WO2023284305A1 - 激光剥离led外延衬底的设备及方法 - Google Patents

激光剥离led外延衬底的设备及方法 Download PDF

Info

Publication number
WO2023284305A1
WO2023284305A1 PCT/CN2022/078632 CN2022078632W WO2023284305A1 WO 2023284305 A1 WO2023284305 A1 WO 2023284305A1 CN 2022078632 W CN2022078632 W CN 2022078632W WO 2023284305 A1 WO2023284305 A1 WO 2023284305A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
led wafer
led
wafer
carrying
Prior art date
Application number
PCT/CN2022/078632
Other languages
English (en)
French (fr)
Inventor
范伟宏
毕京锋
郭茂峰
操晓敏
谢安军
赵进超
金全鑫
Original Assignee
厦门士兰明镓化合物半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门士兰明镓化合物半导体有限公司 filed Critical 厦门士兰明镓化合物半导体有限公司
Publication of WO2023284305A1 publication Critical patent/WO2023284305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the invention relates to the technical field of laser lift-off, in particular to a device and method for laser lift-off of an LED epitaxial substrate.
  • the vertical structure LED chip Compared with the LED chip technology of the front-mounted structure and the flip-chip structure, the vertical structure LED chip has significant advantages: on the one hand, because it transfers the epitaxial layer from the epitaxial substrate (such as sapphire) with poor insulation and heat dissipation to the bond with excellent thermal conductivity On the substrate, the LED chip can withstand higher operating current to obtain higher brightness; on the other hand, the vertical structure LED chip is easy to micro-nano process the surface, reducing the nitride material (GaN, AlN and its ternary Alloy compound) and the total reflection of the air interface can increase the light extraction efficiency of the LED chip, which is of great help to the improvement of brightness and light efficiency.
  • the epitaxial substrate such as sapphire
  • the vertical structure LED chip is easy to micro-nano process the surface, reducing the nitride material (GaN, AlN and its ternary Alloy compound) and the total reflection of the air interface can increase the light extraction efficiency of the LED chip, which
  • the mainstream substrate transfer technology for vertical structure LED chips uses a silicon substrate or a metal substrate as the bonding substrate.
  • Thick metal substrates can alleviate the warping phenomenon after bonding with LED wafers, but due to the high cost of metal substrates, and the cutting of thicker metal substrates requires the use of lasers with high power and small spot size ( Prevent the laser spot from causing damage to the chip area around the dicing line), further increase equipment investment, and limit the large-scale application of LED chips based on the vertical structure of the metal substrate.
  • Silicon substrates are less conductive and thermally conductive than metal substrates, and the cost is relatively low and the cutting process is very mature, so it is more advantageous in terms of material and process costs.
  • the lattice mismatch and thermal mismatch of silicon and gallium nitride materials are large, and it is necessary to use a metal bonding layer for bonding at a relatively high temperature (greater than 200°C) to obtain better mechanical strength. Due to the lattice mismatch and thermal mismatch of silicon, gallium nitride, and sapphire materials, the temperature drop after bonding will inevitably lead to warping of the LED wafer, and the warping problem of the LED wafer is more common in larger sizes such as 6-inch and above LEDs. In the wafer, it will be aggravated. Although the method of thinning the sapphire substrate and thickening the silicon substrate can improve this phenomenon to a certain extent, this solution will increase the process cost and waste of unnecessary materials.
  • the object of the present invention is to provide a device and method for laser stripping LED epitaxial substrates, so as to solve the problem of low production efficiency and yield rate of existing laser stripping LED epitaxial substrates.
  • the present invention provides a device for laser stripping LED epitaxial substrates, comprising:
  • the wafer carrying assembly includes a movable carrying platform, which is used to carry and fix the LED wafer;
  • a cover plate assembly including a cover plate capable of transmitting ultraviolet light, the cover plate is located above the carrying platform and can move in a direction close to or away from the carrying platform, so as to compress or release the LED wafer; and,
  • the laser component is used to emit at least one laser beam, the laser beam passes through the cover plate and irradiates onto the LED wafer and scans the LED wafer, so as to peel off the epitaxy of the LED wafer substrate.
  • the LED wafer is a vertical structure LED wafer.
  • the wafer carrying assembly also includes:
  • the heating unit is used to heat the carrying platform to a predetermined temperature.
  • the predetermined temperature is 25°C to 800°C.
  • a pressure in the range of 10kgf ⁇ 1000kgf is applied to the LED wafer.
  • the wafer carrying assembly further includes a first driving unit for driving the carrying table to move; and/or, the cover assembly further includes a second driving unit for driving the cover along the Move towards or away from the carrying platform.
  • both the bearing surface of the bearing platform and the side of the cover plate facing the bearing platform are flat surfaces.
  • the carrying platform has a groove for accommodating the LED wafer
  • the side of the cover plate facing the carrying platform has a protrusion
  • the cover plate moves in a direction close to the carrying platform , the protrusion enters the groove and presses the LED wafer.
  • both the inner wall of the groove and the outer wall of the protrusion are stepped, and the shape and size of the raised step match the shape and size of the step of the groove.
  • the carrying platform also has several adsorption holes for vacuum adsorption of the LED wafer.
  • the carrying assembly further includes a third driving unit and at least three thimbles located in the carrying platform, the vertices of at least three thimbles are not collinear, and the third driving unit is used to drive the The ejector pins lift or lower the LED wafer.
  • the laser assembly includes:
  • a light source module configured to emit a laser beam of a predetermined wavelength
  • a light splitting module configured to split the laser beam emitted by the light source module into at least two laser beams with the same energy distribution
  • the shaping module is used to shape at least two laser beams and irradiate them onto the LED wafer.
  • the laser component also includes:
  • the scanning projection module is used to control the laser beam to move along at least one predetermined track to scan the LED wafer.
  • the laser component also includes:
  • the splicing module is used to splice and irradiate the shaped at least two laser beams onto the LED wafer.
  • the light source module is an excimer laser or a DPSS laser, and the predetermined wavelength is 150nm-330nm.
  • the light spot of the laser beam is a point light spot or a line light spot.
  • the first image detection component is used to detect the mark on the LED wafer to obtain the position information of the LED wafer;
  • the second image detection component is used for real-time monitoring of the peeling situation of the epitaxial substrate of the LED wafer.
  • the material of the bearing surface of the bearing platform is one or more of anodized aluminum, stainless steel, silicon carbide or aluminum nitride.
  • the material of the cover plate is high-purity quartz, sapphire or aluminum nitride crystal.
  • the control component is used to control the movement of the carrying platform and/or the cover plate.
  • the upper and lower wafer assembly is used for placing the LED wafer on the carrier platform, and sequentially removing the stripped epitaxial substrate and the LED wafer.
  • the present invention also provides a method for performing laser peeling off of LED epitaxial substrates using the device for laser peeling off LED epitaxial substrates, comprising:
  • the cover plate moves in a direction close to the carrying platform until it presses the LED wafer;
  • the carrying table moves to realize the alignment of the LED wafer and the laser component
  • the laser assembly emits at least one laser beam and scans the LED wafer to peel off the epitaxial substrate of the LED wafer;
  • the cover moves in a direction away from the carrying platform, releases the LED wafer, and removes the stripped epitaxial substrate and the LED wafer from the carrying platform in turn.
  • the heating unit heats the stage to a predetermined temperature.
  • the carrier moves along a predetermined trajectory to enable the laser beam to scan the LED wafer; or, the laser beam moves along the predetermined trajectory to scan the LED wafer.
  • the cover plate can be used to press the LED wafer, which improves the warping problem of the LED wafer, so that the LED wafer is flatly fixed on the carrier table, and avoids some defects on the LED wafer during laser scanning.
  • the defocusing problem of the position thereby reducing the focus adjustment time during the laser scanning process, improving production efficiency, and avoiding cracks when the wafer warping position stress is realized during laser scanning, improving production yield; because the cover plate can Transmitting ultraviolet light will not affect the transmission of laser beams in the ultraviolet band.
  • the heating unit heats the carrier to a predetermined temperature, thereby melting the metal produced after the nitride absorbs the laser energy and decomposes, improving the laser stripping effect and rate.
  • the carrying platform has a groove for accommodating the LED wafer, and the LED wafer is limited by the groove, so that no adsorption holes are arranged on the carrying platform, which simplifies the structure.
  • the light splitting module uses the light splitting module to divide the laser beam emitted by the light source module into at least two laser beams with the same energy distribution, and then splice or move at least two laser beams on different paths (complementary graphics) and irradiate them on the LED wafer at the same time.
  • multiple laser beams have a larger unit area after splicing, which can improve the efficiency of laser stripping and will not cause energy waste; and the energy of the laser beam emitted by the light source module is reduced after splitting. There is no need to additionally set an attenuator in the laser component, which reduces the cost.
  • the material of the bearing surface of the bearing table is one or more of anodized aluminum, stainless steel, silicon carbide or aluminum nitride, so as to prevent the bearing surface from being uneven after being oxidized, thereby preventing the LED wafer from being fixed flatly on the Problems on the hosting platform.
  • FIG. 1 is a schematic structural diagram of an apparatus for laser stripping LED epitaxial substrates provided in Embodiment 1 of the present invention
  • Fig. 2 is a schematic structural diagram of a vertical structure deep ultraviolet LED wafer provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a green/blue/near-ultraviolet LED wafer with a vertical structure provided by Embodiment 1 of the present invention
  • FIG. 4a is a schematic diagram of scanning the LED wafer provided by Embodiment 1 of the present invention.
  • FIG. 4b is another schematic diagram of scanning the LED wafer provided by Embodiment 1 of the present invention.
  • FIG. 4c is another schematic diagram of scanning the LED wafer provided by Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of a method for laser peeling off an LED epitaxial substrate according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for laser stripping LED epitaxial substrates provided in Embodiment 2 of the present invention.
  • 101-carrying platform 101a-groove; 102-first drive unit; 103-thimble; 104-third drive unit; 105-through hole; 106-adsorption hole; 201-cover plate; 301-light source module; 302-optical mechanism; 303a-first laser beam; 303b-second laser beam; 401-first image detection component; 402-second image detection component; 500-LED wafer ;
  • 510-Vertical structure deep ultraviolet LED wafer 520-Vertical structure green/blue/near ultraviolet LED wafer; 512, 522-Bond substrate; 513, 523-Functional layer; 514, 524-Epitaxial layer; 515-Buffer 516, 526 epitaxial substrate; 514a, 524a—first semiconductor layer; 514b, 524c—quantum well layer; 514c, 524b—second semiconductor layer.
  • FIG. 1 is a schematic structural diagram of the equipment for laser stripping LED epitaxial substrates provided in this embodiment.
  • the equipment for laser stripping LED epitaxial substrates includes a wafer carrier assembly, a cover plate assembly, a laser assembly, a loading and unloading assembly, and a control assembly.
  • the wafer carrying assembly includes a carrying table 101 , a first driving unit 102 , at least three ejector pins 103 , a third driving unit 104 and a heating unit.
  • the carrying platform 101 is used to carry and fix the LED wafer 500 .
  • the upper surface of the carrying platform 101 is its carrying surface, and the LED wafer 500 is placed on the carrying surface of the carrying platform 101 .
  • the LED wafer 500 is a vertical structure LED wafer, for example, the LED wafer 500 can be a vertical structure deep ultraviolet LED wafer or a vertical structure green/blue/near ultraviolet LED wafer, etc., and its size can be 2 inches Or 8 inches, etc., the present invention is not limited.
  • FIG. 2 is a schematic structural diagram of a vertical deep ultraviolet LED wafer 510 provided in this embodiment.
  • the vertical deep ultraviolet LED wafer 510 includes a bonding substrate 512 , a functional layer 513 , an epitaxial layer 514 , a buffer layer 515 and an epitaxial substrate 516 stacked sequentially from bottom to top.
  • the bonding substrate 512 may be a metal substrate or a silicon substrate.
  • the functional layer 513 is, for example, a combination of film layers such as a mirror layer, a metal protection layer, an insulating protection layer, and electrodes.
  • the functional layer 513 is permanently bonded to the bonding substrate 512 .
  • the epitaxial layer 514 includes a first semiconductor layer 514a, a quantum well layer 514b and a second semiconductor layer 514c stacked sequentially from bottom to top.
  • the material of the buffer layer 515 is AlN
  • the first semiconductor layer 514a The material of the second semiconductor layer is P-AlGaN
  • the material of the second semiconductor layer is N-AlGaN.
  • FIG. 3 is a schematic structural diagram of a green/blue/near-ultraviolet LED wafer 520 with a vertical structure provided in this embodiment.
  • the vertical structure green/blue/near-ultraviolet LED wafer 520 includes a bonding substrate 522, a functional layer 523, an epitaxial layer 524, and an epitaxial substrate 526 stacked sequentially from bottom to top.
  • the positions and structures of the bonding substrate 522 and the functional layer 523 are similar to those of the vertical deep ultraviolet LED wafer 510 , and will not be repeated here.
  • the epitaxial layer 524 includes a first semiconductor layer 524a, a second semiconductor layer 524b, and a quantum well layer 524c stacked sequentially from bottom to top.
  • the material of the first semiconductor layer 514a is P-GaN
  • the second The material of the second semiconductor layer is N-GaN.
  • the bearing surface of the bearing platform 101 is a flat surface, and the bearing platform 101 has an adsorption hole 106 inside, and the adsorption hole 106 is located in the bearing platform 101 and runs through the bearing platform 101,
  • the suction hole 106 is connected with a vacuum device, and when the LED wafer 500 is placed on the carrying surface of the carrier table 101, the vacuum device will draw a vacuum through the suction hole 106, and the inside of the suction hole 106 Negative pressure is generated to fix the LED wafer 500 on the carrier 101 .
  • the number of the adsorption holes 106 may be one or more, and the diameter of the adsorption holes 106 may be 10um ⁇ 100um.
  • the material of the bearing surface of the bearing platform 101 is one or more of materials with stable performance and high thermal conductivity such as anodized aluminum, stainless steel, silicon carbide or aluminum nitride, so as to prevent the bearing platform 101 from After being oxidized, the bearing surface is uneven, thereby avoiding the problem that the LED wafer 500 cannot be fixed on the bearing platform 101 smoothly.
  • the control assembly is electrically connected to the first drive unit 102, and the control assembly controls the first drive unit 102 to drive the carrying table 101 to move in the X/Y/Z direction and/or Or rotate in the XY plane, at this time, the LED wafer 500 also moves with the carrier 101 . It can be seen that the position of the LED wafer 500 can be changed by controlling the first driving unit 102 to drive the carrier 101 to move by the control component.
  • the heating unit is arranged in the carrying table 101 for heating the carrying table 101 , the carrying surface of the carrying table 101 can conduct heat, so the temperature of the LED wafer 500 can be increased.
  • the heating unit may be, for example, a structure such as a heating wire disposed in the carrying platform 101 , which is not limited in the present invention.
  • the heating unit can heat the carrying platform 101 to a predetermined temperature as required, and the predetermined temperature is, for example, 25°C-800°C.
  • the carrying platform 101 has at least three through holes 105 , and one ejector pin 103 is located in one of the through holes 105 , that is, the carrying platform 101 has at least three ejector pins 103 .
  • the control assembly is electrically connected to the third driving unit 104, and the control assembly can control the third driving unit 104 to drive at least three thimbles 103 to move synchronously along the Z direction, thereby jacking up or lowering the LED wafer 500.
  • the apexes of at least three ejector pins 103 are not collinear, so the ejector pins 103 can lift up or put down the LED wafer 500 smoothly.
  • the cover assembly includes a second driving unit 202 and a cover 201 capable of transmitting ultraviolet light.
  • the cover plate 201 is located above the carrying platform 101, and the greater the ultraviolet light transmittance of the cover plate 201, the better. Therefore, the cover plate 201 can be high-purity quartz, sapphire or aluminum nitride crystal, etc. Materials that transmit UV light.
  • the control assembly is electrically connected to the second driving unit 202, and the control assembly can control the second driving unit 202 to drive the cover plate 201 to move toward or away from the carrying platform 101 to press Tighten or release the LED wafer 500.
  • the cover plate 201 presses the LED wafer 500 it can also apply a pressure within the range of 10kgf to 1000kgf to the LED wafer 500 at the same time, thereby greatly improving the problem of warpage of the LED wafer 500 , so that the LED wafer 500 is flatly fixed on the carrier platform 101 .
  • the side of the cover plate 201 facing the carrying platform 101 is also a flat surface, therefore, when the cover plate 201 presses the LED wafer 500, the carrying surface of the carrying platform 101 and the carrying surface of the carrying platform 101 The side of the cover plate 201 facing the carrying platform 101 can be attached to the upper and lower surfaces of the LED wafer 500 respectively.
  • the laser assembly is located above the cover plate 201 , and includes a light source module 301 and an optical mechanism 302 , and the optical mechanism 302 includes a spectroscopic module, a shaping module, and a scanning projection module.
  • the light source module 301 is used to emit a laser beam with a predetermined wavelength.
  • the light source module 301 is one of excimer lasers or DPSS lasers, and the excimer lasers can be KrF excimer lasers, ArF excimer lasers or F2 excimer lasers, etc., which can realize 150nm- Laser beam output of a predetermined wavelength in the 330nm wavelength range.
  • the light splitting module can divide the laser beam emitted by the light source module 301 into at least two laser beams with the same energy distribution, and the shaping module can shape at least two laser beams into laser beams of a predetermined shape and then pass through the laser beams.
  • the cover plate 201 is irradiated onto the LED wafer 500 at the same time, and the scanning projection module can control at least two laser beams to move along at least one predetermined track to scan the LED wafer 500, thereby scanning the The epitaxial substrate of the LED wafer 500 .
  • the optical mechanism 302 further includes a splicing module, which is used to splice the shaped at least two laser beams and irradiate them onto the LED wafer. In this way, at least two laser beams are moving along the same predetermined trajectory.
  • each laser beam moves along one of the predetermined trajectories, and each laser beam
  • the corresponding predetermined trajectories may be the same or different.
  • FIG. 4a is a schematic diagram of scanning the LED wafer 500 provided in this embodiment.
  • the light splitting module divides the laser beam emitted by the light source module 301 into two laser beams.
  • the two laser beams formed by splitting are referred to as the first laser beam 303a and the second laser beam 303b.
  • the shaping module shapes the first laser beam 303a and the second laser beam 303b into a linear beam
  • the splicing module shapes the first laser beam 303a and the second laser beam 303b along the Y direction Stitched together seamlessly.
  • two linear light spots are formed.
  • the sum of the combined widths of the first laser beam 303a and the second laser beam 303b along the Y direction is greater than or equal to the diameter of the LED wafer 500, so that the scanning projection module controls the first The first laser beam 303 a and the second laser beam 303 b move back and forth along the X direction synchronously, so as to scan the LED wafer 500 .
  • FIG. 4 b is another schematic diagram of scanning the LED wafer 500 provided in this embodiment.
  • the shaping module can also shape the first laser beam 303a and the second laser beam 303b into point beams
  • the splicing module can shape the first laser beam 303a along the X direction and the second laser beam 303b are seamlessly spliced together.
  • the scanning projection module controls the first laser beam 303a and the second laser beam 303b to move synchronously along the S-shaped trajectory, so as to scan the LED wafer 500 .
  • FIG. 4c is another schematic diagram of scanning the LED wafer 500 provided in this embodiment.
  • the shaping module can also shape the first laser beam 303a and the second laser beam 303b into point beams, and the first laser beam 303a and the second laser beam 303b are not Splicing, but directly irradiating on the LED wafer 500, and the first laser beam 303a and the second laser beam 303b have a gap in the X direction, and the positions in the Y direction are the same.
  • the scanning projection module can scan the LED wafer 500 by controlling the first laser beam 303 a and the second laser beam 303 b to move relative to each other along the X direction and synchronously along the Y direction.
  • the energy of the split laser beam is reduced, and there is no need to additionally set an attenuator in the laser component, which reduces the cost; and,
  • the laser beam formed after splicing has a larger unit area, which can improve the efficiency of laser stripping and will not cause energy waste.
  • the light splitting unit may be an optical element capable of splitting light, such as a grating.
  • the laser assembly may only include the light source module 301, but since the energy of the laser beam emitted by the light source module 301 is very high, an attenuator may be added in the optical path of the laser beam, thereby Avoid damage to the epitaxial layer of the LED wafer 500 during the laser lift-off process.
  • the scanning projection module can also be omitted.
  • the control component controls the first driving unit 102 to drive the carrying platform 101 to move along a predetermined track, and the LED crystal can also be realized. A scan of 500 circles.
  • the laser component may further include a laser spot quality analysis module, configured to detect the energy level and energy distribution uniformity of the laser beam before scanning.
  • the energy distribution of the laser beam can be a flat-top distribution or a Gaussian distribution.
  • the laser component may further include a laser power meter, and the laser power meter may detect the power of the laser beam.
  • a first image detection component 401 and a second image detection component 402 are disposed above the cover plate 201 .
  • the first image detection component 401 is used to detect the mark on the LED wafer 500 to obtain the position information of the LED wafer 500
  • the first image detection component 401 is electrically connected with the control component connected
  • the control component can control the first drive unit 102 to drive the stage 101 to move according to the position information detected by the first image detection component 401 , so as to realize the alignment of the LED wafer 500 .
  • the control component can control the first driving unit 102 to drive the carrying table 101 to move in the X/Y direction or rotate in the XY plane, so that the LED wafer 500 is positioned on the laser component.
  • control component can also control the first driving unit 102 to drive the carrier 101 to move along the Z direction, so as to make the LED wafer 500 and the laser component focus.
  • the second image detection component 402 is used to photograph the entire surface of the LED wafer 500 in real time, so as to monitor the delamination of the epitaxial substrate of the LED wafer 500 in real time.
  • both the first image detection component 401 and the second image detection component 402 are high-resolution CCD image detectors, and their light sources can be multi-wavelength visible light or infrared LED light sources.
  • the upper and lower wafer assembly is electrically connected to the control assembly, and the control assembly can control the upper and lower wafer assembly to place the LED wafer 500 on the carrier table 101, and place the peeled LED wafer 500 The epitaxial substrate and the LED wafer 500 are removed from the carrier 101 .
  • this embodiment also provides a method for performing laser lift-off of an LED epitaxial substrate by using the device for laser lift-off of an LED epitaxial substrate.
  • Fig. 5 is a flow chart of the method for laser peeling off the LED epitaxial substrate provided in this embodiment. As shown in Fig. 5, the method for laser peeling off the LED epitaxial substrate includes:
  • Step S100 placing the LED wafer 500 on the carrier platform 101;
  • Step S200 the cover plate 201 moves in a direction close to the carrying platform 101 until it presses the LED wafer 500;
  • Step S300 the carrying table 101 moves to realize the alignment of the LED wafer 500 and the laser assembly;
  • Step S400 the laser assembly emits at least one laser beam and scans the LED wafer 500 to peel off the epitaxial substrate of the LED wafer 500;
  • Step S500 the cover plate 201 moves away from the carrying platform 101, releases the LED wafer 500, and sequentially removes the peeled epitaxial substrate and the LED from the carrying platform 101 Wafer 500.
  • step S100 is firstly executed, the control component controls the third drive unit 104 to drive the thimble 103 to rise higher than the carrier table 101, and the upper and lower chip components place the LED wafer 500 on The epitaxial substrate of the LED wafer 500 is placed on the thimble pin 103 facing upward. The thimble 103 descends, and the LED wafer 500 is placed on the carrier platform 101 , and the LED wafer 500 is adsorbed by the suction hole 106 .
  • the heating unit heats the carrying platform 101 to increase the temperature of the LED wafer 500 .
  • the heating time is relatively long.
  • the LED wafer 500 can be heated before placing the LED wafer 500 on the carrier platform 101.
  • the carrier platform 101 is heated; on the contrary, when the temperature of the carrier platform 101 needs to be kept low, the carrier platform 101 can also be heated in a subsequent step.
  • the control component controls the second driving unit 202 to drive the cover plate 201 to move in a direction close to the carrying table 101 until it presses the LED wafer 500, and at the same time moves toward the LED wafer 500.
  • the circle 500 exerts pressure so that the LED wafer 500 is flatly fixed on the carrier platform 101 .
  • Step S300 is executed, the first image detection component 401 starts to detect the position information of the LED wafer 500, and sends the detected position information to the control component.
  • the control component judges whether the LED wafer 500 is aligned with the laser component according to the detection result of the first image detection component 401, when the LED wafer 500 is not within the scanning range of the laser component and/or Or when the LED wafer 500 is out of focus with the laser assembly, the control assembly controls the first drive unit 102 to drive the carrier 101 to move in the X/Y/Z directions and/or rotate in the XY plane until the LED wafer 500 is aligned with the laser assembly.
  • Execute step S400 at this time, the carrying table 101 has reached the predetermined temperature, the scanning projection module controls the spliced laser beam to move along the predetermined trajectory to scan the LED wafer 500, the LED The nitride on the interface between the epitaxial substrate and the epitaxial layer of the wafer 500 is thermally decomposed under the action of a high-energy laser to generate metal and nitrogen, wherein the metal melts at the predetermined temperature, so the LED crystal can be peeled off. Round 500 epitaxial substrates.
  • the first driving unit 102 may also be controlled by the control component to drive the carrying table 101 to move along the predetermined trajectory, so that the laser beam after splicing is directed toward the LED wafer. 500 is scanned until the epitaxial substrate of the LED wafer 500 is peeled off.
  • the second image detection component 402 monitors the peeling of the epitaxial substrate of the LED wafer 500 in real time, and it can be judged according to the detection result of the second image detection component 402 For the peeling situation of the epitaxial substrate, supplementary scanning can be performed in time for regions with poor peeling effect.
  • Step S500 is executed, the second driving unit 202 drives the cover plate 201 to move away from the carrying platform 101 , and after the cover plate 201 leaves, the pressure on the LED wafer 500 disappears.
  • the control component controls the third drive unit 104 to drive the thimble pin 103 to lift up the LED wafer 500, and the upper and lower chip components first remove the peeled epitaxial substrate and put it in the recycling station, and then place it on the recovery station. The remaining part of the LED wafer 500 is removed and placed in a wafer box.
  • the laser component uses a 193nm ArF excimer laser as the light source module 301, and the cover plate 201 apply a pressure greater than 400kgf to the vertical structure deep ultraviolet LED wafer 510, and heat the carrier 101 to 600°C, so as to melt the Al generated after the thermal decomposition of the buffer layer 515, so as to peel off the epitaxial substrate.
  • the laser component uses a 248nm KrF excimer laser as the light source module 301, and the cover The plate 201 applies a pressure greater than 200kgf to the vertical deep-ultraviolet LED wafer 510, and heats the stage 101 to 150° C. to melt the Ga metal decomposed from the buffer layer 525 to peel off the epitaxial substrate.
  • FIG. 6 is a schematic structural diagram of the laser lift-off LED epitaxial substrate provided in this embodiment.
  • the difference from Embodiment 1 is that in this embodiment, the carrying platform 101 has a groove 101 a for accommodating the LED wafer 500 , and the cover plate 201 faces the carrying platform.
  • One side of 101 has a protrusion 201a, and when the cover plate 201 moves toward or away from the carrying platform 101, the protrusion 201a enters the groove 101a and presses the LED wafer 500 tightly.
  • the shape of the groove 101a and the protrusion 201a may both be circular, and the outer diameters of the groove 101a and the protrusion 201a match. In this way, the protrusion 201a can just enter into the groove 101a and cooperate with the groove 101a to fix the LED wafer 500 .
  • the shape of the groove 101a and the protrusion 201a may also be different, for example, the shape of the groove 101a is circular, while the shape of the protrusion 201a is rectangular;
  • the outer diameters of the groove 101a and the protrusion 201a may not match, as long as the outer diameter of the protrusion 201a is smaller than the outer diameter of the groove 101a.
  • the inner wall of the groove 101a and the outer wall of the protrusion 201a are stepped, and have two steps.
  • the shape and size of the steps are matched, and when the LED wafer 500 is not placed in the groove 101a, the protrusion 201a enters the groove 101a and coincides with the groove 101a.
  • LED wafers 500 of two sizes can be accommodated in the groove 101a, and the cover plate 201 can also realize the pressing of LED wafers of different sizes. Wider application.
  • the inner wall of the groove 101a and the outer wall of the protrusion 201a are not limited to having two steps, and may also have three or four steps, so that LED wafers of more sizes can be applied, and no longer One by one examples.
  • the LED wafer 500 can be limited by the groove 101a, and the LED wafer 500 can be placed on After the carrying platform 101 is placed on, even if the cover plate 201 has not pressed the LED wafer 500 tightly, the LED wafer 500 will not shake randomly, so it is not necessary to set the adsorption hole 106 on the carrying platform 101, The structure is simplified.
  • the carrying platform 101 can also be provided with the adsorption holes 106, which does not affect the implementation of the present invention.
  • the cover plate can be used to press the LED wafer during laser stripping, which improves the warping problem of the LED wafer and makes the LED wafer It is flatly fixed on the carrier table, avoiding the defocus problem of certain positions on the LED wafer during laser scanning, thereby reducing the time for focus adjustment during laser scanning, improving production efficiency, and avoiding the laser scanning of the wafer Cracks appear when the warping position stress is realized, which improves the production yield; because the cover plate can transmit ultraviolet light, it will not affect the transmission of laser beams in the ultraviolet band.
  • the heating unit heats the carrying platform to a predetermined temperature, thereby melting the metal produced after the nitride absorbs laser energy and decomposes, and improves the laser lift-off effect and rate. Furthermore, there is a groove for accommodating the LED wafer on the carrying platform, and the LED wafer is limited by the groove, so that no adsorption holes are arranged on the carrying platform, which simplifies the structure.
  • the laser beam emitted by the light source module is divided into at least two laser beams with the same energy distribution by using the light splitting module, and then the at least two laser beams are spliced or moved to different paths (complementary patterns) and irradiated onto the LED wafer at the same time,
  • the splicing of multiple laser beams has a larger unit area, which can improve the efficiency of laser stripping and will not cause energy waste; and the energy of the laser beam emitted by the light source module is reduced after splitting , no additional attenuator needs to be set in the laser component, which reduces the cost.
  • the material of the carrying surface of the carrying table is one or more of anodized aluminum, stainless steel, silicon carbide or aluminum nitride, so as to prevent the carrying surface from being uneven after being oxidized, thereby avoiding that the LED wafer cannot be fixed smoothly Problems on the hosting platform.
  • each embodiment in this specification is described in a progressive manner, and each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for related parts, please refer to the description of the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Led Devices (AREA)

Abstract

一种激光剥离LED外延衬底的设备及方法,在激光剥离时可采用盖板(201)压紧LED晶圆(500),改善了LED晶圆的翘曲问题,使得LED晶圆被平整地固定在承载台(101)上,避免激光扫描时LED晶圆上的某些位置的离焦问题,从而减少激光扫描过程中焦点调整的时间,提高了生产效率,并且可以避免激光扫描时晶圆翘曲位置应力导致的裂纹现象,提高了生产良率;由于盖板能够透射紫外光,不会影响紫外波段的激光光束透过。

Description

激光剥离LED外延衬底的设备及方法
本申请要求了申请日为2021年07月14日、申请号为202110796299.6、名称为“激光剥离LED外延衬底的设备及方法”的中国发明申请的优先权,并且通过参照上述中国发明申请的全部说明书、权利要求、附图和摘要的方式,将其引用于本申请。
技术领域
本发明涉及激光剥离技术领域,尤其涉及一种激光剥离LED外延衬底的设备及方法。
背景技术
垂直结构LED芯片相比正装结构和倒装结构的LED芯片技术有显著的优势:一方面,由于其将外延层从绝缘和散热差的外延衬底(如蓝宝石)转移到导电导热能力优异的键合衬底上,使得LED芯片可承受更高的工作电流从而获得更高的亮度;另一方面,垂直结构LED芯片易将表面进行微纳加工,降低氮化物材料(GaN、AlN及其三元合金化合物)和空气界面的全反射,能增加LED芯片的光提取效率,对亮度和光效提升有较大的帮助。目前垂直结构LED芯片主流的衬底转移技术是采用硅衬底或金属衬底作为键合衬底,金属衬底的优势是可以提供更好的导电导热能力,并且由于其延伸性较好,较厚的金属衬底可以缓解和LED晶圆键合后所产生的翘曲现象,但由于金属衬底成本较高,且较厚的金属衬底的切割加工需要使用大功率小光斑尺寸的激光器(防止激光光斑对切割道周边的芯片区域造成损伤),进一步增加了设备投资,限制了基于金属衬底垂直结构LED芯片的大规模应用。
硅衬底导电导热能力较金属衬底差一些,成本相对较低且切割加工工艺非常成熟,因此从材料和工艺成本对比上更有优势。然而硅与氮化镓材料的晶格失配和热失配均较大,需要在相对较高的温度条件(大于 200℃)下采用金属粘合层进行键合以获得较好的机械强度,由于硅和氮化镓以及蓝宝石材料的晶格失配和热失配问题,键合后降温必然会导致LED晶圆翘曲,且LED晶圆翘曲问题在更大尺寸如6英寸及以上LED晶圆中将会加剧,虽然采用减薄蓝宝石衬底以及加厚硅衬底方式在一定程度上能够改善这个现象,但是这种方案会增加工艺成本和不必要物料的浪费问题。
在进行LED外延层从外延衬底上剥离时,需要采用激光扫描外延层和外延衬底界面处,在激光扫描过程中,通常采用光子能量大于外延层禁带宽度的紫外光波段激光光束,激光透过蓝宝石聚焦在蓝宝石和氮化物的界面处,使得氮化物热分解,加热熔化氮化物分解后产生的金属,进而能够实现外延衬底的剥离。然而LED晶圆翘曲时无法被平整地固定在承载台上,从而导致LED晶圆在激光扫描时总是有某些位置离焦,为了达到剥离外延衬底的目的,需要增加焦点调整时间,增加剥离过程时间,影响生产效率;并且界面处氮化物吸收激光光束高热会急速分解剧烈膨胀而产生的大量气体和等离子体形成冲击力,导致翘曲位置容易出现裂纹,生产良率降低。
发明内容
本发明的目的在于提供一种激光剥离LED外延衬底的设备及方法,以解决现有的激光剥离LED外延衬底生产效率和良率较低的问题。
为了达到上述目的,本发明提供了一种激光剥离LED外延衬底的设备,包括:
晶圆承载组件,包括可移动的承载台,所述承载台用于承载并固定LED晶圆;
盖板组件,包括能够透射紫外光的盖板,所述盖板位于所述承载台上方且能够沿靠近或远离所述承载台的方向移动,以压紧或释放所述LED晶圆;以及,
激光组件,用于发出至少一束激光光束,所述激光光束透过所述盖板后照射至所述LED晶圆上并对所述LED晶圆进行扫描,以剥离所述 LED晶圆的外延衬底。
可选的,所述LED晶圆为垂直结构LED晶圆。
可选的,所述晶圆承载组件还包括:
加热单元,用于将所述承载台加热至预定温度。
可选的,所述预定温度为25℃~800℃。
可选的,所述盖板压紧所述LED晶圆时,向所述LED晶圆施加10kgf~1000kgf范围之内的压力。
可选的,所述晶圆承载组件还包括第一驱动单元,用于驱动所述承载台运动;和/或,所述盖板组件还包括第二驱动单元,用于驱动所述盖板沿靠近或远离所述承载台的方向移动。
可选的,所述承载台的承载面以及所述盖板面向所述承载台的一面均为平整的表面。
可选的,所述承载台上具有用于容纳所述LED晶圆的凹槽,所述盖板面向所述承载台的一面具有凸起,所述盖板沿靠近所述承载台的方向移动时,所述凸起进入所述凹槽内并压紧所述LED晶圆。
可选的,所述凹槽的内壁以及所述凸起的外壁均呈台阶状,且所述凸起的台阶与所述凹槽的台阶的外形和尺寸相匹配。
可选的,所述承载台上还具有若干用于真空吸附所述LED晶圆的吸附孔。
可选的,所述承载组件还包括第三驱动单元及至少三个位于所述承载台内的顶针,至少三个所述顶针的顶点不共线,所述第三驱动单元用于驱动所述顶针顶起或放下所述LED晶圆。
可选的,所述激光组件包括:
光源模块,用于发出预定波长的激光光束;
分光模块,用于将所述光源模块发出的激光光束分为至少两束能量分布相同的激光光束;以及,
整形模块,用于将至少两束所述激光光束整形后照射至所述LED晶圆上。
可选的,所述激光组件还包括:
扫描投影模块,用于控制所述激光光束沿至少一个预定轨迹运动以对所述LED晶圆进行扫描。
可选的,所述激光组件还包括:
拼接模块,用于将整形后的至少两束所述激光光束拼接并照射至所述LED晶圆上。
可选的,所述光源模块为准分子激光器或DPSS激光器,且所述预定波长为150nm-330nm。
可选的,所述激光光束的光斑为点状光斑或线状光斑。
可选的,还包括:
第一图像检测组件,用于检测所述LED晶圆上的标记,以获取所述LED晶圆的位置信息;以及,
第二图像检测组件,用于实时监控所述LED晶圆的外延衬底的剥离情况。
可选的,所述承载台的承载面的材料为阳极处理的铝、不锈钢、碳化硅或氮化铝中的一种或多种。
可选的,所述盖板的材料为高纯石英、蓝宝石或氮化铝晶体。
可选的,还包括:
控制组件,用于控制所述承载台和/或所述盖板移动。
可选的,还包括:
上下片组件,用于将所述LED晶圆放置于承载台上,以及依次取下剥离后的所述外延衬底和所述LED晶圆。
本发明还提供了一种利用所述激光剥离LED外延衬底的设备执行激光剥离LED外延衬底的方法,包括:
将LED晶圆放置于承载台上;
盖板沿靠近所述承载台的方向移动,直至压紧所述LED晶圆;
所述承载台运动,以实现所述LED晶圆与激光组件的对准;
所述激光组件发出至少一束激光光束并对所述LED晶圆进行扫描,以剥离所述LED晶圆的外延衬底;以及,
所述盖板沿远离所述承载台的方向移动,释放所述LED晶圆,并依 次从所述承载台上取下剥离后的所述外延衬底和所述LED晶圆。
可选的,在所述激光组件发出至少一束激光光束并对所述LED晶圆进行扫描之前,加热单元将所述承载台加热到预定温度。
可选的,所述承载台沿预定轨迹运动以使所述激光光束对所述LED晶圆进行扫描;或者,所述激光光束沿所述预定轨迹运动以对所述LED晶圆进行扫描。
本发明提供的激光剥离LED外延衬底的设备及方法具有如下有益效果:
1)在激光剥离时可采用盖板压紧LED晶圆,改善了LED晶圆的翘曲问题,使得LED晶圆被平整地固定在承载台上,避免激光扫描时LED晶圆上的某些位置的离焦问题,从而减少激光扫描过程中焦点调整的时间,提高了生产效率,并且可以避免激光扫描时晶圆翘曲位置应力实现时出现裂纹现象,提高了生产良率;由于盖板能够透射紫外光,不会影响紫外波段的激光光束透过。
2)在激光组件发出至少一束激光光束并对LED晶圆进行扫描之前,加热单元将所述承载台加热到预定温度,从而融化氮化物吸收激光能量分解后产生的金属,提高激光剥离效果和速率。
3)承载台上具有用于容纳LED晶圆的凹槽,LED晶圆通过凹槽限位,从而可以不用在承载台上设置吸附孔,简化了结构。
4)利用分光模块将光源模块发出的激光光束分为至少两束能量分布相同的激光光束,再将至少两束激光光束拼接或移动不同路径(图形互补)后同时照射至LED晶圆上,相较于单束激光光束扫描,多束激光光束拼接后具有更大的单位面积,能够提高激光剥离的效率,也不会造成能量的浪费;并且将光源模块发出的激光光束的分光后能量下降,不需要额外在激光组件中设置衰减器,降低了成本。
5)承载台的承载面的材料为阳极处理的铝、不锈钢、碳化硅或氮化铝中的一种或多种,防止承载面被氧化后不平整,进而避免LED晶圆无法平整地固定在承载台上的问题。
附图说明
图1为本发明实施例一提供的激光剥离LED外延衬底的设备的结构示意图;
图2是本发明实施例一提供的垂直结构深紫外LED晶圆的结构示意图;
图3是本发明实施例一提供的垂直结构绿/蓝/近紫外LED晶圆的结构示意图;
图4a为本发明实施例一提供的对所述LED晶圆进行扫描的一种示意图;
图4b为本发明实施例一提供的对所述LED晶圆进行扫描的另一种示意图;
图4c为本发明实施例一提供的对所述LED晶圆进行扫描的又一种示意图;
图5为本发明实施例一提供的激光剥离LED外延衬底的方法的流程图;
图6为本发明实施例二提供的激光剥离LED外延衬底的设备的结构示意图;
其中,附图标记为:
101-承载台;101a-凹槽;102-第一驱动单元;103-顶针;104-第三驱动单元;105-通孔;106-吸附孔;201-盖板;201a-凸起;202-第二驱动单元;301-光源模块;302-光学机构;303a-第一激光光束;303b-第二激光光束;401-第一图像检测组件;402-第二图像检测组件;500-LED晶圆;
510-垂直结构深紫外LED晶圆;520-垂直结构绿/蓝/近紫外LED晶圆;512、522-键合衬底;513、523-功能层;514、524-外延层;515-缓冲层;516、526外延衬底;514a、524a-第一半导体层;514b、524c-量子阱层;514c、524b-第二半导体层。
具体实施方式
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
图1为本实施例提供的激光剥离LED外延衬底的设备的结构示意图。如图1所示,所述激光剥离LED外延衬底的设备包括晶圆承载组件、盖板组件、激光组件、上下片组件及控制组件。
请参阅图1,所述晶圆承载组件包括承载台101、第一驱动单元102、至少三个顶针103、第三驱动单元104及加热单元。
具体而言,所述承载台101用于承载并固定LED晶圆500。所述承载台101的上表面为其承载面,所述LED晶圆500放置于所述承载台101的承载面上。
所述LED晶圆500是垂直结构LED晶圆,例如,所述LED晶圆500可以是垂直结构深紫外LED晶圆或垂直结构绿/蓝/近紫外LED晶圆等,其尺寸可以是2英寸或8英寸等,本发明不作限制。
图2是本实施例提供的垂直结构深紫外LED晶圆510的结构示意图。如图2所示,所述垂直结构深紫外LED晶圆510包括从下至上依次堆叠的键合衬底512、功能层513、外延层514、缓冲层515及外延衬底516。其中,所述键合衬底512可以是金属衬底或硅衬底。所述功能层513例如为反射镜层、金属保护层、绝缘保护层及电极等膜层的组合。所述功能层513与所述键合衬底512永久性键合。所述外延层514包括从下至上依次堆叠第一半导体层514a、量子阱层514b及第二半导体层514c,本实施例中,所述缓冲层515的材料为AlN,所述第一半导体层514a的材料为P-AlGaN,所述第二半导体层的材料为N-AlGaN。将所述垂直结构深紫外LED晶圆510放置在所述承载台101的承载面上时,所述键合衬底512与所述承载面贴合,所述外延衬底516朝上。
图3是本实施例提供的垂直结构绿/蓝/近紫外LED晶圆520的结构示意图。如图3所示,所述垂直结构绿/蓝/近紫外LED晶圆520包括从 下至上依次堆叠的键合衬底522、功能层523、外延层524及外延衬底526。其中,所述键合衬底522及所述功能层523的位置和结构与所述垂直结构深紫外LED晶圆510类似,在此不再过多赘述。所述外延层524包括从下至上依次堆叠第一半导体层524a、第二半导体层524b、量子阱层524c,本实施例中,所述第一半导体层514a的材料为P-GaN,所述第二半导体层的材料为N-GaN。将所述垂直结构绿/蓝/近紫外LED晶圆510放置在所述承载台101的承载面上时,所述键合衬底522与所述承载面贴合,所述外延衬底526朝上。
请继续参阅图1,所述承载台101的承载面为平整的表面,所述承载台101内具有吸附孔106,所述吸附孔106位于所述承载台101内且贯穿所述承载台101,所述吸附孔106连接有真空设备,当所述LED晶圆500放置于所述承载台101的承载面上时,所述真空设备将通过所述吸附孔106抽真空,所述吸附孔106内产生负压从而将所述LED晶圆500固定在承载台101上。
所述吸附孔106的数量可以是一个或多个,所述吸附孔106的孔径可以为10um~100um。
进一步地,所述承载台101的承载面的材料为阳极处理的铝、不锈钢、碳化硅或氮化铝等性能稳定且高导热系数材料中的一种或多种,从而防止所述承载台101的承载面被氧化后不平整,进而避免LED晶圆500无法平整地固定在承载台101上的问题。
请继续参阅图1,所述控制组件与所述第一驱动单元102电性连接,所述控制组件控制所述第一驱动单元102驱动所述承载台101沿X/Y/Z方向移动和/或在XY平面内旋转,此时,所述LED晶圆500也随所述承载台101运动。可见,通过所述控制组件控制所述第一驱动单元102驱动所述承载台101运动,即可改变所述LED晶圆500的位置。
进一步地,所述加热单元设置于所述承载台101内,用于对所述承载台101进行加热,所述承载台101的承载面可以导热,因此可以提高所述LED晶圆500的温度。所述加热单元例如可以是设置于所述承载台101内的加热丝等结构,本发明不做限制。
本实施例中,所述加热单元可根据需要将所述承载台101加热至预定温度,所述预定温度例如是25℃~800℃。
请继续参阅图1,所述承载台101内具有至少三个贯穿的通孔105,一个所述顶针103位于一个所述通孔105内,即所述承载台101内具有至少三个顶针103。所述控制组件与所述第三驱动单元104电性连接,所述控制组件可控制所述第三驱动单元104驱动至少三个所述顶针103同步沿Z方向运动,从而顶起或放下所述LED晶圆500。
进一步地,至少三个所述顶针103的顶点不共线,因此所述顶针103可以平稳地顶起或放下所述LED晶圆500。
请继续参阅图1,所述盖板组件包括第二驱动单元202及能够透射紫外光的盖板201。
所述盖板201位于所述承载台101上方,所述盖板201的紫外光透光率越大越好,因此,所述盖板201可以为高纯的石英、蓝宝石或氮化铝晶体等能够透射紫外光的材料。
所述控制组件与所述第二驱动单元202电性连接,所述控制组件可以控制所述第二驱动单元202驱动所述盖板201沿靠近或远离所述承载台101的方向移动,以压紧或释放所述LED晶圆500。当所述盖板201压紧所述LED晶圆500时,还可以同时向所述LED晶圆500施加10kgf~1000kgf范围之内的压力,从而大幅度改善所述LED晶圆500翘曲的问题,使得所述LED晶圆500平整地固定在承载台101上。
进一步地,所述盖板201面向所述承载台101的一面也为平整的表面,因此,当所述盖板201压紧所述LED晶圆500时,所述承载台101的承载面和所述盖板201面向所述承载台101的一面可以分别与所述LED晶圆500的上下表面贴合。
请继续参阅图1,所述激光组件位于所述盖板201上方,其包括光源模块301及光学机构302,所述光学机构302包括分光模块、整形模块及扫描投影模块。
所述光源模块301用于发出预定波长的激光光束。本实施例中,所述光源模块301为准分子激光器或DPSS激光器中的一种,所述准分子 激光器可以是KrF准分子激光器、ArF准分子激光器或F2准分子激光器等,其可以实现150nm-330nm波长范围内的预定波长的激光光束输出。
所述分光模块可以将所述光源模块301发出的激光光束分为至少两束能量分布相同的激光光束,所述整形模块将至少两束所述激光光束整形为预定形状的激光光束后穿过所述盖板201同时照射至所述LED晶圆500上,所述扫描投影模块可以控制至少两束所述激光光束沿至少一个预定轨迹运动以对所述LED晶圆500进行扫描,从而扫描所述LED晶圆500的外延衬底。
本实施例中,所述光学机构302还包括拼接模块,用于将整形后的至少两束所述激光光束拼接后照射至所述LED晶圆上,如此一来,至少两束所述激光光束是沿同一个所述预定轨迹运动的。
应理解,当至少两束所述激光光束并未拼接,而是直接照射至所述LED晶圆500上时,每束所述激光光束分别沿一个所述预定轨迹运动,每束所述激光光束对应的所述预定轨迹可以相同或不同。
举例而言,图4a为本实施例提供的对所述LED晶圆500进行扫描的一种示意图。如图4a所示,所述分光模块将光源模块301发出的激光光束分为两束激光光束,为了便于描述,将分光形成的两束激光光束称为第一激光光束303a和第二激光光束303b。所述整形模块将所述第一激光光束303a和所述第二激光光束303b整形为线状光束,所述拼接模块沿着Y方向将所述第一激光光束303a和所述第二激光光束303b无缝拼接在一起。所述第一激光光束303a和所述第二激光光束303b照射至所述LED晶圆500上后,形成两个线状光斑。所述第一激光光束303a和所述第二激光光束303b拼接后沿Y方向上的宽度之和大于或等于所述LED晶圆500的直径,如此一来,所述扫描投影模块控制所述第一激光光束303a和所述第二激光光束303b同步沿X方向往返运动,即可对所述LED晶圆500进行扫描。
图4b为本实施例提供的对所述LED晶圆500进行扫描的另一种示意图。如图4b所示,所述整形模块还可以将所述第一激光光束303a和所述第二激光光束303b整形为点状光束,所述拼接模块沿着X方向将 所述第一激光光束303a和所述第二激光光束303b无缝拼接在一起。所述第一激光光束303a和所述第二激光光束303b照射至所述LED晶圆500上后,形成两个方形的点状光斑。如此一来,所述扫描投影模块控制所述第一激光光束303a和所述第二激光光束303b同步沿S形轨迹运动,即可对所述LED晶圆500进行扫描。
图4c为本实施例提供的对所述LED晶圆500进行扫描的又一种示意图。如图4c所示,所述整形模块还可以将所述第一激光光束303a和所述第二激光光束303b整形为点状光束,所述第一激光光束303a和所述第二激光光束303b不拼接,而是直接照射至所述LED晶圆500上,且所述第一激光光束303a和所述第二激光光束303b在X方向上具有间隙,且在Y方向上的位置相同。所述第一激光光束303a和所述第二激光光束303b照射至所述LED晶圆500上后,形成两个方形的点状光斑。如此一来,所述扫描投影模块控制所述第一激光光束303a和所述第二激光光束303b同步沿X方向相对运动且同步沿Y方向运动,即可对所述LED晶圆500进行扫描。
相较于直接将所述光源模块301发出的激光光束照射至所述LED晶圆500进行扫描,分光后的激光光束能量下降,不需要额外在激光组件中设置衰减器,降低了成本;并且,拼接后形成的激光光束具有更大的单位面积,能够提高激光剥离的效率,也不会造成能量的浪费。
可选的,所述分光单元可以是光栅等可以分光的光学元件。
作为可选实施例,所述激光组件也可以只包含所述光源模块301,但是由于所述光源模块301发出的激光光束的能量很高,可以在所述激光光束的光路中增加衰减器,从而避免在激光剥离过程中损伤所述LED晶圆500的外延层。
作为可选实施例,所述扫描投影模块也可以被省略,此时,由所述控制组件控制所述第一驱动单元102驱动所述承载台101沿预定轨迹运动,也能够实现所述LED晶圆500的扫描。
作为可选实施例,所述激光组件还可以包括激光光斑质量分析模块,用于在扫描前检测所述激光光束的能量大小以及能量分布均匀性等。所 述激光光束的能量分布可以是平顶分布或高斯分布。
作为可选实施例,所述激光组件还可以包括激光功率计,所述激光功率计可以检测所述激光光束的功率。
请继续参阅图1,所述盖板201的上方还设置有第一图像检测组件401和第二图像检测组件402。其中,所述第一图像检测组件401用于检测所述LED晶圆500上的标记,以获取所述LED晶圆500的位置信息,所述第一图像检测组件401与所述控制组件电性连接,所述控制组件可以通过所述第一图像检测组件401检测到的位置信息控制所述第一驱动单元102驱动所述承载台101运动,实现所述LED晶圆500的对准。具体而言,所述控制组件可以控制所述第一驱动单元102驱动所述承载台101沿X/Y方向移动或在XY平面内旋转,以使所述LED晶圆500位于所述激光组件的扫描范围内;同时所述控制组件还可以控制所述第一驱动单元102驱动所述承载台101沿Z方向移动,以使所述LED晶圆500与所述激光组件对焦。进一步地,所述第二图像检测组件402用于实时整面拍摄所述LED晶圆500,以实时监控所述LED晶圆500的外延衬底的剥离情况。
本实施例中,所述第一图像检测组件401和所述第二图像检测组件402均为高分辨率CCD图像检测器,其光源可以采用多波长可见光或红外LED光源。
进一步地,所述上下片组件与所述控制组件电性连接,所述控制组件可以控制所述上下片组件将所述LED晶圆500放置在所述承载台101上,并将剥离后的所述外延衬底和所述LED晶圆500从所述承载台101取下。
基于此,本实施例还提供了一种利用所述的激光剥离LED外延衬底的设备执行激光剥离LED外延衬底的方法。图5为本实施例提供的激光剥离LED外延衬底的方法的流程图,如图5所示,所述激光剥离LED外延衬底的方法包括:
步骤S100:将LED晶圆500放置于承载台101上;
步骤S200:盖板201沿靠近所述承载台101的方向移动,直至压紧 所述LED晶圆500;
步骤S300:所述承载台101运动,以实现所述LED晶圆500与激光组件的对准;
步骤S400:所述激光组件发出至少一束激光光束并对所述LED晶圆500进行扫描,以剥离所述LED晶圆500的外延衬底;以及,
步骤S500:所述盖板201沿远离所述承载台101的方向移动,释放所述LED晶圆500,并依次从所述承载台101上取下剥离后的所述外延衬底和所述LED晶圆500。
具体而言,首先执行步骤S100,所述控制组件控制所述第三驱动单元104驱动所述顶针103升起至高于所述承载台101,所述上下片组件将所述LED晶圆500放置于顶针103上,且所述LED晶圆500的外延衬底朝上放置。所述顶针103下降,将所述LED晶圆500放置于所述承载台101上,所述吸附孔106吸附住所述LED晶圆500。
接着,所述加热单元对所述承载台101进行加热,从而提高所述LED晶圆500的温度。当然,当所述承载台101需要保持的温度较高时,加热的时间较长,为了不影响后续步骤,可以在将所述LED晶圆500放置在所述承载台101上之前就开始对所述承载台101进行加热;反之,当所述承载台101需要保持的温度较低时,也可以在后续步骤中再对所述承载台101进行加热。
执行步骤S200,所述控制组件控制所述第二驱动单元202驱动所述盖板201沿靠近所述承载台101的方向移动,直至压紧所述LED晶圆500,并同时向所述LED晶圆500施加压力,使得所述LED晶圆500平整地固定在承载台101上。
执行步骤S300,所述第一图像检测组件401开始检测所述LED晶圆500的位置信息,并将检测到的位置信息发送至所述控制组件。所述控制组件根据所述第一图像检测组件401的检测结果判断所述LED晶圆500与所述激光组件是否对准,当所述LED晶圆500不在所述激光组件的扫描范围内和/或所述LED晶圆500与所述激光组件没有对焦时,所述控制组件控制所述第一驱动单元102驱动所述承载台101沿X/Y/Z方 向移动和/或在XY平面内转动,直至所述LED晶圆500与所述激光组件实现对准。
执行步骤S400,此时,所述承载台101已经到达所述预定温度,所述扫描投影模块控制拼接后的激光光束沿所述预定轨迹运动以对所述LED晶圆500进行扫描,所述LED晶圆500的外延衬底与其外延层的界面上的氮化物在高能量的激光的作用下发生热分解,产生金属和氮气,其中金属在所述预定温度下熔化,因此可以剥离所述LED晶圆500的外延衬底。
应理解,作为可选实施例,也可以由所述控制组件控制所述第一驱动单元102驱动所述承载台101沿所述预定轨迹运动,以使拼接后的激光光束对所述LED晶圆500进行扫描,直至剥离所述LED晶圆500的外延衬底。
在对所述LED晶圆500进行扫描时,所述第二图像检测组件402实时监控所述LED晶圆500的外延衬底的剥离情况,可以根据所述第二图像检测组件402的检测结果判断所述外延衬底的剥离情况,可以及时对剥离效果差的区域进行补充扫描。
执行步骤S500,所述第二驱动单元202驱动所述盖板201沿远离所述承载台101的方向移动,所述盖板201离开后,所述LED晶圆500上的压力消失。所述控制组件控制所述第三驱动单元104驱动所述顶针103顶起所述LED晶圆500,所述上下片组件先将剥离了的所述外延衬底取下放在回收工位,再将所述LED晶圆500剩下的部分取下放在晶圆片盒中。
进一步地,如图2所示,当所述LED晶圆500为垂直结构深紫外LED晶圆510时,所述激光组件选用193nm的ArF准分子激光器作为所述光源模块301,且所述盖板201向所述垂直结构深紫外LED晶圆510施加大于400kgf的压力,且将所述承载台101加热至600℃,以使所述缓冲层515热分解后产生的Al熔化,以剥离所述外延衬底。
如图3所示,当所述LED晶圆500为垂直结构绿/蓝/近紫外LED晶圆510时,所述激光组件选用248nm的KrF准分子激光器作为所述光源 模块301,且所述盖板201向所述垂直结构深紫外LED晶圆510施加大于200kgf的压力,且将所述承载台101加热至150℃,以使所述缓冲层525分解出的Ga金属熔化,以剥离所述外延衬底。
实施例二
图6为本实施例提供的激光剥离LED外延衬底的设备的结构示意图。如图6所示,与实施例一的区别在于,本实施例中,所述承载台101上具有用于容纳所述LED晶圆500的凹槽101a,所述盖板201面向所述承载台101的一面具有凸起201a,所述盖板201沿靠近或远离所述承载台101的方向移动时,所述凸起201a进入所述凹槽101a内并压紧所述LED晶圆500。
可选的,所述凹槽101a和所述凸起201a的外形可以均为圆形,且所述凹槽101a和所述凸起201a的外径相匹配。如此一来,所述凸起201a可以正好进入所述凹槽101a内与所述凹槽101a配合固定住所述LED晶圆500。
当然,作为可选实施例,所述凹槽101a和所述凸起201a的外形也可以不同,例如,所述凹槽101a的外形为圆形,而所述凸起201a的外形为矩形;所述凹槽101a和所述凸起201a的外径也可以不匹配,所述凸起201a的外径只要小于所述凹槽101a的外径即可。
请参阅图6,本实施例中,所述凹槽101a的内壁以及所述凸起201a的外壁均呈台阶状,且具有两级台阶,所述凸起201a的台阶与所述凹槽101a的台阶的外形和尺寸相匹配,当凹槽101a内不放置所述LED晶圆500时,所述凸起201a进入所述凹槽101a内正好与所述凹槽101a吻合。如此一来,所述凹槽101a内可以容纳两种尺寸的LED晶圆500,所述盖板201也可以实现不同尺寸的LED晶圆的压紧,所述激光剥离LED外延衬底的设备的应用更广。
当然,所述凹槽101a的内壁以及所述凸起201a的外壁不限于具有两级台阶,还可以具有三级或四级等,从而可以适用更多种尺寸的LED晶圆,此处不再一一举例说明。
相较于实施例一来说,本实施例中由于所述承载台101上具有凹槽101a,所述LED晶圆500可以通过所述凹槽101a限位,将所述LED晶圆500放置于所述承载台101上之后,即使所述盖板201还未压紧所述LED晶圆500,所述LED晶圆500也不会随意晃动,从而可以不用在承载台101上设置吸附孔106,简化了结构。
当然,即使所述承载台101上具有凹槽101a,所述承载台101也可以设置吸附孔106,这并不影响本发明的实施。
综上,在本发明实施例提供的激光剥离LED外延衬底的设备及方法中,在激光剥离时可采用盖板压紧LED晶圆,改善了LED晶圆的翘曲问题,使得LED晶圆被平整地固定在承载台上,避免激光扫描时LED晶圆上的某些位置的离焦问题,从而减少激光扫描过程中焦点调整的时间,提高了生产效率,并且可以避免激光扫描时晶圆翘曲位置应力实现时出现裂纹现象,提高了生产良率;由于盖板能够透射紫外光,不会影响紫外波段的激光光束透过。进一步地,在激光组件发出至少一束激光光束并对LED晶圆进行扫描之前,加热单元将所述承载台加热到预定温度,从而融化氮化物吸收激光能量分解后产生的金属,提高激光剥离效果和速率。进一步地,承载台上具有用于容纳LED晶圆的凹槽,LED晶圆通过凹槽限位,从而可以不用在承载台上设置吸附孔,简化了结构。进一步地,利用分光模块将光源模块发出的激光光束分为至少两束能量分布相同的激光光束,再将至少两束激光光束拼接或移动不同路径(图形互补)后同时照射至LED晶圆上,相较于单束激光光束扫描,多束激光光束拼接后具有更大的单位面积,能够提高激光剥离的效率,也不会造成能量的浪费;并且将光源模块发出的激光光束的分光后能量下降,不需要额外在激光组件中设置衰减器,降低了成本。进一步地,承载台的承载面的材料为阳极处理的铝、不锈钢、碳化硅或氮化铝中的一种或多种,防止承载面被氧化后不平整,进而避免LED晶圆无法平整地固定在承载台上的问题。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个 实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围。
还应当理解的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
此外还应该认识到,此处描述的术语仅仅用来描述特定实施例,而不是用来限制本发明的范围。必须注意的是,此处的以及所附权利要求中使用的单数形式“一个”和“一种”包括复数基准,除非上下文明确表示相反意思。例如,对“一个步骤”或“一个装置”的引述意味着对一个或多个步骤或装置的引述,并且可能包括次级步骤以及次级装置。应该以最广义的含义来理解使用的所有连词。以及,词语“或”应该被理解为具有逻辑“或”的定义,而不是逻辑“异或”的定义,除非上下文明确表示相反意思。此外,本发明实施例中的方法和/或设备的实现可包括手动、自动或组合地执行所选任务。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (24)

  1. 一种激光剥离LED外延衬底的设备,其特征在于,包括:
    晶圆承载组件,包括可移动的承载台,所述承载台用于承载并固定LED晶圆;
    盖板组件,包括能够透射紫外光的盖板,所述盖板位于所述承载台上方且能够沿靠近或远离所述承载台的方向移动,以压紧或释放所述LED晶圆;以及,
    激光组件,用于发出至少一束激光光束,所述激光光束透过所述盖板后照射至所述LED晶圆上并对所述LED晶圆进行扫描,以剥离所述LED晶圆的外延衬底。
  2. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述LED晶圆为垂直结构LED晶圆。
  3. 如权利要求1或2所述的激光剥离LED外延衬底的设备,其特征在于,所述晶圆承载组件还包括:
    加热单元,用于将所述承载台加热至预定温度。
  4. 如权利要求3所述的激光剥离LED外延衬底的设备,其特征在于,所述预定温度为25℃~800℃。
  5. 如权利要求1或2所述的激光剥离LED外延衬底的设备,其特征在于,所述盖板压紧所述LED晶圆时,向所述LED晶圆施加10kgf~1000kgf范围之内的压力。
  6. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述晶圆承载组件还包括第一驱动单元,用于驱动所述承载台运动;和/或,所述盖板组件还包括第二驱动单元,用于驱动所述盖板沿靠近或远离所述承载台的方向移动。
  7. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述承载台的承载面以及所述盖板面向所述承载台的一面均为平整的表面。
  8. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在 于,所述承载台上具有用于容纳所述LED晶圆的凹槽,所述盖板面向所述承载台的一面具有凸起,所述盖板沿靠近所述承载台的方向移动时,所述凸起进入所述凹槽内并压紧所述LED晶圆。
  9. 如权利要求8所述的激光剥离LED外延衬底的设备,其特征在于,所述凹槽的内壁以及所述凸起的外壁均呈台阶状,且所述凸起的台阶与所述凹槽的台阶的外形和尺寸相匹配。
  10. 如权利要求7-9中任一项所述的激光剥离LED外延衬底的设备,其特征在于,所述承载台上还具有若干用于真空吸附所述LED晶圆的吸附孔。
  11. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述承载组件还包括第三驱动单元及至少三个位于所述承载台内的顶针,至少三个所述顶针的顶点不共线,所述第三驱动单元用于驱动所述顶针顶起或放下所述LED晶圆。
  12. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述激光组件包括:
    光源模块,用于发出预定波长的激光光束;
    分光模块,用于将所述光源模块发出的激光光束分为至少两束能量分布相同的激光光束;以及,
    整形模块,用于将至少两束所述激光光束整形后照射至所述LED晶圆上。
  13. 如权利要求12所述的激光剥离LED外延衬底的设备,其特征在于,所述激光组件还包括:
    扫描投影模块,用于控制所述激光光束沿至少一个预定轨迹运动以对所述LED晶圆进行扫描。
  14. 如权利要求12所述的激光剥离LED外延衬底的设备,其特征在于,所述激光组件还包括:
    拼接模块,用于将整形后的至少两束所述激光光束拼接后照射至所述LED晶圆上。
  15. 如权利要求12-14中任一项所述的激光剥离LED外延衬底的设 备,其特征在于,所述光源模块为准分子激光器或DPSS激光器,且所述预定波长为150nm-330nm。
  16. 如权利要求12-14中任一项所述的激光剥离LED外延衬底的设备,其特征在于,所述激光光束的光斑为点状光斑或线状光斑。
  17. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,还包括:
    第一图像检测组件,用于检测所述LED晶圆上的标记,以获取所述LED晶圆的位置信息;以及,
    第二图像检测组件,用于实时监控所述LED晶圆的外延衬底的剥离情况。
  18. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述承载台的承载面的材料为阳极处理的铝、不锈钢、碳化硅或氮化铝中的一种或多种。
  19. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,所述盖板的材料为高纯石英、蓝宝石或氮化铝晶体。
  20. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,还包括:
    控制组件,用于控制所述承载台和/或所述盖板移动。
  21. 如权利要求1所述的激光剥离LED外延衬底的设备,其特征在于,还包括:
    上下片组件,用于将所述LED晶圆放置于承载台上,以及依次取下剥离后的所述外延衬底和所述LED晶圆。
  22. 一种利用如权利要求1-21中任一项所述的激光剥离LED外延衬底的设备执行激光剥离LED外延衬底的方法,其特征在于,包括:
    将LED晶圆放置于承载台上;
    盖板沿靠近所述承载台的方向移动,直至压紧所述LED晶圆;
    所述承载台运动,以实现所述LED晶圆与激光组件的对准;
    所述激光组件发出至少一束激光光束并对所述LED晶圆进行扫描,以剥离所述LED晶圆的外延衬底;以及,
    所述盖板沿远离所述承载台的方向移动,释放所述LED晶圆,并依次从所述承载台上取下剥离后的所述外延衬底和所述LED晶圆。
  23. 如权利要求22所述的激光剥离LED外延衬底的方法,其特征在于,在所述激光组件发出至少一束激光光束并对所述LED晶圆进行扫描之前,加热单元将所述承载台加热到预定温度。
  24. 如权利要求22或23所述的激光剥离LED外延衬底的方法,其特征在于,所述承载台沿预定轨迹运动以使所述激光光束对所述LED晶圆进行扫描;或者,所述激光光束沿所述预定轨迹运动以对所述LED晶圆进行扫描。
PCT/CN2022/078632 2021-07-14 2022-03-01 激光剥离led外延衬底的设备及方法 WO2023284305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110796299.6 2021-07-14
CN202110796299.6A CN115621372A (zh) 2021-07-14 2021-07-14 激光剥离led外延衬底的设备及方法

Publications (1)

Publication Number Publication Date
WO2023284305A1 true WO2023284305A1 (zh) 2023-01-19

Family

ID=84856035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078632 WO2023284305A1 (zh) 2021-07-14 2022-03-01 激光剥离led外延衬底的设备及方法

Country Status (2)

Country Link
CN (1) CN115621372A (zh)
WO (1) WO2023284305A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150111485A (ko) * 2014-03-25 2015-10-06 삼성전자주식회사 기판 분리 장치 및 기판 분리 시스템
JP2016060675A (ja) * 2014-09-19 2016-04-25 日本碍子株式会社 13族元素窒化物層の分離方法
CN110491811A (zh) * 2019-09-19 2019-11-22 北京大学东莞光电研究院 一种可调节光强型激光剥离装置
CN111279494A (zh) * 2017-10-31 2020-06-12 株式会社V技术 利用激光剥离的加工方法和平坦化夹具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150111485A (ko) * 2014-03-25 2015-10-06 삼성전자주식회사 기판 분리 장치 및 기판 분리 시스템
JP2016060675A (ja) * 2014-09-19 2016-04-25 日本碍子株式会社 13族元素窒化物層の分離方法
CN111279494A (zh) * 2017-10-31 2020-06-12 株式会社V技术 利用激光剥离的加工方法和平坦化夹具
CN110491811A (zh) * 2019-09-19 2019-11-22 北京大学东莞光电研究院 一种可调节光强型激光剥离装置

Also Published As

Publication number Publication date
CN115621372A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
KR100849779B1 (ko) 소재 층의 분리 방법
KR101254639B1 (ko) 반도체 발광 소자의 제조 방법
US11551974B2 (en) Manufacturing process of element chip using laser grooving and plasma-etching
TWI631665B (zh) 光裝置之加工方法
US8395082B2 (en) Solid-state laser lift-off apparatus
US8951889B2 (en) Laser processing method and laser processing apparatus
US20050153525A1 (en) Method and apparatus for cutting devices from substrates
JPH10116801A (ja) 基板分割方法及びその基板分割を用いた発光素子製造 方法
JP2004158859A (ja) 基板から素子を切り取る装置及び方法
JP2015138815A (ja) 光デバイス及び光デバイスの加工方法
TW201535781A (zh) 光裝置
JP2015050415A (ja) 光デバイス及び光デバイスの加工方法
JP5986702B1 (ja) 13族元素窒化物層の分離方法および複合基板
KR20120069302A (ko) 레이저 리프트 오프 장치
WO2023284305A1 (zh) 激光剥离led外延衬底的设备及方法
KR20220158024A (ko) 기판 처리 방법 및 기판 처리 장치
WO2013154181A1 (ja) チップオンボード型のパッケージ基板を有する発光装置の製造方法
KR20140051787A (ko) 레이저 리프트 오프 시스템에 적용되는 기판 로딩 장치
WO2022185704A1 (ja) 転写装置及び転写方法
JP2012080020A (ja) レーザリフトオフ方法及びレーザリフトオフ装置
CN115008025B (zh) 基板及半导体磊晶结构的雷射分离方法
KR101795100B1 (ko) 레이저 리프트 오프용 챔버모듈
JP2022175498A (ja) 素子チップの製造方法および基板処理方法
KR100984723B1 (ko) 레이저 가공방법
CN116913809A (zh) 一种多波长激光耦合剥离半导体材料的设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE