WO2023282111A1 - Pre-coated fin material and manufacturing method therefor - Google Patents

Pre-coated fin material and manufacturing method therefor Download PDF

Info

Publication number
WO2023282111A1
WO2023282111A1 PCT/JP2022/025574 JP2022025574W WO2023282111A1 WO 2023282111 A1 WO2023282111 A1 WO 2023282111A1 JP 2022025574 W JP2022025574 W JP 2022025574W WO 2023282111 A1 WO2023282111 A1 WO 2023282111A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin material
resin film
precoated fin
substrate
precoated
Prior art date
Application number
PCT/JP2022/025574
Other languages
French (fr)
Japanese (ja)
Inventor
涼子 藤村
加奈 荻原
高弘 小山
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to CN202280039954.6A priority Critical patent/CN117460923A/en
Publication of WO2023282111A1 publication Critical patent/WO2023282111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a precoated fin material and its manufacturing method.
  • fin-and-tube heat exchangers which have many fins and tubes that intersect these fins, are often used.
  • the fin is produced by pressing a pre-coated fin material having a substrate made of aluminum (including pure aluminum and aluminum alloy; the same shall apply hereinafter) and a resin film provided on the substrate.
  • the resin film of the pre-coated fin material is configured so that it can impart various properties to the fins, such as corrosion resistance to suppress corrosion due to condensed water, and hydrophilicity to avoid clogging between fins due to condensed water.
  • a corrosion-resistant film is formed on an aluminum base material, the corrosion-resistant film having one or more selected from acrylic resin, epoxy resin, and urethane resin as a constituent material, and an acrylic resin is formed on the upper layer of the corrosion-resistant film and a water-soluble lubricant layer containing polyethylene glycol as a constituent material is formed on the upper layer of the hydrophilic film. ing.
  • the precoated fin material of Patent Document 1 a plurality of types of resin films having different functions are provided on the base material in order to impart the properties required for the fin. Therefore, the manufacturing process of the precoated fin material tends to be complicated, and the processing cost tends to increase.
  • the present invention has been made in view of this background, and aims to provide a pre-coated fin material that can be manufactured in a simple process and has excellent corrosion resistance and hydrophilicity, and a method for manufacturing the same.
  • One aspect of the present invention is a precoated fin material having a substrate made of aluminum and a resin coating provided on at least one surface of the substrate,
  • the mass per unit area of the resin film is 0.2 g/m 2 or more and 2.5 g/m 2 or less,
  • the average value of the self-potential for one hour after the precoated fin material was immersed in the pH 3 5% by mass NaCl aqueous solution was 1 hour after the substrate was immersed in the pH 3 5% by mass NaCl aqueous solution.
  • the precoated fin material has a property that the contact angle of water after immersing the precoated fin material in running water for 10 minutes is 20° or more and 40° or less.
  • Another aspect of the present invention is a method for manufacturing a precoated fin material according to the aspect described above, applying a paint containing a resin on at least one surface of the substrate; Precoating, wherein the base material coated with the paint is heated in a heating furnace at a temperature of 240° C. or higher and 300° C. or lower for 4 seconds or more and 20 seconds or less to bake the paint, thereby forming the resin film on the base material. It is in the manufacturing method of the fin material.
  • the precoated fin material has a base material and a resin film provided on at least one surface of the base material. Further, the precoated fin material has characteristics such that the difference in the average value of the natural potential with respect to the base material and the contact angle when measured under the specific conditions are within the specific ranges. By having such a configuration, the precoated fin material can improve both corrosion resistance and hydrophilicity in a well-balanced manner.
  • the corrosion resistance and hydrophilicity of the precoated fin material are realized by a single resin film. Therefore, the precoated fin material can be produced by a simple process, and the production cost can be easily reduced.
  • the resin film is formed on the base material by applying the paint containing the resin on the base material and then baking the paint under the specific conditions.
  • a precoated fin material excellent in corrosion resistance and hydrophilicity can be easily obtained by a simple process of applying the paint and baking the paint once.
  • FIG. 1 is a cross-sectional view of a precoated fin material in an example.
  • FIG. 2 is an explanatory diagram of the self-potential measuring device in the embodiment.
  • the precoated fin material has a base material and a resin film provided on one side or both sides of the base material. The configuration of each part of the precoated fin material will be described below.
  • the aluminum constituting the substrate may be pure aluminum or an aluminum alloy.
  • the substrate may be composed of pure aluminum with chemical compositions represented by alloy numbers such as A1200 and A1050.
  • undercoat Film An undercoat film made of an inorganic substance is provided on the surface of the substrate, and the resin film may be laminated on the undercoat film.
  • the base film may be, for example, a chemical conversion film formed by chemical conversion treatment.
  • the chemical conversion film may be formed by a reactive chemical conversion treatment, or may be formed by a coating-type chemical conversion treatment.
  • the underlying film includes a chromium-containing film formed by chromate treatment using chromate phosphate or the like, and chromium such as titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate and zirconium oxide.
  • a chromium-free film or the like formed by non-chromate treatment using a non-containing compound can be employed.
  • Resin Coating At least one surface of the precoated fin material is provided with a resin coating.
  • the resin coating may be directly laminated on the substrate, or may be laminated on the base film. Moreover, the resin film may be exposed on the outermost surface of the precoated fin material.
  • the resin film preferably contains one or more resins selected from the group consisting of (meth)acrylic resins and urethane resins. Resin films containing these resins are excellent in corrosion resistance and hydrophilicity, and are also excellent in lubricity during press molding. Therefore, the press moldability of the precoated fin material can be further improved by providing the resin film on the outermost surface.
  • the (meth)acrylic resin has the largest peak within the wave number range of 1505 to 1515 cm -1 in the Fourier transform infrared absorption spectrum obtained by the total reflection measurement method. , has the apex of the second largest peak within the wavenumber range of 1605-1615 cm ⁇ 1 and has the apex of the third largest peak within the wavenumber range of 1550-1560 cm ⁇ 1 .
  • the urethane resin has the largest peak apex in the range of wave numbers 1505 to 1515 cm ⁇ 1 in the Fourier transform infrared absorption spectrum obtained by the total reflection measurement method, and the wave number 1360 to 1370 cm ⁇ It preferably has the apex of the second largest peak within the range of 1 and the apex of the third largest peak within the wavenumber range of 1555-1565 cm ⁇ 1 .
  • the resin film may contain additives for paint within a range that does not impair the effects described above.
  • additives include pigments, antirust agents, water-based organic resins, surfactants, rheology control agents, surface control agents, ionic liquids, antifoaming agents, and film-forming aids.
  • the mass per unit area of the resin film in the precoated fin material is 0.2 g/m 2 or more and 2.5 g/m 2 or less. Since the precoated fin material has a potential difference with the base material and a contact angle of water after immersion in running water within the above-mentioned specific ranges, the thickness of the resin film is reduced to It can be very thin with a mass per unit area of 0.2 g/m 2 . As a result, it is possible to easily reduce the amount of paint used in the process of manufacturing the precoated fin material, thereby reducing manufacturing costs.
  • the mass per unit area of the resin film is less than 0.2 g/m 2 , the thickness of the resin film becomes too thin, which may lead to deterioration in corrosion resistance of the precoated fin material.
  • the mass per unit area of the resin film exceeds 2.5 g/m 2 , the amount of paint used in the process of manufacturing the precoated fin material increases, which may lead to an increase in manufacturing cost.
  • the mass per unit area of the resin film in the precoated fin material is preferably 0.2 g/m 2 or more and 1.0 g/m 2 or less, and 0.2 g/m 2 or more and 0.9 g/m 2 or less. is more preferable. In this case, it is possible to further reduce the amount of paint used in the process of manufacturing the precoated fin material while ensuring the corrosion resistance and hydrophilicity of the precoated fin material. As a result, the effect of further reducing the manufacturing cost of the precoated fin material can be expected.
  • the precoated fin material has an average self-potential value of 5% by mass NaCl aqueous solution of pH 3 for one hour after the precoated fin material is immersed in a 5% by mass NaCl aqueous solution of pH 3. It has a characteristic of being +0.040 V or more and +0.2 V or less with respect to the average value of the self-potential from the time when the base material is immersed in the water to the time when one hour has passed. Further, the precoated fin material has a property that the contact angle of water after immersing the precoated fin material in running water for 10 minutes is 20° or more and 40° or less.
  • a precoated fin material in which the potential difference between the precoated fin material and the substrate and the contact angle of water are within the above-mentioned specific ranges can achieve both high corrosion resistance and high hydrophilicity. If the average self-potential value of the precoated fin material is less than +0.040 V with respect to the average self-potential value of the substrate, the corrosion resistance of the precoated fin material may be insufficient. Further, when the contact angle of water on the precoated fin material after being immersed in running water exceeds 40°, the hydrophilicity of the precoated fin material may be insufficient.
  • Manufacturing method of precoated fin material In producing the precoated fin material, applying a paint containing a resin on at least one surface of the substrate; The resin film may be formed on the base material by heating the base material coated with the paint in a heating furnace at a temperature of 240° C. or more and 300° C. or less for 4 seconds or more and 20 seconds or less to bake the paint. .
  • an aluminum plate can be used as the base material.
  • the thickness of the substrate may be, for example, within the range of 0.05 to 0.30 mm.
  • the base material may be subjected to surface treatment such as chemical conversion treatment before the coating is applied. By subjecting the surface of the substrate to a chemical conversion treatment in advance, it is possible to form a base film on the substrate and improve the adhesion of the resin film.
  • Paints contain resins and additives and solvents that are blended as necessary.
  • the method of applying the coating material to the substrate is not particularly limited, and various methods such as bar coater and roll coater can be employed.
  • the base material After coating the base material with the paint, the base material is heated in a heating furnace at a temperature of 240°C or more and 300°C or less for 4 seconds or more and 20 seconds or less to bake the paint. Thereby, the resin film can be formed. If the temperature in the heating furnace is lower than the specific range, or if the baking time is shorter than the specific range, the paint will not be heated sufficiently, and the corrosion resistance of the precoated fin material may deteriorate. be. Further, when the temperature in the heating furnace is higher than the specific range, the paint is excessively heated, which may lead to deterioration of the resin film.
  • the base material it is preferable to heat the base material so that the maximum temperature (Peak Metal Temperature, PMT) in the dry state of the base material is within the range of 170°C or higher and 220°C or lower.
  • PMT Peak Metal Temperature
  • the resin film can be sufficiently cured, and a precoated fin material having excellent corrosion resistance and hydrophilicity can be obtained more reliably.
  • precoated fin material examples of the precoated fin material and its manufacturing method will be described with reference to FIGS.
  • the specific aspects of the precoated fin material and the method of manufacturing the same according to the present invention are not limited to the aspects of the examples, and the configuration can be changed as appropriate without departing from the gist of the present invention.
  • the precoated fin material 1 of this example has a base material 2 made of aluminum and resin films 3 provided on both sides of the base material 2, as shown in FIG. A base film 21 is interposed between the substrate 2 and the resin film 3 .
  • the resin film 3 contains resin.
  • 12 types of precoated fin materials (test materials A1 to A12) with different resin types and mass per unit area of the resin film were prepared, and various characteristics were evaluated using these. make an assessment. The specific configuration and preparation method of the test material will be described below.
  • the substrate 2 of this example is an aluminum plate made of A1050 aluminum and having a thickness of 0.1 mm.
  • the surface of the base material 2 is covered with an undercoat film 21 .
  • the undercoat film 21 of this example is a chromate film formed by chromate treatment using chromate phosphate. The amount of the chromate film deposited was 20 mg/m 2 as the mass of Cr atoms per side of the substrate.
  • the resin film 3 of this example contains either acrylic resin or urethane resin.
  • a paint is prepared by adding pure water to the resin shown in Table 1 so that the solid content becomes 7% by mass.
  • the paint After applying the paint using a bar coater on the base film 21 of the substrate 2 prepared in advance, the paint is pre-dried. After that, the substrate 2 is placed in a heating furnace maintained at the temperature shown in Table 1 and heated for the time shown in Table 1 to bake the paint. The atmosphere in the heating furnace is forcibly convected by a fan. Table 1 shows the maximum temperature (PMT) of the base material calculated from the temperature in the furnace and the wind speed of the fan.
  • PMT maximum temperature
  • the precoated fin material 1 is taken out from the heating furnace and cooled to room temperature. As described above, the test materials A1 to A12 shown in Table 1 can be obtained.
  • test materials R1 and R2 shown in Table 1 are test materials for comparison with the test materials A1 to A12.
  • Test material R1 and test material R2 can be prepared in the same manner as test materials A1 to A9, except that the paint baking conditions are changed as shown in Table 1.
  • a measuring device 4 shown in FIG. 2 is used for measuring the natural potential of the precoated fin material and the base material.
  • the measurement device 4 includes a first container 41 containing a solution for immersing the test piece 5, a second container 42 containing a solution for immersing the reference electrode 6, and the solution in the first container 41. a salt bridge 43 for electrically connecting the solution in the second container 42; a potentiostat 44 for measuring the potential of the test strip 5 with respect to the reference electrode 6; and a recording device 45 .
  • a rectangular test piece 5 with a length of 40 mm and a width of 10 mm is taken from the test material or base material.
  • a connecting portion 51 to the potentiostat 44 is provided at one end of the test piece 5 in the longitudinal direction, and a square potential measuring portion 52 having a side of 5 mm is provided at the other end.
  • an insulating paint 53 is applied to the portions other than the connecting portion 51 and the potential measuring portion 52 .
  • a 5% NaCl aqueous solution whose pH is adjusted to 3 using acetic acid is prepared in the first container 41 and a saturated NaCl aqueous solution is prepared in the second container 42 . Then, the solution in the first container 41 and the solution in the second container 42 are electrically connected via the salt bridge 43 .
  • the connecting portion 51 of the test piece 5 and the reference electrode 6 are connected to the potentiostat 44, respectively.
  • the reference electrode 6 for example, an Ag/AgCl electrode can be used.
  • the potential measuring part 52 of the test piece 5 is immersed in the 5% NaCl aqueous solution in the first container 41, and the reference electrode 6 is immersed in the saturated NaCl aqueous solution in the second container 42, thereby
  • the self-potential of the test piece 5 with reference to 6 can be measured.
  • the natural potential of the test piece 5 is measured every 3 minutes and recorded in the recording device 45 .
  • the self-potential of the test piece gradually decreases as time passes from the start of measurement, and shows a tendency to reach a generally constant value after 10 hours have passed.
  • the average value of the self-potential from the start of measurement to the time when one hour has passed is taken as the value of the self-potential of the test material.
  • Table 1 shows the self-potential value of each test material.
  • the same measurement as above is performed using the base material 2 before the resin film 3 is formed. Then, the average value of the self-potential from the start of the measurement to the time when one hour has passed is taken as the value of the self-potential of the substrate.
  • the natural potential of the substrate is -0.725 V vs Ag/AgCl.
  • the "potential difference" column in Table 1 shows the value obtained by subtracting the natural potential of the substrate 2 from the natural potential of the test material.
  • the base material 2 manufactured by polishing the surface of the precoated fin material 1 and removing the resin film 3 and the base film 21 can also be used.
  • test piece is taken from each test material and then immersed in running water at a temperature of 25°C and a flow rate of 5 L/min for 10 minutes. 2 ⁇ L of pure water is dropped on the surface of the test material taken out from the running water, and the contact angle of water is measured 30 seconds after dropping. Table 1 shows the water contact angle of each test material.
  • Corrosion resistance A rectangular test piece of 100 mm long and 50 mm wide is taken from the test material so that the rolling direction and the longitudinal direction of the base material 2 are parallel. Using this test piece, a salt spray test is carried out by a method conforming to JIS Z2371:2000. The test time shall be 1000 hours. The corrosion area ratio of the test material after the test is calculated, and the rating number is determined by the rating number method of JIS Z2371:2000. A higher rating number indicates better corrosion resistance. Table 1 shows the rating number of each test material.
  • the mass per unit area of the resin film of the test materials A1 to A12, the potential difference with the substrate, and the water contact angle after immersion in flowing water are within the above-mentioned specific ranges. Therefore, these test materials have excellent corrosion resistance and hydrophilicity.
  • the resin film of the test material R1 is formed by heating at a furnace temperature lower than that of the test materials A1 to A12. Therefore, the potential difference between the test material R1 and the substrate is smaller than the specific range. As a result, the corrosion resistance of test material R1 is inferior to test materials A1 to A12.
  • the resin film of test material R2 is formed by heating at a higher furnace temperature than test materials A1 to A12. Therefore, the resin film deteriorates and discolors during heating.

Abstract

A pre-coated fin material (1) has a substrate (2) and a resin coating (3) provided on the substrate (2). The mass per unit area of the resin coating (3) is at least 0.2 g/m2 and at most 2.5 g/m2. The pre-coated fin material (1) has the following properties: from when measuring begins until one hour has passed, the average value of the spontaneous potential measured in a 5 mass% NaCl aqueous solution that has a pH of 3 is at least +0.040 V and at most +0.2 V relative to the average value of the spontaneous potential of the substrate (2); and the angle of contact with water after being submerged in flowing water for 10 minutes is at least 20° and at most 40°.

Description

プレコートフィン材及びその製造方法Precoated fin material and its manufacturing method
 本発明は、プレコートフィン材及びその製造方法に関する。 The present invention relates to a precoated fin material and its manufacturing method.
 空気調和機や冷蔵庫等に搭載される熱交換器として、多数のフィンと、これらのフィンと交差したチューブとを有する、いわゆるフィンアンドチューブ型熱交換器が多用されている。フィンは、アルミニウム(純アルミニウム及びアルミニウム合金を含む。以下同じ。)からなる基板と、基板上に設けられた樹脂皮膜とを有するプレコートフィン材にプレス加工を施すことにより作製されている。 As heat exchangers mounted on air conditioners, refrigerators, etc., so-called fin-and-tube heat exchangers, which have many fins and tubes that intersect these fins, are often used. The fin is produced by pressing a pre-coated fin material having a substrate made of aluminum (including pure aluminum and aluminum alloy; the same shall apply hereinafter) and a resin film provided on the substrate.
 プレコートフィン材の樹脂皮膜は、結露水による腐食を抑制するための耐食性や、結露水によるフィン間の閉塞を回避するための親水性などの種々の特性をフィンに付与することができるように構成されている。例えば、特許文献1には、アルミニウム基材上にアクリル樹脂、エポキシ樹脂、およびウレタン樹脂から選ばれる1種または2種以上を構成材料とする耐食性皮膜が形成され、前記耐食性皮膜の上層にアクリル樹脂を構成材料とする親水性皮膜が形成され、前記親水性皮膜の上層にポリエチレングリコールを構成材料とする水溶性潤滑剤層が形成されていることを特徴とする熱交換器用アルミニウムフィン材が記載されている。 The resin film of the pre-coated fin material is configured so that it can impart various properties to the fins, such as corrosion resistance to suppress corrosion due to condensed water, and hydrophilicity to avoid clogging between fins due to condensed water. It is For example, in Patent Document 1, a corrosion-resistant film is formed on an aluminum base material, the corrosion-resistant film having one or more selected from acrylic resin, epoxy resin, and urethane resin as a constituent material, and an acrylic resin is formed on the upper layer of the corrosion-resistant film and a water-soluble lubricant layer containing polyethylene glycol as a constituent material is formed on the upper layer of the hydrophilic film. ing.
特開2013-130320号公報JP 2013-130320 A
 しかし、特許文献1のプレコートフィン材においては、フィンに要求される特性を付与するために、基材上に、互いに機能の異なる複数種の樹脂皮膜が設けられている。そのため、プレコートフィン材の製造工程が煩雑になりやすく、加工コストの上昇を招きやすい。 However, in the precoated fin material of Patent Document 1, a plurality of types of resin films having different functions are provided on the base material in order to impart the properties required for the fin. Therefore, the manufacturing process of the precoated fin material tends to be complicated, and the processing cost tends to increase.
 本発明は、かかる背景に鑑みてなされたものであり、簡素な工程で製造することができ、耐食性及び親水性に優れたプレコートフィン材及びその製造方法を提供しようとするものである。 The present invention has been made in view of this background, and aims to provide a pre-coated fin material that can be manufactured in a simple process and has excellent corrosion resistance and hydrophilicity, and a method for manufacturing the same.
 本発明の一態様は、アルミニウムからなる基材と、前記基材の少なくとも一方の面上に設けられた樹脂皮膜と、を有するプレコートフィン材であって、
 前記樹脂皮膜の単位面積当たりの質量が0.2g/m以上2.5g/m以下であり、
 pH3の5質量%NaCl水溶液に前記プレコートフィン材を浸漬した時点から1時間が経過した時点までの自然電位の平均値が、pH3の5質量%NaCl水溶液に前記基材を浸漬した時点から1時間が経過した時点までの自然電位の平均値に対して+0.040V以上+0.2V以下となり、かつ、
 前記プレコートフィン材を流水に10分間浸漬した後の水の接触角が20°以上40°以下となる特性を有する、プレコートフィン材にある。
One aspect of the present invention is a precoated fin material having a substrate made of aluminum and a resin coating provided on at least one surface of the substrate,
The mass per unit area of the resin film is 0.2 g/m 2 or more and 2.5 g/m 2 or less,
The average value of the self-potential for one hour after the precoated fin material was immersed in the pH 3 5% by mass NaCl aqueous solution was 1 hour after the substrate was immersed in the pH 3 5% by mass NaCl aqueous solution. +0.040 V or more and +0.2 V or less with respect to the average value of the self-potential until the time has passed, and
The precoated fin material has a property that the contact angle of water after immersing the precoated fin material in running water for 10 minutes is 20° or more and 40° or less.
 また、本発明の他の態様は、前記の態様のプレコートフィン材の製造方法であって、
 前記基材の少なくとも一方の面上に、樹脂を含む塗料を塗布し、
 前記塗料が塗布された前記基材を温度240℃以上300℃以下の加熱炉内で4秒以上20秒以下加熱して塗装焼付を行うことにより前記基材上に前記樹脂皮膜を形成する、プレコートフィン材の製造方法にある。
Another aspect of the present invention is a method for manufacturing a precoated fin material according to the aspect described above,
applying a paint containing a resin on at least one surface of the substrate;
Precoating, wherein the base material coated with the paint is heated in a heating furnace at a temperature of 240° C. or higher and 300° C. or lower for 4 seconds or more and 20 seconds or less to bake the paint, thereby forming the resin film on the base material. It is in the manufacturing method of the fin material.
 前記プレコートフィン材は、基材と、基材の少なくとも一方の面上に設けられた樹脂皮膜と、を有している。また、前記プレコートフィン材は、前記特定の条件で測定した場合の基材との自然電位の平均値の差、及び、接触角がそれぞれ前記特定の範囲となる特性を有している。前記プレコートフィン材は、かかる構成を有することにより、耐食性と親水性との両方をバランスよく向上させることができる。 The precoated fin material has a base material and a resin film provided on at least one surface of the base material. Further, the precoated fin material has characteristics such that the difference in the average value of the natural potential with respect to the base material and the contact angle when measured under the specific conditions are within the specific ranges. By having such a configuration, the precoated fin material can improve both corrosion resistance and hydrophilicity in a well-balanced manner.
 また、前記プレコートフィン材における耐食性及び親水性は、単一の樹脂皮膜により実現されている。それ故、前記プレコートフィン材は、簡素な工程で作製可能であり、製造コストを容易に低減することができる。 Also, the corrosion resistance and hydrophilicity of the precoated fin material are realized by a single resin film. Therefore, the precoated fin material can be produced by a simple process, and the production cost can be easily reduced.
 前記プレコートフィン材の製造方法においては、前記樹脂を含む塗料を基材上に塗布した後、前記特定の条件で塗装焼付を行うことにより、基材上に前記樹脂皮膜が形成される。このように、前記製造方法においては、塗料の塗布及び塗装焼付をそれぞれ1回ずつ行うという簡素な工程により、耐食性及び親水性に優れたプレコートフィン材を容易に得ることができる。 In the method for manufacturing the precoated fin material, the resin film is formed on the base material by applying the paint containing the resin on the base material and then baking the paint under the specific conditions. As described above, in the manufacturing method, a precoated fin material excellent in corrosion resistance and hydrophilicity can be easily obtained by a simple process of applying the paint and baking the paint once.
 以上のように、前記の態様によれば、簡素な工程で製造することができ、耐食性及び親水性に優れたプレコートフィン材及びその製造方法を提供することができる。 As described above, according to the above aspect, it is possible to provide a precoated fin material that can be manufactured in a simple process and has excellent corrosion resistance and hydrophilicity, and a method for manufacturing the same.
図1は、実施例におけるプレコートフィン材の断面図である。FIG. 1 is a cross-sectional view of a precoated fin material in an example. 図2は、実施例における自然電位の測定装置の説明図である。FIG. 2 is an explanatory diagram of the self-potential measuring device in the embodiment.
(プレコートフィン材)
 前記プレコートフィン材は、基材と、基材の片面または両面上に設けられた樹脂皮膜とを有している。以下、プレコートフィン材の各部の構成について説明する。
(pre-coated fin material)
The precoated fin material has a base material and a resin film provided on one side or both sides of the base material. The configuration of each part of the precoated fin material will be described below.
A.基材
 前記プレコートフィン材において、基材を構成するアルミニウムは、純アルミニウムであってもよいし、アルミニウム合金であってもよい。例えば、基材は、A1200やA1050等の合金番号で表される化学成分を備えた純アルミニウムから構成されていてもよい。
A. Substrate In the precoated fin material, the aluminum constituting the substrate may be pure aluminum or an aluminum alloy. For example, the substrate may be composed of pure aluminum with chemical compositions represented by alloy numbers such as A1200 and A1050.
B.下地皮膜
 基材の表面には、無機物からなる下地皮膜が設けられており、樹脂皮膜は下地皮膜上に積層されていてもよい。基材と樹脂皮膜との間に下地皮膜を設けることにより、樹脂皮膜の密着性をより向上させたり、基材の耐食性をより向上させたりすることができる。
B. Undercoat Film An undercoat film made of an inorganic substance is provided on the surface of the substrate, and the resin film may be laminated on the undercoat film. By providing the base film between the substrate and the resin film, the adhesion of the resin film can be further improved, and the corrosion resistance of the substrate can be further improved.
 下地皮膜は、例えば、化成処理により形成された化成皮膜であってもよい。化成皮膜は、反応型化成処理によって形成されていてもよいし、塗布型化成処理によって形成されていてもよい。より具体的には、下地皮膜としては、リン酸クロメート等を用いたクロメート処理により形成されるクロム含有皮膜や、リン酸チタンやリン酸ジルコニウム、リン酸モリブデン、リン酸亜鉛及び酸化ジルコニウム等のクロム非含有化合物を用いたノンクロメート処理により形成されるクロムフリー皮膜等を採用することができる。 The base film may be, for example, a chemical conversion film formed by chemical conversion treatment. The chemical conversion film may be formed by a reactive chemical conversion treatment, or may be formed by a coating-type chemical conversion treatment. More specifically, the underlying film includes a chromium-containing film formed by chromate treatment using chromate phosphate or the like, and chromium such as titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate and zirconium oxide. A chromium-free film or the like formed by non-chromate treatment using a non-containing compound can be employed.
C.樹脂皮膜
 プレコートフィン材の少なくとも一方の面には、樹脂皮膜が設けられている。樹脂皮膜は、基材に直接積層されていてもよいし、下地皮膜上に積層されていてもよい。また、樹脂皮膜は、プレコートフィン材の最表面に露出していてもよい。
C. Resin Coating At least one surface of the precoated fin material is provided with a resin coating. The resin coating may be directly laminated on the substrate, or may be laminated on the base film. Moreover, the resin film may be exposed on the outermost surface of the precoated fin material.
 樹脂皮膜には、(メタ)アクリル樹脂及びウレタン樹脂からなる群より選択される1種または2種以上の樹脂が含まれていることが好ましい。これらの樹脂を含む樹脂皮膜は、耐食性及び親水性に優れていることに加えてプレス成形時の潤滑性にも優れている。そのため、前記樹脂皮膜を最表面に設けることによりプレコートフィン材のプレス成形性をより向上させることができる。 The resin film preferably contains one or more resins selected from the group consisting of (meth)acrylic resins and urethane resins. Resin films containing these resins are excellent in corrosion resistance and hydrophilicity, and are also excellent in lubricity during press molding. Therefore, the press moldability of the precoated fin material can be further improved by providing the resin film on the outermost surface.
 かかる作用効果をより高める観点からは、(メタ)アクリル樹脂は、全反射測定法により得られるフーリエ変換赤外吸収スペクトルにおいて、波数1505~1515cm-1の範囲内に最も大きいピークの頂点を有し、波数1605~1615cm-1の範囲内に2番目に大きいピークの頂点を有し、波数1550~1560cm-1の範囲内に3番目に大きいピークの頂点を有していることが好ましい。また、同様の観点から、ウレタン樹脂は、全反射測定法により得られるフーリエ変換赤外吸収スペクトルにおいて、波数1505~1515cm-1の範囲内に最も大きいピークの頂点を有し、波数1360~1370cm-1の範囲内に2番目に大きいピークの頂点を有し、波数1555~1565cm-1の範囲内に3番目に大きいピークの頂点を有していることが好ましい。 From the viewpoint of further enhancing such effects, the (meth)acrylic resin has the largest peak within the wave number range of 1505 to 1515 cm -1 in the Fourier transform infrared absorption spectrum obtained by the total reflection measurement method. , has the apex of the second largest peak within the wavenumber range of 1605-1615 cm −1 and has the apex of the third largest peak within the wavenumber range of 1550-1560 cm −1 . Further, from a similar point of view, the urethane resin has the largest peak apex in the range of wave numbers 1505 to 1515 cm −1 in the Fourier transform infrared absorption spectrum obtained by the total reflection measurement method, and the wave number 1360 to 1370 cm It preferably has the apex of the second largest peak within the range of 1 and the apex of the third largest peak within the wavenumber range of 1555-1565 cm −1 .
 また、樹脂皮膜中には、前述した作用効果を損なわない範囲で、塗料用の添加剤が含まれていてもよい。添加剤としては、例えば、顔料、防錆剤、水性有機樹脂、界面活性剤、レオロジーコントロール剤、表面調整剤、イオン液体、消泡剤、造膜助剤等が挙げられる。 In addition, the resin film may contain additives for paint within a range that does not impair the effects described above. Examples of additives include pigments, antirust agents, water-based organic resins, surfactants, rheology control agents, surface control agents, ionic liquids, antifoaming agents, and film-forming aids.
 前記プレコートフィン材における前記樹脂皮膜の単位面積当たりの質量は、0.2g/m以上2.5g/m以下である。前記プレコートフィン材は、基材との電位差及び流水浸漬後の水の接触角が前記特定の範囲であるため、優れた耐水性と優れた親水性とを両立させつつ、樹脂皮膜の厚みを、単位面積当たりの質量が0.2g/mとなるようなごく薄い厚みとすることができる。これにより、プレコートフィン材の作製過程における塗料の使用量を容易に低減し、製造コストを低下させることができる。 The mass per unit area of the resin film in the precoated fin material is 0.2 g/m 2 or more and 2.5 g/m 2 or less. Since the precoated fin material has a potential difference with the base material and a contact angle of water after immersion in running water within the above-mentioned specific ranges, the thickness of the resin film is reduced to It can be very thin with a mass per unit area of 0.2 g/m 2 . As a result, it is possible to easily reduce the amount of paint used in the process of manufacturing the precoated fin material, thereby reducing manufacturing costs.
 樹脂皮膜の単位面積当たりの質量が0.2g/m未満の場合には、樹脂皮膜の厚みが薄くなりすぎるため、プレコートフィン材の耐食性の悪化を招くおそれがある。一方、樹脂皮膜の単位面積当たりの質量が2.5g/mを超える場合には、プレコートフィン材の作製過程における塗料の使用量が多くなり、製造コストの増大を招くおそれがある。 If the mass per unit area of the resin film is less than 0.2 g/m 2 , the thickness of the resin film becomes too thin, which may lead to deterioration in corrosion resistance of the precoated fin material. On the other hand, if the mass per unit area of the resin film exceeds 2.5 g/m 2 , the amount of paint used in the process of manufacturing the precoated fin material increases, which may lead to an increase in manufacturing cost.
 前記プレコートフィン材における前記樹脂皮膜の単位面積当たりの質量は、0.2g/m以上1.0g/m以下であることが好ましく、0.2g/m以上0.9g/m以下であることがより好ましい。この場合には、プレコートフィン材の耐食性及び親水性を確保しつつ、プレコートフィン材の作製過程における塗料の使用量をより低減することができる。これにより、プレコートフィン材の製造コストをより低減する効果を期待できる。 The mass per unit area of the resin film in the precoated fin material is preferably 0.2 g/m 2 or more and 1.0 g/m 2 or less, and 0.2 g/m 2 or more and 0.9 g/m 2 or less. is more preferable. In this case, it is possible to further reduce the amount of paint used in the process of manufacturing the precoated fin material while ensuring the corrosion resistance and hydrophilicity of the precoated fin material. As a result, the effect of further reducing the manufacturing cost of the precoated fin material can be expected.
D.プレコートフィン材の特性
 前記プレコートフィン材は、pH3の5質量%NaCl水溶液に前記プレコートフィン材を浸漬した時点から1時間が経過した時点までの自然電位の平均値が、pH3の5質量%NaCl水溶液に前記基材を浸漬した時点から1時間が経過した時点までの自然電位の平均値に対して+0.040V以上+0.2V以下となる特性を有している。また、前記プレコートフィン材は、プレコートフィン材を流水に10分間浸漬した後の水の接触角が20°以上40°以下となる特性を有している。
D. Characteristics of precoated fin material The precoated fin material has an average self-potential value of 5% by mass NaCl aqueous solution of pH 3 for one hour after the precoated fin material is immersed in a 5% by mass NaCl aqueous solution of pH 3. It has a characteristic of being +0.040 V or more and +0.2 V or less with respect to the average value of the self-potential from the time when the base material is immersed in the water to the time when one hour has passed. Further, the precoated fin material has a property that the contact angle of water after immersing the precoated fin material in running water for 10 minutes is 20° or more and 40° or less.
 プレコートフィン材と基材との電位差及び水の接触角がそれぞれ前記特定の範囲内であるプレコートフィン材は、高い耐食性と、高い親水性とを両立させることができる。プレコートフィン材の自然電位の平均値が基材の自然電位の平均値に対して+0.040V未満の場合には、プレコートフィン材の耐食性が不十分となるおそれがある。また、流水に浸漬した後のプレコートフィン材の水の接触角が40°を超える場合には、プレコートフィン材の親水性が不十分となるおそれがある。 A precoated fin material in which the potential difference between the precoated fin material and the substrate and the contact angle of water are within the above-mentioned specific ranges can achieve both high corrosion resistance and high hydrophilicity. If the average self-potential value of the precoated fin material is less than +0.040 V with respect to the average self-potential value of the substrate, the corrosion resistance of the precoated fin material may be insufficient. Further, when the contact angle of water on the precoated fin material after being immersed in running water exceeds 40°, the hydrophilicity of the precoated fin material may be insufficient.
(プレコートフィン材の製造方法)
 前記プレコートフィン材を作製するに当たっては、
 前記基材の少なくとも一方の面上に、樹脂を含む塗料を塗布し、
 前記塗料が塗布された前記基材を温度240℃以上300℃以下の加熱炉内で4秒以上20秒以下加熱して塗装焼付を行うことにより前記基材上に前記樹脂皮膜を形成すればよい。
(Manufacturing method of precoated fin material)
In producing the precoated fin material,
applying a paint containing a resin on at least one surface of the substrate;
The resin film may be formed on the base material by heating the base material coated with the paint in a heating furnace at a temperature of 240° C. or more and 300° C. or less for 4 seconds or more and 20 seconds or less to bake the paint. .
 基材としては、例えば、アルミニウム板を使用することができる。基材の厚みは、例えば0.05~0.30mmの範囲内であればよい。また、基材には、塗料を塗布する前に、化成処理等の表面処理が施されていてもよい。予め、基材の表面に化成処理を施すことにより、基材上に下地皮膜を形成し、樹脂皮膜の密着性を向上させることができる。 For example, an aluminum plate can be used as the base material. The thickness of the substrate may be, for example, within the range of 0.05 to 0.30 mm. In addition, the base material may be subjected to surface treatment such as chemical conversion treatment before the coating is applied. By subjecting the surface of the substrate to a chemical conversion treatment in advance, it is possible to form a base film on the substrate and improve the adhesion of the resin film.
 塗料には、樹脂及び必要に応じて配合される添加剤や溶媒等が含まれている。基材への塗料の塗布方法は特に限定されるものではなく、バーコーターやロールコーターなどの種々の方法を採用することができる。  Paints contain resins and additives and solvents that are blended as necessary. The method of applying the coating material to the substrate is not particularly limited, and various methods such as bar coater and roll coater can be employed.
 基材上に塗料を塗布した後、基材を温度240℃以上300℃以下の加熱炉内で4秒以上20秒以下加熱して塗装焼付を行う。これにより、前記樹脂皮膜を形成することができる。加熱炉内の温度が前記特定の範囲よりも低い場合、または、焼付時間が前記特定の範囲よりも短い場合には、塗料の加熱が不十分となり、プレコートフィン材の耐食性の悪化を招くおそれがある。また、加熱炉内の温度が前記特定の範囲よりも高い場合には、塗料が過度に加熱され、樹脂皮膜の劣化を招くおそれがある。 After coating the base material with the paint, the base material is heated in a heating furnace at a temperature of 240°C or more and 300°C or less for 4 seconds or more and 20 seconds or less to bake the paint. Thereby, the resin film can be formed. If the temperature in the heating furnace is lower than the specific range, or if the baking time is shorter than the specific range, the paint will not be heated sufficiently, and the corrosion resistance of the precoated fin material may deteriorate. be. Further, when the temperature in the heating furnace is higher than the specific range, the paint is excessively heated, which may lead to deterioration of the resin film.
 前記塗装焼付においては、基材の乾燥状態における最高到達温度(Peak Metal Temperature,PMT)が170℃以上220℃以下の範囲内となるようにして基材を加熱することが好ましい。この場合には、樹脂皮膜を十分に硬化させ、優れた耐食性及び親水性を有するプレコートフィン材をより確実に得ることができる。 In the above paint baking, it is preferable to heat the base material so that the maximum temperature (Peak Metal Temperature, PMT) in the dry state of the base material is within the range of 170°C or higher and 220°C or lower. In this case, the resin film can be sufficiently cured, and a precoated fin material having excellent corrosion resistance and hydrophilicity can be obtained more reliably.
 前記プレコートフィン材及びその製造方法の実施例を、図1~図2を参照しつつ説明する。なお、本発明に係るプレコートフィン材及びその製造方法の具体的な態様は、実施例の態様に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜構成を変更することができる。 Examples of the precoated fin material and its manufacturing method will be described with reference to FIGS. The specific aspects of the precoated fin material and the method of manufacturing the same according to the present invention are not limited to the aspects of the examples, and the configuration can be changed as appropriate without departing from the gist of the present invention.
 本例のプレコートフィン材1は、図1に示すように、アルミニウムからなる基材2と、基材2の両面上に設けられた樹脂皮膜3と、を有している。基材2と樹脂皮膜3との間には、下地皮膜21が介在している。樹脂皮膜3には、樹脂が含まれている。本例においては、表1に示すように、樹脂の種類及び樹脂皮膜の単位面積当たりの質量の異なる12種類のプレコートフィン材(試験材A1~A12)を準備し、これらを用いて諸特性の評価を行う。試験材の具体的な構成及び作製方法を以下に説明する。 The precoated fin material 1 of this example has a base material 2 made of aluminum and resin films 3 provided on both sides of the base material 2, as shown in FIG. A base film 21 is interposed between the substrate 2 and the resin film 3 . The resin film 3 contains resin. In this example, as shown in Table 1, 12 types of precoated fin materials (test materials A1 to A12) with different resin types and mass per unit area of the resin film were prepared, and various characteristics were evaluated using these. make an assessment. The specific configuration and preparation method of the test material will be described below.
A.基材2
 本例の基材2は、A1050アルミニウムからなる厚み0.1mmのアルミニウム板である。基材2の表面は、下地皮膜21により覆われている。本例の下地皮膜21は、具体的には、リン酸クロメートを用いたクロメート処理により形成されるクロメート皮膜である。クロメート皮膜の付着量は、基材の片面当たり、Cr原子の質量として20mg/mである。
A. Base material 2
The substrate 2 of this example is an aluminum plate made of A1050 aluminum and having a thickness of 0.1 mm. The surface of the base material 2 is covered with an undercoat film 21 . Specifically, the undercoat film 21 of this example is a chromate film formed by chromate treatment using chromate phosphate. The amount of the chromate film deposited was 20 mg/m 2 as the mass of Cr atoms per side of the substrate.
B.樹脂皮膜3
 本例の樹脂皮膜3には、アクリル樹脂またはウレタン樹脂のいずれかが含まれている。
B. Resin film 3
The resin film 3 of this example contains either acrylic resin or urethane resin.
C.製造方法
 まず、表1に記載した樹脂に、固形分量が7質量%となるように純水を加えて塗料を調製する。
C. Manufacturing Method First, a paint is prepared by adding pure water to the resin shown in Table 1 so that the solid content becomes 7% by mass.
 予め準備した基材2の下地皮膜21上に、バーコーターを用いて塗料を塗布した後、塗料を予備乾燥させる。その後、基材2を表1に示す温度に保持された加熱炉内に入れ、表1に示す時間加熱して塗装焼付を行う。なお、加熱炉内の雰囲気はファンにより強制対流している。炉内の温度及びファンの風速により算出される、基材の最高到達温度(PMT)は表1に示す通りである。 After applying the paint using a bar coater on the base film 21 of the substrate 2 prepared in advance, the paint is pre-dried. After that, the substrate 2 is placed in a heating furnace maintained at the temperature shown in Table 1 and heated for the time shown in Table 1 to bake the paint. The atmosphere in the heating furnace is forcibly convected by a fan. Table 1 shows the maximum temperature (PMT) of the base material calculated from the temperature in the furnace and the wind speed of the fan.
 塗装焼付が完了した後、加熱炉からプレコートフィン材1を取り出し、室温まで冷却する。以上により、表1に示す試験材A1~A12を得ることができる。 After the paint baking is completed, the precoated fin material 1 is taken out from the heating furnace and cooled to room temperature. As described above, the test materials A1 to A12 shown in Table 1 can be obtained.
 なお、表1に示す試験材R1及び試験材R2は、試験材A1~A12との比較のための試験材である。試験材R1及び試験材R2は、塗装焼付の条件を表1に示すように変更する以外は、試験材A1~A9と同様の方法により作製することができる。 The test materials R1 and R2 shown in Table 1 are test materials for comparison with the test materials A1 to A12. Test material R1 and test material R2 can be prepared in the same manner as test materials A1 to A9, except that the paint baking conditions are changed as shown in Table 1.
D.評価
・プレコートフィン材と基材との電位差の測定
 プレコートフィン材及び基材の自然電位の測定には、図2に示す測定装置4が用いられる。測定装置4は、試験片5を浸漬するための溶液を入れる第1の容器41と、参照電極6を浸漬するための溶液を入れる第2の容器42と、第1の容器41内の溶液と第2の容器42内の溶液とを電気的に接続するための塩橋43と、参照電極6に対する試験片5の電位を測定するためのポテンシオスタット44と、測定した電位を記録するための記録装置45と、を有している。
D. Evaluation/Measurement of Potential Difference Between Precoated Fin Material and Base Material A measuring device 4 shown in FIG. 2 is used for measuring the natural potential of the precoated fin material and the base material. The measurement device 4 includes a first container 41 containing a solution for immersing the test piece 5, a second container 42 containing a solution for immersing the reference electrode 6, and the solution in the first container 41. a salt bridge 43 for electrically connecting the solution in the second container 42; a potentiostat 44 for measuring the potential of the test strip 5 with respect to the reference electrode 6; and a recording device 45 .
 自然電位の測定に当たっては、まず、試験材または基材から縦40mm、横10mmの長方形状の試験片5を採取する。この試験片5の長手方向の一端にポテンシオスタット44との接続部51、他端に一辺5mmの正方形状の電位測定部52を設ける。そして、図2に示すように、接続部51及び電位測定部52以外の部分に絶縁塗料53を塗布する。 In measuring the self-potential, first, a rectangular test piece 5 with a length of 40 mm and a width of 10 mm is taken from the test material or base material. A connecting portion 51 to the potentiostat 44 is provided at one end of the test piece 5 in the longitudinal direction, and a square potential measuring portion 52 having a side of 5 mm is provided at the other end. Then, as shown in FIG. 2, an insulating paint 53 is applied to the portions other than the connecting portion 51 and the potential measuring portion 52 .
 これとは別に、第1の容器41内に酢酸を用いてpHを3に調整した5%NaCl水溶液を準備するとともに、第2の容器42内に飽和NaCl水溶液を準備する。そして、第1の容器41内の溶液と第2の容器42内の溶液とを塩橋43を介して電気的に接続する。 Separately, a 5% NaCl aqueous solution whose pH is adjusted to 3 using acetic acid is prepared in the first container 41 and a saturated NaCl aqueous solution is prepared in the second container 42 . Then, the solution in the first container 41 and the solution in the second container 42 are electrically connected via the salt bridge 43 .
 次に、試験片5の接続部51及び参照電極6をそれぞれポテンシオスタット44に接続する。なお、参照電極6としては、例えば、Ag/AgCl電極を使用することができる。 Next, the connecting portion 51 of the test piece 5 and the reference electrode 6 are connected to the potentiostat 44, respectively. As the reference electrode 6, for example, an Ag/AgCl electrode can be used.
 この状態で第1の容器41内の5%NaCl水溶液に試験片5の電位測定部52を浸漬するととともに、第2の容器42内の飽和NaCl水溶液に参照電極6を浸漬することにより、参照電極6を基準としたときの試験片5の自然電位を測定することができる。本例においては、3分ごとに試験片5の自然電位を測定し、記録装置45に記録する。 In this state, the potential measuring part 52 of the test piece 5 is immersed in the 5% NaCl aqueous solution in the first container 41, and the reference electrode 6 is immersed in the saturated NaCl aqueous solution in the second container 42, thereby The self-potential of the test piece 5 with reference to 6 can be measured. In this example, the natural potential of the test piece 5 is measured every 3 minutes and recorded in the recording device 45 .
 試験片の自然電位は、測定開始時点から時間が経過するにつれて徐々に低下し、10時間経過した時点で概ね一定の値となる傾向を示す。本例では、測定開始時点から1時間が経過した時点までの自然電位の平均値を、試験材の自然電位の値とする。各試験材の自然電位の値を表1に示す。 The self-potential of the test piece gradually decreases as time passes from the start of measurement, and shows a tendency to reach a generally constant value after 10 hours have passed. In this example, the average value of the self-potential from the start of measurement to the time when one hour has passed is taken as the value of the self-potential of the test material. Table 1 shows the self-potential value of each test material.
 また、上記と同様の測定を、樹脂皮膜3を形成する前の基材2を用いて行う。そして、測定開始時点から1時間が経過した時点までの自然電位の平均値を基材の自然電位の値とする。なお、基材の自然電位は、-0.725V vs Ag/AgClである。表1の「電位差」欄に、試験材の自然電位から基材2の自然電位を差し引いた値を示す。 Also, the same measurement as above is performed using the base material 2 before the resin film 3 is formed. Then, the average value of the self-potential from the start of the measurement to the time when one hour has passed is taken as the value of the self-potential of the substrate. The natural potential of the substrate is -0.725 V vs Ag/AgCl. The "potential difference" column in Table 1 shows the value obtained by subtracting the natural potential of the substrate 2 from the natural potential of the test material.
 なお、基材2の自然電位の測定には、プレコートフィン材1の表面を研磨し、樹脂皮膜3及び下地皮膜21を除去することによって作製された基材2を用いることもできる。 In addition, for the measurement of the natural potential of the base material 2, the base material 2 manufactured by polishing the surface of the precoated fin material 1 and removing the resin film 3 and the base film 21 can also be used.
・水の接触角
 各試験材から試験片を採取したのち、温度25℃、流速5L/分の流水中に10分間浸漬する。流水から取り出した試験材の表面に2μLの純水を滴下し、滴下した時点から30秒後に水の接触角を測定する。表1に、各試験材の水の接触角を示す。
- Water contact angle A test piece is taken from each test material and then immersed in running water at a temperature of 25°C and a flow rate of 5 L/min for 10 minutes. 2 μL of pure water is dropped on the surface of the test material taken out from the running water, and the contact angle of water is measured 30 seconds after dropping. Table 1 shows the water contact angle of each test material.
・樹脂皮膜3の単位面積当たりの質量
 各試験材から一辺100mmの正方形状の試験片を採取する。この試験片の質量W1(単位:g)を測定した後、500℃の電気炉内で試験片を15分間加熱する。電気炉から取り出した試験片の質量W2(単位:g)を測定した後、加熱前からの質量の減少量W1-W2(単位:g)を算出する。この質量の減少量W1-W2を、試験片上に形成された樹脂皮膜3の総面積S(単位:cm)で除することにより、樹脂皮膜3の単位面積当たりの質量を算出することができる。表1に、各試験材における樹脂皮膜3の単位面積当たりの質量を示す。
- Mass per unit area of resin film 3 A square test piece with a side of 100 mm is taken from each test material. After measuring the mass W1 (unit: g) of this test piece, the test piece is heated in an electric furnace at 500° C. for 15 minutes. After measuring the mass W2 (unit: g) of the test piece taken out from the electric furnace, the mass reduction amount W1-W2 (unit: g) from before heating is calculated. The mass per unit area of the resin film 3 can be calculated by dividing this mass decrease W1-W2 by the total area S (unit: cm 2 ) of the resin film 3 formed on the test piece. . Table 1 shows the mass per unit area of the resin film 3 in each test material.
・耐食性
 試験材から、基材2の圧延方向と長手方向とが並行になるようにして縦100mm、横50mmの長方形状の試験片を採取する。この試験片を用い、JIS Z2371:2000に準拠した方法により塩水噴霧試験を実施する。試験時間は1000時間とする。試験後の試験材の腐食面積率を算出し、JIS Z2371:2000のレイティングナンバ法によりレイティングナンバを決定する。レイティングナンバは、値が大きいほど優れた耐食性を有することを示す。表1に、各試験材のレイティングナンバを示す。
· Corrosion resistance A rectangular test piece of 100 mm long and 50 mm wide is taken from the test material so that the rolling direction and the longitudinal direction of the base material 2 are parallel. Using this test piece, a salt spray test is carried out by a method conforming to JIS Z2371:2000. The test time shall be 1000 hours. The corrosion area ratio of the test material after the test is calculated, and the rating number is determined by the rating number method of JIS Z2371:2000. A higher rating number indicates better corrosion resistance. Table 1 shows the rating number of each test material.
・外観
 試験材の表面を目視により観察し、樹脂皮膜3の性状を評価する。
- Appearance The surface of the test material is visually observed to evaluate the properties of the resin film 3 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験材A1~A12における樹脂皮膜の単位面積当たりの質量、基材との電位差及び流水浸漬後の水の接触角は、それぞれ前記特定の範囲内である。それ故、これらの試験材は、優れた耐食性及び親水性を有している。 As shown in Table 1, the mass per unit area of the resin film of the test materials A1 to A12, the potential difference with the substrate, and the water contact angle after immersion in flowing water are within the above-mentioned specific ranges. Therefore, these test materials have excellent corrosion resistance and hydrophilicity.
 一方、試験材R1の樹脂皮膜は、試験材A1~A12に比べて低い炉内温度で加熱されることによって形成されている。そのため、試験材R1における基材との電位差は前記特定の範囲よりも小さくなる。その結果、試験材R1の耐食性は、試験材A1~A12に比べて劣っている。 On the other hand, the resin film of the test material R1 is formed by heating at a furnace temperature lower than that of the test materials A1 to A12. Therefore, the potential difference between the test material R1 and the substrate is smaller than the specific range. As a result, the corrosion resistance of test material R1 is inferior to test materials A1 to A12.
 試験材R2の樹脂皮膜は、試験材A1~A12に比べて高い炉内温度で加熱されることによって形成されている。そのため、加熱中に樹脂皮膜が劣化し、変色する。 The resin film of test material R2 is formed by heating at a higher furnace temperature than test materials A1 to A12. Therefore, the resin film deteriorates and discolors during heating.

Claims (3)

  1.  アルミニウムからなる基材と、前記基材の少なくとも一方の面上に設けられ、最表面に露出した樹脂皮膜と、を有するプレコートフィン材であって、
     前記樹脂皮膜の単位面積当たりの質量が0.2g/m以上2.5g/m以下であり、
     pH3の5質量%NaCl水溶液に前記プレコートフィン材を浸漬した時点から1時間が経過した時点までの自然電位の平均値が、pH3の5質量%NaCl水溶液に前記基材を浸漬した時点から1時間が経過した時点までの自然電位の平均値に対して+0.040V以上+0.2V以下となり、かつ、
     前記プレコートフィン材を流水に10分間浸漬した後の水の接触角が20°以上40°以下となる特性を有する、プレコートフィン材。
    A precoated fin material comprising a base material made of aluminum and a resin film provided on at least one surface of the base material and exposed on the outermost surface,
    The mass per unit area of the resin film is 0.2 g/m 2 or more and 2.5 g/m 2 or less,
    The average value of the self-potential for one hour after the precoated fin material was immersed in the pH 3 5% by mass NaCl aqueous solution was 1 hour after the substrate was immersed in the pH 3 5% by mass NaCl aqueous solution. +0.040 V or more and +0.2 V or less with respect to the average value of the self-potential until the time has passed, and
    A precoated fin material having a property that the contact angle of water after immersing the precoated fin material in running water for 10 minutes is 20° or more and 40° or less.
  2.  前記樹脂皮膜には、(メタ)アクリル樹脂及びウレタン樹脂からなる群より選択される1種または2種以上の樹脂が含まれている、請求項1に記載のプレコートフィン材。 The precoated fin material according to claim 1, wherein the resin film contains one or more resins selected from the group consisting of (meth)acrylic resins and urethane resins.
  3.  請求項1または2に記載のプレコートフィン材の製造方法であって、
     前記基材の少なくとも一方の面上に、樹脂を含む塗料を塗布し、
     前記塗料が塗布された前記基材を温度240℃以上300℃以下の加熱炉内で4秒以上20秒以下加熱して塗装焼付を行うことにより前記基材上に前記樹脂皮膜を形成する、プレコートフィン材の製造方法。
    A method for manufacturing a precoated fin material according to claim 1 or 2,
    applying a paint containing a resin on at least one surface of the substrate;
    Precoating, wherein the base material coated with the paint is heated in a heating furnace at a temperature of 240° C. or higher and 300° C. or lower for 4 seconds or more and 20 seconds or less to bake the paint, thereby forming the resin film on the base material. A method of manufacturing a fin material.
PCT/JP2022/025574 2021-07-08 2022-06-27 Pre-coated fin material and manufacturing method therefor WO2023282111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280039954.6A CN117460923A (en) 2021-07-08 2022-06-27 Precoated fin material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113420 2021-07-08
JP2021113420A JP2023009820A (en) 2021-07-08 2021-07-08 Precoat fin material and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2023282111A1 true WO2023282111A1 (en) 2023-01-12

Family

ID=84801512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025574 WO2023282111A1 (en) 2021-07-08 2022-06-27 Pre-coated fin material and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2023009820A (en)
CN (1) CN117460923A (en)
WO (1) WO2023282111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150586A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger
WO2017038251A1 (en) * 2015-08-28 2017-03-09 日本パーカライジング株式会社 Surface treatment agent, film production method, and film-equipped metal material
WO2017141943A1 (en) * 2016-02-15 2017-08-24 株式会社Uacj Heat exchanger
JP2019218617A (en) * 2018-06-21 2019-12-26 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in buckling resistance and manufacturing method therefor
WO2020022213A1 (en) * 2018-07-24 2020-01-30 株式会社Uacj Pre-coated aluminum material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150586A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger
WO2017038251A1 (en) * 2015-08-28 2017-03-09 日本パーカライジング株式会社 Surface treatment agent, film production method, and film-equipped metal material
WO2017141943A1 (en) * 2016-02-15 2017-08-24 株式会社Uacj Heat exchanger
JP2019218617A (en) * 2018-06-21 2019-12-26 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in buckling resistance and manufacturing method therefor
WO2020022213A1 (en) * 2018-07-24 2020-01-30 株式会社Uacj Pre-coated aluminum material

Also Published As

Publication number Publication date
CN117460923A (en) 2024-01-26
JP2023009820A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
JP6653026B2 (en) Solution composition for surface treatment of steel sheet, galvanized steel sheet surface-treated using the same, and method for producing the same
JP2009057587A5 (en)
JP2002030458A (en) Coated metallic sheet using non-chromic compound rust preventive pigment in coating film
JP6061755B2 (en) Aluminum fin material and manufacturing method thereof
JPH04107274A (en) Chromate treatment of galvanized steel sheet
WO2010110261A1 (en) Aluminum fin material for heat exchanger
WO2023282111A1 (en) Pre-coated fin material and manufacturing method therefor
JP2019174088A (en) Surface treated fin material for heat exchanger, and manufacturing method therefor
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JP2968959B1 (en) Surface treated metal plate and method of manufacturing the same
KR102081372B1 (en) Coated steel sheet having high corrosion resistance and method for manufacturing the same
JP5416625B2 (en) Pre-coated aluminum plate
JP2002266081A (en) Chemical conversion treatment solution for pretreatment to coating and chemical conversion treated steel sheet for coating
JPH05125555A (en) Precoated fin material excellent in press formability
JP7445185B2 (en) surface treated steel
JPS59153884A (en) Zinc or zinc alloy plated steel sheet for base metal for coating
JP3274077B2 (en) Aluminum or aluminum alloy members with excellent water repellency and anti-frost properties
JPH0571382B2 (en)
JP2002235179A (en) Pretreatment solution for coating for coated steel sheet and treated steel sheet
JP7193443B2 (en) Aluminum fin stock
WO2022215374A1 (en) Aluminum fin material
EP4245872A1 (en) Surface-treated metal sheet
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
WO2021199875A1 (en) Aluminum fin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301008381

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE