WO2023284201A1 - 乳液、乳液凝胶电解质、气凝胶及制备方法和应用 - Google Patents

乳液、乳液凝胶电解质、气凝胶及制备方法和应用 Download PDF

Info

Publication number
WO2023284201A1
WO2023284201A1 PCT/CN2021/129897 CN2021129897W WO2023284201A1 WO 2023284201 A1 WO2023284201 A1 WO 2023284201A1 CN 2021129897 W CN2021129897 W CN 2021129897W WO 2023284201 A1 WO2023284201 A1 WO 2023284201A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
vinyl
ionic liquid
bromide
nagdf
Prior art date
Application number
PCT/CN2021/129897
Other languages
English (en)
French (fr)
Inventor
郝京诚
武文娜
陈晓丽
刘立
董姝丽
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2023284201A1 publication Critical patent/WO2023284201A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the disclosure belongs to the technical field of energy devices, and in particular relates to an emulsion, an emulsion gel electrolyte, an aerogel, a preparation method, and an application.
  • Supercapacitor is a new type of green energy storage device between batteries and traditional capacitors. It has the advantages of high power density, fast charge and discharge, and long cycle life. Therefore, it has broad applications in information technology, consumer electronics, and electric vehicles. Applications.
  • a complete electric double layer supercapacitor consists of two electrodes connected by an electrolyte. According to the different needs of supercapacitors, the selection of electrolyte and electrode materials is crucial.
  • the electrolyte compared with the traditional liquid electrolyte, the solid electrolyte not only avoids safety problems such as leakage and volatilization, but also greatly reduces the packaging cost, and provides more design methods for the configuration of new devices.
  • ionic liquids as solvents not only have the advantages of less volatilization, non-flammability, and good thermal stability, but also have the advantages of high ionic conductivity and wide electrochemical window.
  • the three-dimensional porous structure provides a large specific surface area for electrode materials, the hierarchical porous structure accelerates the infiltration of electrolyte ions, and the porous structure can facilitate the transport of electrons, leading to low resistance and high capacitance.
  • the present disclosure provides an emulsion, an emulsion gel electrolyte, an aerogel and a preparation method and application thereof.
  • the gel electrolyte and airgel electrode material prepared based on the emulsion can greatly improve the electrochemical performance of supercapacitors.
  • an emulsion is an oil-in-water emulsion, wherein the oil phase is a decane solution dispersed with upconversion nanomaterials, and the water phase contains a polymerizable ionic liquid.
  • a method for preparing an emulsion includes: dispersing the up-conversion nanomaterial in decane, and then adding an aqueous solution of an ionic liquid to obtain a homogenous oil-in-water emulsion; further, the ion The concentration of the liquid is 0.36-3.3 mol/L; further, the mass fraction of the up-conversion nanomaterial is 0.8 ⁇ 0.05%; further, the homogenization time is 3-5 minutes.
  • an emulsion gel electrolyte is prepared from the emulsion or the emulsion prepared by the emulsion, a crosslinking agent and an ionic liquid, and the effect of the initiator Formation of cross-linking by polymerization; the number of carbon chains of the ionic liquid is between 4-14.
  • an aerogel the aerogel is polymerized under the action of an initiator from the emulsion prepared by the emulsion or the emulsion prepared by the emulsion, a cross-linking agent and an ionic liquid
  • the emulsion gel is formed by cross-linking, and then the emulsion gel is freeze-dried to obtain an airgel; the number of carbon chains of the ionic liquid is between 4-14.
  • an electrode material is the aerogel.
  • a solid-state battery in a sixth aspect of the present disclosure, includes a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode and in contact with the positive electrode and the negative electrode, the solid electrolyte is the Emulsion gel electrolyte.
  • a supercapacitor includes a positive electrode, a solid electrolyte and a negative electrode, and the solid electrolyte is the emulsion gel electrolyte.
  • the application of the supercapacitor in information technology, electric vehicles, and consumer electronics products is not limited.
  • the size of the emulsion droplet decreases with the increase of the concentration of the ionic liquid, which also shows that the size of the droplet controlled by the concentration of the ionic liquid.
  • the emulsion has no obvious contour, indicating that in the UCNP/IL synergistically stabilized O/W emulsion, due to the hydrophobic UCNPs due to their certain surface wettability, it is possible Distributed at the inner interface of oil droplets, it cooperates with ionic liquids to stabilize the emulsion.
  • the emulsion gel prepared based on the novel oil-in-water emulsion is used as an electrolyte, and as the temperature increases, the conductivity also increases. At low temperatures of 0 degrees Celsius and -20 degrees Celsius, the change in conductivity tends to be stable, and a certain degree of conductivity is still maintained, indicating that the emulsion gel is suitable for a wide temperature range as a solid electrolyte.
  • the emulsion gel electrolyte and airgel electrode material prepared based on the novel oil-in-water emulsion have strong mechanical properties, and the maximum stress can reach 3.9 and 0.37MPa respectively, indicating that airgel and emulsion gel All have strong mechanical properties. Not only that, but also has excellent thermal stability, and can maintain thermal stability at 250 degrees, indicating that emulsion gels and aerogels have extremely low flammability and good thermal stability, which is useful for improving the new safety of supercapacitors. Sex matters.
  • Figure 1 The morphology and size distribution diagram of the up-conversion nanoparticles prepared in Example 1;
  • Fig. 2 macrophotograph and micrograph of the novel oil-in-water emulsion prepared in Example 2;
  • Fig. 3 macrophotograph and micrograph of the novel oil-in-water emulsion prepared in embodiment 3;
  • Fig. 4 macrophotograph and micrograph for the novel oil-in-water emulsion prepared in embodiment 4;
  • Fig. 5 is the laser confocal microscope photograph of the novel oil-in-water emulsion prepared in Example 4;
  • Fig. 6 is the variable temperature conductivity figure of the emulsion gel prepared in embodiment 5;
  • Fig. 7 the stress-compression curve of emulsion gel and aerogel prepared for embodiment 5,6;
  • Fig. 8 the differential scanning calorimetry curve and thermal stability curve of the emulsion gel prepared for embodiment 5,6;
  • Fig. 9 is the electrochemical performance test chart of the all-solid supercapacitor in Example 7.
  • reagents or raw materials used in the present invention can be purchased through conventional channels. Unless otherwise specified, the reagents or raw materials used in the present invention are used in accordance with conventional methods in the art or according to product instructions. In addition, any methods and materials similar or equivalent to those described can be applied to the method of the present invention. The preferred implementation methods and materials described herein are for demonstration purposes only.
  • the present disclosure provides an emulsion, an emulsion gel electrolyte, an aerogel, a preparation method and an application thereof.
  • an emulsion in one embodiment of the present disclosure, is an oil-in-water emulsion, wherein the oil phase is a decane solution dispersed with upconversion nanomaterials, and the water phase contains a polymerizable ionic liquid.
  • inorganic nanoparticles with a certain charge on the surface can interact with ionic surfactants with opposite charges through electrostatic attraction, so that the surface of the inorganic nanoparticles is in situ hydrophobized, and then the hydrophobic nanoparticles have a certain Wettability can adsorb to fluid interfaces, stabilizing Pickering emulsions or Pickering foams.
  • ionic surfactants with opposite charges through electrostatic attraction, so that the surface of the inorganic nanoparticles is in situ hydrophobized, and then the hydrophobic nanoparticles have a certain Wettability can adsorb to fluid interfaces, stabilizing Pickering emulsions or Pickering foams.
  • the interaction between inorganic nanoparticles and ionic surfactants with the same charge has not been paid attention to, and there are few related research systems, because it is generally believed that there is almost no interaction between the two due to the same charge. There are interactions, in particular the surface properties of the particles are not affected by the same charged
  • the present disclosure develops a novel emulsion in which functional upconversion nanomaterials and ionic surface-active ionic liquids with the same charge are synergistically stabilized.
  • the novel emulsion has stronger stability and better dispersion, which improves the application of the novel emulsion. value.
  • the new emulsion Compared with other oil-in-water systems, the new emulsion has the advantage of lower content of stabilizers required, which reduces costs and environmental pollution. At the same time, up-conversion nanoparticles are introduced, and the photovoltaic properties of up-conversion nanoparticles are used to endow the new emulsion with corresponding photoelectric conversion functionality.
  • the up-conversion nanomaterial is selected from NaGdF 4 :Yb 3+ , Er 3+ or NaGdF 4 :Yb 3+ , Er 3+ @NaGdF 4 :Nd 3+ ; preferably, It is NaGdF 4 : Yb 3+ , Er 3+ @NaGdF 4 : Nd 3+ .
  • NaGdF 4 :Yb 3+ ,Er 3+ @NaGdF 4 :Nd 3+ as up-conversion nanomaterials is beneficial to realize efficient photoelectric conversion function.
  • the preparation method of NaGdF 4 : Yb 3+ , Er 3+ @NaGdF 4 : Nd 3+ includes:
  • the up-conversion nanomaterial is an up-conversion nanomaterial with a hydrophobic oleic acid ligand on the surface; on the surface of the up-conversion nanomaterial, hydrophobic oleic acid (OA) acts as a stable ligand to prevent its coagulation, so it has Better dispersion.
  • OA hydrophobic oleic acid
  • the ionic liquid is selected from 1-vinyl-3-tetradecyl imidazolium bromide ([VC 14 Im]Br), 1-vinyl-3-dodecyl imidazolium bromide ([VC 12 Im]Br ) or 1-vinyl-3-butylimidazolium bromide ([VC 4 Im]Br); preferably, 1-vinyl-3-dodecylimidazolium bromide ([VC 12 Im]Br) or 1- Vinyl-3-butylimidazolium bromide ([VC 4 Im]Br).
  • the ionic liquid and the up-conversion nanomaterial have the same charge.
  • the stability of the novel emulsions can be greatly enhanced through the synergy between upconversion nanomaterials and ionic liquids.
  • a method for preparing an emulsion includes: dispersing the up-conversion nanomaterial in decane, and then adding an ionic liquid for reaction to obtain an oil-in-water emulsion.
  • the concentration of the ionic liquid is 0.36-3.3mol/L; as the concentration of the ionic liquid increases, the size of the emulsion droplets decreases, and the size of the emulsion droplets can be efficiently controlled by controlling the concentration of the ionic liquid.
  • the mass fraction of the up-conversion nanomaterial is 0.8 ⁇ 0.05%; further, the reaction time is 20-30 hours, and the emulsion prepared under this condition has the best stability.
  • an emulsion gel electrolyte the emulsion gel electrolyte is prepared from the emulsion or the emulsion prepared by the emulsion, a cross-linking agent and an ionic liquid in the initiator Polymerization and cross-linking are formed under the action of the ionic liquid; the number of carbon chains of the ionic liquid is between 4-14. Wherein, the number of carbon chains of the ionic liquid is in this range, which is conducive to forming a stable emulsion.
  • the crosslinking agent is selected from N'N-methylenebisacrylamide, ethylene glycol dimethacrylate or glycerol dimethacrylate; preferably, it is N'N-methylenebisacrylamide;
  • the ionic liquid is selected from 1-vinyl-3-tetradecyl imidazolium bromide ([VC 14 Im]Br), 1-vinyl-3-dodecyl imidazolium bromide ([VC 12 Im]Br ) or 1-vinyl-3-butylimidazolium bromide ([VC 4 Im]Br); preferably, 1-vinyl-3-butylimidazolium bromide ([VC 4 Im]Br); further, the The photoinitiator is selected from azobisisobutyronitrile, 4-hydroxybenzophenone or 2,2-diethoxyacetophenone; preferably, it is 2,2-diethoxyacetophenone; or , the time for initiating the polymerization reaction is 10-30 minutes,
  • the preparation method is simple and efficient, and the obtained emulsion gels have high mechanical properties and stability, and has high ionic conductivity and diffusion ability, which can improve the electrochemical performance of supercapacitors.
  • an aerogel the aerogel is prepared from the emulsion or the emulsion prepared by the emulsion, a cross-linking agent and an ionic liquid under the action of an initiator Under polymerization cross-linking to form an emulsion gel, and then freeze-drying the emulsion gel to obtain an aerogel; the number of carbon chains of the ionic liquid is between 4-14; wherein, the number of carbon chains of the ionic liquid is within this range, Facilitates the formation of stable emulsions.
  • the ionic liquid is selected from the group consisting of 1-vinyl-3-tetradecylimidazolium bromide ([VC 14 Im]Br), 1-vinyl-3-butylimidazolium bromide ([VC 4 Im] Br) or 1-vinyl-3-dodecylimidazolium bromide ([VC 12 Im]Br); preferably, 1-vinyl-3-dodecylimidazolium bromide ([VC 12 Im] ]Br).
  • the airgel prepared by the above method has a rich pore structure, and the three-dimensional porous structure can achieve higher energy output.
  • the three-dimensional porous structure provides a large specific surface area for electrode materials, the hierarchical porous structure accelerates the infiltration of electrolyte ions, and the porous structure can facilitate the transport of electrons, resulting in low resistance and high capacitance.
  • an electrode material is characterized in that the electrode material is the aerogel.
  • the above-mentioned airgel is rich in three-dimensional porous structure, has a large specific surface area, effectively promotes the electron transport, and has more obvious advantages as an electrode material.
  • a solid-state battery includes a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode and in contact with the positive electrode and the negative electrode respectively, and the solid electrolyte is the The emulsion gel electrolyte described above. Using the above-mentioned emulsion gel as the electrolyte can increase the ion transmission rate and improve the electrochemical performance of the capacitor.
  • a supercapacitor in one embodiment of the present disclosure, includes a positive electrode, a solid electrolyte and a negative electrode, and the solid electrolyte is the emulsion gel electrolyte.
  • Supercapacitors with emulsion gel as electrolyte have higher specific capacity and energy density, which show unique advantages compared with traditional electrolyte supercapacitors.
  • the positive and negative electrodes are the aerogel and/or the electrode material.
  • the application of the supercapacitor described in claim 8 or 9 in information technology, electric vehicles, and consumer electronics products in one embodiment of the present disclosure, the application of the supercapacitor described in claim 8 or 9 in information technology, electric vehicles, and consumer electronics products.
  • the core-shell nanoparticles NaGdF 4 :Yb 3+ ,Er 3+ @NaGdF 4 :Nd 3+ were prepared. Take Gd(CH 3 COO) 3 ⁇ H 2 O (0.7mmol, 234.07mg), Nd(CH 3 CO 2 ) 3 ⁇ 6H 2 O (0.30mmol, 429.37mg), 10mL oleic acid and 15mL 1-octadecene In a 100 mL three-neck round bottom flask, stir in an oil bath at 150 ° C for 1 h under N 2 .
  • hydrophobic oleic acid acts as a stable ligand to prevent its coagulation, so it has good dispersion, such as As shown in the TEM image (Fig. 1a), the average particle size is 20.95 nm, as shown in Fig. 1b.
  • UCNPs with a mass fraction of 0.8 ⁇ 0.05% were weighed into a glass container, and 0.8 mL of decane was added to the container to disperse the UCNPs. Then 1 mL of [VC 4 Im]Br aqueous solution was added to the glass container, vortexed, and after 24 hours of stabilization, microscopic pictures were recorded.
  • the concentrations of UCNPs and [VC 4 Im]Br were expressed as weight percent (wt%) and molar concentration (mol/L) relative to the oil phase and water phase, respectively. It can be seen from Fig. 2 that the size of emulsion droplets decreases with the increase of [VC 4 Im]Br concentration. It shows that the size of the droplet is controlled by the concentration of the ionic liquid in the emulsion where the upconverting nanoparticles and the ionic liquid are synergistically stabilized.
  • UCNPs with a mass fraction of 0.8 ⁇ 0.05% were weighed into a glass container, and 0.8 mL of decane was added to the container to disperse the UCNPs. Then 1 mL of [VC 12 Im]Br aqueous solution was added to the glass container, vortexed, and after 24 hours of stabilization, microscopic pictures were recorded. It can be seen from Fig. 3 that the size of emulsion droplets decreases with the increase of [VC 12 Im]Br concentration. It also shows that the droplet size is controlled by the concentration of ionic liquid in the emulsion where upconverting nanoparticles and ionic liquid are synergistically stabilized.
  • a series of novel oil-in-water emulsions were prepared by keeping the concentration of ionic liquid constant and increasing the concentration of UCNPs in turn.
  • the emulsion has no obvious contour, indicating that in the UCNP/IL synergistically stabilized O/W emulsion, due to its certain surface wettability, the hydrophobic UCNPs may be distributed in the inner interface of the oil droplet and synergistically stabilized with the ionic liquid. lotion.
  • the UCNPs (NaGdF 4 :Yb 3+ , Er 3+ @NaGdF 4 :Nd 3+ ) prepared in Example 1 were weighed into a glass container according to the up-converting nanoparticles with a mass fraction of 0.8 ⁇ 0.05%, and placed in the container Add 0.8 mL of decane to disperse UCNPs. Then 1 mL of 2.2 mol/L polymerizable surface-active ionic liquid [VC 4 Im]Br aqueous solution was added into a glass container, vortexed, and stabilized for 24 hours to prepare a new O/W emulsion.
  • the temperature-varying conductivity of the emulsion gel was tested as an electrolyte. As can be seen in Figure 6, as the temperature increases, the conductivity also increases, because the increase in temperature promotes the migration of ions, thereby enhancing the conductivity. At low temperatures of 0 degrees Celsius and -20 degrees Celsius, the change in conductivity tends to be stable, and a certain degree of conductivity is still maintained. It shows that the emulsion gel is suitable for a wide temperature range as a solid electrolyte.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the UCNPs (NaGdF 4 :Yb 3+ , Er 3+ @NaGdF 4 :Nd 3+ ) prepared in Example 1 were weighed into a glass container according to the up-converting nanoparticles with a mass fraction of 0.8 ⁇ 0.05%, and placed in the container Add 0.8 mL of decane to disperse UCNPs. Then 1 mL of 2.2 mol/L polymerizable surface-active ionic liquid [VC 12 Im]Br aqueous solution was added into a glass container, vortexed, and stabilized for 24 hours to prepare a new O/W emulsion.
  • the cross-linking agent N'N-methylenebisacrylamide and the photoinitiator 2,2-diethoxyacetophenone were added to the aqueous phase to form a continuous phase polyionic liquid[ VC 12 Im]Br is a monomer, and the continuous phase of the emulsion is polymerized and cross-linked by UV for 20 minutes to form an emulsion gel, and then the emulsion gel is freeze-dried to obtain a porous airgel.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Example 5 The emulsion gel prepared in Example 5 was used as the solid electrolyte, and the hierarchical porous aerogel prepared in Example 6 was used as the electrode material of the positive and negative electrodes, and assembled with a button battery case to form an all-solid symmetric supercapacitor.
  • the electrochemical properties of the obtained supercapacitor were characterized.
  • the cyclic voltammetry curve was tested. As shown in Figure 9a, different scan rates were measured in the stable range of -1 to 1V. The curve was quasi-rectangular, indicating that it had good capacitance. performance. Then the GCD curves at different current densities were tested, as shown in Figure 9b, showing a quasi-triangular peak, which is consistent with the CV curve, showing the characteristics of excellent capacitance.
  • the mass specific capacitance and energy density calculated according to the charge-discharge curve are shown in Figure 9c and d. When the current density is 0.13A/g, the specific capacity can reach up to 15.6F/g, and the energy density can reach up to 8.67Wh/Kg .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用,属于能源器件技术领域,所述乳液为水包油乳液,其中,油相为分散有上转换纳米材料的癸烷溶液,水相含有可聚合的离子液体。基于该乳液制备的凝胶电解质和气凝胶电极材料,极大地提高了超级电容器的电化学性能。

Description

[根据细则37.2由ISA制定的发明名称] 乳液、乳液凝胶电解质、气凝胶及制备方法和应用 技术领域
本公开属于能源器件技术领域,具体涉及一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
超级电容器是一种介于电池和传统电容器之间的新型、绿色储能装置,具有功率密度高,快速充放电和长循环寿命等优点,因此在信息技术、消费电子以及电动汽车等方面具有广阔的应用。一个完整的双电层超级电容器由两个电极组成,两个电极之间用电解质连接。根据超级电容器的不同需求,电解质和电极材料的选择是至关重要的。首先对于电解质来说,与传统的液体电解质相比,固态电解质不仅避免了泄漏和挥发等安全问题,而且大大降低了封装成本,为新型器件的配置提供了更多的设计方式。
然而,固态电解质在电容器中的应用受到一定的限制,因为室温下大多数固态电解质的电导率较低,电极/电解质之间的接触情况很差。传统的凝胶聚合物电解质存在离子电导率较低、扩散能力较差的问题,从而导致电容器的比容量和能量密度较低。其次,电极材料的制备也至关重要。传统的电极材料具有较高的电阻,严重降低了电容器的能量输出,从而无法获得高性能的超级电容器。因此,如何通过对电解质和电 极材料的改进,来提高超级电容器的电化学性能成为亟待解决的技术问题。
发明内容
发明人发现,基于离子液体构筑凝胶聚合物电解质有利于解决上述问题。离子液体作为溶剂与传统的水或有机溶剂相比,除了具有不易挥发、不燃烧、热稳定性好等优势外,还具有高离子导电性、宽电化学窗口等优点。同时,三维多孔结构为电极材料提供了大的比表面积,分层多孔结构加速了电解质离子的浸入,而且,多孔结构可以促进电子的传输,导致低电阻和高电容。
为了解决现有技术中存在的上述问题,本公开提供了一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用,基于该乳液制备的凝胶电解质和气凝胶电极材料,极大地提高了超级电容器的电化学性能。
具体地,本公开的技术方案如下所述:
在本公开的第一方面,一种乳液,所述乳液为水包油乳液,其中,油相为分散有上转换纳米材料的癸烷溶液,水相含有可聚合的离子液体。
在本公开的第二方面,一种乳液的制备方法,包括:将上转换纳米材料分散于癸烷中,然后,加入离子液体水溶液,均质即得水包油乳液;进一步地,所述离子液体的浓度为0.36-3.3mol/L;进一步地,所述上转换纳米材料的质量分数为0.8±0.05%;进一步地,均质时间为3-5分钟。
在本公开的第三方面,一种乳液凝胶电解质,所述乳液凝胶电解质由所述的乳液或所述乳液的制备方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成;所述离子液体的碳链数量在4-14之间。
在本公开的第四方面,一种气凝胶,所述气凝胶由所述的乳液或所述乳液的制备 方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成乳液凝胶,随后将该乳液凝胶冷冻干燥获得气凝胶;所述离子液体的碳链数量在4-14之间。
在本公开的第五方面,一种电极材料,所述电极材料为所述的气凝胶。
在本公开的第六方面,一种固态电池,包括正极、负极以及设置于所述正极和负极之间、且与所述正极和负极分别接触设置的固态电解质,所述固态电解质为所述的乳液凝胶电解质。
在本公开的第七方面,一种超级电容器,包括正电极、固态电解质和负电极,所述固态电解质为所述的乳液凝胶电解质。
在本公开的第八方面,所述的超级电容器在信息技术、电动汽车、消费类电子产品中的应用。
本公开中的一个或多个技术方案具有如下有益效果:
(1)、在某些实施例中,通过zeta电势的表征,证明上转换纳米颗粒呈正电性,且电势值为40.2mV,说明纳米颗粒稳定的分散在溶剂中,由于上转换纳米颗粒表面有疏水性油酸配体,因此其可以均匀分散在有机溶剂癸烷中。
(2)、通过与离子液体形成新型水包油乳液,随着离子液体浓度的增加,乳液液滴的尺寸减小,同样说明上转换纳米颗粒与离子液体协同稳定的乳液中,液滴的大小由离子液体的浓度来控制。在UCNP/IL(离子液体)协同稳定的乳液中,乳液没有明显的轮廓,说明在UCNP/IL协同稳定的O/W乳液中,由于疏水性UCNPs由于其具有一定的表面润湿性,因此可能分布于油滴的内界面,与离子液体协同稳定乳液。
(3)、基于所述的新型水包油的乳液制备的乳液凝胶作为电解质,随着温度升高,电导率也随着增大。在低温0摄氏度和-20摄氏度下,电导率的变化趋于稳定,仍然 保持一定的导电性,说明该乳液凝胶作为固态电解质适用于宽的温度范围。
(4)、基于所述的新型水包油的乳液制备的乳液凝胶电解质和气凝胶电极材料具有较强的机械性能,最大应力分别可达到3.9和0.37MPa,说明气凝胶和乳液凝胶都具有较强的机械性能。不仅如此,还具有优异的热稳定性,在250度时都可以保持热稳定,说明乳液凝胶和气凝胶具有极低的可燃性和较好的热稳定性,这对于提高超级电容新的安全性具有重要意义。
(5)、基于上述乳液凝胶电解质和气凝胶电极材料制备的超级电容器,其电化学性能得到极大的提升,当电流密度为0.13A/g时,比容量最大可达15.6F/g,能量密度最大可达8.67Wh/Kg。而现有的超级电容器当电流密度为0.4A/g时,比容量最大可达4.7F/g,能量密度最大可达0.43Wh/Kg(Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores)。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
以下,结合附图来详细说明本公开的实施方案,其中:
图1:为实施例1制备的上转换纳米颗粒的形貌及尺寸分布图;
图2:为实施例2制备的新型水包油乳液的宏观照片以及显微镜图片;
图3:为实施例3制备的新型水包油乳液的宏观照片以及显微镜图片;
图4:为实施例4制备的新型水包油乳液的宏观照片以及显微镜图片;
图5:为实施例4制备的新型水包油乳液的激光共聚焦显微镜照片;
图6:为实施例5制备的乳液凝胶的变温电导率图;
图7:为实施例5、6制备的乳液凝胶和气凝胶的应力压缩曲线;
图8:为实施例5、6制备的乳液凝胶的差示扫描量热曲线和热稳定曲线;
图9:为实施例7全固超级电容器的电化学性能测试图。
具体实施方式
下面结合具体实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。本发明所使用的试剂或原料均可通过常规途径购买获得,如无特殊说明,本发明所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
目前,传统的凝胶聚合物电解质存在离子电导率较低、扩散能力较差的问题,从而导致电容器的比容量和能量密度较低。其次,传统的电极材料具有较高的电阻,严重降低了电容器的能量输出,从而无法获得高性能的超级电容器。为此,本公开提供了一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用。
在本公开的一种实施方式中,一种乳液,所述乳液为水包油乳液,其中,油相为 分散有上转换纳米材料的癸烷溶液,水相含有可聚合的离子液体。
一般认为,表面带有一定电荷的无机纳米颗粒可以与带相反电荷的离子型表面活性剂通过静电吸引相互作用,使无机纳米颗粒的表面被原位疏水化,进而疏水化的纳米颗粒具有一定的润湿性可以吸附到流体界面,稳定Pickering乳状液或Pickering泡沫。然而,无机纳米颗粒与带有相同电荷的离子表面活性剂之间的相互作用尚未受到人们的重视,相关研究体系甚少,原因是由于二者带相同电荷,人们普遍认为二者之间几乎不存在相互作用,尤其是颗粒的表面性质不会受到带相同电荷的离子型表面活性剂的影响。其次,对于无机纳米颗粒的选择仅局限于常见的商用纳米颗粒,对于纳米颗粒功能性的探索少之又少;同时,对于离子型表面活性剂的选择也仅局限于季铵盐型,缺少功能的开发。
然而,本公开开发了一种功能性上转换纳米材料和带相同电荷的离子型表面活性离子液体协同稳定的新型乳液,该新型乳液稳定性较强、分散性较好,提高了新型乳液的应用价值。
新型乳液相比于其他水包油体系,优势在于所需稳定剂的含量较低,减少成本及环境污染。同时引入了上转换纳米颗粒,利用上转换纳米颗粒的光伏性质赋予新型乳液相应的光电转换功能性。
在本公开的一种实施方式中,所述上转换纳米材料选自NaGdF 4:Yb 3+,Er 3+或NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+;优选的,为NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+。以NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+作为上转换纳米材料,有利于实现高效的光电转换功能。
其中,所述NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+的制备方法包括:
将Gd(CH 3COO) 3·H 2O、Yb(CH 3CO 2) 3·4H 2O、Er(CH 3CO 2) 3·4H 2O混合,以油酸为配体,以 1-十八烯为溶剂,在100-200℃条件下反应1-3h,溶液颜色变为淡黄色,得到Ln 3+-OA有机金属前体;再加入NH 4F甲醇溶液、NaOH甲醇溶液,于40-60℃下反应;待溶液变为澄清,继续升温到100-130℃,反应1-3h;然后,置于电热套中,于250-350℃条件下进行核生长,溶液变为金黄色;冷却、纯化得到NaGdF 4:Yb 3+,Er 3+分散于4ml己烷;
其次,取Gd(CH 3COO) 3·H 2O、Nd(CH 3CO 2) 3·6H 2O、油酸和1-十八烯于圆底烧瓶中,于100-150℃通N 2条件下油浴搅拌1-2h;随后,将上述制备的NaGdF 4:Yb 3+,Er 3+的己烷溶液和NaOH、NH 4F的甲醇溶液混合一起注入,于50-60℃通N 2条件下成核;为除去甲醇,继续升温至100-110℃,保持1-3h;将圆底烧瓶转移到电热套中,于250-330℃核生长,冷却到室温,加乙醇沉淀,用己烷:乙醇的混合溶剂洗,得到核壳纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+
进一步地,所述上转换纳米材料为表面带有疏水油酸配体的上转换纳米材料;在上转换纳米材料表面,疏水性油酸(OA)作为稳定配体防止其聚沉,故其具有较好的分散性。
或,所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);优选的,为1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br)。其中,所述离子液体和上转换纳米材料具有相同的电荷。通过上转换纳米材料和离子液体之间的协同作用,能够极大地提高新型乳液的稳定性。
在本公开的一种实施方式中,一种乳液的制备方法,包括:将上转换纳米材料分散于癸烷中,然后,加入离子液体,反应即得水包油乳液。该制备方法相比于现有技术中其他凝胶固态电解质的制备更加简单、高效。进一步地,所述离子液体的浓度为 0.36-3.3mol/L;随着离子液体浓度的增加,乳液液滴的尺寸减小,通过控制离子液体的浓度能够高效控制乳液液滴的尺寸。进一步地,所述上转换纳米材料的质量分数为0.8±0.05%;进一步地,反应时间为20-30小时,处于该条件下制备的乳液,具有最佳的稳定性。
在本公开的一种实施方式中,一种乳液凝胶电解质,所述乳液凝胶电解质由所述的乳液或所述乳液的制备方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成;所述离子液体的碳链数量在4-14之间。其中,离子液体的碳链数量处于该范围内,有利于形成稳定的乳液。
或,所述交联剂选自N’N-亚甲基双丙烯酰胺、乙二醇二甲基丙烯酸或二甲基丙烯酸甘油酯;优选的,为N’N-亚甲基双丙烯酰胺;或,所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);优选的,为1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);进一步地,所述光引发剂选自偶氮二异丁腈、4-羟基二苯甲酮或2,2-二乙氧基苯乙酮;优选的,为2,2-二乙氧基苯乙酮;或,引发聚合反应的时间为10-30min,优选的,为20min。
以带正电荷的上转换纳米材料和阳离子型表面活性离子液体协同稳定的O/W新型乳液为模板制备乳液凝胶,制备方法简单、高效,而且,获得的乳液凝胶具有较高的机械性能和稳定性,并且具有较高的离子电导率和扩散能力,能够提升超级电容器的电化学性能。
在本公开的一种实施方式中,一种气凝胶,所述气凝胶由所述的乳液或所述乳液的制备方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成乳液凝胶,随后将该乳液凝胶冷冻干燥获得气凝胶;所述离子液体的碳链数量在4-14之间; 其中,离子液体的碳链数量处于该范围内,有利于形成稳定乳液。
或,所述离子液体选自所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-丁基咪唑溴([VC 4Im]Br)或1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br);优选的,为1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)。
通过上述方法制备的气凝胶,具有丰富的孔结构,三维多孔结构可以实现更高的能量输出。三维多孔结构为电极材料提供了大的比表面积,分层多孔结构加速了电解质离子的浸入,而且多孔结构可以促进电子的传输,导致低电阻和高电容。
在本公开的一种实施方式中,一种电极材料,其特征是,所述电极材料为所述的气凝胶。上述气凝胶富含丰富的三维多孔结构,具有较大的比表面积,有效促进了电子的传输,作为电极材料具有更明显的优势。
在本公开的一种实施方式中,一种固态电池,包括正极、负极以及设置于所述正极和负极之间、且与所述正极和负极分别接触设置的固态电解质,所述固态电解质为所述的乳液凝胶电解质。以上述乳液凝胶作为电解质,能够提高离子传输速率,提高电容器的电化学性能。
在本公开的一种实施方式中,一种超级电容器,包括正电极、固态电解质和负电极,所述固态电解质为所述的乳液凝胶电解质。以乳液凝胶为电解质的超级电容器,具有较高的比容量和能量密度,相比于传统电解质的超级电容器显示出独特的优势。
在本公开的一种实施方式中,所述正极和负极电极为所述的气凝胶和/或所述的电极材料。
在本公开的一种实施方式中,权利要求8或9所述的超级电容器在信息技术、电动汽车、消费类电子产品中的应用。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例详细说明本公开的技术方案。
实施例1
合成表面带有疏水油酸配体的上转换纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+,步骤如下:
取Gd(CH 3COO) 3·H 2O(0.78mmol,260.82mg),Yb(CH 3CO 2) 3·4H 2O(0.20mmol,84.4mg)和Er(CH 3CO 2) 3·4H 2O(0.02mmol,8.33mg)于100mL三口圆底烧瓶中,加10mL油酸作为稳定配体,15mL 1-十八烯作为高沸点溶剂,于150℃通N 2条件下油浴搅拌1h,溶液颜色变为淡黄色,得到Ln 3+-OA有机金属前体。冷却到室温,将0.4mol/L 7.0mL NH 4F甲醇溶液与1.0mol/L 3.0mL NaOH甲醇溶液于15ml离心管中快速混合,并用注射器快速注入烧瓶(此时必须快速注入烧瓶,因为NH 4F与NaOH反应生成的NaF极易沾到离心管壁上),溶液快速变浑浊,于50℃通N 2条件下成核1h,溶液又重新变澄清。
为除去甲醇,继续升温至110℃,保持2h。将圆底烧瓶转移到电热套中(核生长温度对最终纳米颗粒的形貌有一定影响),于290℃核生长1.5h,溶液变成金黄色。冷却到室温,加5ml乙醇沉淀,于8500r.pm离心5min取沉淀,用己烷:乙醇=1:1的混合溶剂洗三次,得到的最终产物NaGdF 4:Yb 3+,Er 3+分散于4ml己烷,保存。
为了增强其荧光性能,制备核壳纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+。取Gd(CH 3COO) 3·H 2O(0.7mmol,234.07mg),Nd(CH 3CO 2) 3·6H 2O(0.30mmol,429.37mg),10mL油酸和15mL 1-十八烯于100mL三口圆底烧瓶中,于150℃通N 2条件下油浴搅拌1h。随后,将上述制备的NaGdF 4:Yb 3+,Er 3+的己烷溶液和NaOH(2.5mmol,5mL)、NH 4F(2.75mmol,2mL)的甲醇溶液混合一起注入,于50℃通N 2条件下成核1h。为除去甲醇,继续 升温至110℃,保持2h。将圆底烧瓶转移到电热套中,于290℃核生长1.5h后,冷却到室温,加5ml乙醇沉淀,于8500r.pm离心5min取沉淀,用己烷:乙醇=1:1的混合溶剂洗三次,得到的最终产物分散于4ml己烷,保存。
在核壳纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+表面,疏水性油酸(OA)作为稳定配体防止其聚沉,故其具有较好的分散性,如TEM图(图1a)所示,平均粒径为20.95nm,如图1b所示。
实施例2:
保持纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+(UCNPs)的浓度不变,依次增大表面活性聚离子液体[VC 4Im]Br的浓度,制备一系列新型水包油乳液。
将质量分数为0.8±0.05%的UCNPs称重到玻璃容器中,并在容器中加入0.8mL癸烷以分散UCNPs。然后将1mL[VC 4Im]Br的水溶液加入玻璃容器中,涡旋,稳定24小时后,记录显微镜照片。UCNPs和[VC 4Im]Br的浓度分别表示为相对于油相和水相的重量百分比(wt%)和摩尔浓度(mol/L)。从图2可以看到,随着[VC 4Im]Br浓度的增加,乳液液滴的尺寸减小。说明上转换纳米颗粒与离子液体协同稳定的乳液中,液滴的大小由离子液体的浓度来控制。
实施例3:
保持纳米颗粒NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+(UCNPs)的浓度不变,依次增大表面活性聚离子液体[VC 12Im]Br的浓度,制备一系列新型水包油乳液。
将质量分数为0.8±0.05%的UCNPs称重到玻璃容器中,并在容器中加入0.8mL癸烷以分散UCNPs。然后将1mL[VC 12Im]Br的水溶液加入玻璃容器中,涡旋,稳定24小时后,记录显微镜照片。从图3可以看到,随着[VC 12Im]Br浓度的增加,乳液液滴的尺寸减小。 同样说明上转换纳米颗粒与离子液体协同稳定的乳液中,液滴的大小由离子液体的浓度来控制。
实施例4:
保持离子液体的浓度不变,依次增大UCNPs的浓度,制备一系列新型水包油乳液。
将不同质量分数的UCNPs称重到玻璃容器中,加入0.8mL癸烷以分散UCNPs。然后加入1mL[VC 12Im]Br(浓度为0.73mol/L),或者1mL[VC 4Im]Br(浓度为3.3mol/L),涡旋,稳定24小时后,记录显微镜照片。从图4a和4c或者图4b和4d可以看到,对于两种离子液体体系,随着UCNP质量分数的增加,乳液液滴的尺寸没有明显变化。说明上转换纳米颗粒与离子液体协同稳定的乳液中,液滴的大小与纳米颗粒的浓度无关。然后我们通过激光共聚焦显微镜对乳液的微观形貌进一步进行表征,从图5中可以看到,在UCNP/IL协同稳定的乳液中,乳液类型为水包油型。而且乳液没有明显的轮廓,说明在UCNP/IL协同稳定的O/W乳液中,由于疏水性UCNPs由于其具有一定的表面润湿性,因此可能分布于油滴的内界面,与离子液体协同稳定乳液。
实施例5:
以O/W新型乳液为模板制备乳液凝胶:
将实施例1制备的UCNPs(NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+),按照质量分数为0.8±0.05%的上转换纳米颗粒称重到玻璃容器中,并在容器中加入0.8mL癸烷以分散UCNPs。然后将1mL 2.2mol/L的可聚合表面活性离子液体[VC 4Im]Br水溶液加入玻璃容器中,涡旋,稳定24小时,制备得到O/W新型乳液。
以O/W新型乳液为模板,在水相中加入交联剂N’N-亚甲基双丙烯酰胺和光引发剂2,2-二乙氧基苯乙酮,以连续相聚离子液体[VC 4Im]Br为单体,通过紫外引发20分钟将 乳液的连续相聚合交联形成乳液凝胶。
测试了乳液凝胶作为电解质的变温电导率。如图6可以看到,随着温度升高,电导率也随着增大,这是因为升温促进了离子的迁移,进而增强电导率。在低温0摄氏度和-20摄氏度下,电导率的变化趋于稳定,仍然保持一定的导电性。说明该乳液凝胶作为固态电解质适用于宽的温度范围。
实施例6:
以O/W新型乳液为模板制备气凝胶:
将实施例1制备的UCNPs(NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+),按照质量分数为0.8±0.05%的上转换纳米颗粒称重到玻璃容器中,并在容器中加入0.8mL癸烷以分散UCNPs。然后将1mL 2.2mol/L的可聚合表面活性离子液体[VC 12Im]Br水溶液加入玻璃容器中,涡旋,稳定24小时,制备得到O/W新型乳液。
以制备的O/W新型乳液为模板,在水相中加入交联剂N’N-亚甲基双丙烯酰胺和光引发剂2,2-二乙氧基苯乙酮,以连续相聚离子液体[VC 12Im]Br为单体,通过紫外引发20分钟将乳液的连续相聚合交联形成乳液凝胶,随后将乳液凝胶冷冻干燥得到多孔气凝胶。
在实际应用中,特别是在器件中,气凝胶电极材料和凝胶电解质良好的力学性能是必不可少的。因此,对其抗压性能进行了研究,如图7,测试过程中,样品的应变固定在80%。测试了不同聚离子液体浓度下的应力压缩,最大应力分别可达到0.37和3.9MPa,说明气凝胶和乳液凝胶都具有较强的机械性能。
为了研究乳液凝胶的耐冻性,对样品进行了示差扫描量热(DSC)试验,如图8a,可以看出,乳液凝胶的凝固点为-26.1℃。接着我们通过TGA测试了乳液凝胶和气凝胶的热稳定性,如图8b结果可以看出,在250度时都可以保持热稳定,说明乳液凝胶和气凝胶具 有极低的可燃性和较好的热稳定性,这对于提高超级电容新的安全性具有重要意义。
实施例7:
超级电容器的制备及电化学性能测试。
以实施例5中制备的乳液凝胶作为固态电解质,以实施例6中制备的多级孔气凝胶作为正负极的电极材料,利用扣式电池壳组装,形成全固态对称超级电容器。
将得到的超级电容器进行电化学性质表征,首先测试了循环伏安曲线,如图9a所示,在-1~1V的稳定区间进行不同扫速的测量,曲线呈准矩形,表明具有良好的电容性能。然后测试了在不同电流密度下的GCD曲线,如图9b所示,呈准三角峰,这与CV曲线相符,呈现优异电容的特征。根据充放电曲线计算得到的质量比电容和能量密度如图9c,d所示,当电流密度为0.13A/g时,比容量最大可达15.6F/g,能量密度最大可达8.67Wh/Kg。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种乳液,其特征是,所述乳液为水包油乳液,其中,油相为分散有上转换纳米材料的癸烷溶液,水相含有可聚合的离子液体。
  2. 如权利要求1所述的乳液,其特征是,所述上转换纳米材料选自NaGdF 4:Yb 3+,Er 3+或NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+;优选的,为NaGdF 4:Yb 3+,Er 3+@NaGdF 4:Nd 3+;进一步地,所述上转换纳米材料为表面带有疏水油酸配体的上转换纳米材料;或,
    所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);优选的,为1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br)。
  3. 权利要求1或2所述的乳液的制备方法,其特征是,包括:将上转换纳米材料分散于癸烷中,然后,加入离子液体,反应即得水包油乳液;进一步地,所述离子液体的浓度为0.36-3.3mol/L;进一步地,所述上转换纳米材料的质量分数为0.8±0.05%;进一步地,反应时间为20-30小时。
  4. 一种乳液凝胶电解质,其特征是,所述乳液凝胶电解质由权利要求1或2所述的乳液或权利要求3所述的乳液的制备方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成;所述离子液体的碳链数量在4-14之间;
    或,所述交联剂选自N’N-亚甲基双丙烯酰胺、乙二醇二甲基丙烯酸或二甲基丙烯酸甘油酯;优选的,为N’N-亚甲基双丙烯酰胺;或,所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);优选的,为1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);进一步地,所述光引发剂选自偶氮二异丁腈、4-羟基二苯甲酮或2,2-二乙氧基苯乙酮;或,引发聚合反应的时间为10-30min,优选的,为20min。
  5. 一种气凝胶,其特征是,所述气凝胶由权利要求1或2所述的乳液或权利要求3所述的乳液的制备方法制得的乳液、交联剂和离子液体,在引发剂的作用下聚合交联形成乳液凝胶,随后将该乳液凝胶冷冻干燥获得气凝胶;所述离子液体的碳链数量在4-14之间;
    或,所述离子液体选自1-乙烯基-3-十四烷基咪唑溴([VC 14Im]Br)、1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)或1-乙烯基-3-丁基咪唑溴([VC 4Im]Br);优选的,为1-乙烯基-3-十二烷基咪唑溴([VC 12Im]Br)。
  6. 一种电极材料,其特征是,所述电极材料为权利要求5所述的气凝胶。
  7. 一种固态电池,其特征是,包括正极、负极以及设置于所述正极和负极之间、且与所述正极和负极分别接触设置的固态电解质,所述固态电解质为权利要求4所述的乳液凝胶电解质。
  8. 一种超级电容器,其特征是,包括正电极、固态电解质和负电极,所述固态电解质为权利要求4所述的乳液凝胶电解质。
  9. 如权利要求8所述的超级电容器,其特征是,所述正负极电极为权利要求5所述的气凝胶和/或权利要求6所述的电极材料。
  10. 权利要求8或9所述的超级电容器在信息技术、电动汽车、消费类电子产品中的应用。
PCT/CN2021/129897 2021-07-14 2021-11-10 乳液、乳液凝胶电解质、气凝胶及制备方法和应用 WO2023284201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110794432.4A CN113480682B (zh) 2021-07-14 2021-07-14 一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用
CN202110794432.4 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023284201A1 true WO2023284201A1 (zh) 2023-01-19

Family

ID=77938517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129897 WO2023284201A1 (zh) 2021-07-14 2021-11-10 乳液、乳液凝胶电解质、气凝胶及制备方法和应用

Country Status (2)

Country Link
CN (1) CN113480682B (zh)
WO (1) WO2023284201A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480682B (zh) * 2021-07-14 2022-04-05 山东大学 一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173381A1 (en) * 2008-01-08 2009-07-09 Samsung Sdi Co., Ltd. Gel type electrolyte for dye sensitized solar cell, method of preparing the same, and solar cell including the gel type electrolyte
US20170166806A1 (en) * 2015-12-14 2017-06-15 Futurechromes S.L. Nanoemulsion optical materials
US20170225141A1 (en) * 2014-10-13 2017-08-10 Centrum Fuer Angewandte Nanotechnologie (Can) Gmbh Polymer micelles containing nanoparticles in non-aqueous solution, methods for their preparation and use
CN109904010A (zh) * 2019-03-13 2019-06-18 同济大学 一种耐高低温的凝胶电解质超级电容器及其制备方法
CN110591450A (zh) * 2019-08-23 2019-12-20 山东大学 一种双模式发光的水基防伪墨水及制备方法与应用
CN112185712A (zh) * 2020-09-28 2021-01-05 浙江工业大学 一种咪唑类聚离子液体凝胶电解质及其制备方法
CN112420403A (zh) * 2020-10-28 2021-02-26 山东大学 一种上转换组装体及其制备方法与应用
CN113480682A (zh) * 2021-07-14 2021-10-08 山东大学 一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504821A (zh) * 2011-10-21 2012-06-20 上海交通大学 稀土掺杂四氟化钆钠纳米材料的制备方法
CN111171218B (zh) * 2020-01-17 2021-10-26 北京航空航天大学 一种具有多稳态力学和形状记忆性质的多相凝胶及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173381A1 (en) * 2008-01-08 2009-07-09 Samsung Sdi Co., Ltd. Gel type electrolyte for dye sensitized solar cell, method of preparing the same, and solar cell including the gel type electrolyte
US20170225141A1 (en) * 2014-10-13 2017-08-10 Centrum Fuer Angewandte Nanotechnologie (Can) Gmbh Polymer micelles containing nanoparticles in non-aqueous solution, methods for their preparation and use
US20170166806A1 (en) * 2015-12-14 2017-06-15 Futurechromes S.L. Nanoemulsion optical materials
CN109904010A (zh) * 2019-03-13 2019-06-18 同济大学 一种耐高低温的凝胶电解质超级电容器及其制备方法
CN110591450A (zh) * 2019-08-23 2019-12-20 山东大学 一种双模式发光的水基防伪墨水及制备方法与应用
CN112185712A (zh) * 2020-09-28 2021-01-05 浙江工业大学 一种咪唑类聚离子液体凝胶电解质及其制备方法
CN112420403A (zh) * 2020-10-28 2021-02-26 山东大学 一种上转换组装体及其制备方法与应用
CN113480682A (zh) * 2021-07-14 2021-10-08 山东大学 一种乳液、乳液凝胶电解质、气凝胶及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAN JINGYA, GAITONG ZHANG, LIJUN WANG, HONGSHENG WANG, FUXIANG CHU, CHUNPENG WANG: "Preparation of Ionic Liquid-based Gel Electrolytes and Application in Supercapacitors", CHEMISTRY AND INDUSTRY OF FOREST PRODUCTS / LIN CHAN HUA XUE YU GONG YE, CHINESE ELECTRONIC PERIODICAL SERVICES., CHINA, vol. 40, no. 4, 31 August 2020 (2020-08-31), CHINA , pages 17 - 23, XP093024017, ISSN: 0253-2417, DOI: 10.3969/j.issn.0253-2417.2020.04.003 *

Also Published As

Publication number Publication date
CN113480682A (zh) 2021-10-08
CN113480682B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Dai et al. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives
Chen et al. Ionogel electrolytes for high‐performance lithium batteries: A review
Ran et al. Preparation of hierarchical polyaniline nanotubes based on self‐assembly and its electrochemical capacitance
Liu et al. A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries
Bakker et al. Perspectives on supercapacitors, pseudocapacitors and batteries
CN106981374B (zh) 功能化氧化石墨烯修饰聚合物凝胶电解质及其制备方法和应用
WO2023284201A1 (zh) 乳液、乳液凝胶电解质、气凝胶及制备方法和应用
Li et al. Soft conducting polymer hydrogels in situ doped by sulfonated graphene quantum dots for enhanced electrochemical activity
CN113150314A (zh) 互穿网络多孔结构的复合凝胶电解质材料及其制备和应用
Zhao et al. Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO 2 particles blended gel polymer electrolyte
Tao et al. Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor
CN106449135B (zh) 一种基于有序碳纳米管复合膜的可拉伸电容器及其制备
Wu et al. Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications
CN107221447A (zh) 一种石墨烯柔性复合电极、其制备方法及柔性超级电容器
CN110079895A (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN113012945A (zh) 一种改性Ppy-MXene复合材料及制备方法与应用
Tian et al. High-performance solid-state supercapacitors integrated with thermal management systems based on phase change materials: All in one
Wu et al. Reinforced polyaniline-dodecyl benzene sulfonate hydrogel with well-aligned fibrous morphology as durable electrode materials for Zn-ion battery
CN106067385A (zh) 用作超级电容器的二氧化锰/导电聚合物纳米网络结构电极材料的制备方法
CN108538633A (zh) 一种新型超级电容器用高电导率聚合离子液体电解质
WO2016110126A1 (zh) 一种含无机纳米颗粒的超级电容器有机电解液
JP2008034257A (ja) 電解液及び電気化学素子
KR101072301B1 (ko) 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법
CN109935830A (zh) 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
Li et al. Thermal safety and performances analysis of gel polymer electrolytes synthesized by in situ polymerization for Li-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE