WO2023282212A1 - Exposure device, exposure method, and method for manufacturing electronic device - Google Patents

Exposure device, exposure method, and method for manufacturing electronic device Download PDF

Info

Publication number
WO2023282212A1
WO2023282212A1 PCT/JP2022/026499 JP2022026499W WO2023282212A1 WO 2023282212 A1 WO2023282212 A1 WO 2023282212A1 JP 2022026499 W JP2022026499 W JP 2022026499W WO 2023282212 A1 WO2023282212 A1 WO 2023282212A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
exposure
spatial light
light modulator
optical system
Prior art date
Application number
PCT/JP2022/026499
Other languages
French (fr)
Japanese (ja)
Inventor
正紀 加藤
仁 水野
恭志 水野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023533110A priority Critical patent/JPWO2023282212A1/ja
Priority to CN202280044691.8A priority patent/CN117546099A/en
Priority to KR1020247000673A priority patent/KR20240019288A/en
Publication of WO2023282212A1 publication Critical patent/WO2023282212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, and an electronic device manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-111770 filed on July 5, 2021, the content of which is incorporated herein.
  • an exposure apparatus that irradiates a substrate with illumination light through an optical system
  • light modulated by a spatial light modulator is passed through a projection optical system, and an image of this light is projected onto a resist coated on the substrate.
  • An exposure apparatus that forms an image and performs exposure is known (see, for example, Patent Document 1).
  • an illumination optical system a spatial light modulator illuminated by light from the illumination optical system, and a projection apparatus for irradiating an exposure target with the light emitted from the spatial light modulator.
  • an optical system a stage on which an exposure target is placed and which relatively moves the exposure target and the projection optical system in a predetermined scanning direction, and a control section for controlling a spatial light modulator, wherein the spatial light modulation
  • the device has a plurality of mirrors that can be switched between an ON state in which light can be emitted to the projection optical system by adjusting the tilt and an OFF state in which light is not emitted to the projection optical system
  • the control unit includes: controlling the spatial light modulator to switch between a first state and a second state with respect to the plurality of mirrors, wherein the first state and the second state correspond to the ON state of the mirrors; at least one of which is different from each other, and the light emitted from the spatial light modulator in the first state and the light
  • an exposure method for exposing the exposure target using the exposure apparatus described above is provided.
  • an electronic device manufacturing method including exposing the exposure target by the exposure method described above.
  • FIG. 3 is a diagram showing an overview of the configurations of an illumination module and a projection module; It is a figure which shows the outline
  • 4 is a diagram showing an overview of the configuration of an optical modulation section; FIG. FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the ON state of the mirror in the center of the paper.
  • FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the OFF state of the mirror in the center of the paper.
  • FIG. 1 is a diagram showing an overview of the external configuration of an exposure apparatus 1 of this embodiment.
  • the exposure apparatus 1 is an apparatus that irradiates an exposure target with modulated light.
  • the exposure apparatus 1 is a step-and-scan projection exposure apparatus that exposes rectangular glass substrates used in electronic devices such as liquid crystal displays (flat panel displays). is a so-called scanner.
  • the glass substrate, which is the object to be exposed may have at least one side length or diagonal length of 500 mm or more.
  • the glass substrate, which is the object to be exposed may be a substrate for a flat panel display.
  • An exposure target (for example, a substrate for a flat panel display) exposed by the exposure apparatus 1 is developed and provided as a product.
  • a resist is formed on the surface of the exposure object.
  • the apparatus main body of the exposure apparatus 1 is configured similarly to the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, for example.
  • the exposure apparatus 1 includes a base 11, an anti-vibration table 12, a main column 13, a stage 14, an optical surface plate 15, an illumination module 16, a projection module 17 (projection optical system), a light source unit 18, an optical fiber 19, and an optical modulator 20. (not shown in FIG. 1) and a control unit 21 .
  • the direction parallel to the optical axis direction of the projection module 17 that irradiates the light modulated by the light modulation section 20 onto the exposure object is defined as the Z-axis direction
  • the direction of a predetermined plane orthogonal to the Z-axis is defined as the X-axis direction
  • the X-axis direction and the Y-axis direction are directions orthogonal (intersecting) each other.
  • the base 11 is the base of the exposure apparatus 1 and is installed on the anti-vibration table 12 .
  • the base 11 supports a stage 14 on which an object to be exposed is placed so as to be movable in the X-axis direction and the Y-axis direction.
  • the stage 14 supports the exposure target.
  • the stage 14 is for positioning the exposure object with high precision with respect to a plurality of partial images of the circuit pattern projected via the projection module 17 in scanning exposure.
  • the stage 14 drives the object to be exposed in directions of six degrees of freedom (the above-described X-, Y-, and Z-axis directions and rotational directions about the respective axes).
  • the stage 14 is moved in the X-axis direction during scanning exposure, and moved in the Y-axis direction when changing the exposure target area on the exposure target. A plurality of exposure target areas are formed on the exposure target.
  • the stage 14 relatively moves the object to be exposed and the projection module 17 in the scanning direction.
  • the exposure apparatus 1 is capable of exposing a plurality of exposure target areas on one exposure target.
  • a stage device such as that disclosed in US Patent Application Publication No. 2012/0057140 can be used.
  • the stage device is a so-called coarse and fine movement stage device including, for example, a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage.
  • the coarse movement stage can move the exposure object in directions of three degrees of freedom in the horizontal plane
  • the fine movement stage can finely move the exposure object in directions of six degrees of freedom.
  • the main column 13 supports the optical surface plate 15 above the stage 14 (in the positive direction of the Z axis).
  • the optical platen 15 supports the illumination module 16 , the projection module 17 and the light modulation section 20 .
  • FIG. 2 is a diagram showing the outline of the configuration of the lighting module 16, the projection module 17, and the light modulating section 20.
  • the illumination module 16 is arranged above the optical surface plate 15 and connected to the light source unit 18 via the optical fiber 19 .
  • the lighting modules 16 include a first lighting module 16A, a second lighting module 16B, a third lighting module 16C and a fourth lighting module 16D.
  • the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16.
  • FIG. 1 when the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16.
  • Each of the first lighting module 16A to the fourth lighting module 16D converts the light emitted from the light source unit 18 via the optical fiber 19 into a first light modulating section 20A, a second light modulating section 20B, and a third light modulating section. The light is guided to each of 20C and the fourth optical modulation section 20D. The lighting module 16 illuminates the light modulating section 20 .
  • the light modulation section 20 is controlled based on the circuit pattern to be transferred to the exposure object, and modulates the illumination light from the illumination module 16, which will be described later in detail.
  • the modulated light modulated by the light modulating section 20 is guided to the projection module 17 .
  • the first optical modulating section 20A to the fourth optical modulating section 20D are arranged at different positions on the XY plane. In the following description, when the first optical modulation section 20A to the fourth optical modulation section 20D are not distinguished, they are collectively referred to as the optical modulation section 20.
  • the projection module 17 is arranged below the optical surface plate 15 and irradiates the exposure object placed on the stage 14 with modulated light modulated by the spatial light modulator 201 .
  • the projection module 17 causes the light modulated by the light modulation section 20 to form an image on the exposure target, thereby exposing the exposure target.
  • the projection module 17 projects the pattern on the light modulating section 20 onto the exposure target.
  • the projection module 17 includes first projection modules 17A to A fourth projection module 17D is included. In the following description, when the first projection module 17A to the fourth projection module 17D are not distinguished, they are collectively referred to as the projection module 17.
  • a unit composed of the first illumination module 16A, the first light modulation section 20A, and the first projection module 17A is called a first exposure module.
  • a unit composed of the second illumination module 16B, the second light modulation section 20B, and the second projection module 17B is called a second exposure module.
  • Each exposure module is provided at a mutually different position on the XY plane, and can expose a pattern at a different position of the exposure target placed on the stage 14 .
  • the stage 14 can scan-expose the entire surface of the exposure target or the entire surface of the exposure target area by moving relative to the exposure module in the X-axis direction, which is the scanning direction.
  • the illumination module 16 is also called an illumination system.
  • the illumination module 16 (illumination system) illuminates a spatial light modulator 201 (spatial light modulation element) of the light modulation section 20, which will be described later.
  • the projection module 17 is also called a projection unit.
  • the projection module 17 (projection section) may be a one-to-one system that projects the image of the pattern on the light modulation section 20 at one-to-one magnification, or may be an enlargement system or a reduction system.
  • the projection module 17 is preferably made of one or two kinds of glass materials (especially quartz or fluorite).
  • a pair of light source units 18 (light source unit R18R, light source unit L18L) is provided.
  • the light source unit 18 a light source unit using a laser with high coherence as a light source, a light source unit using a light source such as a semiconductor laser type UV-LD, and a light source unit using a lens relay type retarder can be adopted.
  • Examples of the light source 18a included in the light source unit 18 include lamps and laser diodes that emit light with wavelengths of 405 nm and 365 nm.
  • the exposure apparatus 1 includes a position measuring unit (not shown) composed of an interferometer, an encoder, etc., in addition to the units described above, and measures the relative position of the stage 14 with respect to the optical surface plate 15 .
  • the exposure apparatus 1 includes an AF (Auto Focus) section (not shown) that measures the position of the stage 14 or the exposure target on the stage 14 in the Z-axis direction, in addition to the above sections.
  • the exposure apparatus 1 includes an alignment unit (not shown) that measures the relative positions of each pattern when another pattern is superimposed on the already exposed pattern on the exposure target.
  • the AF section and/or the alignment section may have a TTL (Through the Lens) configuration for measurement via the projection module 17 .
  • FIG. 3 is a diagram showing the outline of the configuration of the exposure module. Taking the first exposure module as an example, an example of specific configurations of the illumination module 16, the light modulation section 20, and the projection module 17 will be described.
  • the illumination module 16 includes a module shutter 161 and an illumination optical system 162.
  • the module shutter 161 switches whether to guide the pulsed light supplied from the optical fiber 19 to the illumination optical system 162 .
  • the illumination optical system 162 emits the pulsed light supplied from the optical fiber 19 to the light modulation section 20 through a collimator lens, a fly-eye lens, a condenser lens, etc., thereby illuminating the light modulation section 20 substantially uniformly. do.
  • the fly-eye lens wavefront-divides the pulsed light incident on the fly-eye lens, and the condenser lens superimposes the wavefront-divided light onto the light modulation section.
  • the illumination optical system 162 may have a rod integrator instead of the fly-eye lens.
  • the light modulation section 20 has a mask.
  • the mask is a spatial light modulator (SLM).
  • the light modulation section 20 includes a spatial light modulator 201 and an off light absorption plate 202 .
  • the spatial light modulator 201 is a digital mirror device (digital micromirror device, DMD).
  • the spatial light modulator 201 can spatially and temporally modulate the illumination light.
  • FIG. 4 is a diagram showing an overview of the configuration of the spatial light modulator 201 of this embodiment. Description will be made using a three-dimensional orthogonal coordinate system of Xm-axis, Ym-axis, and Zm-axis in FIG.
  • the spatial light modulator 201 comprises a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane.
  • the micromirrors 203 constitute elements (pixels) of the spatial light modulator 201 .
  • the spatial light modulator 201 can change the tilt angle around the Xm axis and around the Ym axis. For example, as shown in FIG.
  • the micromirror 203 is turned on by tilting around the Ym axis, and turned off by tilting around the Xm axis as shown in FIG.
  • Micromirrors 203 in the ON state emit light to projection module 17 .
  • a micromirror 203 in the off state does not emit light to the projection module 17 .
  • the spatial light modulator 201 controls the direction in which incident light is reflected for each element by switching the tilt direction of the micromirror 203 for each micromirror 203 .
  • the digital micromirror device of the spatial light modulator 201 has a pixel count of about 4 Mpixels, and can switch the on state and off state of the micromirror 203 at a period of about 10 kHz.
  • a plurality of elements of the spatial light modulator 201 are individually controlled at predetermined time intervals.
  • the spatial light modulator 201 is a DMD
  • the element is the micromirror 203
  • the predetermined time interval is the period (for example, period 10 kHz) at which the micromirror 203 is switched between the ON state and the OFF state.
  • the off-light absorption plate 202 absorbs light (off-light) emitted (reflected) from the elements of the spatial light modulator 201 that are turned off. Light emitted from the ON-state elements of the spatial light modulator 201 is guided to the projection module 17 .
  • the projection module 17 projects the light emitted from the ON-state elements of the spatial light modulator 201 onto the exposure object.
  • the projection module 17 includes a magnification adjustment section 171 and a focus adjustment section 172 .
  • Light modulated by the spatial light modulator 201 enters the magnification adjustment unit 171 .
  • the magnification adjustment unit 171 adjusts the magnification of the image on the focal plane 163 of the modulated light emitted from the spatial light modulator 201, that is, the surface of the exposure object, by driving some lenses in the optical axis direction.
  • the focus adjustment unit 172 drives the entire lens group in the optical axis direction so that the modulated light emitted from the spatial light modulator 201 forms an image on the surface of the exposure object measured by the AF unit described above. Then, adjust the imaging position, that is, the focus.
  • the projection module 17 projects only the light image emitted from the turned-on element of the spatial light modulator 201 onto the surface of the exposure object. Therefore, the projection module 17 can project and expose the image of the pattern formed by the ON elements of the spatial light modulator 201 onto the surface of the exposure object. That is, the projection module 17 can form spatially modulated light on the surface of the exposure object.
  • the spatial light modulator 201 can switch the micromirror 203 between the ON state and the OFF state at a predetermined cycle (frequency) as described above, the projection module 17 can transmit temporally modulated light to It can be formed on the surface of the exposure object. That is, the exposure apparatus 1 performs exposure by changing the substantial pupil state at an arbitrary exposure position.
  • the Xm-axis is parallel to the X-axis and the Ym-axis is parallel to the Y-axis.
  • the micromirror 203 in the ON state tilts with respect to the X-axis direction, which is the scanning direction.
  • the Ym axis is also called the first tilt axis T1.
  • the plurality of micromirrors 203 rotate around the first tilt axis T1 (Ym axis), and the plurality of micromirrors 203 adjust their tilts with respect to the scanning direction to turn on. , to emit light to the projection module 17 .
  • the plurality of micromirrors 203 are arranged linearly in the scanning direction, and the plurality of micromirrors 203 are also arranged in the direction of the first tilt axis T1.
  • control unit 21 is configured by, for example, a computer having an arithmetic unit such as a CPU and a storage unit.
  • the computer controls each part of the exposure apparatus 1 according to a program that controls each part that operates in exposure processing.
  • the controller 21 controls operations of the illumination module 16, the light modulator 20, the projection module 17, and the stage 14, for example.
  • the storage unit is configured using a computer-readable storage medium device such as memory.
  • the storage unit stores various information regarding exposure processing.
  • the storage unit stores, for example, information related to exposure patterns during exposure processing.
  • the storage unit stores information input via the communication unit or the input unit, for example.
  • the communication unit includes a communication interface for connecting the exposure apparatus to an external device.
  • the input unit includes input devices such as a mouse, keyboard, and touch panel. The input unit receives input of various information for the exposure apparatus.
  • the stage 14 relatively moves the exposure object in a predetermined scanning direction with respect to the projection module.
  • the light emitted by the projection module scans the exposure object based on the information about the exposure pattern stored in the storage unit, and a predetermined exposure pattern is formed.
  • FIG. 7 is a diagram showing an overview of the configuration of the spatial light modulator 201.
  • FIG. 8 is a diagram showing the exposure field PI on the exposure object 23.
  • the spatial light modulator 201 has a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane.
  • the micromirrors 203 are arranged in a 5 ⁇ 5 matrix.
  • one micromirror 203 included in the spatial light modulator 201 may be called a pixel.
  • the micromirror 203 is turned on by tilting around the Ym axis, and turned off by tilting around the Xm axis.
  • a micromirror 203 in the ON state is called an "ON pixel”.
  • the micromirrors 203 in the OFF state are called "OFF pixels”.
  • the spatial light modulator 201 switches between a first state and a second state in which the exposure target 23 is irradiated with a predetermined exposure pattern.
  • the controller 21 turns on one or more predetermined micromirrors 203 among the plurality of micromirrors 203 .
  • the second to fourth micromirrors 203 from the left are in the ON state.
  • the second to fourth micromirrors 203 from the top are in the ON state.
  • a total of five micromirrors 203 that are turned on are arranged in a cross shape as a whole. These five micromirrors 203 are called a first micromirror group 205 .
  • the exposure visual field PI (exposure pattern) on the exposure object 23 has a cross shape corresponding to the micromirror 203 in the ON state.
  • the exposure field PI is positioned in the center of the exposure object 23 .
  • FIG. 9 is a diagram showing an overview of the configuration of the spatial light modulator 201.
  • FIG. 10 is a diagram showing the exposure field PI on the exposure object 23.
  • the mode shown in FIG. 9 is the second state of the spatial light modulator 201.
  • the third to fifth micromirrors from the left Mirror 203 is in the ON state.
  • the second to fourth micromirrors 203 from the top are in the ON state.
  • a total of five micromirrors 203 that are turned on are arranged in a cross shape as a whole.
  • the control unit 21 can switch between the first state and the second state.
  • the five micromirrors 203 that are turned on are called a second micromirror group 206 .
  • the second micromirror group 206 has the same shape as the first micromirror group 205 in the first state (see FIG. 7). It is different from the micromirrors 203 that make up the micromirror group 205 .
  • the second micromirror group 206 is composed of the micromirrors 203 that are shifted to the right by one pixel with respect to the first micromirror group 205 . That is, although at least one of the micromirrors to be in the ON state is different between the first state and the second state of the spatial light modulator 201, it is the same in both the first state and the second state.
  • a shaped exposure pattern can be formed.
  • exposure patterns having the same shape include exposure patterns with different magnifications and defocused exposure patterns.
  • exposure patterns with different magnifications are formed by adjusting the magnification adjustment unit 171 of the projection module 17 .
  • the focus adjustment unit 172 of the projection module 17 a defocused exposure pattern is formed.
  • the exposure visual field PI (exposure pattern) on the exposure object 23 has a cross shape corresponding to the micromirror 203 in the ON state.
  • the exposure field PI shown in FIG. 10 and the exposure field PI shown in FIG. 8 have the same shape.
  • the irradiation position can be changed. That is, the position of the exposure field PI on the exposure object 23 can be set to the center as in the first state.
  • the timing of switching between the first state and the second state of the spatial light modulator 201 is not particularly limited. Switching between the first state and the second state may be performed for each scanning exposure, may be performed periodically at a predetermined timing, or may be performed when the exposure of the exposure target 23 is completed. It may be performed before the scanning exposure of the next exposure object is started, or it may be performed at a longer cycle.
  • the micromirror 203 If the ON state of the micromirror 203 continues for a long time, a phenomenon may occur in which the micromirror 203 is fixed in that state. If there is a micromirror 203 stuck in the ON state, a specific position on the exposure object 23 may be unnecessarily exposed. That is, although the micromirror 203 should be in the off state, it may expose a position that should not be exposed because it is fixed in the on state. However, in this embodiment, by switching the spatial light modulator 201 between the first state and the second state for exposure (see FIGS. 8 and 10), the micromirror 203 stays on for a long time. can be suppressed. This can prevent the micromirror 203 from sticking.
  • a light blocking member is provided to block the light from the micromirror 203. Unnecessary exposure of a specific position can be suppressed by blocking with a member.
  • the light shielding member may be provided so as to be able to shield at least part of the light emitted from the spatial light modulator 201 , and may be provided so as to be able to shield at least part of the light incident on the spatial light modulator 201 .
  • the light shielding member is placed between the optical fiber 19 and the illumination optical system 162, inside the illumination optical system 162, between the illumination optical system 162 and the spatial light modulator 201, inside the projection module 17, and between the projection module 17 and the exposure object 23.
  • another exposure module provided in the exposure apparatus 1 may be used to scan and expose the exposure object 23 .
  • the exposure module used at this time is preferably the exposure module provided next to the exposure module having the spatial light modulator 201 to which the micromirror 203 is fixed, and which exposure module to use is set in advance. you can As a result, the exposure apparatus 1 can be prevented from being stopped to replace the spatial light modulator 201, for example, and the exposure of the exposure object 23 can be continued.
  • the micromirror 203 may be switched between an ON state and an OFF state at times other than during exposure processing.
  • the ratio of on-state time to off-state time may be, for example, 1:2 to 2:1, preferably 1:1. Switching between the ON state and the OFF state may be performed continuously throughout the time other than during the exposure process, or may be performed only during a predetermined period of time.
  • the micromirror 203 may be maintained in a neutral state between the ON state and the OFF state at times other than during the exposure process.
  • the neutral state may be maintained continuously throughout the time other than during the exposure process, or may be maintained only for a predetermined period of time.
  • the micro-mirror 203 may be switched between the ON state and the OFF state in the opposite phase to the switching between the ON state and the OFF state during the scanning exposure at a time other than during the exposure process. That is, during scanning exposure, the micromirror 203 is exposed while being switched between the ON state and the OFF state.
  • the micromirror 203 may be operated at a time equal to or less than the holding time. These prevent the micromirror 203 from sticking.
  • the spatial light modulator may calibrate the tilt angle of the mirror by applying voltage.
  • the power (illuminance) of the light from the mirror may be measured and the variation thereof may be calibrated.
  • the exposure apparatus 1 of the present embodiment it is possible to prevent the micromirror 203 from being turned on for a long time. Therefore, the micromirror 203 can be operated normally. Therefore, good exposure processing is possible.
  • the part of the micromirror 203 that is turned on differs between the first state and the second state of the spatial light modulator 201 . Therefore, sticking of the micromirror 203 is less likely to occur. Therefore, the micromirror 203 can be operated normally. Therefore, good exposure processing is possible.
  • the exposure apparatus 1 of this embodiment may include a master clock (oscillator that generates a master clock) (not shown) that serves as a reference for synchronization.
  • a master clock oscillator that generates a master clock
  • devices such as the stage 14, the illumination module 16, the projection module 17, and the light modulation section 20 may be driven based on the master clock.
  • the control unit 21 can control the operation of each device based on the master clock. By referring to the master clock, the operation timing of each device is appropriately adjusted individually, and the relationship of operation timings among a plurality of devices is appropriately set.
  • the second micromirror group 206 (see FIG. 9) is shifted to the right by one pixel with respect to the first micromirror group 205 (see FIG. 7).
  • the position of the second micromirror group with respect to the first micromirror group is not limited to this.
  • the second micromirror group may be slid by two pixels or more with respect to the first micromirror group, and the direction of sliding movement is not limited to the right direction on the paper surface of FIGS. It may be in the vertical direction.
  • the second micromirror group may be at a position rotationally displaced about the center of the first micromirror group.
  • the second micromirror group may have a reduced or enlarged shape of the first micromirror group.
  • the first micromirror group and the second micromirror group may be different in at least one micromirror, or may be different in all micromirrors.
  • the control unit 21 changes the position from the first micromirror group 205 (see FIG. 7) to the second micromirror group 206 (see FIG. 9).
  • the exposure object 23 is moved to the right.
  • the method of exposure alignment on the exposure object 23 is not limited to this.
  • the control unit 21 may perform exposure alignment on the exposure object 23 by adjusting the position of the spatial light modulator 201 .
  • the control unit 21 may adjust the exposure position on the exposure target 23 by adjusting the projection position by the projection module 17 .
  • one projection module 17 eg, first projection module 17A
  • another projection module 17 eg, second projection module 17B
  • the exposure apparatus 1 can manufacture an electronic device such as a liquid crystal display (flat panel display) using the exposure method described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This exposure device comprises: an illumination optical system; a spatial light modulator illuminated by light from the illumination optical system; a projection optical system that projects light emitted from the spatial light modulator onto an exposure target; a stage on which the exposure target is placed and with which the exposure target and the projection optical system are moved relative to each other in a predetermined scanning direction; and a control unit that controls the spatial light modulator. The spatial light modulator comprises a plurality of mirrors (203) the tilt of which can be adjusted to switch between an ON state in which light can be emitted to the projection optical system and an OFF state in which light is not emitted to the projection optical system. The control unit controls the spatial light modulator to switch between a first state and a second state with respect to the plurality of mirrors. With regard to the first state and the second state, at least one of the mirrors in the ON state is mutually different than another mirror. The light emitted from the spatial light modulator in the first state and the light emitted from the spatial light modulator in the second state form exposure patterns of the same shape.

Description

露光装置、露光方法および電子デバイスの製造方法Exposure apparatus, exposure method, and electronic device manufacturing method
 本発明は、露光装置、露光方法および電子デバイスの製造方法に関する。
 本願は、2021年7月5日に出願された日本国特願2021-111770号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an exposure apparatus, an exposure method, and an electronic device manufacturing method.
This application claims priority based on Japanese Patent Application No. 2021-111770 filed on July 5, 2021, the content of which is incorporated herein.
 従来、光学系を介して基板に照明光を照射する露光装置として、空間光変調器を利用して変調した光を投影光学系に通し、この光による像を基板に塗布されているレジスト上に結像させて露光する露光装置が知られている(例えば特許文献1参照)。 Conventionally, as an exposure apparatus that irradiates a substrate with illumination light through an optical system, light modulated by a spatial light modulator is passed through a projection optical system, and an image of this light is projected onto a resist coated on the substrate. An exposure apparatus that forms an image and performs exposure is known (see, for example, Patent Document 1).
日本国特開2005-266779号公報Japanese Patent Application Laid-Open No. 2005-266779
 本発明の第1の態様によれば、照明光学系と、前記照明光学系からの光によって照明される空間光変調器と、前記空間光変調器から出射される光を露光対象に照射する投影光学系と、露光対象が載置され、前記露光対象と前記投影光学系とを所定の走査方向に相対移動させるステージと、空間光変調器を制御する制御部と、を備え、前記空間光変調器は、傾斜を調整して前記投影光学系へ光を出射可能とするオン状態と、前記投影光学系へ光を出射しないオフ状態とに切り替えられる複数のミラーを有し、前記制御部は、前記複数のミラーに関して第1の状態と第2の状態とを切り替えるように前記空間光変調器を制御し、前記第1の状態と前記第2の状態とは、前記オン状態となる前記ミラーの少なくとも1つが互いに異なり、前記第1の状態の前記空間光変調器から出射した光と、前記第2の状態の前記空間光変調器から出射した光は、同じ形状の露光パターンを形成する、露光装置が提供される。 According to a first aspect of the present invention, there is provided an illumination optical system, a spatial light modulator illuminated by light from the illumination optical system, and a projection apparatus for irradiating an exposure target with the light emitted from the spatial light modulator. an optical system, a stage on which an exposure target is placed and which relatively moves the exposure target and the projection optical system in a predetermined scanning direction, and a control section for controlling a spatial light modulator, wherein the spatial light modulation The device has a plurality of mirrors that can be switched between an ON state in which light can be emitted to the projection optical system by adjusting the tilt and an OFF state in which light is not emitted to the projection optical system, and the control unit includes: controlling the spatial light modulator to switch between a first state and a second state with respect to the plurality of mirrors, wherein the first state and the second state correspond to the ON state of the mirrors; at least one of which is different from each other, and the light emitted from the spatial light modulator in the first state and the light emitted from the spatial light modulator in the second state form an exposure pattern having the same shape. An apparatus is provided.
 本発明の第2の態様によれば、上述の露光装置を用いて前記露光対象を露光する露光方法が提供される。 According to a second aspect of the present invention, there is provided an exposure method for exposing the exposure target using the exposure apparatus described above.
 本発明の第3の態様によれば、上述の露光方法により前記露光対象を露光することを含む電子デバイスの製造方法が提供される。 According to a third aspect of the present invention, there is provided an electronic device manufacturing method including exposing the exposure target by the exposure method described above.
本実施形態の露光装置の外観構成の概要を示す図である。It is a figure which shows the outline|summary of the external appearance structure of the exposure apparatus of this embodiment. 照明モジュール及び投影モジュールの構成の概要を示す図である。FIG. 3 is a diagram showing an overview of the configurations of an illumination module and a projection module; 照明モジュールの構成の概要を示す図である。It is a figure which shows the outline|summary of a structure of a lighting module. 光変調部の構成の概要を示す図である。4 is a diagram showing an overview of the configuration of an optical modulation section; FIG. 光変調部の構成の概要を示す図であって、紙面中央のミラーのオン状態を示す図である。FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the ON state of the mirror in the center of the paper. 光変調部の構成の概要を示す図であって、紙面中央のミラーのオフ状態を示す図である。FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the OFF state of the mirror in the center of the paper. 光変調部の構成の概要を示す図である。4 is a diagram showing an overview of the configuration of an optical modulation section; FIG. 露光対象物上の露光視野を示す図である。It is a figure which shows the exposure field on an exposure object. 光変調部の構成の概要を示す図である。4 is a diagram showing an overview of the configuration of an optical modulation section; FIG. 露光対象物上の露光視野を示す図である。It is a figure which shows the exposure field on an exposure object.
 以下、本発明の実施形態について図面を参照して説明する。本発明の以下の詳細な説明は、例示的なものに過ぎず、限定するものではない。図面及び以下の詳細な説明の全体にわたって、同じ又は同様の参照符号が使用される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following detailed description of the invention is exemplary only, and not limiting. The same or similar reference numerals will be used throughout the drawings and the following detailed description.
[露光装置]
 図1は、本実施形態の露光装置1の外観構成の概要を示す図である。露光装置1は、露光対象物に変調光を照射する装置である。特定の実施形態において、露光装置1は、液晶表示装置(フラットパネルディスプレイ)などの電子デバイスに用いられる矩形(角型)のガラス基板を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。露光対象物であるガラス基板は、少なくとも一辺の長さ、または対角長が500mm以上であってよい。露光対象物であるガラス基板は、フラットパネルディスプレイ用の基板であってもよい。露光装置1によって露光された露光対象物(例えば、フラットパネルディスプレイ用の基板)は、現像されることによって製品に供される。露光対象物の表面にはレジストが形成される。
 露光装置1の装置本体は、例えば、米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されている。
[Exposure device]
FIG. 1 is a diagram showing an overview of the external configuration of an exposure apparatus 1 of this embodiment. The exposure apparatus 1 is an apparatus that irradiates an exposure target with modulated light. In a specific embodiment, the exposure apparatus 1 is a step-and-scan projection exposure apparatus that exposes rectangular glass substrates used in electronic devices such as liquid crystal displays (flat panel displays). is a so-called scanner. The glass substrate, which is the object to be exposed, may have at least one side length or diagonal length of 500 mm or more. The glass substrate, which is the object to be exposed, may be a substrate for a flat panel display. An exposure target (for example, a substrate for a flat panel display) exposed by the exposure apparatus 1 is developed and provided as a product. A resist is formed on the surface of the exposure object.
The apparatus main body of the exposure apparatus 1 is configured similarly to the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, for example.
 露光装置1は、ベース11、防振台12、メインコラム13、ステージ14、光学定盤15、照明モジュール16、投影モジュール17(投影光学系)、光源ユニット18、光ファイバ19、光変調部20(図1には不図示)および制御部21を備える。
 以下において、光変調部20で変調された光を露光対象物に照射する投影モジュール17の光軸方向に平行な方向をZ軸方向とし、Z軸に直交する所定平面の方向をX軸方向、Y軸方向とする三次元直交座標系を必要に応じて用いて説明する。X軸方向とY軸方向とは互いに直交(交差)する方向である。
The exposure apparatus 1 includes a base 11, an anti-vibration table 12, a main column 13, a stage 14, an optical surface plate 15, an illumination module 16, a projection module 17 (projection optical system), a light source unit 18, an optical fiber 19, and an optical modulator 20. (not shown in FIG. 1) and a control unit 21 .
In the following, the direction parallel to the optical axis direction of the projection module 17 that irradiates the light modulated by the light modulation section 20 onto the exposure object is defined as the Z-axis direction, the direction of a predetermined plane orthogonal to the Z-axis is defined as the X-axis direction, Description will be made using a three-dimensional orthogonal coordinate system with the Y-axis direction as necessary. The X-axis direction and the Y-axis direction are directions orthogonal (intersecting) each other.
 ベース11は、露光装置1の基台であり、防振台12の上に設置される。ベース11は、露光対象物が載置されるステージ14を、X軸方向及びY軸方向に移動可能に支持する。 The base 11 is the base of the exposure apparatus 1 and is installed on the anti-vibration table 12 . The base 11 supports a stage 14 on which an object to be exposed is placed so as to be movable in the X-axis direction and the Y-axis direction.
 ステージ14は、露光対象物を支持するものである。ステージ14は、走査露光において、投影モジュール17を介して投影される回路パターンの複数の部分像に対して露光対象物を高精度に位置決めするためのものである。ステージ14は、露光対象物を6自由度方向(上述のX軸、Y軸及びZ軸方向およびそれぞれの軸に対する回転方向)に駆動する。 The stage 14 supports the exposure target. The stage 14 is for positioning the exposure object with high precision with respect to a plurality of partial images of the circuit pattern projected via the projection module 17 in scanning exposure. The stage 14 drives the object to be exposed in directions of six degrees of freedom (the above-described X-, Y-, and Z-axis directions and rotational directions about the respective axes).
 ステージ14は、走査露光時にX軸方向に移動され、露光対象物上の露光対象領域を変更する際にY軸方向に移動される。なお、露光対象物は、複数の露光対象領域が形成される。ステージ14は、露光対象物と投影モジュール17とを走査方向に相対移動させる。 The stage 14 is moved in the X-axis direction during scanning exposure, and moved in the Y-axis direction when changing the exposure target area on the exposure target. A plurality of exposure target areas are formed on the exposure target. The stage 14 relatively moves the object to be exposed and the projection module 17 in the scanning direction.
 露光装置1は、1枚の露光対象物上で、複数の露光対象領域をそれぞれ露光することが可能である。ステージ14の構成としては、特に限定されないが、米国特許出願公開第2012/0057140号明細書などに開示されるようなステージ装置を用いることができる。ステージ装置は、例えば、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成のステージ装置である。粗微動構成のステージ装置は、粗動ステージによって露光対象物が水平面内の3自由度方向に移動可能、かつ微動ステージによって露光対象物が6自由度方向に微動可能となっている。 The exposure apparatus 1 is capable of exposing a plurality of exposure target areas on one exposure target. Although the configuration of the stage 14 is not particularly limited, a stage device such as that disclosed in US Patent Application Publication No. 2012/0057140 can be used. The stage device is a so-called coarse and fine movement stage device including, for example, a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage. In the coarse and fine movement stage device, the coarse movement stage can move the exposure object in directions of three degrees of freedom in the horizontal plane, and the fine movement stage can finely move the exposure object in directions of six degrees of freedom.
 メインコラム13は、ステージ14の上方(Z軸の正方向)に光学定盤15を支持する。光学定盤15は、照明モジュール16と投影モジュール17と光変調部20とを支持する。 The main column 13 supports the optical surface plate 15 above the stage 14 (in the positive direction of the Z axis). The optical platen 15 supports the illumination module 16 , the projection module 17 and the light modulation section 20 .
 図2は、照明モジュール16と投影モジュール17と光変調部20との構成の概要を示す図である。
 照明モジュール16は、光学定盤15の上方に配置され、光ファイバ19を介して光源ユニット18に接続される。本実施形態の一例において、照明モジュール16には、第1照明モジュール16A、第2照明モジュール16B、第3照明モジュール16C及び第4照明モジュール16Dが含まれる。以下の説明において、第1照明モジュール16A~第4照明モジュール16Dを区別しない場合には、これらを総称して照明モジュール16と記載する。
FIG. 2 is a diagram showing the outline of the configuration of the lighting module 16, the projection module 17, and the light modulating section 20. As shown in FIG.
The illumination module 16 is arranged above the optical surface plate 15 and connected to the light source unit 18 via the optical fiber 19 . In one example of this embodiment, the lighting modules 16 include a first lighting module 16A, a second lighting module 16B, a third lighting module 16C and a fourth lighting module 16D. In the following description, when the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16. FIG.
 第1照明モジュール16A~第4照明モジュール16Dの各々は、光ファイバ19を介した光源ユニット18から出射される光を、第1光変調部20A、第2光変調部20B、第3光変調部20C及び第4光変調部20Dの各々へ導光する。照明モジュール16は、光変調部20を照明する。 Each of the first lighting module 16A to the fourth lighting module 16D converts the light emitted from the light source unit 18 via the optical fiber 19 into a first light modulating section 20A, a second light modulating section 20B, and a third light modulating section. The light is guided to each of 20C and the fourth optical modulation section 20D. The lighting module 16 illuminates the light modulating section 20 .
 光変調部20は、後段でさらに詳述するが、露光対象物に転写すべき回路パターンに基づいて制御され、照明モジュール16からの照明光を変調する。光変調部20により変調された変調光は、投影モジュール17に導かれる。第1光変調部20A~第4光変調部20Dは、XY平面上内で互いに異なる位置に配置される。以下の説明において、第1光変調部20A~第4光変調部20Dを区別しない場合には、これらを総称して光変調部20と記載する。 The light modulation section 20 is controlled based on the circuit pattern to be transferred to the exposure object, and modulates the illumination light from the illumination module 16, which will be described later in detail. The modulated light modulated by the light modulating section 20 is guided to the projection module 17 . The first optical modulating section 20A to the fourth optical modulating section 20D are arranged at different positions on the XY plane. In the following description, when the first optical modulation section 20A to the fourth optical modulation section 20D are not distinguished, they are collectively referred to as the optical modulation section 20. FIG.
 投影モジュール17は、光学定盤15の下方に配置され、空間光変調器201により変調された変調光をステージ14上に載置された露光対象物に照射する。投影モジュール17は、光変調部20で変調された光を、露光対象物上で結像させ、露光対象物を露光する。換言すると、投影モジュール17は、光変調部20上のパターンを露光対象物に投影する。本実施形態の一例において、投影モジュール17には、上述した第1照明モジュール16A~第4照明モジュール16Dおよび第1光変調部20A~第4光変調部20Dに対応する、第1投影モジュール17A~第4投影モジュール17Dが含まれる。以下の説明において、第1投影モジュール17A~第4投影モジュール17Dを区別しない場合には、これらを総称して投影モジュール17と記載する。 The projection module 17 is arranged below the optical surface plate 15 and irradiates the exposure object placed on the stage 14 with modulated light modulated by the spatial light modulator 201 . The projection module 17 causes the light modulated by the light modulation section 20 to form an image on the exposure target, thereby exposing the exposure target. In other words, the projection module 17 projects the pattern on the light modulating section 20 onto the exposure target. In one example of the present embodiment, the projection module 17 includes first projection modules 17A to A fourth projection module 17D is included. In the following description, when the first projection module 17A to the fourth projection module 17D are not distinguished, they are collectively referred to as the projection module 17. FIG.
 第1照明モジュール16Aと、第1光変調部20Aと、第1投影モジュール17Aとより構成されるユニットを、第1露光モジュールと呼ぶ。同様に、第2照明モジュール16Bと、第2光変調部20Bと、第2投影モジュール17Bとより構成されるユニットを、第2露光モジュールと呼ぶ。各露光モジュールは、XY平面上で互いに異なる位置に設けられ、ステージ14に載置された露光対象物の異なる位置に、パターンを露光することができる。ステージ14は、露光モジュールに対して走査方向であるX軸方向へ、相対的に移動することで、露光対象物の全面もしくは露光対象領域の全面を走査露光することができる。 A unit composed of the first illumination module 16A, the first light modulation section 20A, and the first projection module 17A is called a first exposure module. Similarly, a unit composed of the second illumination module 16B, the second light modulation section 20B, and the second projection module 17B is called a second exposure module. Each exposure module is provided at a mutually different position on the XY plane, and can expose a pattern at a different position of the exposure target placed on the stage 14 . The stage 14 can scan-expose the entire surface of the exposure target or the entire surface of the exposure target area by moving relative to the exposure module in the X-axis direction, which is the scanning direction.
 なお、照明モジュール16を照明系ともいう。照明モジュール16(照明系)は、光変調部20の後述する空間光変調器201(空間光変調素子)を照明する。
 また、投影モジュール17は、投影部ともいう。投影モジュール17(投影部)は、光変調部20上のパターンの像を等倍で投影する等倍系であってもよく、拡大系または縮小系であってもよい。また、投影モジュール17は、単一もしくは2種の硝材(特に石英もしくは蛍石)により構成されることが好ましい。
Note that the illumination module 16 is also called an illumination system. The illumination module 16 (illumination system) illuminates a spatial light modulator 201 (spatial light modulation element) of the light modulation section 20, which will be described later.
The projection module 17 is also called a projection unit. The projection module 17 (projection section) may be a one-to-one system that projects the image of the pattern on the light modulation section 20 at one-to-one magnification, or may be an enlargement system or a reduction system. Also, the projection module 17 is preferably made of one or two kinds of glass materials (especially quartz or fluorite).
 図1に示すように、光源ユニット18は、一対(光源ユニットR18R、光源ユニットL18L)設けられている。光源ユニット18としては、干渉性の高いレーザを光源とする光源ユニット、半導体レーザタイプのUV-LDのような光源を用いた光源ユニット、およびレンズリレー式のリターダによる光源ユニットを採用することができる。光源ユニット18が備える光源18aとしては、405nmや365nmといった波長を出射するランプやレーザダイオードなどが挙げられる。 As shown in FIG. 1, a pair of light source units 18 (light source unit R18R, light source unit L18L) is provided. As the light source unit 18, a light source unit using a laser with high coherence as a light source, a light source unit using a light source such as a semiconductor laser type UV-LD, and a light source unit using a lens relay type retarder can be adopted. . Examples of the light source 18a included in the light source unit 18 include lamps and laser diodes that emit light with wavelengths of 405 nm and 365 nm.
 露光装置1は、上述した各部に加えて、干渉計やエンコーダなどで構成される位置計測部(不図示)を備えており、光学定盤15に対するステージ14の相対位置を計測する。 露光装置1は、上述した各部に加えて、ステージ14もしくはステージ14上の露光対象物のZ軸方向の位置を計測するAF(Auto Focus)部(不図示)を備えている。さらに露光装置1は、露光対象物上に既に露光されたパターンに対して別のパターンを重ねて露光する際に、それぞれのパターンの相対位置を計測するアライメント部(不図示)を備える。AF部および/またはアライメント部は、投影モジュール17を介して計測するTTL(Through the lens)の構成であってもよい。 The exposure apparatus 1 includes a position measuring unit (not shown) composed of an interferometer, an encoder, etc., in addition to the units described above, and measures the relative position of the stage 14 with respect to the optical surface plate 15 . The exposure apparatus 1 includes an AF (Auto Focus) section (not shown) that measures the position of the stage 14 or the exposure target on the stage 14 in the Z-axis direction, in addition to the above sections. Further, the exposure apparatus 1 includes an alignment unit (not shown) that measures the relative positions of each pattern when another pattern is superimposed on the already exposed pattern on the exposure target. The AF section and/or the alignment section may have a TTL (Through the Lens) configuration for measurement via the projection module 17 .
 図3は、露光モジュールの構成の概要を示す図である。第1露光モジュールを一例にして、照明モジュール16と光変調部20と投影モジュール17との具体的な構成の一例について説明する。 FIG. 3 is a diagram showing the outline of the configuration of the exposure module. Taking the first exposure module as an example, an example of specific configurations of the illumination module 16, the light modulation section 20, and the projection module 17 will be described.
 照明モジュール16は、モジュールシャッタ161と、照明光学系162とを備える。 モジュールシャッタ161は、光ファイバ19から供給されるパルス光を、照明光学系162に導光するか否かを切り替える。 The illumination module 16 includes a module shutter 161 and an illumination optical system 162. The module shutter 161 switches whether to guide the pulsed light supplied from the optical fiber 19 to the illumination optical system 162 .
 照明光学系162は、光ファイバ19から供給されるパルス光を、コリメータレンズ、フライアイレンズ、コンデンサーレンズなどを介して、光変調部20に出射することにより、光変調部20をほぼ均一に照明する。フライアイレンズは、フライアイレンズに入射されるパルス光を波面分割し、コンデンサーレンズは、波面分割された光を光変調部上に重畳させる。なお、照明光学系162は、フライアイレンズに代わり、ロッドインテグレータを備えていてもよい。 The illumination optical system 162 emits the pulsed light supplied from the optical fiber 19 to the light modulation section 20 through a collimator lens, a fly-eye lens, a condenser lens, etc., thereby illuminating the light modulation section 20 substantially uniformly. do. The fly-eye lens wavefront-divides the pulsed light incident on the fly-eye lens, and the condenser lens superimposes the wavefront-divided light onto the light modulation section. The illumination optical system 162 may have a rod integrator instead of the fly-eye lens.
 光変調部20は、マスクを備える。マスクは空間光変調器(SLM:Spatial Light Modulator)である。 The light modulation section 20 has a mask. The mask is a spatial light modulator (SLM).
 光変調部20は、空間光変調器201とオフ光吸収板202を備える。空間光変調器201は、デジタルミラーデバイス(デジタルマイクロミラーデバイス、DMD)である。空間光変調器201は、照明光を空間的に、且つ、時間的に変調することができる。 The light modulation section 20 includes a spatial light modulator 201 and an off light absorption plate 202 . The spatial light modulator 201 is a digital mirror device (digital micromirror device, DMD). The spatial light modulator 201 can spatially and temporally modulate the illumination light.
 図4は、本実施形態の空間光変調器201の構成の概要を示す図である。同図においてXm軸・Ym軸・Zm軸の三次元直交座標系を用いて説明する。空間光変調器201は、XmYm平面に配列された複数のマイクロミラー203(ミラー)を備える。マイクロミラー203は、空間光変調器201の素子(画素)を構成する。空間光変調器201は、Xm軸周り及びYm軸周りに傾斜角をそれぞれ変更可能である。マイクロミラー203は、例えば図5に示すように、Ym軸周りに傾斜することでオン状態になり、図6に示すようにXm軸周りに傾斜することでオフ状態になる。オン状態のマイクロミラー203は、投影モジュール17へ光を出射する。オフ状態のマイクロミラー203は、投影モジュール17へ光を出射しない。 FIG. 4 is a diagram showing an overview of the configuration of the spatial light modulator 201 of this embodiment. Description will be made using a three-dimensional orthogonal coordinate system of Xm-axis, Ym-axis, and Zm-axis in FIG. The spatial light modulator 201 comprises a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane. The micromirrors 203 constitute elements (pixels) of the spatial light modulator 201 . The spatial light modulator 201 can change the tilt angle around the Xm axis and around the Ym axis. For example, as shown in FIG. 5, the micromirror 203 is turned on by tilting around the Ym axis, and turned off by tilting around the Xm axis as shown in FIG. Micromirrors 203 in the ON state emit light to projection module 17 . A micromirror 203 in the off state does not emit light to the projection module 17 .
 空間光変調器201は、マイクロミラー203の傾斜方向をマイクロミラー203ごとに切り替えることにより、入射光が反射される方向を素子ごとに制御する。一例として、空間光変調器201のデジタルマイクロミラーデバイスは、4Mpixel程度の画素数を有しており、10kHz程度の周期でマイクロミラー203のオン状態とオフ状態とを切り替え可能である。
 空間光変調器201は、複数の素子が所定時間間隔で個別に制御される。空間光変調器201がDMDである場合、素子とは、マイクロミラー203であり、所定時間間隔とは、マイクロミラー203のオン状態とオフ状態とを切り替える周期(例えば、周期10kHz)である。
The spatial light modulator 201 controls the direction in which incident light is reflected for each element by switching the tilt direction of the micromirror 203 for each micromirror 203 . As an example, the digital micromirror device of the spatial light modulator 201 has a pixel count of about 4 Mpixels, and can switch the on state and off state of the micromirror 203 at a period of about 10 kHz.
A plurality of elements of the spatial light modulator 201 are individually controlled at predetermined time intervals. When the spatial light modulator 201 is a DMD, the element is the micromirror 203, and the predetermined time interval is the period (for example, period 10 kHz) at which the micromirror 203 is switched between the ON state and the OFF state.
 図3に戻り、オフ光吸収板202は、空間光変調器201のオフ状態にされた素子から出射(反射)される光(オフ光)を吸収する。空間光変調器201のオン状態にされた素子から出射される光は、投影モジュール17に導光される。 Returning to FIG. 3, the off-light absorption plate 202 absorbs light (off-light) emitted (reflected) from the elements of the spatial light modulator 201 that are turned off. Light emitted from the ON-state elements of the spatial light modulator 201 is guided to the projection module 17 .
 投影モジュール17は、空間光変調器201のオン状態にされた素子から射出された光を、露光対象物上に投影する。投影モジュール17は、倍率調整部171とフォーカス調整部172とを備える。倍率調整部171には、空間光変調器201によって変調された光(変調光)が入射する。 The projection module 17 projects the light emitted from the ON-state elements of the spatial light modulator 201 onto the exposure object. The projection module 17 includes a magnification adjustment section 171 and a focus adjustment section 172 . Light modulated by the spatial light modulator 201 (modulated light) enters the magnification adjustment unit 171 .
 倍率調整部171は、一部のレンズを光軸方向に駆動することで、空間光変調器201から出射された変調光の焦点面163、つまり露光対象物の表面における像の倍率を調整する。 The magnification adjustment unit 171 adjusts the magnification of the image on the focal plane 163 of the modulated light emitted from the spatial light modulator 201, that is, the surface of the exposure object, by driving some lenses in the optical axis direction.
 フォーカス調整部172は、レンズ群全体を光軸方向に駆動することで、空間光変調器201から出射された変調光が、先述したAF部により計測された露光対象物の表面に結像するように、結像位置、つまりフォーカスを調整する。 The focus adjustment unit 172 drives the entire lens group in the optical axis direction so that the modulated light emitted from the spatial light modulator 201 forms an image on the surface of the exposure object measured by the AF unit described above. Then, adjust the imaging position, that is, the focus.
 投影モジュール17は、空間光変調器201のオン状態にされた素子から射出される光の像のみを、露光対象物の表面に投影する。そのため、投影モジュール17は、空間光変調器201のオン素子により形成されたパターンの像を、露光対象物の表面に投影露光することができる。つまり、投影モジュール17は、空間的に変調された変調光を、露光対象物の表面に形成することができる。また空間光変調器201は、先述のとおり所定の周期(周波数)でマイクロミラー203のオン状態とオフ状態とを切り替えることができるため、投影モジュール17は、時間的に変調された変調光を、露光対象物の表面に形成することができる。
 すなわち、露光装置1は、任意の露光位置で実質的な瞳の状態を変化させて露光を行う。
The projection module 17 projects only the light image emitted from the turned-on element of the spatial light modulator 201 onto the surface of the exposure object. Therefore, the projection module 17 can project and expose the image of the pattern formed by the ON elements of the spatial light modulator 201 onto the surface of the exposure object. That is, the projection module 17 can form spatially modulated light on the surface of the exposure object. In addition, since the spatial light modulator 201 can switch the micromirror 203 between the ON state and the OFF state at a predetermined cycle (frequency) as described above, the projection module 17 can transmit temporally modulated light to It can be formed on the surface of the exposure object.
That is, the exposure apparatus 1 performs exposure by changing the substantial pupil state at an arbitrary exposure position.
 図4から図6に示す空間光変調器201では、Xm軸がX軸と平行となり、Ym軸がY軸と平行になる。これにより、オン状態のマイクロミラー203(Ym軸回りに傾斜したマイクロミラー203)が、走査方向であるX軸方向に対して傾斜する。 In the spatial light modulator 201 shown in FIGS. 4 to 6, the Xm-axis is parallel to the X-axis and the Ym-axis is parallel to the Y-axis. As a result, the micromirror 203 in the ON state (the micromirror 203 tilted about the Ym axis) tilts with respect to the X-axis direction, which is the scanning direction.
 Ym軸を第1チルト軸T1ともいう。空間光変調器201では、複数のマイクロミラー203がそれぞれ第1チルト軸T1(Ym軸)回りに回転し、複数のマイクロミラー203がそれぞれの走査方向に対する傾斜を調整してオン状態となることで、投影モジュール17へ光を出射させる。
 なお、空間光変調器201では、複数のマイクロミラー203が走査方向に直線状に並び、かつ、複数のマイクロミラー203が第1チルト軸T1方向にも並ぶ。
The Ym axis is also called the first tilt axis T1. In the spatial light modulator 201, the plurality of micromirrors 203 rotate around the first tilt axis T1 (Ym axis), and the plurality of micromirrors 203 adjust their tilts with respect to the scanning direction to turn on. , to emit light to the projection module 17 .
In the spatial light modulator 201, the plurality of micromirrors 203 are arranged linearly in the scanning direction, and the plurality of micromirrors 203 are also arranged in the direction of the first tilt axis T1.
 図2に示すように、制御部21は、例えば、CPU等の演算部と記憶部とを有するコンピュータによって構成される。コンピュータは、露光処理で動作する各部の制御を実行させるプログラムに従って、露光装置1の各部を制御する。制御部21は、例えば、照明モジュール16、光変調部20、投影モジュール17およびステージ14の動作を制御する。 As shown in FIG. 2, the control unit 21 is configured by, for example, a computer having an arithmetic unit such as a CPU and a storage unit. The computer controls each part of the exposure apparatus 1 according to a program that controls each part that operates in exposure processing. The controller 21 controls operations of the illumination module 16, the light modulator 20, the projection module 17, and the stage 14, for example.
 記憶部は、メモリなどの、コンピュータ読み出し可能な記憶媒体装置を用いて構成される。記憶部は、露光処理に関する各種情報を記憶する。記憶部は、例えば、露光処理の際の露光パターンに関する情報を記憶する。記憶部は、例えば、通信部または入力部を介して入力された情報を記憶する。通信部は、露光装置を外部装置に接続するための通信インタフェースを含んで構成される。入力部は、マウスやキーボード、タッチパネル等の入力装置を含んで構成される。入力部は、露光装置に対する各種情報の入力を受け付ける。 The storage unit is configured using a computer-readable storage medium device such as memory. The storage unit stores various information regarding exposure processing. The storage unit stores, for example, information related to exposure patterns during exposure processing. The storage unit stores information input via the communication unit or the input unit, for example. The communication unit includes a communication interface for connecting the exposure apparatus to an external device. The input unit includes input devices such as a mouse, keyboard, and touch panel. The input unit receives input of various information for the exposure apparatus.
[露光方法]
 ステージ14は、投影モジュールに対して露光対象物を所定の走査方向に相対的に移動させる。これにより、投影モジュールによって照射される光は、記憶部に記憶された露光パターンに関する情報に基づいて露光対象物上を走査し、所定の露光パターンが形成される。
[Exposure method]
The stage 14 relatively moves the exposure object in a predetermined scanning direction with respect to the projection module. As a result, the light emitted by the projection module scans the exposure object based on the information about the exposure pattern stored in the storage unit, and a predetermined exposure pattern is formed.
 図7は、空間光変調器201の構成の概要を示す図である。図8は、露光対象物23上の露光視野PIを示す図である。
 図7に示すように、空間光変調器201は、XmYm平面に配列された複数のマイクロミラー203(ミラー)を備える。図7では、マイクロミラー203は、5×5のマトリクス状に配列している。
FIG. 7 is a diagram showing an overview of the configuration of the spatial light modulator 201. As shown in FIG. FIG. 8 is a diagram showing the exposure field PI on the exposure object 23. As shown in FIG.
As shown in FIG. 7, the spatial light modulator 201 has a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane. In FIG. 7, the micromirrors 203 are arranged in a 5×5 matrix.
 以下、空間光変調器201が備える1つのマイクロミラー203を画素と呼ぶことがある。マイクロミラー203は、例えば、Ym軸周りに傾斜することでオン状態になり、Xm軸周りに傾斜することでオフ状態になる。オン状態となったマイクロミラー203を「ON画素」という。オフ状態となったマイクロミラー203を「OFF画素」という。 Hereinafter, one micromirror 203 included in the spatial light modulator 201 may be called a pixel. For example, the micromirror 203 is turned on by tilting around the Ym axis, and turned off by tilting around the Xm axis. A micromirror 203 in the ON state is called an "ON pixel". The micromirrors 203 in the OFF state are called "OFF pixels".
 本実施形態の露光装置1では、空間光変調器201は、所定の露光パターンを露光対象物23に照射する第1の状態と第2の状態を切り替える。 In the exposure apparatus 1 of this embodiment, the spatial light modulator 201 switches between a first state and a second state in which the exposure target 23 is irradiated with a predetermined exposure pattern.
 第1の状態では、制御部21は、複数のマイクロミラー203のうち、予め定められた1または複数のマイクロミラー203をオン状態とする。図7では、第3行(上から3つ目の行)を構成する5つのマイクロミラー203のうち、左から2~4番目のマイクロミラー203はオン状態となっている。第3列(左から3つ目の列)を構成する5つのマイクロミラー203のうち、上から2~4番目のマイクロミラー203はオン状態となっている。オン状態となった合計5つのマイクロミラー203は、全体として十字形状に配列されている。これら5つのマイクロミラー203を第1マイクロミラー群205という。 In the first state, the controller 21 turns on one or more predetermined micromirrors 203 among the plurality of micromirrors 203 . In FIG. 7, of the five micromirrors 203 forming the third row (third row from the top), the second to fourth micromirrors 203 from the left are in the ON state. Of the five micromirrors 203 forming the third row (the third row from the left), the second to fourth micromirrors 203 from the top are in the ON state. A total of five micromirrors 203 that are turned on are arranged in a cross shape as a whole. These five micromirrors 203 are called a first micromirror group 205 .
 図8に示すように、露光対象物23上の露光視野PI(露光パターン)は、オン状態のマイクロミラー203に応じた十字形状となっている。露光視野PIは、露光対象物23の中央に位置する。 As shown in FIG. 8, the exposure visual field PI (exposure pattern) on the exposure object 23 has a cross shape corresponding to the micromirror 203 in the ON state. The exposure field PI is positioned in the center of the exposure object 23 .
 図9は、空間光変調器201の構成の概要を示す図である。図10は、露光対象物23上の露光視野PIを示す図である。
 図9に示す態様は空間光変調器201の第2の状態であり、第3行(上から3つ目の行)を構成する5つのマイクロミラー203のうち、左から3~5番目のマイクロミラー203はオン状態となっている。第4列(左から4つ目の列)を構成する5つのマイクロミラー203のうち、上から2~4番目のマイクロミラー203はオン状態となっている。オン状態となった合計5つのマイクロミラー203は、全体として十字形状に配列されている。制御部21は、第1の状態と第2の状態とを切り替えることができる。
FIG. 9 is a diagram showing an overview of the configuration of the spatial light modulator 201. As shown in FIG. FIG. 10 is a diagram showing the exposure field PI on the exposure object 23. As shown in FIG.
The mode shown in FIG. 9 is the second state of the spatial light modulator 201. Of the five micromirrors 203 forming the third row (third row from the top), the third to fifth micromirrors from the left Mirror 203 is in the ON state. Of the five micromirrors 203 forming the fourth row (fourth row from the left), the second to fourth micromirrors 203 from the top are in the ON state. A total of five micromirrors 203 that are turned on are arranged in a cross shape as a whole. The control unit 21 can switch between the first state and the second state.
 オン状態となった5つのマイクロミラー203を第2マイクロミラー群206という。第2マイクロミラー群206は、第1の状態における第1マイクロミラー群205(図7参照)と同じ形状であるが、第2マイクロミラー群206を構成するマイクロミラー203の一部は、第1マイクロミラー群205を構成するマイクロミラー203とは異なる。詳しくは、第2マイクロミラー群206は、第1マイクロミラー群205に対して右に1画素分、ずれた位置のマイクロミラー203によって構成されている。すなわち、空間光変調器201の第1の状態と第2の状態とでは、オン状態となるマイクロミラーの少なくとも1つが異なるが、第1の状態であっても第2の状態であっても同じ形状の露光パターンを形成することができる。なお、同じ形状の露光パターンには、倍率の異なる露光パターンや、デフォーカスされた露光パターンも含まれる。例えば、投影モジュール17の倍率調整部171を調整することで、倍率の異なる露光パターンが形成される。例えば、投影モジュール17のフォーカス調整部172を調整することで、デフォーカスされた露光パターンが形成される。 The five micromirrors 203 that are turned on are called a second micromirror group 206 . The second micromirror group 206 has the same shape as the first micromirror group 205 in the first state (see FIG. 7). It is different from the micromirrors 203 that make up the micromirror group 205 . Specifically, the second micromirror group 206 is composed of the micromirrors 203 that are shifted to the right by one pixel with respect to the first micromirror group 205 . That is, although at least one of the micromirrors to be in the ON state is different between the first state and the second state of the spatial light modulator 201, it is the same in both the first state and the second state. A shaped exposure pattern can be formed. Note that exposure patterns having the same shape include exposure patterns with different magnifications and defocused exposure patterns. For example, exposure patterns with different magnifications are formed by adjusting the magnification adjustment unit 171 of the projection module 17 . For example, by adjusting the focus adjustment unit 172 of the projection module 17, a defocused exposure pattern is formed.
 図10に示すように、露光対象物23上の露光視野PI(露光パターン)は、オン状態のマイクロミラー203に応じた十字形状となっている。図10に示す露光視野PIと図8に示す露光視野PIとは、同じ形状である。第1マイクロミラー群205(図7参照)から第2マイクロミラー群206(図9参照)への位置の変更に応じて、ステージ14を右方向へ移動させることで、露光対象物23も右方向へ移動させることができる。これによって、照射位置を変更することができる。また、第1マイクロミラー群205(図7参照)から第2マイクロミラー群206(図9参照)への位置の変更に応じて、投影モジュール17内の光学部材を移動させることで、または、空間光変調器201が搭載されたステージをX方向および/またはY方向に移動させることで、照射位置を変更することができる。すなわち、露光対象物23における露光視野PIの位置を、第1の状態と同じく中央とすることができる。 As shown in FIG. 10, the exposure visual field PI (exposure pattern) on the exposure object 23 has a cross shape corresponding to the micromirror 203 in the ON state. The exposure field PI shown in FIG. 10 and the exposure field PI shown in FIG. 8 have the same shape. By moving the stage 14 to the right according to the position change from the first micromirror group 205 (see FIG. 7) to the second micromirror group 206 (see FIG. 9), the exposure object 23 is also moved to the right. can be moved to This makes it possible to change the irradiation position. In addition, by moving optical members in the projection module 17 or spatial By moving the stage on which the optical modulator 201 is mounted in the X direction and/or the Y direction, the irradiation position can be changed. That is, the position of the exposure field PI on the exposure object 23 can be set to the center as in the first state.
 空間光変調器201の第1の状態と第2の状態の切り替えのタイミングは特に限定されない。第1の状態と第2の状態の切り替えは、1回の走査露光ごとに行ってもよいし、予め決められたタイミングで周期的に行ってもよいし、露光対象物23の露光が終了して次の露光対象物の走査露光を開始するまでの間に行ってもよいし、さらに長い周期で行ってもよい。 The timing of switching between the first state and the second state of the spatial light modulator 201 is not particularly limited. Switching between the first state and the second state may be performed for each scanning exposure, may be performed periodically at a predetermined timing, or may be performed when the exposure of the exposure target 23 is completed. It may be performed before the scanning exposure of the next exposure object is started, or it may be performed at a longer cycle.
 マイクロミラー203のオン状態が長時間続くと、マイクロミラー203がその状態で固着してしまう現象が生じ得る。オン状態で固着しているマイクロミラー203があると、露光対象物23における特定位置が不必要に露光される場合がある。すなわち、本来はマイクロミラー203をオフ状態とすべきであるが、オン状態で固着しているため露光すべきではない位置を露光してしまう場合がある。しかし、本実施形態においては、空間光変調器201を第1の状態と第2の状態を切り替えて露光することにより(図8および図10参照)、マイクロミラー203が長時間オン状態になることを抑制することができる。これにより、マイクロミラー203が固着することを抑制することができる。 If the ON state of the micromirror 203 continues for a long time, a phenomenon may occur in which the micromirror 203 is fixed in that state. If there is a micromirror 203 stuck in the ON state, a specific position on the exposure object 23 may be unnecessarily exposed. That is, although the micromirror 203 should be in the off state, it may expose a position that should not be exposed because it is fixed in the on state. However, in this embodiment, by switching the spatial light modulator 201 between the first state and the second state for exposure (see FIGS. 8 and 10), the micromirror 203 stays on for a long time. can be suppressed. This can prevent the micromirror 203 from sticking.
 なお、マイクロミラー203が固着してしまった場合、露光対象物23における特定位置の不必要な露光が行われ得るが、その場合、遮光部材(シャッター)を設け、マイクロミラー203からの光を遮光部材によって遮ることによって特定位置の不必要な露光を抑制することができる。遮光部材は、空間光変調器201から出射する光の少なくとも一部を遮光可能に設けられてよいし、空間光変調器201に入射する光の少なくとも一部を遮光可能に設けられてもよい。遮光部材は、光ファイバ19と照明光学系162との間、照明光学系162内、照明光学系162と空間光変調器201との間、投影モジュール17内、投影モジュール17と露光対象物23との間のいずれかに設けられてよい。
 また、マイクロミラー203が固着してしまった場合、露光装置1に備えられた別の露光モジュールを用いて露光対象物23を走査露光してもよい。このとき用いる露光モジュールは、マイクロミラー203が固着してしまった空間光変調器201を有する露光モジュールの隣に設けられた露光モジュールであることが好ましく、どの露光モジュールを用いるかは予め設定されていてよい。これにより、例えば空間光変調器201の交換のために露光装置1を停止させることを防止でき、露光対象物23の露光を続けることができる。
If the micromirror 203 is stuck, unnecessary exposure may occur at a specific position on the exposure object 23. In this case, a light blocking member (shutter) is provided to block the light from the micromirror 203. Unnecessary exposure of a specific position can be suppressed by blocking with a member. The light shielding member may be provided so as to be able to shield at least part of the light emitted from the spatial light modulator 201 , and may be provided so as to be able to shield at least part of the light incident on the spatial light modulator 201 . The light shielding member is placed between the optical fiber 19 and the illumination optical system 162, inside the illumination optical system 162, between the illumination optical system 162 and the spatial light modulator 201, inside the projection module 17, and between the projection module 17 and the exposure object 23. may be provided anywhere between
Further, when the micromirror 203 is fixed, another exposure module provided in the exposure apparatus 1 may be used to scan and expose the exposure object 23 . The exposure module used at this time is preferably the exposure module provided next to the exposure module having the spatial light modulator 201 to which the micromirror 203 is fixed, and which exposure module to use is set in advance. you can As a result, the exposure apparatus 1 can be prevented from being stopped to replace the spatial light modulator 201, for example, and the exposure of the exposure object 23 can be continued.
 マイクロミラー203は、露光処理時以外の時間に、オン状態とオフ状態とが切り替えられてもよい。オン状態の時間とオフ状態の時間との比率は、例えば、1:2~2:1であってよく、1:1であることが好ましい。オン状態とオフ状態の切り替えは、露光処理時以外の時間を通して連続して行われてもよいし、このうちの所定期間のみ行われてもよい。 The micromirror 203 may be switched between an ON state and an OFF state at times other than during exposure processing. The ratio of on-state time to off-state time may be, for example, 1:2 to 2:1, preferably 1:1. Switching between the ON state and the OFF state may be performed continuously throughout the time other than during the exposure process, or may be performed only during a predetermined period of time.
 マイクロミラー203は、露光処理時以外の時間に、オン状態とオフ状態の間の中立状態で維持されてもよい。中立状態の維持は、露光処理時以外の時間を通して連続して行われてよいし、このうちの所定期間のみ行われてもよい。
 また、マイクロ―ミラー203は、露光処理時以外の時間に、走査露光時におけるオン状態とオフ状態の切り替えとは逆位相のオン状態とオフ状態の切り替えを行ってもよい。すなわち、走査露光時にはマイクロミラー203のオン状態とオフ状態が切り替えながら露光が行われるが、このときのオン状態をオフ状態に、かつオフ状態をオン状態に入れ替えた切り替えが行われるように、露光所持時以下の時間にマイクロミラー203を動作させてもよい。
 これらによって、マイクロミラー203の固着は起こりにくくなる。
The micromirror 203 may be maintained in a neutral state between the ON state and the OFF state at times other than during the exposure process. The neutral state may be maintained continuously throughout the time other than during the exposure process, or may be maintained only for a predetermined period of time.
Further, the micro-mirror 203 may be switched between the ON state and the OFF state in the opposite phase to the switching between the ON state and the OFF state during the scanning exposure at a time other than during the exposure process. That is, during scanning exposure, the micromirror 203 is exposed while being switched between the ON state and the OFF state. The micromirror 203 may be operated at a time equal to or less than the holding time.
These prevent the micromirror 203 from sticking.
 ミラーの傾斜を調整可能な空間光変調器を用いる場合には、空間光変調器は、印加する電圧によってミラーの傾斜角度のキャリブレーションを行ってもよい。また、ミラーからの光のパワー(照度)を計測し、その変動分をキャリブレーションしてもよい。 When using a spatial light modulator that can adjust the tilt of the mirror, the spatial light modulator may calibrate the tilt angle of the mirror by applying voltage. Alternatively, the power (illuminance) of the light from the mirror may be measured and the variation thereof may be calibrated.
 上述したとおり、同じマイクロミラー203が長時間オン状態となる場合、マイクロミラー203の固着が起こりやすくなる。これに対し、本実施形態の露光装置1では、マイクロミラー203を長時間オン状態とすることを抑制することできるため、マイクロミラー203の固着が起こりにくくなる。よって、マイクロミラー203を正常に動作させることができる。そのため、良好な露光処理が可能である。 As described above, when the same micromirror 203 is in the ON state for a long time, sticking of the micromirror 203 tends to occur. On the other hand, in the exposure apparatus 1 of the present embodiment, it is possible to prevent the micromirror 203 from being turned on for a long time. Therefore, the micromirror 203 can be operated normally. Therefore, good exposure processing is possible.
 マイクロミラー203が長時間オフ状態となる場合も、マイクロミラー203の固着は起こりやすくなるが、本実施形態の露光装置1では、マイクロミラー203を長時間オフ状態とすることも抑制することができるため、マイクロミラー203の固着は起こりにくくなる。 Even if the micromirror 203 is in an off state for a long time, sticking of the micromirror 203 is likely to occur. Therefore, sticking of the micromirror 203 is less likely to occur.
 本実施形態の露光装置1を用いた露光方法では、空間光変調器201の第1の状態と第2の状態とで、オン状態となるマイクロミラー203の一部が異なる。そのため、マイクロミラー203の固着は起こりにくくなる。よって、マイクロミラー203を正常に動作させることができる。そのため、良好な露光処理が可能である。 In the exposure method using the exposure apparatus 1 of this embodiment, the part of the micromirror 203 that is turned on differs between the first state and the second state of the spatial light modulator 201 . Therefore, sticking of the micromirror 203 is less likely to occur. Therefore, the micromirror 203 can be operated normally. Therefore, good exposure processing is possible.
 本実施形態の露光装置1は、同期用の基準となるマスタークロック(マスタークロックを発する発振器)(不図示)を備えていてもよい。露光装置1では、例えば、ステージ14、照明モジュール16、投影モジュール17、光変調部20などのデバイスは、マスタークロックを基準として駆動されてもよい。制御部21は、マスタークロックを基準として、各デバイスの動作を制御可能である。マスタークロックの参照により、各デバイスの動作タイミングが個別に適切に調整されるとともに、複数のデバイスの間の動作タイミングの関係が適切に設定される。 The exposure apparatus 1 of this embodiment may include a master clock (oscillator that generates a master clock) (not shown) that serves as a reference for synchronization. In the exposure apparatus 1, devices such as the stage 14, the illumination module 16, the projection module 17, and the light modulation section 20 may be driven based on the master clock. The control unit 21 can control the operation of each device based on the master clock. By referring to the master clock, the operation timing of each device is appropriately adjusted individually, and the relationship of operation timings among a plurality of devices is appropriately set.
 本実施形態の露光装置1では、第2マイクロミラー群206(図9参照)は、第1マイクロミラー群205(図7参照)に対して右に1画素分、スライド移動した位置のマイクロミラー203によって構成されているが、第1マイクロミラー群に対する第2マイクロミラー群の位置は、これに限らない。第2マイクロミラー群は、第1マイクロミラー群に対して、2画素分以上スライド移動した位置であってよいし、スライド移動の方向は、図7及び図9の紙面右方向に限らず左方向であってよいし上下方向であってもよい。第2マイクロミラー群は、第1マイクロミラー群の中心を軸として回転変位した位置にあってもよい。第2マイクロミラー群は、第1マイクロミラー群を縮小または拡大した形状であってもよい。第1マイクロミラー群と第2マイクロミラー群とは、少なくとも1つのマイクロミラーにおいて異なっていればよいし、全てのマイクロミラーにおいて異なっていてもよい。 In the exposure apparatus 1 of the present embodiment, the second micromirror group 206 (see FIG. 9) is shifted to the right by one pixel with respect to the first micromirror group 205 (see FIG. 7). However, the position of the second micromirror group with respect to the first micromirror group is not limited to this. The second micromirror group may be slid by two pixels or more with respect to the first micromirror group, and the direction of sliding movement is not limited to the right direction on the paper surface of FIGS. It may be in the vertical direction. The second micromirror group may be at a position rotationally displaced about the center of the first micromirror group. The second micromirror group may have a reduced or enlarged shape of the first micromirror group. The first micromirror group and the second micromirror group may be different in at least one micromirror, or may be different in all micromirrors.
 図10に示すように、前述の露光方法では、制御部21は、第1マイクロミラー群205(図7参照)から第2マイクロミラー群206(図9参照)への位置の変更に応じて、ステージ14の右方向への移動によって、露光対象物23を右に移動する。このように、ステージ14の位置調整によって、露光対象物23上の露光位置合わせを行うことができる。
 露光対象物23上の露光位置合わせの手法はこれに限定されない。例えば、制御部21は、空間光変調器201の位置を調整することによって、露光対象物23上の露光位置合わせを行ってもよい。制御部21は、投影モジュール17による投影位置の調整によって、露光対象物23上の露光位置合わせを行ってもよい。
As shown in FIG. 10, in the exposure method described above, the control unit 21 changes the position from the first micromirror group 205 (see FIG. 7) to the second micromirror group 206 (see FIG. 9). By moving the stage 14 to the right, the exposure object 23 is moved to the right. In this manner, exposure alignment on the exposure object 23 can be performed by adjusting the position of the stage 14 .
The method of exposure alignment on the exposure object 23 is not limited to this. For example, the control unit 21 may perform exposure alignment on the exposure object 23 by adjusting the position of the spatial light modulator 201 . The control unit 21 may adjust the exposure position on the exposure target 23 by adjusting the projection position by the projection module 17 .
 露光装置1は、一の投影モジュール17(例えば、第1の投影モジュール17A)と他の投影モジュール17(例えば、第2の投影モジュール17B)とが継ぎ露光を行ってもよい。 In the exposure apparatus 1, one projection module 17 (eg, first projection module 17A) and another projection module 17 (eg, second projection module 17B) may perform joint exposure.
(電子デバイスの製造方法)
 露光装置1は、前述の露光方法を用いて、液晶表示装置(フラットパネルディスプレイ)などの電子デバイスを製造することができる。
(Method for manufacturing electronic device)
The exposure apparatus 1 can manufacture an electronic device such as a liquid crystal display (flat panel display) using the exposure method described above.
 なお、上記実施形態で引用した露光装置などに関する全ての米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。 The disclosures of all US patent application publication specifications and US patent specifications relating to the exposure apparatus and the like cited in the above embodiments are incorporated into the description of this specification.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although one embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes, etc., can be made without departing from the gist of the present invention. It is possible to
1 露光装置
14 ステージ
17 投影モジュール(投影光学系)
162 照明光学系
201 空間光変調器
203 マイクロミラー
1 exposure device 14 stage 17 projection module (projection optical system)
162 illumination optical system 201 spatial light modulator 203 micromirror

Claims (16)

  1.  照明光学系と、
     前記照明光学系からの光によって照明される空間光変調器と、
     前記空間光変調器から出射される光を露光対象に照射する投影光学系と、
     露光対象が載置され、前記露光対象と前記投影光学系とを所定の走査方向に相対移動させるステージと、
     前記空間光変調器を制御する制御部と、
     を備え、
     前記空間光変調器は、傾斜を調整して前記投影光学系へ光を出射可能とするオン状態と、前記投影光学系へ光を出射しないオフ状態とに切り替えられる複数のミラーを有し、 前記制御部は、前記複数のミラーに関して第1の状態と第2の状態とを切り替えるように前記空間光変調器を制御し、
     前記第1の状態と前記第2の状態とは、前記オン状態となる前記ミラーの少なくとも1つが互いに異なり、
     前記第1の状態の前記空間光変調器から出射した光と、前記第2の状態の前記空間光変調器から出射した光は、同じ形状の露光パターンを形成する、
    露光装置。
    an illumination optical system;
    a spatial light modulator illuminated by light from the illumination optical system;
    a projection optical system for irradiating an exposure target with light emitted from the spatial light modulator;
    a stage on which an exposure target is placed and which relatively moves the exposure target and the projection optical system in a predetermined scanning direction;
    a control unit that controls the spatial light modulator;
    with
    The spatial light modulator has a plurality of mirrors that can be switched between an ON state in which the light can be emitted to the projection optical system by adjusting the tilt and an OFF state in which the light is not emitted to the projection optical system, a control unit controlling the spatial light modulator to switch between a first state and a second state with respect to the plurality of mirrors;
    the first state and the second state are different from each other in at least one of the mirrors that are in the ON state;
    the light emitted from the spatial light modulator in the first state and the light emitted from the spatial light modulator in the second state form an exposure pattern with the same shape;
    Exposure equipment.
  2.  前記制御部は、前記第1の状態と前記第2の状態とを切り替えるとともに、前記オン状態の前記ミラーの位置の変更に応じて前記ステージの位置を調整することで、前記露光対象上の露光位置合わせを行う、請求項1に記載の露光装置。 The control unit switches between the first state and the second state, and adjusts the position of the stage according to a change in the position of the mirror in the ON state, thereby performing exposure on the exposure target. 2. The exposure apparatus of claim 1, wherein alignment is performed.
  3.  前記制御部は、前記第1の状態と前記第2の状態とを切り替えるとともに、前記オン状態の前記ミラーの位置の変更に応じて前記空間光変調器の位置を調整することで、前記露光対象上の露光位置合わせを行う、請求項1に記載の露光装置。 The control unit switches between the first state and the second state, and adjusts the position of the spatial light modulator in accordance with a change in the position of the mirror in the ON state, thereby adjusting the exposure target. 2. An exposure apparatus according to claim 1, which performs upper exposure registration.
  4.  前記制御部は、前記第1の状態と前記第2の状態とを切り替えるとともに、前記オン状態の前記ミラーの位置の変更に応じて前記投影光学系による光の照射位置を調整することで、前記露光対象上の露光位置合わせを行う、請求項1に記載の露光装置。 The control unit switches between the first state and the second state, and adjusts the irradiation position of the light by the projection optical system in accordance with a change in the position of the mirror in the ON state. 2. The exposure apparatus according to claim 1, which performs exposure alignment on an exposure target.
  5.  前記制御部は、1回の走査露光が行われるごとに前記第1の状態と前記第2の状態とを切り替える、請求項1~4のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 4, wherein said controller switches between said first state and said second state each time scanning exposure is performed.
  6.  前記制御部は、前記露光対象の露光が終了してから次の露光対象の露光が開始されるまでの間に前記第1の状態と前記第2の状態とを切り替える、請求項1~4のうちいずれか1項に記載の露光装置。 The control unit switches between the first state and the second state from the end of exposure of the exposure target until the start of exposure of the next exposure target. The exposure apparatus according to any one of the items.
  7.  前記制御部は、予め設定されたタイミングで前記第1の状態と前記第2の状態とを切り替える、請求項1~4のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 4, wherein said control unit switches between said first state and said second state at preset timing.
  8.  前記制御部は、露光処理時以外の時間に、前記複数のミラーの前記オン状態と前記オフ状態とを切り替える、請求項1~7のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 7, wherein said control unit switches between said on state and said off state of said plurality of mirrors at a time other than during exposure processing.
  9.  前記オン状態の時間と前記オフ状態の時間との時間の比率は、1:2~2:1である、請求項8に記載の露光装置。 The exposure apparatus according to claim 8, wherein the time ratio between the ON state time and the OFF state time is 1:2 to 2:1.
  10.  前記オン状態と前記オフ状態の切り替えは、走査露光時に行われた前記オン状態と前記オフ状態の切り替えと逆位相である、請求項8に記載の露光装置。 9. The exposure apparatus according to claim 8, wherein switching between the ON state and the OFF state is in reverse phase with switching between the ON state and the OFF state performed during scanning exposure.
  11.  前記制御部は、露光処理時以外の時間に、前記複数のミラーを前記オン状態と前記オフ状態との間の中立状態で維持する、請求項1~7のうちいずれか1項に記載の露光装置。 8. The exposure according to any one of claims 1 to 7, wherein said control unit maintains said plurality of mirrors in a neutral state between said ON state and said OFF state during a time other than during exposure processing. Device.
  12.  前記空間光変調器に入射する光の少なくとも一部を遮光する遮光部材を更に備える、請求項1~11のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 11, further comprising a light shielding member that shields at least part of light incident on said spatial light modulator.
  13.  前記空間光変調器から出射する光の少なくとも一部を遮光する遮光部材を更に備える、請求項1~12のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 12, further comprising a light blocking member that blocks at least part of the light emitted from said spatial light modulator.
  14.  前記投影光学系を複数備える、請求項1~13のうちいずれか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 13, comprising a plurality of said projection optical systems.
  15.  請求項1~14のうちいずれか1項に記載の露光装置を用いて露光対象を露光する露光方法。 An exposure method for exposing an exposure target using the exposure apparatus according to any one of claims 1 to 14.
  16.  請求項15に記載の露光方法により露光対象を露光することを含む電子デバイスの製造方法。 A method for manufacturing an electronic device, including exposing an exposure target by the exposure method according to claim 15.
PCT/JP2022/026499 2021-07-05 2022-07-01 Exposure device, exposure method, and method for manufacturing electronic device WO2023282212A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533110A JPWO2023282212A1 (en) 2021-07-05 2022-07-01
CN202280044691.8A CN117546099A (en) 2021-07-05 2022-07-01 Exposure apparatus, exposure method, and method for manufacturing electronic component
KR1020247000673A KR20240019288A (en) 2021-07-05 2022-07-01 Exposure apparatus, exposure method, and manufacturing method of electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111770 2021-07-05
JP2021-111770 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282212A1 true WO2023282212A1 (en) 2023-01-12

Family

ID=84800646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026499 WO2023282212A1 (en) 2021-07-05 2022-07-01 Exposure device, exposure method, and method for manufacturing electronic device

Country Status (5)

Country Link
JP (1) JPWO2023282212A1 (en)
KR (1) KR20240019288A (en)
CN (1) CN117546099A (en)
TW (1) TW202314394A (en)
WO (1) WO2023282212A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155377A (en) * 1998-11-19 2000-06-06 Noritsu Koki Co Ltd Photograph printing device
JP2004056080A (en) * 2002-05-30 2004-02-19 Dainippon Screen Mfg Co Ltd Image recording apparatus
JP2006054471A (en) * 2004-08-13 2006-02-23 Asml Holding Nv System and method for maskless lithography
JP2006173215A (en) * 2004-12-14 2006-06-29 National Institute Of Advanced Industrial & Technology Exposure method and exposure apparatus
JP2007041281A (en) * 2005-08-03 2007-02-15 Fujifilm Corp Black image and method for producing the same, and substrate with light shielding film and liquid crystal display device
WO2009045477A1 (en) * 2007-10-02 2009-04-09 Olympus Corporation Projection apparatus comprising spatial light modulator
US20150241798A1 (en) * 2014-02-21 2015-08-27 Palo Alto Research Center Incorporated Method and system to operate arrays of reflective elements for extended lifetime operation in use with high intensity power light sources
JP2016525231A (en) * 2013-07-16 2016-08-22 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical components
JP2020194162A (en) * 2019-05-29 2020-12-03 中強光電股▲ふん▼有限公司 Micro projector and control method for micro projector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266779A (en) 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155377A (en) * 1998-11-19 2000-06-06 Noritsu Koki Co Ltd Photograph printing device
JP2004056080A (en) * 2002-05-30 2004-02-19 Dainippon Screen Mfg Co Ltd Image recording apparatus
JP2006054471A (en) * 2004-08-13 2006-02-23 Asml Holding Nv System and method for maskless lithography
JP2006173215A (en) * 2004-12-14 2006-06-29 National Institute Of Advanced Industrial & Technology Exposure method and exposure apparatus
JP2007041281A (en) * 2005-08-03 2007-02-15 Fujifilm Corp Black image and method for producing the same, and substrate with light shielding film and liquid crystal display device
WO2009045477A1 (en) * 2007-10-02 2009-04-09 Olympus Corporation Projection apparatus comprising spatial light modulator
JP2016525231A (en) * 2013-07-16 2016-08-22 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical components
US20150241798A1 (en) * 2014-02-21 2015-08-27 Palo Alto Research Center Incorporated Method and system to operate arrays of reflective elements for extended lifetime operation in use with high intensity power light sources
JP2020194162A (en) * 2019-05-29 2020-12-03 中強光電股▲ふん▼有限公司 Micro projector and control method for micro projector

Also Published As

Publication number Publication date
CN117546099A (en) 2024-02-09
JPWO2023282212A1 (en) 2023-01-12
KR20240019288A (en) 2024-02-14
TW202314394A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP4597675B2 (en) Continuous direct write photolithography
JPWO2007058188A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JPWO2009078434A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP7337877B2 (en) Resolution-enhanced digital lithography with non-blazed DMDs
KR20050074320A (en) Maskless optical writer
WO2023282212A1 (en) Exposure device, exposure method, and method for manufacturing electronic device
JP4195915B2 (en) Arbitrary pattern transfer device using PC projector
WO2023282209A1 (en) Exposure apparatus, exposure method, and manufacturing method for electronic device
JPH11212266A (en) Scanning aligner
JP2006318954A (en) Exposure apparatus and exposure method
WO2023282210A1 (en) Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data
US20240103379A1 (en) Exposure apparatus, exposure method, and flat panel display manufacturing method
JP2004128272A (en) Pattern plotting device and its method
WO2022215692A1 (en) Exposure apparatus, method for manufacturing device, method for manufacturing flat panel display, and exposure method
WO2023127499A1 (en) Exposure device
JP2022065197A (en) Exposure apparatus and device manufacturing method
WO2022215690A1 (en) Light exposure apparatus, method for manufacturing device, and method for manufacturing flat display panel
WO2023282205A1 (en) Exposure device and device manufacturing method
JP2010118383A (en) Illumination apparatus, exposure apparatus and device manufacturing method
JP2009032749A (en) Exposure apparatus and device manufacturing method
CN117795423A (en) Exposure apparatus, device manufacturing method, and flat panel display manufacturing method
JP2012109398A (en) Exposure condition management method, exposure device, and substrate
JP2012146701A (en) Exposure method and exposure device
JP2009283789A (en) Exposure apparatus, exposure method, and method of manufacturing device
JP2012137669A (en) Exposure device and exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533110

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280044691.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000673

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837628

Country of ref document: EP

Kind code of ref document: A1