WO2023083310A1 - 数据传输方法与装置、多链路设备 - Google Patents
数据传输方法与装置、多链路设备 Download PDFInfo
- Publication number
- WO2023083310A1 WO2023083310A1 PCT/CN2022/131421 CN2022131421W WO2023083310A1 WO 2023083310 A1 WO2023083310 A1 WO 2023083310A1 CN 2022131421 W CN2022131421 W CN 2022131421W WO 2023083310 A1 WO2023083310 A1 WO 2023083310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- service
- time interval
- data
- rtwt
- time
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 135
- 238000000034 method Methods 0.000 title claims abstract description 69
- 230000009471 action Effects 0.000 claims description 50
- 238000004590 computer program Methods 0.000 claims description 25
- 230000000737 periodic effect Effects 0.000 claims description 13
- 230000009286 beneficial effect Effects 0.000 abstract description 14
- 238000013507 mapping Methods 0.000 description 42
- 230000006854 communication Effects 0.000 description 33
- 238000004891 communication Methods 0.000 description 32
- 230000006870 function Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 230000003111 delayed effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/24—Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present application relates to the technical field of communications, and in particular to a data transmission method and device, and a multi-link device.
- the Institute of Electrical and Electronic Engineers has formulated the IEEE 802.11be protocol standard on wireless local area network (wireless local access network, WLAN), introducing a restricted target wake time service period (restricted target wake time service period) , rTWT SP) mechanism.
- rTWT refers to the target wake-up time (TWT) with enhanced medium access protection and resources reserved for delay-sensitive services.
- TWT target wake-up time
- non-AP STA also referred to as STA or station
- the STA can switch from sleep mode when the rTWT SP arrives. Enter the wake-up (wake) mode, and send and/or receive data on the rTWT SP, while other STAs except the STA will avoid or will not preempt (occupy) the rTWT SP, and finally when the rTWT SP ends, the rTWT SP STA goes back to sleep mode.
- a multi-link device (multi-link device, MLD) can support data transmission on multiple links.
- This application provides a data transmission method and device, and multi-link equipment, in order to introduce a first time interval, and determine it according to the positional relationship between the first time interval and the arrival time of the data of the first service.
- Whether to transmit the data of the first service through the rTWT SP mode or the multi-link redundant transmission mode it is beneficial to realize the possibility of data transmission in a more effective and reasonable way, which in turn is conducive to ensuring the QoS requirements of the business and reducing Channel resource overhead, improve resource utilization.
- the first aspect is a data transmission method of the present application, including:
- the data of the first service is transmitted by means of a limited target wake-up time service period rTWT SP;
- the data of the first service is transmitted in a multi-link redundant transmission manner.
- the embodiment of the present application introduces a first time interval, and it is determined according to the positional relationship between the first time interval and the arrival time of the data of the first service, whether it is through the rTWT SP method or through the multi-link redundant
- the other transmission modes are used to transmit the data of the first service.
- the data of the first service is transmitted through the rTWT SP method; if the location relationship is that the arrival time of the data of the first service is not in In the first time interval, the data of the first service is transmitted through the multi-link redundant transmission mode, which is conducive to realizing the possibility of data transmission in a more effective and reasonable way, and is conducive to ensuring the QoS requirements of the service , reducing channel resource overhead and improving resource utilization.
- the second aspect is a data transmission device of the present application, including:
- an acquisition unit configured to acquire the data of the first service and the first time interval
- a transmission unit configured to transmit the data of the first service through a limited target wake-up time service period rTWT SP if the arrival time of the data of the first service is within the first time interval;
- the transmission unit is further configured to transmit the data of the first service in a multi-link redundant transmission mode if the arrival time of the data of the first service is not within the first time interval.
- the steps in the method designed in the above first aspect are applied to a multi-link device.
- the fourth aspect is a multi-link device of the present application, including a processor, a memory, and computer programs or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the above-mentioned first
- the steps in the method are contemplated.
- a fifth aspect is a chip of the present application, including a processor, wherein the processor executes the steps in the method designed in the above-mentioned first aspect.
- the sixth aspect is a chip module of the present application, including a transceiver component and a chip, and the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect above.
- the seventh aspect is a computer-readable storage medium of the present application, wherein it stores computer programs or instructions, and when the computer programs or instructions are executed, the steps in the method designed in the above-mentioned first aspect are realized.
- the eighth aspect is a computer program product of the present application, including computer programs or instructions, wherein, when the computer program or instructions are executed, the steps in the method designed in the above-mentioned first aspect are realized.
- FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of a frame body of a multi-link element according to an embodiment of the present application
- FIG. 3 is a schematic structural diagram of a frame body of a TID-to-link mapping element according to an embodiment of the present application
- FIG. 4 is a schematic structural diagram of a TID-to-link mapping control field according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a frame body of an SCS descriptor element according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a frame body of an SCS request frame according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a frame body of an SCS response frame according to an embodiment of the present application.
- Fig. 8 is a schematic structural diagram of a frame body of a bTWT element according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a frame body of a broadcast TWT parameter setting field according to an embodiment of the present application.
- Fig. 10 is a schematic structural diagram of the arrival time of data of a service and the rTWT SP in the embodiment of the present application;
- Figure 11 is a schematic structural diagram of a first time interval and rTWT SP in the embodiment of the present application.
- FIG. 12 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
- FIG. 13 is a block diagram of functional units of a data transmission device according to an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of a multi-link device according to an embodiment of the present application.
- At least one in the embodiments of the present application refers to one or more, and multiple refers to two or more.
- At least one of the following or similar expressions in the embodiments of the present application refer to any combination of these items, including any combination of a single item or a plurality of items.
- at least one item (piece) of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
- each of a, b, and c may be an element, or a set containing one or more elements.
- connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in any way.
- Network and “system” in the embodiments of the present application may be expressed as the same concept, and a communication system is a communication network.
- the embodiment of the present application may be applied to a wireless local area network (wireless local area network, WLAN).
- WLAN wireless local area network
- the protocol standard adopted by WLAN is IEEE 802.11 series.
- the WLAN may include multiple basic service sets (basic service set, BSS), and the equipment in the basic service set may include an access point station (access point station, AP STA, also referred to as AP or access point) and a wireless network.
- An access point station one access point station, non-AP STA, also referred to as STA or station
- each basic service set can include an access point and at least one station.
- the devices in the basic service set may include multi-link devices (multi-link device, MLD). Specific descriptions are given below.
- an access point may be an entity that provides network access for stations connected to it via a wireless medium.
- the access point can connect each wireless network client to the Ethernet, and it can be a network device with a wireless fidelity (Wi-Fi) chip, or a device that supports various IEEE 802.11 protocol standards, and there are no specific restrictions on this .
- Wi-Fi wireless fidelity
- an access point may be a device that supports IEEE 802.11ac, IEEE 802.11n, IEEE 802.11g, IEEE 802.11b, IEEE802.11ax, IEEE802.11be, next-generation WLAN protocol standards, and the like.
- the access point may include a centralized controller, a base station (base station, BS), a base transceiver station (base transceiver station, BTS), a site controller, a switch, and the like.
- the access point may include a device with a wireless communication function (or a device with a transceiver function), such as a chip system, a chip, or a chip module.
- a device with a wireless communication function such as a chip system, a chip, or a chip module.
- the chip system may include a chip, and may also include other discrete devices, such as transceiver devices and the like.
- the access point can communicate with an Internet Protocol (Internet Protocol, IP) network.
- Internet Protocol Internet Protocol
- IP Internet Protocol
- the Internet Internet
- private IP network or other data networks and the like.
- the station may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
- user equipment user equipment, UE
- remote/remote terminal remote/remote terminal
- access terminal user unit, user station, mobile device, user terminal, intelligent terminal, wireless communication device supporting Wi-Fi communication function , User Agent or User Device/Cellular Phone, Cordless Phone, Session Initiation Protocol (SIP) Phone, Wireless Local Loop (WLL) Station, Personal Digital Assistant (PDA), Handheld equipment, in-vehicle equipment, wearable equipment, etc., which are not specifically limited.
- UE user equipment
- remote/remote terminal remote/remote terminal
- wireless communication device supporting Wi-Fi communication function wireless communication device supporting Wi-Fi communication function
- User Agent or User Device/Cellular Phone Cordless Phone
- Session Initiation Protocol (SIP) Phone Wireless Local Loop (WLL) Station
- PDA Personal Digital Assistant
- Handheld equipment in-vehicle equipment, wearable equipment, etc., which are not specifically limited.
- the stations may include non-AP extremely high throughput stations (none AP extremely high throughput station, non-AP EHT STA) and non-AP high-efficiency stations (none AP high efficiency station, non-AP EHT STA) -AP HE STA) etc.
- the station may include a device with a wireless communication function (or a device with a transceiver function), such as a chip system, a chip, or a chip module.
- a device with a wireless communication function such as a chip system, a chip, or a chip module.
- the chip system may include a chip, and may also include other discrete devices, such as transceiver devices and the like.
- a multi-link device may support data transmission on multiple links.
- a multi-link device may include multiple access points or multiple stations, and different access points or different stations may work on different carrier frequencies, such as 2.4GHz, 5GHz, 6GHz and other carrier frequencies.
- the multi-link device can be called an access point multi-link device (AP MLD); if the multi-link device contains multiple stations, the multi-link device can be It is called a non-access point multilink device (Non-AP MLD).
- AP MLD access point multi-link device
- Non-AP MLD non-access point multilink device
- the wireless communication system according to the embodiment of the present application will be exemplarily described below by taking a multi-link device as an example.
- the wireless communication system 10 may include an Access Point Multilink Device/Non-AP Multilink Device (AP MLD/Non-AP MLD) 110 and a Non-AP Multilink Device (Non-AP MLD) 120 .
- AP MLD/Non-AP MLD Access Point Multilink Device/Non-AP Multilink Device
- Non-AP MLD Non-AP Multilink Device
- the access point multi-link device/non-access point multi-link device 110 may include multiple access points/sites, such as AP/STA 111, AP/STA 112, and AP/STA 113.
- the non-access point multi-link device 120 may include multiple stations, such as STA 121, STA 122, and STA 123.
- Links are established between the access point multi-link device/non-access point multi-link device 110 and the non-access point multi-link device 120, including links established between AP/STA 111 and STA 121 131.
- a link 132 is established between AP/STA 112 and STA 122, and a link 133 is established between AP/STA 113 and STA 123, and different links have different working carrier frequencies.
- link 131 has a working carrier frequency of 6 GHz
- link 132 has a working carrier frequency of 5 GHz
- link 133 has a working carrier frequency of 2.4 GHz.
- the wireless communication system 10 may also include other multi-link devices, non-AP multi-link devices and non-AP multi-link devices 120
- the entry point or station, etc. is not specifically limited.
- the wireless communication system 10 may also include other network entities such as access network (radio access network, RAN) equipment, core network (core network, CN) equipment, a network controller, and a mobility management entity, which is not specifically limited.
- access network radio access network
- core network core network
- CN core network
- mobility management entity a mobility management entity
- the communication between the AP multi-link device/non-AP multi-link device 110 and the non-AP multi-link device 120 in the wireless communication system 10 may be wireless communication or wired communication, which is not specifically limited. .
- a multi-link device (multi-link device, MLD) can support data transmission on multiple links.
- the multi-link device may be an access point multi-link device (AP MLD) or a non-access point multi-link device (Non-AP MLD).
- AP MLD access point multi-link device
- Non-AP MLD non-access point multi-link device
- AP MLD can contain multiple access points (AP), Non-AP MLD can contain multiple stations (STA), and different access points or stations can work on different carrier frequencies, such as 2.4GHz, 5GHz, 6GHz and other carrier frequencies or two carrier frequencies in the 5GHz frequency band.
- AP access points
- STA stations
- different access points or stations can work on different carrier frequencies, such as 2.4GHz, 5GHz, 6GHz and other carrier frequencies or two carrier frequencies in the 5GHz frequency band.
- Multiple links can be established between AP MLD/Non-AP MLD and Non-AP MLD, and data can be transmitted on the multiple links.
- the Association Request (Association Request) frame sent by Non-AP MLD can contain multi-link elements.
- the multi-link element 20 may include an element identifier (Element ID) field 210, a length (Length) field 220, an element descriptor extension (Element ID Extension) field 230, a multi-link control (Multi-Link Control) field 240, public information (Common Info) field 250, link information (Link Info) field 260.
- the element ID field 210 is used to set the element ID value
- the length field 220 is used to set the length of the multi-link element 20
- the element descriptor extension field 230 is used to extend the element descriptor field.
- Data can be transmitted on multiple links, and which links of the multiple links the data is transmitted on can be determined by a traffic identifier (traffic ID, TID) of the data.
- TID traffic identifier
- a TID-to-link mapping mechanism may be used to determine how TIDs are mapped to multiple links established between a multi-link device and the multi-link device.
- each TID may map to the same or different set of links.
- the link is defined as enabled (enabled); if no TID is mapped to a certain link, the link is defined as disabled (disabled).
- a TID should always be mapped to at least one link. By default (default mapping mode), all links should be enabled since the TID is mapped on all links.
- a link If a link is enabled, the link can be used for data transmission; if a link is disabled, the link cannot be used for transmission. For example, if the TID of the MSDU/A-MSDU is mapped to a certain link, the link is enabled, and the MSDU/A-MSDU can be transmitted on the link. In addition, management frames and control frames can also be transmitted on enabled links.
- a TID-to-link mapping element may be used to indicate on which links corresponding (belonging to, associated with or related to) TID data can be transmitted.
- the frame body of TID to link mapping element 30 may include element identifier field 310, length field 320, element identifier extension field 330, TID to link mapping control field 340, TID 0
- the link mapping field of TID n(n ⁇ 0,1,...,7 ⁇ ) may indicate a link that is allowed to transmit data corresponding to TID n. If the value of the i-th bit of the link mapping field of TID n (n ⁇ 0,1,...,7 ⁇ ) is 1, it indicates that TID n is mapped to the link ID (link ID) associated with i on the link.
- the TID-to-link mapping control field 340 may include a direction subfield 3401 , a default link mapping subfield 3402 , a reserved subfield 3403 , and a link mapping existence indication subfield 3404 .
- the direction subfield 3401 is set to 0 (downlink).
- the direction subfield 3401 is set to 2 if the TID-to-link mapping element 30 specifically provides TID-to-link mapping information for data transmitted on the downlink and uplink.
- the default link mapping subfield 3402 is set to 1; otherwise, it is set to 0.
- Link Mapping Existence Indication Subfield 3404 may indicate whether a TID n Link Mapping field exists in the TID to Link Mapping element 30. If the value of the nth bit of the link mapping existence indication subfield 3404 is 1, then the link mapping field indicating TID n exists in the TID to link mapping element 30; otherwise, the link mapping field indicating TID n Not present in the TID to link mapping element 30.
- Stream Classification Service enables a station to request from its associated access point that specific QoS treatment be applied to unicast MSDUs classified as specific flows.
- QoS characteristic of this specific flow is described by the traffic specification (Traffic Specification, TSPEC) element. match the parameters specified in .
- the SCS descriptor element defines information about traffic classification.
- the frame body of the SCS descriptor element 50 may include an element descriptor field 510, a length field 520, an SCS identifier field 530, a request type field 540, an internal access category priority element 550, a TCLAS Element field 560 , TCLAS processing element field 570 , TSPEC element 580 and optional sub-element 590 .
- the element descriptor field 510 is used to set the SCS descriptor value; the value of the length field 520 is set to 1+n, and n represents the total length of the SCS descriptor list (SCS Descriptor List) field element;
- the request type field 540 is set to a number to identify the type of SCS request
- the SCS identifier field 530 is set to a non-zero value selected by the station for identifying the SCS flow specified in the SCS descriptor list field;
- TCLAS element field 560 contains zero or more TCLAS information elements to specify how incoming MSDUs are classified as part of this SCS flow;
- the TCLAS processing element field 570 is present when there are multiple TCLAS elements in the TCLAS element field 560 and contains a TCLAS processing element defining how to process the multiple TCLAS elements;
- the TSPEC element field 580 contains zero or one TSPEC element, which is used to describe the service characteristics and QoS requirements of the service flow belonging to this SCS flow;
- Optional sub-element 590 contains zero or more sub-elements.
- the TCLAS processing element field 570 is used to define how to handle multiple TCLAS information elements when there are multiple TCLAS elements.
- the SCS descriptor element 50 is included in the SCS request frame (SCS request frame).
- the SCS request frame can be used to request flow classification such as adding (add), changing (change) or deleting (remove).
- the frame body of the SCS request frame 60 may include a category field 610 , an action field 620 , a dialog token field 630 and an SCS descriptor list field 640 .
- the action field 620 is used to set the value specified for the SCS request frame;
- the dialog token field 630 is set to a non-zero value, which is unique in the SCS request frame sent to the access point, and the access point has not yet A corresponding SCS Response frame is received;
- the SCS Descriptor List field 640 contains one or more SCS Descriptor elements.
- the SCS response frame is used to respond to the SCS request frame.
- the frame body of the SCS response frame 70 may include a category field 710 , an action field 720 , a dialog token field 730 and an SCS state list field 740 .
- the action field 720 is used to set the value specified for the SCS response frame
- the dialog token field 730 is set to a non-zero value of the corresponding SCS request frame
- the SCS state list field 740 contains one or more SCS descriptor elements.
- SCS Status List field 740 contains one or more SCS statuses.
- the SCS status includes a SCSID field and a status field.
- the SCSID field is set to the value of the SCSID field in the SCS descriptor element received in the SCS request frame; the status field is used to indicate the status of the requested SCSID.
- TWT Target Wake Time
- the TWT mechanism enables stations to determine when and how often they wake up to send and/or receive data, which is beneficial for reducing power consumption and improving spectral efficiency.
- TWT first appeared in the IEEE 802.11ah "Wi-Fi HaLow" standard, which is used to support energy-saving operation in a large-scale Internet of Things environment.
- IEEE 802.11ax the function of TWT has been further expanded, which enables the IEEE 802.11ax standard to optimize the energy-saving mechanism of the device and provide a more reliable and energy-saving transmission mechanism.
- the TWT mechanism has been modified on the basis of IEEE802.11ah to support trigger-based uplink transmission, thereby extending the scope of TWT work.
- a timetable can be established between the station and the access point (the timetable is negotiated between the station and the access point), and the timetable can be determined by the TWT service period (TWT service period, TWT SP) made up of.
- the station When the negotiated TWT SP arrives, the station enters wake mode from sleep mode and performs data transmission. In the trigger enable mode, the station needs to wait for a trigger frame (trigger frame) sent by the access point for uplink data transmission. When the TWT SP ends, the station goes back into sleep mode.
- a trigger frame Trigger frame
- Each station and access point can negotiate independently, so that each terminal has a separate TWT SP.
- the access point can group each station according to the set TWT SP, so that the TWT SP can be broadcast to the stations in the same group to improve communication efficiency.
- rTWT is a kind of bTWT (broadcast TWT, broadcast TWT), the bTWT element can be carried in the management frame (management frame), the management frame can include association frame (association frame), reassociation frame (reassociation frame), probe frame (probe frame) frame), beacon frame (beacon frame), TWT setup frame (TWT setup frame), etc.
- association frame association frame
- reassociation frame reassociation frame
- probe frame probe frame
- beacon frame beacon frame
- TWT setup frame TWT setup frame
- the bTWT element 80 may include an element identifier (Element ID) field 810, a length (Length) field 820, a control (Control) field 830, and a TWT parameter information field (TWT Parameter Information) 840.
- element ID element identifier
- Length length
- Control Control
- TWT parameter information field TWT Parameter Information
- the TWT parameter information (TWT Parameter Information) field 840 may contain a single TWT parameter setting field (a single Individual TWT Parameter Set field) or at least one broadcast TWT parameter setting field (one or more Broadcast TWT Parameter Set fields).
- the broadcast TWT parameter setting field 90 includes a request type (Request Type) field 910, a target wake-up time (Target Wake Time) field 920, a nominal minimum TWT wake-up duration (Nominal Minimum TWT Wake Duration) ) field 930, TWT Wake Interval Mantissa (TWT Wake Interval Mantissa) field 940, broadcast TWT information (Broadcast TWT Info) field 950, restricted TWT service information (Restricted TWT Traffic Info) field 960.
- Request Type request type
- Target Wake Time target wake-up time
- Nominal Minimum TWT Wake Duration Nominal Minimum TWT Wake Duration
- TWT Wake Interval Mantissa TWT Wake Interval Mantissa
- the target wake-up time field 920 may be used to indicate the start position/start position/start time/start time (start time) of the TWT SP.
- the nominal minimum TWT wake-up duration field 930 may be used to indicate the length/duration of the TWT SP.
- the TWT wakeup interval tail field 940 may be used to indicate the period of the TWT SP.
- TWT can have the following working modes:
- the station will independently negotiate a specific TWT SP with the access point, and the TWT SP will be stored in the schedule of the access point.
- the station will wake up at the TWT SP and exchange frames with the access point.
- Each terminal only needs to know the TWT SP negotiated between itself and the access point, and does not need to know the TWT SP of other stations.
- the Broadcast TWT mode is a working mechanism managed by the access point.
- the TWT SP is broadcast by the access point.
- the access point will broadcast the TWT SP of the current round in the beacon frame.
- the access point will also broadcast in other management frames, such as Association frame, Reassociation frame or Probe Response frame.
- the station needs to apply to the access point to become a Broadcast TWT member before it can execute Broadcast TWT.
- the application to become a Broadcast TWT member is completed by exchanging management frames (such as TWT setup) between the station and the access point, and carrying the TWT element through the management frame.
- TWT Scheduled STA TWT Scheduled STA
- TWT Scheduling AP TWT Scheduling AP
- the stations of Broadcast TWT members go back to sleep mode until the next round of TWT SP broadcast arrives.
- rTWT refers to TWT with enhanced media access protection and resources reserved for latency sensitive traffic.
- the station can wake up when the rTWT SP arrives, and send and/or receive data on the rTWT SP, while other STAs except the STA will avoid or will not preempt (Occupy) the rTWT SP, and finally the station returns to sleep mode when the rTWT SP ends.
- rTWT SP is a kind of Broadcast TWT, which belongs to the above-mentioned Broadcast TWT mode, and is dedicated to delay-sensitive, low-latency, real-time services.
- the access point can broadcast the rTWT SP allocated for a certain service to the STA through the management frame, and broadcast the silence element to prevent the old standard STA from seizing the channel in the rTWT SP.
- rTWT SP may have the following problems that affect resource usage:
- ⁇ Service data may be retransmitted. For this reason, the duration of rTWT SP assigned to this service also needs to consider data retransmission, such as increasing the duration of rTWT SP to meet data transmission, thereby further reducing the effective utilization rate of rTWT SP resources.
- the following takes the uplink/downlink data transmission as an example for illustration.
- AP MLD and non-AP MLD are configured with rTWT SP for the service through negotiation.
- the non-AP MLD Upon arrival of the rTWT SP, the non-AP MLD enters wake mode from sleep mode. At the end of this rTWT SP, the non-AP MLD goes back into sleep mode.
- the starting position of the rTWT SP is A
- the ending position of the rTWT SP is B.
- the remote server will first transmit the data of the service to the AP MLD, and then the AP MLD will use the rTWT SP to transmit the data of the service to the non-AP MLD.
- the remote server transmits the data of the service to the STA MLD
- the data of the service needs to reach the AP MLD first, and needs to go through the multi-hop transmission of the IP network, and the multi-hop transmission will be jittered due to the delay
- the data of this service is delayed to arrive at the AP MLD.
- the arrival time of the data of this service can be C or C'.
- the arrival time of the business is C', and the time between C' and B is small, that is, the time is short. If the time between C' and B is less than the time required to transmit the data of the service, the data of the service will not be able to be transmitted on the rTWT SP, and the QoS requirements of the service cannot be guaranteed, which increases the channel resource overhead. And reduce rTWT SP resource utilization.
- the arrival time of this service is C (the last rTWT SP has been completely missed), and the time between C and A is relatively long, that is, the time is relatively long, which will cause the data of this service to wait for a long time before being sent to rTWT SP. Therefore, the QoS requirements of the service cannot be guaranteed, which increases the channel resource overhead and reduces the rTWT SP resource utilization.
- the data of the service generated by the application layer of the Non-AP MLD (such as the application APP in the application layer) will be transmitted to the Non-AP MLD first
- the STA in the non-AP MLD (the STA can be regarded as the communication module of the Non-AP MLD, such as the WIFI module), and then the STA in the Non-AP MLD uses the rTWT SP to transmit the data of the service to the AP MLD.
- the data of the service will also be delayed in reaching the Non-AP MLD due to delay jitter The STA.
- the arrival time of the data of this service is also C or C'.
- the data of this service cannot be transmitted on the rTWT SP, or the data of this service needs to wait for a long time before it can be transmitted on the rTWT SP.
- the change in the data volume may also cause all the data of the service to fail to be transmitted on the rTWT SP.
- the embodiment of the present application introduces a first time interval, and according to the positional relationship between the first time interval and the arrival time of the data of the first service, it is determined whether to use rTWT SP mode or multi-link redundancy
- the transmission mode is used to transmit the data of the first service.
- the data of the first service is transmitted through the rTWT SP method; if the location relationship is that the arrival time of the data of the first service is not in the first time interval In the time interval, the data of the first service is transmitted through multi-link redundant transmission, which is conducive to realizing the possibility of data transmission in a more effective and reasonable way, which in turn helps to ensure the QoS requirements of the service and reduce Channel resource overhead, improve resource utilization.
- the change in the data volume may also cause all the data of the first service to fail to be transmitted on the rTWT SP. Therefore, if there is first data that cannot be transmitted in the rTWT SP among the data of the first service, the first data is regarded as the data that arrives outside the first time interval.
- the embodiment of the present application can transmit the first data based on the same principle as above, that is, transmit the first data through multi-link redundant transmission, so that the implementation of multi-link redundant transmission will not be possible in rTWT SP Transfer the data that has been transferred above.
- the first service may be a latency sensitive (latency sensitive) service, a stream classification service (stream classification service, SCS) service, a real-time application (real-time application, RTA) service or a low-latency ( low latency) business, etc., there are no specific restrictions on this.
- RTA is an application that runs within a time frame that the user perceives as immediate or current. The delay must be less than the defined value, usually in seconds. Whether a given application is eligible for RTA may depend on the worst-case execution time (WCET), the maximum length of time required for a defined task or set of tasks on a given hardware platform.
- WET worst-case execution time
- RTA data has strict delay requirements, such as extremely low average delay, delay on the order of several milliseconds to tens of milliseconds, small jitter, etc., which is conducive to ensuring the reliability of data transmission and communication processes .
- the data of the first service may be uplink data or downlink data.
- the data of the first service is generated by the application layer (such as APP) of the Non-AP MLD, and then the data of the first service is transmitted to the AP MLD by the Non-AP MLD through the uplink.
- the application layer such as APP
- the data of the first service is generated by the remote server, and then the data of the first service is sent to the Non-AP MLD in the process of sending the first service data on the downlink through the AP MLD.
- the data of the service is relayed to the Non-AP MLD.
- the service characteristics of the first service may include time point, data volume, delay requirement, period, and the like.
- the service characteristics of the first service may be indicated/represented/characterized/described/carried by the TSPEC element in the TSPEC element field 580 .
- the service characteristics of the first service may include service characteristics of downlink data and/or service characteristics of uplink data. Wherein, there may be differences between the service characteristics of the downlink data and the service characteristics of the uplink data.
- the service characteristics of the first service may be notified by the Non-AP MLD to the AP MLD.
- the Non-AP MLD notifies the service characteristics of the first service by sending an SCS request frame to the AP MLD.
- the Non-AP MLD obtains the data of the first service from the application layer (such as APP).
- the application layer such as APP
- the application layer of the Non-AP MLD interacts with the application layer of the remote server, and the data of the first service is forwarded through the AP MLD relay to achieve acquisition.
- the following takes the interaction process between the Non-AP MLD and the AP MLD as an example for illustration.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP.
- the first STA requests the SCS service through the SCS request frame, and notifies the first AP MLD of the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the SCS service through the SCS request frame.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the first SCS service through the first SCS request frame To the first AP MLD.
- service characteristics such as time point, data volume, delay requirement, period, etc.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the second SCS service through the second SCS request frame To the first AP MLD.
- the multiple links established by both sides of the multi-link device can be all links initially established, multiple links mapped to the TID of data (TID mapped links), one of the default mapped links.
- the multiple links to which the TID of the data is mapped may be indicated by a TID-to-link Mapping element (TID-to-link Mapping element). That is, the TID-to-link mapping element may indicate on which links among the plurality of established links data corresponding to (belonging to, associated with or related to) the TID can be transmitted.
- TID-to-link Mapping element may indicate on which links among the plurality of established links data corresponding to (belonging to, associated with or related to) the TID can be transmitted.
- the link mapping field of TID n(n ⁇ 0,1,...,7 ⁇ ) may indicate a link that is allowed to transmit data corresponding to TID n. If the value of the i-th bit of the link mapping field of TID n (n ⁇ 0,1,...,7 ⁇ ) is 1, it indicates that TID n is mapped to the link ID (link ID) associated with i on the link.
- each TID should be mapped to all links initially established. That is to say, the multiple links mapped by default may be all links initially established.
- the default link mapping subfield 3402 is set to 1; otherwise, it is set to 0.
- the rTWT may include at least one of the following items: the duration of the rTWT, the start position of the rTWT, the end position of the rTWT, and the period of the rTWT.
- the duration of rTWT can be understood as the length of rTWT, the duration of rTWT, the period of rTWT, the rTWT service period (rTWT SP), similar to the nominal minimum TWT wake-up duration field 930 in FIG. 9 , for this Not specifically limited.
- the start position of rTWT can be understood as the start position of rTWT, the start time of rTWT (start time), the start time of rTWT, the start time of rTWT, etc., similar to the target wake-up time field 920 in FIG. Not specifically limited.
- the end position of rTWT can be understood as the end time of rTWT, the end time of rTWT, etc., which are not specifically limited.
- the rTWT period can be understood as the rTWT interval (interval), etc., which is similar to the TWT wake-up interval mantissa field 940 in FIG. 9 , which is not specifically limited.
- rTWT operation allows multi-link devices (such as AP MLD) to use enhanced media access protection and resource reservation mechanisms to provide more predictable delays, reduce worst-case delays or jitter, and provide The data of the first service provides higher reliability.
- the rTWT SP may be configured according to the service characteristics of the first service.
- the Non-AP MLD notifies the AP MLD of the service characteristics of the first service, and then the AP MLD configures the rTWT SP for transmitting the data of the first service according to the service characteristics of the first service.
- configuring rTWT SP according to the service characteristics of the first service can ensure that the configured rTWT SP better meets the requirements of the first service (such as QoS, transmission volume, transmission time, etc.), thereby ensuring the accuracy of configuration.
- the rTWT SP may be configured according to a configuration request, which is used to request to configure the rTWT SP to the service.
- the Non-AP MLD sends a configuration request to the AP MLD, the configuration request is used to request to configure the rTWT SP for the first service, and then the AP MLD configures the rTWT SP for transmitting the data of the first service according to the configuration request.
- the rTWT SP can be a kind of Broadcast TWT, so the AP MLD is configured on one of the multiple established links. After the rTWT SP, the AP corresponding to the link in the AP MLD needs to broadcast the rTWT SP to notify the STA corresponding to the link in the Non-AP MLD.
- AP 111 needs to broadcast the rTWT SP on link 131 to notify STA 121.
- the rTWT SP may be broadcast through the TWT element in the beacon frame.
- the TWT element can be known from the content in the above "6. TWT element (element)", and will not be repeated here.
- rTWT SP is a kind of Broadcast TWT
- the AP corresponding to the link in AP MLD needs to configure the rTWT SP broadcast.
- the STA corresponding to the link in the Non-AP MLD can obtain the rTWT SP.
- the STA needs to negotiate with the AP, and the negotiation process can be in the following two ways:
- Mode 1 The STA sends an action frame to the AP to request the use of the rTWT SP, and then the AP feeds back the action frame to the STA to complete the negotiation.
- AP 111 needs to broadcast the rTWT SP on link 131 to notify STA 121.
- STA 121 sends an action frame to AP 111 to request to use the rTWT SP, and then AP 111 feeds back the action frame to STA 121 to complete the negotiation.
- Mode 2 The AP directly sends an unsolicited action frame to the STA to complete the negotiation.
- the rTWT SP in this embodiment of the present application may be negotiated through an action frame (action frame).
- Non-AP MLD Non-AP MLD
- AP MLD AP MLD
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP.
- the first STA requests the SCS service through the SCS request frame, and notifies the first AP of the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the SCS service through the SCS request frame.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the first AP configures the rTWT SP for the SCS service according to the service characteristics of the SCS service.
- the first AP configures rTWT SP on link1 and broadcasts the rTWT SP through the TWT element in the beacon frame on link1.
- the first STA and the first AP negotiate through an action frame to realize that the first STA uses the rTWT SP, so as to transmit the data of the SCS service to the first STA in the rTWT SP.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Three links are established between the first Non-AP MLD and the first AP MLD, that is, link1 between the first STA and the first AP, link2 between the second STA and the second AP, and link2 between the third STA and the second AP. link3 between the third AP.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the first SCS service through the first SCS request frame to the first AP.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the second SCS service through the second SCS request frame to the first AP.
- the first AP configures the same rTWT SP according to the service characteristics of the first SCS service and the service characteristics of the second SCS service.
- the first AP configures rTWT SP on link1, and broadcasts the rTWT SP through the TWT element in the beacon frame on link1.
- the first STA After broadcasting the rTWT SP, the first STA negotiates with the first AP through the first action frame to enable the first STA to use the rTWT SP, and the fourth STA negotiates with the first AP through the second action frame In order to realize that the fourth STA uses the rTWT SP, so as to transmit the data of the first SCS service to the first STA in the rTWT SP, and transmit the data of the second SCS service to the fourth STA.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies the first SCS service of the service characteristics (such as time point, data volume, delay requirement, cycle, etc.) of the first SCS service through the first SCS request frame One AP.
- the service characteristics such as time point, data volume, delay requirement, cycle, etc.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies the second SCS service of the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the second SCS request frame to the second SCS request frame One AP.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the first AP configures the first rTWT SP according to the service characteristics of the first SCS service.
- the first AP configures the second rTWT SP according to the service characteristics of the second SCS service.
- the first AP configures the first rTWT SP and the second rTWT SP on link1, and broadcasts the first rTWT SP and the second rTWT SP through the TWT element in the beacon frame on link1.
- the first STA After broadcasting the first rTWT SP and the second rTWT SP, the first STA negotiates with the first AP through the first action frame to realize that the first STA uses the first rTWT SP, so as to communicate with the first rTWT SP in the first rTWT SP.
- the first STA transmits data of the first SCS service.
- the fourth STA After broadcasting the first rTWT SP and the second rTWT SP, the fourth STA negotiates with the first AP through the second action frame to realize that the fourth STA uses the second rTWT SP, so as to communicate with the second rTWT SP in the second rTWT SP.
- the fourth STA transmits data of the second SCS service.
- Multi-link redundant transmission can be understood as, when the data of the service is transmitted on a certain link among the multiple links (such as new transmission or retransmission), the data of the service may be being removed from the link at the same time. It is transmitted on other links or has been transmitted on other links but has not yet confirmed the success of the transmission (for example, the sending end has not received the ACK frame fed back by the receiving end, etc.). This is illustrated below with an example.
- AP/STA 111 when AP/STA 111 is transmitting some data to STA 121 on link 131, AP/STA 112 is simultaneously transmitting the data to STA 122 on link 132 and/or AP/STA 113 is transmitting the data to STA 122 on link 132. Simultaneously transmit the data to STA 123 on link 133; or,
- AP/STA 111 transmits certain data to STA 121 on link 131
- AP/STA 112 has already transmitted the data to STA 122 on link 132, but AP/STA 112 has not yet received STA 122’s response to the data.
- ACK frame for data feedback When AP/STA 111 transmits certain data to STA 121 on link 131, AP/STA 112 has already transmitted the data to STA 122 on link 132, but AP/STA 112 has not yet received STA 122’s response to the data.
- ACK frame for data feedback When AP/STA 111 transmits certain data to STA 121 on link 131, AP/STA 112 has already transmitted the data to STA 122 on link 132, but AP/STA 112 has not yet received STA 122’s response to the data.
- ACK frame for data feedback When AP/STA 111 transmits certain data to STA 121 on link 131, AP/STA 112
- service data can be transmitted simultaneously on multiple links established by Non-AP MLD and AP MLD.
- the more links that simultaneously transmit data occupy the more channel resources will be occupied.
- the embodiments of the present application need to negotiate the maximum number of links occupied by data of simultaneous transmission services in multi-link redundant transmission.
- AP MLD/non-AP MLD 110 and Non-AP MLD 120 negotiate multi-link redundant transmission, the maximum number of links that simultaneously transmit service data occupies is 2, Then when AP/STA 111 transmits certain data to STA 121 on link 131, AP/STA 112 can transmit the data to STA 122 on link 132 at the same time, but cannot transmit to STA 123 on link 133 at the same time the data.
- the Non-AP MLD and the AP MLD can use action frames to negotiate the maximum number of links in the multi-link redundant transmission that simultaneously transmits the data of the first service, that is, the multi-link redundancy
- the maximum number of links occupied by simultaneously transmitting the data of the first service during the transmission is carried by the action frame.
- Non-AP MLD and AP MLD use SCS request frame (SCS request frame is a kind of action frame) to negotiate the data share of the first service transmitted simultaneously in the multi-link redundant transmission
- SCS request frame is a kind of action frame
- the maximum number of links may be indicated/represented/characterized/carried by a certain field in the SCS descriptor element 50.
- the certain field may be in optional sub-element 590 .
- the following takes the interaction process between the Non-AP MLD and the AP MLD as an example for illustration.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP.
- the first STA requests the SCS service through the SCS request frame, and notifies the first AP MLD that the maximum number of links that simultaneously transmit the data of the SCS service in the multi-link redundant transmission is 2 through the SCS request frame.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies that the maximum number of links that simultaneously transmit the data of the first SCS service in the multi-link redundant transmission is 2 through the first SCS request frame Notify the first AP MLD to the first AP MLD.
- the data of the first SCS service can only be multi-link redundantly transmitted on at most 2 links among the three links.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies that the maximum number of links that simultaneously transmit the data of the second SCS service in the multi-link redundant transmission is 2 through the second SCS request frame To the first AP MLD.
- the remote server For downlink data transmission, when the remote server sends the service data to the STA MLD, it needs to go through the multi-hop transmission of the IP network and then reach the AP MLD first, and the delay and jitter in the multi-hop transmission may cause the service
- the delayed arrival of the data of the service may result in the inability to effectively use the rTWT SP configured for the data of the service due to the delayed arrival of the data of the service.
- the data of the service in the process of transmitting the data of the service generated by the application layer of the Non-AP MLD to the STA in the Non-AP MLD, the data of the service will also be caused by delay jitter. Delayed arrival at the STA in the Non-AP MLD, so that the delayed arrival of the data of the service may result in the inability to effectively use the rTWT SP configured for the data of the service.
- the embodiment of this application introduces a first time interval, which can be used to confirm whether the data of the first service can be processed through the rTWT SP method. transmission. It can also be said that the first time interval can be used to confirm whether the data of the first service is transmitted through the rTWT SP mode or the multi-link redundant mode.
- first time interval in the embodiment of the present application is an expression of the time interval, and there may be different expressions in different standard protocols, but they only have the same function. Within the scope of protection, there are no specific restrictions on this.
- the AP MLD when the AP MLD configures the first time interval for uplink data transmission, the AP MLD needs to negotiate and send the first time interval to the Non-AP MLD, such as carrying the first time interval in a management frame (or action frame, etc.) Send to Non-AP MLD.
- the AP MLD When the AP MLD configures the first time interval for downlink data transmission, the AP MLD does not need to send the first time interval to the Non-AP MLD, but only needs to store the first time interval itself.
- a time interval may include at least one of the following items: the duration of the first time interval, the start position of the first time interval, the end position of the first time interval, and the period of the first time interval.
- duration of the first time interval can be understood as the length of the first time interval, the duration of the first time interval, the period of the first time interval, etc., which are not specifically limited.
- the duration of the first time interval can be an absolute value or a fixed value, which can be specified by a standard protocol, pre-configured, configured by AP MLD, or negotiated between AP MLD and Non-AP MLD Yes, there is no specific limitation on this.
- start position of the first time interval can be understood as the start time of the first time interval (start time), the start time of the first time interval, the start time of the first time interval, etc. Not specifically limited.
- the starting position of the first time interval may be before or after the starting position of rTWT SP.
- the arrival time of the data of the first service can be before or after the starting position of rTWT SP
- the starting position of the first time interval in the embodiment of the present application can also be before the starting position of rTWT SP or later, which is beneficial to improve the flexibility of defining the first time interval.
- the starting position of the first time interval can be before the starting position of the rTWT SP, which can better ensure communication robustness.
- the starting position of the first time interval can be realized in the following two ways:
- Method 1 Configure the start position of the first time interval as an absolute value or a fixed value, that is, the start position of the first time interval is an absolute start position or a fixed start position, which can be specified by the standard protocol, preset Configured, configured by AP MLD, configured through negotiation between AP MLD and Non-AP MLD, there are no specific restrictions on this.
- the absolute starting position or the fixed starting position can be configured to be periodic, that is, the absolute starting position or the fixed starting position is periodic, which is beneficial to ensure that the first time interval The starting position of is also periodic.
- the starting position of the first time interval is configured as an absolute value or a fixed value, it is beneficial to configure different starting positions of the first time interval for different Non-AP MLDs, improving the flexibility and diversity of configuration .
- Mode 2 Configure the starting position of the first time interval through an offset (offset).
- the offset is used to represent the offset between the start position of the first time interval and the start position of rTWT; or,
- the offset is used to represent the offset between the start position of the first time interval and the end position of rTWT.
- the first offset may be specified by a standard protocol, pre-configured, configured by the AP MLD, or configured through negotiation between the AP MLD and the Non-AP MLD, and there is no specific limitation on this.
- the embodiment of the present application can introduce the first offset, and use the first offset
- the initial position of the first time interval is configured by using the quantity and the configured rTWT, which is beneficial to improve configuration efficiency and is easier to implement.
- end position of the first time interval can be understood as the end time of the first time interval, the end time of the first time interval, etc., which are not specifically limited.
- the end position of the first time interval may be within rTWT SP, or the end position of the first time interval may be before the end position of rTWT SP, or the end position of the first time interval may be within Before the start position of rTWT SP.
- the end position of the first time interval in the embodiment of the present application can also be within rTWT SP, or within rTWT SP. Before the end position or before the start position of rTWT SP, it is beneficial to improve the flexibility of defining the first time interval.
- the end position of the first time interval can be based on the duration of the first time interval and the first time interval The starting location of the , without separate configuration.
- the end position of the first time interval can also be implemented in a similar manner as above:
- Method 1 Configure the end position of the first time interval as an absolute value or a fixed value, that is, the end position of the first time interval is an absolute end position or a fixed end position, which can be specified by the standard protocol, pre-configured, AP MLD configuration, AP MLD and Non-AP MLD negotiation configuration, there are no specific restrictions on this.
- the absolute end position or the fixed end position can be configured to be periodic, that is, the absolute end position or the fixed end position is periodic, which is beneficial to ensure that the end position of the first time interval is also Periodically.
- Mode 2 configure the end position of the first time interval through an offset (offset).
- the offset is used to represent the offset between the end position of the first time interval and the start position of rTWT; or,
- the offset is used to represent the offset between the end position of the first time interval and the end position of rTWT.
- second deviation in the embodiment of this application, and it can also be replaced by other terms, as long as they have the same function and meaning, they all belong to the scope of protection required by this application. Not specifically limited.
- the second offset may be specified by a standard protocol, pre-configured, configured by the AP MLD, or configured through negotiation between the AP MLD and the Non-AP MLD, and there is no specific limitation on this.
- the embodiment of the present application can introduce a second offset, and use the second offset and the configured rTWT to configure the end position of the first time interval, which is conducive to improving configuration efficiency and is easier to implement.
- Mode 1 The period of the first time interval is the period of the absolute starting position or the fixed starting position.
- the embodiment of the present application may use the period of the absolute starting position or the fixed starting position as the period of the first time interval, in order to facilitate implementation.
- Mode 2 The period of the first time interval is the period of the absolute end position or the fixed end position.
- the embodiment of the present application may use the period of the absolute end position or the fixed end position as the period of the first time interval for easy implementation.
- Mode 3 The period of the first time interval is determined by the period of rTWT SP.
- the period of rTWT SP can be expressed as the time interval between the starting position of the current rTWT SP and the starting position of the adjacent rTWT SP. Therefore, the embodiment of the present application determines the starting position of the first time interval according to the first offset, and then uses the time interval represented by the period of rTWT SP as the first time adjacent to the starting position of the current first time interval The time interval between the starting positions of the intervals, so that the period of the first time interval can be determined according to the period of rTWT SP, so as to facilitate implementation.
- the period of rTWT SP can be expressed as the time interval between the end position of the current rTWT SP and the end position of the adjacent rTWT SP. Therefore, in the embodiment of the present application, the end position of the first time interval is determined according to the second offset, and then the time interval represented by the period of rTWT SP is used as the end position of the current first time interval and the first time interval adjacent to it. The time interval between the end positions, so that the period of the first time interval can be determined according to the period of rTWT SP, so as to facilitate implementation.
- AP MLD and non-AP MLD are configured with rTWT SP and time interval for the service through negotiation.
- the non-AP MLD Upon arrival of the rTWT SP, the non-AP MLD enters wake mode from sleep mode. At the end of this rTWT SP, the non-AP MLD goes back into sleep mode.
- the starting position of the rTWT SP is P
- the ending position of the rTWT SP is Q
- the duration of the rTWT SP is L.
- the AP MLD and the non-AP MLD configure a time interval 1110 for the service through negotiation.
- the start position of the time interval 1110 is M
- the end position of the time interval 1110 is N
- the duration of the time interval 1110 is l.
- M is determined according to the offset T offset and P
- N is determined according to M and l.
- the first time interval can be specified by the standard protocol, pre-configured, configured by AP MLD, or negotiated and configured between AP MLD and Non-AP MLD Yes, there is no specific limitation on this.
- the information used to configure the first time interval can be carried in the management frame (such as The start position of the first time interval, the end position of the first time interval, the period of the first time interval, the duration of the first time interval, the first offset or the second offset, etc.).
- the AP MLD when the AP MLD configures the first time interval for uplink data transmission, the AP MLD sends an action frame to the Non-AP MLD, and the action frame carries information for configuring the first time interval, so that the first time interval can be obtained through the action frame. time interval.
- Non-AP MLD Non-AP MLD
- AP MLD AP MLD
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP.
- the first STA requests the SCS service through the SCS request frame, and notifies the first AP of the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the SCS service through the SCS request frame.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the first AP configures the rTWT SP for the SCS service according to the service characteristics of the SCS service.
- the first AP configures the rTWT SP on link1, and broadcasts the rTWT SP through the TWT element in the beacon frame on link1. At this point, the first STA will obtain the rTWT SP.
- the first STA and the first AP After broadcasting the rTWT SP, the first STA and the first AP negotiate an action frame to enable the first STA to use the rTWT SP, so that the first AP and the first STA in the rTWT SP can transmit the SCS service The data.
- Information for configuring time interval 1 is carried in the action frame, so that the first STA determines time interval 1 according to the information for configuring time interval 1, and realizes the acquisition of time interval 1.
- the first STA obtains the data of the SCS service from the APP. At this time, if the arrival time of the data of the SCS service is within the time interval 1, the first STA transmits the data of the SCS service to the first AP through the rTWT SP mode on link1;
- the first STA transmits the data of the SCS service to the first AP through a multi-link redundant transmission mode on link1.
- the first AP configures time interval 1 for the SCS service, but does not need to transmit it to the first STA.
- the first AP obtains the data of the SCS service from the remote server. At this time, if the arrival time of the data of the SCS service is within the time interval 1, the first AP transmits the data of the SCS service to the first STA through the rTWT SP mode on link1;
- the first AP transmits the data of the SCS service to the first STA through a multi-link redundant transmission mode on link1.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the first SCS service through the first SCS request frame to the first AP.
- the service characteristics such as time point, data volume, delay requirement, period, etc.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies the service characteristics (such as time point, data volume, delay requirement, period, etc.) of the second SCS service through the second SCS request frame to the first AP.
- the first AP MLD configures the same rTWT SP according to the service characteristics of the first SCS service and the service characteristics of the second SCS service.
- the first AP configures the rTWT SP on link1, and broadcasts the rTWT SP on link1 through the TWT element in the beacon frame. At this time, the first STA and the fourth STA will obtain the rTWT SP.
- the first STA After broadcasting the rTWT SP, the first STA negotiates with the first AP through the first action frame to enable the first STA to use the rTWT SP, and the fourth STA negotiates with the first AP through the second action frame In order to realize that the fourth STA uses the rTWT SP, so as to transmit the data of the first SCS service to the first STA in the rTWT SP, and transmit the data of the second SCS service to the fourth STA.
- Information for configuring time interval 1 is carried in the first action frame, so that the first STA determines time interval 1 according to the information for configuring time interval 1, and realizes the acquisition of time interval 1.
- Information for configuring time interval 2 is carried in the second action frame, so that the fourth STA determines time interval 2 according to the information for configuring time interval 2, and realizes the acquisition of time interval 2.
- the first STA obtains the data of the first SCS service from the APP. At this time, if the arrival time of the data of the first SCS service is within the time interval 1, the first STA transmits the data of the first SCS service to the first AP through the rTWT SP mode on link1;
- the first STA transmits the data of the first SCS service to the first AP in a multi-link redundant transmission manner on link1.
- the fourth STA obtains the data of the second SCS service from the APP. At this time, if the arrival time of the data of the second SCS service is within the time interval 2, the fourth STA transmits the data of the second SCS service to the first AP through the rTWT SP mode on link1;
- the fourth STA transmits the data of the second SCS service to the first AP through a multi-link redundant transmission mode on link1.
- the first AP configures time interval 1 for the first SCS service, but does not need to transmit it to the first STA.
- the first AP configures time interval 2 for the second SCS service, but does not need to transmit it to the fourth STA.
- the first AP obtains the data of the first SCS service from the remote server. At this time, if the arrival time of the data of the first SCS service is within the time interval 1, the first AP transmits the data of the first SCS service to the first STA through the rTWT SP mode on link1;
- the first AP transmits the data of the first SCS service to the first STA in a multi-link redundant transmission manner on link1.
- the first AP obtains the data of the second SCS service from the remote server. At this time, if the arrival time of the data of the second SCS service is within the time interval 2, the first AP transmits the data of the second SCS service to the fourth STA through the rTWT SP mode on link1;
- the first AP transmits the data of the second SCS service to the fourth STA in a multi-link redundant transmission manner on link1.
- the first Non-AP MLD includes the first STA, the second STA, and the third STA
- the first AP MLD includes the first AP, the second AP, and the third AP
- the second Non-AP MLD includes the fourth STA and the third STA. Five sta.
- Two links are established between the second Non-AP MLD and the first AP MLD, that is, link1 between the fourth STA and the first AP, and link2 between the fifth STA and the second AP.
- the first STA requests the first SCS service through the first SCS request frame, and notifies the first SCS service of the service characteristics (such as time point, data volume, delay requirement, cycle, etc.) of the first SCS service through the first SCS request frame One AP.
- the service characteristics such as time point, data volume, delay requirement, cycle, etc.
- the fourth STA requests the second SCS service through the second SCS request frame, and notifies the second SCS service of the service characteristics (such as time point, data volume, delay requirement, cycle, etc.) of the second SCS service through the second SCS request frame One AP.
- the service characteristics such as time point, data volume, delay requirement, cycle, etc.
- the first AP configures the first rTWT SP according to the service characteristics of the first SCS service.
- the first AP configures the second rTWT SP according to the service characteristics of the second SCS service.
- the first AP broadcasts the first rTWT SP and the second rTWT SP through the TWT element in the beacon frame on link1. At this time, both the first STA and the fourth STA will obtain the first rTWT SP and the second rTWT SP.
- the first STA After broadcasting the first rTWT SP and the second rTWT SP, the first STA negotiates with the first AP through the first action frame to realize that the first STA uses the first rTWT SP, so as to communicate with the first rTWT SP in the first rTWT SP. The first STA transmits data of the first SCS service.
- the fourth STA After broadcasting the first rTWT SP and the second rTWT SP, the fourth STA negotiates with the first AP through the second action frame to realize that the fourth STA uses the second rTWT SP, so as to communicate with the second rTWT SP in the second rTWT SP. The fourth STA transmits data of the second SCS service.
- Information for configuring time interval 1 is carried in the first action frame, so that the first STA determines time interval 1 according to the information for configuring time interval 1, and realizes the acquisition of time interval 1.
- Information for configuring time interval 2 is carried in the second action frame, so that the fourth STA determines time interval 2 according to the information for configuring time interval 2, and realizes the acquisition of time interval 2.
- the first STA obtains the data of the first SCS service from the APP. At this time, if the arrival time of the data of the first SCS service is within the time interval 1, the first STA transmits the data of the first SCS service to the first AP through the first rTWT SP mode on link1;
- the first STA transmits the data of the first SCS service to the first AP in a multi-link redundant transmission manner on link1.
- the fourth STA obtains the data of the second SCS service from the APP. At this time, if the arrival time of the data of the second SCS service is within the time interval 2, the fourth STA transmits the data of the second SCS service to the first AP through the second rTWT SP mode on link1;
- the fourth STA transmits the data of the second SCS service to the first AP in a multi-link redundant transmission manner on link1.
- the first AP configures time interval 1 for the first SCS service, but does not need to transmit it to the first STA.
- the first AP configures time interval 2 for the second SCS service, but does not need to transmit it to the fourth STA.
- the first AP obtains the data of the first SCS service from the remote server. At this time, if the arrival time of the data of the first SCS service is within the time interval 1, the first AP transmits the data of the first SCS service to the first STA through the first rTWT SP mode on link1;
- the first AP transmits the data of the first SCS service to the first STA in a multi-link redundant transmission manner on link1.
- the first AP obtains the data of the second SCS service from the remote server. At this time, if the arrival time of the data of the second SCS service is within the time interval 2, the first AP transmits the data of the second SCS service to the fourth STA through the second rTWT SP mode on link1;
- the first AP transmits the data of the second SCS service to the fourth STA in a multi-link redundant transmission manner on link1.
- the steps described in FIG. 12 can be performed by a multi-link device (such as AP MLD or Non-AP MLD), chip, chip module, AP, STA, etc., and no specific limitation is set here.
- a multi-link device such as AP MLD or Non-AP MLD
- chip chip module
- AP STA
- no specific limitation is set here.
- FIG. 12 it is a schematic flowchart of a data transmission method according to an embodiment of the present application, which specifically includes the following steps:
- Multi-link redundant transmission details can be found in the above-mentioned "4. Multi-link redundant transmission" and other related content, which will not be repeated here.
- the embodiment of the present application introduces a first time interval, and it is determined according to the positional relationship between the first time interval and the arrival time of the data of the first service, whether it is through rTWT SP mode or through multi-link redundant transmission way to transmit the data of the first service.
- the data of the first service is transmitted through the rTWT SP method; if the location relationship is that the arrival time of the data of the first service is not in In the first time interval, the data of the first service is transmitted through the multi-link redundant transmission mode, which is conducive to realizing the possibility of data transmission in a more effective and reasonable way, and is conducive to ensuring the QoS requirements of the service , reducing channel resource overhead and improving resource utilization.
- the first time interval includes at least one of the following items: the duration of the first time interval, the start position of the first time interval, the end position of the first time interval, and the period of the first time interval.
- the first time interval and other relevant content in detail, so that the duration of the first time interval, the starting position of the first time interval, the The first time interval is defined by at least one of the end position of a time interval and the period of the first time interval.
- the starting position of the first time interval is before the starting position of the limited target wake-up time service period.
- the starting position of the first time interval you can refer to the content in the above "2Starting position of the first time interval" and other relevant contents. Since the arrival time of the data of the first service may be before the starting position of the rTWT SP, the starting position of the first time interval in the embodiment of the present application may also be before the starting position of the rTWT SP. Wherein, the starting position of the first time interval may be before the starting position of the rTWT SP, which can better ensure communication robustness.
- the end position of the first time interval is within the limited target wake-up time service period.
- the end position of the first time interval you can refer to the content in the above "3 end position of the first time interval" and other relevant contents. Since the arrival time of the data of the first service may be before the start position of the rTWT SP, the end position of the first time interval in the embodiment of the present application may also be before the rTWT SP to ensure communication robustness.
- the starting position of the first time interval is an absolute starting position.
- the starting position of the first time interval as an absolute value, it is beneficial to configure different starting positions of the first time interval for different Non-AP MLDs, and improve the flexibility and diversity of configuration.
- the absolute starting position is periodic.
- the period of the first time interval is the period of the absolute initial position.
- the period of configuring the first time interval is realized by the period of the absolute starting position.
- the starting position of the first time interval is determined by the first offset, and the first offset is used to indicate the distance between the starting position of the first time interval and the starting position of the limited target wake-up time service period. Offset.
- the embodiment of the present application can introduce the first offset, and use the first offset
- the initial position of the first time interval is configured by using the quantity and the configured rTWT, which is beneficial to improve configuration efficiency and is easier to implement.
- the period of the first time interval is determined by the period of the limited target wake-up time service period.
- the first time interval is carried by an action frame.
- the acquisition of the first time interval is realized by carrying the first time interval in the action frame.
- the limited target wake-up time service period is negotiated and established through the action frame.
- the limited target wake-up time service period is configured according to the service characteristics of the first service.
- configuring the limited target wake-up time service period according to the service characteristics of the first service is beneficial to improve the accuracy of configuration.
- the limited target wake-up time service period is broadcast through the target wake-up time element in the beacon frame.
- the broadcast limited target wake-up time service period is realized through the target wake-up time element in the beacon frame.
- the first service is requested through a flow classification service request frame.
- the flow classification service request frame is implemented to request the first service, so as to transmit the data of the first service subsequently.
- the first service is one of a flow classification service, a low-latency service, and a real-time application program service.
- the maximum number of links occupied by simultaneously transmitting the data of the first service in the multi-link redundant transmission is carried by the action frame.
- Multi-link redundant transmission the maximum number of links occupied by the simultaneous transmission of the data of the first service is carried by the action frame. For details, see the above "4. Multi-link redundant transmission" The content and other related content will not be repeated here.
- the maximum number of links occupied by simultaneously transmitting the data of the first service in the multi-link redundant transmission is negotiated through the action frame, thereby helping to avoid channel resources occupied by the multi-link redundant transmission and improving resource utilization.
- the multi-link device includes hardware structures and/or software modules corresponding to each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain method, function, module, unit or step is executed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods for each specific application to implement the described methods, functions, modules, units or steps, but such implementation should not be regarded as exceeding the scope of the present application.
- the multi-link device may be divided into functional units/modules according to the foregoing method example.
- each functional unit/module may be divided corresponding to each function, or two or more functions may be integrated into one functional unit/module.
- the above-mentioned integrated functional units/modules can be implemented not only in the form of hardware, but also in the form of software programs. It should be noted that the division of functional units/modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
- FIG. 13 is a block diagram of functional units of a data transmission device according to the embodiment of the application.
- the data transmission apparatus 1300 may include: an acquiring unit 1301 and a transmitting unit 1302 .
- the acquiring unit 1301 may be a modular unit for sending and receiving signals, data, information, and the like.
- the transmission unit 1302 may be a modular unit for processing and transmitting signals, data, information, etc., and there is no specific limitation on this.
- the acquiring unit 1301 and the transmitting unit 1302 may be integrated into one unit.
- the acquisition unit 1301 and the transmission unit 1302 may be integrated in a processing unit, or the acquisition unit 1301 and the transmission unit 1302 may be integrated in a communication unit.
- the obtaining unit 1301 and the transmitting unit 1302 may be separate units.
- the obtaining unit 1301 may include a communication unit.
- the transmission unit 1302 may include a processing unit and a communication unit.
- the communication unit may be a communication interface, a transceiver, a transceiver circuit, and the like.
- the processing unit may be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processing unit may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
- the data transmission device 1300 may further include a storage unit for storing computer programs or instructions executed by the data transmission device 1300 .
- the storage unit may be a memory.
- the data transmission device 1300 may be a chip or a chip module.
- the obtaining unit 1301 and the transmitting unit 1302 are configured to perform the steps described in the foregoing method embodiments. Detailed description will be given below.
- an acquiring unit 1301, configured to acquire the data of the first service and the first time interval
- the transmission unit 1302 is configured to transmit the data of the first service through the limited target wake-up time service period rTWT SP if the arrival time of the data of the first service is within the first time interval;
- the transmission unit 1302 is further configured to transmit the data of the first service in a multi-link redundant transmission mode if the arrival time of the data of the first service is not within the first time interval.
- the embodiment of the present application introduces a first time interval, and it is determined according to the positional relationship between the first time interval and the arrival time of the data of the first service, whether it is through rTWT SP mode or through multi-link redundant transmission way to transmit the data of the first service.
- the data of the first service is transmitted through the rTWT SP method; if the location relationship is that the arrival time of the data of the first service is not in In the first time interval, the data of the first service is transmitted through the multi-link redundant transmission mode, which is conducive to realizing the possibility of data transmission in a more effective and reasonable way, and is conducive to ensuring the QoS requirements of the service , reducing channel resource overhead and improving resource utilization.
- the first time interval includes at least one of the following items: the duration of the first time interval, the start position of the first time interval, the end position of the first time interval, and the period of the first time interval.
- the starting position of the first time interval is before the starting position of the limited target wake-up time service period.
- the end position of the first time interval is within the limited target wake-up time service period.
- the starting position of the first time interval is an absolute starting position.
- the absolute starting position is periodic.
- the period of the first time interval is the period of the absolute initial position.
- the starting position of the first time interval is determined by the first offset, and the first offset is used to indicate the distance between the starting position of the first time interval and the starting position of the limited target wake-up time service period. Offset.
- the period of the first time interval is determined by the period of the limited target wake-up time service period and the first offset.
- the first time interval is carried by an action frame.
- the limited target wake-up time service period is negotiated and established through the action frame.
- the limited target wake-up time service period is configured according to the service characteristics of the first service.
- the limited target wake-up time service period is broadcast through the target wake-up time element in the beacon frame.
- the first service is requested through a flow classification service request frame.
- the first service is one of a flow classification service, a low-latency service, and a real-time application program service.
- the maximum number of links occupied by simultaneously transmitting the data of the first service in the multi-link redundant transmission is carried by the action frame.
- FIG. 14 is a schematic structural diagram of a multi-link device according to an embodiment of the present application.
- the multi-link device 1400 includes a processor 1410 , a memory 1420 , and a communication bus for connecting the processor 1410 and the memory 1420 .
- Memory 1420 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1420 is used to store the program code executed by the multi-link device 1400 and the transmitted data.
- RAM random access memory
- ROM read-only memory
- EPROM erasable programmable read-only memory
- Portable read-only memory compact disc read-only memory
- Multilink device 1400 may also include a communication interface, which may be used to receive and transmit data.
- Processor 1410 may be one or more CPUs.
- the CPU may be a single-core CPU or a multi-core CPU.
- the processor 1410 in the multi-link device 1400 is configured to execute the computer program or instruction 1421 stored in the memory 1420 to realize the following: acquiring the data of the first service and the first time interval; if the arrival time of the data of the first service is at the first time interval Within a time interval, the data of the first service is transmitted through the limited target wake-up time service period rTWT SP; if the arrival time of the data of the first service is not within the first time interval, it is transmitted through multi-link redundancy way to transmit the data of the first service.
- the embodiment of the present application introduces a first time interval, and it is determined according to the positional relationship between the first time interval and the arrival time of the data of the first service, whether it is through rTWT SP mode or through multi-link redundant transmission way to transmit the data of the first service.
- the data of the first service is transmitted through the rTWT SP method; if the location relationship is that the arrival time of the data of the first service is not in In the first time interval, the data of the first service is transmitted through the multi-link redundant transmission mode, which is conducive to realizing the possibility of data transmission in a more effective and reasonable way, and is conducive to ensuring the QoS requirements of the service , reducing channel resource overhead and improving resource utilization.
- each operation can use the corresponding description of the above-mentioned method embodiments, and the multi-link device 1400 can be used to execute the method on the multi-link device side of the above-mentioned method embodiments of this application, which is not described here. More details.
- the first time interval includes at least one of the following: the duration of the first time interval, the start position of the first time interval, the end position of the first time interval, the first The period of the time interval.
- the starting position of the first time interval is before the starting position of the limited target wake-up time service period.
- the end position of the first time interval is within the limited target wake-up time service period.
- the starting position of the first time interval is an absolute starting position.
- the absolute starting position is periodic.
- the period of the first time interval is the period of the absolute initial position.
- the starting position of the first time interval is determined by the first offset, and the first offset is used to indicate the distance between the starting position of the first time interval and the starting position of the limited target wake-up time service period. Offset.
- the period of the first time interval is determined by the period of the limited target wake-up time service period and the first offset.
- the first time interval is carried by an action frame.
- the limited target wake-up time service period is negotiated and established through the action frame.
- the limited target wake-up time service period is configured according to the service characteristics of the first service.
- the limited target wake-up time service period is broadcast through the target wake-up time element in the beacon frame.
- the first service is requested through a flow classification service request frame.
- the first service is one of a flow classification service, a low-latency service, and a real-time application program service.
- the maximum number of links occupied by simultaneously transmitting the data of the first service in the multi-link redundant transmission is carried by the action frame.
- An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps described in the above method embodiments.
- the embodiment of the present application also provides a chip module, including a transceiver component and a chip.
- the chip includes a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to The steps described in the above method embodiments are implemented.
- the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program or instruction, and when the computer program or instruction is executed, implements the steps described in the above method embodiments.
- the embodiment of the present application also provides a computer program product, including a computer program or an instruction.
- a computer program product including a computer program or an instruction.
- the steps of the methods or algorithms described in the embodiments of the present application may be implemented in the form of hardware, or may be implemented in the form of a processor executing software instructions.
- Software instructions can be composed of corresponding software modules, and software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disc read-only (CD-ROM), or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
- the storage medium may also be a component of the processor.
- the processor and storage medium can be located in the ASIC.
- the ASIC can be located in the terminal or management device. Certainly, the processor and the storage medium may also exist in the terminal or the management device as discrete components.
- the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions can be sent from a website site, computer, server, or data center via wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) Transmission to another website site, computer, server or data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
- the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) wait.
- a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
- an optical medium for example, a digital video disc (digital video disc, DVD)
- a semiconductor medium for example, a solid state disk (solid state disk, SSD)
- the modules/units included in the devices and products described in the above embodiments may be software modules/units, hardware modules/units, or partly software modules/units and partly hardware modules/units.
- each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs,
- the software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits, and different modules/units can be located in
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种数据传输方法与装置、多链路设备;该方法包括:获取第一业务的数据和第一时间区间;若第一业务的数据的达到时刻处于第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输第一业务的数据;若第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据。可见,通过引入了第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
Description
本申请涉及通信技术领域,尤其涉及一种数据传输方法与装置、多链路设备。
电气与电子工程师协会(Institute of Electrical and Electronic Engineers,IEEE)组织制定关于无线局域网(wireless local access network,WLAN)的IEEE 802.11be协议标准引入了受限目标苏醒时间服务期(restricted target wake time service period,rTWT SP)机制。
rTWT,是指具有增强的媒体访问保护和为时延敏感业务预留资源的目标唤醒时间(TWT)。当向某一个非接入点站点(non-access point station,non-AP STA,也简称为STA或者站点)配置有rTWT SP时,该STA可以在该rTWT SP到来时从睡眠模式(sleep mode)进入苏醒(wake)模式,并在该rTWT SP上发送和/或接收数据,而除该STA外的其他STA会避开或不会抢占(占用)该rTWT SP,最后在该rTWT SP结束时该STA重新回到睡眠模式。
另外,IEEE 802.11be协议标准引入了多链路(multi-link,ML)机制。其中,多链路设备(multi-link device,MLD)可以支持在多条链路上进行数据传输。
发明内容
本申请提供了一种数据传输方法与装置、多链路设备,以期望引入一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
第一方面,为本申请的一种数据传输方法,包括:
获取第一业务的数据和第一时间区间;
若所述第一业务的数据的达到时刻处于所述第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输所述第一业务的数据;
若所述第一业务的数据的达到时刻未处于所述第一时间区间内,则通过多链路冗余传输方式以传输所述第一业务的数据。
可以看出,本申请实施例引入了一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据。
其中,若该位置关系为第一业务的数据的达到时刻处于第一时间区间内,则通过rTWT SP方式以传输第一业务的数据;若该位置关系为第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
第二方面,为本申请的一种数据传输装置,包括:
获取单元,用于获取第一业务的数据和第一时间区间;
传输单元,用于若所述第一业务的数据的达到时刻处于所述第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输所述第一业务的数据;
所述传输单元,还用于若所述第一业务的数据的达到时刻未处于所述第一时间区间内,则通过多链路冗余传输方式以传输所述第一业务的数据。
第三方面,上述第一方面所设计的方法中的步骤应用于多链路设备中。
第四方面,为本申请的一种多链路设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第五方面,为本申请的一种芯片,包括处理器,其中,所述处理器执行上述第一方面所设计的方法中的步骤。
第六方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面所设计的方法中的步骤。
第七方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算机程序或指令被执行时实现上述第一方面所设计的方法中的步骤。
第八方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令 被执行时实现上述第一方面所设计的方法中的步骤。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的一种无线通信系统的架构示意图;
图2是本申请实施例的一种多链路元素的帧体的结构示意图;
图3是本申请实施例的一种TID到链路映射元素的帧体的结构示意图;
图4是本申请实施例的一种TID到链路映射控制字段的结构示意图;
图5是本申请实施例的一种SCS描述符元素的帧体的结构示意图;
图6是本申请实施例的一种SCS请求帧的帧体的结构示意图;
图7是本申请实施例的一种SCS响应帧的帧体的结构示意图;
图8是本申请实施例的一种bTWT元素的帧体的结构示意图;
图9是本申请实施例的一种广播TWT参数设置字段的帧体的结构示意图;
图10是本申请实施例的一种业务的数据的到达时刻和rTWT SP的结构示意图;
图11是本申请实施例的一种第一时间区间和rTWT SP的结构示意图;
图12是本申请实施例的一种数据传输方法的流程示意图;
图13是本申请实施例的一种数据传输装置的功能单元组成框图;
图14是本申请实施例的一种多链路设备的结构示意图。
为了本技术领域人员更好理解本申请的技术方案,下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。显然所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“至少一个”,指的是一个或多个,多个指的是两个或两个以上。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示如下三种情况:单独存在A,同时存在A和B,单独存在B。其中,A、B可以是单数或者复数。字符“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。
本申请实施例中的“以下至少一项(个)”或其类似表达,指的是这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中涉及“的(of)”、“相应的(corresponding,relevant)”、“对应的(corresponding)”、“指示的(indicated)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”与“系统”可以表达为同一概念,通信系统即为通信网络。
本申请实施例可以应用于无线局域网(wireless local area network,WLAN)。目前,WLAN采用的协议标准为IEEE 802.11系列。其中,WLAN可以包括多个基本服务集(basic service set,BSS),基本服务集中的设备可以包括接入点的站点(access point station,AP STA,也简称为AP或者接入点)和非接入点的站点(none access point station,non-AP STA,也简称为STA或者站点),而每个基本服务集可以包含一个接入点和至少一个站点。
另外,基本服务集中的设备可以包括多链路设备(multi-link device,MLD)。下面分别进行具体说明。
具体的,接入点可以是经由无线媒体为与其连接的站点提供网络接入的实体。接入点可以将各个无线网络客户端接入以太网,可以是无线保真(wireless fidelity,Wi-Fi)芯片的网络设备,可以是支持各类IEEE 802.11协议标准的设备,对此不作具体限制。
例如,接入点可以是支持IEEE 802.11ac、IEEE 802.11n、IEEE 802.11g、IEEE 802.11b、IEEE802.11ax、IEEE802.11be、下一代WLAN协议标准等的设备。接入点可以包括集中式控制器、基站(base station,BS)、基站收发台(base transceiver station,BTS)、站点控制器和交换机等。
在本申请实施例中,接入点可以包括具有无线通信功能的装置(或具有收发功能的装置),例如芯片系统、芯片、芯片模组。其中,该芯片系统可以包括芯片,还可以包括其它分立器件,如收发器件等。
在本申请实施例中,接入点可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
具体的,站点可以是无线通讯芯片、无线传感器或无线通信终端。
例如,支持Wi-Fi通讯功能的用户设备(user equipment,UE)、远程/远端终端(remote UE)、接入终端、用户单元、用户站、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置/蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、手持设备、车载设备、可穿戴设备等,对此不作具体限定。
在本申请实施例中,站点可以包括非接入点增强型高吞吐量站点(none AP extremely high throughput station,non-AP EHT STA)和非接入点高效率站点(none AP high efficiency station,non-AP HE STA)等。
在本申请实施例中,站点可以包括具有无线通信功能的装置(或具有收发功能的装置),例如芯片系统、芯片、芯片模组。其中,该芯片系统可以包括芯片,还可以包括其它分立器件,如收发器件等。
具体的,多链路设备可以支持在多条链路上进行数据传输。多链路设备可以包含多个接入点或者多个站点,而不同接入点或者不同站点可以工作在不同的载频上,例如工作在2.4GHz、5GHz、6GHz等载频上。
若多链路设备包含多个接入点,则该多链路设备可以称为接入点多链路设备(AP MLD);若多链路设备包含多个站点,则该多链路设备可以称为非接入点多链路设备(Non-AP MLD)。
下面以多链路设备为例对本申请实施例的无线通信系统做一个示例性说明。
示例性的,本申请实施例的无线通信系统,请参阅图1。无线通信系统10可以包括接入点多链路设备/非接入点多链路设备(AP MLD/Non-AP MLD)110和非接入点多链路设备(Non-AP MLD)120。
其中,接入点多链路设备/非接入点多链路设备110可以包含多个接入点/站点,如AP/STA 111、AP/STA 112和AP/STA 113等。
非接入点多链路设备120可以包含多个站点,如STA 121、STA 122和STA 123等。
接入点多链路设备/非接入点多链路设备110与非接入点多链路设备120之间建立有多条链路,包括AP/STA 111与STA 121之间建立有链路131、AP/STA 112与STA 122之间建立有链路132、AP/STA 113与STA 123之间建立有链路133,而不同链路具有不同的工作载频。例如,链路131具有工作载频6GHz,链路132具有工作载频5GHz,链路133具有工作载频2.4GHz。
需要说明的是,无线通信系统10还可以包括除接入点多链路设备/非接入点多链路设备110和非接入点多链路设备120之外的其他多链路设备、接入点或者站点等,对此不作具体限定。
无线通信系统10还可以包括接入网(radio access network,RAN)设备、核心网(core network,CN)设备、网络控制器、移动管理实体等其他网络实体,对此不作具体限定。
无线通信系统10中的接入点多链路设备/非接入点多链路设备110和非接入点多链路设备120之间的通信可以为无线通信或者有线通信,对此不作具体限制。
下面对本申请的技术方案所涉及的相关内容进行介绍。
1、多链路(Multi-Link,ML)
IEEE 802.11be协议标准引入了多链路机制。其中,多链路设备(multi-link device,MLD)可以支持在多条链路上进行数据传输。
多链路设备可以为接入点多链路设备(AP MLD)或者非接入点多链路设备(Non-AP MLD)。
AP MLD可以包含多个接入点(AP),Non-AP MLD可以包含多个站点(STA),而不同接入点或者站点可以工作在不同的载频上,例如工作在2.4GHz、5GHz、6GHz等载频上或者5GHz频段的两个载 频上。
AP MLD/Non-AP MLD与Non-AP MLD之间可以建立多条链路,而数据可以在该多条链路上进行传输。
2、多链路元素(Multi-Link Element)
Non-AP MLD发送的关联请求(Association Request)帧可以包含多链路元素。
示例性的,如图2所示,多链路元素20可以包含元素标识符(Element ID)字段210、长度(Length)字段220、元素描述符拓展(Element ID Extension)字段230、多链路控制(Multi-Link Control)字段240、公共信息(Common Info)字段250、链路信息(Link Info)字段260。其中,元素ID字段210用于设置元素ID值;长度字段220用于设置多链路元素20的长度;元素描述符拓展字段230用于拓展元素描述符字段。
3、流量标识符到链路映射机制(Traffic ID-to-link Mapping Mechanism)
数据可以在多条链路上进行传输,而该数据在该多条链路上的哪些链路上传输可以通过该数据的流量标识符(traffic ID,TID)确定。
TID到链路映射机制可以用于确定TID如何映射到多链路设备与多链路设备之间建立的多条链路上。
默认情况下(默认映射模式),所有TID应映射到下行链路(DL)和上行链路(UL)的所有链路上。当两个多链路设备(MLD)明确协商了TID到链路映射时,每个TID可以映射到相同或不同的链路集。
如果至少有一个TID映射到某一链路上,则该链路定义为启用(enabled);如果没有TID映射到某一链路上,则该链路定义为禁用(disabled)。在任何时间点,除非使用准入控制,否则TID应始终映射到至少一条链路上。默认情况下(默认映射模式),由于TID映射到所有链路上,因此所有链路都应启用。
如果某一链路被启用,则该链路可以用于数据传输;如果某一链路被禁用,则该链路不可以用于传输。例如,若MSDU/A-MSDU的TID映射到某一链路上,则该链路启用,并且该MSDU/A-MSDU可以在该链路上进行传输。另外,管理帧和控制帧也可以在被启用的链路上传输。
TID到链路映射元素(TID-to-link mapping element)可以用于指示对应(属于、关联或相关)TID的数据可以在哪些链路上进行传输。
示例性的,如图3所示,TID到链路映射元素30的帧体可以包含元素标识符字段310、长度字段320、元素标识符拓展字段330、TID到链路映射控制字段340、TID 0的链路映射字段350、TID 7的链路映射字段360等。
其中,TID n(n∈{0,1,…,7})的链路映射字段可以指示允许传输TID n对应的数据的链路。若TID n(n∈{0,1,…,7})的链路映射字段的第i个比特位的值为1,则指示TID n映射到链路ID(link ID)为i所关联的链路上。
如图4所示,TID到链路映射控制字段340可以包括方向子字段3401、默认链路映射子字段3402、预留子字段3403、链路映射存在指示子字段3404。其中,如果TID到链路映射元素30具体为下行链路上传输的数据提供TID到链路映射信息,则方向子字段3401设置为0(下行链路)。如果TID到链路映射元素30具体为在下行链路和上行链路上传输的数据提供TID到链路映射信息,则方向子字段3401设置为2。
如果TID到链路映射元素30表示默认TID到链路映射,则默认链路映射子字段3402设置为1;否则,设置为0。
链路映射存在指示子字段3404可以指示TID n链路映射字段是否存在于TID到链路映射元素30中。若链路映射存在指示子字段3404的第n个比特位的值为1,则指示TID n的链路映射字段存在于TID到链路映射元素30中;否则,指示TID n的链路映射字段不存在于TID到链路映射元素30中。
4、流分类服务(Stream Classification Service,SCS)过程
流分类服务(SCS)使站点能够向其关联的接入点请求将特定QoS处理应用于分类为特定流的单播MSDU。其中,该特定流的QoS特征由业务规范(Traffic Specification,TSPEC)元素描述,该特定流包含传入接入点的MSDU,该MSDU与一个或多个业务分类元素(traffic classification element,TCLAS element)中指定的参数相匹配。
SCS描述符元素(SCS descriptor element)定义有关流分类的的信息。
示例性的,如图5所示,SCS描述符元素50的帧体可以包含元素描述符字段510、长度字段520、SCS标识符字段530、请求类型字段540、内部访问类别优先级元素550、TCLAS元素字段560、TCLAS处理元素字段570、TSPEC元素580和可选的子元素590。
其中,元素描述符字段510用于设置SCS描述符值;长度字段520的值设置为1+n,n表示SCS描述符 列表(SCS Descriptor List)字段元素的总长度;
请求类型字段540设置为一个数字以标识SCS请求的类型;
SCS标识符字段530设置为由站点选择的非零值,用于标识SCS描述符列表字段中指定的SCS流;
TCLAS元素字段560包含零个或多个TCLAS信息元素,以指定如何将传入的MSDU分类为该SCS流的一部分;
当请求类型字段540等于“添加(add)”或“更改(change)”时,存在一个或多个TCLAS元素;
当请求类型字段540等于“删除(remove)”时,不存在TCLAS元素;
当在TCLAS元素字段560中存在多个TCLAS元素并包含定义如何处理多个TCLAS元素的TCLAS处理元素时,会出现TCLAS处理元素字段570;
TSPEC元素字段580包含零个或一个TSPEC元素,用来描述属于此SCS流的业务流的业务特征和QoS要求;
当请求类型字段540等于“添加”或“更改”时,存在零个或一个TSPEC元素;
当请求类型字段540等于“删除”时,不存在TSPEC元素;
可选的子元素590包含零个或多个子元素。
TCLAS处理元素字段570用于定义当存在多个TCLAS元素时如何处理多个TCLAS信息元素。
SCS描述符元素50包含在SCS请求帧(SCS request frame)中。
SCS请求帧可以用于请求添加(add)、更改(change)或删除(remove)等流分类。
示例性的,如图6所示,SCS请求帧60的帧体可以包含类别字段610、动作字段620、对话令牌字段630和SCS描述符列表字段640。其中,动作字段620用于设置为SCS请求帧指定的值;对话令牌字段630设置为非零值,该值在发送到接入点的SCS请求帧中是唯一的,而接入点还没有收到相应的SCS响应帧;SCS描述符列表字段640包含一个或多个SCS描述符元素。
SCS响应帧用于响应SCS请求帧。
示例性的,如图7所示,SCS响应帧70的帧体可以包括类别字段710、动作字段720、对话令牌字段730和SCS状态列表字段740。其中,动作字段720用于设置为SCS响应帧指定的值;对话令牌字段730设置为相应SCS请求帧的非零值;SCS状态列表字段740包含一个或多个SCS描述符元素。SCS状态列表字段740包含一个或多个SCS状态。
SCS状态包含SCSID字段和状态字段。其中,SCSID字段设置为SCS请求帧中接收的SCS描述符元素中的SCSID字段的值;状态字段用于指示请求的SCSID的状态。
5、目标苏醒时间(Target Wake Time,TWT)机制
TWT机制使站点能够确定它们何时以及多久苏醒以发送和/或接收数据,从而有利于降低功耗并提高频谱效率。
TWT首次出现在IEEE 802.11ah“Wi-Fi HaLow”标准中,其用于支持大规模物联网环境下的节能工作。随着IEEE 802.11ax标准的发展,TWT的功能获得了进一步的扩展,这使得IEEE 802.11ax标准能够更加优化设备的节能机制,提供更可靠、更节能的传输机制。在IEEE 802.11ax标准中,TWT机制在IEEE802.11ah的基础上,已经被修改为支持基于触发的上行链路传输,从而扩展了TWT工作的范围。
在TWT机制中,站点和接入点之间可以建立一张时间表(该时间表是站点和接入点之间协商的),该时间表可以由TWT服务期(TWT service period,TWT SP)所组成的。
在所协商的TWT SP到来时,站点从睡眠模式(sleep mode)进入苏醒(wake)模式,并进行数据传输。若是触发使能模式,站点需要等待接入点发送的触发帧(trigger frame)以进行上行数据传输。当该TWT SP结束时,站点重新回到睡眠模式。
每一个站点和接入点可以进行独立的协商,使得每一个终端都具有单独的TWT SP。或者,接入点可以根据设定的TWT SP将各个站点进行分组,从而可以向同一个分组内的站点广播TWT SP以提高通信效率。
6、TWT元素(TWT element)
rTWT是一种bTWT(broadcast TWT,广播TWT),bTWT元素可以携带在管理帧(management frame)中,该管理帧可以包括关联帧(association frame)、重关联帧(reassociation frame)、探测帧(probe frame)、信标帧(beacon frame)、TWT建立帧(TWT setup frame)等。
示例性的,如图8所示,bTWT元素80可以包括元素标识符(Element ID)字段810、长度(Length)字段820、控制(Control)字段830、TWT参数信息字段(TWT Parameter Information)840。
其中,TWT参数信息(TWT Parameter Information)字段840可以包含一个单独TWT参数设置字段(a single Individual TWT Parameter Set field)或者至少一个广播TWT参数设置字段(one or more Broadcast TWT Parameter Set fields)。
示例性的,如图9所示,广播TWT参数设置字段90包括请求类型(Request Type)字段910、目标苏醒时间(Target Wake Time)字段920、标称最小TWT唤醒持续时间(Nominal Minimum TWT Wake Duration)字段930、TWT唤醒间隔尾数(TWT Wake Interval Mantissa)字段940、广播TWT信息(Broadcast TWT Info)字段950、受限TWT业务信息(Restricted TWT Traffic Info)字段960。
其中,目标苏醒时间字段920可以用于指示TWT SP的起始位置/开始位置/起始时刻/开始时刻(start time)。标称最小TWT唤醒持续时间字段930可以用于指示TWT SP的时间长度/时长。TWT唤醒间隔尾数字段940可以用于指示TWT SP的周期。
7、TWT工作模式
TWT可以有如下工作模式:
1)单独(Individual)TWT模式
在Individual TWT模式下,站点会和接入点独立协商特定的TWT SP,该TWT SP会存放在接入点的时间表中。站点会在该TWT SP醒来并和接入点进行帧交换。每一个终端只需知道自己和接入点协商的TWT SP,而不需要知道其他站点的TWT SP。
2)广播(Broadcast)TWT模式
Broadcast TWT模式是一种由接入点负责管理的工作机制。在Broadcast TWT模式中,TWT SP是由接入点广播的。通常,接入点会在beacon帧中广播本轮的TWT SP。在一些特殊的情况下,接入点也会在其他的管理帧中广播,比如Association帧、Reassociation帧或者Probe Response帧等。
需要说明的是,在Broadcast TWT模式中,站点需要向接入点申请成为Broadcast TWT成员才可以执行Broadcast TWT。其中,申请成为Broadcast TWT成员是通过在站点和接入点交换管理帧(如TWT setup),并通过管理帧携带TWT元素完成的。
当站点申请成为Broadcast TWT成员后,站点会按照最近接收到的TWT SP进行工作。此时,这一类型的站点也被称为TWT被调度的STA(TWT Scheduled STA),接入点被称为TWT调度AP(TWT Scheduling AP)。
申请成为Broadcast TWT成员的站点会在TWT SP到达时苏醒,
而在TWT SP结束时,Broadcast TWT成员的站点重新回到睡眠模式,直到下一轮广播的TWT SP到达。
8、受限目标苏醒时间(Restricted TWT,rTWT)
rTWT,是指具有增强的媒体访问保护和为时延敏感业务(latency sensitive traffic)预留资源的TWT。当向某一个站点配置有rTWT SP时,该站点可以在该rTWT SP到来时苏醒,并在该rTWT SP上发送和/或接收数据,而除该STA外的其他STA会避开或不会抢占(占用)该rTWT SP,最后在该rTWT SP结束时该站点重新回到睡眠模式。
rTWT SP是一种Broadcast TWT,即属于上述的Broadcast TWT模式,且专用于具有时延敏感、低时延、实时的业务。
接入点可以通过管理帧向STA广播为某一业务所分配的rTWT SP,并广播静默元素以防止旧制式STA在该rTWT SP内抢占信道。
另外,rTWT SP可能存在如下影响资源使用率的问题:
●虽然业务的数据能具有周期性特征,但也会因时延抖动而导致无法保证精确的周期性。为此,分配给该业务的rTWT SP的时长需要考虑因时延抖动而导该业务的数据延迟到达,如增加rTWT SP的时长以尽可能覆盖该业务的数据延长到达的时间,从而导致rTWT SP资源有效使用率降低。
●业务的数据可能存在重传。为此,分配给该业务的rTWT SP的时长还需要考虑数据重传,如增加rTWT SP的时长以满足数据传输,从而进一步降低rTWT SP资源有效使用率。
综上所述,仅采用rTWT SP以传输业务的数据(如时延敏感业务的数据)仍存在一定的问题。
下面以上行/下行数据传输为例进行举例说明。
例如,如图10所示,AP MLD和non-AP MLD通过协商为业务配置有rTWT SP。在该rTWT SP到达时,non-AP MLD从睡眠(sleep)模式进入苏醒(wake)模式。在该rTWT SP结束时,non-AP MLD重新回到睡眠模式。其中,该rTWT SP的起始位置为A,该rTWT SP的结束位置为B。
对于在下行链路上传输该业务的数据的过程中,远端服务器会先将该业务的数据传输给AP MLD,再由AP MLD采用rTWT SP将该业务的数据传输给non-AP MLD。
然而,在远端服务器将该业务的数据传输给STA MLD的过程中,该业务的数据需要先到达AP MLD, 且需要经过IP网络的多跳传输,而在多跳传输中会因时延抖动而导致该业务的数据延迟到达AP MLD。其中,因时延抖动,该业务的数据的到达时刻可以为C或C’。
如果该业务的到达时刻为C’,且C’到B之间的时长较小,即时间较短。若C’到B之间的时长小于传输该业务的数据所需要的时间,则该业务的数据将无法在rTWT SP上传输完成,进而无法保证该业务的QoS要求,增大了信道资源开销,以及降低了rTWT SP资源利用率。
如果该业务的到达时刻为C(已然完全错过上次的rTWT SP),且C到A之间的时长较大,即时间较长,从而导致该业务的数据需要等待较长的时间才能在rTWT SP上传输,进而无法保证该业务的QoS要求,增大了信道资源开销,以及降低了rTWT SP资源利用率。
同理,对于在上行链路上传输该业务的数据的过程中,Non-AP MLD的应用层(如应用层中的应用程序APP)所产生的该业务的数据会先传输给Non-AP MLD中的STA(该STA可以看做Non-AP MLD的通信模块,如WIFI模块),再由Non-AP MLD中的STA采用rTWT SP将该业务的数据传输给AP MLD。
然而,在将Non-AP MLD的应用层所产生的该业务的数据传输给Non-AP MLD中的STA的过程中,也会因时延抖动而导致该业务的数据延迟到达Non-AP MLD中的STA。其中,因时延抖动,该业务的数据的到达时刻也为C或C’。此时,与上述类似,从而导致该业务的数据无法在rTWT SP上传输完成,或者导致该业务的数据需要等待较长的时间才能在rTWT SP上传输等问题。
需要说明的是,由于该业务的数据的数据量大小存在变化,因此数据量大小变化也可能导致该业务的所有数据无法在rTWT SP上传输完成。
基于此,本申请实施例引入了一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据。若该位置关系为第一业务的数据的达到时刻处于第一时间区间内,则通过rTWT SP方式以传输第一业务的数据;若该位置关系为第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
需要说明的是,由于该第一业务的数据的数据量大小存在变化,因此数据量大小变化也可能导致该第一业务的所有数据无法在rTWT SP上传输完成。因此,若在该第一业务的数据中存在未能在该rTWT SP完成传输的第一数据,则该第一数据视作在该第一时间区间之外到达的数据。
也就是说,该第一数据的达到时刻未处于第一时间区间内。因此,本申请实施例可以基于上述相同的原理来传输该第一数据,即通过多链路冗余传输方式以传输该第一数据,从而通过多链路冗余传输实现将未能在rTWT SP上完成传输的数据进行传输。
为了实现上述的技术方案及相应的技术效果,下面对其可能涉及的其他内容、概念和含义做进一步解释说明。
1、第一业务
1)第一业务的定义
在本申请实施例中,第一业务可以是时延敏感(latency sensitive)业务、流分类服务(stream classification service,SCS)业务、实时应用程序(real-time application,RTA)业务或者低时延(low latency)业务等,对此不作具体限制。
需要说明的是,RTA是在用户感知为即时或当前的时间范围内运行的应用程序。延迟必须小于定义的值,通常以秒为单位。对于给定的应用程序是否符合RTA的条件,其可以取决于最坏情况执行时间(WCET),即在给定硬件平台上定义的任务或任务集所需的最大时间长度。
RTA的数据具有严格的时延要求,如极低的平均时延、几毫秒到几十毫秒数量级的时延、较小的抖动(jitter)等,从而有利于保证数据传输和通信过程的可靠性。
2)第一业务的业务特征
需要说明的是,由于本申请的数据传输存在上行和下行的区分,因此第一业务的数据可以是上行数据,也可以是下行数据。
对于上行数据,可以理解为,第一业务的数据由Non-AP MLD的应用层(如APP)产生,再由Non-AP MLD通过上行链路将该第一业务的数据传输给AP MLD。
对于下行数据,可以理解为,第一业务的数据由远端服务器产生,再将该第一业务的数据下发给Non-AP MLD的过程中,通过AP MLD在下行链路上将该第一业务的数据中继转发给Non-AP MLD。
在本申请实施例中,第一业务的业务特征,可以包括时间点、数据量、时延要求、周期等。
例如,结合上述图5,第一业务的业务特征可以通过TSPEC元素字段580中的TSPEC元素来指示/表示/表征/描述/携带。
同理,第一业务的业务特征可以包括下行数据的业务特征和/或上行数据的业务特征。其中,下行数据的业务特征与上行数据的业务特征之间可能存在不同。
另外,第一业务的业务特征可以是Non-AP MLD通知给AP MLD的。例如,Non-AP MLD通过向AP MLD发送SCS request frame以通知第一业务的业务特征。
3)如何获取第一业务
由于本申请的数据传输存在上行和下行的区分,因此第一业务的获取也存在一定的区别。
对于上行数据传输,Non-AP MLD从应用层(如APP)获取第一业务的数据。
对于下行数据传输,Non-AP MLD的应用层与远端服务器的应用层进行交互,通过AP MLD中继转发第一业务的数据以实现获取。
4)举例说明
下面以Non-AP MLD与AP MLD之间的交互过程为例进行示例性说明。
举例1:
一个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第一STA通过SCS request frame请求SCS业务,并通过该SCS request frame将该SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP MLD。
举例2:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过该第一SCS request frame将该第一SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP MLD。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过该第二SCS request frame将该第二SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP MLD。
2、多链路设备双方所建立的多条链路
在本申请实施例中,多链路设备双方(如Non-AP MLD和AP MLD)所建立的多条链路,可以为初始建立的所有链路、数据的TID映射的多条链路(TID mapped links)、默认映射的多条链路(default mapped links)中的之一。
需要说明的是,数据的TID映射的多条链路可以通过TID到链路映射元素(TID-to-link Mapping element)来指示。也就是说,TID到链路映射元素可以指示对应(属于、关联或相关)TID的数据可以在所建立的多条链路中的哪些链路上进行传输。
如图3所示,TID n(n∈{0,1,…,7})的链路映射字段可以指示允许传输TID n对应的数据的链路。若TID n(n∈{0,1,…,7})的链路映射字段的第i个比特位的值为1,则指示TID n映射到链路ID(link ID)为i所关联的链路上。
另外,在默认映射时,每个TID应映射到初始建立的所有链路上。也就是说,默认映射的多条链路可以为初始建立的所有链路。
如图4所示,如果TID到链路映射元素30表示默认TID到链路映射,则默认链路映射子字段3402设置为1;否则,设置为0。
3、rTWT
1)rTWT的定义
需要说明的是,rTWT的含义可以详见上述“8、受限目标苏醒时间(Restricted TWT,rTWT)”中的内容。
另外,rTWT可以包括以下至少之一项:rTWT的时长、rTWT的起始位置、rTWT的结束位置、rTWT的周期。
其中,rTWT的时长,可以理解为,rTWT的时间长度、rTWT的持续时间、rTWT的时期,rTWT服务期(rTWT SP),类似于图9中的标称最小TWT唤醒持续时间字段930,对此不作具体限制。
rTWT的起始位置,可以理解为,rTWT的开始位置、rTWT的开始时间(start time)、rTWT的开始时刻、rTWT的起始时刻等,类似于图9中的目标苏醒时间字段920,对此不作具体限制。
rTWT的结束位置,可以理解为,rTWT的结束时间、rTWT的结束时刻等,对此不作具体限制。
rTWT的周期,可以理解为,rTWT的间隔(interval)等,类似于图9中的TWT唤醒间隔尾数字段940,对此不作具体限制。
2)采用rTWT的目的
在本申请实施例中,rTWT操作允许多链路设备(如AP MLD)使用增强的媒体访问保护和资源预留机制来提供更可预测的延迟、减少最坏情况的延迟或抖动,并为传输第一业务的数据提供更高的可靠性。
3)如何配置rTWT SP
在一些实施例中,rTWT SP可以是根据第一业务的业务特征所配置的。
例如,Non-AP MLD将第一业务的业务特征通知给AP MLD,再由AP MLD根据该第一业务的业务特征来配置用于传输第一业务的数据的rTWT SP。
需要说明的是,根据第一业务的业务特征来配置rTWT SP,能够保证所配置的rTWT SP更加满足第一业务的需求(如QoS、传输量、传输时间等),进而保证配置的准确性。
在一些实施例中,rTWT SP可以是根据配置请求所配置的,该配置请求用于请求向业务配置rTWT SP。
例如,Non-AP MLD向AP MLD发送配置请求,该配置请求用于请求为第一业务配置rTWT SP,再由AP MLD根据该配置请求来配置用于传输第一业务的数据的rTWT SP。
4)如何通知rTWT SP
结合上述“2)广播(Broadcast)TWT模式”中的内容,在申请实施例中,rTWT SP可以是一种Broadcast TWT,因此AP MLD在所建立的多条建立中的某一条链路上配置完成rTWT SP之后,AP MLD中的该一条链路所对应的AP需要将该rTWT SP进行广播以通知给Non-AP MLD中该一条链路所对应的STA。
例如,在图1中,AP MLD 110在链路131上配置完成rTWT SP之后,AP 111需要在链路131上将该rTWT SP进行广播以通知给STA 121。
在一些实施例中,rTWT SP可以是通过beacon帧中的TWT元素广播的。其中,TWT元素可以通过上述“6、TWT元素(element)”中的内容可知,在此不再赘述。
5)如何协商rTWT SP
由于rTWT SP是一种Broadcast TWT,因此AP MLD在所建立的多条建立中的某一条链路上配置完成rTWT SP之后,AP MLD中的该一条链路所对应的AP需要将该rTWT SP进行广播。此时,Non-AP MLD中的该一条链路所对应的STA可以获取到该rTWT SP。然而,在该STA使用该rTWT SP之前,该STA需要与该AP进行协商的,其协商过程可以有如下两种方式:
方式1:STA向AP发送动作帧(action frame)以请求使用该rTWT SP,再由AP反馈action frame给STA以完成协商。
例如,在图1中,AP MLD 110在链路131上配置完成rTWT SP之后,AP 111需要在链路131上将该rTWT SP进行广播以通知给STA 121。在STA 121使用该rTWT SP之前,STA 121向AP 111发送action frame以请求使用该rTWT SP,再由AP 111反馈action frame给STA 121以完成协商。
方式2:AP直接发一个未经请求的action frame给STA以完成协商。
也就是说,本申请实施例的rTWT SP可以是通过动作帧(action frame)所协商的。
6)举例说明
下面以Non-AP MLD与AP MLD之间的交互为例进行说明。
举例1:
一个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第一STA通过SCS request frame请求SCS业务,并通过该SCS request frame将该SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
4)第一AP根据该SCS业务的业务特征为该SCS业务配置了rTWT SP。
5)第一AP在link1上配置rTWT SP并在link1上通过beacon帧中的TWT元素广播该rTWT SP。
6)在广播该rTWT SP之后,第一STA与第一AP之间通过action frame协商,实现第一STA使用该rTWT SP,以便于在该rTWT SP中向第一STA传输该SCS业务的数据。
举例2:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过该第一SCS request frame将该第一SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过该第二SCS request frame将该第二SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
6)第一AP根据该第一SCS业务的业务特征和第二SCS业务的业务特征配置了同一个rTWT SP。
7)第一AP在link1上配置rTWT SP,并在link1上通过beacon帧中的TWT元素广播该rTWT SP。
8)在广播该rTWT SP之后,第一STA与第一AP之间通过第一action frame协商以实现第一STA使用该rTWT SP,以及第四STA与第一AP之间通过第二action frame协商以实现第四STA使用该rTWT SP,以便于在该rTWT SP中向第一STA传输第一SCS业务的数据,以及向第四STA传输第二SCS业务的数据。
举例3:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过第一SCS request frame将第一SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过第二SCS request frame将第二SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
6)第一AP根据第一SCS业务的业务特征配置了第一rTWT SP。
7)第一AP根据第二SCS业务的业务特征配置了第二rTWT SP。
8)第一AP在link1上配置第一rTWT SP和第二rTWT SP,并在link1上通过beacon帧中的TWT元素广播第一rTWT SP和第二rTWT SP。
9)在广播第一rTWT SP和第二rTWT SP之后,第一STA与第一AP之间通过第一action frame协商以实现第一STA使用第一rTWT SP,以便于在第一rTWT SP中向第一STA传输第一SCS业务的数据。
10)在广播第一rTWT SP和第二rTWT SP之后,第四STA与第一AP之间通过第二action frame协商以实现第四STA使用第二rTWT SP,以便于在第二rTWT SP中向第四STA传输第二SCS业务的数据。
4、多链路冗余传输
需要说明的是,当数据正在多链路设备双方所建立的多条链路中的某条链路上传输时,通常该数据无需在除该链路外的其他链路上再传输以节省传输资源。然而,为了提高数据传输的可靠性以及降低数据传输的时延,本申请引入了多链路冗余传输机制。
1)多链路冗余传输的定义
多链路冗余传输,可以理解为,当业务的数据在多条链路中的某一链路上传输(如新传或重传)时,该业务的数据可能正同时在除该链路外的其他链路上传输或者已经在其它链路上被传输但还未确认传输成功(如发送端还未收到接收端反馈的ACK帧等)。下面对此进行举例说明。
例如,在图1中,当AP/STA 111在链路131上向STA 121传输某一数据时,AP/STA 112正同时在链路132向STA 122传输该数据和/或AP/STA 113正同时在链路133向STA 123传输该数据;或者,
当AP/STA 111在链路131上向STA 121传输某一数据时,AP/STA 112已经在链路132上向STA 122传输了该数据,但是AP/STA 112还未收到STA 122针对该数据所反馈的ACK帧。
2)多链路冗余传输中同时传输业务的数据的最大链路数量
需要说明的是,在多链路冗余传输中,业务的数据可以在Non-AP MLD和AP MLD所建立的多条链路上同时进行传递。然而,多链路冗余传输中同时传输数据所占的链路的数量越多,这将导致占用的信道资源也越多。
为了避免或减少信道资源的占用,本申请实施例需要对多链路冗余传输中同时传输业务的数据所占的最大链路数量进行协商。
例如,在上个针对图1的举例中,若AP MLD/non-AP MLD 110与Non-AP MLD 120协商多链路冗余传输中同时传输业务的数据所占的最大链路数量为2,则当AP/STA 111在链路131上向STA 121传输某一数据时,AP/STA 112可以同时在链路132向STA 122传输该数据,但已无法同时在链路133上向STA 123传输该数据。
在一些可能实施例中,Non-AP MLD和AP MLD之间可以通过动作帧来协商多链路冗余传输中同时传输第一业务的数据所占的最大链路数量,即多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量是由动作帧携带的。
例如,结合上述图5,当Non-AP MLD和AP MLD之间通过SCS请求帧(SCS请求帧属于动作帧的一种)来协商多链路冗余传输中同时传输第一业务的数据所占的最大链路数量时,该最大链路数量可以通过SCS描述符元素50中的某一字段所指示/表示/表征/携带。比如,该某一字段可以是在可选的子元素590中。
下面以Non-AP MLD与AP MLD之间的交互过程为例进行示例性说明。
举例1:
一个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第一STA通过SCS request frame请求SCS业务,并通过该SCS request frame将多链路冗余传输中同时传输该SCS业务的数据的最大链路数量为2通知给第一AP MLD。
也就是说,Non-AP MLD和AP MLD之间只能最多在该三条链路中的2条链路上对SCS业务的数据进行多链路冗余传输。
举例2:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过该第一SCS request frame将多链路冗余传输中同时传输该第一SCS业务的数据的最大链路数量为2通知给第一AP MLD通知给第一AP MLD。
也就是说,第一Non-AP MLD和第一AP MLD之间只能最多在该三条链路中的2条链路上对第一SCS业务的数据进行多链路冗余传输。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过该第二SCS request frame将多链路冗余传输中同时传输该第二SCS业务的数据的最大链路数量为2通知给第一AP MLD。
也就是说,第二Non-AP MLD和第一AP MLD之间只能最多在该两条链路中的2条链路上对SCS业务的数据进行多链路冗余传输。
5、第一时间区间
对于下行数据传输,远端服务器将业务的数据下发给STA MLD的过程中,需要经过IP网络的多跳传输后先到达AP MLD,且在多跳传输中会因为时延抖动可能导致该业务的数据延迟到达,从而因该业务的数据延迟到达可能导致无法有效使用为该业务的数据所配置rTWT SP的情况。
同理,在上行数据传输中,在将Non-AP MLD的应用层所产生的该业务的数据传输给Non-AP MLD中的STA的过程中,也会因时延抖动而导致该业务的数据延迟到达Non-AP MLD中的STA,从而因该业务的数据延迟到达可能导致无法有效使用为该业务的数据所配置rTWT SP的情况。
1)第一时间区间的定义
为了保证业务的QoS要求,减少信道资源开销,提高资源利用率,本申请实施例引入了一个第一时间区间,该第一时间区间可以用于确认第一业务的数据是否能通过rTWT SP方式进行传输。也可以说,该第一时间区间可以用于确认第一业务的数据是通过rTWT SP方式还是多链路冗余方式进行传输。
需要说明的是,本申请实施例的“第一时间区间”是对时间区间的一种表述,在不同标准协议中可能有不同的表述,但只是具有相同的功能,都在本申请实施例所保护的范围内,对此不作具体限制。
另外,由于本申请的数据传输存在上行和下行的区分,因此在对第一时间区间进行配置时也存在一定区别。
例如,当AP MLD为上行数据传输配置第一时间区间时,AP MLD需要协商将该第一时间区间发送给Non-AP MLD,如通过管理帧(或action frame等)携带该第一时间区间以发送给Non-AP MLD。
当AP MLD为下行数据传输配置第一时间区间时,AP MLD不需要将该第一时间区间发送给Non-AP MLD,而只需自身存储该第一时间区间即可。
为了实现对第一时间区间进行定义,本申请实施例需要确定第一时间区间的时长、第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期等,即第一时间区间可以包括以下至少之一项:第一时间区间的时长、第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期。
①第一时间区间的时长
需要说明的是,第一时间区间的时长,可以理解为,第一时间区间的时间长度、第一时间区间的持续时间(duration)、第一时间区间的时期等,对此不作具体限制。
在本申请实施例中,第一时间区间的时长可以是一个绝对值或固定值,可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
②第一时间区间的起始位置
需要说明的是,第一时间区间的起始位置,可以理解为,第一时间区间的开始时间(start time)、第一时间区间的开始时刻、第一时间区间的起始时刻等,对此不作具体限制。
在本申请实施例中,第一时间区间的起始位置可以在rTWT SP的起始位置之前或者之后。
需要说明的是,由于第一业务的数据的到达时刻可以在rTWT SP的起始位置之前或之后,因此本申请实施例的第一时间区间的起始位置也可以在rTWT SP的起始位置之前或者之后,从而有利于提高定义第一时间区间的灵活性。
另外,第一时间区间的起始位置可以在rTWT SP的起始位置之前更能够保证通信鲁棒性。
在本申请实施例中,第一时间区间的起始位置可以通过如下两种方式进行实现:
方式1:将第一时间区间的起始位置配置为一个绝对值或者固定值,即第一时间区间的起始位置为绝对起始位置或固定起始位置,可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
另外,本申请实施例可以将该绝对起始位置或该固定起始位置配置为周期性的,即该绝对起始位置或该固定起始位置是周期性的,从而有利于保证第一时间区间的起始位置也是周期性的。
可见,通过将第一时间区间的起始位置配置为一个绝对值或者固定值,有利于针对不同的Non-AP MLD配置不同的第一时间区间的起始位置,提高配置的灵活性和多样性。
方式2:通过一个偏离量(offset)来配置第一时间区间的起始位置。其中,
该偏离量用于表示第一时间区间的起始位置与rTWT的起始位置之间的偏移量;或者,
该偏离量用于表示第一时间区间的起始位置与rTWT的结束位置之间的偏移量。
需要说明的是,该偏离量在本申请实施例称为“第一偏移量”,也可以用其他术语替代,只要具有相同的功能和含义,都属于本申请所需求保护的范围,对此不作具体限制。
另外,第一偏移量可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
可见,由于rTWT的起始位置或结束位置可以提前协商配置好,因此在后续需要配置第一时间区间的起始位置时,本申请实施例可以引入第一偏离量,并通过该第一偏移量和已配置的rTWT来配置第一时间区间的起始位置,从而有利于提高配置效率,也更易于实现。
③第一时间区间的结束位置
需要说明的是,第一时间区间的结束位置,可以理解为,第一时间区间的结束时间、第一时间区间 的结束时刻等,对此不作具体限制。
在本申请实施例中,第一时间区间的结束位置可以在rTWT SP之内,或者,第一时间区间的结束位置可以在rTWT SP的结束位置之前,或者,第一时间区间的结束位置可以在rTWT SP的起始位置之前。
需要说明的是,由于第一业务的数据的到达时刻可以在rTWT SP的起始位置之前或之后,因此本申请实施例的第一时间区间的结束位置也可以在rTWT SP之内、rTWT SP的结束位置之前或者rTWT SP的起始位置之前,从而有利于提高定义第一时间区间的灵活性。
在本申请实施例中,若配置有第一时间区间的时长、第一时间区间的起始位置的情况下,则第一时间区间的结束位置可以根据第一时间区间的时长和第一时间区间的起始位置,而无需单独配置。
在本申请实施例中,若未配置第一时间区间的起始位置,则需要单独第一时间区间的结束位置。此时,第一时间区间的结束位置也可以采用上述类似的实现方式:
方式1:将第一时间区间的结束位置配置为一个绝对值或者固定值,即第一时间区间的结束位置为绝对结束位置或固定结束位置,可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
另外,本申请实施例可以将该绝对结束位置或该固定结束位置配置为周期性的,即该绝对结束位置或该固定结束位置是周期性的,从而有利于保证第一时间区间的结束位置也是周期性的。
可见,通过将第一时间区间的结束位置配置为一个绝对值或者固定值,有利于针对不同的Non-AP MLD配置不同的第一时间区间的结束位置,提高配置的灵活性和多样性。
方式2:通过一个偏离量(offset)来配置第一时间区间的结束位置。其中,
该偏离量用于表示第一时间区间的结束位置与rTWT的起始位置之间的偏移量;或者,
该偏离量用于表示第一时间区间的结束位置与rTWT的结束位置之间的偏移量。
需要说明的是,该偏离量在本申请实施例称为“第二偏移量”,也可以用其他术语替代,只要具有相同的功能和含义,都属于本申请所需求保护的范围,对此不作具体限制。
另外,第二偏移量可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
可见,由于rTWT的起始位置或结束位置可以提前协商配置好,因此在后续需要配置第一时间区间的结束位置时,本申请实施例可以引入第二偏离量,并通过该第二偏移量和已配置的rTWT来配置第一时间区间的结束位置,从而有利于提高配置效率,也更易于实现。
④第一时间区间的周期
结合上述“②第一时间区间的起始位置”和“③第一时间区间的结束位置”中的内容可知,第一时间区间的周期可以通过如下方式实现:
方式1:第一时间区间的周期为绝对起始位置或固定起始位置的周期。
需要说明的是,由于该绝对起始位置或该固定起始位置是周期性的,因此本申请实施例可以将该绝对起始位置或该固定起始位置的周期作为第一时间区间的周期,以便于实现。
方式2:第一时间区间的周期为绝对结束位置或固定结束位置的周期。
需要说明的是,由于该绝对结束位置或该固定结束位置是周期性的,因此本申请实施例可以将该绝对结束位置或该固定结束位置的周期作为第一时间区间的周期,以便于实现。
方式3:第一时间区间的周期由rTWT SP的周期确定。
需要说明的是,rTWT SP的周期可以表示为当前rTWT SP的起始位置与其相邻的rTWT SP的起始位置之间的时间间隔。因此,本申请实施例根据第一偏移量确定第一时间区间的起始位置,再将rTWT SP的周期所表示的时间间隔作为当前第一时间区间的起始位置与其相邻的第一时间区间的起始位置之间的时间间隔,从而实现根据rTWT SP的周期确定出第一时间区间的周期,以便于实现。
另外,rTWT SP的周期可以表示为当前rTWT SP的结束位置与其相邻的rTWT SP的结束位置之间的时间间隔。因此,本申请实施例根据第二偏移量确定第一时间区间的结束位置,再将rTWT SP的周期所表示的时间间隔作为当前第一时间区间的结束位置与其相邻的第一时间区间的结束位置之间的时间间隔,从而实现根据rTWT SP的周期确定出第一时间区间的周期,以便于实现。
⑤举例说明
例如,如图11所示,AP MLD和non-AP MLD通过协商为业务配置有rTWT SP以及时间区间。在该rTWT SP到达时,non-AP MLD从睡眠(sleep)模式进入苏醒(wake)模式。在该rTWT SP结束时,non-AP MLD重新回到睡眠模式。其中,该rTWT SP的起始位置为P,该rTWT SP的结束位置为Q,该rTWT SP的时长为L。
AP MLD和non-AP MLD通过协商为业务配置一个时间区间1110。该时间区间1110的起始位置为M, 该时间区间1110的结束位置为N,该时间区间1110的时长为l。其中,M是根据偏移量T
offset和P确定的,N是根据M和l确定的。
2)如何获取第一时间区间
结合上述可知,由于本申请的数据传输存在上行和下行的区分,因此第一时间区间可以是由标准协议规定的、预配置的、AP MLD配置的、AP MLD与Non-AP MLD之间协商配置的,对此不作具体限制。
对于上行数据传输,当AP MLD与Non-AP MLD之间协商配置第一时间区间,或AP MLD配置第一时间区间时,可以通过管理帧来携带用于配置该第一时间区间的信息(如第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期、第一时间区间的时长、第一偏移量或者第二偏移量等)。
例如,当AP MLD为上行数据传输配置第一时间区间时,AP MLD向Non-AP MLD发送action frame,该action frame携带用于配置该第一时间区间的信息,从而通过action frame实现获取第一时间区间。
3)举例说明
下面以Non-AP MLD与AP MLD之间的交互为例进行说明。
举例1:
一个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第一STA通过SCS request frame请求SCS业务,并通过该SCS request frame将该SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
4)第一AP根据该SCS业务的业务特征为该SCS业务配置了rTWT SP。
5)第一AP在link1上配置该rTWT SP,并在link1上通过beacon帧中的TWT元素广播该rTWT SP。此时,第一STA会获取到该rTWT SP。
6)在广播该rTWT SP之后,第一STA与第一AP之间通过action frame协商,实现第一STA使用该rTWT SP,以便于在该rTWT SP中第一AP与第一STA传输该SCS业务的数据。
对于上行数据传输:
7)在该action frame中携带用于配置时间区间1的信息,从而第一STA根据该用于配置时间区间1的信息确定出时间区间1,实现时间区间1的获取。
8)第一STA从APP获取该SCS业务的数据。此时,若该SCS业务的数据的到达时刻处于该时间区间1内,则第一STA在link1上通过该rTWT SP方式以向第一AP传输该SCS业务的数据;
若该SCS业务的数据的到达时刻未处于该时间区间1内,则第一STA在link1上通过多链路冗余传输方式以向第一AP传输该SCS业务的数据。
对于下行数据传输:
7)第一AP为该SCS业务配置时间区间1,但无需传输给第一STA。
8)第一AP从远端服务器获取该SCS业务的数据。此时,若该SCS业务的数据的到达时刻处于该时间区间1内,则第一AP在link1上通过该rTWT SP方式以向第一STA传输该SCS业务的数据;
若该SCS业务的数据的到达时刻未处于该时间区间1内,则第一AP在link1上通过多链路冗余传输方式以向第一STA传输该SCS业务的数据。
举例2:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过该第一SCS request frame将该第一SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过该第二SCS request frame将该第二SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
6)第一AP MLD根据该第一SCS业务的业务特征和第二SCS业务的业务特征配置了同一个rTWT SP。
7)第一AP在link1配置该rTWT SP,并在link1上通过beacon帧中的TWT元素广播该rTWT SP。此时,第一STA和第四STA会获取到该rTWT SP。
8)在广播该rTWT SP之后,第一STA与第一AP之间通过第一action frame协商以实现第一STA使用该rTWT SP,以及第四STA与第一AP之间通过第二action frame协商以实现第四STA使用该rTWT SP,以便于在该rTWT SP中向第一STA传输第一SCS业务的数据,以及向第四STA传输第二SCS业务的数据。
对于上行数据传输:
9)在第一action frame中携带用于配置时间区间1的信息,从而第一STA根据该用于配置时间区间1的信息确定出时间区间1,实现时间区间1的获取。
在第二action frame中携带用于配置时间区间2的信息,从而第四STA根据该用于配置时间区间2的信息确定出时间区间2,实现时间区间2的获取。
10)第一STA从APP获取该第一SCS业务的数据。此时,若第一SCS业务的数据的到达时刻处于该时间区间1内,则第一STA在link1上通过该rTWT SP方式以向第一AP传输第一SCS业务的数据;
若第一SCS业务的数据的到达时刻未处于该时间区间1内,则第一STA在link1上通过多链路冗余传输方式以向第一AP传输第一SCS业务的数据。
11)第四STA从APP获取该第二SCS业务的数据。此时,若第二SCS业务的数据的到达时刻处于该时间区间2内,则第四STA在link1上通过该rTWT SP方式以向第一AP传输第二SCS业务的数据;
若第二SCS业务的数据的到达时刻未处于该时间区间2内,则第四STA在link1上通过多链路冗余传输方式以向第一AP传输第二SCS业务的数据。
对于下行数据传输:
9)第一AP为第一SCS业务配置时间区间1,但无需传输给第一STA。
10)第一AP为第二SCS业务配置时间区间2,但无需传输给第四STA。
11)第一AP从远端服务器获取第一SCS业务的数据。此时,若第一SCS业务的数据的到达时刻处于该时间区间1内,则第一AP在link1上通过该rTWT SP方式以向第一STA传输第一SCS业务的数据;
若第一SCS业务的数据的到达时刻未处于该时间区间1内,则第一AP在link1上通过多链路冗余传输方式以向第一STA传输第一SCS业务的数据。
12)第一AP从远端服务器获取第二SCS业务的数据。此时,若第二SCS业务的数据的到达时刻处于该时间区间2内,则第一AP在link1上通过该rTWT SP方式以向第四STA传输第二SCS业务的数据;
若第二SCS业务的数据的到达时刻未处于该时间区间2内,则第一AP在link1上通过多链路冗余传输方式以向第四STA传输第二SCS业务的数据。
举例3:
两个Non-AP MLD和一个AP MLD的情况:
1)第一Non-AP MLD包括第一STA、第二STA和第三STA,第一AP MLD包括第一AP、第二AP和第三AP,第二Non-AP MLD包括第四STA和第五STA。
2)第一Non-AP MLD与第一AP MLD之间建立有三条链路,即第一STA与第一AP之间的link1、第二STA与第二AP之间的link2、第三STA与第三AP之间的link3。
3)第二Non-AP MLD与第一AP MLD之间建立有两条链路,即第四STA与第一AP之间的link1、第五STA与第二AP之间的link2。
4)第一STA通过第一SCS request frame请求第一SCS业务,并通过第一SCS request frame将第一SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
5)第四STA通过第二SCS request frame请求第二SCS业务,并通过第二SCS request frame将第二SCS业务的业务特征(如时间点、数据量、时延要求、周期等)通知给第一AP。
6)第一AP根据第一SCS业务的业务特征配置了第一rTWT SP。
7)第一AP根据第二SCS业务的业务特征配置了第二rTWT SP。
8)第一AP在link1上通过beacon帧中的TWT元素广播第一rTWT SP和第二rTWT SP。此时,第一STA和第四STA都会获取到第一rTWT SP和第二rTWT SP。
9)在广播第一rTWT SP和第二rTWT SP之后,第一STA与第一AP之间通过第一action frame协商以实现第一STA使用第一rTWT SP,以便于在第一rTWT SP中向第一STA传输第一SCS业务的数据。10)在广播第一rTWT SP和第二rTWT SP之后,第四STA与第一AP之间通过第二action frame协商以实现第四STA使用第二rTWT SP,以便于在第二rTWT SP中向第四STA传输第二SCS业务的数据。
对于上行数据传输:
10)在第一action frame中携带用于配置时间区间1的信息,从而第一STA根据该用于配置时间区间1 的信息确定出时间区间1,实现时间区间1的获取。
11)在第二action frame中携带用于配置时间区间2的信息,从而第四STA根据该用于配置时间区间2的信息确定出时间区间2,实现时间区间2的获取。
12)第一STA从APP获取该第一SCS业务的数据。此时,若第一SCS业务的数据的到达时刻处于该时间区间1内,则第一STA在link1上通过第一rTWT SP方式以向第一AP传输第一SCS业务的数据;
若第一SCS业务的数据的到达时刻未处于该时间区间1内,则第一STA在link1上通过多链路冗余传输方式以向第一AP传输该第一SCS业务的数据。
13)第四STA从APP获取第二SCS业务的数据。此时,若第二SCS业务的数据的到达时刻处于时间区间2内,则第四STA在link1上通过第二rTWT SP方式以向第一AP传输第二SCS业务的数据;
若第二SCS业务的数据的到达时刻未处于时间区间2内,则第四STA在link1上通过多链路冗余传输方式以向第一AP传输第二SCS业务的数据。
对于下行数据传输:
10)第一AP为第一SCS业务配置时间区间1,但无需传输给第一STA。
11)第一AP为第二SCS业务配置时间区间2,但无需传输给第四STA。
12)第一AP从远端服务器获取第一SCS业务的数据。此时,若第一SCS业务的数据的到达时刻处于该时间区间1内,则第一AP在link1上通过第一rTWT SP方式以向第一STA传输第一SCS业务的数据;
若第一SCS业务的数据的到达时刻未处于该时间区间1内,则第一AP在link1上通过多链路冗余传输方式以向第一STA传输第一SCS业务的数据。
13)第一AP从远端服务器获取第二SCS业务的数据。此时,若第二SCS业务的数据的到达时刻处于该时间区间2内,则第一AP在link1上通过第二rTWT SP方式以向第四STA传输第二SCS业务的数据;
若第二SCS业务的数据的到达时刻未处于该时间区间2内,则第一AP在link1上通过多链路冗余传输方式以向第四STA传输第二SCS业务的数据。
综上所述,下面对本申请实施例的一种数据传输方法进行示例介绍。其中,本申请实施例可以由多链路设备(如AP MLD或Non-AP MLD)、芯片、芯片模组、AP、STA等来执行图12所描述的步骤,对此不作具体限制。
如图12所示,为本申请实施例的一种数据传输方法的流程示意图,具体包括如下步骤:
S1210、获取第一业务的数据和第一时间区间。
需要说明的是,对于第一业务,可以详见上述“1、第一业务”中的内容以及其他相关内容,对此不再赘述。
对于第一时间区间,可以详见上述“5、第一时间区间”中的内容以及其他相关内容,对此不再赘述。
S1220、若第一业务的数据的达到时刻处于第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输第一业务的数据。
需要说明的是,对于rTWT,可以详见上述“8、受限目标苏醒时间(Restricted TWT,rTWT)”中的内容、“3、rTWT”中的内容以及其他相关内容,对此不再赘述。
S1230、若第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据。
需要说明的是,对于多链路冗余传输,可以详见上述“4、多链路冗余传输”中的内容以及其他相关内容,对此不再赘述。
可见,本申请实施例引入了一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据。
其中,若该位置关系为第一业务的数据的达到时刻处于第一时间区间内,则通过rTWT SP方式以传输第一业务的数据;若该位置关系为第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
具体的,第一时间区间包括以下至少之一项:第一时间区间的时长、第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期。
需要说明的是,对于第一时间区间,可以详见上述“5、第一时间区间”中的内容以及其他相关内容,从而通过第一时间区间的时长、第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期中的至少之一来实现第一时间区间进行定义。
具体的,第一时间区间的起始位置在受限目标苏醒时间服务期的起始位置之前。
需要说明的是,对于第一时间区间的起始位置,可以详见上述“②第一时间区间的起始位置”中的内 容以及其他相关内容。由于第一业务的数据的到达时刻可以在rTWT SP的起始位置之前,因此本申请实施例的第一时间区间的起始位置也可以在rTWT SP的起始位置之前。其中,第一时间区间的起始位置可以在rTWT SP的起始位置之前更能够保证通信鲁棒性。
具体的,第一时间区间的结束位置在受限目标苏醒时间服务期之内。
需要说明的是,对于第一时间区间的结束位置,可以详见上述“③第一时间区间的结束位置”中的内容以及其他相关内容。由于第一业务的数据的到达时刻可以在rTWT SP的起始位置之前,因此本申请实施例的第一时间区间的结束位置也可以在rTWT SP之前更能够保证通信鲁棒性。
具体的,第一时间区间的起始位置为绝对起始位置。
可见,通过将第一时间区间的起始位置配置为一个绝对值,有利于针对不同的Non-AP MLD配置不同的第一时间区间的起始位置,提高配置的灵活性和多样性。
具体的,绝对起始位置是周期性的。
具体的,第一时间区间的周期为绝对起始位置的周期。
可见,通过绝对起始位置的周期来是实现配置第一时间区间的周期。
具体的,第一时间区间的起始位置由第一偏移量确定,第一偏移量用于表示第一时间区间的起始位置与受限目标苏醒时间服务期的起始位置之间的偏移量。
可见,由于rTWT的起始位置或结束位置可以提前协商配置好,因此在后续需要配置第一时间区间的起始位置时,本申请实施例可以引入第一偏离量,并通过该第一偏移量和已配置的rTWT来配置第一时间区间的起始位置,从而有利于提高配置效率,也更易于实现。
具体的,第一时间区间的周期由受限目标苏醒时间服务期的周期确定。
具体的,第一时间区间是由动作帧携带的。
可见,通过动作帧携带第一时间区间以实现对第一时间区间进行获取。
具体的,受限目标苏醒时间服务期是通过动作帧所协商建立的。
需要说明的是,对于受限目标苏醒时间服务期,可以详见上述“3、rTWT”中的内容以及其他相关内容,从而通过动作帧来实现协商建立受限目标苏醒时间服务期。
具体的,受限目标苏醒时间服务期是根据第一业务的业务特征所配置的。
可见,根据第一业务的业务特征来配置受限目标苏醒时间服务期,有利于提高配置的准确性。
具体的,受限目标苏醒时间服务期是通过信标帧中的目标苏醒时间元素广播的。
可见,通过信标帧中的目标苏醒时间元素来实现广播受限目标苏醒时间服务期。
具体的,第一业务是通过流分类服务请求帧所请求的。
可见,流分类服务请求帧来实现请求第一业务,以便后续传输第一业务的数据。
具体的,第一业务为流分类服务业务、低时延业务、实时应用程序业务中的之一。
具体的,多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量是由动作帧携带的。
需要说明的是,对于多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量是由动作帧携带的,可以详见上述“4、多链路冗余传输”中的内容和其他相关内容,对此不再赘述。
可见,通过动作帧来协商多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量,从而有利于避免多链路冗余传输所占用的信道资源,提高资源利用率。
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,多链路设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该知悉,结合本文中所公开的实施例描述的各示例的方法、模块、单元或者算法步骤,本申请能够以硬件或者硬件与计算机软件的结合形式来实现。某个方法、功能、模块、单元或者步骤究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的方法、功能、模块、单元或者步骤,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对多链路设备进行功能单元/模块的划分。例如,可以对应各个功能划分各个功能单元/模块,也可以将两个或两个以上的功能集成在一个功能单元/模块中。上述集成的功能单元/模块既可以采用硬件的方式实现,也可以采用软件程序的方式实现。需要说明的是,本申请实施例中对功能单元/模块的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元/模块的情况下,图13是申请实施例的一种数据传输装置的功能单元组成框图。数据传输装置1300可以包括:获取单元1301和传输单元1302。
需要说明的是,获取单元1301可以是一种用于收发信号、数据、信息等的模块单元。
传输单元1302可以是一种用于对信号、数据、信息等进行处理以及传输的模块单元,对此不作具体限制。
在一些实施例中,获取单元1301和传输单元1302可以集成在一个单元中。例如,获取单元1301和传输单元1302可以集成在处理单元中,或者获取单元1301和传输单元1302可以集成在通信单元中。
在一些实施例中,获取单元1301和传输单元1302可以是分离的单元。例如,获取单元1301可以包括通信单元。传输单元1302可以包括处理单元和通信单元。
其中,通信单元可以是通信接口、收发器、收发电路等。
处理单元可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些实施例中,数据传输装置1300还可以包括存储单元,用于存储数据传输装置1300所执行的计算机程序或者指令。该存储单元可以是存储器。
在一些实施例中,数据传输装置1300可以是芯片或者芯片模组。
具体实现时,获取单元1301和传输单元1302用于执行如上述方法实施例中所描述的步骤。下面进行详细说明。
获取单元1301,用于获取第一业务的数据和第一时间区间;
传输单元1302,用于若第一业务的数据的达到时刻处于第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输第一业务的数据;
传输单元1302,还用于若第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据。
可见,本申请实施例引入了一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据。
其中,若该位置关系为第一业务的数据的达到时刻处于第一时间区间内,则通过rTWT SP方式以传输第一业务的数据;若该位置关系为第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
需要说明的是,图13所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再赘述。
具体的,第一时间区间包括以下至少之一项:第一时间区间的时长、第一时间区间的起始位置、第一时间区间的结束位置、第一时间区间的周期。
具体的,第一时间区间的起始位置在受限目标苏醒时间服务期的起始位置之前。
具体的,第一时间区间的结束位置在受限目标苏醒时间服务期之内。
具体的,第一时间区间的起始位置为绝对起始位置。
具体的,绝对起始位置是周期性的。
具体的,第一时间区间的周期为绝对起始位置的周期。
具体的,第一时间区间的起始位置由第一偏移量确定,第一偏移量用于表示第一时间区间的起始位置与受限目标苏醒时间服务期的起始位置之间的偏移量。
具体的,第一时间区间的周期由受限目标苏醒时间服务期的周期和第一偏移量确定。
具体的,第一时间区间是由动作帧携带的。
具体的,受限目标苏醒时间服务期是通过动作帧所协商建立的。
具体的,受限目标苏醒时间服务期是根据第一业务的业务特征所配置的。
具体的,受限目标苏醒时间服务期是通过信标帧中的目标苏醒时间元素广播的。
具体的,第一业务是通过流分类服务请求帧所请求的。
具体的,第一业务为流分类服务业务、低时延业务、实时应用程序业务中的之一。
具体的,多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量是由动作帧携带的。
请参阅图14,图14是本申请实施例的一种多链路设备的结构示意图。其中,多链路设备1400包括处理器1410、存储器1420以及用于连接处理器1410、存储器1420的通信总线。
存储器1420包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),存储器1420用于存储多链路设备1400所执行的程序代码和所传输的数据。
多链路设备1400还可以包括通信接口,其可以用于接收和发送数据。
处理器1410可以是一个或多个CPU。在处理器1410是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
多链路设备1400中的处理器1410用于执行存储器1420中存储的计算机程序或指令1421以实现如下:获取第一业务的数据和第一时间区间;若第一业务的数据的达到时刻处于第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输第一业务的数据;若第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据。
可见,本申请实施例引入了一个第一时间区间,并根据第一时间区间与第一业务的数据的到达时刻之间的位置关系来确定,是通过rTWT SP方式还是通过多链路冗余传输方式以传输第一业务的数据。
其中,若该位置关系为第一业务的数据的达到时刻处于第一时间区间内,则通过rTWT SP方式以传输第一业务的数据;若该位置关系为第一业务的数据的达到时刻未处于第一时间区间内,则通过多链路冗余传输方式以传输第一业务的数据,从而有利于实现采用更有效和合理的方式来进行数据传输的可能性,进而有利于保证业务的QoS要求,减少信道资源开销,提高资源利用率。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,多链路设备1400可以用于执行本申请上述方法实施例的多链路设备侧的方法,在此不再具体赘述。
具体的,所述第一时间区间包括以下至少之一项:所述第一时间区间的时长、所述第一时间区间的起始位置、所述第一时间区间的结束位置、所述第一时间区间的周期。
具体的,第一时间区间的起始位置在受限目标苏醒时间服务期的起始位置之前。
具体的,第一时间区间的结束位置在受限目标苏醒时间服务期之内。
具体的,第一时间区间的起始位置为绝对起始位置。
具体的,绝对起始位置是周期性的。
具体的,第一时间区间的周期为绝对起始位置的周期。
具体的,第一时间区间的起始位置由第一偏移量确定,第一偏移量用于表示第一时间区间的起始位置与受限目标苏醒时间服务期的起始位置之间的偏移量。
具体的,第一时间区间的周期由受限目标苏醒时间服务期的周期和第一偏移量确定。
具体的,第一时间区间是由动作帧携带的。
具体的,受限目标苏醒时间服务期是通过动作帧所协商建立的。
具体的,受限目标苏醒时间服务期是根据第一业务的业务特征所配置的。
具体的,受限目标苏醒时间服务期是通过信标帧中的目标苏醒时间元素广播的。
具体的,第一业务是通过流分类服务请求帧所请求的。
具体的,第一业务为流分类服务业务、低时延业务、实时应用程序业务中的之一。
具体的,多链路冗余传输中同时传输第一业务的数据所占用的最大链路数量是由动作帧携带的。
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息, 且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。
Claims (27)
- 一种数据传输方法,其特征在于,包括:获取第一业务的数据和第一时间区间;若所述第一业务的数据的达到时刻处于所述第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输所述第一业务的数据;若所述第一业务的数据的达到时刻未处于所述第一时间区间内,则通过多链路冗余传输方式以传输所述第一业务的数据。
- 根据权利要求1所述的方法,其特征在于,所述第一时间区间包括以下至少之一项:所述第一时间区间的时长、所述第一时间区间的起始位置、所述第一时间区间的结束位置、所述第一时间区间的周期。
- 根据权利要求2所述的方法,其特征在于,所述第一时间区间的起始位置在所述受限目标苏醒时间服务期的起始位置之前。
- 根据权利要求2所述的方法,其特征在于,所述第一时间区间的结束位置在所述受限目标苏醒时间服务期之内。
- 根据权利要求2或3所述的方法,其特征在于,所述第一时间区间的起始位置为绝对起始位置。
- 根据权利要求5所述的方法,其特征在于,所述绝对起始位置是周期性的。
- 根据权利要求6所述的方法,其特征在于,所述第一时间区间的周期为所述绝对起始位置的周期。
- 根据权利要求2或3所述的方法,其特征在于,所述第一时间区间的起始位置由第一偏移量确定,所述第一偏移量用于表示所述第一时间区间的起始位置与所述受限目标苏醒时间服务期的起始位置之间的偏移量。
- 根据权利要求8所述的方法,其特征在于,所述第一时间区间的周期由所述受限目标苏醒时间服务期的周期确定。
- 根据权利要求1所述的方法,其特征在于,所述第一时间区间是由动作帧携带的。
- 根据权利要求1所述的方法,其特征在于,若在所述第一业务的数据中存在未能在所述受限目标苏醒时间服务期rTWT SP完成传输的第一数据,则所述第一数据视作在所述第一时间区间之外到达的数据。
- 根据权利要求1所述的方法,其特征在于,所述多链路冗余传输中同时传输所述第一业务的数据所占用的最大链路数量是由动作帧携带的。
- 一种数据传输装置,其特征在于,包括:获取单元,用于获取第一业务的数据和第一时间区间;传输单元,用于若所述第一业务的数据的达到时刻处于所述第一时间区间内,则通过受限目标苏醒时间服务期rTWT SP方式以传输所述第一业务的数据;所述传输单元,还用于若所述第一业务的数据的达到时刻未处于所述第一时间区间内,则通过多链路冗余传输方式以传输所述第一业务的数据。
- 根据权利要求13所述的装置,其特征在于,所述第一时间区间包括以下至少之一项:所述第一时间区间的时长、所述第一时间区间的起始位置、所述第一时间区间的结束位置、所述第一时间区间的周期。
- 根据权利要求14所述的装置,其特征在于,所述第一时间区间的起始位置在所述受限目标苏醒时间服务期的起始位置之前。
- 根据权利要求14所述的装置,其特征在于,所述第一时间区间的结束位置在所述受限目标苏醒时间服务期之内。
- 根据权利要求14或15所述的装置,其特征在于,所述第一时间区间的起始位置为绝对起始位置。
- 根据权利要求17所述的装置,其特征在于,所述绝对起始位置是周期性的。
- 根据权利要求18所述的装置,其特征在于,所述第一时间区间的周期为所述绝对起始位置的周期。
- 根据权利要求14或15所述的装置,其特征在于,所述第一时间区间的起始位置由第一偏移量确定,所述第一偏移量用于表示所述第一时间区间的起始位置与所述受限目标苏醒时间服务期的起始位置之间的偏移量。
- 根据权利要求20所述的装置,其特征在于,所述第一时间区间的周期由所述受限目标苏醒时间服务期的周期确定。
- 根据权利要求13所述的装置,其特征在于,所述第一时间区间是由动作帧携带的。
- 根据权利要求13所述的装置,其特征在于,若在所述第一业务的数据中存在未能在所述受限目标苏醒时间服务期rTWT SP完成传输的第一数据,则所述第一数据视作在所述第一时间区间之外到达的数据。
- 根据权利要求13所述的装置,其特征在于,所述多链路冗余传输中同时传输所述第一业务的数据所占用的最大链路数量是由动作帧携带的。
- 一种多链路设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-12中任一项所述方法的步骤。
- 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-12中任一项所述方法的步骤。
- 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-12中任一项所述方法的步骤。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111344507.5 | 2021-11-12 | ||
CN202111344507 | 2021-11-12 | ||
CN202111352572.2A CN116133151A (zh) | 2021-11-12 | 2021-11-16 | 数据传输方法与装置、多链路设备 |
CN202111352572.2 | 2021-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023083310A1 true WO2023083310A1 (zh) | 2023-05-19 |
Family
ID=86296050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/131421 WO2023083310A1 (zh) | 2021-11-12 | 2022-11-11 | 数据传输方法与装置、多链路设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116133151A (zh) |
WO (1) | WO2023083310A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210160742A1 (en) * | 2019-11-26 | 2021-05-27 | Apple Inc. | Selective multi-link operation in wlan |
CN113395746A (zh) * | 2020-03-11 | 2021-09-14 | 华为技术有限公司 | 一种应用于多链路通信中的功率节省方法和装置 |
US20210329500A1 (en) * | 2020-07-01 | 2021-10-21 | Intel Corporation | Methods and Arrangements for Application Service Discovery |
-
2021
- 2021-11-16 CN CN202111352572.2A patent/CN116133151A/zh active Pending
-
2022
- 2022-11-11 WO PCT/CN2022/131421 patent/WO2023083310A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210160742A1 (en) * | 2019-11-26 | 2021-05-27 | Apple Inc. | Selective multi-link operation in wlan |
CN113395746A (zh) * | 2020-03-11 | 2021-09-14 | 华为技术有限公司 | 一种应用于多链路通信中的功率节省方法和装置 |
US20210329500A1 (en) * | 2020-07-01 | 2021-10-21 | Intel Corporation | Methods and Arrangements for Application Service Discovery |
Non-Patent Citations (1)
Title |
---|
PATRICE NEZOU ET AL.: "Restricted TWT Spec Text - Restricted TWT SP Protection", DOC.: IEEE 802.11-21/1718R1, 22 October 2021 (2021-10-22), XP093066426 * |
Also Published As
Publication number | Publication date |
---|---|
CN116133151A (zh) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7540059B2 (ja) | マルチリンク・デバイスと装置との間の通信方法 | |
EP2218236B1 (en) | Procedure for a power save mode in a direct link setup wireless network | |
TWI433577B (zh) | 用於異質無線網路之多重無線射頻協調的設備及方法 | |
US7519032B2 (en) | Apparatus and method for providing QoS service schedule and bandwidth allocation to a wireless station | |
US8259632B2 (en) | Peer power save mode in tunneled direct link setup (TDLS) wireless network | |
US8971229B1 (en) | Systems and methods for WLAN power management | |
CN1682493B (zh) | 用于向无线站通告未决QoS服务调度的设备和方法 | |
US20080310391A1 (en) | Apparatus for and method of power save traffic control in client/server networks | |
JP6285920B2 (ja) | 知的省電力通知のためのシステムおよび方法 | |
Sheth et al. | Enhancing the energy-efficiency and timeliness of IoT communication in WiFi networks | |
JP2009512387A (ja) | 無線通信システムにおける送信期間を割り当てる方法及び装置、並びにそのシステム | |
WO2022143176A1 (zh) | 业务传输方法、装置及系统 | |
US20230051808A1 (en) | Prioritized service period for time sensitive transmissions | |
JP2024123224A (ja) | 基地局及び端末 | |
WO2023083310A1 (zh) | 数据传输方法与装置、多链路设备 | |
US10123273B2 (en) | Facilitating power conservation for local area transmissions | |
WO2023168638A1 (zh) | 无线通信的方法及设备 | |
TWI826054B (zh) | 業務優先級確定方法以及相關裝置 | |
WO2023222072A1 (zh) | 信道接入方法和相关装置 | |
WO2024001843A1 (zh) | 一种数据传输方法及通信装置 | |
JP7563456B2 (ja) | 基地局及び端末 | |
US20230128915A1 (en) | Multi-link flexible wake time scheduling | |
WO2023216906A1 (zh) | 通信方法、接入点多链路设备和非接入点多链路设备 | |
CN115707032A (zh) | 业务建立方法与装置、多链路设备 | |
KR100638320B1 (ko) | 무선랜에서 이동국에 대한 폴링기법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22892103 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |