WO2023284263A1 - 多链路冗余传输控制方法与装置、多链路设备 - Google Patents

多链路冗余传输控制方法与装置、多链路设备 Download PDF

Info

Publication number
WO2023284263A1
WO2023284263A1 PCT/CN2021/143022 CN2021143022W WO2023284263A1 WO 2023284263 A1 WO2023284263 A1 WO 2023284263A1 CN 2021143022 W CN2021143022 W CN 2021143022W WO 2023284263 A1 WO2023284263 A1 WO 2023284263A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
data
bit
value
parameter
Prior art date
Application number
PCT/CN2021/143022
Other languages
English (en)
French (fr)
Inventor
顾祥新
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023284263A1 publication Critical patent/WO2023284263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present application relates to the field of communication technologies, and in particular to a multi-link redundant transmission control method and device, and multi-link equipment.
  • a multi-link device can support data transmission on multiple links.
  • a multi-link device may include multiple access points (access point, AP) or multiple non-AP stations (non-AP station, non-AP STA, also referred to as STA or station), and different access points or The station can work on different carrier frequencies, such as 2.4GHz, 5GHz, 6GHz and other carrier frequencies.
  • the multi-link device can be called an access point multi-link device (AP MLD); if the multi-link device contains multiple stations, the multi-link device can be It is called a non-access point multilink device (non-AP MLD).
  • AP MLD access point multi-link device
  • non-AP MLD non-access point multilink device
  • This application provides a multi-link redundant transmission control method and device, and a multi-link device, in order to provide the first data with the first information, and realize the link identifier mapping in the first data through the first information.
  • a link for multi-link redundant transmission of the first data is selected among the links, thereby improving the reliability of the first data transmission and reducing the time delay of the first data transmission.
  • the present application provides a multi-link redundant transmission control method, including:
  • the first multi-link device acquires the first data and the first link set, where the first link set includes multiple links mapped from the flow identifier of the first data in the second link set, so The second link set includes multiple links established between the first multi-link device and the second multi-link device;
  • the first multi-link device equips the first data with first information, and the first information is used to select a link in the first link set for multi-link redundant transmission of the first data. link.
  • the present application provides a multi-link redundant transmission control device, the device includes a processing unit, and the processing unit is used for:
  • first link set includes a plurality of links mapped from the traffic identifier of the first data in a second link set, where the second link set including establishing a plurality of links between the apparatus and a second multi-link device;
  • the first data is equipped with first information, and the first information is used to select a link in the first link set for multi-link redundant transmission of the first data.
  • the present application provides a multi-link device, the multi-link device is a first multi-link device, including a processor, a memory, a communication interface, and at least one program, wherein the at least one program is stored In the memory and configured to be executed by the processor, the at least one program includes instructions for executing the steps in the first aspect of the embodiments of the present application.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer programs and data for electronic data exchange, wherein the computer programs and data enable a computer to execute the Some or all of the steps described in the first aspect of the embodiment.
  • the present application provides a computer program, wherein the computer program is operable to cause a computer to perform some or all of the steps described in the first aspect of the embodiments of the present application.
  • the computer program can be a software installation package.
  • the first multi-link device obtains the first data and the first link set, the first link set includes multiple links mapped from the traffic identifier of the first data in the second link set, and the second link set
  • the two-link set includes multiple links established between the first multi-link device and the second multi-link device; the first multi-link device configures first information with the first data. Since the first information is used to select a link used for multi-link redundant transmission of the first data in the first link set, the first information is used to implement the link mapping of the flow identifier of the first data
  • the multi-link redundant transmission is performed on the first data, and the reliability of data transmission is improved and the time delay of data transmission is reduced through the multi-link redundant transmission.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a TID-to-link mapping element provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a TID-to-link mapping control field provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a multi-link redundant transmission control method provided by an embodiment of the present application.
  • FIG. 5 is a block diagram of functional units of a multi-link redundant transmission control device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection to realize communication between devices, and there is no limitation on this.
  • Network and “system” in the embodiments of the present application express the same concept, and the communication system is the communication network.
  • the embodiment of the present application may be applied to a wireless local area network (wireless local area network, WLAN).
  • WLAN wireless local area network
  • the protocol standard adopted by WLAN is IEEE 802.11 series.
  • the WLAN may include multiple basic service sets (basic service set, BSS), and the devices in the basic service set may include access point stations (access point stations, AP STAs, also referred to as APs or access points) and non- The station of the access point (none access point station, non-AP STA, also referred to as STA or station for short).
  • each basic service set may contain one access point and at least one station.
  • an access point may be an entity that provides network access for stations connected to it via a wireless medium.
  • the access point connects individual wireless network clients to the Ethernet.
  • the access point may be a network device with a wireless fidelity (wireless fidelity, Wi-Fi) chip.
  • the access point can be a device that supports various IEEE 802.11 protocol standards.
  • an access point may be a device that supports IEEE 802.11ac, IEEE 802.11n, IEEE 802.11g, IEEE 802.11b, IEEE802.11ax, IEEE802.11be, next-generation WLAN protocol standards, and the like.
  • the access point may include a centralized controller, a base station (base station, BS), a base transceiver station (base transceiver station, BTS), a site controller, a switch, and the like.
  • the access point may include a device that provides a wireless communication function for the station, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices, such as transceiver devices and the like.
  • the access point can communicate with an Internet Protocol (Internet Protocol, IP) network.
  • Internet Protocol Internet Protocol
  • IP Internet Protocol
  • the Internet Internet
  • private IP network private IP network or other data networks and the like.
  • the station may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • user equipment user equipment, UE
  • remote/remote terminal remote/remote terminal
  • access terminal user unit, user station, mobile device, user terminal, intelligent terminal, wireless communication device supporting Wi-Fi communication function , User Agent or User Device/Cellular Phone, Cordless Phone, Session Initiation Protocol (SIP) Phone, Wireless Local Loop (WLL) Station, Personal Digital Assistant (PDA), Handheld equipment, in-vehicle equipment, wearable equipment, etc., which are not specifically limited.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the stations may include non-AP extremely high throughput stations (none AP extremely high throughput station, non-AP EHT STA) and non-AP high efficiency stations (none AP high efficiency station, non-AP HE STA )Wait.
  • the station may include a device with a transceiver function, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices, such as transceiver devices and the like.
  • the wireless communication system 10 may include an access point multilink device/non-AP MLD (AP MLD/non-AP MLD) 110 and a non-AP MLD (non-AP MLD) 120 .
  • the access point multi-link device/non-access point multi-link device 110 may include multiple access points/sites, such as AP/STA 111, AP/STA 112, and AP/STA 113.
  • the non-access point multi-link device 120 may include multiple stations, such as STA 121, STA 122, and STA 123.
  • Multiple links are established between the access point multi-link device/non-access point multi-link device 110 and the non-access point multi-link device 120, for example, a link is established between AP/STA 111 and STA 121 131.
  • a link 132 is established between AP/STA 112 and STA 122, a link 133 is established between AP/STA 113 and STA 123, etc., and different links have different working carrier frequencies.
  • the wireless communication system 10 may also include other multi-link devices, access Points or stations, etc., are not specifically limited.
  • the wireless communication system 10 may further include access network (radio access network, RAN) equipment, core network (core network, CN) equipment, network controller, mobility management entity and other network entities, which are not specifically limited. .
  • access network radio access network, RAN
  • core network core network, CN
  • network controller mobility management entity and other network entities, which are not specifically limited.
  • the communication between the AP multi-link device/non-AP multi-link device 110 and the non-AP multi-link device 120 in the wireless communication system 10 may be wireless communication or wired communication. This is not specifically limited.
  • a multi-link device can support data transmission on multiple links.
  • Multilink devices may include access point multilink devices (AP MLD) and non-access point multilink devices (non-AP MLD).
  • AP MLD can contain multiple access points (AP)
  • non-AP MLD can contain multiple stations (STA), and different access points or stations can work on different carrier frequencies, such as 2.4GHz, 5GHz, 6GHz and other carrier frequencies.
  • Multiple links can be established between AP MLD/non-AP MLD and non-AP MLD, and data can be transmitted on the multiple links.
  • Data can be transmitted on multiple links, and which links of the multiple links the data is transmitted on can be determined by a traffic identifier (traffic ID, TID) of the data.
  • TID traffic identifier
  • a TID-to-link mapping mechanism may be used to determine how TIDs are mapped to multiple links established between a multi-link device and the multi-link device. If a TID is mapped to a certain link, the link is defined as enabled (enabled); if no TID is mapped to a certain link, the link is defined as disabled (disabled).
  • a link If a link is enabled, the link can be used for data transmission; if a link is disabled, the link cannot be used for transmission. For example, if the TID of the MSDU/A-MSDU is mapped to a certain link, the link is enabled, and the MSDU/A-MSDU can be transmitted on the link. In addition, management frames and control frames can also be transmitted on enabled links.
  • TID-to-link Mapping element may be used to indicate on which links the data corresponding to (belonging to or associated with) the TID can be transmitted.
  • TID can include element identifier field 210, length field 220, element identifier extension field 230, TID to link mapping control field 240, TID 0 link mapping field 250 of TID to link mapping element 20, TID as shown in Figure 2, The link map field 260 of TID 7, etc.
  • the link mapping field of TID n(n ⁇ 0,1,...,7 ⁇ ) may indicate a link that is allowed to transmit data corresponding to TID n. If the value of the i-th bit of the link mapping field of TID n (n ⁇ 0,1,...,7 ⁇ ) is 1, it indicates that TID n is mapped to the link ID (link ID) associated with i on the link.
  • the TID-to-link mapping control field 240 may include a direction subfield 2401 , a default link mapping subfield 2402 , a reserved subfield 2403 , and a link mapping existence indication subfield 2404 .
  • the direction subfield 2401 is set to 0 (downlink).
  • the direction subfield 2401 is set to 2 if the TID-to-link mapping element 20 specifically provides TID-to-link mapping information for data transmitted on the downlink and uplink.
  • the default link mapping subfield 2402 is set to 1; otherwise, it is set to 0.
  • the Link Mapping Existence Indication subfield 2404 may indicate whether the TID n Link Mapping field exists in the TID to Link Mapping element 20. If the link mapping exists to indicate that the value of the nth bit of the subfield 2404 is 1, then the link mapping field indicating TID n exists in the TID to link mapping element 20; otherwise, the link mapping field indicating TID n Not present in the TID to link mapping element 20.
  • the TID of data can map the link used to transmit the data among multiple links. Therefore, when multiple links are established between the AP MLD/non-AP MLD and the non-AP MLD, if there is data that needs to be transmitted on the multiple links, how to transmit data on the link mapped to the TID of the data? In order to further select the link for transmission, so as to improve the reliability of data transmission and reduce the delay of data transmission, further research is needed.
  • this embodiment of the present application provides a schematic flowchart of a multi-link redundant transmission control method, please refer to Figure 4, the method includes:
  • the first multi-link device acquires the first data and the first link set, where the first link set includes multiple links mapped from the flow identifier of the first data in the second link set.
  • the second link set may include multiple links established between the first multi-link device and the second multi-link device.
  • the first multi-link device equips the first data with first information, where the first information is used to select a link in the first link set for multi-link redundant transmission of the first data.
  • the multi-link redundant transmission of the first data may include multi-link redundant new transmission or redundant retransmission of the first data.
  • a multi-link device can contain multiple access points or multiple stations, and a multi-link device can support data transmission on multiple links. Therefore, this application considers that multiple links (that is, the second set of links) are established between the first multi-link device and the second multi-link device.
  • Data can be transmitted on multiple links, and which links of the multiple links the data is transmitted on can be determined through the TID of the data. Therefore, the transmission process of the first data on the links of the second link set in this application can be determined by the mapping relationship between the TID of the first data and the link, and the mapping relationship can be established through signaling, such as TID to the link mapping element (TID-to-link mapping element), and map multiple links (ie, the first link set) from the second link set through the TID of the first data, so as to ensure that in the first link The first data is transmitted on the links of the road set.
  • TID to the link mapping element
  • map multiple links ie, the first link set
  • this application considers to transmit the first data in the links of the first link set Perform multi-link redundant transmission.
  • the present application introduces a multi-link redundant transmission mechanism.
  • Multi-link redundant transmission can be understood as, when data is transmitted on a certain link in multiple links (such as new transmission or retransmission), the data may be on other links except this link The transmission or has been transmitted on other links but has not yet confirmed the success of the transmission (such as the sender has not received the ACK frame fed back by the receiver, etc.). That is to say, when the first data is being transmitted on other links in the first link set or has been transmitted on other links but the transmission success has not been confirmed, in order to improve the reliability of data transmission and reduce the delay, the present application may select (or map/mark/identify/characterize/indicate, etc.) the link used for multi-link redundant transmission of the first data in the first link set.
  • this application equips the first data with first information through the first multi-link device, and the first information can be used for Select (or map/mark/identify/characterize/indicate, etc.) the link used for multi-link redundant transmission of the first data in the first link set, so as to realize the flow identifier of the first data through the first information
  • multi-link redundant transmission is performed on the first data, and the reliability of data transmission is improved and the time delay of data transmission is reduced through multi-link redundant transmission.
  • the first information may include bitmap information, and bits in the bitmap information have a corresponding relationship with links in the first link set.
  • the present application may select (or map/mark/identify/characterize) the links in the first link set that can be used for multi-link redundant transmission of the first data in the form of a bitmap (bitmap). /instructions, etc.).
  • bitmap bitmap
  • the bits in the bitmap information have a corresponding relationship with the links in the first link set. That is to say, each bit in the bitmap information has a one-to-one correspondence with each link in the first link set. For example, if the first link set includes 5 links, the bitmap information includes 5 bits, and the 5 links correspond to the 5 bits one by one.
  • the first bit in the bitmap information may be used to indicate that multi-link redundant transmission of the first data is allowed on the link corresponding to the first bit, and the first bit is a bit in the bitmap information.
  • any bit in the bitmap information may be used to indicate that multi-link redundant transmission of the first data is allowed on the link corresponding to the bit.
  • any bit in the bitmap information may be used to indicate whether to allow multi-link redundant transmission of the first data on the link corresponding to the bit.
  • the bit may indicate that the multi-link redundant transmission of the first data is allowed on the link corresponding to the bit, or may indicate that the multi-link redundant transmission of the first data is not allowed on the link corresponding to the bit , it needs to be determined according to the value of this bit.
  • the link corresponding to the first bit obtains a transmission opportunity, and the value of the first bit is the first parameter value, then the link corresponding to the first bit can be used for multi-link redundant transmission of the first Data, the first parameter value is 0 or 1.
  • the value of the first bit is the first parameter value, which indicates that multi-link redundant transmission of the first data is allowed on the link corresponding to the first bit.
  • the access point in the access point multi-link device can obtain a transmission opportunity (transmission opportunity, TXOP) based on competition, and the station in the non-access point device can obtain it based on competition.
  • TXOP can also be granted (or allocated) by the trigger frame transmitted by the access point in the multi-link device of the access point to grant (or allocate) the TXOP segment.
  • the TXOPs obtained by multiple access points or multiple stations in the multi-link device may overlap each other in time domain, so as to support simultaneous transmission of data on multiple links.
  • the TXOPs obtained by the links corresponding to the bits in the bitmap information of the present application can overlap each other in the time domain, that is, the TXOPs obtained by the links in the first link set are in the time domain. can overlap with each other, so as to ensure the multi-link redundant transmission of data.
  • the link corresponding to the first bit obtains the TXOP, it means that the first multi-link device can transmit the first data on the link corresponding to the first bit.
  • the link corresponding to the first bit obtains the TXOP, it means that the first multi-link device can transmit the first data on the link corresponding to the first bit.
  • the link corresponding to the first bit obtains the TXOP, it means that the first multi-link device can transmit the first data on the link corresponding to the first bit.
  • the link corresponding to the first bit obtains the TXOP, it means that the first multi-link device can transmit the first data on the link corresponding to the first bit.
  • the link corresponding to the first bit obtains a transmission opportunity, and the value of the first bit is the first parameter value, it means that the link corresponding to the first bit can be used for multi-link redundant transmission.
  • the first parameter value may be 0 or 1.
  • the present application may further include: after multi-link redundant transmission of the first data on the link corresponding to the first bit, the first multi-link device may still set the value of the first bit as the first parameter value.
  • the present application may further include: after multi-link redundant transmission of the first data on the link corresponding to the first bit, the first multi-link device may set the value of the first bit to the value of the first parameter is the value of the second parameter; wherein, if the value of the first parameter is 1, the value of the second parameter is 0; if the value of the first parameter is 0, the value of the second parameter is 1.
  • the value of the first bit is the second parameter value, it may indicate that multi-link redundant transmission of the first data is not allowed on the link corresponding to the first bit.
  • the first multi-link device may be on the link corresponding to the first bit The multi-link redundantly transmits the first data. After the multi-link redundantly transmits the first data, the first multi-link device may still set the value of the first bit to the first parameter value, or may set the value of the first bit from the first parameter value to The second parameter value is to dynamically adjust the value of a bit corresponding to a certain link in the bitmap information according to the multi-link redundant transmission of data to improve the flexibility of multi-link redundant transmission control.
  • the first multi-link device can Redundantly retransmit the first data on the road.
  • the unsuccessful transmission of the first data on the link corresponding to the first bit can be determined by whether the first multi-link device receives an ACK frame fed back by the second multi-link device within a preset time. If the ACK frame is not received, it indicates that the first data has not been successfully transmitted on the link corresponding to the first bit.
  • the first data is no longer multi-link redundantly transmitted on the link corresponding to the first bit; or, if all bits in the bitmap information If the value is the second parameter value, the first data will not be redundantly transmitted by multiple links.
  • the first data is no longer transmitted redundantly by multiple links on the link. That is to say, when the first data is not successfully transmitted on the link corresponding to the first bit, and the value of the first bit is the second parameter value, the first multi-link device can no longer The first data is retransmitted redundantly on the corresponding link, but the first data can be retransmitted non-redundantly, that is, when the first data is retransmitted on the link corresponding to the first bit, the first data is not being transmitted on other links Retransmissions on other links or not concurrently scheduled for retransmissions on other links.
  • the first data will not be redundantly transmitted by the multi-link. That is to say, if the values of all the bits in the bitmap information are the second parameter value, and the first data is not successfully transmitted, the first multi-link device can be on any available link in the first link set When retransmitting the first data, the first data is not being retransmitted on other links or is not scheduled to be retransmitted on other links at the same time, that is, non-redundant retransmission.
  • the present application may further include: if the first data is successfully transmitted on the link corresponding to the first bit, the first multi-link device may remove the first data from the transmission queue; or, if the first If the data is not successfully transmitted within the transmission timeout, the first multi-link device may remove the first data from the transmission queue.
  • the data to be sent by the multi-link device will be pre-buffered in the transmission queue, and then the data in the transmission queue will be transmitted, so as to ensure the reliability of data transmission. Therefore, if the first data is successfully transmitted on the link corresponding to the first bit, the first multi-link device can remove the first data from the transmission queue, thereby removing the successfully transmitted data from the transmission queue To cache the data that needs to be transmitted later, to ensure the stability and stability of data transmission.
  • the successful transmission of the first data on the link corresponding to the first bit can be determined by whether the first multi-link device receives the ACK frame fed back by the second multi-link device within a preset time. If the ACK frame is received, it indicates that the first data is successfully transmitted on the link corresponding to the first bit.
  • the multi-link device needs to maintain a timer for the transmitted data, and the duration of the timer can be used to indicate the time length during which the multi-link device can transmit data. Therefore, if the timer for transmitting the first data times out, that is, the first data transmission times out, and the first data has not been successfully transmitted, the first multi-link device can remove the first data from the transmission queue, thereby ensuring that the data Transmission reliability and stability. For example, when the timer for transmitting MSDU exceeds dot11MaxTransmitMSDULifetime, the MSDU will not be retransmitted.
  • the present application may further include: if the first data has not been successfully transmitted when the number of retransmissions on the link corresponding to the first bit reaches the first maximum number of retransmissions, the first multi-link device may transmit the first data One piece of data is removed from the transmission queue; or, if the total number of retransmission times of the first data on the link corresponding to all bits in the bitmap information reaches the second maximum number of retransmissions and has not been successfully transmitted, then the first data A multi-link device may remove the first data from the transmit queue.
  • the multi-link device needs to maintain a retransmission count for retransmitted data, such as a short retry count (short retry count, SRC) or a long retransmission count (long retry count, LRC).
  • a short retry count short retry count
  • long retransmission count long retry count
  • the retransmission count will increase until it reaches the maximum number of retransmissions; when the retransmission of data succeeds, the retransmission count will be reset. Therefore, if the first data is not successfully transmitted when the number of retransmissions on the link corresponding to the first bit reaches the first maximum number of retransmissions, the first multi-link device can remove the first data from the transmission queue. In order to ensure the reliability and stability of data transmission.
  • this application in addition to analyzing the number of retransmissions on a single link corresponding to any bit in the bitmap information, this application also needs to analyze the number of retransmissions on the link corresponding to all bits in the bitmap information total. Therefore, if the first data has not been successfully transmitted when the total number of retransmission times on the link corresponding to all bits in the bitmap information reaches the second maximum number of retransmission times, the first multi-link device sends the first data to Removed from the transmission queue to ensure the reliability and stability of data transmission.
  • the present application may further include: if the first data has not been successfully transmitted when the number of retransmissions on the link corresponding to the first bit reaches the third maximum number of retransmissions, the first multi-link device may transmit the first data The value of one bit is set from the first parameter value to the second parameter value; wherein, if the first parameter value is 1, then the second parameter value is 0; if the first parameter value is 0, then the second parameter value is 1 .
  • the value of the first bit is the second parameter value, it indicates that the multi-link redundant transmission of the first data is not allowed on the link corresponding to the first bit.
  • the application can dynamically adjust a certain link in the bitmap information The value of the bit corresponding to the way is used to realize that the multi-link redundant transmission of data is no longer performed, thereby improving the flexibility of multi-link redundant transmission control.
  • the first data may include a media access control service data unit (MAC service data unit, MSDU), an aggregated media access control service data unit (aggregation-MSDU, A-MSDU), a media access control service data unit One of MSDU fragmentation and MAC management protocol data unit (MMPDU).
  • MAC service data unit media access control service data unit
  • MSDU media access control service data unit
  • A-MSDU aggregated media access control service data unit
  • MMPDU media access control service data unit
  • MMPDU media access control service data unit
  • the present application may first map a link ( That is, the first link set), and then equip MSDU/A-MSDU/MSDU fragmentation/MMPDU with first information, and select MSDU/A from the first link set according to the first information for multi-link redundant transmission -Links of MSDU/MSDU fragmentation/MMPDU.
  • the first information may be carried by a TID-to-link mapping element.
  • the first information may be carried by using a TID-to-link mapping element (TID-to-link mapping element).
  • TID-to-link mapping element As shown in Figures 2 and 3, the first information may be a newly added field in the TID-to-link mapping element 20, or a newly added field or reserved field 2403 in the TID-to-link mapping control field 240, etc. , without specific restrictions. It can be seen that the configuration of the first information is implemented through the TID-to-link mapping element.
  • the TID-to-link mapping element may be carried by one of an association request frame, an association response frame, a re-association request frame, a re-association response frame, a TID-to-link mapping request frame, and a TID-to-link mapping response frame.
  • association request association request
  • association response association response
  • reassociation response reassociation response
  • TID-to-link mapping request TID-to- link mapping request
  • TID to link mapping response frame TID-to-link mapping response
  • the first multi-link device may be an access point multi-link device or a non-access point multi-link device.
  • the first multi-link device in this application may be AP MLD/non-AP MLD
  • the second multi-link device may be AP MLD/non-AP MLD.
  • the first multi-link device is AP MLD
  • the second multi-link device is non-AP MLD
  • the first multi-link device is non-AP MLD
  • the second multi-link device is AP MLD/ non-AP MLD. That is to say, there are multiple links established between AP MLD/non-AP MLD and non-AP MLD (that is, the second link set), and the link between non-AP MLD and non-AP MLD can also be called a direct link.
  • the multi-link device determines, according to the TID-to-link mapping element, multiple links (that is, the first link set) to which the TID of the MSDU/A-MSDU/MSDU fragmentation/MMPDU is mapped in the second link set.
  • the multi-link device is equipped with bitmap information for the MSDU/A-MSDU/MSDU fragmentation/MMPDU, and the bitmap information is used to select which links in the first link set for multi-link redundant transmission (currently the MSDU/ A-MSDU/MSDU fragmentation/MMPDU may be being transmitted on other links or has been transmitted but has not yet confirmed successful transmission) the MSDU/A-MSDU/MSDU fragmentation/MMPDU.
  • the bits in the bitmap information have a corresponding relationship with the links in the first link set. Wherein, if a certain link in the first link set is allowed to be used for multi-link redundant transmission of the MSDU/A-MSDU/MSDU fragmentation/MMPDU, then the value of the bit corresponding to the link in the bitmap information is set to 1; otherwise, set to 0.
  • the MSDU/A-MSDU/MSDU fragmentation/MMPDU is after multi-link redundant transmission on a link in the first link set, set the value of the bit corresponding to the link in the bitmap information to 0 or unchanged.
  • the MSDU/A-MSDU/MSDU fragmentation/MMPDU is no longer transmitted by multi-link redundancy on the link; when the bitmap information When the value of all bits in is set to 0, the MSDU/A-MSDU/MSDU fragmentation/MMPDU is no longer multi-link redundantly transmitted on the first link set.
  • MSDU/A-MSDU/MSDU fragmentation/MMPDU is confirmed to be successfully transmitted on a link in the first link set (or the link corresponding to a certain bit in the bitmap information) or has not been transmitted after the transmission timeout If successful, the MSDU/A-MSDU/MSDU fragmentation/MMPDU is removed from the transmission queue.
  • the MSDU/A-MSDU/MSDU fragmentation/MMPDU on a link in the first link set (or the link corresponding to a certain bit in the bitmap information) reaches the maximum number of retransmissions If the transmission is not successful, the MSDU/A-MSDU/MSDU fragmentation/MMPDU is removed from the transmission queue.
  • MSDU/A-MSDU/MSDU fragmentation/MMPDU has not been successfully transmitted when the total number of retransmission times on the link corresponding to all bits in the bitmap information reaches the maximum number of retransmissions, then the MSDU/A-MSDU/ MSDU fragmentation/MMPDU is removed from the transmit queue.
  • the embodiment of the present application can realize multi-link redundant transmission of the MSDU/A-MSDU/MSDU fragmentation/MMPDU in the link mapped by the TID of the MSDU/A-MSDU/MSDU fragmentation/MMPDU through the bitmap information, And the reliability of data transmission is improved and the time delay of data transmission is reduced through multi-link redundant transmission.
  • the multi-link device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain method, function, module, unit or step is executed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods for each specific application to implement the described methods, functions, modules, units or steps, but such implementation should not be regarded as exceeding the scope of the present application.
  • the multi-link device may be divided into functional units/modules according to the foregoing method example.
  • each functional unit/module may be divided corresponding to each function, or two or more functions may be integrated into one functional unit/module.
  • the above-mentioned integrated functional units/modules can be implemented not only in the form of hardware, but also in the form of software programs. It should be noted that the division of functional units/modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • FIG. 5 provides a block diagram of functional units of a multi-link redundant transmission control device.
  • the multi-link redundant transmission control device 500 includes: a processing unit 502 and a communication unit 503 .
  • the processing unit 502 is configured to control and manage the execution actions of the multi-link redundant transmission control device 500 .
  • the processing unit 502 is used to support the multi-link redundant transmission control device 500 to execute the steps performed by the first link device or the second link device in FIG. 5 and other processes for the technical solution described in this application .
  • the communication unit 503 is used to support communication between the multi-link redundant transmission control apparatus 500 and other devices in the wireless communication system.
  • the multi-link redundant transmission control device 500 may further include a storage unit 501 for program codes executed by the multi-link redundant transmission control device 500 and transmitted data.
  • the multi-link redundant transmission control device 500 may be a chip or a chip module.
  • the processing unit 502 may be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processing unit 502 may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 503 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 501 may be a memory.
  • the processing unit 502 is a processor
  • the communication unit 503 is a communication interface
  • the storage unit 501 is a memory
  • the multi-link redundant transmission control apparatus 500 in this embodiment of the present application may be the multi-link device shown in FIG. 6 .
  • the processing unit 502 is configured to perform any step performed by the multi-link device in the above method embodiments, and when performing data transmission such as sending, may optionally call the communication unit 503 to complete corresponding operations. Detailed description will be given below.
  • the processing unit 502 is configured to: obtain the first data and a first link set, the first link set includes a plurality of links mapped from the traffic identifier of the first data in the second link set, and the second link set Including a plurality of links established between the first multi-link device and the second multi-link device; providing first information to the first data, the first information is used to select the multi-link in the first link set A link for redundantly transmitting the first data.
  • the link mapped to the flow identifier of the first data is realized through the first information
  • the multi-link redundant transmission is performed on the first data, and the reliability of data transmission is improved and the time delay of data transmission is reduced through the multi-link redundant transmission.
  • FIG. 6 is a schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • the multi-link device 600 includes a processor 610 , a memory 620 , a communication interface 630 , and a communication bus for connecting the processor 610 , the memory 620 , and the communication interface 630 .
  • Memory 620 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 620 is used to store program codes executed by the multi-link device 600 and transmitted data.
  • random access memory random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • a portable read-only memory compact disc read-only memory, CD-ROM
  • the communication interface 630 is used to receive and transmit data.
  • Processor 610 may be one or more CPUs.
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 610 in the multi-link device 600 is configured to read at least one program 621 stored in the memory 620, and perform the following operations: acquire the first data and the first link set, the first link set includes the flow of the first data A plurality of links mapped by the identifier in the second link set, where the second link set includes a plurality of links established between the first multi-link device and the second multi-link device; The first information, the first information is used to select a link in the first link set for multi-link redundant transmission of the first data.
  • the link mapped to the flow identifier of the first data is realized through the first information
  • the multi-link redundant transmission is performed on the first data, and the reliability of data transmission is improved and the time delay of data transmission is reduced through the multi-link redundant transmission.
  • An embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer programs and data for electronic data exchange, wherein the computer programs and data enable the computer to perform the above method Part or all of the steps described by the station or access point in the embodiment.
  • An embodiment of the present application also provides a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause the computer to perform the part or All steps.
  • the computer program product may be a software installation package.
  • the methods, steps or functions of related modules/units described in the embodiments of the present application may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it may be implemented in whole or in part in the form of a computer program product, or may be implemented in a manner in which a processor executes computer program instructions.
  • the computer program product includes at least one computer program instruction, and the computer program instruction can be composed of corresponding software modules, and the software modules can be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, mobile hard disk, CD-ROM (CD-ROM) or any other form of storage medium known in the art.
  • the computer program instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer program instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium, or a semiconductor medium (such as an SSD).
  • Each module/unit contained in each device or product described in the above embodiments may be a software module/unit, may be a hardware module/unit, or may be a part of a software module/unit while the other part is a hardware module/unit.
  • each module/unit included in it may be implemented by hardware such as a circuit; or, a part of the modules/units included in it may be implemented by a software program.
  • the software program runs on the processor integrated in the chip, and some modules/units of the other part (if any) can be realized by hardware such as circuits. The same can be understood for each device or product applied to or integrated in a chip module, or each device or product applied to or integrated in a terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种多链路冗余传输控制方法与装置、多链路设备;该方法包括:第一多链路设备获取第一数据和第一链路集合,第一链路集合包括第一数据的流量标识符在第二链路集合中映射出的多条链路,第二链路集合包括第一多链路设备与第二多链路设备之间建立的多条链路;第一多链路设备向第一数据配备第一信息,第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路,从而通过第一信息实现在第一数据的流量标识符所映射的链路中对第一数据进行多链路冗余传输,并通过多链路冗余传输提高数据传输的可靠性以及降低数据传输的时延。

Description

多链路冗余传输控制方法与装置、多链路设备 技术领域
本申请涉及通信技术领域,尤其涉及一种多链路冗余传输控制方法与装置、多链路设备。
背景技术
电气与电子工程师协会(Institute of Electrical and Electronic Engineers,IEEE)组织制定关于无线局域网(wireless local access network,WLAN)的IEEE 802.11be协议标准引入了多链路(multi-link,ML)机制。其中,多链路设备(multi-link device,MLD)可以支持在多条链路上进行数据传输。多链路设备可以包含多个接入点(access point,AP)或者多个非接入点站点(non-AP station,non-AP STA,也简称为STA或者站点),而不同接入点或者站点可以工作在不同的载频上,例如工作在2.4GHz、5GHz、6GHz等载频上。
若多链路设备包含多个接入点,则该多链路设备可以称为接入点多链路设备(AP MLD);若多链路设备包含多个站点,则该多链路设备可以称为非接入点多链路设备(non-AP MLD)。当AP MLD/non-AP MLD与non-AP MLD之间建立有多条链路(non-AP MLD与non-AP MLD之间的链路也可以称为直连链路)时,如何在该多条链路上传输数据以提高数据传输的可靠性以及降低数据传输的时延,还需要进一步研究。
发明内容
本申请提供一种多链路冗余传输控制方法与装置、多链路设备,以期望通过向第一数据配备第一信息,并通过第一信息实现在第一数据的链路标识符映射的链路中选择用于多链路冗余传输第一数据的链路,从而提高第一数据传输的可靠性,以及降低第一数据传输的时延。
第一方面,本申请提供一种多链路冗余传输控制方法,包括:
第一多链路设备获取第一数据和第一链路集合,所述第一链路集合包括所述第一数据的流量标识符在第二链路集合中映射出的多条链路,所述第二链路集合包括所述第一多链路设备与第二多链路设备之间建立的多条链路;
所述第一多链路设备向所述第一数据配备第一信息,所述第一信息用于在所述第一链路集合中选择用于多链路冗余传输所述第一数据的链路。
第二方面,本申请提供一种多链路冗余传输控制装置,所述装置包括处理单元,所述处理单元用于:
获取第一数据和第一链路集合,所述第一链路集合包括所述第一数据的流量标识符在第二链路集合中映射出的多条链路,所述第二链路集合包括所述装置与第二多链路设备之间建立的多条链路;
向所述第一数据配备第一信息,所述第一信息用于在所述第一链路集合中选择用于多链路冗余传输所述第一数据的链路。
第三方面,本申请提供一种多链路设备,所述多链路设备为第一多链路设备,包括处理器、存储器、通信接口以及至少一个程序,其中,所述至少一个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述至少一个程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序和数据,其中,所述计算机程序和数据使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请提供一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,第一多链路设备获取第一数据和第一链路集合,第一链路集合包括第一数据的流量标识符在第二链路集合中映射出的多条链路,第二链路集合包括第一多链路设备与第二多链路设备之间建立的多条链路;第一多链路设备向第一数据配备第一信息。由于第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路,从而通过第一信息实现在第一数据的流量标识符所映射的链路中对第一数据进行多链路冗余传输,并通过多链路冗余传输提高数据传输的可靠性以及降低数据传输的时延。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无线通信系统的架构示意图;
图2是本申请实施例提供的一种TID到链路映射元素的结构示意图;
图3是本申请实施例提供的一种TID到链路映射控制字段的结构示意图;
图4是本申请实施例提供的一种多链路冗余传输控制方法的流程示意图;
图5是本申请实施例提供的一种多链路冗余传输控制装置的功能单元组成框图;
图6是本申请实施例提供的一种多链路设备的结构示意图。
具体实施方式
为了本技术领域人员更好理解本申请的技术方案,下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。显然所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
本申请实施例可以应用于无线局域网(wireless local area network,WLAN)。目前, WLAN采用的协议标准为IEEE 802.11系列。其中,WLAN可以包括多个基本服务集(basic service set,BSS),而基本服务集中的设备可以包括接入点的站点(access point station,AP STA,也简称为AP或者接入点)和非接入点的站点(none access point station,non-AP STA,也简称为STA或者站点)。另外,每个基本服务集可以包含一个接入点和至少一个站点。
具体的,接入点可以是经由无线媒体为与其连接的站点提供网络接入的实体。接入点可以将各个无线网络客户端接入以太网。接入点可以是无线保真(wireless fidelity,Wi-Fi)芯片的网络设备。接入点可以是支持各类IEEE 802.11协议标准的设备。例如,接入点可以是支持IEEE 802.11ac、IEEE 802.11n、IEEE 802.11g、IEEE 802.11b、IEEE802.11ax、IEEE802.11be、下一代WLAN协议标准等的设备。接入点可以包括集中式控制器、基站(base station,BS)、基站收发台(base transceiver station,BTS)、站点控制器和交换机等。
进一步的,接入点可以包括为站点提供无线通信功能的装置,例如芯片系统。其中,该芯片系统可以包括芯片,还可以包括其它分立器件,如收发器件等。
进一步的,接入点可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
具体的,站点可以是无线通讯芯片、无线传感器或无线通信终端。例如,支持Wi-Fi通讯功能的用户设备(user equipment,UE)、远程/远端终端(remote UE)、接入终端、用户单元、用户站、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置/蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、手持设备、车载设备、可穿戴设备等,对此不作具体限定。
进一步的,站点可以包括非接入点增强型高吞吐量站点(none AP extremely high throughput station,non-AP EHT STA)和非接入点高效率站点(none AP high efficiency station,non-AP HE STA)等。
进一步的,站点可以包括具有收发功能的装置,例如芯片系统。其中,该芯片系统可以包括芯片,还可以包括其它分立器件,如收发器件等。
结合上述描述,下面本申请实施例对无线通信系统做一个示例性说明。
示例性的,本申请实施例的无线通信系统,请参阅图1。无线通信系统10可以包括接入点多链路设备/非接入点多链路设备(AP MLD/non-AP MLD)110和非接入点多链路设备 (non-AP MLD)120。其中,接入点多链路设备/非接入点多链路设备110可以包含多个接入点/站点,如AP/STA 111、AP/STA 112和AP/STA 113等。非接入点多链路设备120可以包含多个站点,如STA 121、STA 122和STA 123等。接入点多链路设备/非接入点多链路设备110与非接入点多链路设备120之间建立有多条链路,例如AP/STA 111与STA 121之间建立有链路131、AP/STA 112与STA 122之间建立有链路132、AP/STA 113与STA 123之间建立有链路133等,而不同链路具有不同的工作载频。
可选地,无线通信系统10还可以包括除接入点多链路设备/非接入点多链路设备110和非接入点多链路设备120之外的其他多链路设备、接入点或者站点等,对此不作具体限定。
可选地,无线通信系统10还可以包括接入网(radio access network,RAN)设备、核心网(core network,CN)设备、网络控制器、移动管理实体等其他网络实体,对此不作具体限定。
可选地,无线通信系统10中的接入点多链路设备/非接入点多链路设备110和非接入点多链路设备120之间的通信可以为无线通信或者有线通信,对此不作具体限制。
下面对本申请的技术方案所涉及的相关内容进行介绍。
1、多链路(Multi-Link,ML)
IEEE 802.11be协议标准引入了多链路机制。其中,多链路设备(multi-link device,MLD)可以支持在多条链路上进行数据传输。多链路设备可以包括接入点多链路设备(AP MLD)和非接入点多链路设备(non-AP MLD)。AP MLD可以包含多个接入点(AP),non-AP MLD可以包含多个站点(STA),而不同接入点或者站点可以工作在不同的载频上,例如工作在2.4GHz、5GHz、6GHz等载频上。AP MLD/non-AP MLD与non-AP MLD之间可以建立有多条链路,而数据可以在该多条链路上进行传输。
2、流量标识符到链路映射机制(Traffic ID-to-link Mapping Mechanism)
数据可以在多条链路上进行传输,而该数据在该多条链路上的哪些链路上传输可以通过该数据的流量标识符(traffic ID,TID)确定。
TID到链路映射机制可以用于确定TID如何映射到多链路设备与多链路设备之间建立的多条链路上。如果有TID映射到某一链路上,则该链路定义为启用(enabled);如果没有TID映射到某一链路上,则该链路定义为禁用(disabled)。
如果某一链路被启用,则该链路可以用于数据传输;如果某一链路被禁用,则该链路 不可以用于传输。例如,若MSDU/A-MSDU的TID映射到某一链路上,则该链路启用,并且该MSDU/A-MSDU可以在该链路上进行传输。另外,管理帧和控制帧也可以在被启用的链路上传输。
TID到链路映射元素(TID-to-link Mapping element)可以用于指示对应(属于或关联)TID的数据可以在哪些链路上进行传输。如图2所示,TID到链路映射元素20可以包括元素标识符字段210、长度字段220、元素标识符拓展字段230、TID到链路映射控制字段240、TID 0的链路映射字段250、TID 7的链路映射字段260等。其中,TID n(n∈{0,1,…,7})的链路映射字段可以指示允许传输TID n对应的数据的链路。若TID n(n∈{0,1,…,7})的链路映射字段的第i个比特位的值为1,则指示TID n映射到链路ID(link ID)为i所关联的链路上。
如图3所示,TID到链路映射控制字段240可以包括方向子字段2401、默认链路映射子字段2402、预留子字段2403、链路映射存在指示子字段2404。其中,如果TID到链路映射元素20具体为下行链路上传输的数据提供TID到链路映射信息,则方向子字段2401设置为0(下行链路)。如果TID到链路映射元素20具体为在下行链路和上行链路上传输的数据提供TID到链路映射信息,则方向子字段2401设置为2。
如果TID到链路映射元素20表示默认TID到链路映射,则默认链路映射子字段2402设置为1;否则,设置为0。
链路映射存在指示子字段2404可以指示TID n链路映射字段是否存在于TID到链路映射元素20中。若链路映射存在指示子字段2404的第n个比特位的值为1,则指示TID n的链路映射字段存在于TID到链路映射元素20中;否则,指示TID n的链路映射字段不存在于TID到链路映射元素20中。
综上所述,数据的TID可以在多条链路中映射用于传输该数据的链路。因此,当AP MLD/non-AP MLD与non-AP MLD之间建立有多条链路时,若有数据需要在该多条链路上传输,则如何在该数据的TID所映射的链路中进一步选择出传输的链路,从而提高数据传输的可靠性以及降低数据传输的时延,还需要进一步研究。
结合上述描述,本申请实施例提供一种多链路冗余传输控制方法的流程示意图,请参阅图4,该方法包括:
S410、第一多链路设备获取第一数据和第一链路集合,第一链路集合包括第一数据的 流量标识符在第二链路集合中映射出的多条链路。
其中,第二链路集合可以包括第一多链路设备与第二多链路设备之间建立的多条链路。
S420、第一多链路设备向第一数据配备第一信息,第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路。
其中,第一数据的多链路冗余传输可以包括第一数据的多链路冗余新传或者冗余重传。
需要说明的是,IEEE802.11be协议标准引入多链路机制。一个多链路设备可以包含多个接入点或者多个站点,而多链路设备可以支持在多条链路上进行数据传输。因此,本申请考虑第一多链路设备与第二多链路设备之间建立有多条链路(即第二链路集合)。
数据可以在多条链路上进行传输,而该数据在该多条链路上的哪些链路上传输可以通过该数据的TID确定。因此,本申请的第一数据在第二链路集合的链路上的传输过程可以由第一数据的TID与链路之间的映射关系确定,而该映射关系可以通过信令建立,例如TID到链路映射元素(TID-to-link mapping element),并通过第一数据的TID从第二链路集合中映射出多条链路(即第一链路集合),从而保证在第一链路集合的链路上传输第一数据。
当第一数据需要在第一链路集合的链路上传输时,为了提高数据传输的可靠性以及降低数据传输的时延,本申请考虑将第一数据在第一链路集合的链路中进行多链路冗余传输。
目前,当数据正在多条链路中的某条链路上传输时,通常该数据无需在除该链路外的其他链路上再传输以节省传输资源。然而,为了提高数据传输的可靠性以及降低数据传输的时延,本申请引入了多链路冗余传输机制。
多链路冗余传输,可以理解为,当数据在多条链路中的某一链路上传输(如新传或重传)时,该数据可能正在除该链路外的其他链路上传输或者已经在其它链路上被传输但还未确认传输成功(如发送方还未收到接收方反馈的ACK帧等)。也就是说,当第一数据正在第一链路集合中的其他链路上传输或者已经在其它链路上被传输但还未确认传输成功时,为了提高数据传输的可靠性以及降低数据传输的时延,本申请可以再在第一链路集合中选择(或映射/标记/标识/表征/指示等)用于多链路冗余传输第一数据的链路。
为了实现在第一链路集合的链路上对该第一数据进行多链路冗余传输,本申请通过第一多链路设备向第一数据配备第一信息,而第一信息可以用于在第一链路集合中选择(或映射/标记/标识/表征/指示等)用于多链路冗余传输第一数据的链路,从而通过第一信息实现在第一数据的流量标识符所映射的链路中对第一数据进行多链路冗余传输,并通过多链 路冗余传输提高数据传输的可靠性以及降低数据传输的时延。
结合上述描述,下面分别进行具体说明。
具体的,第一信息可以包括位图信息,该位图信息中的比特位与第一链路集合中的链路具有对应关系。
需要说明的是,本申请可以通过位图(bitmap)的形式来对第一链路集合中能够用于多链路冗余传输第一数据的链路进行选择(或映射/标记/标识/表征/指示等)。其中,位图信息中的比特位与第一链路集合中的链路具有对应关系。也就是说,位图信息中的各比特位与第一链路集合中的各条链路具有一一对应关系。例如,若第一链路集合包括5条链路,则位图信息包括5个比特位,且该5条链路与该5个比特位一一对应。
其中,位图信息中的第一比特位可以用于指示允许在第一比特位对应的链路上多链路冗余传输第一数据,第一比特位为位图信息中的一个比特位。
需要说明的是,位图信息中的任一比特位可以用于指示允许在该比特位对应的链路上多链路冗余传输第一数据。或者,位图信息中的任一比特位可以用于指示是否允许在该比特位对应的链路上多链路冗余传输第一数据。其中,该比特位可以指示允许在该比特位对应的链路上多链路冗余传输第一数据,也可以指示不允许在该比特位对应的链路上多链路冗余传输第一数据,具体需要根据该比特位的值确定。
具体的,若第一比特位对应的链路获取到传输机会,且第一比特位的值为第一参数值,则第一比特位对应的链路可以用于多链路冗余传输第一数据,第一参数值为0或者1。
其中,第一比特位的值为第一参数值,则指示允许在第一比特位对应的链路上多链路冗余传输第一数据。
需要说明的是,在传输数据之前,接入点多链路设备中的接入点可以基于竞争来获取传输机会(transmission opportunity,TXOP),而非接入点设备中的站点可以基于竞争来获取TXOP,也可以由接入点多链路设备中的接入点所传输的触发帧来授予(或分配)TXOP片段,在TXOP的传输时间内无需再竞争信道以传输数据,以便提升信道利用效率。其中,多链路设备中的多个接入点或多个站点获取到的TXOP之间在时域上可以相互重合,从而支持数据在多条链路上的同时传输。因此,本申请的位图信息中的各比特位对应的链路获取的TXOP之间在时域上可以相互重合,即第一链路集合中的各条链路获取的TXOP之间在时域上可以相互重合,从而保证数据的多链路冗余传输。
另外,若第一比特位对应的链路获取到TXOP,则说明第一多链路设备可以在第一比特位对应的链路上传输第一数据。目前,当除第一比特位对应的链路外的其他链路正在传输第一数据或者已经在其它链路上被传输但还未确认传输成功时,通常无需再在第一比特位对应的链路上传输第一数据以节省传输资源。然而,为了保证多链路冗余传输,本申请的第一多链路设备还需要通过位图信息中的任一比特位的值来确定是否允许在该比特位对应的链路上多链路冗余传输第一数据。
基于此,若第一比特位对应的链路获取到传输机会,且第一比特位的值为第一参数值,则说明第一比特位对应的链路可以用于多链路冗余传输第一数据。其中,第一参数值可以为0或者1。
结合上述描述,下面再对本申请还可以包括的技术方案进行具体说明。
具体的,本申请还可以包括:在第一比特位对应的链路上多链路冗余传输第一数据之后,第一多链路设备可以将第一比特位的值仍设置为第一参数值。
具体的,本申请还可以包括:在第一比特位对应的链路上多链路冗余传输第一数据之后,第一多链路设备可以将第一比特位的值由第一参数值设置为第二参数值;其中,若第一参数值为1,则第二参数值为0;若第一参数值为0,则第二参数值为1。
其中,若第一比特位的值为第二参数值,则可以指示不允许在第一比特位对应的链路上多链路冗余传输第一数据。
需要说明的是,当第一比特位对应的链路获取到传输机会,且第一比特位的值为第一参数值时,第一多链路设备可以在第一比特位对应的链路上多链路冗余传输第一数据。在多链路冗余传输第一数据之后,第一多链路设备可以将第一比特位的值仍设置为第一参数值,也可以将第一比特位的值由第一参数值设置为第二参数值,从而通过数据的多链路冗余传输情况来动态调整位图(bitmap)信息中的某链路对应的比特位的值以提高多链路冗余传输控制的灵活性。
另外,若第一数据在第一比特位对应的链路上未传输成功,且第一比特位的值仍为第一参数值,则第一多链路设备可以在第一比特位对应的链路上冗余重传第一数据。其中,第一数据在第一比特位对应的链路上未传输成功,可以通过第一多链路设备是否在预设时间内接收到第二多链路设备反馈的ACK帧来确定。若未接收到ACK帧,则说明第一数据在第一比特位对应的链路上未传输成功。
其中,若第一比特位的值为第二参数值,则第一数据不再在第一比特位对应的链路上多链路冗余传输;或者,若位图信息中的所有比特位的值为第二参数值,则第一数据不再被多链路冗余传输。
需要说明的是,若位图(bitmap)信息中的某条链路对应的比特位的值为第二参数值,则第一数据不再在该链路上被多链路冗余传输。也就是说,当第一数据在第一比特位对应的链路上未传输成功,且第一比特位的值为第二参数值时,第一多链路设备可以不再在第一比特位对应的链路上冗余重传第一数据,但可以非冗余重传第一数据,即在第一比特位对应的链路上重传第一数据时,第一数据没有正在其他链路上重传或没有同时安排在其他链路上重传。
若位图信息中的所有比特位的值为第二参数值,则第一数据不再被多链路冗余传输。也就是说,若位图信息中的所有比特位的值为第二参数值,且第一数据未传输成功,则第一多链路设备可以在第一链路集合中的任一可用链路上重传第一数据时,第一数据没有正在其他链路上重传或没有同时安排在其他链路上重传,即非冗余重传。
可见,通过动态调整位图(bitmap)信息中的比特位的值以调整数据的传输方式,从而有利于提高多链路冗余传输控制的灵活性。
具体的,本申请还可以包括:若第一数据在第一比特位对应的链路上传输成功,则第一多链路设备可以将第一数据从传输队列中移除;或者,若第一数据在传输超时下仍未传输成功,则第一多链路设备可以将第一数据从传输队列中移除。
需要说明的是,多链路设备需要发送的数据都会预先缓存于传输队列中,再将传输队列中的数据进行传输,从而保证数据传输的可靠性。因此,若第一数据在第一比特位对应的链路上传输成功,则第一多链路设备可以将第一数据从传输队列中移除,从而通过从传输队列中移除传输成功的数据以缓存后续需要传输的数据,保证数据传输的稳定性和稳定性。其中,第一数据在第一比特位对应的链路上传输成功,可以通过第一多链路设备是否在预设时间内接收到第二多链路设备反馈的ACK帧来确定。若接收到ACK帧,则说明第一数据在第一比特位对应的链路上传输成功。
另外,多链路设备需要为传输的数据维护一个定时器,该定时器的时长可以用于表示多链路设备能够传输数据的时长。因此,若传输第一数据的定时器超时,即第一数据传输超时,且第一数据仍未传输成功,则第一多链路设备可以将第一数据从传输队列中移除, 从而保证数据传输的可靠性和稳定性。例如,当传输MSDU的定时器超过dot11MaxTransmitMSDULifetime时,将不再对该MSDU进行重传。
具体的,本申请还可以包括:若第一数据在第一比特位对应的链路上的重传次数达到第一最大重传次数下仍未传输成功,则第一多链路设备可以将第一数据从传输队列中移除;或者,若第一数据在位图信息中的所有比特位对应的链路上的重传次数的总数达到第二最大重传次数下仍未传输成功,则第一多链路设备可以将第一数据从传输队列中移除。
需要说明的是,多链路设备需要为重传的数据维护一个重传计数,例如短重传计数(short retry count,SRC)或者长重传计数(long retry count,LRC)。当数据的重传失败时,该重传计数将会递增,直到递增到最大重传次数;当数据的重传成功时,该重传计数将会重置。因此,若第一数据在第一比特位对应的链路上的重传次数达到第一最大重传次数下仍未传输成功,则第一多链路设备可以将第一数据从传输队列中移除,从而保证数据传输的可靠性和稳定性。
另外,本申请除了需要分析位图信息中的任一比特位对应的单条链路上的重传次数之外,还需要分析位图信息中的所有比特位对应的链路上的重传次数的总数。因此,若第一数据在位图信息中的所有比特位对应的链路上的重传次数的总数达到第二最大重传次数下仍未传输成功,则第一多链路设备将第一数据从传输队列中移除,从而保证数据传输的可靠性和稳定性。
具体的,本申请还可以包括:若第一数据在第一比特位对应的链路上的重传次数达到第三最大重传次数下仍未传输成功,则第一多链路设备可以将第一比特位的值由第一参数值设置为第二参数值;其中,若第一参数值为1,则第二参数值为0;若第一参数值为0,则第二参数值为1。
其中,若第一比特位的值为第二参数值,则指示不允许在第一比特位对应的链路上多链路冗余传输第一数据。
需要说明的是,若第一数据在第一比特位对应的链路上的重传次数达到第三最大重传次数下仍未传输成功,则本申请可以通过动态调整位图信息中的某链路对应的比特位的值以实现不再对数据进行多链路冗余传输,从而提高多链路冗余传输控制的灵活性。
具体的,第一数据可以包括媒体接入控制服务数据单元(MAC service data unit,MSDU)、聚合的媒体接入控制服务数据单元(aggregation-MSDU,A-MSDU)、媒体接入控制服务 数据单元的分片(MSDU fragmentation)、媒体接入控制管理协议数据单元(MAC management protocol data unit,MMPDU)中的之一。
可以理解的是,本申请可以先通过MSDU/A-MSDU/MSDU fragmentation/MMPDU的TID从第一多链路设备与第二多链路设备之间建立的多条链路中映射出链路(即第一链路集合),再向MSDU/A-MSDU/MSDU fragmentation/MMPDU配备第一信息,并根据第一信息从第一链路集合中选择出用于多链路冗余传输MSDU/A-MSDU/MSDU fragmentation/MMPDU的链路。
具体的,第一信息可以由TID到链路映射元素所携带。
可以理解的是,本申请可以通过TID到链路映射元素(TID-to-link mapping element)来携带第一信息。如图2和图3所示,第一信息可以是TID到链路映射元素20中的一个新增字段,可以是TID到链路映射控制字段240中的一个新增字段或预留字段2403等,对此不作具体限制。可见,通过TID到链路映射元素实现对第一信息进行配备。
其中,TID到链路映射元素可以由关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、TID到链路映射请求帧、TID到链路映射响应帧中的之一携带。
可以理解的是,关联请求(association request)帧、关联响应(association response)帧、重关联请求(reassociation request)帧、重关联响应(reassociation response)帧、TID到链路映射请求(TID-to-link mapping request)帧、TID到链路映射响应帧(TID-to-link mapping response)中可以携带TID到链路映射元素。
具体的,第一多链路设备可以为接入点多链路设备或者非接入点多链路设备。
可以理解的是,本申请的第一多链路设备可以为AP MLD/non-AP MLD,而第二多链路设备可以为AP MLD/non-AP MLD。其中,若第一多链路设备为AP MLD,则第二多链路设备为non-AP MLD;若第一多链路设备为non-AP MLD,则第二多链路设备为AP MLD/non-AP MLD。也就是说,AP MLD/non-AP MLD与non-AP MLD之间建立有多条链路(即第二链路集合),且non-AP MLD与non-AP MLD之间的链路也可以称为直连链路。
综上所述,下面对本申请实施例作一个示例性说明。
示例性的,当两个多链路设备之间建立有多条链路(即第二链路集合)时,若某一多链路设备需要传输MSDU/A-MSDU/MSDU fragmentation/MMPDU,则该多链路设备根据TID到链路映射元素确定该MSDU/A-MSDU/MSDU fragmentation/MMPDU的TID在第二链 路集合中所映射出的多条链路(即第一链路集合)。
该多链路设备向该MSDU/A-MSDU/MSDU fragmentation/MMPDU配备bitmap信息,该bitmap信息用于在第一链路集合中选择出哪些链路来多链路冗余传输(当下该MSDU/A-MSDU/MSDU fragmentation/MMPDU可能正在其他链路上传输或已经被传输但还未确认传输成功)该MSDU/A-MSDU/MSDU fragmentation/MMPDU。
bitmap信息中的比特位与第一链路集合中的链路具有对应关系。其中,若第一链路集合中的某一链路允许用于多链路冗余传输该MSDU/A-MSDU/MSDU fragmentation/MMPDU,则将bitmap信息中的该链路对应的bit的值设置为1;否则,设置为0。
若第一链路集合中的某一链路获取到传输机会(TXOP),且则bitmap信息中的该链路对应的bit的值设置为1,则在该链路上多链路冗余传输该MSDU/A-MSDU/MSDU fragmentation/MMPDU。
若该MSDU/A-MSDU/MSDU fragmentation/MMPDU在第一链路集合中的某一链路上多链路冗余传输之后,则将bitmap信息中的该链路对应的bit的值设置为0或者不变。其中,当bitmap信息中的某一链路对应的bit的值设置为0时,该MSDU/A-MSDU/MSDU fragmentation/MMPDU不再在该链路上被多链路冗余传输;当bitmap信息中的所有bit的值设置为0时,该MSDU/A-MSDU/MSDU fragmentation/MMPDU不再在第一链路集合上被多链路冗余传输。
若该MSDU/A-MSDU/MSDU fragmentation/MMPDU在第一链路集合中的某一链路(或者bitmap信息中的某一bit对应的链路)上被确认传输成功或者传输超时下仍未传输成功,则将该MSDU/A-MSDU/MSDU fragmentation/MMPDU从传输队列中移除。
若该MSDU/A-MSDU/MSDU fragmentation/MMPDU在第一链路集合中的某一链路(或者bitmap信息中的某一bit对应的链路)上的重传次数到达最大重传次数下仍未传输成功,则将该MSDU/A-MSDU/MSDU fragmentation/MMPDU从传输队列中移除。
若该MSDU/A-MSDU/MSDU fragmentation/MMPDU在bitmap信息中的所有bit对应的链路上的重传次数的总数达到最大重传次数下仍未传输成功,则将该MSDU/A-MSDU/MSDU fragmentation/MMPDU从传输队列中移除。
若该MSDU/A-MSDU/MSDU fragmentation/MMPDU在第一链路集合中的某一链路(或 者bitmap信息中的某一bit对应的链路)上的重传次数到达最大重传次数下仍未传输成功,则将该bit的值由1设置为0。
可见,本申请实施例可以通过bitmap信息实现在MSDU/A-MSDU/MSDU fragmentation/MMPDU的TID所映射的链路中对该MSDU/A-MSDU/MSDU fragmentation/MMPDU进行多链路冗余传输,并通过多链路冗余传输提高数据传输的可靠性以及降低数据传输的时延。
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,多链路设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该知悉,结合本文中所公开的实施例描述的各示例的方法、模块、单元或者算法步骤,本申请能够以硬件或者硬件与计算机软件的结合形式来实现。某个方法、功能、模块、单元或者步骤究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的方法、功能、模块、单元或者步骤,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对多链路设备进行功能单元/模块的划分。例如,可以对应各个功能划分各个功能单元/模块,也可以将两个或两个以上的功能集成在一个功能单元/模块中。上述集成的功能单元/模块既可以采用硬件的方式实现,也可以采用软件程序的方式实现。需要说明的是,本申请实施例中对功能单元/模块的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元/模块的情况下,图5提供了一种多链路冗余传输控制装置的功能单元组成框图。多链路冗余传输控制装置500包括:处理单元502和通信单元503。处理单元502用于对多链路冗余传输控制装置500的执行动作进行控制管理。例如,处理单元502用于支持多链路冗余传输控制装置500执行图5中的第一链路设备或第二链路设备所执行的步骤以及用于本申请所描述的技术方案的其它过程。通信单元503用于支持多链路冗余传输控制装置500与无线通信系统中的其他设备之间的通信。多链路冗余传输控制装置500还可以包括存储单元501,用于多链路冗余传输控制装置500所执行的程序代码和所传输的数据。
需要说明的是,多链路冗余传输控制装置500可以是芯片或者芯片模组。
其中,处理单元502可以是处理器或控制器,例如可以是中央处理器(central processing  unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元502也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。通信单元503可以是通信接口、收发器、收发电路等,存储单元501可以是存储器。当处理单元502为处理器,通信单元503为通信接口,存储单元501为存储器时,本申请实施例所涉及的多链路冗余传输控制装置500可以为图6所示的多链路设备。
具体的,处理单元502用于执行如上述方法实施例中由多链路设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用通信单元503来完成相应操作。下面进行详细说明。
处理单元502用于:获取第一数据和第一链路集合,第一链路集合包括第一数据的流量标识符在第二链路集合中映射出的多条链路,第二链路集合包括第一多链路设备与第二多链路设备之间建立的多条链路;向第一数据配备第一信息,第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路。
需要说明的是,图5所述实施例中各个操作的具体实现可以详见上述图4所示的方法实施例中的描述,在此不再赘述。
可见,由于第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路,从而通过第一信息实现在第一数据的流量标识符所映射的链路中对第一数据进行多链路冗余传输,并通过多链路冗余传输提高数据传输的可靠性以及降低数据传输的时延。
请参阅图6,图6是本申请实施例提供的一种多链路设备的结构示意图。其中,多链路设备600包括处理器610、存储器620、通信接口630以及用于连接处理器610、存储器620、通信接口630的通信总线。
存储器620包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器620用于存储多链路设备600所执行的程序代码和所传输的数据。
通信接口630用于接收和发送数据。
处理器610可以是一个或多个CPU。在处理器610是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
多链路设备600中的处理器610用于读取存储器620中存储的至少一个程序621,执行以下操作:获取第一数据和第一链路集合,第一链路集合包括第一数据的流量标识符在第二链路集合中映射出的多条链路,第二链路集合包括第一多链路设备与第二多链路设备之间建立的多条链路;向第一数据配备第一信息,第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路。
需要说明的是,各个操作的具体实现可以采用上述图4所示的方法实施例的相应描述,多链路设备600可以用于执行本申请上述方法实施例的多链路设备侧的方法,在此不再具体赘述。
可见,由于第一信息用于在第一链路集合中选择用于多链路冗余传输第一数据的链路,从而通过第一信息实现在第一数据的流量标识符所映射的链路中对第一数据进行多链路冗余传输,并通过多链路冗余传输提高数据传输的可靠性以及降低数据传输的时延。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序和数据,其中,所述计算机程序和数据使得计算机执行如上述方法实施例中站点或接入点所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中站点或接入点所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本领域技术人员应该知悉,本申请实施例所描述的方法、步骤或者相关模块/单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时, 可以全部或部分地以计算机程序产品的形式来实现,也可以是由处理器执行计算机程序指令的方式来实现。其中,该计算机程序产品包括至少一个计算机程序指令,计算机程序指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。该计算机程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(如SSD)等。
上述实施例中描述的各个装置或产品包含的各个模块/单元,其可以是软件模块/单元,可以是硬件模块/单元,也可以一部分是软件模块/单元,而另一部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置或产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现;或者,其包含的一部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,而另一部分(如果有)的部分模块/单元可以采用电路等硬件方式实现。对于应用于或集成于芯片模组的各个装置或产品,或者应用于或集成于终端的各个装置或产品,同理可知。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围。凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (31)

  1. 一种多链路冗余传输控制方法,其特征在于,包括:
    第一多链路设备获取第一数据和第一链路集合,所述第一链路集合包括所述第一数据的流量标识符在第二链路集合中映射出的多条链路,所述第二链路集合包括所述第一多链路设备与第二多链路设备之间建立的多条链路;
    所述第一多链路设备向所述第一数据配备第一信息,所述第一信息用于在所述第一链路集合中选择用于多链路冗余传输所述第一数据的链路。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括位图信息,所述位图信息中的比特位与所述第一链路集合中的链路具有对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述位图信息中的第一比特位用于指示允许在所述第一比特位对应的链路上多链路冗余传输所述第一数据,所述第一比特位为所述位图信息中的一个比特位。
  4. 根据权利要求3所述的方法,其特征在于,若所述第一比特位对应的链路获取到传输机会,且所述第一比特位的值为第一参数值,则所述第一比特位对应的链路用于多链路冗余传输所述第一数据,所述第一参数值为0或者1。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    在所述第一比特位对应的链路上多链路冗余传输所述第一数据之后,所述第一多链路设备将所述第一比特位的值仍设置为所述第一参数值。
  6. 根据权利要求4所述的方法,其特征在于,还包括:
    在所述第一比特位对应的链路上多链路冗余传输所述第一数据之后,所述第一多链路设备将所述第一比特位的值由所述第一参数值设置为第二参数值;
    其中,若所述第一参数值为1,则所述第二参数值为0;若所述第一参数值为0,则所述第二参数值为1。
  7. 根据权利要求6所述的方法,其特征在于,若所述第一比特位的值为所述第二参数值,则所述第一数据不再在所述第一比特位对应的链路上多链路冗余传输;或者,
    若所述位图信息中的所有比特位的值为所述第二参数值,则所述第一数据不再被多链路冗余传输。
  8. 根据权利要求4所述的方法,其特征在于,还包括:
    若所述第一数据在所述第一比特位对应的链路上传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除;或者,
    若所述第一数据在传输超时下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除。
  9. 根据权利要求4所述的方法,其特征在于,还包括:
    若所述第一数据在所述第一比特位对应的链路上的重传次数达到第一最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除;或者,
    若所述第一数据在所述位图信息中的所有比特位对应的链路上的重传次数的总数达到第二最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除。
  10. 根据权利要求4所述的方法,其特征在于,还包括:
    若所述第一数据在所述第一比特位对应的链路上的重传次数达到第三最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一比特位的值由所述第一参数值设置为第二参数值;
    其中,若所述第一参数值为1,则所述第二参数值为0;若所述第一参数值为0,则所述第二参数值为1。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一数据包括媒体接入控制服务数据单元、聚合的媒体接入控制服务数据单元、媒体接入控制服务数据单元的分片、媒体接入控制管理协议数据单元中的之一。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一信息由TID到链路映射元素所携带。
  13. 根据权利要求12所述的方法,其特征在于,所述TID到链路映射元素由关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、TID到链路映射请求帧、TID到链路映射响应帧中的之一携带。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一多链路设备为接入点多链路设备或者非接入点多链路设备。
  15. 一种多链路冗余传输控制装置,其特征在于,所述装置包括处理单元,所述处理单元用于:
    获取第一数据和第一链路集合,所述第一链路集合包括所述第一数据的流量标识符在第二链路集合中映射出的多条链路,所述第二链路集合包括所述装置与第二多链路设备之间建立的多条链路;
    向所述第一数据配备第一信息,所述第一信息用于在所述第一链路集合中选择用于多链路冗余传输所述第一数据的链路。
  16. 根据权利要求15所述的装置,其特征在于,所述第一信息包括位图信息,所述位图信息中的比特位与所述第一链路集合中的链路具有对应关系。
  17. 根据权利要求16所述的装置,其特征在于,所述位图信息中的第一比特位用于指示允许在所述第一比特位对应的链路上多链路冗余传输所述第一数据,所述第一比特位为所述位图信息中的一个比特位。
  18. 根据权利要求17所述的装置,其特征在于,若所述第一比特位对应的链路获取到传输机会,且所述第一比特位的值为第一参数值,则所述第一比特位对应的链路用于多链路冗余传输所述第一数据,所述第一参数值为0或者1。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    在所述第一比特位对应的链路上多链路冗余传输所述第一数据之后,所述第一多链路设备将所述第一比特位的值仍设置为所述第一参数值。
  20. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    在所述第一比特位对应的链路上多链路冗余传输所述第一数据之后,所述第一多链路设备将所述第一比特位的值由所述第一参数值设置为第二参数值;
    其中,若所述第一参数值为1,则所述第二参数值为0;若所述第一参数值为0,则所述第二参数值为1。
  21. 根据权利要求20所述的装置,其特征在于,若所述第一比特位的值为所述第二参数值,则所述第一数据不再在所述第一比特位对应的链路上多链路冗余传输;或者,
    若所述位图信息中的所有比特位的值为所述第二参数值,则所述第一数据不再被多链路冗余传输。
  22. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    若所述第一数据在所述第一比特位对应的链路上传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除;或者,
    若所述第一数据在传输超时下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除。
  23. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    若所述第一数据在所述第一比特位对应的链路上的重传次数达到第一最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除;或者,
    若所述第一数据在所述位图信息中的所有比特位对应的链路上的重传次数的总数达到第二最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一数据从传输队列中移除。
  24. 根据权利要求18所述的装置,其特征在于,所述处理单元还用于:
    若所述第一数据在所述第一比特位对应的链路上的重传次数达到第三最大重传次数下仍未传输成功,则所述第一多链路设备将所述第一比特位的值由所述第一参数值设置为第二参数值;
    其中,若所述第一参数值为1,则所述第二参数值为0;若所述第一参数值为0,则所述第二参数值为1。
  25. 根据权利要求15-24任一项所述的装置,其特征在于,所述第一数据包括媒体接入控制服务数据单元、聚合的媒体接入控制服务数据单元、媒体接入控制服务数据单元的分片、媒体接入控制管理协议数据单元中的之一。
  26. 根据权利要求15-25任一项所述的装置,其特征在于,所述第一信息由TID到链路映射元素所携带。
  27. 根据权利要求26所述的装置,其特征在于,所述TID到链路映射元素由关联请求帧、关联响应帧、重关联请求帧、重关联响应帧、TID到链路映射请求帧、TID到链路映射响应帧中的之一携带。
  28. 根据权利要求15-27任一项所述的装置,其特征在于,所述装置为接入点多链路设备或者非接入点多链路设备。
  29. 一种多链路设备,其特征在于,所述多链路设备为第一多链路设备,包括处理器、存储器、通信接口以及至少一个程序,所述至少一个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述至少一个程序包括用于执行如权利要求1-14任一项所述的方法中的步骤的指令。
  30. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序和数据,其中,所述计算机程序和数据使得计算机执行如权利要求1-14中任一项所述的方法。
  31. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-14中任一项所述方法的步骤。
PCT/CN2021/143022 2021-07-15 2021-12-30 多链路冗余传输控制方法与装置、多链路设备 WO2023284263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110804387.6A CN115623541A (zh) 2021-07-15 2021-07-15 多链路冗余传输控制方法与装置、多链路设备
CN202110804387.6 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023284263A1 true WO2023284263A1 (zh) 2023-01-19

Family

ID=84855324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143022 WO2023284263A1 (zh) 2021-07-15 2021-12-30 多链路冗余传输控制方法与装置、多链路设备

Country Status (2)

Country Link
CN (1) CN115623541A (zh)
WO (1) WO2023284263A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270679A1 (en) * 2017-03-20 2018-09-20 Nokia Technologies Oy Reliability-based multi-link communications
WO2021002617A1 (ko) * 2019-07-02 2021-01-07 엘지전자 주식회사 멀티링크에서 tid와 링크의 매핑
US20210037583A1 (en) * 2019-07-31 2021-02-04 Mediatek Singapore Pte. Ltd. Enhanced High-Throughput Multi-Link Operation Management
US20210120552A1 (en) * 2020-02-14 2021-04-22 Juan Fang Frame replication and interfaces for time sensitive networking
US20210160941A1 (en) * 2019-11-22 2021-05-27 Qualcomm Incorporated Synchronizing multi-link communications in a wireless local area network (wlan)
CN113114430A (zh) * 2020-01-11 2021-07-13 华为技术有限公司 一种数据帧的接收状态确定方法及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180270679A1 (en) * 2017-03-20 2018-09-20 Nokia Technologies Oy Reliability-based multi-link communications
WO2021002617A1 (ko) * 2019-07-02 2021-01-07 엘지전자 주식회사 멀티링크에서 tid와 링크의 매핑
US20210037583A1 (en) * 2019-07-31 2021-02-04 Mediatek Singapore Pte. Ltd. Enhanced High-Throughput Multi-Link Operation Management
US20210160941A1 (en) * 2019-11-22 2021-05-27 Qualcomm Incorporated Synchronizing multi-link communications in a wireless local area network (wlan)
CN113114430A (zh) * 2020-01-11 2021-07-13 华为技术有限公司 一种数据帧的接收状态确定方法及通信装置
US20210120552A1 (en) * 2020-02-14 2021-04-22 Juan Fang Frame replication and interfaces for time sensitive networking

Also Published As

Publication number Publication date
CN115623541A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2021004382A1 (zh) 一种多链路通信方法及相关设备
US20180205502A1 (en) Multi-link block acknowledgement management
US8787348B2 (en) Methods and systems for providing reliable multicast service in a WLAN system
CN102007723B (zh) 用于在无线局域网(wlan)中进行延迟块确认的方法和装置
EP1869815B1 (en) Method and system for improving responsiveness in exchanging communication frames in a wireless local area network
TWI433577B (zh) 用於異質無線網路之多重無線射頻協調的設備及方法
CN104813725B (zh) 数据传输装置和方法
US10165486B2 (en) Multiple-communications-standard transmission method and apparatus
EP1633071A2 (en) Packet transmission system in a wireless LAN
GB2510139A (en) Method, apparatus and computer program for providing a transmission opportunity with HARQ
CN117793790A (zh) 数据传输的方法和装置
US20190223256A1 (en) Data transmission method, network device, and terminal device
US20210144589A1 (en) Apparatus and methods for eht multi-band a-msdu operation
WO2021218435A1 (zh) 一种多链路通信方法及相关装置
JP2021166404A (ja) Txopを使用する無線通信方法及びそれを使用する無線通信端末
EP3150002A1 (en) Systems and methods for sharing scanning information
WO2022078321A1 (zh) 上行信息发送方法及相关产品
WO2023284263A1 (zh) 多链路冗余传输控制方法与装置、多链路设备
WO2022252543A1 (zh) 时间分配方法与装置、接入点和站点
WO2020211737A1 (zh) 无线通信方法和装置
WO2022252027A1 (zh) 多连接下的通信方法和通信装置
WO2023059030A1 (ko) 통신 시스템에서 신속 데이터의 역방향 전송을 위한 방법 및 장치
WO2023083310A1 (zh) 数据传输方法与装置、多链路设备
CA3208644A1 (en) Trigger frame for uplink resource allocation
CN115734397A (zh) 链路对的非同时收发能力更新方法与装置、多链路设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE