WO2023284230A1 - 多路光伏组件接地故障检测装置及检测方法 - Google Patents

多路光伏组件接地故障检测装置及检测方法 Download PDF

Info

Publication number
WO2023284230A1
WO2023284230A1 PCT/CN2021/135653 CN2021135653W WO2023284230A1 WO 2023284230 A1 WO2023284230 A1 WO 2023284230A1 CN 2021135653 W CN2021135653 W CN 2021135653W WO 2023284230 A1 WO2023284230 A1 WO 2023284230A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
fault detection
switch
photovoltaic module
interlock
Prior art date
Application number
PCT/CN2021/135653
Other languages
English (en)
French (fr)
Inventor
何宏伟
林镇煌
吴佰桐
Original Assignee
科华数据股份有限公司
漳州科华电气技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科华数据股份有限公司, 漳州科华电气技术有限公司 filed Critical 科华数据股份有限公司
Publication of WO2023284230A1 publication Critical patent/WO2023284230A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application belongs to the technical field of photovoltaic fault detection, and in particular relates to a multi-channel photovoltaic module ground fault detection device and detection method.
  • Photovoltaic power generation technology has the advantages of cleanness and no pollution, so it has been widely used in the field of electric power.
  • Due to aging, thermal stress and other reasons in the photovoltaic power generation system the insulation of photovoltaic modules, junction boxes, cables, and equipment interconnection wires will be damaged, causing the carrier fluid to form a path for current to pass through, and then a ground fault occurs.
  • a ground fault may generate an arc, which poses a great safety hazard.
  • an independent ground fault detection circuit is generally provided for each channel of photovoltaic modules, and is controlled by an independent control module. Since there is no communication between each control module, each ground fault detection circuit may work at the same time, which will cause changes in ground resistance and affect each other, resulting in inaccurate test results.
  • the purpose of this application is to provide a multi-channel photovoltaic module ground fault detection device and detection method to solve the problem of inaccurate test results of the multi-channel fault detection device in the prior art.
  • the first aspect of the embodiment of this application provides a multi-channel photovoltaic module ground fault detection device, including: at least two ground fault detection units;
  • the ground fault detection unit includes: interlock switch, current limiting resistor and ground switch;
  • the current limiting resistor and the grounding switch are connected in series between the ground terminal and the detection terminal of the ground fault detection unit; the detection terminal of the ground fault detection unit is used to connect to the negative pole of the corresponding photovoltaic module;
  • the first end of the interlock switch is connected to the control end of the grounding switch, and the second end of the interlock switch is connected to the grounding end;
  • a hardware interlock structure is set between the interlock switches in each ground fault detection unit, and when one of the interlock switches is turned off, the other interlock switches are all turned on.
  • the second aspect of the embodiment of the present application provides a multi-channel photovoltaic module ground fault detection method, which is applied to the multi-channel photovoltaic module ground fault detection device provided in the first aspect of the embodiment of the present invention.
  • the above method includes:
  • S101 Sending a first control instruction to the interlock switch according to a preset time interval; the first control instruction is used to instruct the interlock switch to turn off for a first preset duration; the first preset duration is less than the preset time interval;
  • S102 The control grounding switch is closed when the interlock switch is open.
  • the third aspect of the embodiment of the present application provides a photovoltaic module detection and control device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the second aspect provides the steps of the multi-channel photovoltaic module ground fault detection method.
  • the fourth aspect of the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the multi-channel photovoltaic module grounding as provided in the second aspect of the embodiment of the present application is realized. Steps in the fault detection method.
  • the fifth aspect of the embodiment of the present application provides a multi-channel photovoltaic module ground fault detection system, including the multi-channel photovoltaic module ground fault detection device provided in the first aspect of the embodiment of the application and at least two devices provided in the third aspect of the embodiment of the application.
  • Photovoltaic module detection and control equipment including the multi-channel photovoltaic module ground fault detection device provided in the first aspect of the embodiment of the application and at least two devices provided in the third aspect of the embodiment of the application.
  • the ground fault detection unit in the multi-channel photovoltaic module ground fault detection device is connected to the photovoltaic module detection and control equipment in a one-to-one correspondence.
  • the embodiment of the present application provides a multi-channel photovoltaic module ground fault detection device and detection method.
  • the above device includes: at least two ground fault detection units; the ground fault detection unit includes: an interlock switch, a current limiting resistor and a grounding switch current limiting The resistor and the grounding switch are connected in series between the grounding terminal and the detection terminal of the ground fault detection unit; the detection terminal of the ground fault detection unit is used to connect to the negative pole of the corresponding photovoltaic module; the first terminal of the interlock switch is connected to the grounding switch for control The second terminal of the interlock switch is connected to the ground terminal; a hardware interlock structure is set between the interlock switches in each ground fault detection unit.
  • interlock switches when one interlock switch is disconnected, the other The interlock switches are all closed.
  • an interlock switch is set at the control end of each ground fault detection unit, and a hardware interlock structure is set between each interlock switch, only one interlock switch is allowed to be disconnected, and the corresponding ground switch is controlled; The lock switch is closed, and the corresponding grounding switch is not controlled. Therefore, only one grounding switch is closed at the same time for grounding fault detection, and the grounding fault detection units of various channels do not affect each other, and the detection result is more accurate.
  • FIG. 1 is a schematic structural diagram of a multi-channel photovoltaic module ground fault detection device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a first relay provided in an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the hardware interlock structure for the second interlock switch provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the hardware interlock structure for the first interlock switch provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a multi-channel photovoltaic module ground fault detection device corresponding to Fig. 3 and Fig. 4;
  • Fig. 6 is a schematic diagram of the implementation flow of a multi-channel photovoltaic module ground fault detection method provided by the embodiment of the present application;
  • Fig. 7 is a schematic diagram of a photovoltaic module detection and control device provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a multi-channel photovoltaic module grounding detection system provided by an embodiment of the present application.
  • the embodiment of the present application provides a multi-channel photovoltaic module ground fault detection device, including: at least two ground fault detection units 11;
  • the ground fault detection unit 11 includes: an interlock switch K2, a current limiting resistor R1 and a ground switch K1;
  • the current limiting resistor R1 and the grounding switch K1 are connected in series between the ground terminal and the detection terminal of the ground fault detection unit; the detection terminals (PV1-, PV2-, ..., PVn-) of the ground fault detection unit are used for the corresponding photovoltaic modules negative connection of
  • the first end of the interlock switch K2 is connected to the control end of the grounding switch K1, and the second end of the interlock switch K2 is connected to the grounding end;
  • a hardware interlock structure is set between the interlock switches K2 in each ground fault detection unit 11, and among each interlock switch K2, when one interlock switch K2 is turned off, the other interlock switches K2 are all turned on.
  • each grounding switch K1 in the embodiment of the present application are connected to an interlock switch K2, and a hardware interlock structure is set between each interlock switch K2, and only one interlock switch K2 is allowed to be disconnected at a time, corresponding to The grounding switch K1 of the grounding switch K1 is controllable.
  • the grounding switch K1 receives a high-level control signal
  • the grounding switch K1 is closed to start the ground fault detection device;
  • the other interlock switches K2 are all closed, so that the control of the corresponding grounding switch K1
  • Both terminals are grounded, the level of the control terminal of the grounding switch K1 is pulled down and kept disconnected, and the grounding switch K1 is not controlled.
  • the ground fault detection device can ensure that one and only one ground switch K1 is closed at the same time for ground fault detection, and the ground fault detection units 11 of various channels do not affect each other, and the detection results are more accurate.
  • each interlock switch also includes a control terminal; each interlock switch may include: a first relay;
  • the first relay includes two normally closed contacts (the first normally closed contact and the second normally closed contact) and a coil;
  • the first normally closed contact corresponding to each interlock switch except the interlock switch is connected in series, and the control end of the interlock switch is connected to the first end of the coil corresponding to the interlock switch.
  • the second end of the coil corresponding to the interlock switch is connected to the ground terminal; the two ends of the second normally closed contact corresponding to the interlock switch are respectively connected to the first end of the interlock switch and the The second end is connected.
  • the mth first relay includes two normally closed contacts (a first normally closed contact K2m1 and a second normally closed contact K2m2 ) and a coil (KM2m).
  • a first normally closed contact K2m1 and a second normally closed contact K2m2 When the coil of the mth first relay is not energized, the two normally closed contacts (K2m1 and K2m2) are closed; when the coil of the mth first relay is energized, the two normally closed contacts (K2m1 and K2m2 ) are disconnected.
  • the first normally closed contacts (K211, K231, ..., K2n1) is connected in series between the control end of the second interlock switch and the first end of the coil (KM22) of the first relay corresponding to the second interlock switch. If one of the first normally closed contacts (K211, K231, ..., K2n1) of other interlock switches except the second interlock switch is disconnected, the coil of the first relay corresponding to the second interlock switch (KM22) cannot be energized, that is, the second normally closed contact (K222) of the first relay corresponding to the second interlock switch cannot be disconnected.
  • the ground switch can be an NMOS transistor.
  • the NOMS tube When the control terminal of the grounding switch receives a high-level signal, the NOMS tube is turned on; when the control terminal of the grounding switch receives a low-level signal, the NMOS tube is disconnected.
  • the grounding switch can also be a relay, a contactor or other electronic switching tubes, which can be selected according to actual application requirements.
  • the above ground fault detection device may further include: a voltage sampling unit;
  • the voltage sampling unit is used to obtain the voltage of the detection terminal of each ground fault detection unit.
  • the voltage sampling unit acquires the voltage of the detection terminal of each ground fault detection unit, and determines whether each photovoltaic module has a ground fault according to the voltage of the detection terminal of each ground fault detection unit. For example, when the voltage of the detection terminal of a certain ground fault detection unit is greater than a preset threshold, it is determined that the photovoltaic module of this path has a ground fault.
  • an embodiment of the present application also provides a multi-channel photovoltaic module ground fault detection method for controlling the ground fault detection unit in the multi-channel photovoltaic module ground fault detection device provided in the above embodiment.
  • the above method includes:
  • S101 Sending a first control instruction to the interlock switch according to a preset time interval; the first control instruction is used to instruct the interlock switch to turn off for a first preset duration; the first preset duration is less than the preset time interval;
  • S102 The control grounding switch is closed when the interlock switch is open.
  • each ground fault detection unit is controlled independently, and the first control instruction is sent repeatedly according to a preset time interval.
  • the interlock switch can be disconnected. Only when the interlock switch is really open can the grounding switch be controlled to be closed for ground fault detection.
  • the first preset duration and the preset time interval can be set according to actual application requirements.
  • S102 may include:
  • the grounding switch can be controlled to close before or at the same time as the first control command is issued, so as to ensure that the grounding switch can be controlled to close when the interlock switch is turned off.
  • the second control command has no effect. Only when the interlock switch is open, the second control instruction can control the grounding switch to be closed.
  • the above method may also include:
  • S104 Stop executing S101 to S102 after delaying for a second preset time period when it is detected that the switch state of the grounding switch is closed.
  • the ground fault detection since the ground fault detection does not need to be repeated in a short period of time, the ground fault detection starts when the grounding switch is detected to be closed, and the method exits after a ground fault detection is completed, and the detection ends.
  • the second preset time length should be longer than the time of ground fault detection, so as to ensure that the ground fault detection can be completed.
  • the above method may also include:
  • S105 Repeatedly execute S101 to S104 according to a preset period.
  • the preset period may be one day, that is, a ground fault detection is performed once a day, and the execution of the method is exited after a ground fault detection is completed.
  • Each ground fault detection unit operates independently and does not affect each other. Due to the existence of the hardware interlock structure, only one path can be detected each time without affecting each other.
  • the embodiment of the present application also provides a photovoltaic module ground fault detection and control device, including:
  • the first switch control module is configured to send a first control instruction to the interlock switch according to a preset time interval; the first control instruction is used to instruct the interlock switch to turn off the first preset duration; the first preset duration is less than the preset time interval;
  • the second switch control module is used to control the grounding switch to close when the interlock switch is open.
  • the second switch control module may include:
  • the synchronous closing unit is used to send a second control command to the grounding switch before sending the first control command to the interlock switch, or at the same time as sending the first control command to the interlock switch; the second control command is used to indicate grounding The switch is closed.
  • the above ground fault detection control device may also include:
  • a switch state acquisition module is used to obtain the switch state of the grounding switch in real time
  • the exit module is used to stop the execution after delaying the second preset time length and send the first control command to the interlock switch according to the preset time interval when the switch state of the grounding switch is detected to be closed, so as to control the grounding switch in the interlock switch Steps to close when open.
  • the above ground fault detection control device may also include:
  • the repetition detection module is used to repeatedly execute the first control instruction sent to the interlock switch according to the preset time interval according to the preset cycle, and stop after delaying the second preset time length when it is detected that the switch state of the grounding switch is closed.
  • the step of sending the first control instruction to the interlock switch at preset time intervals to controlling the grounding switch to be closed when the interlock switch is turned off is performed.
  • Module completion means that the internal structure of the photovoltaic module detection and control equipment is divided into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit, and the above-mentioned integrated units may adopt hardware It can also be implemented in the form of software functional units.
  • Fig. 7 is a schematic block diagram of a photovoltaic module detection and control device provided by an embodiment of the present application.
  • the photovoltaic module detection and control device 4 of this embodiment includes: one or more processors 40 , a memory 41 , and a computer program 42 stored in the memory 41 and operable on the processor 40 .
  • the processor 40 executes the computer program 42 , the steps in the above-mentioned embodiments of the multi-channel photovoltaic module ground fault detection method are implemented, such as steps S101 to S102 shown in FIG. 6 .
  • the processor 40 executes the computer program 42, the functions of each module/unit in the embodiment of the above-mentioned photovoltaic module ground fault detection and control device are realized.
  • the computer program 42 can be divided into one or more modules/units, and one or more modules/units are stored in the memory 41 and executed by the processor 40 to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 42 in the photovoltaic module detection and control device 4 .
  • the computer program 42 can be divided into a first switch control module and a second switch control module.
  • the first switch control module is configured to send a first control instruction to the interlock switch according to a preset time interval; the first control instruction is used to instruct the interlock switch to turn off the first preset duration; the first preset duration is less than the preset time interval;
  • the second switch control module is used to control the grounding switch to close when the interlock switch is open.
  • the photovoltaic module detection and control device 4 includes but not limited to a processor 40 and a memory 41 .
  • Fig. 7 is only an example of the photovoltaic module detection and control device, and does not constitute a limitation to the photovoltaic module detection and control device 4, which may include more or less components than those shown in the figure, or combine some Components, or different components, for example, the photovoltaic module detection and control device 4 may also include an input device, an output device, a network access device, a bus, and the like.
  • the processor 40 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), on-site Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the memory 41 may be an internal storage unit of the photovoltaic component detection and control device, for example, a hard disk or a memory of the photovoltaic component detection and control device.
  • the memory 41 can also be an external storage device of the photovoltaic module detection and control device, for example, a plug-in hard disk equipped on the photovoltaic module detection and control device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the memory 41 may also include both an internal storage unit of the photovoltaic module detection and control device and an external storage device.
  • the memory 41 is used to store the computer program 42 and other programs and data required by the photovoltaic module detection and control equipment.
  • the memory 41 can also be used to temporarily store data that has been output or will be output.
  • the disclosed photovoltaic module detection and control device and method can be implemented in other ways.
  • the above-described embodiment of the photovoltaic module detection and control device is only illustrative.
  • the division of modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • an integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer programs can be stored in a computer-readable storage medium. When executed by a processor, the steps in the foregoing method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable storage medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (Read-Only Memory, ROM), random memory Access memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in computer-readable storage media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, computer-readable storage media Excluding electrical carrier signals and telecommunication signals.
  • an embodiment of the present application also provides a multi-channel photovoltaic module ground fault detection system, including the multi-channel photovoltaic module ground fault detection device provided in the above-mentioned embodiment and at least two photovoltaic module detection and control devices 4 provided in the above-mentioned embodiment ;
  • the ground fault detection unit 11 in the multi-channel photovoltaic module ground fault detection device is connected to the photovoltaic module detection and control device 4 in a one-to-one correspondence.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种多路光伏组件接地故障检测装置及检测方法,装置包括:至少两个接地故障检测单元(11);接地故障检测单元(11)包括:互锁开关(K2)、限流电阻(R1)及接地开关(K1),限流电阻(R1)及接地开关(K1)串联连接在接地端和接地故障检测单元(11)的检测端(PV1-,PV2-,...,PVn-)之间;接地故障检测单元(11)的检测端(PV1-,PV2-,...,PVn-)用于与其对应的光伏组件的负极连接;互锁开关(K2)的第一端与接地开关(K1)的控制端连接,互锁开关(K2)的第二端与接地端连接;各个接地故障检测单元(11)中的互锁开关(K2)之间设置硬件互锁结构,各个互锁开关(K2)中,当有一个互锁开关(K2)断开时,其他互锁开关(K2)均闭合。本装置在每个接地故障检测单元(11)的控制端处设置一个互锁开关(K2),仅允许一个接地故障检测单元(11)工作,提高了接地故障检测的准确性。

Description

多路光伏组件接地故障检测装置及检测方法
本专利申请要求于2021年7月14日提交的中国专利申请No.CN202110796701.0的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请属于光伏故障检测技术领域,尤其涉及一种多路光伏组件接地故障检测装置及检测方法。
背景技术
光伏发电技术具有清洁、无污染等优点,因此,在电力领域得到了广泛应用。然而,光伏发电系统由于老化、热应力等原因,会导致光伏组件、接线盒、电缆、设备互联线等绝缘损坏,致使载流体对地形成一个可供电流通过的路径,进而发生接地故障。接地故障可能会产生电弧,存在极大的安全隐患。
现有技术中,对于多路光伏组件,通常针对每一路光伏组件分别设置独立的接地故障检测电路,并分别由独立的控制模块进行控制。由于各个控制模块之间没有通讯,各路接地故障检测电路可能同时工作,互相之间会引起接地电阻的变化,相互影响,导致测试结果不准确。
技术问题
本申请的目的在于提供一种多路光伏组件接地故障检测装置及检测方法,以解决现有技术中多路故障检测装置测试结果不准确的问题。
技术解决方案
本申请采用的技术方案是:本申请实施例第一方面提供了一种多路光伏组件接地故障检测装置,包括:至少两个接地故障检测单元;
接地故障检测单元包括:互锁开关、限流电阻及接地开关;
限流电阻及接地开关串联连接在接地端和接地故障检测单元的检测端之间;接地故障检测单元的检测端用于与其对应的光伏组件的负极连接;
互锁开关的第一端与接地开关的控制端连接,互锁开关的第二端与接地端连接;
各个接地故障检测单元中的互锁开关之间设置硬件互锁结构,各个互锁开关中,当有一个互锁开关断开时,其他互锁开关均闭合。
本申请实施例第二方面提供了一种多路光伏组件接地故障检测方法,应用于如本发明实施例第一方面提供的多路光伏组件接地故障检测装置,上述方法包括:
S101:按照预设时间间隔向互锁开关发送第一控制指令;第一控制指令用于指示互锁开关断开第一预设时长;第一预设时长小于预设时间间隔;
S102:控制接地开关在互锁开关断开时闭合。
本申请实施例第三方面提供了一种光伏组件检测控制设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如本申请实施例第二方面提供的多路光伏组件接地故障检测方法的步骤。
本申请实施例第四方面提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如本申请实施例第二方面提供的多路光伏组件接地故障检测方法的步骤。
本申请实施例第五方面提供了一种多路光伏组件接地检测系统,包括本申请实施例第一方面提供的多路光伏组件接地故障检测装置及至少两个本申请实施例第三方面提供的光伏组件检测控制设备;
多路光伏组件接地故障检测装置中的接地故障检测单元与光伏组件检测控制设备一一对应连接。
有益效果
本申请实施例提供了一种多路光伏组件接地故障检测装置及检测方法,上述装置包括:至少两个接地故障检测单元;接地故障检测单元包括:互锁开关、限流电阻及接地开关限流电阻及接地开关串联连接在接地端和接地故障检测单元的检测端之间;接地故障检测单元的检测端用于与其对应的光伏组件的负极连接;互锁开关的第一端与接地开关的控制端连接,互锁开关的第二端与接地端连接;各个接地故障检测单元中的互锁开关之间设置硬件互锁结构,各个互锁开关中,当有一个互锁开关断开时,其他互锁开关均闭合。本申请实施例中每个接地故障检测单元的控制端设置一个互锁开关,各个互锁开关之间设置硬件互锁结构,仅允许一个互锁开关断开,对应的接地开关受控;其他互锁开关闭合,对应的接地开关不受控。由此,同一时间有且仅有一个接地开关闭合,以进行接地故障检测,各路接地故障检测单元之间互不影响,检测结果更加准确。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种多路光伏组件接地故障检测装置的结构示意图;
图2是本申请实施例提供的第一继电器的结构示意图;
图3是本申请实施例提供的对于第2个互锁开关的硬件互锁结构的示意图;
图4是本申请实施例提供的对于第1个互锁开关的硬件互锁结构的示意图;
图5是图3及图4对应的多路光伏组件接地故障检测装置的结构示意图;
图6是本申请实施例提供的一种多路光伏组件接地故障检测方法的实现流程示意图;
图7是本申请实施例提供的光伏组件检测控制设备的示意图;
图8是本申请实施例提供的多路光伏组件接地检测系统的示意图。
本申请的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
参考图1,本申请实施例提供了一种多路光伏组件接地故障检测装置,包括:至少两个接地故障检测单元11;
接地故障检测单元11包括:互锁开关K2、限流电阻R1及接地开关K1;
限流电阻R1及接地开关K1串联连接在接地端和接地故障检测单元的检测端之间;接地故障检测单元的检测端(PV1-,PV2-,…,PVn-)用于与其对应的光伏组件的负极连接;
互锁开关K2的第一端与接地开关K1的控制端连接,互锁开关K2的第二端与接地端连接;
各个接地故障检测单元11中的互锁开关K2之间设置硬件互锁结构,各个互锁开关K2中,当有一个互锁开关K2断开时,其他互锁开关K2均闭合。
参考图1,本申请实施例中各个接地开关K1的控制端均连接一个互锁开关K2,各个互锁开关K2之间设置硬件互锁结构,每次仅允许一个互锁开关K2断开,对应的接地开关K1可控,当该接地开关K1接收到高电平控制信号时,该接地开关K1闭合,启动接地故障检测装置;其他互锁开关K2均闭合,从而使得对应的接地开关K1的控制端均接地,该接地开关K1的控制端的电平被拉低,保持断开,该接地开关K1不受控。所述接地故障检测装置可以确保同一时间内,有且仅有一个接地开关K1闭合,以进行接地故障检测,各路接地故障检测单元11之间互不影响,检测结果更加准确。
一些实施例中,各个互锁开关还包括控制端;各个互锁开关均可以包括:第一继电器;
第一继电器包括两个常闭触头(第一常闭触头和第二常闭触头)及线圈;
针对每个互锁开关,除该互锁开关外的其他各个互锁开关对应的第一常闭触头串联连接在,该互锁开关的控制端与该互锁开关对应的线圈的第一端之间;该互锁开关对应的线圈的第二端与接地端连接;该互锁开关对应的第二常闭触头的两端分别与该互锁开关的第一端及该互锁开关的第二端连接。
参考图2,本申请实施例中,第m个第一继电器包括两个常闭触头(第一常闭触头K2m1和第二常闭触头K2m2)及线圈(KM2m)。当第m个第一继电器的线圈不得电时,两个常闭触头(K2m1和K2m2)均闭合;当第m个第一继电器的线圈得电时,两个常闭触头(K2m1和K2m2)均断开。
本申请实施例中,例如,参考图3及图5,对于第2个互锁开关,除第2个互锁开关外的其他互锁开关的第一常闭触头(K211,K231,…,K2n1)串联连接在第2个互锁开关的控制端和第2个互锁开关对应的第一继电器的线圈(KM22)的第一端之间。若除第2个互锁开关外的其他互锁开关的第一常闭触头(K211,K231,…,K2n1)中有一个断开,则第2个互锁开关对应的第一继电器的线圈(KM22)不能得电,也即第2个互锁开关对应的第一继电器的第二常闭触头(K222)不能断开。又例如,参考图4,若除第1个互锁开关外的其他互锁开关的第一常闭触头(K221,K231,…,K2n1)中有一个断开,则第1个互锁开关对应的第一继电器的线圈(KM21)不能得电,也即第1个互锁开关对应的第一继电器的第二常闭触头(K212)不能断开。由以上可知,本申请实施例提供的硬件互锁结构确保了各个互锁开关在同一时间,有且仅有一个互锁开关断开。
一些实施例中,接地开关可以为NMOS管。
当接地开关的控制端接收到高电平信号时,NOMS管导通;当接地开关的控制端接收到低电平信号时,NMOS管断开。
具体的,接地开关还可以为继电器、接触器或其他电子开关管,可根据实际应用需求选择。
一些实施例中,上述接地故障检测装置还可以包括:电压采样单元;
电压采样单元用于获取各个接地故障检测单元的检测端的电压。
本申请实施例中,电压采样单元获取各个接地故障检测单元的检测端的电压,根据各个接地故障检测单元的检测端的电压,确定各个光伏组件是否存在接地故障。例如,当某个接地故障检测单元的检测端的电压大于预设阈值时,则确定该路光伏组件接地故障。
参考图6,本申请实施例还提供了一种多路光伏组件接地故障检测方法,用于控制上述实施例提供的多路光伏组件接地故障检测装置中的接地故障检测单元,上述方法包括:
S101:按照预设时间间隔向互锁开关发送第一控制指令;第一控制指令用于指示互锁开关断开第一预设时长;第一预设时长小于预设时间间隔;
S102:控制接地开关在互锁开关断开时闭合。
本申请实施例中,各个接地故障检测单元独立控制,按照预设时间间隔重复发送第一控制指令。但由于各个互锁开关之间设置硬件互锁结构,并非每次向互锁开关发送第一控制指令,互锁开关都能断开。只有当互锁开关真的断开时才能控制接地开关闭合,进行接地故障检测。其中,第一预设时长及预设时间间隔可根据实际应用需求设定。
一些实施例中,S102可以包括:
S1021:在向互锁开关发送第一控制指令之前,或在向互锁开关发送第一控制指令的同一时刻,向接地开关发送第二控制指令;第二控制指令用于指示接地开关闭合。
本申请实施例中,可在第一控制指令发出前或在第一控制指令发出的同时,控制接地开关闭合,确保互锁开关断开时,可以控制接地开关闭合。当互锁开关闭合时,第二控制指令不起作用。仅当互锁开关断开时,第二控制指令可以控制接地开关闭合。
一些实施例中,上述方法还可以包括:
S103:实时获取接地开关的开关状态;
S104:当检测到接地开关的开关状态为闭合时,延时第二预设时长后停止执行S101至S102。
本申请实施例中,由于接地故障检测短时间内无需重复检测,因此,当检测到接地开关闭合后,开始进行接地故障检测,当一次接地故障检测完成后退出方法执行,检测结束。其中,第二预设时长应当大于接地故障检测的时间,确保接地故障检测可以完成。
一些实施例中,上述方法还可以包括:
S105:按照预设周期,重复执行S101至S104。
接地故障检测每天或每两天检测一次即可。例如,预设周期可以为一天,也即每天进行一次接地故障检测,一次接地故障检测完成后退出方法执行。各个接地故障检测单元独立运行,互不影响,由于硬件互锁结构的存在,每次只能有一路进行检测,不会对彼此造成影响。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供了一种光伏组件接地故障检测控制装置,包括:
第一开关控制模块,用于按照预设时间间隔向互锁开关发送第一控制指令;第一控制指令用于指示互锁开关断开第一预设时长;第一预设时长小于预设时间间隔;
第二开关控制模块,用于控制接地开关在互锁开关断开时闭合。
一些实施例中,第二开关控制模块可以包括:
同步闭合单元,用于在向互锁开关发送第一控制指令之前,或在向互锁开关发送第一控制指令的同一时刻,向接地开关发送第二控制指令;第二控制指令用于指示接地开关闭合。
一些实施例中,上述接地故障检测控制装置还可以包括:
开关状态获取模块,用于实时获取接地开关的开关状态;
退出模块,用于当检测到接地开关的开关状态为闭合时,延时第二预设时长后停止执行按照预设时间间隔向互锁开关发送第一控制指令,至控制接地开关在互锁开关断开时闭合的步骤。
一些实施例中,上述接地故障检测控制装置还可以包括:
重复检测模块,用于按照预设周期,重复执行按照预设时间间隔向互锁开关发送第一控制指令,至当检测到接地开关的开关状态为闭合时,延时第二预设时长后停止执行按照预设时间间隔向互锁开关发送第一控制指令,至控制接地开关在互锁开关断开时闭合的步骤。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将光伏组件检测控制设备的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图7是本申请一实施例提供的光伏组件检测控制设备的示意框图。如图7所示,该实施例的光伏组件检测控制设备4包括:一个或多个处理器40、存储器41以及存储在存储器41中并可在处理器40上运行的计算机程序42。处理器40执行计算机程序42时实现上述各个多路光伏组件接地故障检测方法实施例中的步骤,例如图6所示的步骤S101至S102。或者,处理器40执行计算机程序42时实现上述光伏组件接地故障检测控制装置实施例中各模块/单元的功能。
示例性地,计算机程序42可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器41中,并由处理器40执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序42在光伏组件检测控制设备4中的执行过程。例如,计算机程序42可以被分割成第一开关控制模块及第二开关控制模块。
第一开关控制模块,用于按照预设时间间隔向互锁开关发送第一控制指令;第一控制指令用于指示互锁开关断开第一预设时长;第一预设时长小于预设时间间隔;
第二开关控制模块,用于控制接地开关在互锁开关断开时闭合。
其它模块或者单元在此不再赘述。
光伏组件检测控制设备4包括但不仅限于处理器40、存储器41。本领域技术人员可以理解,图7仅仅是光伏组件检测控制设备的一个示例,并不构成对光伏组件检测控制设备4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如,光伏组件检测控制设备4还可以包括输入设备、输出设备、网络接入设备、总线等。
处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者任何常规的处理器等。
存储器41可以是光伏组件检测控制设备的内部存储单元,例如,光伏组件检测控制设备的硬盘或内存。存储器41也可以是光伏组件检测控制设备的外部存储设备,例如,光伏组件检测控制设备上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,存储器41还可以既包括光伏组件检测控制设备的内部存储单元也包括外部存储设备。存储器41用于存储计算机程序42以及光伏组件检测控制设备所需的其他程序和数据。存储器41还可以用于暂时存储已经输出或者将要输出的数据。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的光伏组件检测控制设备和方法,可以通过其它的方式实现。例如,以上所描述的光伏组件检测控制设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括是电载波信号和电信信号。
参考图8,本申请实施例还提供了一种多路光伏组件接地检测系统,包括上述实施例提供的多路光伏组件接地故障检测装置及至少两个上述实施例提供的光伏组件检测控制设备4;
多路光伏组件接地故障检测装置中的接地故障检测单元11与光伏组件检测控制设备4一一对应连接。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种多路光伏组件接地故障检测装置,其特征在于,包括:至少两个接地故障检测单元;
    所述接地故障检测单元包括:互锁开关、限流电阻及接地开关;
    所述限流电阻及所述接地开关串联连接在接地端和所述接地故障检测单元的检测端之间;所述接地故障检测单元的检测端用于与其对应的光伏组件的负极连接;
    所述互锁开关的第一端与所述接地开关的控制端连接,所述互锁开关的第二端与所述接地端连接;
    各个接地故障检测单元中的互锁开关之间设置硬件互锁结构,各个互锁开关中,当有一个互锁开关断开时,其他互锁开关均闭合。
  2. 如权利要求1所述的多路光伏组件接地故障检测装置,其特征在于,各个互锁开关还包括控制端;各个互锁开关均包括:第一继电器;
    所述第一继电器包括两个常闭触头及线圈,所述两个常闭触头分别为第一常闭触头和第二常闭触头;
    针对每个互锁开关,除该互锁开关外的其他各个互锁开关对应的第一常闭触头串联连接在,该互锁开关的控制端与该互锁开关对应的线圈的第一端之间;该互锁开关对应的线圈的第二端与所述接地端连接;该互锁开关对应的第二常闭触头的两端分别与该互锁开关的第一端及该互锁开关的第二端连接。
  3. 如权利要求1所述的多路光伏组件接地故障检测装置,其特征在于,所述接地故障检测装置还包括:电压采样单元;
    所述电压采样单元用于获取各个接地故障检测单元的检测端的电压。
  4. 一种多路光伏组件接地故障检测方法,其特征在于,用于控制如权利要求1至3任一项所述的多路光伏组件接地故障检测装置中的接地故障检测单元,所述方法包括:
    S101:按照预设时间间隔向互锁开关发送第一控制指令;所述第一控制指令用于指示所述互锁开关断开第一预设时长;所述第一预设时长小于所述预设时间间隔;
    S102:控制所述接地开关在所述互锁开关断开时闭合。
  5. 如权利要求4所述的多路光伏组件接地故障检测方法,其特征在于,S102包括:
    S1021:在向互锁开关发送第一控制指令之前,或在向互锁开关发送第一控制指令的同一时刻,向所述接地开关发送第二控制指令;所述第二控制指令用于指示所述接地开关闭合。
  6. 如权利要求4或5所述的多路光伏组件接地故障检测方法,其特征在于,所述方法还包括:
    S103:实时获取所述接地开关的开关状态;
    S104:当检测到所述接地开关的开关状态为闭合时,延时第二预设时长后停止执行S101至S102。
  7. 如权利要求6所述的多路光伏组件接地故障检测方法,其特征在于,所述方法还包括:
    S105:按照预设周期,重复执行S101至S104。
  8. 一种光伏组件检测控制设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求4至7任一项所述的多路光伏组件接地故障检测方法的步骤。
  9. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求4至7任一项所述的多路光伏组件接地故障检测方法的步骤。
  10. 一种多路光伏组件接地检测系统,其特征在于,包括如权利要求1至3任一项所述的多路光伏组件接地故障检测装置及至少两个如权利要求8所述的光伏组件检测控制设备;
    所述多路光伏组件接地故障检测装置中的接地故障检测单元与所述光伏组件检测控制设备一一对应连接。
PCT/CN2021/135653 2021-07-14 2021-12-06 多路光伏组件接地故障检测装置及检测方法 WO2023284230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110796701.0 2021-07-14
CN202110796701.0A CN113608145B (zh) 2021-07-14 2021-07-14 多路光伏组件接地故障检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2023284230A1 true WO2023284230A1 (zh) 2023-01-19

Family

ID=78304620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135653 WO2023284230A1 (zh) 2021-07-14 2021-12-06 多路光伏组件接地故障检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN113608145B (zh)
WO (1) WO2023284230A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608145B (zh) * 2021-07-14 2023-04-11 厦门科华数能科技有限公司 多路光伏组件接地故障检测装置及检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199707A1 (en) * 2010-02-16 2011-08-18 Greenvolts, Inc Photovoltaic array ground fault detection method for utility-scale grounded solar electric power generating systems
CN103474969A (zh) * 2013-09-18 2013-12-25 江苏兆伏新能源有限公司 一种光伏组件的接地故障检测保护电路
CN103490402A (zh) * 2013-09-05 2014-01-01 南京南瑞继保电气有限公司 一种光伏组件接地装置、监测装置及监测方法
CN204705694U (zh) * 2015-06-18 2015-10-14 江苏安科瑞电器制造有限公司 光伏直流绝缘监测装置
CN205005020U (zh) * 2015-09-25 2016-01-27 南昌理工学院 光伏电站漏电检测装置
JP2016039766A (ja) * 2014-08-11 2016-03-22 東北電力株式会社 太陽電池パネル異常検出システム
CN109188166A (zh) * 2018-08-28 2019-01-11 厦门科华恒盛股份有限公司 接地故障检测装置及方法
KR20200024479A (ko) * 2018-08-28 2020-03-09 엘지이노텍 주식회사 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
US20200411260A1 (en) * 2019-06-27 2020-12-31 EMA Electromechanics, Inc. Distribution grounding switch to support distributed energy resources
CN113608145A (zh) * 2021-07-14 2021-11-05 科华数据股份有限公司 多路光伏组件接地故障检测装置及检测方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB150766A (en) * 1919-05-03 1920-09-03 Oerlikon Maschf Method of indicating, locating, and isolating faults in electric transmission or distributing systems
US4625205A (en) * 1983-12-08 1986-11-25 Lear Siegler, Inc. Remote control system transmitting a control pulse sequence through interlocked electromechanical relays
JPH05236634A (ja) * 1992-02-25 1993-09-10 Kansai Electric Power Co Inc:The 直流地絡継電器
US5307050A (en) * 1992-06-03 1994-04-26 Honeywell Inc. Display apparatus for a first out type of fault status annunciator having a series of interlock switches
US5537283A (en) * 1995-04-11 1996-07-16 Keese; Brendan T. Ground fault detection circuit for an ungrounded control system
AU6683198A (en) * 1997-03-03 1998-09-22 Ralph L. Barnett Remote and proximal guard and interlock testing mechanisms and testing systems either separately or in combination
JP2007037308A (ja) * 2005-07-27 2007-02-08 Chugoku Electric Power Co Inc:The 開閉検知装置
GB201205746D0 (en) * 2012-03-30 2012-05-16 Idem Safety Switches Ltd Interlock switch circuit with single fault detection
JP6040714B2 (ja) * 2012-11-06 2016-12-07 株式会社リコー 自動原稿搬送装置、自動原稿搬送装置を備えた画像読取装置および画像形成装置
GB201318391D0 (en) * 2013-10-17 2013-12-04 P4 Ltd Power Switching Apparatus & Method
US9715013B2 (en) * 2013-11-27 2017-07-25 New Bedford Panoramex Corp. Integratable ILS interlock system
CN204835696U (zh) * 2015-06-30 2015-12-02 大唐桂冠合山发电有限公司 一种基于dcs的电源切换装置
CN104991157A (zh) * 2015-07-22 2015-10-21 上海正泰电源系统有限公司 一种光伏逆变器的负极接地与故障检测装置
CN106468763A (zh) * 2015-08-21 2017-03-01 王静爽 一种电机停机在线绝缘检测控制方法
CN106229968B (zh) * 2016-08-01 2018-07-20 漳州科华技术有限责任公司 一种互锁装置及其控制方法
JP6984255B2 (ja) * 2017-09-08 2021-12-17 株式会社デンソー 故障検出装置
CN108429537B (zh) * 2018-04-04 2024-01-12 北京动力源科技股份有限公司 一种光伏逆变器故障处理电路和电子设备
CN110857964A (zh) * 2018-08-08 2020-03-03 上汽通用汽车有限公司 高压互锁回路、利用高压互锁回路检测电气连续性故障的方法、计算机存储介质及电动汽车
CN109188167B (zh) * 2018-08-28 2021-09-24 科华数据股份有限公司 接地故障检测装置及方法
CN109664841B (zh) * 2018-12-06 2021-04-20 东软睿驰汽车技术(沈阳)有限公司 一种高压互锁电路、故障检测方法及装置
CN109638795B (zh) * 2019-01-16 2020-07-24 科华恒盛股份有限公司 组串式光伏逆变系统急停控制方法及装置
US10727010B1 (en) * 2019-01-29 2020-07-28 Arc Suppression Technologies Power contact end-of-life (EoL) predictor apparatus and method
CN109782160A (zh) * 2019-02-25 2019-05-21 宁德时代新能源科技股份有限公司 高压互锁电路及其检测方法
CN109861336A (zh) * 2019-02-28 2019-06-07 郝蕾 一种电动汽车充放电的桥臂互锁保护电路
JP2020152549A (ja) * 2019-03-22 2020-09-24 理想科学工業株式会社 スイッチ開閉検出装置
CN110557091A (zh) * 2019-08-02 2019-12-10 中电科仪器仪表(安徽)有限公司 一种高压大电流光伏阵列iv曲线测试电路及测试方法
JP7118935B2 (ja) * 2019-09-10 2022-08-16 矢崎総業株式会社 地絡検出装置
CN110824380B (zh) * 2019-11-06 2022-03-11 科华恒盛股份有限公司 三相接地故障检测电路及三相接地故障检测方法
JP7353932B2 (ja) * 2019-11-18 2023-10-02 キヤノン株式会社 画像形成装置およびその制御方法
CN111244916B (zh) * 2020-03-08 2022-05-13 陕西航空电气有限责任公司 一种航空配电系统中关键交流接触器的硬件互锁方法
CN112072785B (zh) * 2020-07-30 2022-05-24 北京精密机电控制设备研究所 一种电力电子设备远程自动化测试系统
CN113090396B (zh) * 2021-03-17 2023-02-28 葛洲坝能源重工有限公司 柴油发电机组箱体电动百叶智能自维护系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199707A1 (en) * 2010-02-16 2011-08-18 Greenvolts, Inc Photovoltaic array ground fault detection method for utility-scale grounded solar electric power generating systems
CN103490402A (zh) * 2013-09-05 2014-01-01 南京南瑞继保电气有限公司 一种光伏组件接地装置、监测装置及监测方法
CN103474969A (zh) * 2013-09-18 2013-12-25 江苏兆伏新能源有限公司 一种光伏组件的接地故障检测保护电路
JP2016039766A (ja) * 2014-08-11 2016-03-22 東北電力株式会社 太陽電池パネル異常検出システム
CN204705694U (zh) * 2015-06-18 2015-10-14 江苏安科瑞电器制造有限公司 光伏直流绝缘监测装置
CN205005020U (zh) * 2015-09-25 2016-01-27 南昌理工学院 光伏电站漏电检测装置
CN109188166A (zh) * 2018-08-28 2019-01-11 厦门科华恒盛股份有限公司 接地故障检测装置及方法
KR20200024479A (ko) * 2018-08-28 2020-03-09 엘지이노텍 주식회사 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
US20200411260A1 (en) * 2019-06-27 2020-12-31 EMA Electromechanics, Inc. Distribution grounding switch to support distributed energy resources
CN113608145A (zh) * 2021-07-14 2021-11-05 科华数据股份有限公司 多路光伏组件接地故障检测装置及检测方法

Also Published As

Publication number Publication date
CN113608145B (zh) 2023-04-11
CN113608145A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN110399671B (zh) 电网的继电保护装置的整定计算方法、装置及终端
EP3467983B1 (en) Grounding circuit, electrical device, grounding control method, and grounding control program
WO2023284230A1 (zh) 多路光伏组件接地故障检测装置及检测方法
CN103532096A (zh) 10kV馈线保护装置不停电消除缺陷方法
CN109062392A (zh) 一种自动切换服务器板卡供电的设备、方法及系统
CN106683715A (zh) 一种基于等离子体电流的低杂波输出功率控制方法
CN111463758B (zh) 一种电力线路的保护方法
CN110896225B (zh) 多端常规直流输电系统第三站在线投入方法、装置及存储介质
CN105244872A (zh) 一种中压电缆网的组网方法
CN202495750U (zh) 一种lnb保护电路及lnb开关电路
CN109449876A (zh) 一种短路保护电路
CN102413001B (zh) 一种智能bypass系统
CN110780619B (zh) 电路的控制方法及装置、设备
US11128481B2 (en) Hardware accelerated communication frame
CN102623963B (zh) 一种保护桥臂中的开关管的方法和系统
CN113541095B (zh) 一种断路器控制方法及装置
Gan et al. Development of four‐terminal DC circuit breaker based on commutating path multiplexing
CN202978891U (zh) 一种用于快速开出的电路实现装置
CN219627741U (zh) 一种网络手拉手技术的电路系统及电子设备
CN117239815A (zh) 基于预定极间不同期操作和预插入电阻的开关合闸方法
CN113113262B (zh) 一种永磁控制器分合闸模块
KR101786520B1 (ko) 단로기와 접지 개폐기의 통합 제어기
CN106786432A (zh) 一种电子设备开关装置及方法
CN115566647A (zh) 线路多端电流差动保护远跳和远传功能的实现方法及系统
CN113675828A (zh) 一种适用于低频输电用断路器及其开断控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE