试结构件,其中,所述第二预设阈值的肖氏硬度取值在30到50之间,所述第二导电材料的电阻率不超过0.05Ω·m。
  11. 根据权利要求9所述的测试结构件,其中,所述第二信号传输部还包括屏蔽管,所述屏蔽管套设在所述探针连接部的外部,并与所述导电连接部固定连接。
  12. 根据权利要求8所述的测试结构件,其中,所述探针连接部包括导电圆筒部和多个弹性导电接触片,所述导电圆筒部的一端与所述导电连接部电连接,所述弹性导电接触片的一端形成在所述导电圆筒部的另一端,多个所述弹性导电接触片的另一端向所述导电圆筒部的中心轴线聚拢,且多个所述弹性导电接触片的另一端之间存在间隙,以供所述导电探针插入。
  13. 根据权利要求12所述的测试结构件,其中,所述弹性导电接触片包括弹性片本体和设置在所述弹性片本体内表面上的导电保护件,所述弹性片本体的一端形成为所述弹性导电接触片的一端,所述导电保护件设置在所述弹性片本体的另一端,以共同形成弹性导电接触片的另一端。
  14. 根据权利要求1至7中任意一项所述的测试结构件,其中,所述阻抗调节部的介电常数在2至3之间。
  15. 根据权利要求14所述的测试结构件,其中,所述阻抗调节部为形成在所述参考壳体中的空腔。
  16. 一种测试系统,所述测试系统包括网络分析仪和两个测试结构件,所述测试结构件为权利要求1至15中任意一项所述的测试结构件,其中一个所述测试结构件的信号传输线与所述网络分析仪的正极导线电连接,另一个所述测试结构件的信号传输线与所述网络分析仪的负极导线电连接。
PCT/CN2022/080659 2021-07-14 2022-03-14 测试结构件和测试系统 WO2023284314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110793721.2A CN115616455A (zh) 2021-07-14 2021-07-14 测试结构件和测试系统
CN202110793721.2 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023284314A1 true WO2023284314A1 (zh) 2023-01-19

Family

ID=84855479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080659 WO2023284314A1 (zh) 2021-07-14 2022-03-14 测试结构件和测试系统

Country Status (2)

Country Link
CN (1) CN115616455A (zh)
WO (1) WO2023284314A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214959A (en) * 1990-07-02 1993-06-01 Mitsubishi Denki K.K. Idle position detection switch for engines
US20080102676A1 (en) * 2006-10-31 2008-05-01 Kenneth W Johnson Zif connection accessory and zif browser for an electronic probe
CN111505483A (zh) * 2020-04-27 2020-08-07 苏州浪潮智能科技有限公司 一种连接器接口的测试治具及设备
CN112448184A (zh) * 2019-08-14 2021-03-05 泰科电子(上海)有限公司 连接器转接头和连接器测试系统
CN112751246A (zh) * 2020-12-31 2021-05-04 罗森伯格亚太电子有限公司 一种转接器
CN213584498U (zh) * 2020-09-24 2021-06-29 肖敏 连接器测试转接装置
CN113078521A (zh) * 2021-02-23 2021-07-06 中国航天时代电子有限公司 一种Gbit级高速总线信号完整性测试的转接装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214959A (en) * 1990-07-02 1993-06-01 Mitsubishi Denki K.K. Idle position detection switch for engines
US20080102676A1 (en) * 2006-10-31 2008-05-01 Kenneth W Johnson Zif connection accessory and zif browser for an electronic probe
CN112448184A (zh) * 2019-08-14 2021-03-05 泰科电子(上海)有限公司 连接器转接头和连接器测试系统
CN111505483A (zh) * 2020-04-27 2020-08-07 苏州浪潮智能科技有限公司 一种连接器接口的测试治具及设备
CN213584498U (zh) * 2020-09-24 2021-06-29 肖敏 连接器测试转接装置
CN112751246A (zh) * 2020-12-31 2021-05-04 罗森伯格亚太电子有限公司 一种转接器
CN113078521A (zh) * 2021-02-23 2021-07-06 中国航天时代电子有限公司 一种Gbit级高速总线信号完整性测试的转接装置

Also Published As

Publication number Publication date
CN115616455A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
JP5185625B2 (ja) 反射低減信号モジュール
US7977583B2 (en) Shielded cable interface module and method of fabrication
KR101166953B1 (ko) 고주파 커넥터 조립체
US6501278B1 (en) Test structure apparatus and method
JP5254919B2 (ja) 高性能テスターインタフェースモジュール
US8911266B2 (en) Contact holder
US9806474B2 (en) Printed circuit board having high-speed or high-frequency signal connector
KR101808665B1 (ko) 초단파 응용을 위한 공동 배면을 갖는 장치 인터페이스 기판
JP3145267U (ja) 接地のない高速差動伝送構造体
TW201723488A (zh) 同軸積體電路測試插座
TWI438438B (zh) 具有高頻內插器之測試系統
CN102667499A (zh) 信号感测装置和电路板
WO2023284314A1 (zh) 测试结构件和测试系统
US9316685B2 (en) Probe card of low power loss
EP3300178A1 (en) Magnetic rf connectors
US8890559B2 (en) Connector and interface apparatus comprising connector
TWI591346B (zh) Transmission lines and inspection fixture
US11175311B1 (en) High-frequency layered testing probe
CN220368259U (zh) 用于测试通道物理层c-phy信号的接口板及装置
US10267838B1 (en) Current sensor having microwave chip resistors in parallel radial arrangement
WO2023226449A1 (zh) 测量连接器的结构件及pcb
US12105117B2 (en) Electrical component inspection instrument
US7459921B2 (en) Method and apparatus for a paddle board probe card
CN117368820A (zh) 一种校准装置、差分夹具以及相关装置和系统
TWI481878B (zh) Probe card structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE