WO2023281999A1 - 細胞から非侵襲的にマイクロrnaを取得する方法 - Google Patents

細胞から非侵襲的にマイクロrnaを取得する方法 Download PDF

Info

Publication number
WO2023281999A1
WO2023281999A1 PCT/JP2022/023981 JP2022023981W WO2023281999A1 WO 2023281999 A1 WO2023281999 A1 WO 2023281999A1 JP 2022023981 W JP2022023981 W JP 2022023981W WO 2023281999 A1 WO2023281999 A1 WO 2023281999A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
protein
vesicle
vpr
mid
Prior art date
Application number
PCT/JP2022/023981
Other languages
English (en)
French (fr)
Inventor
史雄 前田
俊吾 足達
徹 夏目
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2023533488A priority Critical patent/JPWO2023281999A1/ja
Publication of WO2023281999A1 publication Critical patent/WO2023281999A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for noninvasively obtaining microRNA from cells.
  • MicroRNAs are small, single-stranded non-coding RNAs with a length of about 22 bases, and interact with mRNA to regulate mRNA expression. It has been clarified that miRNAs are involved in various biological processes such as cell proliferation, differentiation, apoptosis, and the onset and pathology of various diseases including cancer. Possibility of being a marker has been reported (Non-Patent Document 1). Since miRNA is contained in exosomes secreted from cells and is present in body fluids such as blood and urine, liquid biopsy can be used to noninvasively diagnose diseases by detecting and quantifying miRNA in body fluids. It's getting a lot of attention. In addition, since miRNA is closely related to the onset and pathology of various diseases, miRNA-containing exosomes are also expected as nucleic acid medicines.
  • exosomes are formed by taking up the cytoplasm, miRNAs are contained in exosomes only at the concentration in the cytoplasm. Therefore, the amount of miRNA contained in exosomes is extremely small, and it is difficult to obtain a sufficient amount of miRNA for highly accurate diagnosis and drug development.
  • Patent Document 1 In recent years, a method has been proposed to induce the production of exosome-like extracellular vesicles using artificially designed self-assembling protein nanocages (Patent Document 1, Non-Patent Document 2). According to this method, exosome-like vesicles containing the intracellularly expressed recombinant protein of interest can be obtained. However, since these extracellular vesicles are also formed by taking up the cytoplasm like exosomes, it is still difficult to obtain miRNAs, which are originally present in low abundance in the cytoplasm.
  • the present invention aims to provide a method for non-invasively obtaining more miRNA from cells.
  • the inventor succeeded in increasing the yield of miRNA by de novo designing a miRNA-binding protein of a size that can be included in exosome-like vesicles.
  • the present invention provides a step of (1) introducing into a cell a nucleic acid encoding a microRNA binding protein and a nucleic acid encoding a vesicle forming protein, wherein the microRNA binding protein is , a first portion consisting of the MID and PIWI domains of the Argonaute protein and a second portion consisting of the viral protein R, and wherein said vesicle-forming protein comprises a palmitoylation or myristoylation signal or a pleckstrin homology domain; comprising a self-assembling domain, an ESCRT or ESCRT-related factor-binding domain and a Gag p6 domain, thereby producing exosome-like vesicles containing microRNA, (2) collecting the extracellular fluid of the cell; 3) extracting the microRNA from the extracellular fluid.
  • the microRNA-binding protein preferably contains an amino acid sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO:1.
  • the vesicle-forming protein preferably contains an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOS:2-6.
  • the cells may be in vitro cells, and the extracellular fluid may be a culture supernatant.
  • the cells may be in vivo cells, and the extracellular fluid may be a biological fluid.
  • the present invention provides a microRNA comprising (a) a microRNA, (b) a first portion consisting of the MID domain and the PIWI domain of Argonaute protein and a second portion consisting of viral protein R. an exosome-like vesicle comprising a nanocage composed of an RNA binding protein and (c) a vesicle-forming protein comprising an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOS: 2-6. It provides.
  • the exosome-like vesicles preferably further contain (d) a membrane fusion protein.
  • an extracellular fluid containing miRNA at a high concentration can be obtained. Therefore, the method according to the present invention allows miRNA analysis to be performed non-invasively, similarly to conventional exosome-based miRNA analysis, and with higher accuracy and sensitivity than that.
  • the exosome-like vesicles according to the present invention contain high concentrations of miRNA and are useful for the development of nucleic acid medicines.
  • FIG. 1 is a schematic diagram showing the domain structure of various Argonaute protein mutants.
  • FIG. 2 shows the results of Western blot analysis confirming various Argonaute protein mutants contained in cells and extracellular vesicles.
  • FIG. 3 shows the results of immunoprecipitation of Flag-Ago2-FL-Vpr or Flag-MID-PIWI-Vpr with anti-Flag antibody.
  • FIG. 4 is a graph showing relative quantification of miRNA-let7a-5p co-precipitated with Flag-Ago2-FL-Vpr or Flag-MID-PIWI-Vpr.
  • FIG. 5 shows the results of Western blot analysis confirming Flag-Ago2-FL-Vpr or Flag-MID-PIWI-Vpr contained in cells and extracellular vesicles.
  • Figure 6 shows relative quantification of miRNA-let7a-5p in extracellular vesicle fractions obtained from HEK293T cells co-expressing Flag-Ago2-FL-Vpr or Flag-MID-PIWI-Vpr and EPN-01. It is a graph showing.
  • FIG. 7 is a graph showing relative quantification of miR-92a-3p in extracellular vesicle fractions obtained from HEK293T cells co-expressing Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 8 is a graph showing relative quantification of miR-191-5p in extracellular vesicle fractions obtained from HEK293T cells co-expressing Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 9 is a graph showing relative quantification of miR-126-5p in extracellular vesicle fractions obtained from HEK293T cells co-expressing Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 10 is a graph showing relative quantification of miR-10b-5p in extracellular vesicle fractions obtained from HEK293T cells co-expressing Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 11 shows the results of Western blot analysis confirming changes in the expression levels of HIF1 ⁇ , EPN-01 and MID-PIWI-Vpr due to CoCl 2 treatment.
  • FIG. 12 is a graph showing CoCl 2 treatment changes in miR-210 expression levels in HEK293T cells transfected or not with Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 13 is a graph showing CoCl 2 treatment changes in miR-1303 expression levels in HEK293T cells transfected or not with Flag-MID-PIWI-Vpr and EPN-01.
  • FIG. 14 shows the results of Western blot analysis confirming changes in the expression levels of HIF1 ⁇ , EPN-01 and MID-PIWI-Vpr due to CoCl 2 treatment.
  • FIG. 12 is a graph showing CoCl 2 treatment changes in miR-210 expression levels in HEK293T cells transfected or not with Flag-MID-PIWI-Vpr and EPN-01.
  • CoCl 2 treatment changes the content of miR-210 in the outer vesicle fraction from HEK293T cells transfected or not with Flag-MID-PIWI-Vpr and EPN-01.
  • Extracellular vesicles obtained from HEK293T cells co-expressing Flag-MID-PIWI-Vpr and EPN-01, HEK293T cells co-expressing EGFP and EPN-01, or untransfected HEK293T cells. It is a graph showing the particle size (average value) of.
  • the present invention provides, according to a first embodiment, (1) introducing into a cell a nucleic acid encoding a microRNA binding protein and a nucleic acid encoding a vesicle forming protein, wherein the microRNA binding protein is , a first portion consisting of the MID and PIWI domains of the Argonaute protein and a second portion consisting of the viral protein R, and wherein said vesicle-forming protein comprises a palmitoylation or myristoylation signal or a pleckstrin homology domain; comprising a self-assembling domain, an ESCRT or ESCRT-related factor-binding domain and a Gag p6 domain, thereby producing exosome-like vesicles containing microRNA, (2) collecting the extracellular fluid of the cell; 3) A method for non-invasively obtaining microRNAs from cells, comprising the step of extracting microRNAs from the extracellular fluid.
  • a nucleic acid encoding a microRNA-binding protein and a nucleic acid encoding a vesicle-forming protein are introduced into cells.
  • MicroRNA (also referred to as “miRNA”) is a small single-stranded non-coding RNA with a length of about 21 to 25 bases, and more than 20,000 types have been identified so far (http://mirbase. org/).
  • the miRNA in this embodiment is not particularly limited, and may be any miRNA expressed in any cell.
  • miRNAs in this embodiment may include not only known miRNAs but also unknown miRNAs.
  • miRNA in the present embodiment means miRNA that is the final product, and does not include intermediate products such as pri-miRNA and pre-miRNA.
  • the type of "cell” in the present embodiment is not particularly limited, and may be, for example, dendritic cells, T cells, B cells, nerve cells, stem cells, cancer cells, primary culture cells or cell lines derived therefrom. you can That is, the cells in this embodiment may be either in vivo or in vitro.
  • the organism from which the cells are derived is not particularly limited, and may be any vertebrate, preferably mammals such as mice, rats, rabbits, pigs, cows, goats, monkeys, and humans, and particularly preferably mammals. is human.
  • microRNA binding protein in this embodiment comprises a first portion consisting of the MID and PIWI domains of Argonaute protein and a second portion consisting of viral protein R.
  • Ago RNA-induced silencing complex
  • RISC RNA-induced silencing complex
  • the Ago MID domain and PIWI domain used in this embodiment may be derived from any protein of the Ago family, preferably from Ago1, Ago2, Ago3 or Ago4, and particularly preferably from Ago2. be.
  • the Ago MID domain and PIWI domain used in this embodiment may be derived from any vertebrate, preferably from mammals, and particularly preferably from humans.
  • the amino acid sequence of human Ago2 (SEQ ID NO: 7) is shown below.
  • Vpr Virus protein R
  • HAV human immunodeficiency virus
  • SIV simian immunodeficiency virus
  • the Vpr used in this embodiment may be derived from any primate immunodeficiency virus, but is preferably derived from HIV, particularly preferably from HIV-1.
  • the amino acid sequence of HIV-1 Vpr (SEQ ID NO: 8) is shown below.
  • amino acid sequences of Ago and Vpr and the nucleic acid sequence information encoding them can be obtained from predetermined databases.
  • NP_036286.2 GenBank
  • NM_012154.5 GenBank
  • HIV-1 Vpr NP_057852.2 (GenBank)
  • NC_001802 GenBank 5105-5396 are available.
  • the microRNA-binding protein in this embodiment most preferably contains an amino acid sequence (SEQ ID NO: 1) consisting of the MID and PIWI domains of human Ago2 and HIV-1-derived Vpr.
  • microRNA binding protein SEQ ID NO: 1
  • the microRNA-binding protein in this embodiment maintains miRNA-binding activity equivalent to Ago's MID domain and PIWI domain and Gag's p6 domain-binding activity equivalent to Vpr. and the amino acid sequence having 80% or more, preferably 90% or more, more preferably about 95% or more identity with the amino acid sequence of Vpr. Amino acid sequence identity can be calculated using sequence analysis software or using programs commonly used in the art (FASTA, BLAST, etc.).
  • a "vesicle-forming protein” in this embodiment includes a palmitoylation or myristoylation signal or a pleckstrin homology (PH) domain, a self-assembling domain, an ESCRT or an ESCRT-related factor binding domain, and a Gag p6 domain.
  • a vesicle-forming protein that can be used in this embodiment is disclosed as Enveloped Protein Nanocage (EPN) in WO 2016/138525, specifically, EPN-01 (SEQ ID NO: 2) , EPN-03 (SEQ ID NO:3), EPN-07 (SEQ ID NO:4), EPN-08 (SEQ ID NO:5), EPN-18 (SEQ ID NO:6), and the like.
  • EPN-01 SEQ ID NO: 2
  • EPN-03 SEQ ID NO:3
  • EPN-07 SEQ ID NO:4
  • EPN-08 SEQ ID NO:5
  • EPN-18 SEQ ID NO:6
  • the vesicle forming protein in this embodiment is
  • EPN-03 (SEQ ID NO: 3)
  • EPN-018 (SEQ ID NO: 6)
  • the vesicle-forming protein in the present embodiment maintains an activity equivalent to that of the EPN subunit (that is, forms a nanocage by self-assembly to constitute an extracellular vesicle).
  • Proteins consisting of amino acid sequences having 80% or more, preferably 90% or more, more preferably about 95% or more identity with the amino acid sequences of the EPN subunits disclosed in .
  • microRNA-binding protein and vesicle-forming protein in this embodiment may have an epitope tag such as Myc, HA, FLAG added to their N-terminus and/or C-terminus.
  • epitope tag such as Myc, HA, FLAG added to their N-terminus and/or C-terminus.
  • Nucleic acids encoding microRNA-binding proteins and nucleic acids encoding vesicle-forming proteins can be prepared by any conventionally known genetic engineering method based on the sequences designed according to the above.
  • those nucleic acids may be introduced into cells by methods well known in the art, for example, those nucleic acids may be cloned into expression vectors and introduced into cells.
  • the type of expression vector is not particularly limited, and may be either a viral vector or a non-viral vector. It may be a plasmid vector such as pCAG.
  • the microRNA-binding protein and the vesicle-forming protein are expressed in the cell, the microRNA-binding protein-miRNA complex is housed in a nanocage composed of the vesicle-forming protein, exosome-like vesicles are formed, and extracellular released to
  • exosome-like vesicles in the present embodiment refers to nanoscale extracellular vesicles similar in structure and composition to exosomes.
  • the extracellular fluid of the cells is collected. If the cells are cells in vitro, the extracellular fluid may be a culture supernatant, and if the cells are cells in vivo, the extracellular fluid may be a biological fluid.
  • biological fluids include, but are not limited to, blood, plasma, serum, saliva, urine, and the like.
  • miRNA is extracted from the extracellular fluid.
  • miRNA can be extracted by already established procedures, for example, extracellular vesicles can be collected by ultracentrifugation, and miRNA can be isolated by a purification method such as the Boom method.
  • a number of miRNA extraction kits based on the Boom method are commercially available, and such commercially available products can also be used in the method of the present embodiment.
  • High Pure miRNA Isolation Kit (Roche Diagnostics), miRNeasy Mini Kit (Qiagen), mirVana (trademark) miRNA Isolation Kit (Thermo Fisher Scientific) and the like are preferred commercially available products.
  • the method of the present embodiment can obtain extracellular fluid containing miRNA at a high concentration, enabling noninvasive, highly accurate, and highly sensitive diagnosis.
  • the present invention provides a microRNA comprising (a) a microRNA, (b) a first portion consisting of the MID and PIWI domains of Argonaute protein and a second portion consisting of viral protein R.
  • An exosome-like vesicle comprising a nanocage composed of an RNA binding protein and (c) a vesicle-forming protein comprising an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-6. be.
  • Exosome-like vesicles are defined in the first embodiment is the same as
  • the exosome-like vesicles of this embodiment can further contain (d) a membrane fusion protein.
  • membrane fusion protein is meant a protein that causes fusion between homogeneous or heterologous cells or membrane vesicles.
  • the membrane fusion protein in this embodiment is not particularly limited, but is preferably an enveloped virus-derived membrane fusion protein, such as vesicular stomatitis virus G protein (VSV-G), herpes simplex virus glycoprotein B (gB) and Recombinants thereof and the like are included.
  • VSV-G vesicular stomatitis virus G protein
  • gB herpes simplex virus glycoprotein B
  • Exosome-like vesicles of this embodiment are obtained from the extracellular fluid of cells introduced with nucleic acids encoding microRNA-binding proteins and nucleic acids encoding vesicle-forming proteins by the procedure of the method of the first embodiment. can be done.
  • the exosome-like vesicles of this embodiment can contain miRNA at a higher concentration than natural exosomes. Therefore, it is useful for diagnosis of diseases and development of nucleic acid drugs.
  • EPN-01 SEQ ID NO: 2
  • human Ago2 was used as the Argonaute protein. Since the nanocage formed by EPN-01 is 20 nm in diameter and it was assumed that it would be difficult for full-length Ago2 to be encapsulated in it, we prepared mutants with different sizes from Ago2 and examined whether they could be encapsulated into nanocages. was tested.
  • Ago2 Full length of Ago2 (amino acid numbers 1-860), Ago2 PAZ domain-PIWI domain (amino acid numbers 227-860), L2 domain-PIWI domain (amino acid numbers 347-860), and MID domain-PIWI domain (amino acid numbers 446-446).
  • 860 with a FLAG tag at the N-terminus and an HIV-1-derived Vpr (SEQ ID NO: 1) at the C-terminus (Flag-Ago2-FL-Vpr, Flag-PAZ-PIWI-Vpr, Flag- Expression vectors for L2-PIWI-Vpr and Flag-MID-PIWI-Vpr (Fig. 1) were prepared by the following procedure.
  • Plasmid VB200705-1156knk (SEQ ID NO: 9) containing sequences encoding EPN-01 and Myc-EGFP-Vpr was synthesized by commissioning VectorBuilder.
  • VB200705-1156knk as a template, inverse PCR was performed using primers 1 and 2 below. The resulting amplified product was cleaved at the EcoRI site and ligated to obtain pRP-Myc-EGFP-Vpr.
  • PCR was performed using primers 3 and 4 below.
  • the resulting amplification product was inserted into the XbaI site of pRP-Myc-EGFP-Vpr by In Fusion cloning to obtain plasmid pRP-Flag-Ago2-FL-Vpr containing the sequence encoding Flag-Ago2-FL-Vpr. rice field.
  • PCR was performed using primers 5 and 6 below.
  • the resulting amplified product was inserted into the NheI/HindIII site of pEGFP-C2 (Clontech) by In Fusion cloning to obtain pCMV-Flag-Ago2-FL-Vpr.
  • PCR was performed using the following primers 7 and 10, 8 and 10, or 9 and 10.
  • the resulting amplified product was inserted into the NheI/XbaI site of pCMV-Flag-Ago2-FL-Vpr by In Fusion cloning, pCMV-Flag-PAZ-PIWI-Vpr, pCMV-Flag-L2-PIWI-Vpr, and pCMV-Flag-MID-PIWI-Vpr was obtained.
  • EPN-01 expression vector In order to create an EPN-01 expression vector, inverse PCR was performed using VB200705-1156knk (SEQ ID NO: 9) as a template and primers 11 and 12 below. The resulting amplified product was cleaved at the KpnI site and ligated to obtain pRP-EPN-01. Using pRP-EPN-01 as a template, PCR was performed using primer 6 above and primer 13 below. The resulting amplified product was inserted into the NheI/HindIII site of pEGFP-C2 by In Fusion cloning to obtain pCMV-EPN-01.
  • HEK293T cells ATCC were seeded in a 10 cm dish. The next day, each Ago2 mutant expression vector (5 ⁇ g) and EPN-01 expression vector (10 ⁇ g) were transfected with Lipofectamine2000 (Thermo Fisher Scientific), and after 6 hours, the medium was replaced with 10 ml of fresh medium. Twenty-four hours after transfection, the medium was harvested and centrifuged at 200 xg for 5 minutes at 4°C, 1,000 xg for 5 minutes at 4°C, and 10,000 xg for 30 minutes at 4°C. Clear was collected. 2 ml of 20% sucrose solution was placed in an ultracentrifugation tube, the supernatant was layered thereon, and ultracentrifugation was performed at 4° C.
  • the extracellular vesicle solution and cell solution were subjected to SDS-PAGE (10% acrylamide gel), and after electrophoresis, proteins were transferred to a PDVF membrane.
  • the PDVF membrane was blocked with 3.5% skim milk for 30 minutes, washed with TBS-T (Tris-HCl (25 mM), NaCl (150 mM), 0.1% Tween 20) three times (30 minutes in total), Incubated overnight at 4° C. in primary antibody solution.
  • the primary antibody solution was removed, washed with TBS-T three times (total of 30 minutes), and then incubated in the secondary antibody solution for 1 hour at room temperature.
  • Primary antibodies include anti-c-Myc antibody (anti-c-myc from mouse IgG1 ⁇ [9E10] (11667203001, Roche) (1:1000 dilution)); anti-Flag antibody (Monoclonal ANTI-FLAGTM M2 antibody produced in mouse (F3165, Sigma-Aldrich (1:1000 dilution)); and an anti- ⁇ -actin antibody ( ⁇ -Actin (13E5) Rabbit mAb (#4970, Cell Signaling Technology) (1:1000 dilution)). ECLTM anti-rabbit IgG (NA9340V, GE) (1:2000 dilution) and ECLTM anti-mouse IgG (NA9310V, GE) (1:2000 dilution) were used as secondary antibodies.
  • Cell indicates the results for the cell solution
  • Release indicates the results for the extracellular vesicle solution.
  • Full-length Ago2 and all Ago2 mutants were expressed in cell solutions, but only the MID-PIWI-Vpr mutant was detected in extracellular vesicle solutions. This result confirmed that only the MID-PIWI-Vpr mutant could be incorporated into the EPN-01 nanocages.
  • miRNA binding activity of MID-PIWI-Vpr mutant Next, in order to examine the miRNA-binding activity of the MID-PIWI-Vpr mutant, full-length Ago2 (Flag-Ago2-FL-Vpr) or Flag-MID-PIWI-Vpr was added to HEK293T cells by the same procedure as in 1 above. expressed. For controls, EGFP was expressed in place of the Ago2 mutant.
  • Lysis Buffer HEPES (20 mM), pH 7.5, NaCl (150 mM), NaF (50 mM), Na 3 VO 4 (1 mM), 1% Digitonin, 1 mL of phenylmethylsulfonyl fluoride (1 mM), Leupeptin (5 ⁇ g/ml), Aprotinin (5 ⁇ g/ml), Pepstatin A (3 ⁇ g/ml) was added. The cell lysate was collected with a scraper, centrifuged at 4° C. and 15,000 rpm for 10 minutes, and the supernatant was collected.
  • HEPES Lysis Buffer
  • wash Buffer HEPES (10 mM) pH 7.5, NaCl (150 mM), 0.1% Triton-X), anti-Flag-M2 antibody (Sigma-Aldrich, F1804, 1:800 dilution) and 30 at room temperature.
  • Dynabeads Protein G (Veritas) reacted for 1 minute was added to the supernatant and incubated for 1 hour at 4° C. with rotary mixing. After washing the beads three times with Wash Buffer, 120 ⁇ l of Elution Buffer was added, mixed, and incubated at 4° C.
  • the miRNA was then purified from the immunoprecipitate using the mirVanaTM miRNA Isolation Kit (final volume 50 ⁇ l).
  • a reverse transcription reaction was performed using 5 ⁇ l of miRNA solution, TaqManTM MicroRNA Reverse Transcription Kit (Thermo Fisher) and TaqManTM MicroRNA Assays (Thermo Fisher) to prepare cDNA.
  • qPCR was performed using TaqManTM Universal Master Mix II, no UNG (Thermo Fisher) TaqManTM MicroRNA Assays (Thermo Fisher) to quantify miRNA-let7a-5p cDNA.
  • the level of miRNA was a relative value when the amount of miRNA in the immunoprecipitate sample prepared from EGFP-expressing cells was set to 1.
  • miRNA-let7a-5p in the extracellular vesicle solution was purified and quantified by the same procedure as in 2 above.
  • the level of miRNA was a relative value when the amount of miRNA in the extracellular vesicle solution prepared from untransfected cells was set to 1.
  • miR-210 in the cell solution and extracellular vesicle solution was purified and quantified by the same procedure as in 2 above.
  • Cell solutions and extracellular vesicle fractions obtained from HEK293T cells without transfection but with medium exchange were used as controls.
  • miR-1303 which has not been reported to be associated with hypoxia, was similarly purified and quantified.
  • the quantification results of miR-210 in cells are shown in FIG. 12, and the quantification results of miR-210 in cells are shown in FIG.
  • asterisks indicate p-values by one-way ANOVA with Tukey post-hoc test (**p ⁇ 0.01). Error bars indicate standard deviation.
  • CoCl 2 treatment increased the expression level of miR-210 and did not significantly change the expression level of miR-1303. Also, the expression of either miRNA was not affected by co-expression of EPN-01 and MID-PIWI-Vpr.
  • FIG. 14 shows the quantification results of miR-210 normalized based on the quantification results of miR-1303.
  • asterisks indicate p-values by Student's t-test (***p ⁇ 0.001). Error bars indicate standard deviation. Extracellular vesicle fractions from control cells showed no significant increase in miR-210 abundance with CoCl 2 treatment.
  • EPN-01/MID-PIWI-Vpr co-expression increases extracellular vesicle size and production>
  • HEK293T cells co-expressing EPN-01 and Flag-MID-PIWI-Vpr and HEK293T cells co-expressing EPN-01 and EGFP were prepared and cultured by sucrose cushion centrifugation. An extracellular vesicle fraction was obtained from the supernatant. Non-transfected HEK293T cells were used as controls.
  • Nanoparticle tracking analysis (NTA) was performed under the following conditions using Nanosite NS300 (Malvern Panalytical). Camera level was set to 16 for all recordings.
  • the extracellular vesicle fraction was diluted 1:100 to 1:1000 with PBS to prepare a measurement sample having a particle number of 1 ⁇ 10 8 to 1 ⁇ 10 9 /ml.
  • the camera focus was adjusted so that the particles appeared as sharp individual dots.
  • Five 60-second images were recorded for each measured sample. All post-acquisition functions were set to automatic except the detection threshold was set to 8.
  • Fig. 15 shows the particle size distribution and concentration of extracellular vesicles. Error bars indicate standard error.
  • Both HEK293T cells co-expressing EPN-01 and Flag-MID-PIWI-Vpr and HEK293T cells co-expressing EPN-01 and EGFP had increased numbers of extracellular vesicles over non-transfected HEK293T cells.
  • HEK293T cells co-expressing EPN-01 and Flag-MID-PIWI-Vpr and HEK293T cells co-expressing EPN-01 and EGFP had similar trends in the size distribution of extracellular vesicles.
  • Fig. 16 shows the average particle size of extracellular vesicles.
  • asterisks (*) indicate p-values by one-way ANOVA with Tukey post-hoc test (**p ⁇ 0.01). Error bars indicate standard error.
  • Both HEK293T cells co-expressing EPN-01 and Flag-MID-PIWI-Vpr and HEK293T cells co-expressing EPN-01 and EGFP tended to increase the size of extracellular vesicles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(1)miRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を細胞に導入するステップと、ここで、前記miRNA結合タンパク質が、アルゴノートタンパク質のMIDおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含み、かつ、前記小胞形成タンパク質が、パルミトイル化/ミリストイル化シグナルまたはPHドメイン、自己集合性ドメイン、ESCRTまたはESCRT関連因子結合ドメインおよびGag p6ドメインを含み、これにより、miRNAを含むエクソソーム様小胞が産生され、(2)前記細胞の細胞外液を回収するステップと、(3)前記細胞外液からmiRNAを抽出するステップとを含む、細胞から非侵襲的にmiRNAを取得する方法を提供する。

Description

細胞から非侵襲的にマイクロRNAを取得する方法
 本発明は、細胞から非侵襲的にマイクロRNAを取得する方法に関する。
 マイクロRNA(miRNA)は、約22塩基長の小さな一本鎖ノンコーディングRNAであり、mRNAと相互作用することにより、mRNAの発現を制御する。miRNAは、細胞の増殖、分化、アポトーシス、がんを含む様々な疾患の発症や病態など、種々の生物学的プロセスに関連していることが明らかにされており、細胞の状態を反映するバイオマーカーとなる可能性が報告されている(非特許文献1)。miRNAは、細胞から分泌されたエクソソームに包含されて血液や尿などの体液中に存在していることから、体液中のmiRNAを検出および定量することにより疾患を非侵襲的に診断するリキッドバイオプシーに注目が集まっている。また、miRNAは様々な疾患の発症や病態と密接に関わっていることから、miRNAを含有するエクソソームは、核酸医薬としても期待されている。
 しかし、エクソソームは細胞質を取り込んで形成されるため、miRNAは、細胞質における濃度でしかエクソソームに含有されない。そのため、エクソソームに含有されるmiRNAは極めて微量であり、高精度での診断や医薬品の開発のために十分な量のmiRNAを取得することには困難が存在する。
 近年、人工的に設計された自己集合性タンパク質ナノケージを用いて、エクソソーム様の細胞外小胞の産生を誘導する方法が提案された(特許文献1、非特許文献2)。この方法によれば、細胞内で発現させた目的の組換えタンパク質を含有するエクソソーム様小胞を得ることができる。しかし、この細胞外小胞もエクソソームと同様に細胞質を取り込んで形成されるものであるため、細胞質においてそもそも存在量が少ないmiRNAを取得することは依然として困難である。
国際公開第2016/138525号
Liang,Y. et al.,Journal of Extracellular Vesicles,(2019),9(1):1697583,DOI:10.1080/20013078.2019.1697583 Votteler,J. et al.,Nature,(2016),540(7632):292-295,DOI:10.1038/nature20607
 本発明は、より多くのmiRNAを細胞から非侵襲的に取得する方法を提供することを目的としてなされたものである。
 発明者は、エクソソーム様小胞に包含され得る大きさのmiRNA結合タンパク質を新規に設計することにより、miRNAの収量を増加させることに成功した。
 すなわち、本発明は、一実施形態によれば、(1)マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を細胞に導入するステップと、ここで、前記マイクロRNA結合タンパク質が、アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含み、かつ、前記小胞形成タンパク質が、パルミトイル化もしくはミリストイル化シグナルまたはプレクストリン相同ドメイン、自己集合性ドメイン、ESCRTまたはESCRT関連因子結合ドメインおよびGag p6ドメインを含み、これにより、マイクロRNAを含むエクソソーム様小胞が産生され、(2)前記細胞の細胞外液を回収するステップと、(3)前記細胞外液からマイクロRNAを抽出するステップとを含む、細胞から非侵襲的にマイクロRNAを取得する方法を提供するものである。
 前記マイクロRNA結合タンパク質は、配列番号1のアミノ酸配列と少なくとも90%同一のアミノ酸配列を含むことが好ましい。
 前記小胞形成タンパク質は、配列番号2~6からなる群から選択されるアミノ酸配列と少なくとも90%同一のアミノ酸配列を含むことが好ましい。
 前記細胞はインビトロの細胞であってよく、前記細胞外液が培養上清液であってよい。
 前記細胞はインビボの細胞であってよく、前記細胞外液が生体液であってよい。
 また、本発明は、一実施形態によれば、(a)マイクロRNA、(b)アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含むマイクロRNA結合タンパク質、ならびに(c)配列番号2~6からなる群から選択されるアミノ酸配列と少なくとも90%同一のアミノ酸配列を含む小胞形成タンパク質により構成されるナノケージを含んでなるエクソソーム様小胞を提供するものである。
 前記エクソソーム様小胞は、(d)膜融合タンパク質をさらに含むことが好ましい。
 本発明に係る方法によれば、miRNAを高濃度で含む細胞外液を取得することができる。そのため、本発明に係る方法は、従来のエクソソームを利用したmiRNA解析と同様に非侵襲的に、かつ、それよりも高精度かつ高感度でのmiRNA解析を可能とする。また、本発明に係るエクソソーム様小胞は、高濃度のmiRNAを含み、核酸医薬の開発に有用である。
図1は、各種アルゴノートタンパク質変異体のドメイン構造を示す模式図である。 図2は、細胞および細胞外小胞に含有される各種アルゴノートタンパク質変異体を確認したウェスタンブロット解析の結果を示す図である。 図3は、抗Flag抗体によるFlag-Ago2-FL-VprまたはFlag-MID-PIWI-Vprの免疫沈降の結果を示す図である。 図4は、Flag-Ago2-FL-VprまたはFlag-MID-PIWI-Vprと共沈降したmiRNA-let7a-5pの相対定量値を示すグラフである。 図5は、細胞および細胞外小胞に含有されるFlag-Ago2-FL-VprまたはFlag-MID-PIWI-Vprを確認したウェスタンブロット解析の結果を示す図である。 図6は、Flag-Ago2-FL-VprまたはFlag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞から得られた細胞外小胞画分におけるmiRNA-let7a-5pの相対定量値を示すグラフである。 図7は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞から得られた細胞外小胞画分におけるmiR-92a-3pの相対定量値を示すグラフである。 図8は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞から得られた細胞外小胞画分におけるmiR-191-5pの相対定量値を示すグラフである。 図9は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞から得られた細胞外小胞画分におけるmiR-126-5pの相対定量値を示すグラフである。 図10は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞から得られた細胞外小胞画分におけるmiR-10b-5pの相対定量値を示すグラフである。 図11は、CoCl処理によるHIF1α、EPN-01およびMID-PIWI-Vprの発現量の変化を確認したウェスタンブロット解析の結果を示す図である。 図12は、Flag-MID-PIWI-VprおよびEPN-01をトランスフェクトされたまたはトランスフェクトされていないHEK293T細胞におけるmiR-210の発現量のCoCl処理による変化を示すグラフである。 図13は、Flag-MID-PIWI-VprおよびEPN-01をトランスフェクトされたまたはトランスフェクトされていないHEK293T細胞におけるmiR-1303の発現量のCoCl処理による変化を示すグラフである。 図14は、Flag-MID-PIWI-VprおよびEPN-01をトランスフェクトされたまたはトランスフェクトされていないHEK293T細胞から得られた外小胞画分におけるmiR-210の含有量のCoCl処理による変化を示すグラフである。 図15は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞、EGFPおよびEPN-01を共発現するHEK293T細胞、またはトランスフェクトされていないHEK293T細胞から得られた細胞外小胞画分における小胞濃度および粒径分布を示すグラフである。 図16は、Flag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞、EGFPおよびEPN-01を共発現するHEK293T細胞、またはトランスフェクトされていないHEK293T細胞から得られた細胞外小胞の粒径(平均値)を示すグラフである。
 以下、本発明を詳細に説明するが、本発明は本明細書中に説明した実施形態に限定されるものではない。
 本発明は、第一の実施形態によれば、(1)マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を細胞に導入するステップと、ここで、前記マイクロRNA結合タンパク質が、アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含み、かつ、前記小胞形成タンパク質が、パルミトイル化もしくはミリストイル化シグナルまたはプレクストリン相同ドメイン、自己集合性ドメイン、ESCRTまたはESCRT関連因子結合ドメインおよびGag p6ドメインを含み、これにより、マイクロRNAを含むエクソソーム様小胞が産生され、(2)前記細胞の細胞外液を回収するステップと、(3)前記細胞外液からマイクロRNAを抽出するステップとを含む、細胞から非侵襲的にマイクロRNAを取得する方法である。
 本実施形態の方法では、マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を細胞に導入する。
 「マイクロRNA」(「miRNA」とも記載する)は、約21~25塩基長の小さな一本鎖ノンコーディングRNAであり、これまでに2万種類以上が同定されている(http://mirbase.org/)。本実施形態におけるmiRNAは、特に限定されず、いかなる細胞において発現する任意のmiRNAであってよい。また、本実施形態におけるmiRNAには、既知のもののみならず、未知のものも含まれ得る。なお、本実施形態におけるmiRNAは、最終産物であるmiRNAを意味し、pri-miRNAやpre-miRNAなどの中間産物を含まない。
 本実施形態における「細胞」の種類は特に限定されず、例えば、樹状細胞、T細胞、B細胞、神経細胞、幹細胞、がん細胞、それらに由来する初代培養細胞または株化細胞などであってよい。すなわち、本実施形態における細胞は、インビボまたはインビトロのいずれのものであってもよい。また、細胞が由来する生物も特に限定されず、任意の脊椎動物であってよいが、好ましくは、マウス、ラット、ウサギ、ブタ、ウシ、ヤギ、サル、ヒトなどの哺乳動物であり、特に好ましくはヒトである。
 本実施形態における「マイクロRNA結合タンパク質」は、アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分と、ウイルスタンパク質Rからなる第2の部分とを含んでなる。
 「アルゴノートタンパク質」(以下、「Ago」とも記載する)とは、miRNAと結合してRNA誘導サイレンシング複合体(RISC)を形成するタンパク質であり、Nドメイン、PAZドメイン、MIDドメインおよびPIWIドメインの4つの特徴的なドメインと、2つのリンカードメイン(L1、L2)とから構成される。本実施形態において用いられるAgoのMIDドメインおよびPIWIドメインは、Agoファミリーの任意のタンパク質に由来するものであってよいが、好ましくはAgo1、Ago2、Ago3またはAgo4由来であり、特に好ましくはAgo2由来である。また、本実施形態において用いられるAgoのMIDドメインおよびPIWIドメインは、任意の脊椎動物由来のものであってよいが、好ましくは哺乳動物由来であり、特に好ましくはヒト由来である。ヒトAgo2のアミノ酸配列(配列番号7)を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 
 「ウイルスタンパク質R」(以下、「Vpr」とも記載する)とは、ヒト免疫不全ウイルス(HIV)やサル免疫不全ウイルス(SIV)などの霊長類免疫不全ウイルスに特異的なアクセサリータンパク質の1種であり、当該ウイルスの構造タンパク質Gagのp6ドメインと相互作用する。本実施形態において用いられるVprは、任意の霊長類免疫不全ウイルスに由来するものであってよいが、好ましくはHIV由来であり、特に好ましくはHIV-1由来である。HIV-1 Vprのアミノ酸配列(配列番号8)を以下に示す。
Figure JPOXMLDOC01-appb-C000002
 
 AgoおよびVprのアミノ酸配列ならびにそれらをコードする核酸配列情報は、所定のデータベースから入手することができる。例えば、ヒトAgo2であればNP_036286.2(GenBank)、NM_012154.5(GenBank)が利用可能である。HIV-1 Vprであれば、NP_057852.2(GenBank)、NC_001802(GenBank)(5105~5396)が利用可能である。
 本実施形態におけるマイクロRNA結合タンパク質は、ヒトAgo2のMIDドメインおよびPIWIドメインならびにHIV-1由来のVprからなるアミノ酸配列(配列番号1)を含むことが最も好ましい。
 マイクロRNA結合タンパク質(配列番号1)
Figure JPOXMLDOC01-appb-C000003
 
 本実施形態におけるマイクロRNA結合タンパク質には、AgoのMIDドメインおよびPIWIドメインと同等のmiRNAへの結合活性ならびにVprと同等のGagのp6ドメインへの結合活性が維持されていることを限度として、データベースに登録されているAgoのMIDドメインおよびPIWIドメインならびにVprのアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは約95%以上の同一性を有するアミノ酸配列からなるタンパク質が包含され得る。アミノ酸配列の同一性は、配列解析ソフトウェアを用いて、または、当分野で慣用のプログラム(FASTA、BLASTなど)を用いて算出することができる。
 本実施形態における「小胞形成タンパク質」は、パルミトイル化もしくはミリストイル化シグナルまたはプレクストリン相同(PH)ドメイン、自己集合性ドメイン、ESCRTまたはESCRT関連因子結合ドメインおよびGag p6ドメインを含む。本実施形態において用いることができる小胞形成タンパク質は、例えば、国際公開第2016/138525号において、Enveloped Protein Nanocage(EPN)として開示されており、具体的には、EPN-01(配列番号2)、EPN-03(配列番号3)、EPN-07(配列番号4)、EPN-08(配列番号5)、EPN-18(配列番号6)などが挙げられるが、これらに限定されない。本実施形態における小胞形成タンパク質は、好ましくはEPN-01(配列番号2)である。
 EPN-01(配列番号2)
Figure JPOXMLDOC01-appb-C000004
 
 EPN-03(配列番号3)
Figure JPOXMLDOC01-appb-C000005
 
 EPN-07(配列番号4)
Figure JPOXMLDOC01-appb-C000006
 
 EPN-08(配列番号5)
Figure JPOXMLDOC01-appb-C000007
 
 EPN-018(配列番号6)
Figure JPOXMLDOC01-appb-C000008
 
 本実施形態における小胞形成タンパク質には、EPNサブユニットと同等の活性が維持されている(すなわち、自己集合によりナノケージを形成し、細胞外小胞を構成する)ことを限度として、上記公開公報に開示されたEPNサブユニットのアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは約95%以上の同一性を有するアミノ酸配列からなるタンパク質が包含され得る。
 本実施形態におけるマイクロRNA結合タンパク質および小胞形成タンパク質は、そのN末端および/またはC末端に、Myc、HA、FLAGなどのエピトープタグが付加されていてもよい。
 マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸は、上記にしたがって設計された配列を元に、従来公知の任意の遺伝子工学的方法により調製することができる。また、それらの核酸は、当分野において周知の方法により細胞に導入されてよく、例えば、それらの核酸を発現ベクターにクローニングして、細胞に導入すればよい。発現ベクターの種類は、特に限定されず、ウイルスベクターまたは非ウイルスベクターのいずれであってもよく、例えば、ヘルペスウイルスベクター、アデノウイルスベクター、レンチウイルスベクター、レトロウイルスベクターなどのウイルスベクター や、pCMV、pCAGなどのプラスミドベクターなどであってよい。
 細胞においてマイクロRNA結合タンパク質および小胞形成タンパク質が発現されると、小胞形成タンパク質により構成されるナノケージ中にマイクロRNA結合タンパク質-miRNA複合体が格納され、エクソソーム様小胞が形成されて細胞外に放出される。本実施形態における「エクソソーム様小胞」とは、ナノスケールの細胞外小胞であって、その構造および組成がエクソソームと類似するものをいう。
 次いで、上記細胞の細胞外液を回収する。細胞がインビトロの細胞であれば、細胞外液は培養上清液であってよく、細胞がインビボの細胞であれば、細胞外液は生体液であってよい。生体液としては、例えば、血液、血漿、血清、唾液、尿などが挙げられるが、これらに限定されない。
 次いで、細胞外液からmiRNAを抽出する。miRNAはすでに確立された手順により抽出することができ、例えば、超遠心分離により細胞外小胞を回収し、ブーム法などの精製方法によりmiRNAを単離することができる。ブーム法に基づくmiRNA抽出キットは多数市販されており、本実施形態の方法では、そのような市販品を使用することもできる。例えば、High Pure miRNA Isolation Kit(ロシュ・ダイアグノスティックス)、miRNeasy Mini Kit(キアゲン)、mirVana(商標)miRNA Isolation Kit(サーモフィッシャーサイエンティフィック)などが好ましい市販品として挙げられる。
 本実施形態の方法は、miRNAを高濃度に含む細胞外液を取得することができ、非侵襲的、高精度かつ高感度での診断を可能とする。
 本発明は、第二の実施形態によれば、(a)マイクロRNA、(b)アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含むマイクロRNA結合タンパク質、ならびに(c)配列番号2~6からなる群から選択されるアミノ酸配列と少なくとも90%同一のアミノ酸配列を含む小胞形成タンパク質により構成されるナノケージを含んでなるエクソソーム様小胞である。
 本実施形態における「エクソソーム様小胞」、「マイクロRNA」、「アルゴノートタンパク質」、「ウイルスタンパク質R」、「マイクロRNA結合タンパク質」、「小胞形成タンパク質」は、第一の実施形態で定義したものと同様である。
 本実施形態のエクソソーム様小胞は、(d)膜融合タンパク質をさらに含むことができる。「膜融合タンパク質」とは、同種または異種の細胞または膜小胞間の融合を引き起こすタンパク質を意味する。本実施形態における膜融合タンパク質は、特に限定されないが、好ましくはエンベロープウイルス由来の膜融合タンパク質であり、例えば、水疱性口内炎ウイルスGタンパク質(VSV-G)、単純ヘルペスウイルス糖タンパク質B(gB)およびそれらの組換え体などが挙げられる。
 本実施形態のエクソソーム様小胞は、第一の実施形態の方法の手順により、マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を導入した細胞の細胞外液から取得することができる。
 本実施形態のエクソソーム様小胞は、天然のエクソソームよりも高濃度でmiRNAを含むことができる。そのため、疾患の診断や核酸医薬の開発に有用である。
 以下に実施例を挙げ、本発明についてさらに説明する。なお、これらは本発明を何ら限定するものではない。
<1.細胞外小胞に格納されるアルゴノートタンパク質変異体の探索>
 本実施例では、小胞形成タンパク質としてEPN-01(配列番号2)を用い、アルゴノートタンパク質としてヒトAgo2を用いた。EPN-01により形成されるナノケージは直径20nmであり、全長Ago2がそれに内包されることは難しいことが想定されたため、Ago2からサイズの異なる変異体を調製し、それらがナノケージに内包され得るかどうかを試験した。
 Ago2の全長(アミノ酸番号1~860)、Ago2のPAZドメイン~PIWIドメイン(アミノ酸番号227~860)、L2ドメイン~PIWIドメイン(アミノ酸番号347~860)、およびMIDドメイン~PIWIドメイン(アミノ酸番号446~860)のN末端にFLAGタグ、C末端にHIV-1由来のVpr(配列番号1)を付加したAgo2変異体(それぞれ、Flag-Ago2-FL-Vpr、Flag-PAZ-PIWI-Vpr、Flag-L2-PIWI-Vpr、およびFlag-MID-PIWI-Vpr。図1)の発現ベクターを、以下の手順により調製した。
 VectorBuilder社に合成を依頼して、EPN-01およびMyc-EGFP-Vprをコードする配列を含むプラスミドVB200705-1156knk(配列番号9)を合成した。VB200705-1156knkを鋳型として、以下のプライマー1および2を用いたインバースPCRを実施した。得られた増幅産物をEcoRIサイトで切断し、ライゲーションすることにより、pRP-Myc-EGFP-Vprを得た。N末端にFlagタグが付加された全長ヒトAgo2をコードする配列を含むプラスミドpcDNA3.2-5’F-Ago2を鋳型として、以下のプライマー3および4を用いたPCRを実施した。得られた増幅産物を、In FusionクローニングによりpRP-Myc-EGFP-VprのXbaIサイトに挿入し、Flag-Ago2-FL-Vprをコードする配列を含むプラスミドpRP-Flag-Ago2-FL-Vprを得た。pRP-Flag-Ago2-FL-Vprを鋳型として、以下のプライマー5および6を用いたPCRを実施した。得られた増幅産物を、In FusionクローニングによりpEGFP-C2(クロンテック)のNheI/HindIIIサイトに挿入し、pCMV-Flag-Ago2-FL-Vprを得た。
 pcDNA3.2-5’F-Ago2を鋳型として、以下のプライマー7および10、8および10、または9および10を用いたPCRを実施した。得られた増幅産物を、In FusionクローニングによりpCMV-Flag-Ago2-FL-VprのNheI/XbaIサイトに挿入し、pCMV-Flag-PAZ-PIWI-Vpr、pCMV-Flag-L2-PIWI-Vpr、およびpCMV-Flag-MID-PIWI-Vprを得た。
 表1.Ago2変異体発現ベクター作製のためのプライマーセット
Figure JPOXMLDOC01-appb-T000009
 
 上記により調製されたプラスミドベクターから発現されるFlag-アルゴノートタンパク質変異体-Vprのアミノ酸配列を以下に示す。
 Flag-Ago2-FL-Vpr(配列番号23)
Figure JPOXMLDOC01-appb-C000010
 
 Flag-PAZ-PIWI-Vpr(配列番号24)
Figure JPOXMLDOC01-appb-C000011
 
 Flag-L2-PIWI-Vpr(配列番号25)
Figure JPOXMLDOC01-appb-C000012
 
 Flag-MID-PIWI-Vpr(配列番号26)
Figure JPOXMLDOC01-appb-C000013
 
 EPN-01の発現ベクターを作製するためには、VB200705-1156knk(配列番号9)を鋳型として、以下のプライマー11および12を用いたインバースPCRを実施した。得られた増幅産物をKpnIサイトで切断し、ライゲーションすることにより、pRP-EPN-01を得た。pRP-EPN-01を鋳型として、上記プライマー6および以下のプライマー13を用いたPCRを実施した。得られた増幅産物を、In FusionクローニングによりpEGFP-C2のNheI/HindIIIサイトに挿入し、pCMV-EPN-01を得た。
 表2.Ago2変異体発現ベクター作製のためのプライマーセット
Figure JPOXMLDOC01-appb-T000014
 
 10cmディッシュにHEK293T細胞(ATCC)を播種した。翌日、各Ago2変異体発現ベクター(5μg)およびEPN-01発現ベクター(10μg)をLipofectamine2000(Thermo Fisher Scientific)によりトランスフェクションし、6時間後に新しい培地10mlに交換した。トランスフェクションから24時間後に培地を回収し、4℃、200×gで5分間、4℃、1,000×gで5分間、4℃、10,000×gで30分間遠心分離を行い、上清を回収した。2mlの20%スクロース溶液を超遠心チューブに入れ、その上に上清を重層し、4℃、100,000×gで90分間超遠心分離を行った。その後、上清を捨て、PBSにより静かに洗浄した。液体を除去後、100μlの1×SDSサンプルバッファー(Tris-HCl(62.5mM)、pH6.8、20%グリセロール、2%SDS、2.5%2-メルカプトエタノール)をチューブの壁面に触れないように底に加え、ペレットを溶解し、細胞外小胞溶液を得た。得られた溶液を-80℃で保存した。一方、培地回収後のHEK293T細胞をPBSにより洗浄、回収し、1/5量を200μlの1×SDSサンプルバッファーに溶解し、細胞溶液を得た。
 細胞外小胞溶液および細胞溶液をSDS-PAGE(10%アクリルアミドゲル)に供し、電気泳動後、PDVF膜にタンパク質を転写した。転写後のPDVF膜を3.5%スキムミルクで30分間ブロッキングし、TBS-T(Tris-HCl(25mM)、NaCl(150mM)、0.1%Tween20)で3回(計30分)洗浄後、一次抗体溶液中、4℃で一晩インキュベートした。一次抗体溶液を除去し、TBS-Tで3回(計30分)洗浄後、二次抗体溶液中、室温で1時間インキュベートした。二次抗体溶液を除去し、TBS-Tで3回(計30分)洗浄後、ImmunoStar LD(Wako)を用いて検出反応を行い、LAS3000(FUJIFILM)により検出した。一次抗体には、抗c-Myc抗体(anti-c-myc from mouse IgG1κ[9E10](11667203001、Roche)(1:1000希釈));抗Flag抗体(Monoclonal ANTI-FLAG(商標)M2 antibody produced in mouse(F3165、Sigma-Aldrich)(1:1000希釈));および抗βアクチン抗体(β-Actin(13E5)Rabbit mAb(#4970、Cell Signaling Technology)(1:1000希釈))を用いた。二次抗体には、ECL(商標)anti-rabbit IgG(NA9340V、GE)(1:2000希釈)およびECL(商標)anti-mouse IgG(NA9310V、GE)(1:2000希釈)を用いた。
 結果を図2に示す。これ以降、図中、「Cell」は細胞溶液、「Release」は細胞外小胞溶液の結果を示す。細胞溶液においては全長Ago2およびすべてのAgo2変異体の発現が認められたが、細胞外小胞溶液からは、MID-PIWI-Vpr変異体のみが検出された。この結果から、MID-PIWI-Vpr変異体のみがEPN-01ナノケージに取り込まれ得ることが確認された。
<2.MID-PIWI-Vpr変異体のmiRNA結合活性>
 次に、MID-PIWI-Vpr変異体のmiRNA結合活性を調べるために、上記1と同様の手順により、HEK293T細胞に全長Ago2(Flag-Ago2-FL-Vpr)またはFlag-MID-PIWI-Vprを発現させた。対照には、Ago2変異体に代えてEGFPを発現させた。トランスフェクションから24時間後、細胞をPBSで1回洗浄し、Lysis Buffer(HEPES(20mM)、pH7.5、NaCl(150mM)、NaF(50mM)、NaVO(1mM)、1%Digitonin、フッ化フェニルメチルスルホニル(1mM)、Leupeptin(5μg/ml)、Aprotinin(5μg/ml)、Pepstatin A(3μg/ml))を1mL加えた。細胞溶解物をスクレーパーにより回収し、4℃、15,000rpmで10分間遠心分離を行い、上清を回収した。上清から50μlを分取し、2×SDSサンプルバッファーを50μl加えたものを、免疫沈降前の細胞溶液サンプルとした。予めWash Buffer(HEPES(10mM)pH7.5、NaCl(150mM)、0.1%Triton-X)で洗浄を行い、抗Flag-M2抗体(シグマアルドリッチ、F1804、1:800希釈)と室温で30分間反応させたDynabeads Protein G(ベリタス)を上清に加え、4℃で1時間、回転混和させながらインキュベートした。ビーズをWash Bufferで3回洗浄後、Elution Bufferを120μl加えて混合し、4℃で5分間インキュベートした。その後、上清100μlを回収し、2×SDSサンプルバッファーを100μl加えたものを免疫沈降物サンプルとした。免疫沈降前の細胞溶液(図3、「Input」)および免疫沈降物(図3、「IP:Flag」)について、上記1と同様の手順によりウェスタンブロッティングを行い、Flag-Ago2-FL-VprおよびFlag-MID-PIWI-Vpr変異体が免疫沈降されたことを確認した(図3)。
 次いで、mirVana(商標)miRNA Isolation Kitを用いて免疫沈降物からmiRNAを精製した(最終量50μl)。5μlのmiRNA溶液と、TaqMan(商標)MicroRNA Reverse Transcription Kit(Thermo Fisher)およびTaqMan(商標)MicroRNA Assays(Thermo Fisher)を用いて逆転写反応を行い、cDNAを調製した。さらに、TaqMan(商標)Universal Master Mix II, no UNG(Thermo Fisher)TaqMan(商標)MicroRNA Assays(Thermo Fisher)を用いてqPCRを行い、miRNA-let7a-5pのcDNAを定量した。miRNAのレベルは、EGFP発現細胞から調製された免疫沈降物サンプル中のmiRNA量を1とした場合の相対値とした。
 結果を図4に示す。図中、アスタリスク(*)はTukey事後検定を伴う一元配置ANOVAによるp値を示す(**p<0.01)。エラーバーは標準偏差を示す。Flag-MID-PIWI-Vprと共沈降したmiRNA-let7a-5p量は、Flag-Ago2-FL-Vprと共沈降したmiRNA-let7a-5p量に比べて減少したが、陰性対照であるEGFPに比べて有意に多かった。この結果から、MID-PIWI-Vpr変異体がmiRNA-let7a-5pと結合することが示された。
<3.EPN-01/MID-PIWI-Vpr変異体含有細胞外小胞におけるmiRNA-let7a-5p量>
 上記1と同様の手順により、全長Ago2(Flag-Ago2-FL-Vpr)またはFlag-MID-PIWI-VprおよびEPN-01を共発現するHEK293T細胞を調製し、細胞溶液および細胞外小胞溶液についてウェスタンブロッティングを行い、タンパク質の発現を確認した(図5)。図2の結果と同様、細胞外小胞溶液からはMID-PIWI-Vpr変異体のみが検出された。
 次いで、上記2と同様の手順により、細胞外小胞溶液中のmiRNA-let7a-5pを精製し、定量した。miRNAのレベルは、トランスフェクションを行わなかった細胞から調製された細胞外小胞溶液中のmiRNA量を1とした場合の相対値とした。
 結果を図6に示す。図中、アスタリスク(*)はTukey事後検定を伴う一元配置ANOVAによるp値を示す(**p<0.01)。エラーバーは標準偏差を示す。EPN-01およびFlag-MID-PIWI-Vprを共発現させたHEK293T細胞から得られた細胞外小胞溶液からのmiRNA-let7a-5pの収量が大きく増加した。一方、EPN-01およびFlag-Ago2-FL-Vprを共発現させても、EPN-01およびEGFPを共発現させた陰性対照と比較して、miRNA-let7a-5pの収量に有意な増加は見られなかった。この結果から、EPN-01およびMID-PIWI-Vpr変異体を共発現させることにより、細胞外小胞画分におけるmiRNA-let7a-5pを増加させることができることが示された。
<4.EPN-01/MID-PIWI-Vpr変異体含有細胞外小胞におけるmiRNAの種類および量>
 次世代シークエンシングsmall RNA-seqを用いて、EPN-01およびFlag-MID-PIWI-Vprを共発現させたHEK293T細胞から得られた細胞外小胞画分に存在するmiRNAを網羅的に同定した。トランスフェクションを行わず培地交換のみを行ったHEK293T細胞から得られた細胞外小胞画分を対照とした。その結果、対照の細胞外小胞画分からは186種類、EPN-01/MID-PIWI-Vpr共発現細胞の細胞外小胞画分からは323種類のmiRNAが同定された。145種類のmiRNAが両者の細胞外小胞画分に共通して存在し、41種類のmiRNAが対照の細胞外小胞画分のみに存在し、178種類のmiRNAがEPN-01/MID-PIWI-Vpr共発現細胞の細胞外小胞画分のみに存在した。この結果から、miRNAがEPN-01/MID-PIWI-Vprの共発現により、細胞外小胞画分から検出可能なmiRNAの種類が増加することが確認された。
 次いで、対照およびEPN-01/MID-PIWI-Vpr共発現細胞の細胞外小胞画分に共通して多く検出されたmiR-92a-3p、miR-191-5pおよびmiR-126-5pについて、上記2と同様の手順によりRT-qPCRにより定量した。結果を図7~9に示す。図中、アスタリスク(*)はスチューデントt検定によるp値を示す(***p<0.001)。エラーバーは標準偏差を示す。いずれのmiRNAも、EPN-01/MID-PIWI-Vprの共発現により収量が増加したことが確認された。
 さらに、small RNA-seq解析においてEPN-01/MID-PIWI-Vpr共発現細胞の細胞外小胞画分のみに存在が確認されたmiR-10b-5pについての結果を図10に示す。図中、アスタリスク(*)はスチューデントt検定によるp値を示す(***p<0.001)。エラーバーは標準偏差を示す。RT-qPCRでは、対照の細胞外小胞画分にもmiR-10b-5pが存在することが確認された一方、EPN-01/MID-PIWI-Vpr共発現細胞の細胞外小胞画分には、その8倍以上のmiR-10b-5pが存在することが確認された。
 以上の結果から、EPN-01およびMID-PIWI-Vpr変異体を共発現させることにより、細胞外小胞画分に含まれる幅広い種類のmiRNAの量を増加させることができ、通常のエクソソームからは検出できない微量のmiRNAについても解析することができる可能性が示された。
<5.EPN-01/MID-PIWI-Vpr変異体含有細胞外小胞を用いた細胞の非破壊的解析>
 miR-210は、低酸素状態で発現が強く誘導されることが知られている。よく研究されている低酸素シグナル伝達経路の1つは、低酸素誘導因子(HIF)によって制御される。正常酸素状態では、HIF1αは水酸化され、E3リガーゼと結合してプロテアソームにより分解されるが、一方、低酸素状態ではHIF1αは安定化されており、分解されることなく核内に移行し、HIF1βと二量体を形成し、miR-210を含む標的遺伝子の転写を促進する(Genes Dev. 2004 Sep 15;18(18):2183-94. doi: 10.1101/gad.1243304.、Mol Cell. 2009 Sep 24;35(6):856-67. doi: 10.1016/j.molcel.2009.09.006.)。
 MID-PIWI-Vpr発現ベクターおよびEPN-01発現ベクターのトランスフェクションの6時間後に、CoCl(50μM)を添加し、低酸素状態を誘導した以外は、上記1と同様の手順により、細胞溶液および細胞外小胞溶液についてウェスタンブロッティングを行い、タンパク質の発現を確認した。HIF1αの検出には、抗HIF-1α抗体[EP1215Y](Abcam、ab51608、1:1000希釈)を用いた。
 結果を図11に示す。CoCl処理をした細胞では、HIF1αの蓄積がみられた。この結果は、CoCl処理により低酸素状態が引き起こされるとHIF1αが蓄積されるという報告(Biol Res. 2019 Mar 15;52(1):12. doi: 10.1186/s40659-019-0221-z.)と一致する。また、CoCl処理をした細胞では、EPN-01およびMID-PIWI-Vprの発現量の減少がみられ、この結果は、低酸素状態になるとタンパク質の産生が阻害されるという報告(Mol Cell Biol. 2006 May;26(10):3955-65. doi: 10.1128/MCB.26.10.3955-3965.2006.)に合致する。同様に、細胞外小胞画分におけるEPN-01およびMID-PIWI-Vprの収量も減少した。
 次いで、上記2と同様の手順により、細胞溶液および細胞外小胞溶液中のmiR-210を精製し、定量した。トランスフェクションを行わず培地交換のみを行ったHEK293T細胞から得られた細胞溶液および細胞外小胞画分を対照とした。また、比較のために、低酸素状態との関連が報告されていないmiR-1303についても同様に精製し、定量した。
 細胞におけるmiR-210の定量結果を図12に、細胞におけるmiR-210の定量結果を図13に示す。図中、アスタリスク(*)はTukey事後検定を伴う一元配置ANOVAによるp値を示す(**p<0.01)。エラーバーは標準偏差を示す。CoCl処理により、miR-210の発現量は増加し、miR-1303の発現量には有意な変化は見られなかった。また、どちらのmiRNAの発現にも、EPN-01およびMID-PIWI-Vprの共発現による影響は認められなかった。
 上で確認したとおり、CoCl処理により細胞におけるEPN-01およびMID-PIWI-Vprの発現量が減少しており、それにより細胞外小胞およびそれに内包されるmiRNAが減少していることが想定された。そこで、miR-1303の定量結果に基づいて正規化したmiR-210の定量結果を図14に示す。図中、アスタリスク(*)はスチューデントt検定によるp値を示す(***p<0.001)。エラーバーは標準偏差を示す。対照細胞からの細胞外小胞画分では、CoCl処理によるmiR-210量の有意な増加は見られなかった。一方、EPN-01およびMID-PIWI-Vprの共発現細胞からの細胞外小胞画分では、CoCl処理によるmiR-210量の有意な増加が認められた。この結果から、EPN-01およびMID-PIWI-Vprの共発現により、CoCl処理によるmiR-210の発現上昇を高い確度で検出できたことが示された。
 以上の結果から、EPN-01およびMID-PIWI-Vprを細胞に共発現させることにより、細胞を破壊することなく、従来のエクソソームを利用したmiRNA解析よりも高精度かつ高感度でのmiRNA解析が可能になることが示された。
<6.EPN-01/MID-PIWI-Vpr共発現は細胞外小胞のサイズおよび産生量を増加させる>
 上記1と同様の手順により、EPN-01およびFlag-MID-PIWI-Vprを共発現するHEK293T細胞と、EPN-01およびEGFPを共発現するHEK293T細胞を作製し、ショ糖クッション遠心分離により培養上清から細胞外小胞画分を得た。対照には、トランスフェクトされていないHEK293T細胞を用いた。ナノサイトNS300(マルバーンパナリティカル)を用いて、以下の条件によりナノ粒子トラッキング解析(NTA)を実施した。すべての録画についてカメラレベルを16に設定した。細胞外小胞画分をPBSにより1:100~1:1000希釈し、1×10~1×10/mlの粒子数になるように測定試料を調製した。粒子が鮮明な個々のドットとして見えるようにカメラの焦点を調整した。各測定試料につき、60秒の影像を5回記録した。検出しきい値を8に設定したことを除き、すべてのデータ取得後機能を自動に設定した。
 細胞外小胞の粒径分布および濃度を図15に示す。エラーバーは標準誤差を示す。EPN-01およびFlag-MID-PIWI-Vprを共発現するHEK293T細胞、EPN-01およびEGFPを共発現するHEK293T細胞ともに、トランスフェクトされていないHEK293T細胞よりも細胞外小胞の数が増加した。また、EPN-01およびFlag-MID-PIWI-Vprを共発現するHEK293T細胞、EPN-01およびEGFPを共発現するHEK293T細胞ともに、細胞外小胞の粒径分布の傾向は同様であった。
 細胞外小胞の粒径の平均値を図16に示す。図中、アスタリスク(*)はTukey事後検定を伴う一元配置ANOVAによるp値を示す(**p<0.01)。エラーバーは標準誤差を示す。EPN-01およびFlag-MID-PIWI-Vprを共発現するHEK293T細胞、EPN-01およびEGFPを共発現するHEK293T細胞ともに、細胞外小胞の粒径が増大する傾向が見られた。
 以上の結果から、EPN-01およびMID-PIWI-Vpr変異体を共発現する細胞からは、通常のエクソソームよりも大きな細胞外小胞を高濃度で取得できることが示された。

Claims (7)

  1.  (1)マイクロRNA結合タンパク質をコードする核酸および小胞形成タンパク質をコードする核酸を細胞に導入するステップと、ここで、前記マイクロRNA結合タンパク質が、アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含み、かつ、前記小胞形成タンパク質が、パルミトイル化もしくはミリストイル化シグナルまたはプレクストリン相同ドメイン、自己集合性ドメイン、ESCRTまたはESCRT関連因子結合ドメインおよびGag p6ドメインを含み、これにより、マイクロRNAを含むエクソソーム様小胞が産生され、
     (2)前記細胞の細胞外液を回収するステップと、
     (3)前記細胞外液からマイクロRNAを抽出するステップと
    を含む、細胞から非侵襲的にマイクロRNAを取得する方法。
  2.  前記マイクロRNA結合タンパク質が、配列番号1のアミノ酸配列と少なくとも90%同一のアミノ酸配列を含む、請求項1に記載の方法。
  3.  前記小胞形成タンパク質が、配列番号2~6からなる群から選択されるアミノ酸配列と少なくとも90%同一のアミノ酸配列を含む、請求項1または2に記載の方法。
  4.  前記細胞がインビトロの細胞であり、前記細胞外液が培養上清液である、請求項1~3のいずれか1項に記載の方法。
  5.  前記細胞がインビボの細胞であり、前記細胞外液が生体液である、請求項1~3のいずれか1項に記載の方法。
  6.  (a)マイクロRNA、
     (b)アルゴノートタンパク質のMIDドメインおよびPIWIドメインからなる第1の部分ならびにウイルスタンパク質Rからなる第2の部分を含むマイクロRNA結合タンパク質、ならびに
     (c)配列番号2~6からなる群から選択されるアミノ酸配列と少なくとも90%同一のアミノ酸配列を含む小胞形成タンパク質により構成されるナノケージ
    を含んでなるエクソソーム様小胞。
  7.  (d)膜融合タンパク質をさらに含む、請求項6に記載のエクソソーム様小胞。
     
PCT/JP2022/023981 2021-07-08 2022-06-15 細胞から非侵襲的にマイクロrnaを取得する方法 WO2023281999A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533488A JPWO2023281999A1 (ja) 2021-07-08 2022-06-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113644 2021-07-08
JP2021113644 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023281999A1 true WO2023281999A1 (ja) 2023-01-12

Family

ID=84800603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023981 WO2023281999A1 (ja) 2021-07-08 2022-06-15 細胞から非侵襲的にマイクロrnaを取得する方法

Country Status (2)

Country Link
JP (1) JPWO2023281999A1 (ja)
WO (1) WO2023281999A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524164A (ja) * 2008-06-06 2011-09-01 サントル・ナシオナル・ドウ・ラ・ルシエルシユ・シアンテイフイク(セー・エヌ・エール・エス) 小分子rnaに基づく治療および診断ならびに小分子rnaの実験的研究におけるエンドリソソーム系および分泌小胞(エキソソーム様)の用途
WO2016138525A1 (en) * 2015-02-27 2016-09-01 University Of Washington Polypeptide assemblies and methods for the production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524164A (ja) * 2008-06-06 2011-09-01 サントル・ナシオナル・ドウ・ラ・ルシエルシユ・シアンテイフイク(セー・エヌ・エール・エス) 小分子rnaに基づく治療および診断ならびに小分子rnaの実験的研究におけるエンドリソソーム系および分泌小胞(エキソソーム様)の用途
WO2016138525A1 (en) * 2015-02-27 2016-09-01 University Of Washington Polypeptide assemblies and methods for the production thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JöRG VOTTELER, CASSANDRA OGOHARA, SUE YI, YANG HSIA, UNA NATTERMANN, DAVID M. BELNAP, NEIL P. KING, WESLEY I. SUNDQUIST: "Designed proteins induce the formation of nanocage-containing extracellular vesicles", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 540, no. 7632, London, pages 292 - 295, XP055524920, ISSN: 0028-0836, DOI: 10.1038/nature20607 *
LIANG YUTING, HUANG SHENG, QIAO LONGWEI, PENG XIA, LI CHONG, LIN KUN, XIE GUOGANG, LI JIA, LIN LIHUI, YIN YUE, LIAO HUANJIN, LI QI: "Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells", JOURNAL OF EXTRACELLULAR VESICLES, TAYLOR & FRANCIS, UK, vol. 9, no. 1, 1 September 2020 (2020-09-01), UK , pages 1697583, XP093022364, ISSN: 2001-3078, DOI: 10.1080/20013078.2019.1697583 *

Also Published As

Publication number Publication date
JPWO2023281999A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
Lopez Sanchez et al. RNA processing in human mitochondria
Coyle et al. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway
Fröhlich et al. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain
Rodger et al. De novo VPS4A mutations cause multisystem disease with abnormal neurodevelopment
Boyle et al. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer‐prone xeroderma pigmentosum vs. non‐cancer‐prone trichothiodystrophy
US20220257794A1 (en) Circular rnas for cellular therapy
JP2023036921A (ja) 蝸牛および前庭細胞に核酸を送達するための物質および方法
Chamontin et al. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus
US20100196993A1 (en) Persistently infective sendai virus vector
JP7221865B2 (ja) 細胞膜透過ペプチドおよびこれを含む細胞内伝達体
WO2022247943A1 (en) Constructs and methods for preparing circular rnas and use thereof
Irie et al. Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles
CN111214663A (zh) Tmed2在作为埃博拉病毒病治疗靶点中的应用
KR20210131309A (ko) 분비형 치료 양식을 운반하기 위한 아넬로좀
WO2023281999A1 (ja) 細胞から非侵襲的にマイクロrnaを取得する方法
Lai et al. Restriction of influenza A virus by SERINC5
US20240060131A1 (en) Method for identifying and/or regulating senescence
JP6986263B2 (ja) 抗ウイルス薬
Wight et al. The N-terminus of murine leukaemia virus p12 protein is required for mature core stability
WO2018168586A1 (ja) ボルナウイルスベクター及びその利用
Duchêne et al. From gRNA Identification to the restoration of dystrophin expression: A dystrophin gene correction strategy for duchenne muscular dystrophy mutations using the crispr-induced deletion method
CN110893240B (zh) Nme2基因在抑制禽呼肠病毒复制中的应用
US20220186228A1 (en) Synthetic microrna mimics
AU2021372533A9 (en) Chicken anemia virus (cav)-based vectors
de la Peña Avalos et al. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18576490

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837417

Country of ref document: EP

Kind code of ref document: A1