WO2023281986A1 - Function component module for refrigeration cycle - Google Patents

Function component module for refrigeration cycle Download PDF

Info

Publication number
WO2023281986A1
WO2023281986A1 PCT/JP2022/023576 JP2022023576W WO2023281986A1 WO 2023281986 A1 WO2023281986 A1 WO 2023281986A1 JP 2022023576 W JP2022023576 W JP 2022023576W WO 2023281986 A1 WO2023281986 A1 WO 2023281986A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
expansion valve
functional product
functional
refrigerant
Prior art date
Application number
PCT/JP2022/023576
Other languages
French (fr)
Japanese (ja)
Inventor
貴郁 松本
豪太 尾形
博登 井上
琢郎 佐原
慎二 橋元
諭 宮野
理功 大内
弘之 川島
繁次 大石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022025576A external-priority patent/JP2023008783A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023281986A1 publication Critical patent/WO2023281986A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a module that integrates functional components of a refrigeration cycle.
  • Patent Document 1 describes a control system that is applied to an automotive air conditioning system.
  • the electronic control portion of the control system controls the electronic expansion valve.
  • the present disclosure aims to reduce the computational load of the electronic control unit and to facilitate ensuring electromagnetic compatibility.
  • a refrigeration cycle functional component module includes a passage forming portion, a plurality of functional components, and a functional component control unit.
  • a refrigerant passage through which the refrigerant of the refrigeration cycle flows is formed in the passage forming portion.
  • a plurality of functional items are attached to the passage forming portion, and operate by being supplied with drive current to perform predetermined functions in the refrigerating cycle.
  • the functional product control unit calculates drive current values to be output to the plurality of functional products based on the target capacity value input from the main control unit that calculates the target capacity of the refrigeration cycle, and drives the plurality of functional products. It outputs current and detects failures of multiple functional products.
  • the number of functional product control units is smaller than the number of functional products.
  • the calculation load of the main control unit can be reduced.
  • the electrical wiring between the functional product control unit and the functional products can be shortened as much as possible.
  • FIG. 1 is a schematic cross-sectional view of a vehicle equipped with a refrigerating cycle functional product module according to a first embodiment
  • FIG. It is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment.
  • 1 is a cross-sectional view showing a refrigerating cycle functional module according to a first embodiment
  • FIG. 4 is a sectional view along IV-IV in FIG. 3
  • 4 is a block diagram showing control processing executed by the functional product control unit of the first embodiment
  • FIG. 4 is a time chart showing an operation example of control processing for preventing liquid refrigerant from returning to the compressor in the first embodiment; 5 is a time chart for explaining a method of determining failure of an expansion valve in the first embodiment; 4 is a time chart showing an operation example of recovery operation in the first embodiment; It is a side view which shows the functional component module for refrigerating cycles of 2nd Embodiment.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG. 9;
  • FIG. 7 is a cross-sectional view showing a functional component module for a refrigerating cycle according to a second embodiment; 12 is an enlarged cross-sectional view of the first expansion valve in FIG. 11;
  • FIG. 12 is a cross-sectional view taken along line XIII-XIII of FIG. 11; 14 is an enlarged cross-sectional view of the first expansion valve in FIG. 13; FIG. 14 is an enlarged cross-sectional view of a third expansion valve in FIG. 13; FIG. It is explanatory drawing explaining the assembly procedure regarding a 1st expansion valve, a 2nd expansion valve, and a 3rd expansion valve among the functional goods modules for refrigerating cycles of 2nd Embodiment.
  • FIG. 17 is a view in the direction of arrow XVII of FIG. 16; FIG. 17 is a view in the direction of arrow XVIII of FIG. 16;
  • FIG. 11 is a cross-sectional view showing a functional component module for a refrigeration cycle in a modified example of the second embodiment;
  • the refrigerating cycle functional product module 70 of this embodiment will be described.
  • the functional product module 70 of this embodiment is applied to a vehicle air conditioner mounted on the electric vehicle 1 shown in FIG. 1 .
  • front and rear arrows indicate front and rear directions of the electric vehicle 1 .
  • the electric vehicle 1 is a vehicle that obtains driving force for running from an electric motor.
  • the vehicle air conditioner air-conditions the interior of the passenger compartment 1a, which is the space to be air-conditioned, and cools the vehicle-mounted equipment. Therefore, the vehicle air conditioner can be called an air conditioner with an in-vehicle equipment cooling function or an in-vehicle equipment cooling equipment with an air conditioning function.
  • the vehicle air conditioner cools the battery 80 .
  • the battery 80 is a secondary battery that stores power to be supplied to a plurality of in-vehicle devices that operate electrically.
  • the battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel.
  • the battery cell of this embodiment is a lithium ion battery.
  • the battery 80 is arranged in the rear part of the vehicle interior 1a.
  • the battery 80 generates heat during operation (that is, during charging and discharging).
  • the battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment). Therefore, in the vehicle air conditioner of this embodiment, the battery 80 is cooled when the temperature of the battery 80 rises.
  • the vehicle air conditioner includes a refrigeration cycle, an indoor air conditioning unit 30, a low temperature side heat medium circuit, a control unit 61 shown in the main drawing 2, and the like.
  • the functional product module 70 is a component that integrates a plurality of components that form a refrigeration cycle and the functional product control unit 62 shown in FIG. 2 .
  • the refrigeration cycle is a vapor compression refrigeration cycle device that adjusts the temperature of the air blown into the compartment 1a, the battery 80, and the low temperature side heat medium circulating in the low temperature side heat medium circuit. Furthermore, the refrigerating cycle uses refrigerant in accordance with various operation modes for air conditioning in the passenger compartment 1a, cooling of the battery 80, and absorption of heat from the drive system equipment (the electric motor 50 and the inverter 51 for traveling in this example).
  • the circuit is configured to be switchable.
  • the refrigeration cycle uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the refrigerating cycle constitutes a subcritical refrigerating cycle in which the pressure of the high pressure side refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the refrigeration cycle includes a condenser that condenses the high-pressure side refrigerant discharged from the compressor 11.
  • the heat radiated by the condenser is used for heating the air blown into the compartment 1a or released to the outside air, as required.
  • the refrigeration cycle is equipped with an expansion valve group that reduces the pressure of the condensed high pressure side refrigerant.
  • the expansion valve group includes a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, a sixth expansion valve 13f, and a seventh expansion valve 13g.
  • the refrigeration cycle is equipped with an indoor evaporator that evaporates the depressurized low-pressure side refrigerant, a battery cooler, and a chiller.
  • the indoor evaporator is a cooling heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the first expansion valve 13a and the air blown into the vehicle interior 1a.
  • the indoor evaporator cools the air by evaporating the low-pressure side refrigerant and exerting an endothermic action.
  • the indoor evaporator is housed inside the indoor air conditioning unit 30 .
  • the battery cooler is a cooling heat exchanger that cools the battery 80 with the low-pressure side refrigerant decompressed by the second expansion valve 13b.
  • the battery cooler cools the battery 80 by evaporating the low-pressure side refrigerant to exhibit heat absorption.
  • the chiller is a low-temperature side water-refrigerant heat exchanger that exchanges heat between the low-pressure side refrigerant depressurized by the third expansion valve 13c and the low-temperature side heat medium circulating in the low-temperature side heat medium circuit.
  • the low-temperature side heat medium flowing through the heat medium passage is cooled by evaporating the low-pressure side refrigerant flowing through the refrigerant passage and exerting an endothermic action.
  • the chiller is arranged in the drive unit room 1b of the electric vehicle 1. As shown in FIG.
  • the compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle.
  • Compressor 11 is arranged in drive unit room 1 b of electric vehicle 1 .
  • the drive device chamber 1b forms a space in which at least a part of a device for generating a drive amount for running (for example, the electric motor 50 for running) is arranged.
  • the compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement.
  • the compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from the compressor control unit 63 .
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g reduce the pressure of the refrigerant and It is a decompression part that adjusts the flow rate of the refrigerant that flows out to the side.
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g have a refrigerant pressure reducing function in the refrigeration cycle. And it is a functional product that exerts the function of adjusting the flow rate of the refrigerant.
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g can change the throttle opening.
  • It is an electric variable throttling mechanism comprising a configured valve body and an electric actuator that changes the opening degree of the valve body.
  • a brushless motor is used as the electric actuator.
  • a stepping motor may be used as the electric actuator.
  • the operations of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f and the seventh expansion valve 13g are controlled by the functional product control unit 62. is controlled by the drive current supplied by the
  • the valve body portion defines the throttle passage.
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g the valve body portion defines the throttle passage.
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g serve as refrigerant circuit switching units. It has the functions of
  • the functional product module 70 is arranged in the drive device chamber 1b of the electric vehicle 1.
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the The 5th expansion valve 13e, the 6th expansion valve 13f, the 7th expansion valve 13g, the on-off valve 17 and the like are integrated.
  • These constituent devices are integrated by being attached to a channel box 71 that is an attachment member.
  • the channel box 71 is the main body of the functional module 70.
  • the channel box 71 is a channel forming portion that forms a coolant channel therein.
  • Each refrigerant inlet/outlet 71a is connected to the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the third It communicates with the entrance/exit of one of the 6th expansion valve 13f and the 7th expansion valve 13g.
  • the refrigerant outlet side of the condenser, the refrigerant inlet side of the indoor evaporator, the refrigerant inlet side of the battery cooler, and the refrigerant inlet side of the chiller are connected to these refrigerant inlets and outlets 71 a via refrigerant pipes 75 .
  • the on-off valve 17 is an electromagnetic valve that opens and closes the refrigerant passage formed inside the flow path box 71 .
  • the opening/closing operation of the opening/closing valve 17 is controlled by a control voltage or drive current output from the functional product control unit 62 .
  • the on-off valve 17 can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the on-off valve 17 is a refrigerant circuit switching unit.
  • the on-off valve 17 is a functional item that exhibits a function of opening and closing a refrigerant passage in the refrigeration cycle.
  • the low temperature side heat medium circuit is a circuit that circulates the low temperature side heat medium.
  • an ethylene glycol aqueous solution is used as the low temperature side heat medium.
  • the low temperature radiator is a heat medium outside air heat exchanger that exchanges heat between the low temperature side heat medium and the outside air.
  • the traveling electric motor 50 is a driving force generator that generates traveling driving force from the AC power supplied from the inverter 51 .
  • the operation of the traveling electric motor 50 is controlled by a control voltage output from the driving system control unit 92 . Since the traveling electric motor 50 generates heat during operation, it is cooled by the low temperature side heat medium of the low temperature side heat medium circuit. In other words, the exhaust heat of the traveling electric motor 50 is absorbed and recovered by the low temperature side heat medium of the low temperature side heat medium circuit.
  • the inverter 51 is a power conversion device that converts the DC power supplied from the battery 80 into AC power and outputs the AC power to the electric motor 50 for traveling.
  • the operation of inverter 51 is controlled by a control voltage output from drive system control unit 92 . Since the inverter 51 generates heat during operation, it is cooled by the low temperature side heat medium of the low temperature side heat medium circuit. In other words, the exhaust heat of the inverter 51 is recovered by being absorbed by the low temperature side heat medium of the low temperature side heat medium circuit.
  • the low-temperature side pump 52 is a low-temperature side heat medium pumping section that sucks and pumps the low-temperature side heat medium.
  • the low temperature side pump 52 pressure-feeds the low temperature side heat medium to the inlet side of the heat medium passage of the chiller.
  • the low temperature side pump 52 is an electric water pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the drive system control unit 92 .
  • a low-temperature radiator, an electric motor 50 for traveling, and an inlet side of an inverter 51 are connected to the outlet of the heat medium passage of the chiller.
  • the suction port side of a low temperature side pump 52 is connected to the outlets of the low temperature radiator, the electric motor 50 for running, and the inverter 51 .
  • the interior air-conditioning unit 30 shown in FIG. 1 integrates a plurality of components in order to blow out air adjusted to an appropriate temperature for air-conditioning the vehicle interior 1a to appropriate locations within the vehicle interior 1a. is a unit.
  • the indoor air-conditioning unit 30 is arranged inside the dashboard (instrument panel) at the foremost part in the passenger compartment 1a.
  • the indoor air conditioning unit 30 is formed by housing the indoor blower 32, the indoor evaporator, etc. shown in FIG. 2 in an air conditioning case forming an air passage.
  • An inside/outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case.
  • the inside/outside air switching device 33 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case.
  • the operation of the inside/outside air switching device 33 is controlled by a control signal output from the main control unit 61 .
  • An indoor fan 32 is arranged downstream of the inside/outside air switching device 33 in the air flow.
  • the indoor air blower 32 blows the air sucked through the inside/outside air switching device 33 into the vehicle interior 1a.
  • the number of revolutions (that is, the air blowing capacity) of the indoor fan 32 is controlled by the control voltage output from the main control unit 61 .
  • An indoor evaporator is arranged downstream of the indoor blower 32 in the air flow.
  • An air heater that heats the air after passing through the indoor evaporator is arranged downstream of the indoor evaporator in the air flow.
  • the air heater may be a heat exchanger that heats the air by directly using the heat of the high-pressure side refrigerant discharged from the compressor 11, or may use the heat of the high-pressure side refrigerant discharged from the compressor 11 as heat.
  • a heat exchanger that heats air using a medium or the like may be used.
  • the air heater may be an electric heater.
  • a cold air bypass passage is formed in which the air that has passed through the indoor evaporator bypasses the air heater.
  • An air mix door 34 is arranged on the air flow downstream side of the indoor evaporator in the air conditioning case and on the air flow upstream side of the air heater and the cold air bypass passage.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the air heater side and the air volume that passes through the cold air bypass passage, among the air that has passed through the indoor evaporator. Actuation of the actuator for driving the air mix door 34 is controlled by a control signal output from the main control unit 61 .
  • a mixing space is arranged on the air flow downstream side of the air heater and the cold air bypass passage.
  • the mixing space is a space for mixing the air heated by the air heater and the air that has passed through the cold air bypass passage and is not heated.
  • the temperature of the air mixed in the mixing space and blown out into the passenger compartment 1a (that is, the conditioned air) can be adjusted by adjusting the opening degree of the air mix door 34.
  • a plurality of opening holes are formed in the most downstream part of the air flow of the air conditioning case for blowing out the air conditioning air toward various locations in the vehicle interior 1a.
  • Blow-out mode doors 35 for opening and closing the respective openings are arranged in the plurality of openings. The operation of the actuator for driving the blow mode door 35 is controlled by control signals output from the main control unit 61 .
  • the indoor air conditioning unit 30 by switching the opening hole that the blowing mode door 35 opens and closes, it is possible to blow out conditioned air adjusted to an appropriate temperature to an appropriate location in the vehicle interior 1a.
  • the main control unit 61, the functional product control unit 62, and the compressor control unit 63 shown in FIG. 2 are electronic control units having well-known microcomputers including CPU, ROM, RAM, etc., and peripheral circuits.
  • the main control unit 61, the functional product control unit 62, and the compressor control unit 63 perform various calculations and processes based on control programs stored in the ROM, and control the operation of various controlled devices connected to the output side. do.
  • the main control unit 61 controls the operation of the indoor blower 32 of the indoor air conditioning unit 30, the inside/outside air switching device 33, the actuator for driving the air mix door 34, the actuator for driving the blowout mode door 35, and the like.
  • the main control unit 61 has a target capacity calculator 61a that calculates the value of the target capacity of the refrigeration cycle.
  • the functional product control unit 62 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve of the refrigeration cycle. 13g and the operation of the on-off valve 17.
  • the functional product control unit 62 has a microcomputer section 621 and a driver IC section 622 .
  • the microcomputer section 621 has a target opening calculation section 621a, a failure detection section 621b, and a timing determination section 621c.
  • the target opening degree calculation unit 621a calculates the values of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. Calculate the target opening.
  • the failure detection unit 621b detects failures of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. detect.
  • the timing determination unit 621 c determines timing for changing the rotation speed of the compressor 11 and outputs the timing for changing the rotation speed of the compressor 11 to the compressor control unit 63 .
  • the driver IC unit 622 applies a drive current to the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. is a drive current output unit that outputs .
  • the functional product control unit 62 is an electric board section formed of a so-called rigid printed circuit board. As shown in FIG. 4, the functional product control unit 62 is formed in a rectangular flat plate shape. The functional product control unit 62 is integrated as a functional product module 70 with other components of the refrigeration cycle.
  • the compressor control unit 63 controls the operation of the compressor 11 of the refrigeration cycle.
  • the compressor control unit 63 is integrated with the compressor 11 as a compressor module.
  • the input side of the main control unit 61 is connected to a sensor group for control such as an inside air temperature sensor 64a, an outside air temperature sensor 64b, a solar radiation sensor 64c, and an air conditioning air temperature sensor 64d. Detection signals from these sensors are input to the main control unit 61 . These sensors are included in the components that make up the refrigeration cycle.
  • the inside air temperature sensor 64a is an inside air temperature detection unit that detects the inside air temperature Tr, which is the temperature inside the vehicle compartment 1a.
  • the outside air temperature sensor 64b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle compartment.
  • the solar radiation sensor 64c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior 1a.
  • the air-conditioning air temperature sensor 64d is an air-conditioning air temperature detecting section that detects the temperature TAV of the air-conditioning air blown from the indoor air-conditioning unit 30 into the vehicle interior 1a.
  • a high-pressure side refrigerant pressure and temperature sensor 65a On the input side of the functional product control unit 62 are a high-pressure side refrigerant pressure and temperature sensor 65a, a low-pressure side refrigerant pressure and temperature sensor 65b, a battery inlet pressure and temperature sensor 65c, a battery outlet pressure and temperature sensor 65d, a chiller inlet pressure and temperature sensor 65e, and a chiller outlet.
  • a sensor group for control such as the pressure temperature sensor 65f is connected.
  • the high-pressure side refrigerant pressure and temperature sensor 65a is a high-pressure side refrigerant pressure and temperature detector that detects the pressure and temperature of the high-pressure side refrigerant discharged from the compressor 11.
  • the low-pressure refrigerant pressure and temperature sensor 65b is a low-pressure refrigerant pressure and temperature detector that detects the pressure and temperature of the low-pressure refrigerant sucked into the compressor 11 .
  • the battery inlet pressure and temperature sensor 65c is a battery inlet coolant pressure and temperature detector that detects the pressure and temperature of the coolant on the inlet side of the battery cooler.
  • the battery outlet pressure and temperature sensor 65d is a battery outlet coolant pressure and temperature detector that detects the pressure and temperature of the coolant on the outlet side of the battery cooler.
  • the chiller inlet pressure and temperature sensor 65e is a chiller inlet refrigerant pressure and temperature detector that detects the pressure and temperature of the refrigerant on the chiller inlet side.
  • the chiller outlet pressure and temperature sensor 65f is a chiller outlet refrigerant pressure and temperature detector that detects the pressure and temperature of the refrigerant on the outlet side of the chiller.
  • the pressure detector and the temperature In the high pressure side refrigerant pressure temperature sensor 65a, the low pressure side refrigerant pressure temperature sensor 65b, the battery inlet pressure temperature sensor 65c, the battery outlet pressure temperature sensor 65d, the chiller inlet pressure temperature sensor 65e, and the chiller outlet pressure temperature sensor 65f, the pressure detector and the temperature
  • a detection unit in which the detection units are integrated is adopted, of course, a pressure detection unit and a temperature detection unit configured separately may be adopted.
  • a high-pressure side refrigerant pressure and temperature sensor 65a, a low-pressure side refrigerant pressure and temperature sensor 65b, a battery inlet pressure and temperature sensor 65c, a battery outlet pressure and temperature sensor 65d, a chiller inlet pressure and temperature sensor 65e, and a chiller outlet pressure and temperature sensor 65f detect the state of the refrigerant. Refrigerant state detector.
  • a high pressure side refrigerant pressure temperature sensor 65a, a low pressure side refrigerant pressure temperature sensor 65b, a battery inlet pressure temperature sensor 65c, a battery outlet pressure temperature sensor 65d, a chiller inlet pressure temperature sensor 65e, and a chiller outlet pressure temperature sensor 65f are connected to the passage box 71. It is attached to detect the pressure and temperature of the refrigerant flowing through the refrigerant passage inside the flow path box 71 .
  • An expansion valve current/voltage sensor group 66 is connected to the input side of the functional product control unit 62 .
  • the expansion valve current/voltage sensor group 66 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. is an expansion valve current and voltage detection unit that detects the current and voltage of each of the .
  • the expansion valve current/voltage sensor group 66 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. attached to each of the
  • the expansion valve current/voltage sensor group 66 employs a detection unit in which a current detection unit and a voltage detection unit are integrated.
  • the main control unit 61, the functional product control unit 62, and the compressor control unit 63 are communicably connected to each other via a CAN (Controller Area Network) communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control device, the operation of the controlled device connected to the output side of the other control device can be controlled.
  • CAN Controller Area Network
  • the main control unit 61, the user interface 90, the battery control unit 91, and the drive system control unit 92 are communicably connected to each other via a harness using a CAN communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control device, the operation of the controlled device connected to the output side of the other control device can be controlled.
  • the user interface 90 is a group of devices for exchanging information with passengers.
  • the user interface 90 is an instrument panel, an air conditioning operation panel, an accelerator pedal opening detection device, and the like.
  • the instrument panel is located near the front of the driver's seat in the front part of the cabin 1a.
  • the instrument panel displays various information such as the running speed of the electric vehicle 1 and the operating state of the electric vehicle 1 .
  • the instrument panel warns the occupant by display, sound, or the like when an abnormality or failure occurs in various devices of the electric vehicle 1 .
  • the air-conditioning operation panel is located near the instrument panel in the front part of the passenger compartment 1a.
  • the controller 60 receives operation signals from various operation switches provided on the air conditioning operation panel. Examples of various operation switches provided on the air conditioning operation panel include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
  • the auto switch is an operation unit for the passenger to set or cancel the automatic control operation of the air conditioning in the passenger compartment 1a.
  • the air conditioner switch is an operating part that the passenger requests to cool the air in the interior evaporator.
  • the air volume setting switch is an operation unit for the passenger to manually set the air volume of the indoor blower 32 .
  • the temperature setting switch is an operation unit that allows the passenger to set the set temperature Tset inside the passenger compartment 1a.
  • the accelerator pedal opening detection device detects the accelerator pedal opening by detecting the operating state of the accelerator pedal by the passenger.
  • the battery control unit 91 and drive system control unit 92 are electronic control units having well-known microcomputers including CPU, ROM, RAM, etc., and peripheral circuits.
  • the main control unit 61, the functional product control unit 62, and the compressor control unit 63 perform various calculations and processes based on control programs stored in the ROM, and control the operation of various controlled devices connected to the output side. do.
  • a battery 80 is connected to the output side of the battery control unit 91 .
  • a battery control unit 91 is a battery control section that controls input/output of the battery 80 .
  • a sensor group related to the battery 80 such as a battery voltage sensor 93a and a battery temperature sensor 93b is connected to the input side of the battery control unit 91.
  • the battery voltage sensor 93 a is a battery voltage detection section that detects the voltage of the battery 80 .
  • the battery temperature sensor 93b is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80).
  • the battery temperature sensor 93b of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80. FIG. Therefore, the control device 60 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
  • An electric motor 50 for traveling, an inverter 51, a low temperature side pump 52, etc. are connected to the output side of the drive system control unit 92.
  • the drive system control unit 92 is a drive system control section that controls the operation of the electric motor 50 for traveling, the inverter 51 and the low temperature side pump 52 .
  • the functional product module 70 has a channel box 71 and a cover member 72 .
  • the channel box 71 is made of metal (aluminum alloy in this embodiment).
  • the channel box 71 is formed in a substantially rectangular parallelepiped shape.
  • One surface (the upper surface in this embodiment) of the flow path box 71 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth It is a mounting surface 712 to which the expansion valve 13f, the seventh expansion valve 13g and the on-off valve 17 are mounted.
  • the mounting surface 712 includes a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, a sixth expansion valve 13f, a seventh expansion valve 13g, and an on-off valve. Mounting holes for mounting 17 are formed.
  • Mounting holes for mounting the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 communicates with various refrigerant passages formed in the passage box 71 .
  • a plurality of coolant inlet/outlets 71a are formed on a plurality of surfaces (two side surfaces in this embodiment) of the channel box 71 .
  • the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are functional parts. It has terminals 131 a , 131 b , 131 c , 131 d , 131 e , 131 f , 131 g , and 171 which are connection terminals electrically connected to the control unit 62 .
  • Each of the terminals 131a, 131b, 131c, 131d, 131e, 131f, 131g, and 171 protrudes in a direction perpendicular to the mounting surface 712 (vertical direction in this embodiment).
  • the functional product control unit 62 is attached to the mounting surface 712 of the channel box 71 via a columnar spacer 73 by means of screwing or the like.
  • the spacers 73 are arranged near the four corners of the functional product control unit 62 when viewed from above and below.
  • the functional product control unit 62 is attached to the mounting surface 712 so that the plate surface is parallel to the mounting surface 712 .
  • the spacer 73 is made of metal (stainless alloy in this embodiment). At least one spacer 73 is electrically connected to the ground line of the functional product control unit 62 . Therefore, the channel box 71 is electrically connected to the ground wire of the functional product control unit 62 via the spacer 73 .
  • the height dimension (that is, the axial length) of the spacer 73 is such that the terminals 131a, 131b, 131c, 131d, 131e, 131f, 131g, and 171 are directly connected to predetermined connections formed in the functional product control unit 62, respectively. configured to be connected.
  • each terminal 131a, 131b, 131c, 131d, 131e, 131f, 131g, 171 has a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are attached to the flow path box 71, and protrude in the same direction. are arranged so that they can be directly connected to
  • the cover member 72 is attached to the outer edge of the attachment surface 712 of the channel box 71 by means of adhesion, welding, or the like.
  • the cover member 72 is made of metal (aluminum alloy in this embodiment).
  • the cover member 72 is formed in the shape of a bottomed box with one side open.
  • the cover member 72 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13f.
  • a housing space for the valve 13g, the on-off valve 17 and the functional product control unit 62 is formed.
  • a sealing member (not shown) is arranged in the gap between the cover member 72 and the flow path box 71 and in the gap between the connector 620 and the mounting hole. This prevents moisture and foreign matter from entering the accommodation space through the gap.
  • the vehicle air conditioner air-conditions the vehicle interior 1a and cools the battery 80, which is an in-vehicle device.
  • the refrigerant circuit of the refrigeration cycle is switched to execute various operation modes.
  • the operation modes of the vehicle air conditioner include an air conditioning operation mode for air conditioning the vehicle interior 1 a and a cooling operation mode for cooling the battery 80 .
  • Operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
  • the cooling mode is an operation mode that cools the interior of the vehicle interior 1a by cooling the air blown into the interior of the vehicle interior 1a and blowing the air into the interior of the vehicle interior 1a.
  • the dehumidifying and heating mode is an operation mode in which dehumidifying and heating the interior of the passenger compartment 1a is performed by reheating cooled and dehumidified air and blowing it out into the passenger compartment 1a.
  • the heating mode is an operation mode for heating the interior of the passenger compartment 1a by heating air and blowing the air into the passenger compartment 1a.
  • the air conditioning operation mode is determined by the air conditioning control program stored in the main control unit 61 .
  • the control program for air conditioning is executed when the automatic control operation of air conditioning is set by the auto switch of the operation panel for air conditioning.
  • the control program for air conditioning determines the operation mode based on detection signals detected by various sensors and operation signals from the operation panel for air conditioning.
  • the cooling mode is determined mainly when the outside temperature is relatively high, such as in summer. Also, the dehumidifying heating mode is determined mainly in spring or autumn. Also, when the outside temperature is relatively low, mainly in winter, the heating mode is determined.
  • the functional product control unit 62 operates the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, and the fifth expansion valve. 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are controlled to switch to the air-conditioning operation mode determined by the main control unit 61.
  • Cooling Mode In the cooling mode refrigerating cycle, the first expansion valve 13a is throttled to configure the vapor compression refrigerating cycle in which the indoor evaporator functions as an evaporator that evaporates the low-pressure side refrigerant. be.
  • part of the heat of the high-pressure side refrigerant is radiated to the air blown into the vehicle interior 1a, and the remaining heat of the high-pressure side refrigerant is radiated to the outside air.
  • the air blown from the indoor blower 32 is cooled by the indoor evaporator.
  • the air cooled by the indoor evaporator is heated by the air heater according to the opening degree of the air mix door 34 .
  • the temperature of the air in the mixing space approaches the target blowout temperature TAO.
  • the temperature-controlled air is blown out into the passenger compartment 1a, thereby cooling the passenger compartment 1a.
  • the target blowout temperature TAO is the target temperature of the air blown into the vehicle interior 1a.
  • the target air temperature TAO is calculated in the control program for air conditioning using detection signals detected by various sensors and operation signals from the operation panel.
  • the low-pressure side refrigerant absorbs heat from the low-temperature side heat medium in the chiller, and the heat of the high-pressure side refrigerant is released to the air blown into the compartment 1a.
  • the air blown from the indoor blower 32 is cooled by the indoor evaporator.
  • the air cooled by the indoor evaporator is heated by the air heater according to the opening degree of the air mix door 34 .
  • the temperature of the air in the mixing space approaches the target blowout temperature TAO.
  • the temperature-controlled air is blown out into the passenger compartment 1a, thereby cooling the passenger compartment 1a.
  • the low-pressure side refrigerant absorbs heat from the low-temperature side heat medium in the chiller, and the heat of the high-pressure side refrigerant is released to the air blown into the compartment 1a.
  • the air blown from the indoor blower 32 passes through the indoor evaporator.
  • the air that has passed through the indoor evaporator is heated by the air heater according to the opening of the air mix door 34 .
  • the temperature of the air blown out from the mixing space into the compartment 1a approaches the target blowing temperature TAO.
  • the temperature-controlled air is blown out into the passenger compartment 1a, thereby heating the passenger compartment 1a.
  • the cooling operation mode is determined by executing a cooling control program stored in the main control unit 61 .
  • the cooling control program when the battery temperature TB detected by the battery temperature sensor 93b reaches or exceeds a predetermined reference cooling temperature TB1, the cooling mode operation is determined.
  • the cooling control program is executed when the vehicle system is activated and when the battery 80 is being charged from the external power source, regardless of whether the passenger requests air conditioning in the passenger compartment 1a. be. Therefore, the operation modes for cooling include a cooling mode during air conditioning and a cooling mode during non-air conditioning.
  • the functional product control unit 62 operates the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, By controlling the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17, switching to the cooling operation mode is performed.
  • Cooling Mode In the cooling mode refrigerating cycle, at least the second expansion valve 13b is throttled to configure a vapor compression refrigerating cycle in which at least the battery cooler functions as an evaporator. As a result, in the cooling mode refrigeration cycle during air conditioning, the battery 80 is cooled by the low-pressure side refrigerant flowing through the battery cooler.
  • the cooling mode during air conditioning is entered. It becomes cooling mode during non-air conditioning.
  • the vehicle air conditioner of the present embodiment comfortable air conditioning in the vehicle interior 1a and cooling of the battery 80, which is an in-vehicle device, can be performed.
  • the main control unit 61 outputs the target cooling capacity of the indoor evaporator, battery cooler and chiller (hereinafter referred to as each cooler) to the functional product control unit 62 .
  • each cooler the target cooling capacity of the indoor evaporator, the target cooling capacity of the battery cooler, and the target cooling capacity of the chiller (in other words, the target heat absorption capacity) are output to the functional product control unit 62 .
  • the target cooling capacity of the indoor evaporator is calculated using the target outlet temperature TAO and the like.
  • the target cooling capacity of the battery cooler is calculated using the battery temperature TB and the like input from the battery control unit 91 .
  • the target cooling capacity of the chiller is calculated using the operating states of the traveling electric motor 50 and the inverter 51 input from the drive system control unit 92, the target blowout temperature TAO, and the like.
  • the microcomputer portion 621 of the functional product control unit 62 sets the target cooling capacity of each of the expansion valves 13a to 13g based on the target cooling capacity input from the main control unit 61 and the detection signals detected by the refrigerant pressure and temperature sensors 65a to 65f. Calculate the opening.
  • the microcomputer section 621 of the functional product control unit 62 determines the target cooling capacity from the temperature difference of each cooler and the flow characteristic map or flow characteristic function of each expansion valve 13a to 13g stored in the functional product control unit 62 in advance. A target opening degree of each of the expansion valves 13a to 13g is calculated.
  • the flow characteristic map of each expansion valve 13a-13g is a map showing the relationship between the opening degree and the flow rate of each expansion valve 13a-13g.
  • the flow rate characteristic function of each of the expansion valves 13a-13g is a function that indicates the relationship between the degree of opening and the flow rate of each of the expansion valves 13a-13g.
  • the target value of the mass flow rate of the refrigerant is calculated based on the target cooling capacity and the temperature difference in the cooler. Based on the target value of the mass flow rate of the refrigerant, the target opening degrees of the expansion valves 13a-13g are calculated using the flow characteristic maps of the expansion valves 13a-13g.
  • the microcomputer section 621 of the functional product control unit 62 determines the current cooling capacity of each cooler and the degree of superheat of the outlet-side refrigerant of each cooler based on the detection signals detected by the refrigerant pressure temperature sensors 65a to 65f. calculate.
  • the microcomputer section 621 of the functional product control unit 62 calculates the time to reach the target opening of the expansion valves 13a to 13g and the change time of the opening based on the degree of superheat of the refrigerant on the outlet side of each cooler. That is, if the opening degrees of the expansion valves 13a to 13g or the rotational speed of the compressor 11 are rapidly changed, the return of the liquid refrigerant may cause a malfunction. to reach the target opening and the change time of the opening.
  • the microcomputer 621 of the functional product control unit 62 calculates the power supply current value based on the calculated target opening, the time to reach the target opening, and the change time of the opening, and outputs the calculated power supply current to the driver IC. Output to unit 622 .
  • the microcomputer section 621 of the functional product control unit 62 feedback-calculates the power supply current value using a transfer function.
  • a driver IC section 622 of the functional product control unit 62 outputs a drive current to each of the expansion valves 13a to 13g based on the power supply current value output by the microcomputer section 621.
  • the driver IC section 622 of the functional product control unit 62 controls the expansion valves 13a to 13g so that the cooling capacity of the cooler with a large difference between the target cooling capacity and the current cooling capacity preferentially approaches the target cooling capacity.
  • the driver IC section 622 of the functional product control unit 62 feedback-controls the drive current using a transfer function.
  • the functional product control unit 62 outputs the current cooling capacity of each cooler and the arrival time to the target cooling capacity to the main control unit 61 .
  • the functional product control unit 62 outputs to the compressor control unit 63 the refrigerant pressure and temperature before and after the compressor 11 and the target change timing of the compressor rotation speed.
  • the compressor control unit 63 calculates the target rotation speed of the compressor 11 based on the target cooling capacity output from the main control unit 61, and follows the target change timing of the compressor rotation speed output from the functional product control unit 62. The rotation speed of the compressor 11 is changed to the target rotation speed.
  • FIG. 6 is a time chart showing an operation example of control processing in which the functional product control unit 62 and the compressor control unit 63 work together to prevent liquid refrigerant from returning to the compressor 11 .
  • the functional product control unit 62 and the compressor control unit 63 work together to prevent liquid refrigerant from returning to the compressor 11 .
  • the degree of opening and the number of rotations are kept constant for a predetermined period of time.
  • the functional product control unit 62 determines whether or not each of the expansion valves 13a to 13g is out of order based on the current and voltage of each of the expansion valves 13a to 13g detected by the expansion valve current/voltage sensor group 66. To detect. Specifically, when it is detected that any one of the expansion valves 13a to 13g stops fluctuating in the drive current, it is determined that the expansion valve is out of order.
  • the functional product control unit 62 When the functional product control unit 62 detects a failure of any expansion valve, it outputs an expansion valve failure signal to the main control unit 61 and the compressor control unit 63 . In response to this, the main control unit 61 outputs an output restriction request signal to the battery control unit 91 and notifies the user interface 90 of the failure of the refrigeration cycle.
  • the functional product control unit 62 calculates the recovery opening and the target change timing for the recovery opening in order to perform recovery operation with other non-broken expansion valves. At this time, the compressor control unit 63 maintains the rotation speed of the compressor.
  • the functional product control unit 62 outputs the target change timing to the recovery opening to the compressor control unit 63 . According to this target change timing to the recovery opening, the functional product control unit 62 changes the opening of the other two expansion valves to the recovery opening, and the compressor control unit 63 changes the rotation speed of the compressor to the recovery rotation speed. do.
  • FIG. 8 is a time chart showing an operation example of recovery operation.
  • FIG. 8 shows an example in which the second expansion valve 13b for cooling the battery has failed.
  • the cooling capacity of the battery 80 is ensured by ensuring the coolant flow rate to the cooler.
  • the functional product control unit 62 also detects whether the on-off valve 17 is out of order. When detecting a failure of the on-off valve 17 , the functional product control unit 62 outputs a failure signal of the on-off valve 17 to the main control unit 61 and the compressor control unit 63 . In response to this, the main control unit 61 outputs an output restriction request signal to the battery control unit 91 and notifies the user interface 90 of the failure of the refrigeration cycle.
  • the number of constituent devices tends to increase. Therefore, integrating a plurality of components like the functional product module 70 is effective for downsizing the refrigeration cycle.
  • a plurality of expansion valves 13a to 13g are attached to the channel box 71 of the functional product module 70.
  • the functional product control unit 62 calculates drive current values to be output to the plurality of expansion valves 13a to 13g based on the value of the target cooling capacity output from the main control unit 61, and drives the plurality of expansion valves 13a to 13g. A current is output and a plurality of expansion valves 13a to 13g are detected.
  • the number of functional product control units 62 is smaller than the number of expansion valves 13a to 13g.
  • the electronic control unit by dividing the electronic control unit into the main control unit 61 and the functional product control unit 62, the calculation load of the main control unit 61 can be reduced.
  • the electrical wiring between the functional product control unit 62 and the plurality of expansion valves 13a to 13g can be shortened as much as possible.
  • the number of the functional product control unit 62 By making the number of the functional product control unit 62 smaller than the number of the plurality of expansion valves 13a to 13g, the increase in signal lines and the complication of control due to the separation of the main control unit 61 and the functional product control unit 62 can be minimized. can be suppressed.
  • the target opening degree calculator 621a of the functional product control unit 62 calculates the target opening degrees of the expansion valves 13a to 13g based on the input signals from the refrigerant pressure temperature sensors 65a to 65f and the values of the target cooling capacities. Calculate. As a result, the target opening degrees of the expansion valves 13a to 13g can be efficiently calculated by the functional product control unit 62, so that the calculation load on the main control unit 61 can be effectively reduced.
  • the failure detection section 621b of the functional product control unit 62 detects failures of the expansion valves 13a to 13g based on input signals from the expansion valve current/voltage sensor group 66.
  • the functional product control unit 62 can efficiently perform failure detection processing for the expansion valves 13a to 13g, so that the calculation load of the main control unit 61 can be effectively reduced.
  • the functional product control unit 62 is communicably connected to the compressor control unit 63 .
  • the timing determination section 621c of the functional product control unit 62 determines the change timing of the refrigerant discharge capacity of the compressor 11 in accordance with the timing at which the opening degrees of the expansion valves 13a to 13g are changed. to output
  • the expansion valves 13a to 13g and the compressor 11 can be controlled cooperatively by the functional product control unit 62 and the compressor control unit 63, so that the calculation load on the main control unit 61 can be effectively reduced.
  • the main control unit 61 is communicably connected to the battery control unit 91 and the driving system control unit 92 .
  • the main control unit 61 has a target capacity calculation section 61a that calculates the value of the target cooling capacity based on the information on the battery input from the battery control unit 91 and the information on the drive system equipment input from the drive system control unit 92. have. Thereby, the main control unit 61 can appropriately calculate the target cooling capacity of the refrigeration cycle.
  • the functional product control unit 62 is fixed to the channel box 71 .
  • the functional product module 70 can be miniaturized.
  • the functional product control unit 62 is attached to the mounting surface 712 so that the plate surface is parallel to the mounting surface 712.
  • the product control unit 62 is attached to the mounting surface 712 so that the plate surface is perpendicular to the mounting surface 712 .
  • two surfaces (side surfaces in this embodiment) of the flow path box 71 serve as mounting surfaces 712, and one other surface (side surface in this embodiment) of the flow path box 71 functions as a mounting surface 712.
  • a product control unit 62 is attached.
  • the functional product control unit 62 is fixed to the support plate 76, as shown in FIG.
  • the support plate 76 has a flat plate shape overlapping the functional product control unit 62 .
  • the support plate 76 is attached to the mounting surface 712 of the channel box 71 with screws or the like via a columnar spacer 73 together with the functional product control unit 62 .
  • An electromagnetic valve 18 is arranged on the mounting surface 712 of the channel box 71 .
  • the solenoid valve 18 switches the refrigerant passage inside the passage box 71 .
  • the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are integrated in the functional product module 70 of this embodiment.
  • the support plate 76 is fixed with the motor-side bearing members 301 of the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c.
  • a rotation angle sensor 67 is fixed to the functional product control unit 62 .
  • the rotation angle sensor 67 is a rotation angle detection section that detects the rotation angle of each motor section 300 .
  • the basic structure of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c is the same. Below, the detailed structure of the first expansion valve 13a will be described based on FIG. 12, and the detailed structure of the second expansion valve 13b and the third expansion valve 13c will be omitted.
  • the motor section 300 has a motor-side bearing member 301 , a stator 302 , a rotor 303 and a shaft 304 .
  • the stator 302 has stator coils.
  • On the rotor 303 a plurality of sets of pairs of magnets each having an N pole and an S pole are arranged along the circumferential direction.
  • Shaft 304 rotates together with rotor 303 .
  • Stator 302 and rotor 303 output driving force for rotating shaft 304 by electromagnetic force.
  • Rotation angle sensor 67 detects changes in the magnetic field accompanying rotation of rotor 303 .
  • the magnetic gear 310 includes a driving side magnet 311 , a pole piece 312 and a driven side magnet 313 .
  • the drive-side magnet 311 rotates integrally with the shaft 304 of the motor section 300 .
  • the pole piece 312 modulates the magnetic flux between the driving magnet 311 and the driven magnet 313 and rotates integrally with the rotating member 314 .
  • the driven-side magnet 313 is a fixed magnet that is fixed to the main body portion 320 of the first expansion valve 13a.
  • the drive-side magnet 311 is cylindrical and joined to the outer peripheral surface of the rotor 303 via a bottomed cylindrical interposed member 315 . That is, the motor section 300 is arranged inside the drive-side magnet 311 .
  • Interposed member 315 is formed of a magnetic material.
  • the sealing plate 330 has a disc shape with a central portion recessed downward. In other words, the sealing plate 330 has a bottomed cylindrical shape with a flange.
  • the sealing plate 330 is a sealing member that divides the internal space of the first expansion valve 13 a into a drive-side space 331 and a driven-side space 332 and seals the driven-side space 332 .
  • the drive-side space 331 is a space on the motor portion 300 side
  • the driven-side space 332 is a space on the valve body 321 side.
  • the sealing plate 330 prevents the high-pressure refrigerant existing in the driven-side space 332 from leaking into the driving-side space 331 .
  • the sealing plate 330 is made of a non-magnetic material (eg, SUS305).
  • the pole piece 312 is cylindrical and arranged on the outer diameter side of the sealing plate 330 . Pole piece 312 is joined to rotating member 314 .
  • the pole piece 312 has a plurality of magnetic material portions and a plurality of non-magnetic material portions.
  • the magnetic body part and the non-magnetic body part are fan-shaped, and the magnetic body parts are arranged at substantially equal intervals along the circumferential direction.
  • the nonmagnetic portion is arranged between the magnetic portions.
  • the magnetic portion is made of a soft magnetic material (such as iron-based metal), and the non-magnetic portion is made of a non-magnetic material (such as stainless steel or resin).
  • the driven magnet 313 is cylindrical and arranged on the outer diameter side of the pole piece 312 .
  • the driven-side magnet 313 is fitted in the body portion 320 (in other words, the housing).
  • the driven-side magnet 313 includes a plurality of pairs of magnets, each having an N pole and an S pole, arranged at approximately equal intervals along the circumferential direction.
  • a valve chamber 322 is formed inside the body portion 320 .
  • a rod-shaped valve element 321 is arranged in the valve chamber 322 .
  • the valve body 321 is a driven member that is driven by the motor section 300 .
  • the valve body 321 is arranged coaxially with the rotary member 314 . The end of the rotating member 314 and the end of the valve body 321 are engaged so that the rotating force of the rotating member 314 is transmitted to the valve body 321 .
  • the valve-side bearing member 323 is rotatably supported by the body portion 320 via the valve-side bearing member 323 .
  • a male thread 321 a is formed on the outer peripheral surface of the valve body 321 .
  • a male thread 321a of the valve body 321 is screwed into a female thread formed on the inner peripheral surface of the body portion 320 to constitute a screw mechanism. As a result, when the valve body 321 rotates, the valve body 321 moves in the axial direction.
  • the valve body 321 is made up of a plurality of members. Specifically, the valve body 321 includes a male screw member having a male screw 321a formed on the rotating member 314 side, a valve seat side member positioned on the valve seat side, and a male screw member and the valve seat side member. It consists of a ball placed between Since the ball is arranged between the male screw member and the valve seat side member, the valve seat side member moves in the axial direction without rotating.
  • a valve-seat-side member of the valve body 321, which serves as a ball receiving member, is urged by a coil spring (not shown) toward the side where the valve body 321 moves away from the valve seat in the axial direction.
  • valve body 321 moves in the axial direction, the valve body 321 moves closer to or away from the valve seat to adjust the throttle opening of the valve chamber 322, and the refrigerant flowing in the valve chamber 322 is decompressed and expanded. .
  • the basic structure of the second expansion valve 13b and the third expansion valve 13c is the same as the basic structure of the first expansion valve 13a.
  • the required operating torque for the valve element 321 increases in the order of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c. ing.
  • the required operating torque T1 for the valve body 321 of the first expansion valve 13a, the required operating torque T2 for the valve body 321 of the second expansion valve 13b, and the required operating torque T3 for the valve body 321 of the third expansion valve 13c. is T1>T2>T3.
  • the gap dimension G1 between the drive-side magnet 311 and the sealing plate 330 is set large, and the required operating torque for the valve body 321 is In the third expansion valve 13c with small operating torque, the gap dimension G3 between the drive-side magnet 311 and the sealing plate 330 is set large.
  • the gap dimension G1 between the drive-side magnet 311 and the sealing plate 330 in the first expansion valve 13a, the gap size G2 between the drive-side magnet 311 and the sealing plate 330 in the second expansion valve 13b, and the The size relationship of the gap dimension G3 between the drive-side magnet 311 and the sealing plate 330 in the three-expansion valve 13c is G1 ⁇ G2 ⁇ G3.
  • the required operating torque can be reliably output by reducing the gap dimension G1.
  • the required operating torque T3 can be ensured even if the gap dimension G3 is increased.
  • the tolerance .DELTA.L between the shafts can be ensured by increasing the clearance G3, and the error in the dimension between the shafts can be absorbed.
  • the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are assembled separately into a member on the functional product control unit 62 side and a member on the channel box 71 side. After that, the members on the side of the functional product control unit 62 and the members on the side of the channel box 71 are assembled integrally.
  • the functional product control unit 62 is assembled to the support plate 76 . Further, the support plate 76 is assembled with the rotation angle sensors 67 and the motor section 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c.
  • the driven magnet 313 , the valve body side bearing member 323 , the valve body 321 , the rotary member 314 , the pole piece 312 and the sealing plate 330 are first assembled to the main body part 320 .
  • the magnet 313 on the driven side, the bearing member 323 on the valve body side, the valve body 321, the rotating member 314, the main body part 320 to which the pole piece 312 and the sealing plate 330 are assembled, and the electromagnetic valve 18 are assembled on the flow path box 71. be done.
  • the functional product control unit 62 In the process of integrally assembling the members on the functional product control unit 62 side and the members on the channel box 71 side, the functional product control unit 62, the solenoid valve 18, the rotation angle
  • the support plate 76 to which the sensor 67 and the motor section 300 are assembled, the driven side magnet 313, the valve body side bearing member 323, the valve body 321, the rotary member 314, the pole piece 312, the sealing plate 330 and the main body section 320 are assembled. It is assembled to the flow path box 71 that has been installed. This completes the assembly of the parts of the functional module 70 relating to the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c.
  • the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c have a sealing plate 330 and a magnetic gear 310.
  • the sealing plate 330 partitions the drive-side space 331 and the driven-side space 332 and prevents the refrigerant existing in the driven-side space 332 from leaking into the drive-side space 331 .
  • the magnetic gear 310 uses magnetic force to connect the motor section 300 and the valve body 321 separated by the sealing plate 330 without contact.
  • the gaps G1, G2, and G3 between the drive-side magnet 311 and the sealing plate 330 meet the requirements of the valve body 321. It is set larger as the operating torque is smaller.
  • the drive-side magnet 311 and the sealing plate 330 are larger than the first expansion valve 13a having the valve body 321 with a large required operating torque. It is possible to set a large assembly tolerance with Therefore, the motor portion 300 and the drive-side magnet 311 in the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are assembled to the common support member 76 to reduce the number of parts, and the drive-side magnet 311 and the sealing plate 330 can be assembled accurately to ensure the required operating torque of the valve body 321 .
  • the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c are supported by the support member 76. Accordingly, the motor units 300 of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c can be integrated via the support member 76 to simplify the configuration.
  • the rotation angle sensor 67 is arranged on the support member 76 together with the motor section 300 . According to this, the assembly accuracy of the motor portion 300 and the rotation angle sensor 67 can be improved, so that the rotation angle detection accuracy of the rotation angle sensor 67 can be improved.
  • the functional product control unit 62 is arranged on the support member 76
  • the rotation angle sensor 67 is arranged on the support member 76 via the functional product control unit 62 . According to this, the electrical connection configuration between the functional product control unit 62 and the rotation angle sensor 67 can be simplified.
  • the functional product control unit 62 outputs drive currents to the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c.
  • the support member 76, the functional product control unit 62, and the motor section 300 are stacked in this order. According to this, the electrical connection configuration between the functional product control unit 62 and the motor section 300 can be simplified.
  • the functional product control unit 62 has a plurality of substrates 62a, 62b, 62c and 62d.
  • a plurality of substrates 62a, 62b, 62c, and 62d are arranged on one support plate 76, and each substrate 62a, 62b, 62c, and 62d and each motor section 300 are positioned with reference to the support plate 76. .
  • the motor circuits of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c can have the same circuit layout on the plurality of substrates 62a, 62b, and 62c, which facilitates manufacturing. .
  • the functional product control unit 62 determines that the expansion valve is malfunctioning (specifically, the valve body is stuck). good.
  • the functional product control unit 62 may calculate a winding inductance that correlates with the rotational position of the motor, and detect failure of the expansion valve from changes in the winding inductance. For example, if the winding inductance stops fluctuating, it may be determined that the expansion valve has failed (specifically, the motor has stopped).
  • the winding inductance may be calculated based on the current voltage of each expansion valve 13a-13g detected by the expansion valve current/voltage sensor group 66. FIG.
  • the mode of integration of functional product modules is not limited to the above-described embodiment.
  • any functional product may be selected as the plurality of functional products to be integrated into the functional product module.
  • the functional product module may be integrated not only with the refrigeration cycle but also with the functional product that constitutes the low temperature side heat medium circuit.
  • each functional item in the channel box 71 is not limited to the mounting position described in the above-described embodiment. That is, the mounting positions of the expansion valves 13a to 13g and the opening/closing valve 17 may be different from those shown in FIGS. . The same applies to the arrangement of the plurality of refrigerant inlet/outlet ports 71a.
  • the channel box 71, the cover member 72, and the spacer 73 made of metal may be adopted. More specifically, the channel box 71, the cover member 72, and the spacer 73 made of a conductive material such as conductive resin, resin coated with conductive paint, or conductive carbon can be employed.
  • the functional product control unit 62 as the electric board section described in the above-described embodiment may be an electronic board that conducts only electrical signals for communication and control. Also, the functional product control unit 62 may be an electric circuit board through which a drive current or the like flows. Further, it may be a motherboard on which a central processing unit (that is, CPU) or the like is mounted.
  • a central processing unit that is, CPU
  • the in-vehicle device to be cooled by the refrigeration cycle is not limited to the battery 80 .
  • the in-vehicle device may be a motor generator, an inverter, a PCU, a transaxle, a control device for ADAS, or the like.
  • the functional product module may be applied to an air conditioner that does not have a device cooling function.
  • R1234yf is used as the refrigerant for the refrigeration pump cycle
  • the present invention is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • an electric switching valve that switches the heat medium circuit of the low temperature side heat medium circuit may be integrated with the functional product module.
  • an ethylene glycol aqueous solution is used as the low-temperature heat medium, but the present invention is not limited to this.
  • a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
  • the application of functional product modules is not limited to vehicles.
  • it may be applied to a stationary air conditioner with a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.
  • a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention comprises: a passage formation portion (71) in which a refrigerant passage through which refrigerant of a refrigeration cycle flows is formed; a plurality of function components (13a, 13b, 13c, 13d, 13e, 13f, 13g, 17) which are mounted to the passage formation portion and are activated through supply of drive currents to provide predetermined functions in the refrigeration cycle; and a function component control unit (62) which calculates, on the basis of a value of target performance of the refrigeration cycle input from a main control unit (61) for calculating the target performance, values of the drive currents output to the plurality of function components to output the drive currents to the plurality of function components and detects failures of the plurality of function components, wherein the number of function component control units is smaller than the number of function components.

Description

冷凍サイクル用機能品モジュールFunctional product module for refrigeration cycle 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年7月5日に出願された日本特許出願2021-111356号、および2022年2月22日に出願された日本特許出願2022-25576号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-111356 filed on July 5, 2021 and Japanese Patent Application No. 2022-25576 filed on February 22, 2022. to invoke.
 本開示は、冷凍サイクルの機能品を一体化させたモジュールに関する。 The present disclosure relates to a module that integrates functional components of a refrigeration cycle.
 現在、ハイブリッド車両や電気自動車など、電池から出力される電力によって走行する車両の普及が進んでいる。これに伴い、車両用冷凍サイクルは、空調に加えて電池冷却を担うようになってきている。 Currently, vehicles that run on electricity output from batteries, such as hybrid vehicles and electric vehicles, are becoming more popular. Along with this, the refrigeration cycle for vehicles has come to take charge of battery cooling in addition to air conditioning.
 一方、特許文献1には、自動車用空調システムに適用される制御システムが記載されている。この従来技術では、制御システムの電気制御部分が電子膨張弁を制御する。 On the other hand, Patent Document 1 describes a control system that is applied to an automotive air conditioning system. In this prior art, the electronic control portion of the control system controls the electronic expansion valve.
特許第6283739号公報Japanese Patent No. 6283739
 車両用冷凍サイクルが電池冷却を担う場合、車両用冷凍サイクルが故障して電池の冷却ができなくなると車両の走行に支障が生じてしまうので、車両用冷凍サイクルの機能品(具体的には、膨張弁や電磁弁等)の故障を電子制御ユニットによって検知する必要が生じる。 When the vehicle refrigerating cycle is responsible for cooling the battery, if the vehicle refrigerating cycle fails and the battery cannot be cooled, the running of the vehicle will be hindered. expansion valve, solenoid valve, etc.) must be detected by an electronic control unit.
 そのため、車両用冷凍サイクルの作動を制御する電子制御ユニットに要求される演算能力が著しく増加してしまうので、電子制御ユニットの演算負荷を軽減する対策が求められている。 As a result, the computational capacity required of the electronic control unit that controls the operation of the vehicular refrigeration cycle significantly increases, so there is a demand for measures to reduce the computational load of the electronic control unit.
 また、車両用冷凍サイクルが空調に加えて電池冷却を担うことに伴って、電子制御ユニットの制御対象となる機能品の個数が著しく増加している。そのため、電子制御ユニットと機能品との間の電気配線(特に、駆動電流が流れる配線)の本数も著しく増加している。しかも、各機能品はその機能に応じて車両内における設置場所が決定されるので、車両内の様々な場所に散在している。そのため、電子制御ユニットと機能品との間の電気配線の総延長が著しく長くなってしまい、駆動電流に対して電磁両立性の確保が困難になっている。 In addition, as the refrigeration cycle for vehicles is responsible for battery cooling in addition to air conditioning, the number of functional items to be controlled by the electronic control unit has increased significantly. As a result, the number of electrical wires (particularly, wires through which drive current flows) between the electronic control unit and the functional products has increased significantly. Moreover, each functional item is installed in various places in the vehicle because its installation location is determined according to its function. As a result, the total extension of the electrical wiring between the electronic control unit and the functional product becomes extremely long, making it difficult to ensure electromagnetic compatibility with respect to the drive current.
 本開示は、上記点に鑑みて、電子制御ユニットの演算負荷を軽減するとともに電磁両立性を確保しやすくすることを目的とする。 In view of the above points, the present disclosure aims to reduce the computational load of the electronic control unit and to facilitate ensuring electromagnetic compatibility.
 本開示の一態様による冷凍サイクル用機能品モジュールは、通路形成部と、複数の機能品と、機能品制御ユニットと、を備える。 A refrigeration cycle functional component module according to one aspect of the present disclosure includes a passage forming portion, a plurality of functional components, and a functional component control unit.
 通路形成部には、冷凍サイクルの冷媒が流れる冷媒通路が形成されている。複数の機能品は、通路形成部に取り付けられ、駆動電流が供給されることによって作動して冷凍サイクルにおいて所定の機能を発揮する。機能品制御ユニットは、冷凍サイクルの目標能力を演算するメイン制御ユニットから入力された目標能力の値に基づいて、複数の機能品へ出力する駆動電流の値を演算して複数の機能品に駆動電流を出力するとともに、複数の機能品の故障を検知する。機能品制御ユニットの個数は、機能品の個数よりも少なくなっている。 A refrigerant passage through which the refrigerant of the refrigeration cycle flows is formed in the passage forming portion. A plurality of functional items are attached to the passage forming portion, and operate by being supplied with drive current to perform predetermined functions in the refrigerating cycle. The functional product control unit calculates drive current values to be output to the plurality of functional products based on the target capacity value input from the main control unit that calculates the target capacity of the refrigeration cycle, and drives the plurality of functional products. It outputs current and detects failures of multiple functional products. The number of functional product control units is smaller than the number of functional products.
 これによると、電子制御ユニットを、メイン制御ユニットと機能品制御ユニットに分けることで、メイン制御ユニットの演算負荷を軽減できる。複数の機能品を通路形成部に集約して配置することで、機能品制御ユニットと機能品との間の電気配線を極力短縮できる。機能品制御ユニットの個数を機能品の個数よりも少なくすることで、メイン制御ユニットと機能品制御ユニットに分けることに伴う信号線の増加および制御の煩雑化を極力抑制できる。 According to this, by dividing the electronic control unit into the main control unit and the functional product control unit, the calculation load of the main control unit can be reduced. By collectively arranging a plurality of functional products in the passage forming portion, the electrical wiring between the functional product control unit and the functional products can be shortened as much as possible. By making the number of functional product control units smaller than the number of functional products, it is possible to minimize the increase in signal lines and the complication of control that accompany separation into the main control unit and the functional product control unit.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態の冷凍サイクル用機能品モジュールが搭載された車両の模式的な断面図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態の冷凍サイクル用機能品モジュールを示す断面図である。 図3のIV-IV断面図である。 第1実施形態の機能品制御ユニットが実行する制御処理を示すブロック線図である。 第1実施形態における圧縮機への液冷媒戻りを防止する制御処理の作動例を示すタイムチャートである。 第1実施形態における膨張弁の故障判定の方法を説明するタイムチャートである。 第1実施形態におけるリカバリ運転の作動例を示すタイムチャートである。 第2実施形態の冷凍サイクル用機能品モジュールを示す側面図である。 図9のX-X断面図である。 第2実施形態の冷凍サイクル用機能品モジュールを示す断面図である。 図11における第1膨張弁を拡大した拡大断面図である。 図11のXIII-XIII断面図である。 図13における第1膨張弁を拡大した拡大断面図である。 図13における第3膨張弁を拡大した拡大断面図である。 第2実施形態の冷凍サイクル用機能品モジュールのうち第1膨張弁、第2膨張弁および第3膨張弁に関する組立手順を説明する説明図である。 図16のXVII矢視図である。 図16のXVIII矢視図である。 第2実施形態の変形例における冷凍サイクル用機能品モジュールを示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is a schematic cross-sectional view of a vehicle equipped with a refrigerating cycle functional product module according to a first embodiment; FIG. It is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment. 1 is a cross-sectional view showing a refrigerating cycle functional module according to a first embodiment; FIG. FIG. 4 is a sectional view along IV-IV in FIG. 3; 4 is a block diagram showing control processing executed by the functional product control unit of the first embodiment; FIG. 4 is a time chart showing an operation example of control processing for preventing liquid refrigerant from returning to the compressor in the first embodiment; 5 is a time chart for explaining a method of determining failure of an expansion valve in the first embodiment; 4 is a time chart showing an operation example of recovery operation in the first embodiment; It is a side view which shows the functional component module for refrigerating cycles of 2nd Embodiment. FIG. 10 is a cross-sectional view taken along the line XX of FIG. 9; FIG. 7 is a cross-sectional view showing a functional component module for a refrigerating cycle according to a second embodiment; 12 is an enlarged cross-sectional view of the first expansion valve in FIG. 11; FIG. FIG. 12 is a cross-sectional view taken along line XIII-XIII of FIG. 11; 14 is an enlarged cross-sectional view of the first expansion valve in FIG. 13; FIG. 14 is an enlarged cross-sectional view of a third expansion valve in FIG. 13; FIG. It is explanatory drawing explaining the assembly procedure regarding a 1st expansion valve, a 2nd expansion valve, and a 3rd expansion valve among the functional goods modules for refrigerating cycles of 2nd Embodiment. FIG. 17 is a view in the direction of arrow XVII of FIG. 16; FIG. 17 is a view in the direction of arrow XVIII of FIG. 16; FIG. 11 is a cross-sectional view showing a functional component module for a refrigeration cycle in a modified example of the second embodiment;
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。 A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each embodiment, portions corresponding to items described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only part of the configuration is described in each embodiment, the other embodiments previously described can be applied to other portions of the configuration. Not only the combination of the parts that are specifically stated that the combination is possible in each embodiment, but also the embodiments can be partially combined even if it is not specified unless there is a particular problem with the combination. It is possible.
 (第1実施形態)
 本実施形態の冷凍サイクル用機能品モジュール70を説明する。本実施形態の機能品モジュール70は、図1に示す電気自動車1に搭載された車両用空調装置に適用されている。図1中、前後の矢印は、電気自動車1の前後方向を示している。
(First embodiment)
The refrigerating cycle functional product module 70 of this embodiment will be described. The functional product module 70 of this embodiment is applied to a vehicle air conditioner mounted on the electric vehicle 1 shown in FIG. In FIG. 1 , front and rear arrows indicate front and rear directions of the electric vehicle 1 .
 電気自動車1は、走行用の駆動力を電動モータから得る車両である。車両用空調装置は、空調対象空間である車室1a内の空調、および車載機器の冷却を行う。従って、車両用空調装置は、車載機器冷却機能付きの空調装置、あるいは空調機能付きの車載機器冷却装置と呼ぶことができる。 The electric vehicle 1 is a vehicle that obtains driving force for running from an electric motor. The vehicle air conditioner air-conditions the interior of the passenger compartment 1a, which is the space to be air-conditioned, and cools the vehicle-mounted equipment. Therefore, the vehicle air conditioner can be called an air conditioner with an in-vehicle equipment cooling function or an in-vehicle equipment cooling equipment with an air conditioning function.
 より具体的には、車両用空調装置はバッテリ80の冷却を行う。バッテリ80は、電気によって作動する複数の車載機器へ供給される電力を蓄える二次電池である。バッテリ80は、積層配置された複数の電池セルを、電気的に直列あるいは並列に接続することによって形成された組電池である。本実施形態の電池セルは、リチウムイオン電池である。本実施形態では、バッテリ80は、車室1a内の後部に配置されている。 More specifically, the vehicle air conditioner cools the battery 80 . The battery 80 is a secondary battery that stores power to be supplied to a plurality of in-vehicle devices that operate electrically. The battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel. The battery cell of this embodiment is a lithium ion battery. In this embodiment, the battery 80 is arranged in the rear part of the vehicle interior 1a.
 バッテリ80は、作動時(すなわち、充放電時)に発熱する。バッテリ80は、低温になると出力が低下しやすく、高温になると劣化が進行しやすいという特性を有している。このため、バッテリ80の温度は、適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。そこで、本実施形態の車両用空調装置では、バッテリ80の温度が上昇した際に、バッテリ80の冷却を行う。 The battery 80 generates heat during operation (that is, during charging and discharging). The battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment). Therefore, in the vehicle air conditioner of this embodiment, the battery 80 is cooled when the temperature of the battery 80 rises.
 車両用空調装置は、冷凍サイクル、室内空調ユニット30、低温側熱媒体回路、メイン図2に示す制御ユニット61等を備えている。機能品モジュール70は、冷凍サイクルを構成する複数の構成機器、および図2に示す機能品制御ユニット62を一体化させた構成部品である。 The vehicle air conditioner includes a refrigeration cycle, an indoor air conditioning unit 30, a low temperature side heat medium circuit, a control unit 61 shown in the main drawing 2, and the like. The functional product module 70 is a component that integrates a plurality of components that form a refrigeration cycle and the functional product control unit 62 shown in FIG. 2 .
 冷凍サイクルは、車室1a内へ送風される空気、バッテリ80、および低温側熱媒体回路を循環する低温側熱媒体の温度を調整する蒸気圧縮式の冷凍サイクル装置である。さらに、冷凍サイクルは、車室1a内の空調およびバッテリ80の冷却、および駆動系機器(本例では、走行用電動モータ50およびインバータ51)からの吸熱のために、各種運転モードに応じて冷媒回路を切替可能に構成されている。 The refrigeration cycle is a vapor compression refrigeration cycle device that adjusts the temperature of the air blown into the compartment 1a, the battery 80, and the low temperature side heat medium circulating in the low temperature side heat medium circuit. Furthermore, the refrigerating cycle uses refrigerant in accordance with various operation modes for air conditioning in the passenger compartment 1a, cooling of the battery 80, and absorption of heat from the drive system equipment (the electric motor 50 and the inverter 51 for traveling in this example). The circuit is configured to be switchable.
 冷凍サイクルでは、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクルは、圧縮機11から吐出された高圧側冷媒の圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油は、液相冷媒に相溶性を有するPAGオイルである。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The refrigerating cycle constitutes a subcritical refrigerating cycle in which the pressure of the high pressure side refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 冷凍サイクルは、圧縮機11から吐出された高圧側冷媒を凝縮させる凝縮器を備える。凝縮器は、凝縮器で放熱された熱は、必要に応じて、車室1a内へ送風される空気の加熱に利用されたり、外気に放出されたりする。 The refrigeration cycle includes a condenser that condenses the high-pressure side refrigerant discharged from the compressor 11. The heat radiated by the condenser is used for heating the air blown into the compartment 1a or released to the outside air, as required.
 冷凍サイクルは、凝縮された高圧側冷媒を減圧させる膨張弁群を備える。本例では、膨張弁群として、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gを備える。 The refrigeration cycle is equipped with an expansion valve group that reduces the pressure of the condensed high pressure side refrigerant. In this example, the expansion valve group includes a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, a sixth expansion valve 13f, and a seventh expansion valve 13g. Prepare.
 冷凍サイクルは、減圧された低圧側冷媒を蒸発させる室内蒸発器、電池冷却器およびチラーを備える。 The refrigeration cycle is equipped with an indoor evaporator that evaporates the depressurized low-pressure side refrigerant, a battery cooler, and a chiller.
 室内蒸発器は、第1膨張弁13aにて減圧された低圧側冷媒と車室1a内へ送風される空気とを熱交換させる冷却用熱交換器である。室内蒸発器では、低圧側冷媒を蒸発させて吸熱作用を発揮させることによって、空気を冷却する。室内蒸発器は、室内空調ユニット30内に収容されている。 The indoor evaporator is a cooling heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the first expansion valve 13a and the air blown into the vehicle interior 1a. The indoor evaporator cools the air by evaporating the low-pressure side refrigerant and exerting an endothermic action. The indoor evaporator is housed inside the indoor air conditioning unit 30 .
 電池冷却器は、第2膨張弁13bにて減圧された低圧側冷媒でバッテリ80を冷却する冷却用熱交換器である。電池冷却器では、低圧側冷媒を蒸発させて吸熱作用を発揮させることによって、バッテリ80を冷却する。 The battery cooler is a cooling heat exchanger that cools the battery 80 with the low-pressure side refrigerant decompressed by the second expansion valve 13b. The battery cooler cools the battery 80 by evaporating the low-pressure side refrigerant to exhibit heat absorption.
 チラーは、第3膨張弁13cにて減圧された低圧側冷媒と低温側熱媒体回路を循環する低温側熱媒体とを熱交換させる低温側水冷媒熱交換器である。チラーでは、冷媒通路を流通する低圧側冷媒を蒸発させて吸熱作用を発揮させることによって、熱媒体通路を流通する低温側熱媒体を冷却する。チラーは、電気自動車1の駆動装置室1b内に配置されている。 The chiller is a low-temperature side water-refrigerant heat exchanger that exchanges heat between the low-pressure side refrigerant depressurized by the third expansion valve 13c and the low-temperature side heat medium circulating in the low-temperature side heat medium circuit. In the chiller, the low-temperature side heat medium flowing through the heat medium passage is cooled by evaporating the low-pressure side refrigerant flowing through the refrigerant passage and exerting an endothermic action. The chiller is arranged in the drive unit room 1b of the electric vehicle 1. As shown in FIG.
 圧縮機11は、冷凍サイクルにおいて、冷媒を吸入し、圧縮して吐出する。圧縮機11は、電気自動車1の駆動装置室1b内に配置されている。駆動装置室1bは、走行用の駆動量を発生させるための機器(例えば、走行用電動モータ50)等の少なくとも一部が配置される空間を形成している。 The compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle. Compressor 11 is arranged in drive unit room 1 b of electric vehicle 1 . The drive device chamber 1b forms a space in which at least a part of a device for generating a drive amount for running (for example, the electric motor 50 for running) is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機である。圧縮機11は、圧縮機制御ユニット63から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement. The compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from the compressor control unit 63 .
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gは、冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する減圧部である。 The first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g reduce the pressure of the refrigerant and It is a decompression part that adjusts the flow rate of the refrigerant that flows out to the side.
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gは、冷凍サイクルにおいて冷媒の減圧機能および冷媒の流量調整機能を発揮する機能品である。 The first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g have a refrigerant pressure reducing function in the refrigeration cycle. And it is a functional product that exerts the function of adjusting the flow rate of the refrigerant.
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。本例では、電動アクチュエータとして、ブラシレスモータが用いられている。電動アクチュエータとして、ステッピングモータが用いられていてもよい。 The first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g can change the throttle opening. It is an electric variable throttling mechanism comprising a configured valve body and an electric actuator that changes the opening degree of the valve body. In this example, a brushless motor is used as the electric actuator. A stepping motor may be used as the electric actuator.
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gの作動は、機能品制御ユニット62から供給される駆動電流によって制御される。 The operations of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f and the seventh expansion valve 13g are controlled by the functional product control unit 62. is controlled by the drive current supplied by the
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gは、弁体部が絞り通路を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。従って、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13fおよび第7膨張弁13gは、冷媒回路切替部としての機能を兼ね備える。 In the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g, the valve body portion defines the throttle passage. When fully opened, it has a fully open function that functions as a mere refrigerant passage without exhibiting a flow rate adjusting action and a refrigerant depressurizing action. Therefore, the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g serve as refrigerant circuit switching units. It has the functions of
 図1に示すように、機能品モジュール70は、電気自動車1の駆動装置室1b内に配置されている。図3および図4に示すように、機能品モジュール70では、冷凍サイクルの構成機器のうち、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4用膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17等が一体化されている。これらの構成機器は、取付部材である流路ボックス71に取り付けられることによって一体化されている。 As shown in FIG. 1, the functional product module 70 is arranged in the drive device chamber 1b of the electric vehicle 1. As shown in FIGS. 3 and 4, in the functional product module 70, among the components of the refrigeration cycle, the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the The 5th expansion valve 13e, the 6th expansion valve 13f, the 7th expansion valve 13g, the on-off valve 17 and the like are integrated. These constituent devices are integrated by being attached to a channel box 71 that is an attachment member.
 流路ボックス71は、機能品モジュール70の本体部である。流路ボックス71は、内部に冷媒通路を形成する通路形成部である。流路ボックス71の外表面に形成された複数の冷媒出入口71aは、流路ボックス71の内部に形成された冷媒通路と連通している。 The channel box 71 is the main body of the functional module 70. The channel box 71 is a channel forming portion that forms a coolant channel therein. A plurality of coolant inlets/outlet ports 71 a formed on the outer surface of the channel box 71 communicate with coolant passages formed inside the channel box 71 .
 各冷媒出入口71aは、流路ボックス71内部の冷媒通路を介して、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4用膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gのうちいずれかの膨張弁の出入口に連通している。 Each refrigerant inlet/outlet 71a is connected to the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the third It communicates with the entrance/exit of one of the 6th expansion valve 13f and the 7th expansion valve 13g.
 これらの冷媒出入口71aには、凝縮器の冷媒出口側、室内蒸発器の冷媒入口側、電池冷却器の冷媒入口側、チラーの冷媒入口側が冷媒配管75を介して接続されている。 The refrigerant outlet side of the condenser, the refrigerant inlet side of the indoor evaporator, the refrigerant inlet side of the battery cooler, and the refrigerant inlet side of the chiller are connected to these refrigerant inlets and outlets 71 a via refrigerant pipes 75 .
 開閉弁17は、流路ボックス71の内部に形成された冷媒通路を開閉する電磁弁である。開閉弁17は、機能品制御ユニット62から出力される制御電圧または駆動電流によって、開閉作動が制御される。 The on-off valve 17 is an electromagnetic valve that opens and closes the refrigerant passage formed inside the flow path box 71 . The opening/closing operation of the opening/closing valve 17 is controlled by a control voltage or drive current output from the functional product control unit 62 .
 開閉弁17は、冷媒通路を開閉することによって、冷媒回路を切り替えることができる。従って、開閉弁17は、冷媒回路切替部である。開閉弁17は、冷凍サイクルにおいて冷媒通路の開閉機能を発揮する機能品である。 The on-off valve 17 can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the on-off valve 17 is a refrigerant circuit switching unit. The on-off valve 17 is a functional item that exhibits a function of opening and closing a refrigerant passage in the refrigeration cycle.
 次に、低温側熱媒体回路について説明する。低温側熱媒体回路は、低温側熱媒体を循環させる回路である。低温側熱媒体回路では、低温側熱媒体として、エチレングリコール水溶液を採用している。低温側熱媒体回路には、チラーの水通路、低温ラジエータ、図2に示す走行用電動モータ50、インバータ51、低温側ポンプ52等が接続されている。 Next, the low temperature side heat medium circuit will be explained. The low temperature side heat medium circuit is a circuit that circulates the low temperature side heat medium. In the low temperature side heat medium circuit, an ethylene glycol aqueous solution is used as the low temperature side heat medium. A water passage of a chiller, a low-temperature radiator, an electric motor 50 for traveling shown in FIG.
 低温ラジエータは、低温側熱媒体と外気とを熱交換させる熱媒体外気熱交換器である。 The low temperature radiator is a heat medium outside air heat exchanger that exchanges heat between the low temperature side heat medium and the outside air.
 走行用電動モータ50は、インバータ51から供給される交流電力によって走行用駆動力を発生する駆動力発生装置である。走行用電動モータ50の作動は、駆動系制御ユニット92から出力される制御電圧によって制御される。走行用電動モータ50は、作動時に発熱するので、低温側熱媒体回路の低温側熱媒体によって冷却される。換言すれば、走行用電動モータ50の排熱は、低温側熱媒体回路の低温側熱媒体に吸熱されて回収される。 The traveling electric motor 50 is a driving force generator that generates traveling driving force from the AC power supplied from the inverter 51 . The operation of the traveling electric motor 50 is controlled by a control voltage output from the driving system control unit 92 . Since the traveling electric motor 50 generates heat during operation, it is cooled by the low temperature side heat medium of the low temperature side heat medium circuit. In other words, the exhaust heat of the traveling electric motor 50 is absorbed and recovered by the low temperature side heat medium of the low temperature side heat medium circuit.
 インバータ51は、バッテリ80から供給された直流電力を交流電力に変換して走行用電動モータ50に出力する電力変換装置である。インバータ51の作動は、駆動系制御ユニット92から出力される制御電圧によって制御される。インバータ51は、作動時に発熱するので、低温側熱媒体回路の低温側熱媒体によって冷却される。換言すれば、インバータ51の排熱は、低温側熱媒体回路の低温側熱媒体に吸熱されて回収される。 The inverter 51 is a power conversion device that converts the DC power supplied from the battery 80 into AC power and outputs the AC power to the electric motor 50 for traveling. The operation of inverter 51 is controlled by a control voltage output from drive system control unit 92 . Since the inverter 51 generates heat during operation, it is cooled by the low temperature side heat medium of the low temperature side heat medium circuit. In other words, the exhaust heat of the inverter 51 is recovered by being absorbed by the low temperature side heat medium of the low temperature side heat medium circuit.
 低温側ポンプ52は、低温側熱媒体を吸入して圧送する低温側の熱媒体圧送部である。低温側ポンプ52は、低温側熱媒体をチラーの熱媒体通路の入口側へ圧送する。低温側ポンプ52は、駆動系制御ユニット92から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動水ポンプである。 The low-temperature side pump 52 is a low-temperature side heat medium pumping section that sucks and pumps the low-temperature side heat medium. The low temperature side pump 52 pressure-feeds the low temperature side heat medium to the inlet side of the heat medium passage of the chiller. The low temperature side pump 52 is an electric water pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the drive system control unit 92 .
 チラーの熱媒体通路の出口には、低温ラジエータ、走行用電動モータ50およびインバータ51の入口側が接続されている。低温ラジエータ、走行用電動モータ50およびインバータ51の出口には、低温側ポンプ52の吸入口側が接続されている。 A low-temperature radiator, an electric motor 50 for traveling, and an inlet side of an inverter 51 are connected to the outlet of the heat medium passage of the chiller. The suction port side of a low temperature side pump 52 is connected to the outlets of the low temperature radiator, the electric motor 50 for running, and the inverter 51 .
 次に、室内空調ユニット30について説明する。図1に示す室内空調ユニット30は、車室1a内の空調のために適切な温度に調整された空気を、車室1a内の適切な箇所へ吹き出すために、複数の構成機器を一体化したユニットである。室内空調ユニット30は、車室1a内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be explained. The interior air-conditioning unit 30 shown in FIG. 1 integrates a plurality of components in order to blow out air adjusted to an appropriate temperature for air-conditioning the vehicle interior 1a to appropriate locations within the vehicle interior 1a. is a unit. The indoor air-conditioning unit 30 is arranged inside the dashboard (instrument panel) at the foremost part in the passenger compartment 1a.
 室内空調ユニット30は、空気通路を形成する空調ケース内に、図2に示す室内送風機32、室内蒸発器等を収容することによって形成されている。空調ケースの空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース内へ内気(すなわち、車室内空気)と外気(すなわち、車室外空気)とを切替導入する。内外気切替装置33の作動は、メイン制御ユニット61から出力される制御信号によって制御される。 The indoor air conditioning unit 30 is formed by housing the indoor blower 32, the indoor evaporator, etc. shown in FIG. 2 in an air conditioning case forming an air passage. An inside/outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case. The inside/outside air switching device 33 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case. The operation of the inside/outside air switching device 33 is controlled by a control signal output from the main control unit 61 .
 内外気切替装置33の空気流れ下流側には、室内送風機32が配置されている。室内送風機32は、内外気切替装置33を介して吸入した空気を車室1a内へ向けて送風する。室内送風機32の回転数(すなわち、送風能力)は、メイン制御ユニット61から出力される制御電圧によって制御される。 An indoor fan 32 is arranged downstream of the inside/outside air switching device 33 in the air flow. The indoor air blower 32 blows the air sucked through the inside/outside air switching device 33 into the vehicle interior 1a. The number of revolutions (that is, the air blowing capacity) of the indoor fan 32 is controlled by the control voltage output from the main control unit 61 .
 室内送風機32の空気流れ下流側には室内蒸発器が配置されている。室内蒸発器の空気流れ下流側には、室内蒸発器通過後の空気を加熱する空気加熱器が配置されている。空気加熱器は、圧縮機11から吐出された高圧側冷媒の熱を直接利用して空気を加熱する熱交換器であってもよいし、圧縮機11から吐出された高圧側冷媒の熱を熱媒体等を介して利用して空気を加熱する熱交換器であってもよい。空気加熱器は、電気ヒータであってもよい。 An indoor evaporator is arranged downstream of the indoor blower 32 in the air flow. An air heater that heats the air after passing through the indoor evaporator is arranged downstream of the indoor evaporator in the air flow. The air heater may be a heat exchanger that heats the air by directly using the heat of the high-pressure side refrigerant discharged from the compressor 11, or may use the heat of the high-pressure side refrigerant discharged from the compressor 11 as heat. A heat exchanger that heats air using a medium or the like may be used. The air heater may be an electric heater.
 空調ケース内には、室内蒸発器通過後の空気を、空気加熱器を迂回させて流す冷風バイパス通路が形成されている。 Inside the air conditioning case, a cold air bypass passage is formed in which the air that has passed through the indoor evaporator bypasses the air heater.
 空調ケース内の室内蒸発器の空気流れ下流側であって、かつ空気加熱器および冷風バイパス通路の空気流れ上流側には、エアミックスドア34が配置されている。 An air mix door 34 is arranged on the air flow downstream side of the indoor evaporator in the air conditioning case and on the air flow upstream side of the air heater and the cold air bypass passage.
 エアミックスドア34は、室内蒸発器通過後の空気のうち、空気加熱器側を通過させる空気の風量と冷風バイパス通路を通過させる空気の風量との風量割合を調整する。エアミックスドア34の駆動用のアクチュエータの作動は、メイン制御ユニット61から出力される制御信号によって制御される。 The air mix door 34 adjusts the air volume ratio between the air volume that passes through the air heater side and the air volume that passes through the cold air bypass passage, among the air that has passed through the indoor evaporator. Actuation of the actuator for driving the air mix door 34 is controlled by a control signal output from the main control unit 61 .
 空気加熱器および冷風バイパス通路の空気流れ下流側には、混合空間が配置されている。混合空間は、空気加熱器にて加熱された空気と冷風バイパス通路を通過して加熱されていない空気とを混合させる空間である。 A mixing space is arranged on the air flow downstream side of the air heater and the cold air bypass passage. The mixing space is a space for mixing the air heated by the air heater and the air that has passed through the cold air bypass passage and is not heated.
 従って、室内空調ユニット30では、エアミックスドア34の開度調整によって、混合空間にて混合されて車室1a内へ吹き出される空気(すなわち、空調風)の温度を調整することができる。 Therefore, in the indoor air conditioning unit 30, the temperature of the air mixed in the mixing space and blown out into the passenger compartment 1a (that is, the conditioned air) can be adjusted by adjusting the opening degree of the air mix door 34.
 空調ケースの空気流れ最下流部には、空調風を車室1a内の様々な箇所へ向けて吹き出すための複数の開口穴が形成されている。複数の開口穴には、それぞれの開口穴を開閉する吹出モードドア35が配置されている。吹出モードドア35の駆動用のアクチュエータの作動は、メイン制御ユニット61から出力される制御信号によって制御される。 A plurality of opening holes are formed in the most downstream part of the air flow of the air conditioning case for blowing out the air conditioning air toward various locations in the vehicle interior 1a. Blow-out mode doors 35 for opening and closing the respective openings are arranged in the plurality of openings. The operation of the actuator for driving the blow mode door 35 is controlled by control signals output from the main control unit 61 .
 従って、室内空調ユニット30では、吹出モードドア35が開閉する開口穴を切り替えることによって、車室1a内の適切な箇所へ適切な温度に調整された空調風を吹き出すことができる。 Therefore, in the indoor air conditioning unit 30, by switching the opening hole that the blowing mode door 35 opens and closes, it is possible to blow out conditioned air adjusted to an appropriate temperature to an appropriate location in the vehicle interior 1a.
 次に、本実施形態の電気制御部の概要について説明する。図2に示すメイン制御ユニット61、機能品制御ユニット62および圧縮機制御ユニット63は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータ、および周辺回路を有する電子制御ユニットである。メイン制御ユニット61、機能品制御ユニット62および圧縮機制御ユニット63は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。 Next, the outline of the electric control unit of this embodiment will be described. The main control unit 61, the functional product control unit 62, and the compressor control unit 63 shown in FIG. 2 are electronic control units having well-known microcomputers including CPU, ROM, RAM, etc., and peripheral circuits. The main control unit 61, the functional product control unit 62, and the compressor control unit 63 perform various calculations and processes based on control programs stored in the ROM, and control the operation of various controlled devices connected to the output side. do.
 メイン制御ユニット61は、室内空調ユニット30の室内送風機32、内外気切替装置33、エアミックスドア34の駆動用のアクチュエータ、吹出モードドア35の駆動用のアクチュエータ等の作動を制御する。メイン制御ユニット61は、冷凍サイクルの目標能力の値を演算する目標能力演算部61aを有している。 The main control unit 61 controls the operation of the indoor blower 32 of the indoor air conditioning unit 30, the inside/outside air switching device 33, the actuator for driving the air mix door 34, the actuator for driving the blowout mode door 35, and the like. The main control unit 61 has a target capacity calculator 61a that calculates the value of the target capacity of the refrigeration cycle.
 機能品制御ユニット62は、冷凍サイクルの第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17の作動を制御する。機能品制御ユニット62は、マイコン部621とドライバIC部622とを有している。 The functional product control unit 62 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve of the refrigeration cycle. 13g and the operation of the on-off valve 17. The functional product control unit 62 has a microcomputer section 621 and a driver IC section 622 .
 マイコン部621は目標開度演算部621a、故障検知部621bおよびタイミング決定部621cを有している。 The microcomputer section 621 has a target opening calculation section 621a, a failure detection section 621b, and a timing determination section 621c.
 目標開度演算部621aは、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gの目標開度を演算する。 The target opening degree calculation unit 621a calculates the values of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. Calculate the target opening.
 故障検知部621bは、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gの故障を検知する。 The failure detection unit 621b detects failures of the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. detect.
 タイミング決定部621cは、圧縮機11の回転数の変更タイミングを決定し、圧縮機制御ユニット63に圧縮機11の回転数の変更タイミングを出力する。 The timing determination unit 621 c determines timing for changing the rotation speed of the compressor 11 and outputs the timing for changing the rotation speed of the compressor 11 to the compressor control unit 63 .
 ドライバIC部622は、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gに駆動電流を出力する駆動電流出力部である。 The driver IC unit 622 applies a drive current to the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. is a drive current output unit that outputs .
 機能品制御ユニット62は、いわゆる硬質プリント基板で形成された電気基板部である。図4に示すように、機能品制御ユニット62は、矩形の平板状に形成されている。機能品制御ユニット62は、機能品モジュール70として、他の冷凍サイクルの構成機器と一体化されている。 The functional product control unit 62 is an electric board section formed of a so-called rigid printed circuit board. As shown in FIG. 4, the functional product control unit 62 is formed in a rectangular flat plate shape. The functional product control unit 62 is integrated as a functional product module 70 with other components of the refrigeration cycle.
 図2に示すように、圧縮機制御ユニット63は、冷凍サイクルの圧縮機11の作動を制御する。圧縮機制御ユニット63は、圧縮機モジュールとして、圧縮機11と一体化されている。 As shown in FIG. 2, the compressor control unit 63 controls the operation of the compressor 11 of the refrigeration cycle. The compressor control unit 63 is integrated with the compressor 11 as a compressor module.
 メイン制御ユニット61の入力側には、内気温センサ64a、外気温センサ64b、日射センサ64c、空調風温度センサ64d等の制御用のセンサ群が接続されている。メイン制御ユニット61には、これらのセンサの検出信号が入力される。これらのセンサは、冷凍サイクルを構成する構成機器に含まれる。 The input side of the main control unit 61 is connected to a sensor group for control such as an inside air temperature sensor 64a, an outside air temperature sensor 64b, a solar radiation sensor 64c, and an air conditioning air temperature sensor 64d. Detection signals from these sensors are input to the main control unit 61 . These sensors are included in the components that make up the refrigeration cycle.
 内気温センサ64aは、車室1a内の温度である内気温Trを検出する内気温検出部である。外気温センサ64bは、車室外の温度である外気温Tamを検出する外気温検出部である。日射センサ64cは、車室1a内へ照射される日射量Asを検出する日射量検出部である。空調風温度センサ64dは、室内空調ユニット30から車室1a内へ送風される空調風の温度TAVを検出する空調風温度検出部である。 The inside air temperature sensor 64a is an inside air temperature detection unit that detects the inside air temperature Tr, which is the temperature inside the vehicle compartment 1a. The outside air temperature sensor 64b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle compartment. The solar radiation sensor 64c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior 1a. The air-conditioning air temperature sensor 64d is an air-conditioning air temperature detecting section that detects the temperature TAV of the air-conditioning air blown from the indoor air-conditioning unit 30 into the vehicle interior 1a.
 機能品制御ユニット62の入力側には、高圧側冷媒圧力温度センサ65a、低圧側冷媒圧力温度センサ65b、電池入口圧力温度センサ65c、電池出口圧力温度センサ65d、チラー入口圧力温度センサ65e、チラー出口圧力温度センサ65f等の制御用のセンサ群が接続されている。 On the input side of the functional product control unit 62 are a high-pressure side refrigerant pressure and temperature sensor 65a, a low-pressure side refrigerant pressure and temperature sensor 65b, a battery inlet pressure and temperature sensor 65c, a battery outlet pressure and temperature sensor 65d, a chiller inlet pressure and temperature sensor 65e, and a chiller outlet. A sensor group for control such as the pressure temperature sensor 65f is connected.
 高圧側冷媒圧力温度センサ65aは、圧縮機11から吐出された高圧側冷媒の圧力および温度を検出する高圧側冷媒圧力温度検出部である。低圧側冷媒圧力温度センサ65bは、圧縮機11に吸入される低圧側冷媒の圧力および温度を検出する低圧側冷媒圧力温度検出部である。 The high-pressure side refrigerant pressure and temperature sensor 65a is a high-pressure side refrigerant pressure and temperature detector that detects the pressure and temperature of the high-pressure side refrigerant discharged from the compressor 11. The low-pressure refrigerant pressure and temperature sensor 65b is a low-pressure refrigerant pressure and temperature detector that detects the pressure and temperature of the low-pressure refrigerant sucked into the compressor 11 .
 電池入口圧力温度センサ65cは、電池冷却器の入口側における冷媒の圧力および温度を検出する電池入口冷媒圧力温度検出部である。電池出口圧力温度センサ65dは、電池冷却器の出口側における冷媒の圧力および温度を検出する電池出口冷媒圧力温度検出部である。 The battery inlet pressure and temperature sensor 65c is a battery inlet coolant pressure and temperature detector that detects the pressure and temperature of the coolant on the inlet side of the battery cooler. The battery outlet pressure and temperature sensor 65d is a battery outlet coolant pressure and temperature detector that detects the pressure and temperature of the coolant on the outlet side of the battery cooler.
 チラー入口圧力温度センサ65eは、チラーの入口側における冷媒の圧力および温度を検出するチラー入口冷媒圧力温度検出部である。チラー出口圧力温度センサ65fは、チラーの出口側における冷媒の圧力および温度を検出するチラー出口冷媒圧力温度検出部である。 The chiller inlet pressure and temperature sensor 65e is a chiller inlet refrigerant pressure and temperature detector that detects the pressure and temperature of the refrigerant on the chiller inlet side. The chiller outlet pressure and temperature sensor 65f is a chiller outlet refrigerant pressure and temperature detector that detects the pressure and temperature of the refrigerant on the outlet side of the chiller.
 高圧側冷媒圧力温度センサ65a、低圧側冷媒圧力温度センサ65b、電池入口圧力温度センサ65c、電池出口圧力温度センサ65d、チラー入口圧力温度センサ65e、チラー出口圧力温度センサ65fでは、圧力検出部と温度検出部が一体化された検出部を採用しているが、もちろん、それぞれ別体で構成された圧力検出部と温度検出部とを採用してもよい。 In the high pressure side refrigerant pressure temperature sensor 65a, the low pressure side refrigerant pressure temperature sensor 65b, the battery inlet pressure temperature sensor 65c, the battery outlet pressure temperature sensor 65d, the chiller inlet pressure temperature sensor 65e, and the chiller outlet pressure temperature sensor 65f, the pressure detector and the temperature Although a detection unit in which the detection units are integrated is adopted, of course, a pressure detection unit and a temperature detection unit configured separately may be adopted.
 高圧側冷媒圧力温度センサ65a、低圧側冷媒圧力温度センサ65b、電池入口圧力温度センサ65c、電池出口圧力温度センサ65d、チラー入口圧力温度センサ65e、チラー出口圧力温度センサ65fは、冷媒の状態を検出する冷媒状態検出部である。 A high-pressure side refrigerant pressure and temperature sensor 65a, a low-pressure side refrigerant pressure and temperature sensor 65b, a battery inlet pressure and temperature sensor 65c, a battery outlet pressure and temperature sensor 65d, a chiller inlet pressure and temperature sensor 65e, and a chiller outlet pressure and temperature sensor 65f detect the state of the refrigerant. Refrigerant state detector.
 高圧側冷媒圧力温度センサ65a、低圧側冷媒圧力温度センサ65b、電池入口圧力温度センサ65c、電池出口圧力温度センサ65d、チラー入口圧力温度センサ65e、チラー出口圧力温度センサ65fは、流路ボックス71に取り付けられており、流路ボックス71内の冷媒通路を流れる冷媒の圧力および温度を検出する。 A high pressure side refrigerant pressure temperature sensor 65a, a low pressure side refrigerant pressure temperature sensor 65b, a battery inlet pressure temperature sensor 65c, a battery outlet pressure temperature sensor 65d, a chiller inlet pressure temperature sensor 65e, and a chiller outlet pressure temperature sensor 65f are connected to the passage box 71. It is attached to detect the pressure and temperature of the refrigerant flowing through the refrigerant passage inside the flow path box 71 .
 機能品制御ユニット62の入力側には、膨張弁電流電圧センサ群66が接続されている。膨張弁電流電圧センサ群66は、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gのそれぞれの電流電圧を検出する膨張弁電流電圧検出部である。 An expansion valve current/voltage sensor group 66 is connected to the input side of the functional product control unit 62 . The expansion valve current/voltage sensor group 66 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. is an expansion valve current and voltage detection unit that detects the current and voltage of each of the .
 膨張弁電流電圧センサ群66は、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gのそれぞれに取り付けられている。 The expansion valve current/voltage sensor group 66 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13g. attached to each of the
 膨張弁電流電圧センサ群66では、電流検出部と電圧検出部が一体化された検出部を採用しているが、もちろん、それぞれ別体で構成された電流検出部と電圧検出部とを採用してもよい。 The expansion valve current/voltage sensor group 66 employs a detection unit in which a current detection unit and a voltage detection unit are integrated. may
 メイン制御ユニット61、機能品制御ユニット62および圧縮機制御ユニット63は、ハーネスを介して、CAN(Controller Area Network)通信プロトコル等によって互いに通信可能に接続されている。従って、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置の出力側に接続された制御対象機器の作動を制御することができる。 The main control unit 61, the functional product control unit 62, and the compressor control unit 63 are communicably connected to each other via a CAN (Controller Area Network) communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control device, the operation of the controlled device connected to the output side of the other control device can be controlled.
 同様に、メイン制御ユニット61、ユーザインターフェイス90、バッテリ制御ユニット91および駆動系制御ユニット92は、ハーネスを介して、CAN通信プロトコル等によって互いに通信可能に接続されている。従って、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置の出力側に接続された制御対象機器の作動を制御することができる。 Similarly, the main control unit 61, the user interface 90, the battery control unit 91, and the drive system control unit 92 are communicably connected to each other via a harness using a CAN communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control device, the operation of the controlled device connected to the output side of the other control device can be controlled.
 ユーザインターフェイス90は、乗員との間で情報をやり取りするための機器群である。ユーザインターフェイス90は、計器盤、空調用操作パネル、アクセルペダル開度検知装置等である。 The user interface 90 is a group of devices for exchanging information with passengers. The user interface 90 is an instrument panel, an air conditioning operation panel, an accelerator pedal opening detection device, and the like.
 計器盤は、車室1a内前部の運転席の正面付近に配置されている。計器盤は、電気自動車1の走行速度や電気自動車1の作動状態等の種々の情報を表示する。計器盤は、電気自動車1の各種機器に異常や故障が生じた場合に表示や音声等によって乗員に警告を行う。 The instrument panel is located near the front of the driver's seat in the front part of the cabin 1a. The instrument panel displays various information such as the running speed of the electric vehicle 1 and the operating state of the electric vehicle 1 . The instrument panel warns the occupant by display, sound, or the like when an abnormality or failure occurs in various devices of the electric vehicle 1 .
 空調用操作パネルは、車室1a内前部の計器盤付近に配置されている。制御装置60には、空調用操作パネルに設けられた各種操作スイッチからの操作信号が入力される。空調用操作パネルに設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。 The air-conditioning operation panel is located near the instrument panel in the front part of the passenger compartment 1a. The controller 60 receives operation signals from various operation switches provided on the air conditioning operation panel. Examples of various operation switches provided on the air conditioning operation panel include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
 オートスイッチは、乗員が車室1a内空調の自動制御運転を設定あるいは解除する操作部である。エアコンスイッチは、乗員が室内蒸発器にて空気の冷却を行うことを要求する操作部である。風量設定スイッチは、乗員が室内送風機32の風量をマニュアル設定する操作部である。温度設定スイッチは、乗員が車室1a内の設定温度Tsetを設定する操作部である。 The auto switch is an operation unit for the passenger to set or cancel the automatic control operation of the air conditioning in the passenger compartment 1a. The air conditioner switch is an operating part that the passenger requests to cool the air in the interior evaporator. The air volume setting switch is an operation unit for the passenger to manually set the air volume of the indoor blower 32 . The temperature setting switch is an operation unit that allows the passenger to set the set temperature Tset inside the passenger compartment 1a.
 アクセルペダル開度検知装置は、乗員によるアクセルペダルの操作状態を検知することによってアクセルペダル開度を検知する。 The accelerator pedal opening detection device detects the accelerator pedal opening by detecting the operating state of the accelerator pedal by the passenger.
 バッテリ制御ユニット91および駆動系制御ユニット92は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータ、および周辺回路を有する電子制御ユニットである。メイン制御ユニット61、機能品制御ユニット62および圧縮機制御ユニット63は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。 The battery control unit 91 and drive system control unit 92 are electronic control units having well-known microcomputers including CPU, ROM, RAM, etc., and peripheral circuits. The main control unit 61, the functional product control unit 62, and the compressor control unit 63 perform various calculations and processes based on control programs stored in the ROM, and control the operation of various controlled devices connected to the output side. do.
 バッテリ制御ユニット91の出力側にはバッテリ80が接続されている。バッテリ制御ユニット91はバッテリ80の入出力を制御するバッテリ制御部である。 A battery 80 is connected to the output side of the battery control unit 91 . A battery control unit 91 is a battery control section that controls input/output of the battery 80 .
 バッテリ制御ユニット91の入力側には、バッテリ電圧センサ93a、バッテリ温度センサ93b等のバッテリ80に関するセンサ群が接続されている。バッテリ電圧センサ93aは、バッテリ80の電圧を検出するバッテリ電圧検出部である。 A sensor group related to the battery 80 such as a battery voltage sensor 93a and a battery temperature sensor 93b is connected to the input side of the battery control unit 91. The battery voltage sensor 93 a is a battery voltage detection section that detects the voltage of the battery 80 .
 バッテリ温度センサ93bは、バッテリ温度TB(すなわち、バッテリ80の温度)を検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ93bは、複数の温度センサを有し、バッテリ80の複数の箇所の温度を検出している。このため、制御装置60では、バッテリ80を形成する各電池セルの温度差を検出することができる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 93b is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80). The battery temperature sensor 93b of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80. FIG. Therefore, the control device 60 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
 駆動系制御ユニット92の出力側には、走行用電動モータ50、インバータ51、低温側ポンプ52等が接続されている。駆動系制御ユニット92は、走行用電動モータ50、インバータ51、低温側ポンプ52の作動を制御する駆動系制御部である。 An electric motor 50 for traveling, an inverter 51, a low temperature side pump 52, etc. are connected to the output side of the drive system control unit 92. The drive system control unit 92 is a drive system control section that controls the operation of the electric motor 50 for traveling, the inverter 51 and the low temperature side pump 52 .
 次に、機能品モジュール70の詳細構成を図3および図4に基づいて説明する。機能品モジュール70は、流路ボックス71およびカバー部材72を備えている。 Next, the detailed configuration of the functional product module 70 will be described with reference to FIGS. 3 and 4. FIG. The functional product module 70 has a channel box 71 and a cover member 72 .
 流路ボックス71は、金属(本実施形態では、アルミニウム合金)で形成されている。流路ボックス71は、略直方体形状に形成されている。流路ボックス71の1つの面(本実施形態では、上面)は、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17が取り付けられる取付面712となっている。取付面712には、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17を取り付けるための取付穴が形成されている。 The channel box 71 is made of metal (aluminum alloy in this embodiment). The channel box 71 is formed in a substantially rectangular parallelepiped shape. One surface (the upper surface in this embodiment) of the flow path box 71 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth It is a mounting surface 712 to which the expansion valve 13f, the seventh expansion valve 13g and the on-off valve 17 are mounted. The mounting surface 712 includes a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, a sixth expansion valve 13f, a seventh expansion valve 13g, and an on-off valve. Mounting holes for mounting 17 are formed.
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17が取り付けられる取付穴は、流路ボックス71内に形成された各種冷媒通路に連通している。流路ボックス71の複数の面(本実施形態では、2つの側面)には、複数の冷媒出入口71aが形成されている。 Mounting holes for mounting the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 communicates with various refrigerant passages formed in the passage box 71 . A plurality of coolant inlet/outlets 71a are formed on a plurality of surfaces (two side surfaces in this embodiment) of the channel box 71 .
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17は、それぞれ機能品制御ユニット62に電気的に接続される接続端子部であるターミナル131a、131b、131c、131d、131e、131f、131g、171を有している。 The first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are functional parts. It has terminals 131 a , 131 b , 131 c , 131 d , 131 e , 131 f , 131 g , and 171 which are connection terminals electrically connected to the control unit 62 .
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17が流路ボックス71に取り付けられた状態では、各ターミナル131a、131b、131c、131d、131e、131f、131g、171は、いずれも取付面712に垂直な方向(本実施形態では上下方向)に突出している。 The first expansion valve 13 a , the second expansion valve 13 b , the third expansion valve 13 c , the fourth expansion valve 13 d , the fifth expansion valve 13 e , the sixth expansion valve 13 f , the seventh expansion valve 13 g and the on-off valve 17 Each of the terminals 131a, 131b, 131c, 131d, 131e, 131f, 131g, and 171 protrudes in a direction perpendicular to the mounting surface 712 (vertical direction in this embodiment).
 機能品制御ユニット62は、柱状のスペーサ73を介して、流路ボックス71の取付面712にネジ止め等の手段で取り付けられている。スペーサ73は、上下方向から見たときに機能品制御ユニット62の4つの角部近傍に配置されている。機能品制御ユニット62は、板面が取付面712と並行となるように取付面712に取り付けられている。 The functional product control unit 62 is attached to the mounting surface 712 of the channel box 71 via a columnar spacer 73 by means of screwing or the like. The spacers 73 are arranged near the four corners of the functional product control unit 62 when viewed from above and below. The functional product control unit 62 is attached to the mounting surface 712 so that the plate surface is parallel to the mounting surface 712 .
 スペーサ73は金属(本実施形態では、ステンレス合金)で形成されている。スペーサ73の少なくとも1つは、機能品制御ユニット62のグランド線に電気的に接続されている。このため、流路ボックス71は、スペーサ73を介して、機能品制御ユニット62のグランド線に電気的に接続されている。 The spacer 73 is made of metal (stainless alloy in this embodiment). At least one spacer 73 is electrically connected to the ground line of the functional product control unit 62 . Therefore, the channel box 71 is electrically connected to the ground wire of the functional product control unit 62 via the spacer 73 .
 スペーサ73の高さ寸法(すなわち、軸方向長さ)は、ターミナル131a、131b、131c、131d、131e、131f、131g、171が、それぞれ機能品制御ユニット62に形成された所定の接続部に直接接続されるように設定されている。 The height dimension (that is, the axial length) of the spacer 73 is such that the terminals 131a, 131b, 131c, 131d, 131e, 131f, 131g, and 171 are directly connected to predetermined connections formed in the functional product control unit 62, respectively. configured to be connected.
 換言すると、各ターミナル131a、131b、131c、131d、131e、131f、131g、171は、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17が流路ボックス71に取り付けられた際に、同一方向に突出しており、機能品制御ユニット62に形成された電気配線の接続部に直接接続可能に配置されている。 In other words, each terminal 131a, 131b, 131c, 131d, 131e, 131f, 131g, 171 has a first expansion valve 13a, a second expansion valve 13b, a third expansion valve 13c, a fourth expansion valve 13d, a fifth expansion valve 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are attached to the flow path box 71, and protrude in the same direction. are arranged so that they can be directly connected to
 カバー部材72は、流路ボックス71の取付面712の外縁部に接着や溶着等の手段で取り付けられている。カバー部材72は、金属(本実施形態では、アルミニウム合金)で形成されている。 The cover member 72 is attached to the outer edge of the attachment surface 712 of the channel box 71 by means of adhesion, welding, or the like. The cover member 72 is made of metal (aluminum alloy in this embodiment).
 カバー部材72は、1つの面が開口した有底箱状に形成されている。カバー部材72は、流路ボックス71とともに、第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13g、開閉弁17および機能品制御ユニット62の収容空間を形成している。カバー部材72と流路ボックス71との隙間、およびコネクタ620と取付穴との隙間には、図示しないシール部材が配置されている。これにより、隙間を介して水分や異物が収容空間内へ侵入してしまうことが抑制されている。 The cover member 72 is formed in the shape of a bottomed box with one side open. The cover member 72 includes the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, the sixth expansion valve 13f, and the seventh expansion valve 13f. A housing space for the valve 13g, the on-off valve 17 and the functional product control unit 62 is formed. A sealing member (not shown) is arranged in the gap between the cover member 72 and the flow path box 71 and in the gap between the connector 620 and the mounting hole. This prevents moisture and foreign matter from entering the accommodation space through the gap.
 次に、上記構成における作動を説明する。車両用空調装置は、車室1a内の空調と、車載機器であるバッテリ80の冷却とを行う。車両用空調装置では、車室1a内の空調とバッテリ80の冷却とを行うために、冷凍サイクルの冷媒回路を切り替えて、各種運転モードを実行する。 Next, the operation of the above configuration will be explained. The vehicle air conditioner air-conditions the vehicle interior 1a and cools the battery 80, which is an in-vehicle device. In the vehicle air conditioner, in order to air-condition the vehicle interior 1a and cool the battery 80, the refrigerant circuit of the refrigeration cycle is switched to execute various operation modes.
 車両用空調装置の運転モードとしては、車室1a内の空調を行うための空調用の運転モード、およびバッテリ80の冷却を行うための冷却用の運転モードがある。空調用の運転モードには、冷房モード、除湿暖房モード、暖房モードがある。 The operation modes of the vehicle air conditioner include an air conditioning operation mode for air conditioning the vehicle interior 1 a and a cooling operation mode for cooling the battery 80 . Operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
 冷房モードは、車室1a内へ送風される空気を冷却して車室1a内へ吹き出すことによって、車室1a内の冷房を行う運転モードである。除湿暖房モードは、冷却されて除湿された空気を再加熱して車室1a内へ吹き出すことによって、車室1a内の除湿暖房を行う運転モードである。暖房モードは、空気を加熱して車室1a内へ吹き出すことによって、車室1a内の暖房を行う運転モードである。 The cooling mode is an operation mode that cools the interior of the vehicle interior 1a by cooling the air blown into the interior of the vehicle interior 1a and blowing the air into the interior of the vehicle interior 1a. The dehumidifying and heating mode is an operation mode in which dehumidifying and heating the interior of the passenger compartment 1a is performed by reheating cooled and dehumidified air and blowing it out into the passenger compartment 1a. The heating mode is an operation mode for heating the interior of the passenger compartment 1a by heating air and blowing the air into the passenger compartment 1a.
 空調用の運転モードの決定は、メイン制御ユニット61に記憶されている空調用の制御プログラムによって行われる。空調用の制御プログラムは、空調用操作パネルのオートスイッチによって、空調の自動制御運転が設定された際に実行される。空調用の制御プログラムでは、各種センサ群によって検出された検出信号や空調用操作パネルの操作信号に基づいて、運転モードを決定する。 The air conditioning operation mode is determined by the air conditioning control program stored in the main control unit 61 . The control program for air conditioning is executed when the automatic control operation of air conditioning is set by the auto switch of the operation panel for air conditioning. The control program for air conditioning determines the operation mode based on detection signals detected by various sensors and operation signals from the operation panel for air conditioning.
 空調用の制御プログラムでは、主に夏季のように比較的外気温が高い場合に冷房モードに決定する。また、主に春季あるいは秋季に除湿暖房モードに決定する。また、主に冬季のように比較的外気温が低い場合に、暖房モードに決定する。 In the air conditioning control program, the cooling mode is determined mainly when the outside temperature is relatively high, such as in summer. Also, the dehumidifying heating mode is determined mainly in spring or autumn. Also, when the outside temperature is relatively low, mainly in winter, the heating mode is determined.
 メイン制御ユニット61が決定した空調用の運転モードに基づいて、機能品制御ユニット62が第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17を制御することによって、メイン制御ユニット61が決定した空調用の運転モードへの切り替えが行われる。 Based on the operation mode for air conditioning determined by the main control unit 61, the functional product control unit 62 operates the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, and the fifth expansion valve. 13e, the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17 are controlled to switch to the air-conditioning operation mode determined by the main control unit 61. FIG.
 以下に空調用の各運転モードの詳細作動を説明する。 The detailed operation of each operation mode for air conditioning is explained below.
 (a)冷房モード
 冷房モードの冷凍サイクルでは、第1膨張弁13aを絞り状態にすることによって、室内蒸発器を、低圧側冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。
(a) Cooling Mode In the cooling mode refrigerating cycle, the first expansion valve 13a is throttled to configure the vapor compression refrigerating cycle in which the indoor evaporator functions as an evaporator that evaporates the low-pressure side refrigerant. be.
 冷房モードの冷凍サイクルでは、高圧側冷媒が持つ熱のうち一部の熱を車室1a内へ送風される空気に放熱させ、高圧側冷媒が持つ熱のうち残余の熱を外気に放熱させる。 In the cooling mode refrigeration cycle, part of the heat of the high-pressure side refrigerant is radiated to the air blown into the vehicle interior 1a, and the remaining heat of the high-pressure side refrigerant is radiated to the outside air.
 冷房モードの室内空調ユニット30では、室内送風機32から送風された空気が、室内蒸発器にて冷却される。室内蒸発器にて冷却された空気は、エアミックスドア34の開度に応じて、空気加熱器にて加熱される。これにより、混合空間における空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された空気が車室1a内へ吹き出されることによって、車室1a内の冷房が実現される。 In the indoor air conditioning unit 30 in the cooling mode, the air blown from the indoor blower 32 is cooled by the indoor evaporator. The air cooled by the indoor evaporator is heated by the air heater according to the opening degree of the air mix door 34 . As a result, the temperature of the air in the mixing space approaches the target blowout temperature TAO. Then, the temperature-controlled air is blown out into the passenger compartment 1a, thereby cooling the passenger compartment 1a.
 目標吹出温度TAOは、車室1a内へ送風される空気の目標温度である。目標吹出温度TAOは、空調用の制御プログラムにおいて、各種センサによって検出された検出信号、および操作パネルの操作信号を用いて算定される。 The target blowout temperature TAO is the target temperature of the air blown into the vehicle interior 1a. The target air temperature TAO is calculated in the control program for air conditioning using detection signals detected by various sensors and operation signals from the operation panel.
 (b)除湿暖房モード
 除湿暖房モードの冷凍サイクルでは、第1膨張弁13aおよび第3膨張弁13cを絞り状態にすることによって、室内蒸発器およびチラーを、低圧側冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。
(b) Dehumidifying and Heating Mode In the refrigeration cycle of the dehumidifying and heating mode, the first expansion valve 13a and the third expansion valve 13c are throttled so that the indoor evaporator and chiller function as evaporators that evaporate the low-pressure side refrigerant. A vapor compression refrigerating cycle is constructed.
 除湿暖房モードの冷凍サイクルでは、低圧側冷媒がチラーにて低温側熱媒体から吸熱するとともに、高圧側冷媒が持つ熱が車室1a内へ送風される空気に放熱される。 In the dehumidification heating mode refrigeration cycle, the low-pressure side refrigerant absorbs heat from the low-temperature side heat medium in the chiller, and the heat of the high-pressure side refrigerant is released to the air blown into the compartment 1a.
 除湿暖房モードの室内空調ユニット30では、室内送風機32から送風された空気が、室内蒸発器にて冷却される。室内蒸発器にて冷却された空気は、エアミックスドア34の開度に応じて、空気加熱器にて加熱される。これにより、混合空間における空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された空気が車室1a内へ吹き出されることによって、車室1a内の冷房が実現される。 In the indoor air conditioning unit 30 in the dehumidifying and heating mode, the air blown from the indoor blower 32 is cooled by the indoor evaporator. The air cooled by the indoor evaporator is heated by the air heater according to the opening degree of the air mix door 34 . As a result, the temperature of the air in the mixing space approaches the target blowout temperature TAO. Then, the temperature-controlled air is blown out into the passenger compartment 1a, thereby cooling the passenger compartment 1a.
 (c)暖房モード
 暖房モードの冷凍サイクルでは、第3膨張弁13cを絞り状態にすることによって、チラーを蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。
(c) Heating Mode In the heating mode refrigerating cycle, the third expansion valve 13c is throttled to form a vapor compression refrigerating cycle in which the chiller functions as an evaporator.
 暖房モードの冷凍サイクルでは、低圧側冷媒がチラーにて低温側熱媒体から吸熱するとともに、高圧側冷媒が持つ熱が車室1a内へ送風される空気に放熱される。 In the heating mode refrigeration cycle, the low-pressure side refrigerant absorbs heat from the low-temperature side heat medium in the chiller, and the heat of the high-pressure side refrigerant is released to the air blown into the compartment 1a.
 暖房モードの室内空調ユニット30では、室内送風機32から送風された空気が、室内蒸発器を通過する。室内蒸発器を通過した空気は、エアミックスドア34の開度に応じて、空気加熱器にて加熱される。これにより、混合空間から車室1a内へ吹き出される空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された空気が車室1a内へ吹き出されることによって、車室1a内の暖房が実現される。 In the indoor air conditioning unit 30 in heating mode, the air blown from the indoor blower 32 passes through the indoor evaporator. The air that has passed through the indoor evaporator is heated by the air heater according to the opening of the air mix door 34 . As a result, the temperature of the air blown out from the mixing space into the compartment 1a approaches the target blowing temperature TAO. Then, the temperature-controlled air is blown out into the passenger compartment 1a, thereby heating the passenger compartment 1a.
 冷却用の運転モードは、メイン制御ユニット61に記憶されている冷却用の制御プログラムが実行されることによって決定される。冷却用の制御プログラムでは、バッテリ温度センサ93bによって検出されたバッテリ温度TBが、予め定めた基準冷却温度TB1以上となった際に、冷却モードの運転が決定される。 The cooling operation mode is determined by executing a cooling control program stored in the main control unit 61 . In the cooling control program, when the battery temperature TB detected by the battery temperature sensor 93b reaches or exceeds a predetermined reference cooling temperature TB1, the cooling mode operation is determined.
 冷却用の制御プログラムは、乗員が車室1a内の空調を要求しているか否かにかかわらず、車両システムが起動している際、および外部電源からバッテリ80に充電している際に実行される。このため、冷却用の運転モードには、空調中の冷却モードおよび非空調中の冷却モードがある。 The cooling control program is executed when the vehicle system is activated and when the battery 80 is being charged from the external power source, regardless of whether the passenger requests air conditioning in the passenger compartment 1a. be. Therefore, the operation modes for cooling include a cooling mode during air conditioning and a cooling mode during non-air conditioning.
 メイン制御ユニット61が冷却モードの運転を決定した場合、機能品制御ユニット62が第1膨張弁13a、第2膨張弁13b、第3膨張弁13c、第4膨張弁13d、第5膨張弁13e、第6膨張弁13f、第7膨張弁13gおよび開閉弁17を制御することによって、冷却用の運転モードへの切り替えが行われる。 When the main control unit 61 determines operation in the cooling mode, the functional product control unit 62 operates the first expansion valve 13a, the second expansion valve 13b, the third expansion valve 13c, the fourth expansion valve 13d, the fifth expansion valve 13e, By controlling the sixth expansion valve 13f, the seventh expansion valve 13g, and the on-off valve 17, switching to the cooling operation mode is performed.
 以下に冷却用の運転モードの詳細作動を説明する。 The detailed operation of the operation mode for cooling is explained below.
 (d)冷却モード
 冷却モードの冷凍サイクルでは、少なくとも第2膨張弁13bを絞り状態にすることによって、少なくとも電池冷却器を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、空調中の冷却モードの冷凍サイクルでは、電池冷却器を流れる低圧側冷媒によってバッテリ80が冷却される。
(d) Cooling Mode In the cooling mode refrigerating cycle, at least the second expansion valve 13b is throttled to configure a vapor compression refrigerating cycle in which at least the battery cooler functions as an evaporator. As a result, in the cooling mode refrigeration cycle during air conditioning, the battery 80 is cooled by the low-pressure side refrigerant flowing through the battery cooler.
 このとき、第1膨張弁13aを絞り状態にして室内蒸発器も蒸発器として機能させれば空調中の冷却モードとなり、第1膨張弁13aを閉じて室内蒸発器を蒸発器として機能させなければ非空調中の冷却モードとなる。 At this time, if the first expansion valve 13a is throttled and the indoor evaporator also functions as an evaporator, the cooling mode during air conditioning is entered. It becomes cooling mode during non-air conditioning.
 以上の如く、本実施形態の車両用空調装置によれば、車室1a内の快適な空調および車載機器であるバッテリ80の冷却を行うことができる。 As described above, according to the vehicle air conditioner of the present embodiment, comfortable air conditioning in the vehicle interior 1a and cooling of the battery 80, which is an in-vehicle device, can be performed.
 次に、各運転モードにおいてメイン制御ユニット61、機能品制御ユニット62および圧縮機制御ユニット63が実行する制御処理について、図5を用いて説明する。 Next, control processing executed by the main control unit 61, the functional product control unit 62, and the compressor control unit 63 in each operation mode will be described using FIG.
 メイン制御ユニット61は、機能品制御ユニット62に対して室内蒸発器、電池冷却器およびチラー(以下、各冷却器と言う。)の目標冷却能力を出力する。具体的には、室内蒸発器の目標冷却能力、電池冷却器の目標冷却能力、およびチラーの目標冷却能力(換言すれば、目標吸熱能力)を機能品制御ユニット62に出力する。 The main control unit 61 outputs the target cooling capacity of the indoor evaporator, battery cooler and chiller (hereinafter referred to as each cooler) to the functional product control unit 62 . Specifically, the target cooling capacity of the indoor evaporator, the target cooling capacity of the battery cooler, and the target cooling capacity of the chiller (in other words, the target heat absorption capacity) are output to the functional product control unit 62 .
 室内蒸発器の目標冷却能力は、目標吹出温度TAO等を用いて算定される。電池冷却器の目標冷却能力は、バッテリ制御ユニット91から入力されたバッテリ温度TB等を用いて算定される。チラーの目標冷却能力は、駆動系制御ユニット92から入力された走行用電動モータ50およびインバータ51の作動状態、ならびに目標吹出温度TAO等を用いて算定される。 The target cooling capacity of the indoor evaporator is calculated using the target outlet temperature TAO and the like. The target cooling capacity of the battery cooler is calculated using the battery temperature TB and the like input from the battery control unit 91 . The target cooling capacity of the chiller is calculated using the operating states of the traveling electric motor 50 and the inverter 51 input from the drive system control unit 92, the target blowout temperature TAO, and the like.
 機能品制御ユニット62のマイコン部621は、メイン制御ユニット61から入力された目標冷却能力と、各冷媒圧力温度センサ65a~65fによって検出された検出信号に基づいて、各膨張弁13a~13gの目標開度を演算する。 The microcomputer portion 621 of the functional product control unit 62 sets the target cooling capacity of each of the expansion valves 13a to 13g based on the target cooling capacity input from the main control unit 61 and the detection signals detected by the refrigerant pressure and temperature sensors 65a to 65f. Calculate the opening.
 機能品制御ユニット62のマイコン部621は、目標冷却能力に対して各冷却器の温度差と、予め機能品制御ユニット62に記憶された各膨張弁13a~13gの流量特性マップまたは流量特性関数から各膨張弁13a~13gの目標開度を演算する。 The microcomputer section 621 of the functional product control unit 62 determines the target cooling capacity from the temperature difference of each cooler and the flow characteristic map or flow characteristic function of each expansion valve 13a to 13g stored in the functional product control unit 62 in advance. A target opening degree of each of the expansion valves 13a to 13g is calculated.
 各膨張弁13a~13gの流量特性マップは、各膨張弁13a~13gにおける開度と流量との関係を示すマップである。各膨張弁13a~13gの流量特性関数は、各膨張弁13a~13gにおける開度と流量との関係を示す関数である。 The flow characteristic map of each expansion valve 13a-13g is a map showing the relationship between the opening degree and the flow rate of each expansion valve 13a-13g. The flow rate characteristic function of each of the expansion valves 13a-13g is a function that indicates the relationship between the degree of opening and the flow rate of each of the expansion valves 13a-13g.
 例えば、冷却能力は冷媒の質量流量と冷却器での温度差との積で表されることから、目標冷却能力と冷却器での温度差に基づいて冷媒の質量流量の目標値を演算し、冷媒の質量流量の目標値に基づいて、膨張弁13a~13gの流量特性マップを用いて膨張弁13a~13gの目標開度を演算する。 For example, since the cooling capacity is represented by the product of the mass flow rate of the refrigerant and the temperature difference in the cooler, the target value of the mass flow rate of the refrigerant is calculated based on the target cooling capacity and the temperature difference in the cooler, Based on the target value of the mass flow rate of the refrigerant, the target opening degrees of the expansion valves 13a-13g are calculated using the flow characteristic maps of the expansion valves 13a-13g.
 機能品制御ユニット62のマイコン部621は、各冷媒圧力温度センサ65a~65fによって検出された検出信号に基づいて、各冷却器の現在の冷却能力、および各冷却器の出口側冷媒の過熱度を算出する。 The microcomputer section 621 of the functional product control unit 62 determines the current cooling capacity of each cooler and the degree of superheat of the outlet-side refrigerant of each cooler based on the detection signals detected by the refrigerant pressure temperature sensors 65a to 65f. calculate.
 機能品制御ユニット62のマイコン部621は、各冷却器の出口側冷媒の過熱度に基づいて、膨張弁13a~13gの目標開度までの到達時間および開度の変化時間を算出する。すなわち、膨張弁13a~13gの開度や圧縮機11の回転数を急激に変えると液冷媒の戻りによる故障の原因になるため、圧縮機11に液冷媒が戻らないような膨張弁13a~13gの目標開度までの到達時間および開度の変化時間を算出する。 The microcomputer section 621 of the functional product control unit 62 calculates the time to reach the target opening of the expansion valves 13a to 13g and the change time of the opening based on the degree of superheat of the refrigerant on the outlet side of each cooler. That is, if the opening degrees of the expansion valves 13a to 13g or the rotational speed of the compressor 11 are rapidly changed, the return of the liquid refrigerant may cause a malfunction. to reach the target opening and the change time of the opening.
 機能品制御ユニット62のマイコン部621は、算出した目標開度、目標開度までの到達時間、および開度の変化時間に基づいて電源電流値を演算し、演算した値の電源電流をドライバIC部622に出力する。例えば、機能品制御ユニット62のマイコン部621は、電源電流値を、伝達関数を用いてフィードバック演算する。 The microcomputer 621 of the functional product control unit 62 calculates the power supply current value based on the calculated target opening, the time to reach the target opening, and the change time of the opening, and outputs the calculated power supply current to the driver IC. Output to unit 622 . For example, the microcomputer section 621 of the functional product control unit 62 feedback-calculates the power supply current value using a transfer function.
 機能品制御ユニット62のドライバIC部622は、マイコン部621が出力した電源電流値に基づいて各膨張弁13a~13gに駆動電流を出力する。機能品制御ユニット62のドライバIC部622は、目標冷却能力と現在の冷却能力との差が大きい冷却器の冷却能力が優先的に目標冷却能力に近づくように各膨張弁13a~13gを制御する。例えば、機能品制御ユニット62のドライバIC部622は、駆動電流を、伝達関数を用いてフィードバック制御する。 A driver IC section 622 of the functional product control unit 62 outputs a drive current to each of the expansion valves 13a to 13g based on the power supply current value output by the microcomputer section 621. The driver IC section 622 of the functional product control unit 62 controls the expansion valves 13a to 13g so that the cooling capacity of the cooler with a large difference between the target cooling capacity and the current cooling capacity preferentially approaches the target cooling capacity. . For example, the driver IC section 622 of the functional product control unit 62 feedback-controls the drive current using a transfer function.
 機能品制御ユニット62は、各冷却器の現在の冷却能力、および目標冷却能力への到達時間をメイン制御ユニット61に出力する。機能品制御ユニット62は、圧縮機11前後の冷媒圧力および冷媒温度、ならびに圧縮機回転数の目標変更タイミングを圧縮機制御ユニット63に出力する。 The functional product control unit 62 outputs the current cooling capacity of each cooler and the arrival time to the target cooling capacity to the main control unit 61 . The functional product control unit 62 outputs to the compressor control unit 63 the refrigerant pressure and temperature before and after the compressor 11 and the target change timing of the compressor rotation speed.
 圧縮機制御ユニット63は、メイン制御ユニット61から出力された目標冷却能力に基づいて圧縮機11の目標回転数を算出し、機能品制御ユニット62から出力された圧縮機回転数の目標変更タイミングに従って圧縮機11の回転数を目標回転数に変更する。 The compressor control unit 63 calculates the target rotation speed of the compressor 11 based on the target cooling capacity output from the main control unit 61, and follows the target change timing of the compressor rotation speed output from the functional product control unit 62. The rotation speed of the compressor 11 is changed to the target rotation speed.
 図6は、機能品制御ユニット62と圧縮機制御ユニット63とが連携して圧縮機11への液冷媒の戻りを防止する制御処理の作動例を示すタイムチャートである。図6の例では、膨張弁の開度および圧縮機11の回転数の変更を開始してから、目標開度および目標回転数に到達する前の間に、液冷媒の戻りを防止するために所定の時間だけ、開度および回転数を一定に維持している。 FIG. 6 is a time chart showing an operation example of control processing in which the functional product control unit 62 and the compressor control unit 63 work together to prevent liquid refrigerant from returning to the compressor 11 . In the example of FIG. 6, after starting to change the opening of the expansion valve and the rotation speed of the compressor 11, before reaching the target opening and the target rotation speed, in order to prevent the liquid refrigerant from returning. The degree of opening and the number of rotations are kept constant for a predetermined period of time.
 図7に示すように、機能品制御ユニット62は、膨張弁電流電圧センサ群66が検出した各膨張弁13a~13gの電流電圧に基づいて各膨張弁13a~13gが故障しているか否かを検出する。具体的には、膨張弁13a~13gのうちいずれかの膨張弁において、駆動電流の変動停止が検出された場合、その膨張弁が故障していると判定する。 As shown in FIG. 7, the functional product control unit 62 determines whether or not each of the expansion valves 13a to 13g is out of order based on the current and voltage of each of the expansion valves 13a to 13g detected by the expansion valve current/voltage sensor group 66. To detect. Specifically, when it is detected that any one of the expansion valves 13a to 13g stops fluctuating in the drive current, it is determined that the expansion valve is out of order.
 機能品制御ユニット62は、いずれかの膨張弁の故障を検知した場合、膨張弁の故障信号をメイン制御ユニット61および圧縮機制御ユニット63に出力する。これを受けてメイン制御ユニット61は、バッテリ制御ユニット91に出力制限要求信号を出力するとともにユーザインターフェイス90に冷凍サイクルの故障を通知する。 When the functional product control unit 62 detects a failure of any expansion valve, it outputs an expansion valve failure signal to the main control unit 61 and the compressor control unit 63 . In response to this, the main control unit 61 outputs an output restriction request signal to the battery control unit 91 and notifies the user interface 90 of the failure of the refrigeration cycle.
 機能品制御ユニット62は、故障していない他の膨張弁でリカバリ運転を行うべく、リカバリ開度を演算するとともに、リカバリ開度への目標変更タイミングを演算する。このとき、圧縮機制御ユニット63は圧縮機の回転数を維持する。 The functional product control unit 62 calculates the recovery opening and the target change timing for the recovery opening in order to perform recovery operation with other non-broken expansion valves. At this time, the compressor control unit 63 maintains the rotation speed of the compressor.
 機能品制御ユニット62は、リカバリ開度への目標変更タイミングを圧縮機制御ユニット63に出力する。このリカバリ開度への目標変更タイミングに従って機能品制御ユニット62は他の2つの膨張弁の開度をリカバリ開度に変更し、圧縮機制御ユニット63は圧縮機の回転数をリカバリ回転数に変更する。 The functional product control unit 62 outputs the target change timing to the recovery opening to the compressor control unit 63 . According to this target change timing to the recovery opening, the functional product control unit 62 changes the opening of the other two expansion valves to the recovery opening, and the compressor control unit 63 changes the rotation speed of the compressor to the recovery rotation speed. do.
 図8は、リカバリ運転の作動例を示すタイムチャートである。図8では、電池冷却用の第2膨張弁13bが故障した例を示しているので、空調用の第1膨張弁13aおよび駆動系冷却用の第3膨張弁13cの開度を絞ることによって電池冷却器への冷媒流量を確保してバッテリ80の冷却能力を確保している。 FIG. 8 is a time chart showing an operation example of recovery operation. FIG. 8 shows an example in which the second expansion valve 13b for cooling the battery has failed. The cooling capacity of the battery 80 is ensured by ensuring the coolant flow rate to the cooler.
 機能品制御ユニット62は、開閉弁17が故障しているか否かも検出する。機能品制御ユニット62は、開閉弁17の故障を検知した場合、開閉弁17の故障信号をメイン制御ユニット61および圧縮機制御ユニット63に出力する。これを受けてメイン制御ユニット61は、バッテリ制御ユニット91に出力制限要求信号を出力するとともにユーザインターフェイス90に冷凍サイクルの故障を通知する。 The functional product control unit 62 also detects whether the on-off valve 17 is out of order. When detecting a failure of the on-off valve 17 , the functional product control unit 62 outputs a failure signal of the on-off valve 17 to the main control unit 61 and the compressor control unit 63 . In response to this, the main control unit 61 outputs an output restriction request signal to the battery control unit 91 and notifies the user interface 90 of the failure of the refrigeration cycle.
 本実施形態では、冷凍サイクルを構成する複数の構成機器を機能品モジュール70として一体化しているので、冷凍サイクルの小型化と生産性の向上とを両立させることができる。 In this embodiment, since a plurality of constituent devices constituting the refrigerating cycle are integrated as the functional product module 70, both downsizing of the refrigerating cycle and improvement in productivity can be achieved.
 より詳細には、本実施形態の冷凍サイクルのように、冷媒回路を切替可能に形成された冷凍サイクルでは、構成機器の数量が増加しやすい。このため、機能品モジュール70のように複数の構成機器を一体化させることは、冷凍サイクルの小型化のために有効である。 More specifically, like the refrigeration cycle of the present embodiment, in a refrigeration cycle in which refrigerant circuits are switchable, the number of constituent devices tends to increase. Therefore, integrating a plurality of components like the functional product module 70 is effective for downsizing the refrigeration cycle.
 本実施形態では、複数の膨張弁13a~13gが機能品モジュール70の流路ボックス71に取り付けられている。機能品制御ユニット62は、メイン制御ユニット61から出力された目標冷却能力の値に基づいて複数の膨張弁13a~13gへ出力する駆動電流の値を演算して複数の膨張弁13a~13gに駆動電流を出力するとともに、複数の膨張弁13a~13gを検知する。そして、機能品制御ユニット62の個数が、複数の膨張弁13a~13gの個数よりも少なくなっている。 In this embodiment, a plurality of expansion valves 13a to 13g are attached to the channel box 71 of the functional product module 70. The functional product control unit 62 calculates drive current values to be output to the plurality of expansion valves 13a to 13g based on the value of the target cooling capacity output from the main control unit 61, and drives the plurality of expansion valves 13a to 13g. A current is output and a plurality of expansion valves 13a to 13g are detected. The number of functional product control units 62 is smaller than the number of expansion valves 13a to 13g.
 これによると、電子制御ユニットを、メイン制御ユニット61と機能品制御ユニット62に分けることで、メイン制御ユニット61の演算負荷を軽減できる。 According to this, by dividing the electronic control unit into the main control unit 61 and the functional product control unit 62, the calculation load of the main control unit 61 can be reduced.
 複数の膨張弁13a~13gを流路ボックス71に集約して配置することで、機能品制御ユニット62と複数の膨張弁13a~13gとの間の電気配線を極力短縮できる。 By collectively arranging the plurality of expansion valves 13a to 13g in the channel box 71, the electrical wiring between the functional product control unit 62 and the plurality of expansion valves 13a to 13g can be shortened as much as possible.
 機能品制御ユニット62の個数を複数の膨張弁13a~13gの個数よりも少なくすることで、メイン制御ユニット61と機能品制御ユニット62に分けることに伴う信号線の増加および制御の煩雑化を極力抑制できる。 By making the number of the functional product control unit 62 smaller than the number of the plurality of expansion valves 13a to 13g, the increase in signal lines and the complication of control due to the separation of the main control unit 61 and the functional product control unit 62 can be minimized. can be suppressed.
 本実施形態では、機能品制御ユニット62の目標開度演算部621aは、冷媒圧力温度センサ65a~65fからの入力信号と目標冷却能力の値とに基づいて膨張弁13a~13gの目標開度を演算する。これにより、膨張弁13a~13gの目標開度演算処理を機能品制御ユニット62で効率的に行うことができるので、メイン制御ユニット61の演算負荷を効果的に軽減できる。 In the present embodiment, the target opening degree calculator 621a of the functional product control unit 62 calculates the target opening degrees of the expansion valves 13a to 13g based on the input signals from the refrigerant pressure temperature sensors 65a to 65f and the values of the target cooling capacities. Calculate. As a result, the target opening degrees of the expansion valves 13a to 13g can be efficiently calculated by the functional product control unit 62, so that the calculation load on the main control unit 61 can be effectively reduced.
 本実施形態では、機能品制御ユニット62の故障検知部621bは、膨張弁電流電圧センサ群66からの入力信号に基づいて膨張弁13a~13gの故障を検知する。これにより、膨張弁13a~13gの故障検知処理を機能品制御ユニット62で効率的に行うことができるので、メイン制御ユニット61の演算負荷を効果的に軽減できる。 In this embodiment, the failure detection section 621b of the functional product control unit 62 detects failures of the expansion valves 13a to 13g based on input signals from the expansion valve current/voltage sensor group 66. As a result, the functional product control unit 62 can efficiently perform failure detection processing for the expansion valves 13a to 13g, so that the calculation load of the main control unit 61 can be effectively reduced.
 本実施形態では、機能品制御ユニット62は、圧縮機制御ユニット63と通信可能に接続されている。機能品制御ユニット62のタイミング決定部621cは、膨張弁13a~13gの開度が変更されるタイミングに応じて圧縮機11の冷媒吐出能力の変更タイミングを決定し、圧縮機制御ユニット63に変更タイミングを出力する。 In this embodiment, the functional product control unit 62 is communicably connected to the compressor control unit 63 . The timing determination section 621c of the functional product control unit 62 determines the change timing of the refrigerant discharge capacity of the compressor 11 in accordance with the timing at which the opening degrees of the expansion valves 13a to 13g are changed. to output
 これにより、機能品制御ユニット62と圧縮機制御ユニット63とで膨張弁13a~13gと圧縮機11の協調制御を行うことができるので、メイン制御ユニット61の演算負荷を効果的に軽減できる。 As a result, the expansion valves 13a to 13g and the compressor 11 can be controlled cooperatively by the functional product control unit 62 and the compressor control unit 63, so that the calculation load on the main control unit 61 can be effectively reduced.
 本実施形態では、メイン制御ユニット61は、バッテリ制御ユニット91および駆動系制御ユニット92と通信可能に接続されている。メイン制御ユニット61は、バッテリ制御ユニット91から入力されたバッテリに関する情報、および駆動系制御ユニット92から入力された駆動系機器に関する情報に基づいて目標冷却能力の値を演算する目標能力演算部61aを有している。これにより、メイン制御ユニット61が冷凍サイクルの目標冷却能力を適切に演算できる。 In this embodiment, the main control unit 61 is communicably connected to the battery control unit 91 and the driving system control unit 92 . The main control unit 61 has a target capacity calculation section 61a that calculates the value of the target cooling capacity based on the information on the battery input from the battery control unit 91 and the information on the drive system equipment input from the drive system control unit 92. have. Thereby, the main control unit 61 can appropriately calculate the target cooling capacity of the refrigeration cycle.
 本実施形態では、機能品制御ユニット62は流路ボックス71に固定されている。これにより、機能品モジュール70を小型化できる。 In this embodiment, the functional product control unit 62 is fixed to the channel box 71 . Thereby, the functional product module 70 can be miniaturized.
 (第2実施形態)
 上記実施形態では、機能品制御ユニット62は、板面が取付面712と並行となるように取付面712に取り付けられているが、本実施形態では、図9および図10に示すように、機能品制御ユニット62は、板面が取付面712と垂直となるように取付面712に取り付けられている。
(Second embodiment)
In the above embodiment, the functional product control unit 62 is attached to the mounting surface 712 so that the plate surface is parallel to the mounting surface 712. However, in the present embodiment, as shown in FIGS. The product control unit 62 is attached to the mounting surface 712 so that the plate surface is perpendicular to the mounting surface 712 .
 本実施形態では、流路ボックス71の2つの面(本実施形態では、側面)が取付面712となっていて、流路ボックス71の他の1つの面(本実施形態では、側面)に機能品制御ユニット62が取り付けらている。 In this embodiment, two surfaces (side surfaces in this embodiment) of the flow path box 71 serve as mounting surfaces 712, and one other surface (side surface in this embodiment) of the flow path box 71 functions as a mounting surface 712. A product control unit 62 is attached.
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。 Also in this embodiment, it is possible to achieve the same effects as in the above embodiment.
 (第3実施形態)
 本実施形態では、図11に示すように、機能品制御ユニット62は支持板76に固定されている。支持板76は、機能品制御ユニット62と重なり合う平板形状を有している。支持板76は、機能品制御ユニット62とともに、柱状のスペーサ73を介して、流路ボックス71の取付面712にネジ止め等の手段で取り付けられている。流路ボックス71の取付面712には電磁弁18が配置されている。電磁弁18は、流路ボックス71内の冷媒通路を切り替える。
(Third Embodiment)
In this embodiment, the functional product control unit 62 is fixed to the support plate 76, as shown in FIG. The support plate 76 has a flat plate shape overlapping the functional product control unit 62 . The support plate 76 is attached to the mounting surface 712 of the channel box 71 with screws or the like via a columnar spacer 73 together with the functional product control unit 62 . An electromagnetic valve 18 is arranged on the mounting surface 712 of the channel box 71 . The solenoid valve 18 switches the refrigerant passage inside the passage box 71 .
 本実施形態の機能品モジュール70には、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cが一体化されている。支持板76には、第1膨張弁13a、第2膨張弁13b、第3膨張弁13cのそれぞれのモータ部300のモータ側軸受部材301が固定されている。 The first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are integrated in the functional product module 70 of this embodiment. The support plate 76 is fixed with the motor-side bearing members 301 of the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c.
 機能品制御ユニット62には回転角センサ67が固定されている。回転角センサ67は、各モータ部300の回転角を検出する回転角検出部である。 A rotation angle sensor 67 is fixed to the functional product control unit 62 . The rotation angle sensor 67 is a rotation angle detection section that detects the rotation angle of each motor section 300 .
 第1膨張弁13a、第2膨張弁13b、第3膨張弁13cの基本構造は同じである。以下では、第1膨張弁13aの詳細構造を図12に基づいて説明し、第2膨張弁13bおよび第3膨張弁13cの詳細構造の説明を省略する。 The basic structure of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c is the same. Below, the detailed structure of the first expansion valve 13a will be described based on FIG. 12, and the detailed structure of the second expansion valve 13b and the third expansion valve 13c will be omitted.
 モータ部300は、モータ側軸受部材301、ステータ302、ロータ303およびシャフト304を有している。ステータ302はステータコイルを有している。ロータ303には、N極およびS極からなる一対の磁石が円周方向に沿って複数組配置されている。シャフト304はロータ303と一体に回転する。ステータ302およびロータ303は、シャフト304を回転させる駆動力を電磁力によって出力する。回転角センサ67は、ロータ303の回転に伴う磁界の変化を検出する。 The motor section 300 has a motor-side bearing member 301 , a stator 302 , a rotor 303 and a shaft 304 . The stator 302 has stator coils. On the rotor 303, a plurality of sets of pairs of magnets each having an N pole and an S pole are arranged along the circumferential direction. Shaft 304 rotates together with rotor 303 . Stator 302 and rotor 303 output driving force for rotating shaft 304 by electromagnetic force. Rotation angle sensor 67 detects changes in the magnetic field accompanying rotation of rotor 303 .
 磁気ギア310は、駆動側マグネット311、ポールピース312および被駆動側マグネット313を備えている。駆動側マグネット311は、モータ部300のシャフト304と一体に回転する。ポールピース312は、駆動側マグネット311と被駆動側マグネット313との間で磁束を変調させ、回転部材314と一体に回転する。被駆動側マグネット313は、第1膨張弁13aの本体部320に固定されている固定マグネットである。 The magnetic gear 310 includes a driving side magnet 311 , a pole piece 312 and a driven side magnet 313 . The drive-side magnet 311 rotates integrally with the shaft 304 of the motor section 300 . The pole piece 312 modulates the magnetic flux between the driving magnet 311 and the driven magnet 313 and rotates integrally with the rotating member 314 . The driven-side magnet 313 is a fixed magnet that is fixed to the main body portion 320 of the first expansion valve 13a.
 駆動側マグネット311は円筒状であり、ロータ303の外周面に有底円筒状の介在部材315を介して接合されている。すなわち、モータ部300は駆動側マグネット311の内側に配置されている。介在部材315は磁性体で形成されている。 The drive-side magnet 311 is cylindrical and joined to the outer peripheral surface of the rotor 303 via a bottomed cylindrical interposed member 315 . That is, the motor section 300 is arranged inside the drive-side magnet 311 . Interposed member 315 is formed of a magnetic material.
 封止板330は、中央部が下方に向かって凹んだ円盤形状を有している。換言すれば、封止板330は、鍔付き有底円筒形状を有している。封止板330は、第1膨張弁13aの内部空間を駆動側空間331と被駆動側空間332とに区画するとともに、被駆動側空間332を封止する封止部材である。駆動側空間331は、モータ部300側の空間であり、被駆動側空間332は弁体321側の空間である。 The sealing plate 330 has a disc shape with a central portion recessed downward. In other words, the sealing plate 330 has a bottomed cylindrical shape with a flange. The sealing plate 330 is a sealing member that divides the internal space of the first expansion valve 13 a into a drive-side space 331 and a driven-side space 332 and seals the driven-side space 332 . The drive-side space 331 is a space on the motor portion 300 side, and the driven-side space 332 is a space on the valve body 321 side.
 封止板330は、被駆動側空間332に存在する高圧冷媒が駆動側空間331に漏れ出すのを防止する。本例では、封止板330は非磁性体(例えば、SUS305)で形成されている。 The sealing plate 330 prevents the high-pressure refrigerant existing in the driven-side space 332 from leaking into the driving-side space 331 . In this example, the sealing plate 330 is made of a non-magnetic material (eg, SUS305).
 ポールピース312は、円筒状であり、封止板330の外径側に配置されている。ポールピース312は回転部材314に接合されている。ポールピース312は、複数個の磁性体部および複数個の非磁性体部を有している。磁性体部および非磁性体部は扇台形状であり、磁性体部が円周方向に沿って略等間隔に配されている。非磁性体部は、磁性体部同士の間に配置されている。例えば、磁性体部は軟磁性体(例えば鉄系金属)で形成されており、非磁性体部は非磁性体(例えばステンレスまたは樹脂)で形成されている。 The pole piece 312 is cylindrical and arranged on the outer diameter side of the sealing plate 330 . Pole piece 312 is joined to rotating member 314 . The pole piece 312 has a plurality of magnetic material portions and a plurality of non-magnetic material portions. The magnetic body part and the non-magnetic body part are fan-shaped, and the magnetic body parts are arranged at substantially equal intervals along the circumferential direction. The nonmagnetic portion is arranged between the magnetic portions. For example, the magnetic portion is made of a soft magnetic material (such as iron-based metal), and the non-magnetic portion is made of a non-magnetic material (such as stainless steel or resin).
 被駆動側マグネット313は、円筒状であり、ポールピース312の外径側に配置されている。被駆動側マグネット313は本体部320(換言すれば、筐体)に嵌め込まれている。被駆動側マグネット313は、N極およびS極からなる一対の磁石が円周方向に沿って略等間隔に複数個配置されている。 The driven magnet 313 is cylindrical and arranged on the outer diameter side of the pole piece 312 . The driven-side magnet 313 is fitted in the body portion 320 (in other words, the housing). The driven-side magnet 313 includes a plurality of pairs of magnets, each having an N pole and an S pole, arranged at approximately equal intervals along the circumferential direction.
 本体部320の内部には弁室322が形成されている。弁室322内には棒状の弁体321が配置されている。弁体321は、モータ部300によって駆動される被駆動部材である。弁体321は、回転部材314と同軸状に配置されている。回転部材314の回転力が弁体321に伝達されるように、回転部材314の端部と弁体321の端部とが噛み合っている。 A valve chamber 322 is formed inside the body portion 320 . A rod-shaped valve element 321 is arranged in the valve chamber 322 . The valve body 321 is a driven member that is driven by the motor section 300 . The valve body 321 is arranged coaxially with the rotary member 314 . The end of the rotating member 314 and the end of the valve body 321 are engaged so that the rotating force of the rotating member 314 is transmitted to the valve body 321 .
 弁体側軸受部材323は、弁体側軸受部材323を介して本体部320に回転可能に支持されている。弁体321の外周面には雄ネジ321aが形成されている。弁体321の雄ネジ321aは、本体部320の内周面に形成された雌ネジに螺合していてネジ機構を構成している。これにより、弁体321が回転すると弁体321は軸方向に移動する。 The valve-side bearing member 323 is rotatably supported by the body portion 320 via the valve-side bearing member 323 . A male thread 321 a is formed on the outer peripheral surface of the valve body 321 . A male thread 321a of the valve body 321 is screwed into a female thread formed on the inner peripheral surface of the body portion 320 to constitute a screw mechanism. As a result, when the valve body 321 rotates, the valve body 321 moves in the axial direction.
 図示を省略しているが、弁体321は複数の部材で形成されている。具体的には、弁体321は回転部材314側に位置して雄ネジ321aが形成された雄ネジ部材と、弁座側に位置する弁座側部材と、雄ネジ部材と弁座側部材との間に配置されたボールとで構成されている。雄ネジ部材と弁座側部材との間にボールが配置されていることにより、弁座側部材は、回転することなく軸方向に移動する。 Although not shown, the valve body 321 is made up of a plurality of members. Specifically, the valve body 321 includes a male screw member having a male screw 321a formed on the rotating member 314 side, a valve seat side member positioned on the valve seat side, and a male screw member and the valve seat side member. It consists of a ball placed between Since the ball is arranged between the male screw member and the valve seat side member, the valve seat side member moves in the axial direction without rotating.
 弁体321のうちボール受け部材をなす弁座側部材は、弁体321が弁座から軸方向に離れる側に、図示しないコイルスプリングによって付勢されている。 A valve-seat-side member of the valve body 321, which serves as a ball receiving member, is urged by a coil spring (not shown) toward the side where the valve body 321 moves away from the valve seat in the axial direction.
 弁体321が軸方向に移動することにより弁体321が弁座に近づいたり弁座から離れたりして弁室322の絞り開度が調整されて、弁室322内を流れる冷媒が減圧膨張する。 As the valve body 321 moves in the axial direction, the valve body 321 moves closer to or away from the valve seat to adjust the throttle opening of the valve chamber 322, and the refrigerant flowing in the valve chamber 322 is decompressed and expanded. .
 第2膨張弁13bおよび第3膨張弁13cの基本構造は第1膨張弁13aの基本構造と同様である。第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cにおいて、弁体321に対する要求作動トルクは、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cの順番に大きくなっている。 The basic structure of the second expansion valve 13b and the third expansion valve 13c is the same as the basic structure of the first expansion valve 13a. In the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c, the required operating torque for the valve element 321 increases in the order of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c. ing.
 すなわち、第1膨張弁13aの弁体321に対する要求作動トルクT1、第2膨張弁13bの弁体321に対する要求作動トルクT2、および第3膨張弁13cの弁体321に対する要求作動トルクT3の大小関係は、T1>T2>T3となっている。 That is, the required operating torque T1 for the valve body 321 of the first expansion valve 13a, the required operating torque T2 for the valve body 321 of the second expansion valve 13b, and the required operating torque T3 for the valve body 321 of the third expansion valve 13c. is T1>T2>T3.
 図13~15に示すように、弁体321に対する要求作動トルクが大きい第1膨張弁13aでは駆動側マグネット311と封止板330との間の隙間寸法G1が大きく設定され、弁体321に対する要求作動トルクが小さい第3膨張弁13cでは駆動側マグネット311と封止板330との間の隙間寸法G3が大きく設定されている。 As shown in FIGS. 13 to 15, in the first expansion valve 13a for which the required operating torque for the valve body 321 is large, the gap dimension G1 between the drive-side magnet 311 and the sealing plate 330 is set large, and the required operating torque for the valve body 321 is In the third expansion valve 13c with small operating torque, the gap dimension G3 between the drive-side magnet 311 and the sealing plate 330 is set large.
 すなわち、第1膨張弁13aにおける駆動側マグネット311と封止板330との間の隙間寸法G1、第2膨張弁13bにおける駆動側マグネット311と封止板330との間の隙間寸法G2、および第3膨張弁13cにおける駆動側マグネット311と封止板330との間の隙間寸法G3の大小関係は、G1<G2<G3となっている。 That is, the gap dimension G1 between the drive-side magnet 311 and the sealing plate 330 in the first expansion valve 13a, the gap size G2 between the drive-side magnet 311 and the sealing plate 330 in the second expansion valve 13b, and the The size relationship of the gap dimension G3 between the drive-side magnet 311 and the sealing plate 330 in the three-expansion valve 13c is G1<G2<G3.
 要求作動トルクが大きい第1膨張弁13aでは隙間寸法G1を小さくすることによって要求作動トルクを確実に出力できるようにしている。要求作動トルクが小さい第3膨張弁13cでは隙間寸法G3を大きくしても要求作動トルクT3を確保できる。要求作動トルクが小さい第3膨張弁13cでは隙間寸法G3を大きくすることで軸間公差ΔLを確保して、軸間寸法の誤差を吸収できる。 In the first expansion valve 13a with a large required operating torque, the required operating torque can be reliably output by reducing the gap dimension G1. In the third expansion valve 13c with a small required operating torque, the required operating torque T3 can be ensured even if the gap dimension G3 is increased. In the third expansion valve 13c with a small required operating torque, the tolerance .DELTA.L between the shafts can be ensured by increasing the clearance G3, and the error in the dimension between the shafts can be absorbed.
 次に、本実施形態の機能品モジュール70のうち第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cに関する組立手順を説明する。 Next, the assembly procedure for the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c of the functional product module 70 of this embodiment will be described.
 図16~18に示すように、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cは、機能品制御ユニット62側の部材と流路ボックス71側の部材とに分けて組み立てられた後、機能品制御ユニット62側の部材と流路ボックス71側の部材とが一体に組み立てられる。 As shown in FIGS. 16 to 18, the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are assembled separately into a member on the functional product control unit 62 side and a member on the channel box 71 side. After that, the members on the side of the functional product control unit 62 and the members on the side of the channel box 71 are assembled integrally.
 機能品制御ユニット62側の部材を組み立てる工程では、支持板76に機能品制御ユニット62が組み付けられる。さらに、支持板76に、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cの回転角センサ67およびモータ部300が組み付けられる。 In the process of assembling the members on the functional product control unit 62 side, the functional product control unit 62 is assembled to the support plate 76 . Further, the support plate 76 is assembled with the rotation angle sensors 67 and the motor section 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c.
 流路ボックス71側の部材を組み立てる工程では、まず本体部320に被駆動側マグネット313、弁体側軸受部材323、弁体321、回転部材314、ポールピース312および封止板330が組み付けられる。次に、被駆動側マグネット313、弁体側軸受部材323、弁体321、回転部材314、ポールピース312および封止板330が組み付けられた本体部320、ならびに電磁弁18が流路ボックス71に組み付けられる。 In the process of assembling the members on the channel box 71 side, the driven magnet 313 , the valve body side bearing member 323 , the valve body 321 , the rotary member 314 , the pole piece 312 and the sealing plate 330 are first assembled to the main body part 320 . Next, the magnet 313 on the driven side, the bearing member 323 on the valve body side, the valve body 321, the rotating member 314, the main body part 320 to which the pole piece 312 and the sealing plate 330 are assembled, and the electromagnetic valve 18 are assembled on the flow path box 71. be done.
 そして、機能品制御ユニット62側の部材と流路ボックス71側の部材とが一体に組み立てられる工程では、図16の一点鎖線矢印に示すように、機能品制御ユニット62、電磁弁18、回転角センサ67およびモータ部300が組み付けられた支持板76が、被駆動側マグネット313、弁体側軸受部材323、弁体321、回転部材314、ポールピース312、封止板330および本体部320が組み付けられた流路ボックス71に組み付けられる。これにより、機能品モジュール70のうち第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cに関する部分の組み立てが完了する。 In the process of integrally assembling the members on the functional product control unit 62 side and the members on the channel box 71 side, the functional product control unit 62, the solenoid valve 18, the rotation angle The support plate 76 to which the sensor 67 and the motor section 300 are assembled, the driven side magnet 313, the valve body side bearing member 323, the valve body 321, the rotary member 314, the pole piece 312, the sealing plate 330 and the main body section 320 are assembled. It is assembled to the flow path box 71 that has been installed. This completes the assembly of the parts of the functional module 70 relating to the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c.
 本実施形態では、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cは封止板330と磁気ギア310とを有している。封止板330は、駆動側空間331と被駆動側空間332とに区画するとともに被駆動側空間332に存在する冷媒が駆動側空間331へ漏れ出すことを防止する。磁気ギア310は、封止板330によって隔てられたモータ部300と弁体321とを磁力を利用して非接触で連結する。 In this embodiment, the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c have a sealing plate 330 and a magnetic gear 310. The sealing plate 330 partitions the drive-side space 331 and the driven-side space 332 and prevents the refrigerant existing in the driven-side space 332 from leaking into the drive-side space 331 . The magnetic gear 310 uses magnetic force to connect the motor section 300 and the valve body 321 separated by the sealing plate 330 without contact.
 これによると、機能品制御ユニット62とモータ部300とが同じ空間に配置されるという構造を実現できるので機能品制御ユニット62とモータ部300との組付構造を簡素化できる。 According to this, a structure in which the functional product control unit 62 and the motor section 300 are arranged in the same space can be realized, so the assembly structure of the functional product control unit 62 and the motor section 300 can be simplified.
 本実施形態では、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cにおいて、駆動側マグネット311と封止板330との間の隙間G1、G2、G3は、弁体321の要求作動トルクが小さいほど大きく設定されている。 In this embodiment, in the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c, the gaps G1, G2, and G3 between the drive-side magnet 311 and the sealing plate 330 meet the requirements of the valve body 321. It is set larger as the operating torque is smaller.
 これによると、要求作動トルクが小さい弁体321を有する第3膨張弁13cでは、要求作動トルクが大きい弁体321を有する第1膨張弁13aと比較して、駆動側マグネット311と封止板330との組付公差を大きく設定することができる。そのため、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cにおけるモータ部300と駆動側マグネット311とを共通の支持部材76に組み付けて部品点数を削減することと、駆動側マグネット311と封止板330との組付精度を確保して弁体321の要求作動トルクを確保することとを両立できる。 According to this, in the third expansion valve 13c having the valve body 321 with a small required operating torque, the drive-side magnet 311 and the sealing plate 330 are larger than the first expansion valve 13a having the valve body 321 with a large required operating torque. It is possible to set a large assembly tolerance with Therefore, the motor portion 300 and the drive-side magnet 311 in the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c are assembled to the common support member 76 to reduce the number of parts, and the drive-side magnet 311 and the sealing plate 330 can be assembled accurately to ensure the required operating torque of the valve body 321 .
 本実施形態では、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cのモータ部300は支持部材76に支持されている。これにより、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cがそれぞれ有するモータ部300を、支持部材76を介して一体化して構成を簡素化できる。 In this embodiment, the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c are supported by the support member 76. Accordingly, the motor units 300 of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c can be integrated via the support member 76 to simplify the configuration.
 本実施形態では、回転角センサ67はモータ部300とともに支持部材76に配置されている。これによると、モータ部300と回転角センサ67との組付精度を高めることができるので、回転角センサ67による回転角の検出精度を高めることができる。 In this embodiment, the rotation angle sensor 67 is arranged on the support member 76 together with the motor section 300 . According to this, the assembly accuracy of the motor portion 300 and the rotation angle sensor 67 can be improved, so that the rotation angle detection accuracy of the rotation angle sensor 67 can be improved.
 本実施形態では、機能品制御ユニット62は支持部材76に配置されており、回転角センサ67は機能品制御ユニット62を介して支持部材76に配置されている。これによると、機能品制御ユニット62と回転角センサ67との電気的接続構成を簡素化できる。 In this embodiment, the functional product control unit 62 is arranged on the support member 76 , and the rotation angle sensor 67 is arranged on the support member 76 via the functional product control unit 62 . According to this, the electrical connection configuration between the functional product control unit 62 and the rotation angle sensor 67 can be simplified.
 本実施形態では、機能品制御ユニット62は、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cのモータ部300に駆動電流を出力する。そして、支持部材76、機能品制御ユニット62、モータ部300はこの順番に重なり合っている。これによると、機能品制御ユニット62とモータ部300との電気的接続構成を簡素化できる。 In this embodiment, the functional product control unit 62 outputs drive currents to the motor portions 300 of the first expansion valve 13a, the second expansion valve 13b and the third expansion valve 13c. The support member 76, the functional product control unit 62, and the motor section 300 are stacked in this order. According to this, the electrical connection configuration between the functional product control unit 62 and the motor section 300 can be simplified.
 図19に示す変形例では、機能品制御ユニット62が複数の基板62a、62b、62c、62dを有している。そして、複数の基板62a、62b、62c、62dが1つの支持板76に配置されており、各基板62a、62b、62c、62dと各モータ部300とが支持板76を基準に位置決めされている。 In the modification shown in FIG. 19, the functional product control unit 62 has a plurality of substrates 62a, 62b, 62c and 62d. A plurality of substrates 62a, 62b, 62c, and 62d are arranged on one support plate 76, and each substrate 62a, 62b, 62c, and 62d and each motor section 300 are positioned with reference to the support plate 76. .
 この変形例によると、第1膨張弁13a、第2膨張弁13bおよび第3膨張弁13cのそれぞれのモータ回路を複数の基板62a、62b、62cにおいて同一の回路レイアウトにできるため製造が容易となる。 According to this modification, the motor circuits of the first expansion valve 13a, the second expansion valve 13b, and the third expansion valve 13c can have the same circuit layout on the plurality of substrates 62a, 62b, and 62c, which facilitates manufacturing. .
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上記実施形態では、膨張弁の故障検知方法として、膨張弁の駆動電流の変動停止が検出された場合、膨張弁が故障していると判定するが、膨張弁の故障検知方法として種々の方法を用いることができる。 In the above-described embodiment, as a method for detecting failure of the expansion valve, it is determined that the expansion valve has failed when the drive current of the expansion valve stops fluctuating. can be used.
 機能品制御ユニット62は、ドライバIC部622に入力される電源電流が異常に大きくなった場合、膨張弁が故障している(具体的には、弁体が固着した故障)と判定してもよい。 When the power supply current input to the driver IC section 622 becomes abnormally large, the functional product control unit 62 determines that the expansion valve is malfunctioning (specifically, the valve body is stuck). good.
 機能品制御ユニット62は、膨張弁のモータの線間電圧に誘起電圧が発生しなくなった場合、膨張弁が故障している(具体的には、モータが停止している)と判定してもよい。 Even if the functional product control unit 62 determines that the expansion valve is malfunctioning (specifically, the motor is stopped) when the induced voltage is no longer generated in the line voltage of the motor of the expansion valve. good.
 機能品制御ユニット62は、モータの回転位置と相関を持つ巻き線インダクタンスを算出し、巻き線インダクタンスの変化から膨張弁の故障を検知してもよい。例えば、巻き線インダクタンスの変動が停止した場合、膨張弁が故障している(具体的には、モータが停止している)と判定してもよい。巻き線インダクタンスは、膨張弁電流電圧センサ群66が検出した各膨張弁13a~13gの電流電圧に基づいて算出すればよい。 The functional product control unit 62 may calculate a winding inductance that correlates with the rotational position of the motor, and detect failure of the expansion valve from changes in the winding inductance. For example, if the winding inductance stops fluctuating, it may be determined that the expansion valve has failed (specifically, the motor has stopped). The winding inductance may be calculated based on the current voltage of each expansion valve 13a-13g detected by the expansion valve current/voltage sensor group 66. FIG.
 機能品モジュールの一体化の態様は上述の実施形態に限定されない。例えば、機能品モジュールに一体化される複数の機能品として、いずれの機能品が選択されていてもよい。機能品モジュールに、冷凍サイクルのみならず、低温側熱媒体回路を構成する機能品が一体されていてもよい。 The mode of integration of functional product modules is not limited to the above-described embodiment. For example, any functional product may be selected as the plurality of functional products to be integrated into the functional product module. The functional product module may be integrated not only with the refrigeration cycle but also with the functional product that constitutes the low temperature side heat medium circuit.
 流路ボックス71における各機能品の取付位置は、上述の実施形態で説明した取付位置に限定されない。つまり、流路ボックス71内に形成された冷媒通路に応じて、膨張弁13a~13gおよび開閉弁17の取付位置が、図3~4、9~10に示された配置と異なっていてもよい。複数の冷媒出入口71aの配置についても同様である。 The mounting position of each functional item in the channel box 71 is not limited to the mounting position described in the above-described embodiment. That is, the mounting positions of the expansion valves 13a to 13g and the opening/closing valve 17 may be different from those shown in FIGS. . The same applies to the arrangement of the plurality of refrigerant inlet/outlet ports 71a.
 上述の実施形態では、金属で形成された流路ボックス71、カバー部材72、およびスペーサ73を採用した例を説明したが、他の材料で形成された流路ボックス71、カバー部材72およびスペーサ73を採用してもよい。より具体的には、導電性樹脂、導電性塗料を塗った樹脂、導電性カーボン等、導電性を有する材料で形成された流路ボックス71、カバー部材72およびスペーサ73を採用することができる。 In the above-described embodiment, an example in which the channel box 71, the cover member 72, and the spacer 73 made of metal has been described. may be adopted. More specifically, the channel box 71, the cover member 72, and the spacer 73 made of a conductive material such as conductive resin, resin coated with conductive paint, or conductive carbon can be employed.
 上述の実施形態で説明した電気基板部としての機能品制御ユニット62は、通信、制御用の電気信号のみを通電させる電子基板であってもよい。また、機能品制御ユニット62は、駆動電流等が流れる電気回路基板であってもよい。さらに、中央演算処理装置(すなわち、CPU)等を搭載するマザーボードであってもよい。 The functional product control unit 62 as the electric board section described in the above-described embodiment may be an electronic board that conducts only electrical signals for communication and control. Also, the functional product control unit 62 may be an electric circuit board through which a drive current or the like flows. Further, it may be a motherboard on which a central processing unit (that is, CPU) or the like is mounted.
 機能品モジュールの適用は、上述の実施形態に開示された例に限定されない。例えば、冷凍サイクルの冷却対象物となる車載機器は、バッテリ80に限定されない。具体的には、車載機器は、モータジェネレータ、インバータ、PCU、トランスアクスル、ADAS用の制御装置等であってもよい。さらに、機能品モジュールは、機器冷却機能を有していない空調装置に適用されていてもよい。 The application of functional product modules is not limited to the examples disclosed in the above embodiments. For example, the in-vehicle device to be cooled by the refrigeration cycle is not limited to the battery 80 . Specifically, the in-vehicle device may be a motor generator, an inverter, a PCU, a transaxle, a control device for ADAS, or the like. Furthermore, the functional product module may be applied to an air conditioner that does not have a device cooling function.
 また、上述の実施形態では、冷凍ポンプサイクルの冷媒として、R1234yfを採用した例を説明したが、これに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 Also, in the above-described embodiment, an example in which R1234yf is used as the refrigerant for the refrigeration pump cycle has been described, but the present invention is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 また、低温側熱媒体回路の熱媒体回路を切り替える電気式の切替弁を機能品モジュールに一体化させてもよい。 Also, an electric switching valve that switches the heat medium circuit of the low temperature side heat medium circuit may be integrated with the functional product module.
 また、上述の実施形態では、低温側熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。例えばジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体を採用してもよい。 Also, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as the low-temperature heat medium has been described, but the present invention is not limited to this. For example, a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
 また、機能品モジュールの適用は車両用に限定されない。例えば、室内の空調を行いつつ、温度調整対象物(例えば、コンピュータ、サーバ装置、その他の周辺機器)の温度を調整する温度調整機能付きの据え置き型の空調装置等に適用してもよい。 Also, the application of functional product modules is not limited to vehicles. For example, it may be applied to a stationary air conditioner with a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (13)

  1.  冷凍サイクルの冷媒が流れる冷媒通路が形成された通路形成部(71)と、
     前記通路形成部に取り付けられ、駆動電流が供給されることによって作動して前記冷凍サイクルにおいて所定の機能を発揮する複数の機能品(13a、13b、13c、13d、13e、13f、13g、17)と、
     前記冷凍サイクルの目標能力を演算するメイン制御ユニット(61)から入力された前記目標能力の値に基づいて、前記複数の機能品へ出力する駆動電流の値を演算して前記複数の機能品に前記駆動電流を出力するとともに、前記複数の機能品の故障を検知する機能品制御ユニット(62)と、を備え、
     前記機能品制御ユニットの個数が、前記機能品の個数よりも少なくなっている冷凍サイクル用機能品モジュール。
    a passage forming portion (71) in which a refrigerant passage through which the refrigerant of the refrigerating cycle flows;
    A plurality of functional items (13a, 13b, 13c, 13d, 13e, 13f, 13g, 17) that are attached to the passage forming portion and operate when supplied with a drive current to perform predetermined functions in the refrigerating cycle. When,
    Based on the value of the target capacity input from the main control unit (61) for calculating the target capacity of the refrigerating cycle, the value of the drive current to be output to the plurality of functional products is calculated and a functional product control unit (62) that outputs the drive current and detects a failure of the plurality of functional products;
    A functional product module for a refrigeration cycle, wherein the number of functional product control units is smaller than the number of functional products.
  2.  前記複数の機能品のうち少なくとも1つは、前記冷媒を減圧させる膨張弁(13a、13b、13c、13d、13e、13f、13g)であり、
     前記機能品制御ユニットの入力側には、前記冷媒の状態を検出する冷媒状態検出部(65a、65b、65c、65d、65e、65f)が接続されており、
     前記機能品制御ユニットは、前記冷媒状態検出部からの入力信号と前記目標能力の値とに基づいて前記膨張弁の目標開度を演算する目標開度演算部(621a)を有している請求項1に記載の冷凍サイクル用機能品モジュール。
    at least one of the plurality of functional items is an expansion valve (13a, 13b, 13c, 13d, 13e, 13f, 13g) for decompressing the refrigerant;
    Refrigerant state detection units (65a, 65b, 65c, 65d, 65e, 65f) for detecting the state of the refrigerant are connected to the input side of the functional product control unit,
    The functional product control unit has a target opening calculation section (621a) for calculating the target opening of the expansion valve based on the input signal from the refrigerant state detection section and the value of the target capacity. Item 2. The functional product module for a refrigeration cycle according to item 1.
  3.  前記複数の機能品のうち少なくとも1つは、前記冷媒を減圧させる膨張弁(13a、13b、13c、13d、13e、13f、13g)であり、
     前記機能品制御ユニットの入力側には、前記膨張弁の電流を検出する電流検出部(66)が接続されており、
     機能品制御ユニットは、前記電流検出部からの入力信号に基づいて前記膨張弁の故障を検知する故障検知部(621b)を有している請求項1または2に記載の冷凍サイクル用機能品モジュール。
    at least one of the plurality of functional items is an expansion valve (13a, 13b, 13c, 13d, 13e, 13f, 13g) for decompressing the refrigerant;
    A current detection section (66) for detecting the current of the expansion valve is connected to the input side of the functional product control unit,
    3. The functional product module for a refrigerating cycle according to claim 1, wherein the functional product control unit has a failure detection section (621b) that detects failure of the expansion valve based on an input signal from the current detection section. .
  4.  前記複数の機能品は、前記冷媒を減圧させる膨張弁(13a、13b、13c、13d、13e、13f、13g)であり、
     前記機能品制御ユニットは、
     前記冷媒を吸入して吐出する圧縮機(11)を前記目標能力の値に基づいて制御する圧縮機制御ユニット(63)と通信可能に接続されており、
     前記膨張弁の開度が変更されるタイミングに応じて前記圧縮機の冷媒吐出能力の変更タイミングを決定し、前記圧縮機制御ユニットに前記変更タイミングを出力するタイミング決定部(621c)を有している請求項1ないし3のいずれか1つに記載の冷凍サイクル用機能品モジュール。
    the plurality of functional items are expansion valves (13a, 13b, 13c, 13d, 13e, 13f, 13g) that reduce the pressure of the refrigerant;
    The functional product control unit is
    is communicatively connected to a compressor control unit (63) that controls the compressor (11) that sucks and discharges the refrigerant based on the value of the target capacity;
    a timing determination unit (621c) that determines a change timing of the refrigerant discharge capacity of the compressor according to the timing at which the opening degree of the expansion valve is changed, and outputs the change timing to the compressor control unit; 4. The functional product module for a refrigerating cycle according to any one of claims 1 to 3.
  5.  前記メイン制御ユニットは、
     バッテリ(80)の入出力を制御するバッテリ制御ユニット(91)、および駆動系機器(50、51)の作動を制御する駆動系制御ユニット(92)と通信可能に接続されており、
     前記バッテリ制御ユニットから入力された前記バッテリに関する情報、および前記駆動系制御ユニットから入力された前記駆動系機器に関する情報に基づいて前記目標能力の値を演算する目標能力演算部(61a)を有している請求項1ないし4のいずれか1つに記載の冷凍サイクル用機能品モジュール。
    The main control unit is
    communicably connected to a battery control unit (91) that controls the input/output of the battery (80) and a drive system control unit (92) that controls the operation of the drive system devices (50, 51),
    a target capacity calculation section (61a) for calculating the value of the target capacity based on information about the battery input from the battery control unit and information about the drive system equipment input from the drive system control unit; 5. The functional product module for a refrigerating cycle according to claim 1.
  6.  前記機能品制御ユニットは、前記通路形成部に固定されている請求項1ないし4のいずれか1つに記載の冷凍サイクル用機能品モジュール。 The functional product module for a refrigerating cycle according to any one of claims 1 to 4, wherein the functional product control unit is fixed to the passage forming portion.
  7.  前記複数の機能品はそれぞれ、前記駆動電流が供給されることによって駆動力を発生するモータ部(300)と、前記駆動力によって駆動される被駆動部(321)と、前記モータ部(300)側の空間である駆動側空間(331)と前記被駆動部(321)側の空間である被駆動側空間(332)とに区画するとともに前記被駆動側空間(332)に存在する前記冷媒が前記駆動側空間(331)へ漏れ出すことを防止する封止部材(330)とを有しており、
     前記封止部材(330)によって隔てられた前記モータ部(300)と前記被駆動部(321)とが磁力を利用して非接触で連結している請求項1ないし6のいずれか1つに記載の冷凍サイクル用機能品モジュール。
    Each of the plurality of functional items includes a motor section (300) that generates a driving force by being supplied with the driving current, a driven section (321) that is driven by the driving force, and the motor section (300). A drive-side space (331), which is a space on the side of the driven part (321), and a driven-side space (332), which is a space on the side of the driven part (321). and a sealing member (330) for preventing leakage into the drive-side space (331),
    7. The motor according to any one of claims 1 to 6, wherein the motor part (300) and the driven part (321) separated by the sealing member (330) are connected in a non-contact manner using magnetic force. Functional product module for refrigeration cycle described.
  8.  前記モータ部(300)と前記被駆動部(321)とを磁力を利用して非接触で連結する磁気ギア(310)を有している請求項7に記載の冷凍サイクル用機能品モジュール。 The functional product module for a refrigerating cycle according to claim 7, comprising a magnetic gear (310) that non-contactly connects the motor section (300) and the driven section (321) using magnetic force.
  9.  前記磁気ギア(310)は、前記駆動側空間(331)に配置された駆動側マグネット(311)と、前記被駆動側空間(332)に配置された被駆動側マグネット(313)とを有しており、
     前記封止部材(330)は筒形状を有しており、
     前記駆動側マグネット(311)は前記封止部材(330)の内部に配置されており、
     前記複数の機能品において、前記駆動側マグネット(311)と前記封止部材(330)との間の隙間寸法(G1、G2、G3)は、前記被駆動部(321)の要求作動トルクが小さいほど大きく設定されている請求項8に記載の冷凍サイクル用機能品モジュール。
    The magnetic gear (310) has a drive-side magnet (311) arranged in the drive-side space (331) and a driven-side magnet (313) arranged in the driven-side space (332). and
    The sealing member (330) has a tubular shape,
    The drive-side magnet (311) is arranged inside the sealing member (330),
    In the plurality of functional products, the gap dimensions (G1, G2, G3) between the drive-side magnet (311) and the sealing member (330) are such that the required operating torque of the driven part (321) is small. 9. The functional component module for a refrigerating cycle according to claim 8, which is set to be as large as possible.
  10.  前記複数の機能品における前記モータ部(300)を支持する支持部材(76)を備える請求項7ないし9のいずれか1つに記載の冷凍サイクル用機能品モジュール。 The functional product module for a refrigerating cycle according to any one of claims 7 to 9, comprising a support member (76) supporting said motor part (300) in said plurality of functional products.
  11.  前記支持部材(76)に配置され、前記モータ部(300)の回転角を検出する回転角センサ(67)とを備える請求項10に記載の冷凍サイクル用機能品モジュール。 The refrigeration cycle functional product module according to claim 10, further comprising a rotation angle sensor (67) arranged on the support member (76) and detecting the rotation angle of the motor section (300).
  12.  前記機能品制御ユニット(62)は、前記支持部材(76)に配置され、前記回転角センサ(67)の検出信号が入力される電気基板部(62)を有しており、
     前記回転角センサ(67)は前記電気基板部(62)を介して前記支持部材(76)に配置されている請求項11に記載の冷凍サイクル用機能品モジュール。
    The functional product control unit (62) has an electric board section (62) arranged on the support member (76) and to which a detection signal of the rotation angle sensor (67) is input,
    12. The functional product module for a refrigerating cycle according to claim 11, wherein said rotation angle sensor (67) is arranged on said support member (76) via said electric substrate portion (62).
  13.  前記機能品制御ユニット(62)は、前記モータ部(300)に前記駆動電流を出力する電気基板部(62)を有しており、
     前記支持部材(76)、前記電気基板部(62)、前記モータ部(300)はこの順番に重なり合っている請求項10または11に記載の冷凍サイクル用機能品モジュール。
    The functional product control unit (62) has an electric board section (62) that outputs the drive current to the motor section (300),
    12. The functional product module for a refrigerating cycle according to claim 10, wherein said support member (76), said electric substrate section (62), and said motor section (300) overlap in this order.
PCT/JP2022/023576 2021-07-05 2022-06-13 Function component module for refrigeration cycle WO2023281986A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-111356 2021-07-05
JP2021111356 2021-07-05
JP2022025576A JP2023008783A (en) 2021-07-05 2022-02-22 Function article module for refrigeration cycle
JP2022-025576 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023281986A1 true WO2023281986A1 (en) 2023-01-12

Family

ID=84800276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023576 WO2023281986A1 (en) 2021-07-05 2022-06-13 Function component module for refrigeration cycle

Country Status (1)

Country Link
WO (1) WO2023281986A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139156A (en) * 1994-11-11 1996-05-31 Hitachi Ltd Clean room and its using method
JPH1158327A (en) * 1997-08-21 1999-03-02 Meinan Mach Works Inc Lathe charger
JP2002061924A (en) * 2000-08-17 2002-02-28 Matsushita Refrig Co Ltd Controller for air conditioner
JP2002147818A (en) * 2000-11-14 2002-05-22 Sharp Corp Air conditioner and failure in operation deciding method
JP2002318016A (en) * 2001-04-18 2002-10-31 Denso Corp Heat pump type eater heater
US20130295831A1 (en) * 2012-04-04 2013-11-07 Airbus Operations Gmbh Method for controlling an aircraft air conditioning system during maintenance
JP2014085080A (en) * 2012-10-26 2014-05-12 Hitachi Appliances Inc Air conditioner
JP2017086510A (en) * 2015-11-10 2017-05-25 秀男 村瀬 Ball shooting device
JP2019168178A (en) * 2018-03-23 2019-10-03 三浦工業株式会社 Refrigerator combined type fuel cell system
JP2019187028A (en) * 2018-04-05 2019-10-24 株式会社ミツバ Speed reducer-provided motor, wiper driving device, and power window device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139156A (en) * 1994-11-11 1996-05-31 Hitachi Ltd Clean room and its using method
JPH1158327A (en) * 1997-08-21 1999-03-02 Meinan Mach Works Inc Lathe charger
JP2002061924A (en) * 2000-08-17 2002-02-28 Matsushita Refrig Co Ltd Controller for air conditioner
JP2002147818A (en) * 2000-11-14 2002-05-22 Sharp Corp Air conditioner and failure in operation deciding method
JP2002318016A (en) * 2001-04-18 2002-10-31 Denso Corp Heat pump type eater heater
US20130295831A1 (en) * 2012-04-04 2013-11-07 Airbus Operations Gmbh Method for controlling an aircraft air conditioning system during maintenance
JP2014085080A (en) * 2012-10-26 2014-05-12 Hitachi Appliances Inc Air conditioner
JP2017086510A (en) * 2015-11-10 2017-05-25 秀男 村瀬 Ball shooting device
JP2019168178A (en) * 2018-03-23 2019-10-03 三浦工業株式会社 Refrigerator combined type fuel cell system
JP2019187028A (en) * 2018-04-05 2019-10-24 株式会社ミツバ Speed reducer-provided motor, wiper driving device, and power window device

Similar Documents

Publication Publication Date Title
US9786964B2 (en) Refrigeration cycle device for auxiliary heating or cooling
US11180000B2 (en) Vehicle-mounted temperature controller
WO2013136693A1 (en) Refrigeration cycle device
WO2017217099A1 (en) Refrigeration cycle apparatus
WO2019044353A1 (en) Refrigeration cycle
US20180222289A1 (en) Refrigeration cycle device
US20140060102A1 (en) Mild ambient vehicular heat pump system
US20120266622A1 (en) Refrigerant cycle device
WO2021049435A1 (en) Connection module
WO2017010289A1 (en) Heat pump cycle
WO2018043060A1 (en) Refrigeration cycle device
JP6669042B2 (en) Vehicle air conditioner
WO2022264770A1 (en) Heat pump module
US20210252941A1 (en) Vehicle air conditioner
JP2014126209A (en) Refrigeration cycle device
WO2019031221A1 (en) Refrigeration cycle device
JP5505350B2 (en) Refrigeration cycle equipment for vehicles
WO2019116781A1 (en) Heating device for vehicles
WO2021095338A1 (en) Refrigeration cycle device
WO2023281986A1 (en) Function component module for refrigeration cycle
WO2023026869A1 (en) Compressor module
JP2022190675A (en) heat pump module
JP2023008783A (en) Function article module for refrigeration cycle
CN116215186A (en) Vehicle-mounted thermal circulation system and vehicle
WO2013128791A1 (en) Temperature adjustment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837404

Country of ref document: EP

Kind code of ref document: A1