WO2022264770A1 - Heat pump module - Google Patents

Heat pump module Download PDF

Info

Publication number
WO2022264770A1
WO2022264770A1 PCT/JP2022/021534 JP2022021534W WO2022264770A1 WO 2022264770 A1 WO2022264770 A1 WO 2022264770A1 JP 2022021534 W JP2022021534 W JP 2022021534W WO 2022264770 A1 WO2022264770 A1 WO 2022264770A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
refrigerant
pump module
passage
expansion valve
Prior art date
Application number
PCT/JP2022/021534
Other languages
French (fr)
Japanese (ja)
Inventor
正博 伊藤
悦久 山田
正和 森本
智史 二田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022084400A external-priority patent/JP2022190675A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022264770A1 publication Critical patent/WO2022264770A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a heat pump module that integrates a plurality of components that constitute a heat pump cycle.
  • a heat pump module that integrates multiple components that make up a heat pump cycle.
  • a heat pump module is effectively applied to miniaturize a heat pump cycle having a large number of constituent devices, such as a heat pump cycle having a switchable refrigerant circuit.
  • Patent Document 1 discloses a heat pump module formed by attaching components such as an electric expansion valve, an electromagnetic valve, and a heat exchanger to a connection module, which is an attachment member in which a plurality of refrigerant flow paths are formed. It is Furthermore, Patent Document 1 describes that a temperature sensor, a pressure sensor, or the like may be attached to the connection module.
  • the heat pump module of Patent Document 1 the heat pump module itself is also downsized in order to obtain the effect of downsizing the heat pump cycle as a whole. For this reason, in the heat pump module of Patent Document 1, a plurality of electric devices are arranged close to each other in a narrow area, and workability is likely to deteriorate when connecting each electric device to the corresponding electric wire. As a result, the productivity of the heat pump cycle may deteriorate.
  • an object of the present disclosure is to provide a heat pump module that enables both miniaturization of the heat pump cycle and improvement of productivity.
  • a heat pump module is a heat pump module in which a plurality of components constituting a heat pump cycle are integrated, and includes a mounting member and an electric substrate section.
  • the mounting member is attached with a plurality of electric devices that are operated by electricity.
  • the electrical board portion is electrically connected to the electrical device to control the operation of the electrical device attached to the mounting member.
  • the size of the heat pump cycle can be reduced by attaching a plurality of electric devices to the attachment member and integrating them.
  • the electrical device attached to the attachment member is electrically connected to the electric board portion. Therefore, when manufacturing a heat pump cycle, it is possible to reduce the workload of selecting and connecting appropriate electric wires to each of a plurality of electric devices. Therefore, it is possible to achieve both downsizing of the heat pump cycle and improvement of productivity.
  • FIG. 2 is a schematic configuration diagram of an indoor air conditioning unit of the vehicle air conditioner of the first embodiment;
  • FIG. 2 is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment.
  • FIG. 2 is an external perspective view of the heat pump module of the first embodiment with the cover member and the electric substrate section removed;
  • 5 is a view in the direction of arrow V in FIG. 4;
  • FIG. 10 is an external perspective view of a heat pump module according to a second embodiment; FIG.
  • FIG. 11 is a schematic cross-sectional view for explaining a channel box of the heat pump module of the third embodiment;
  • FIG. 12 is an external perspective view of the heat pump module of the fourth embodiment with the cover member removed;
  • FIG. 11 is an external perspective view of a heat pump module according to a fifth embodiment; It is the partial cross section which looked at the heat pump module of 6th Embodiment from the side surface direction. It is the partial cross section which looked at the heat pump module of 7th Embodiment from the side surface direction.
  • FIG. 20 is an external perspective view of the heat pump module of the eighth embodiment, with the cover member and the electric substrate section removed;
  • FIG. 21 is an external perspective view of the heat pump module of the eighth embodiment with the cover member removed;
  • FIG. 20 is an external perspective view of the heat pump module of the eighth embodiment, with the cover member and the electric substrate section removed;
  • FIG. 21 is an external perspective view of the heat pump module of the eighth embodiment with the cover member removed;
  • FIG. 20 is an external perspective view of the heat pump
  • FIG. 11 is an external perspective view of a heat pump module of an eighth embodiment; It is the partial cross section which looked at the heat pump module of 9th Embodiment from the side direction.
  • FIG. 20 is an external perspective view of a heat pump module according to a tenth embodiment;
  • FIG. 21 is a partial cross-sectional view of a modification of the heat pump module of the tenth embodiment as viewed from above;
  • FIG. 21 is an external perspective view of a modification of the heat pump module of the tenth embodiment;
  • FIG. 11 is a schematic configuration diagram of a heat pump cycle of a vehicle air conditioner of an eleventh embodiment;
  • FIG. 21 is a schematic configuration diagram of a heat pump cycle of a vehicle air conditioner of a twelfth embodiment;
  • FIG. 32 is an external perspective view of the heat pump module of the thirteenth embodiment with the cover member removed;
  • FIG. 10 is a schematic cross-sectional view showing the arrangement of low-pressure side refrigerant passages in a heat pump module of another
  • FIG. 1 A first embodiment of a heat pump module 70 according to the present disclosure will be described with reference to FIGS. 1 to 9.
  • FIG. The heat pump module 70 of this embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle.
  • An electric vehicle is a vehicle that obtains driving force for running from an electric motor.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle, which is a space to be air-conditioned, and cools the vehicle-mounted equipment. Therefore, the vehicle air conditioner 1 can be called an air conditioner with an in-vehicle device cooling function or an in-vehicle device cooling device with an air conditioning function.
  • the vehicle air conditioner 1 cools the battery 80 as an in-vehicle device.
  • the battery 80 is a secondary battery that stores power to be supplied to a plurality of in-vehicle devices that operate electrically.
  • the battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel.
  • the battery cell of this embodiment is a lithium ion battery.
  • the battery 80 generates heat during operation (that is, during charging and discharging).
  • the battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment). Therefore, in the vehicle air conditioner 1 of the present embodiment, the battery 80 is cooled when the temperature of the battery 80 rises.
  • the vehicle air conditioner 1 includes a heat pump cycle 10, an indoor air conditioning unit 30, a high temperature side heat medium circuit 40, a low temperature side heat medium circuit 50, a control device 60, and the like.
  • the heat pump module 70 is a component that integrates a plurality of components constituting the heat pump cycle 10 and part of the control device 60 .
  • the heat pump cycle 10 is of a vapor compression type that adjusts the temperature of the air blown into the passenger compartment, the high temperature side heat medium circulating in the high temperature side heat medium circuit 40, and the low temperature side heat medium circulating in the low temperature side heat medium circuit 50. refrigeration cycle equipment. Furthermore, the heat pump cycle 10 is configured to be able to switch the refrigerant circuit according to various operation modes described later for air conditioning the vehicle interior and cooling the battery 80 .
  • the heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the heat pump cycle 10 constitutes a subcritical refrigeration cycle in which the pressure of the high pressure side refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 sucks, compresses, and discharges the refrigerant.
  • the compressor 11 is arranged in the drive unit room on the front side of the passenger compartment.
  • the drive device room forms a space in which at least a part of a device (for example, a motor generator) for generating a drive amount for traveling is arranged.
  • the compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement.
  • the compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a first control section 61 of a control device 60, which will be described later. Therefore, the compressor 11 is included in the electric equipment operated by electricity, among the plurality of equipment constituting the heat pump cycle 10 .
  • the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 .
  • the water-refrigerant heat exchanger 12 is a high-temperature side water-refrigerant heat exchanger that exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40 .
  • the heat of the high pressure side refrigerant flowing through the refrigerant passage is radiated to the high temperature side heat medium flowing through the heat medium passage to heat the high temperature side heat medium.
  • the high-pressure side refrigerant inlet 71a side of the heat pump module 70 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the constituent devices enclosed by the dashed lines in FIG. 1 are integrated.
  • the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the opening/closing valve 17, and the like are integrated. there is these constituent devices are integrated by being attached to a channel box 71 that is an attachment member.
  • the channel box 71 has a channel forming portion 711 that forms a coolant channel inside.
  • the outer surface of the channel box 71 is formed with a plurality of inlets and outlets communicating with the coolant passages formed inside. A detailed configuration of the heat pump module 70 will be described later.
  • a high-pressure side refrigerant inlet 71 a formed in the flow path box 71 communicates with the inlet of the heating expansion valve 13 a through a refrigerant passage formed inside the flow path box 71 .
  • the heating expansion valve 13a reduces the pressure of the high-pressure side refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant that flows out downstream during a heating mode or the like, which will be described later. It is a decompression part for heating.
  • the heating expansion valve 13 a is an electric variable throttle mechanism whose operation is controlled by a control signal (specifically, a control pulse) output from the second control section 62 of the control device 60 . Therefore, the heating expansion valve 13a is included in the electrical equipment. Further, the heating expansion valve 13a has a full-open function in which the valve body portion fully opens the throttle passage, thereby functioning as a mere refrigerant passage without exhibiting a flow rate adjusting action and a refrigerant pressure reducing action.
  • the outlet of the heating expansion valve 13 a communicates with the high-pressure side refrigerant outlet 71 b of the flow path box 71 via a refrigerant passage formed inside the flow path box 71 .
  • a refrigerant passage from the high-pressure side refrigerant inlet 71a of the channel box 71 to the high-pressure side refrigerant outlet 71b is a high-pressure side refrigerant passage 70a through which the high-pressure side refrigerant of the cycle flows during the cooling mode, which will be described later.
  • the refrigerant inlet side of the outdoor heat exchanger 14 is connected to the high pressure side refrigerant outlet 71b.
  • the outdoor heat exchanger 14 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 13a and the outside air blown by a cooling fan (not shown).
  • the outdoor heat exchanger 14 is arranged on the front side in the driving device room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 14 .
  • the refrigerant outlet of the outdoor heat exchanger 14 is connected to the outdoor unit side refrigerant inlet 71c side of the channel box 71 .
  • the outdoor unit side refrigerant inlet 71 c communicates with the inlet of the first internal three-way joint 15 a formed inside the flow path box 71 .
  • the first internal three-way joint portion 15 a is a part of a three-way joint structure formed by connecting a plurality of refrigerant passages formed inside the flow path box 71 .
  • a second internal three-way joint 15b and a third internal three-way joint 15c are formed inside the channel box 71 of the present embodiment.
  • the basic configurations of the second internal three-way joint 15b, the third internal three-way joint 15c, and the internal three-way joint described in the following embodiments are all the same as the first internal three-way joint 15a.
  • the internal three-way joint serves as a branching portion that branches the flow of the refrigerant that has flowed in from one inflow port. . Further, when two of the three inflow ports are used as inflow ports and one is used as an outflow port, it becomes a confluence portion that merges the flows of the refrigerant that have flowed in from the two inflow ports.
  • One outlet of the first internal three-way joint 15a is connected to the inlet of the second internal three-way joint 15b via a refrigerant passage formed inside the flow path box 71.
  • a check valve 16 is arranged in a refrigerant passage extending from one outflow port of the first internal three-way joint portion 15a to the inflow port of the second internal three-way joint portion 15b.
  • the check valve 16 allows the refrigerant to flow from the first internal three-way joint portion 15a side to the second internal three-way joint portion 15b side, and allows the refrigerant to flow from the second internal three-way joint portion 15b side to the first internal three-way joint portion 15a. It is prohibited to flow to the side.
  • One outlet of the second internal three-way joint portion 15b communicates with the inlet of the cooling expansion valve 13b via a refrigerant passage formed inside the flow path box 71 .
  • the cooling expansion valve 13b is a cooling decompression unit that reduces the pressure of the refrigerant and adjusts the flow rate of the refrigerant flowing out to the downstream side during the cooling mode, etc., which will be described later.
  • the basic configuration of the cooling expansion valve 13b is the same as that of the heating expansion valve 13a. Furthermore, the cooling expansion valve 13b has a fully closing function of closing the refrigerant passage by fully closing the throttle passage.
  • the outlet of the cooling expansion valve 13b communicates with the cooling-side refrigerant outlet 71d of the flow path box 71 via a refrigerant passage formed inside the flow path box 71.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the cooling-side refrigerant outlet 71d.
  • the indoor evaporator 18 is arranged in an air conditioning case 31 of an indoor air conditioning unit 30, which will be described later.
  • the indoor evaporator 18 is a cooling heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the cooling expansion valve 13b and the air blown into the vehicle interior.
  • the indoor evaporator 18 cools the blown air by evaporating the low-pressure side refrigerant and exerting an endothermic effect.
  • the external three-way joint portion 151 is a three-way joint having three inlets and outlets communicating with each other.
  • the other outlet of the second internal three-way joint 15b communicates with the inlet of the cooling expansion valve 13c via a refrigerant passage formed inside the flow path box 71.
  • the cooling expansion valve 13c is a cooling decompression unit that reduces the pressure of the refrigerant and adjusts the flow rate of the refrigerant flowing out downstream during a battery cooling mode or the like, which will be described later.
  • the basic configuration of the cooling expansion valve 13c is similar to that of the cooling expansion valve 13b. Therefore, the cooling expansion valve 13c has a fully closed function.
  • Both the cooling expansion valve 13b and the cooling expansion valve 13c are included in the electrical device. Further, the cooling expansion valve 13b and the cooling expansion valve 13c can switch the refrigerant circuit by closing the refrigerant passage. Therefore, the cooling expansion valve 13b and the cooling expansion valve 13c also function as a refrigerant circuit switching unit.
  • the outlet of the cooling expansion valve 13c communicates with the cooling-side refrigerant outlet 71e of the flow path box 71 through a refrigerant passage formed inside the flow path box 71.
  • the refrigerant inlet side of the chiller 19 is connected to the cooling-side refrigerant outlet 71e.
  • the chiller 19 is a low-temperature side water-refrigerant heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the cooling expansion valve 13 c and the low-temperature side heat medium circulating in the low-temperature side heat medium circuit 50 .
  • the chiller 19 cools the low-temperature side heat medium flowing through the heat medium passage by evaporating the low-pressure side refrigerant flowing through the refrigerant passage and exerting an endothermic action.
  • the other inlet side of the external three-way joint 151 is connected to the outlet of the refrigerant passage of the chiller 19 .
  • the outflow port of the external three-way joint portion 151 is connected to the low-pressure side refrigerant inlet 71f side of the flow path box 71 .
  • One inlet of the third internal three-way joint 15c is connected to the low-pressure side refrigerant inlet 71f via a refrigerant passage formed inside the flow path box 71 .
  • the other outlet port of the first internal three-way joint portion 15a is connected to the other inlet port of the third internal three-way joint portion 15c via a refrigerant passage formed inside the flow path box 71. ing.
  • An on-off valve 17 is arranged in the refrigerant passage from the other outflow port of the first internal three-way joint portion 15a to the other inflow port of the third internal three-way joint portion 15c.
  • the on-off valve 17 is an electromagnetic valve that opens and closes the refrigerant passage from the first internal three-way joint portion 15a to the third internal three-way joint portion 15c.
  • the opening/closing operation of the opening/closing valve 17 is controlled by a control voltage output from the second control section 62 of the control device 60 . Therefore, the on-off valve 17 is included in the electrical equipment.
  • the on-off valve 17 can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the on-off valve 17 is a refrigerant circuit switching unit.
  • the outflow port of the third internal three-way joint portion 15 c communicates with the low-pressure side refrigerant outlet 71 g of the flow path box 71 via a refrigerant passage formed inside the flow path box 71 .
  • the refrigerant passage from the low-pressure side refrigerant inlet 71f of the flow path box 71 to the low-pressure side refrigerant outlet 71g via the third internal three-way joint portion 15c is a low-pressure side refrigerant passage 70b through which the low-pressure side refrigerant of the cycle flows during the cooling mode. is.
  • the inlet side of the accumulator 20 is connected to the low pressure side refrigerant outlet 71g.
  • the accumulator 20 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant that has flowed into the accumulator 20 and stores excess liquid-phase refrigerant in the cycle.
  • the gas-phase refrigerant outlet of the accumulator 20 is connected to the suction port side of the compressor 11 .
  • the high temperature side heat medium circuit 40 is a circuit that circulates the high temperature side heat medium.
  • the high temperature side heat medium circuit 40 employs an ethylene glycol aqueous solution as the high temperature side heat medium.
  • a heat medium passage of the water-refrigerant heat exchanger 12 , a high temperature side pump 41 , a heater core 42 and the like are arranged in the high temperature side heat medium circuit 40 .
  • the high-temperature-side pump 41 is a high-temperature-side heat medium pumping unit that sucks and pumps the high-temperature-side heat medium.
  • the high temperature side pump 41 pressure-feeds the high temperature side heat medium to the inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 .
  • the high temperature side pump 41 is an electric water pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the first control section 61 of the control device 60 .
  • the heat medium inlet side of the heater core 42 is connected to the outlet of the heat medium passage of the water-refrigerant heat exchanger 12 .
  • the heater core 42 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30 .
  • the heater core 42 is a heating heat exchange portion that exchanges heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the air that is blown into the vehicle interior.
  • the heater core 42 radiates the heat of the high-temperature side heat medium to the blown air to heat the blown air.
  • a heat medium outlet of the heater core 42 is connected to a suction port side of the high temperature side pump 41 .
  • the components of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 form a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
  • the low temperature side heat medium circuit 50 is a circuit that circulates the low temperature side heat medium.
  • the same kind of fluid as the high temperature side heat medium is used as the low temperature side heat medium.
  • a water passage of the chiller 19 , a low temperature side pump 51 , a cooling water passage 80 a of the battery 80 , and the like are connected to the low temperature side heat medium circuit 50 .
  • the low-temperature-side pump 51 is a low-temperature-side heat medium pumping unit that sucks and pumps the low-temperature-side heat medium.
  • the low temperature side pump 51 pressure-feeds the low temperature side heat medium to the inlet side of the heat medium passage of the chiller 19 .
  • the basic configuration of the low temperature side pump 51 is similar to that of the high temperature side pump 41 .
  • the inlet side of the cooling water passage 80 a of the battery 80 is connected to the outlet of the heat medium passage of the chiller 19 .
  • a cooling water passage 80a of the battery 80 is formed inside a dedicated battery case that accommodates a plurality of stacked battery cells.
  • the passage configuration of the cooling water passage 80a is a passage configuration in which a plurality of passages are connected in parallel inside the battery case. As a result, all the battery cells can be evenly cooled in the cooling water passage 80a.
  • the inlet side of the low temperature side pump 51 is connected to the outlet of the cooling water passage 80a.
  • the indoor air-conditioning unit 30 is a unit that integrates a plurality of components for blowing air adjusted to an appropriate temperature for air-conditioning the vehicle interior to appropriate locations within the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the dashboard (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 is formed by housing an indoor blower 32, an indoor evaporator 18, a heater core 42, etc. in an air conditioning case 31 that forms an air passage for blown air.
  • the air-conditioning case 31 is molded from a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside/outside air switching device 33 is arranged on the most upstream side of the air-conditioning case 31 in the blown air flow.
  • the inside/outside air switching device 33 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case 31 .
  • the operation of the inside/outside air switching device 33 is controlled by a control signal output from the first control section 61 of the control device 60 .
  • the indoor blower 32 is arranged on the downstream side of the inside/outside air switching device 33 in the blown air flow.
  • the indoor air blower 32 blows the air sucked through the inside/outside air switching device 33 into the vehicle interior.
  • the indoor fan 32 has its rotation speed (that is, air blowing capacity) controlled by the control voltage output from the first control unit 61 of the control device 60 .
  • An indoor evaporator 18 and a heater core 42 are arranged on the downstream side of the indoor blower 32 in the blown air flow.
  • the indoor evaporator 18 is arranged upstream of the heater core 42 in the air flow.
  • a cold air bypass passage 35 is formed in the air-conditioning case 31 so that the air that has passed through the indoor evaporator 18 flows around the heater core 42 .
  • An air mix door 34 is arranged downstream of the indoor evaporator 18 in the air conditioning case 31 and upstream of the heater core 42 and the cold air bypass passage 35 .
  • the air mix door 34 adjusts the air volume ratio between the volume of air that passes through the heater core 42 side and the volume of air that passes through the cold air bypass passage 35 among the air that has passed through the indoor evaporator 18 .
  • the operation of the actuator for driving the air mix door 34 is controlled by a control signal output from the first control section 61 of the control device 60 .
  • a mixing space 36 is arranged on the downstream side of the heater core 42 and the cold air bypass passage 35 in the blown air flow.
  • the mixing space 36 is a space for mixing the blast air heated by the heater core 42 and the blast air that has passed through the cold air bypass passage 35 and is not heated.
  • the temperature of the blown air (that is, conditioned air) that is mixed in the mixing space 36 and blown into the vehicle interior can be adjusted by adjusting the opening degree of the air mix door 34.
  • a plurality of opening holes are formed in the most downstream part of the air-conditioning case 31 to blow the air-conditioning air toward various locations in the vehicle compartment.
  • Blow-out mode doors (not shown) for opening and closing the respective openings are arranged in the plurality of openings. The operation of the actuator for driving the blowout mode door is controlled by a control signal output from the first control section 61 of the control device 60 .
  • the indoor air conditioning unit 30 by switching the opening hole opened and closed by the blow-out mode door, it is possible to blow out conditioned air adjusted to an appropriate temperature to an appropriate location in the vehicle interior.
  • the control device 60 has a well-known microcomputer including CPU, ROM, RAM, etc., and peripheral circuits.
  • the control device 60 performs various calculations and processes based on control programs stored in the ROM, and controls the operations of various controlled devices connected to the output side.
  • the control device 60 is divided into a first control section 61 and a second control section 62 .
  • the first control unit 61 controls the compressor 11 of the heat pump cycle 10, the indoor blower 32 of the indoor air conditioning unit 30, the inside/outside air switching device 33, the actuator for driving the air mix door 34, the actuator for driving the blowout mode door, the high temperature It controls the operation of the side pump 41, the low temperature side pump 51, and the like.
  • the second control unit 62 controls the operation of the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17 of the heat pump cycle 10.
  • the second control section 62 is an electric board section formed of a so-called rigid printed circuit board.
  • the second control unit 62 is formed in a rectangular flat plate shape by a single member.
  • the second control unit 62 is electrically connected to a plurality of electric devices such as the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17 attached to the flow path box 71. It is a common electrical board part that is Also, the second control unit 62 is integrated with other components of the heat pump cycle 10 as a heat pump module 70 .
  • the input side of the first control unit 61 includes an inside air temperature sensor 63a, an outside air temperature sensor 63b, a solar radiation sensor 63c, a first refrigerant temperature sensor 64a, a second refrigerant temperature sensor 64b, a first refrigerant pressure temperature sensor 65a to a third refrigerant temperature sensor 65a.
  • a group of control sensors such as a pressure temperature sensor 65c, a high temperature side heat medium temperature sensor 66a, a low temperature side heat medium temperature sensor 66b, a battery temperature sensor 67, and an air conditioning air temperature sensor 68 are connected.
  • Detection signals from these sensors are input to the first control unit 61 .
  • These sensors are included in the components that make up the heat pump cycle 10 . Furthermore, both output electrical signals. Therefore, all of the sensors described above are included in electrical equipment.
  • the inside air temperature sensor 63a is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 63b is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 63c is a solar radiation amount detection unit that detects the amount of solar radiation As irradiated into the vehicle interior.
  • the first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection section that detects the temperature Td of the refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 64b is an outdoor unit side temperature detection section that detects the outdoor temperature To of the refrigerant that has flowed out of the outdoor heat exchanger 14 .
  • the first refrigerant pressure and temperature sensor 65a is a high-pressure side pressure temperature detector that detects the high-pressure side refrigerant pressure P1 and the high-pressure side refrigerant temperature T1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the second refrigerant pressure and temperature sensor 65b is an indoor pressure and temperature detector that detects the indoor refrigerant pressure P2 and the indoor refrigerant temperature T2 of the refrigerant that has flowed out of the indoor evaporator 18 .
  • the third refrigerant pressure and temperature sensor 65c is a chiller side pressure and temperature detector that detects the chiller side refrigerant pressure P3 and the chiller side refrigerant temperature T3 of the refrigerant flowing out of the chiller 19 .
  • the first refrigerant pressure and temperature sensor 65a to the third refrigerant pressure and temperature sensor 65a to the third refrigerant pressure and temperature sensor 65c employ a detection unit in which a pressure detection unit and a temperature detection unit are integrated. and a temperature detection unit may be employed.
  • the high-temperature-side heat medium temperature sensor 66a is a high-temperature-side heat-medium temperature detection unit that detects a high-temperature-side heat-medium temperature TWH, which is the temperature of the high-temperature-side heat medium flowing into the heater core .
  • the low temperature side heat medium temperature sensor 66b is a low temperature side heat medium temperature detection unit that detects a low temperature side heat medium temperature TWL, which is the temperature of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80 .
  • the battery temperature sensor 67 is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80).
  • the battery temperature sensor 67 of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80 . Therefore, the control device 60 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
  • the air-conditioning air temperature sensor 68 is an air-conditioning air temperature detection unit that detects the air temperature TAV blown from the mixing space 36 into the vehicle interior.
  • An air conditioning operation panel 69 is connected to the input side of the first control unit 61 .
  • An air-conditioning operation panel 69 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches provided on an operation panel 69 for air conditioning are input to the control device 60 . Examples of various operation switches provided on the operation panel 69 for air conditioning include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
  • the auto switch is an operation unit that allows the user to set or cancel the automatic control operation of the cabin air conditioning.
  • the air conditioner switch is an operation unit for requesting that the indoor evaporator 18 cool the blown air.
  • the air volume setting switch is an operation unit for the user to manually set the air volume of the indoor fan 32 .
  • the temperature setting switch is an operation unit for the user to set the set temperature Tset inside the vehicle compartment.
  • control device 60 of the present embodiment is integrally configured with a device control section that controls various controlled devices connected to the output side thereof. That is, the configuration (hardware and software) for controlling the operation of each controlled device in the control device 60 forms a device control section for controlling the operation of each controlled device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 forms a compressor control section 61a.
  • the configurations for controlling the operations of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are the heating expansion valve control unit 62a and the cooling expansion valve control unit 62a, respectively.
  • a valve control section 62b and a cooling expansion valve control section 62c are formed.
  • the configuration for controlling the operation of the on-off valve 17 forms an on-off valve control section 62d.
  • first control unit 61 and the second control unit 62 are connected via a harness 601 so as to be able to communicate with each other by a CAN (Controller Area Network) communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control section, the operation of the controlled device connected to the output side of the other control section can be controlled.
  • CAN Controller Area Network
  • the heating expansion valve control section 62a is shown in the second control section 62, for example, but part or all of the heating expansion valve control section 62a It may be formed on the 1 control unit 61 side. In other words, only the wiring portion forming part of the heating expansion valve control portion 62a may be arranged in the second control portion 62 . This is the same for other device control units.
  • FIG. 3 shows the first control unit 61 as one control device
  • the first control unit 61 may be formed by a plurality of control devices.
  • the compressor control section 61a may be formed as another control device.
  • the heat pump module 70 includes the heating expansion valve 13 a , the cooling expansion valve 13 b , the cooling expansion valve 13 c , the opening/closing valve 17 , and the second valve of the control device 60 . It is a component that integrates the control unit 62 .
  • the heat pump module 70 has a channel box 71 and a cover member 72 .
  • the channel box 71 is made of metal (aluminum alloy in this embodiment).
  • the channel box 71 is formed in a substantially rectangular parallelepiped shape.
  • One surface (the upper surface in this embodiment) of the channel box 71 is a mounting surface 712 to which electrical equipment is mounted.
  • the mounting surface 712 is formed with mounting holes for mounting the electrical device and the connector 620 .
  • the connector 620 is a connecting portion to which one end of the harness 601 is connected.
  • the mounting holes to which the electric devices are mounted communicate with various refrigerant passages formed inside the flow path box 71 .
  • An attachment hole to which the connector 620 is attached is formed so as to penetrate the front and back of the plate-shaped portion of the attachment surface 712 that protrudes from the flow path box 71 .
  • a plurality of inlets/outlets such as the above-described high-pressure side refrigerant inlet 71a are formed on a plurality of surfaces (two side surfaces in this embodiment) of the flow path box 71 .
  • the electrical devices and connectors 620 attached to the channel box 71 have terminals 131a, 131b, 131c, and 171, which are connection terminal sections electrically connected to the second control section 62, respectively.
  • the connector 620 has a terminal 621 which is a connection terminal section electrically connected to the second control section 62 .
  • the second control unit 62 is mounted on the mounting surface 712 of the flow path box 71 via a prismatic spacer 622 by screwing or other means (substrate mounting process). .
  • the spacers 622 are arranged on the four corner sides of the second control section 62 when viewed in the vertical direction.
  • the second control unit 62 is attached such that its plate surface is parallel to the attachment surface 712 .
  • the spacer 622 is made of metal (stainless alloy in this embodiment). At least one spacer 622 is electrically connected to the ground line of the second control section 62 . Therefore, the channel box 71 is electrically connected to the ground wire of the second control section 62 via the spacer 622 .
  • the height dimension (that is, the axial length) of the spacer 622 is such that the terminals 131 a , 131 b , 131 c , 171 of the electrical equipment and the terminal 621 of the connector 620 are connected to the predetermined connection formed in the second control section 62 . configured to be directly connected to the
  • the terminals 131a, 131b, 131c, 171 of each electrical device and the terminal 621 of the connector 620 protrude in the same direction when a plurality of electrical devices and connectors 620 are attached to the channel box 71. , and is arranged so as to be directly connectable to the connection portion of the electric wiring formed in the second control portion 62 .
  • the cover member 72 is mounted on the outer edge of the mounting surface 712 of the channel box 71 by means of adhesion, welding, or the like (cover mounting process).
  • the heat pump module 70 is manufactured.
  • the cover member 72 is made of metal (aluminum alloy in this embodiment).
  • the cover member 72 is formed in the shape of a bottomed box with one side open.
  • the cover member 72 forms a housing space for the plurality of electric devices and the second control section 62 together with the channel box 71 .
  • a sealing member (not shown) is arranged in the gap between the cover member 72 and the flow path box 71 and in the gap between the connector 620 and the mounting hole. This prevents moisture and foreign matter from entering the accommodation space through the gap.
  • the high-pressure side refrigerant passage 70a is formed closer to the bottom surface 713 than the mounting surface 712, as shown in FIG.
  • the bottom surface 713 is the surface opposite to the mounting surface 712 of the channel box 71 .
  • the low-pressure side refrigerant passage 70b has many parts formed closer to the mounting surface 712 than to the bottom surface 713 .
  • the low-pressure side refrigerant passage 70b has more portions arranged closer to the mounting surface 712 than the high-pressure side refrigerant passage 70a. That is, the low-pressure side refrigerant passage 70b has more parts that are arranged closer to the second control section 62 than the high-pressure side refrigerant passage 70a.
  • the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b can prevent the second control section 62 from being heated by the high-pressure side refrigerant even if the high-pressure side refrigerant flows through the high-pressure side refrigerant passage 70a. are placed. Further, the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b are arranged so that the second control section 62 can be cooled by the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 70b.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle and cools the battery 80, which is an in-vehicle device.
  • the vehicle air conditioner 1 performs various operation modes by switching the refrigerant circuit of the heat pump cycle 10 in order to air-condition the vehicle interior and cool the battery 80 .
  • the operation modes of the vehicle air conditioner 1 include an air conditioning operation mode for air conditioning the vehicle interior and a cooling operation mode for cooling the battery 80 .
  • Operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
  • the cooling mode is an operation mode that cools the interior of the vehicle by cooling the air that is blown into the interior of the vehicle and blowing it out into the interior of the vehicle.
  • the dehumidification/heating mode is an operation mode in which dehumidification/heating of the vehicle interior is performed by reheating cooled and dehumidified blast air and blowing it into the vehicle interior.
  • the heating mode is an operation mode in which the vehicle interior is heated by heating the blown air and blowing it into the vehicle interior.
  • the air-conditioning operation mode is switched by the air-conditioning control program stored in the control device 60 .
  • the control program for air conditioning is executed when automatic control operation of the vehicle interior air conditioning is set by the auto switch on the operation panel 69 .
  • the control program for air conditioning switches the operation mode based on detection signals detected by various sensor groups and operation signals from the operation panel 69 .
  • control program for air conditioning it switches to cooling mode mainly when the outside temperature is relatively high, such as in summer. Moreover, it switches to dehumidification heating mode mainly in spring or autumn. Also, when the outside temperature is relatively low, mainly in winter, the mode is switched to the heating mode. Detailed operation of each operation mode for air conditioning will be described below.
  • control device 60 In the heat pump cycle 10 in the cooling mode, the control device 60 fully opens the heating expansion valve 13a and throttles the cooling expansion valve 13b to reduce the pressure. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the cooling expansion valve 13c is controlled according to the cooling operation mode.
  • the control device 60 fully closes the cooling expansion valve 13c.
  • the control of the cooling expansion valve 13c is the same in other operation modes for air conditioning.
  • the refrigerant discharged from the compressor 11 is in the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, and the throttle state.
  • the cooling expansion valve 13b, the indoor evaporator 18, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • the high temperature side heat medium pressure-fed from the high temperature side pump 41 passes through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41 in this order. Circulate.
  • the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 14 function as condensers (in other words, radiators) that radiate and condense the refrigerant, and the indoor evaporator 18
  • a vapor compression refrigeration cycle is configured that functions as an evaporator that evaporates a refrigerant.
  • the water-refrigerant heat exchanger 12 heats the high temperature side heat medium. Further, the indoor evaporator 18 cools the blown air.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
  • the air blown from the indoor blower 32 is cooled by the indoor evaporator 18 .
  • the blown air cooled by the indoor evaporator 18 is heated by the heater core 42 according to the opening degree of the air mix door 34 .
  • the temperature of the blown air in the mixing space 36 approaches the target blowing temperature TAO.
  • the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
  • the target blowout temperature TAO is the target temperature of the air blown into the vehicle interior.
  • the target blowout temperature TAO is calculated using the detection signals detected by various sensors and the operation signal of the operation panel 69 in the control program for air conditioning.
  • the controller 60 causes the heating expansion valve 13a to be throttled and the cooling expansion valve 13b to be throttled. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, and the throttled state.
  • the cooling expansion valve 13b, the indoor evaporator 18, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • the high temperature side heat medium pumped from the high temperature side pump 41 flows through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41. Cycle in order.
  • a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator. Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is higher than the outside air temperature Tam, the outdoor heat exchanger 14 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is lower than the outside air temperature Tam, the outdoor heat exchanger 14 is made to function as an evaporator.
  • the water-refrigerant heat exchanger 12 heats the high temperature side heat medium. Further, the indoor evaporator 18 cools the blown air.
  • the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
  • the air blown from the indoor blower 32 is cooled and dehumidified by the indoor evaporator 18 .
  • the air dehumidified by the indoor evaporator 18 is reheated by the heater core 42 according to the opening of the air mix door 34 .
  • the temperature of the blown air in the mixing space 36 approaches the target blowing temperature TAO.
  • Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
  • (c) Heating Mode In the heat pump cycle 10 in the heating mode, the controller 60 throttles the heating expansion valve 13a and fully closes the cooling expansion valve 13b. Also, the control device 60 opens the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, the accumulator 20, the compression
  • the refrigerant circuit is switched to a refrigerant circuit in which the refrigerant circulates in the order of the suction port of the machine 11 .
  • the high temperature side heat medium pressure-fed from the high temperature side pump 41 passes through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41 in this order. Circulate.
  • a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 14 functions as an evaporator.
  • the water-refrigerant heat exchanger 12 heats the high temperature side heat medium.
  • the heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
  • the air blown from the indoor blower 32 passes through the indoor evaporator 18 .
  • the blown air that has passed through the indoor evaporator 18 is heated by the heater core 42 according to the opening of the air mix door 34 .
  • the temperature of the air blown out from the mixing space 36 into the passenger compartment approaches the target air temperature TAO.
  • the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
  • the cooling operation mode is performed by executing a cooling control program stored in the control device 60 .
  • the cooling control program when the battery temperature TB detected by the battery temperature sensor 67 reaches or exceeds a predetermined reference cooling temperature TB1, the cooling mode operation is performed.
  • the cooling control program is executed when the vehicle system is activated and when the battery 80 is being charged from the external power supply, regardless of whether the passenger requests air conditioning in the vehicle compartment. Therefore, the cooling mode includes a cooling mode during air conditioning and a cooling mode during non-air conditioning. The detailed operation of each operation mode for cooling will be described below.
  • Cooling Mode During Air Conditioning In the heat pump cycle 10 in the cooling mode during air conditioning, the controller 60 throttles the cooling expansion valve 13c. Furthermore, when the operation mode for air conditioning is the heating mode, the on-off valve 17 is closed. The operations of the other controlled devices are the same as those in each operation mode for air conditioning.
  • the refrigerant circuit is switched to flow into the refrigerant passage of the chiller 19 depressurized by the cooling expansion valve 13c.
  • the low temperature side heat medium pumped from the low temperature side pump 51 flows through the heat medium passage of the chiller 19, the cooling water passage 80a of the battery 80, and the low temperature side pump 51. Circulate in the order of the inlet.
  • a vapor compression refrigeration cycle is configured in which at least the chiller 19 functions as an evaporator.
  • the chiller 19 cools the low temperature side heat medium.
  • the low temperature side heat medium cooled by the chiller 19 is supplied to the cooling water passage 80 a of the battery 80 . Thereby, the battery 80 is cooled.
  • the controller 60 operates the compressor 11 . Further, the control device 60 fully opens the heating expansion valve 13a, fully closes the cooling expansion valve 13b, and throttles the cooling expansion valve 13c. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 is in the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, and the throttle state.
  • the cooling expansion valve 13c, the chiller 19, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • the low temperature side heat medium pumped from the low temperature side pump 51 flows through the heat medium passage of the chiller 19, the cooling water passage 80a of the battery 80, and the low temperature side pump 51. circulates in the order of the intake port.
  • a vapor compression refrigeration cycle is configured in which at least the outdoor heat exchanger 14 functions as a condenser and the chiller 19 functions as an evaporator.
  • the chiller 19 cools the low temperature side heat medium.
  • the low temperature side heat medium cooled by the chiller 19 is supplied to the cooling water passage 80 a of the battery 80 . Thereby, the battery 80 is cooled.
  • the vehicle air conditioner 1 of the present embodiment comfortable air conditioning in the vehicle interior and cooling of the battery 80, which is an in-vehicle device, can be performed.
  • the number of components tends to increase. Therefore, integrating a plurality of components like the heat pump module 70 is effective for downsizing the heat pump cycle.
  • the heat pump module itself in order to obtain the effect of miniaturization of the heat pump cycle, the heat pump module itself must be miniaturized. tend to deteriorate. As a result, the productivity of the heat pump cycle may deteriorate.
  • a plurality of electrical devices installed in the channel box 71 are electrically connected to the second control section 62, which is a common electrical board section. This eliminates the need to select and connect appropriate electric wires to each of a plurality of electric devices. Furthermore, the harness 601 can be connected to the connector 620 of the second control section 62 to control the operation of the plurality of integrated electric devices.
  • the heat pump module 70 both miniaturization of the heat pump cycle and improvement of productivity can be achieved. As a result, the productivity of the vehicle air conditioner 1 can be improved. Furthermore, since wires connected to each of the plurality of electric devices can be eliminated, the number of parts such as wires and connectors can be reduced.
  • the terminals of a plurality of electrical devices are arranged so as to extend in the same direction while being mounted in the channel box 71 . Furthermore, as described in the board mounting step, the terminals of a plurality of electrical devices are directly connected to predetermined connection portions formed in the second control section 62 .
  • a high-pressure side refrigerant passage 70a and a low-pressure side refrigerant passage 70b are formed in the flow path box 71 of the heat pump module 70 of the present embodiment. Further, the low-pressure side refrigerant passage 70b is arranged so that more parts are arranged closer to the second control section 62 than the high-pressure side refrigerant passage 70a.
  • the second control unit 62 can be easily cooled by the low-temperature low-pressure refrigerant flowing through the low-pressure refrigerant passage 70b. Therefore, even in the cooling mode or the like in which the outside air temperature is relatively high, the temperature rise of the second control section 62 can be suppressed and the operation of the second control section 62 can be stabilized.
  • the channel box 71 of the heat pump module 70 of the present embodiment is made of metal and connected to the ground line of the second control section 62 via a spacer 622 made of metal. According to this, grounding of the second control unit 62 can be easily ensured by grounding the channel box 71 . Further, the noise resistance of the second control section 62 can be improved, and the operation of the second control section 62 can be further stabilized.
  • the heat pump module 70 of the present embodiment includes a cover member 72 . Therefore, the electrical equipment attached to the channel box 71 and the second control unit 62 can be made more waterproof. Furthermore, since the cover member 72 is made of a conductive material, it is easy to improve electromagnetic compatibility (so-called EMC).
  • the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the on-off valve 17, and the first refrigerant pressure temperature sensor 65a , and the third refrigerant pressure temperature sensor 65c are integrated by being attached to the channel box 71 .
  • a fourth internal three-way joint 15d is formed inside the channel box 71 of the heat pump module 700.
  • the fourth internal three-way joint portion 15d is an internal three-way joint portion corresponding to the external three-way joint portion 151 described in the first embodiment. Therefore, the external three-way joint 151 is eliminated in the heat pump cycle 10 of this embodiment.
  • the terminal 131a of the heating expansion valve 13a and the terminal 131b of the cooling expansion valve 13b , the terminal 131c of the cooling expansion valve 13c, the terminal 171 of the on-off valve 17, the terminal 621 of the connector 620, the terminal 651a of the first refrigerant pressure and temperature sensor 65a, and the terminal 651c of the third refrigerant pressure and temperature sensor 65c are mounted on the mounting surface. It protrudes in the vertical direction (in FIG. 11, the front and back directions of the paper surface).
  • Terminals 131 a , 131 b , 131 c , 171 , 651 a , 651 c of these electric devices and terminal 621 of connector 620 are arranged so as to be directly connectable to electrical wiring connection portions formed in second control unit 62 . . Therefore, in the present embodiment, the first refrigerant pressure and temperature sensor 65a and the third refrigerant pressure and temperature sensor 65c are also connected to the second controller 62 .
  • the compressor 11, the water-refrigerant heat exchanger 12, the chiller 19, and the accumulator 20 are attached to the side surface of the flow path box 71 by screw fastening or the like. are integrated.
  • the components of the heat pump cycle attached to the heat pump module according to the present disclosure are not limited to the combinations described in the first and second embodiments. That is, it may be determined as appropriate according to the specifications of the applied heat pump cycle.
  • the channel box 71 of this embodiment has a device forming portion 714 as shown in FIG. 13 .
  • the device forming part 714 is a part that forms a part of the electrical device.
  • the device forming portion 714 of the present embodiment forms a portion to which the seat portion 133a is fixed as part of the heating expansion valve 13a.
  • the seat portion 133a is a valve seat of the valve body portion 132a of the heating expansion valve 13a.
  • a throttle passage for reducing the pressure of the refrigerant is formed in the gap between the valve body portion 132a and the seat portion 133a. Accordingly, in the heating expansion valve 13a, the opening degree of the throttle passage can be changed by displacing the valve body portion 132a.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the channel box 71 has the device forming portion 714, so the number of parts of the electrical device can be reduced.
  • the device forming portion 714 is not limited to a portion that fixes the seat portion 133a of the heating expansion valve 13a.
  • the device forming portion 714 may form a seat portion.
  • the device forming portion 714 may form a part of the cooling expansion valve 13 b , the cooling expansion valve 13 c , or the on-off valve 17 .
  • connection mode between the electrical device attached to the channel box 71 and the second control section 62 is changed from the first embodiment.
  • At least part of the second control unit 62 is made of a flexible substrate. Then, during the substrate mounting process, the connection terminal portion of some electric devices (the terminal 131b of the cooling expansion valve 13b in FIG. 14) is connected to the portion 623 of the second control portion 62 formed of the flexible substrate. doing.
  • a flexible substrate is formed by laminating electronic components, conductor foil, etc. to a thin resin film with insulating properties. Therefore, it is softer than a rigid printed circuit board and can be bent.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the second control section 62 is made of a flexible substrate. Therefore, even if the specifications of some electrical equipment are changed and the shape is changed, the electrical equipment can be easily connected to the second control unit 62, and the degree of freedom in designing the electrical equipment can be improved. can be improved.
  • some of the electric devices (in FIG. 15, the on-off valve 17) are attached to the outside of the cover member 72 of the channel box 71.
  • the on-off valve 17 of this embodiment has a connector 170 that is a connecting portion.
  • the on-off valve 17 is connected to the first controller 61 of the controller 60 via a connector 170 .
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the connector 620 of this embodiment is fixed to the end of the second control section 62 as shown in FIG.
  • a portion of the connector 620 protrudes outside the cover member 72 through a through hole 720 formed in the side surface of the cover member 72 .
  • a sealing member (not shown) is interposed in the gap between the connector 620 and the through hole 720, as in the first embodiment.
  • FIG. 16 is a side view of the heat pump module of the sixth embodiment as seen from the lateral direction, and is a partial cross-sectional view showing the inside of the cover member 72 as a cross section. This also applies to FIGS. 17, 21 and 27.
  • FIG. 16 is a side view of the heat pump module of the sixth embodiment as seen from the lateral direction, and is a partial cross-sectional view showing the inside of the cover member 72 as a cross section. This also applies to FIGS. 17, 21 and 27.
  • FIG. 16 is a side view of the heat pump module of the sixth embodiment as seen from the lateral direction, and is a partial cross-sectional view showing the inside of the cover member 72 as a cross section. This also applies to FIGS. 17, 21 and 27.
  • FIG. 16 is a side view of the heat pump module of the sixth embodiment as seen from the lateral direction, and is a partial cross-sectional view showing the inside of the cover member 72 as a cross section. This also applies to FIGS. 17, 21 and 27.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the cover member 72 of this embodiment is divided into a side wall portion 721 and a top plate portion 722, as shown in FIG.
  • the connector 620 of this embodiment is fixed to the end of the second control section 62 as in the sixth embodiment.
  • a portion of the connector 620 protrudes outside the cover member 72 through a through hole 720 formed in a side wall portion 721 of the cover member 72 .
  • a spacer 622 is attached to the second control section 62 .
  • the side wall portion 721 , the connector 620 , the second control portion 62 and the spacer 622 are integrated as the cover unit 723 .
  • the second control section 62 integrated as the cover unit 723 is mounted to the channel box 71 via the spacer 622 by means such as screwing. Further, one end side (lower side in FIG. 17) of the side wall portion 721 is attached to the outer edge portion of the attachment surface 712 of the channel box 71 by means of adhesion, welding, or the like.
  • a flat top plate portion 722 is mounted on the other end side (the upper side in FIG. 17) of the side wall portion 721 by means of adhesion, welding, or the like.
  • a sealing member (not shown) is interposed in the gap between the side wall portion 721 and the channel box 71 and in the gap between the top plate portion 722 and the side wall portion 721, as in the first embodiment.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the heat pump module 70 of the present embodiment employs the cover unit 723, by stacking another cover unit 723 on top of the cover unit 723, stacking of substrates (so-called substrate mounting) is performed. be able to. According to this, it is possible to easily increase the number of electronic components and connectors 620 of the second control section 62, and the degree of freedom in designing the second control section 62 can be improved.
  • the channel box 71 of the present embodiment has side walls 715 as shown in FIG.
  • the side wall portion 715 is formed by extending the outer edge portion of the mounting surface 712 of the channel box 71 in the vertical direction (upward direction in FIG. 18).
  • the side wall portion 715 is a portion corresponding to the side wall portion 721 of the cover member 72 described in the seventh embodiment.
  • support portions 715a to which the second control portion 62 is fixed are formed.
  • the strut portion 715a is a portion corresponding to the spacer 622 described in the first embodiment.
  • cover member 72 of this embodiment has the same shape as the top plate portion 722 described in the seventh embodiment.
  • the second control section 62 is mounted by being screwed to the pillar section 715a of the side wall section 715, as shown in FIG.
  • the channel box 71 is electrically connected to the ground line of the second control section 62 .
  • the cover member 72 is attached to the end of the side wall portion 715 by means of adhesion, welding, or the like, as in the first embodiment.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the spacer 622a of this embodiment is attached to the cooling expansion valve 13b, the opening/closing valve 17, etc., as shown in FIG.
  • Parts forming outer shells such as the cooling expansion valve 13b and the on-off valve 17 are made of metal. Therefore, the flow path box 71 of the present embodiment is connected to the ground line of the second control section 62 via the spacer 622a and the portions forming the outer shell of the cooling expansion valve 13b, the open/close valve 17, and the like.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • an exhaust port 724 is formed in the cover member 72 in contrast to the first embodiment.
  • the exhaust port 724 is a communication hole that communicates the housing space with the outside.
  • the exhaust port 724 is provided to let the air in the accommodation space flow out to the outside and release the heat in the accommodation space to the outside.
  • Such an exhaust port 724 may be formed in the channel box 71 .
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
  • the heat pump module 70 of the present embodiment is formed with the exhaust port 724, the temperature rise of the second control section 62 can be suppressed and the operation of the second control section 62 can be stabilized.
  • a moisture permeable member may be arranged in the exhaust port 724 .
  • the moisture-permeable member is made of a material that allows moisture-laden air to pass through but does not allow water to pass through. According to this, it is possible to prevent moisture from entering the accommodation space from the outside through the exhaust port 724 .
  • a communication passage 724a communicating with the exhaust port 724 may be formed.
  • a communication path 724a can be formed by providing a groove in the mating surfaces of the cover member 72 and the flow path box 71.
  • the communicating path 724a is formed in a meandering shape to form a labyrinth seal structure, it is possible to more effectively suppress the intrusion of moisture from the outside into the housing space.
  • an electric fan 724b may be arranged to draw in the air in the accommodation space and blow it out.
  • a temperature detection unit for detecting the space temperature Tmj in the accommodation space is arranged so that the controller 60 operates the electric fan 724b when the space temperature Tmj becomes equal to or higher than a predetermined reference accommodation space temperature.
  • the vehicle air conditioner 1a of the present embodiment includes a heat pump cycle 10a.
  • the heat pump cycle 10a includes a receiver 21 instead of the accumulator 20.
  • the receiver 21 is a high-pressure side gas-liquid separator that separates gas-liquid from the high-pressure side refrigerant that has flowed out of the heat exchanger functioning as a condenser and stores excess liquid-phase refrigerant in the cycle.
  • the high-pressure side refrigerant inlet 71a side of the heat pump module 701 is connected to the refrigerant passage outlet of the water-refrigerant heat exchanger 12 of the heat pump cycle 10a.
  • the constituent devices and the like surrounded by broken lines in FIG. 25 are integrated.
  • the heating expansion valve 13a, the cooling expansion valve 13c, the first on-off valve 17a, the second on-off valve 17b, and the like, among the components of the heat pump cycle 10a, are integrated. .
  • a high-pressure side refrigerant inlet 71 a of the heat pump module 701 communicates with an inlet of the fifth internal three-way joint 15 e formed inside the flow path box 71 .
  • One outflow port of the fifth internal three-way joint portion 15 e is connected to the inlet of the first on-off valve 17 a via a refrigerant passage formed inside the flow path box 71 .
  • An outlet of the first on-off valve 17a is connected to one inlet of a sixth internal three-way joint 15f formed inside the flow path box 71 via a refrigerant passage formed inside the flow path box 71. ing.
  • the outflow port of the sixth internal three-way joint 15f is connected to the inlet of the heating expansion valve 13a via a refrigerant passage formed inside the flow path box 71 . Therefore, the first on-off valve 17a opens and closes the refrigerant passage from one outflow port of the fifth internal three-way joint portion 15e to one inflow port of the sixth internal three-way joint portion 15f.
  • the heat pump cycle 10a includes a second on-off valve 17b and a third on-off valve 17c.
  • the basic configuration of the first opening/closing valve 17a to the third opening/closing valve 17c is the same as that of the opening/closing valve 17 described in the first embodiment. Therefore, the first on-off valve 17a to the third on-off valve 17c are included in the electrical device. Further, the first on-off valve 17a to the third on-off valve 17c are refrigerant circuit switching units.
  • the other outflow port of the fifth internal three-way joint 15e is connected to the inlet of the second on-off valve 17b via a refrigerant passage formed inside the flow path box 71.
  • the outlet of the second on-off valve 17b is connected to one inlet side of the seventh internal three-way joint 15g formed inside the channel box 71 .
  • An inlet of the receiver 21 is connected to an outlet of the seventh internal three-way joint 15g via a refrigerant passage formed inside the flow path box 71 . Therefore, the second on-off valve 17b opens and closes the refrigerant passage from the other outflow port of the fifth internal three-way joint portion 15e to one inflow port of the seventh internal three-way joint portion 15g.
  • the receiver 21 is attached to and integrated with the side surface of the channel box 71 in the same manner as the accumulator 20 described in the second embodiment. Further, a first fixed throttle 22a is arranged in the refrigerant passage from the other outflow port of the fifth internal three-way joint portion 15e to one inflow port of the seventh internal three-way joint portion 15g.
  • the first fixed throttle 22a is a first decompression unit that decompresses the refrigerant flowing into the receiver 21 in heating mode or the like.
  • the outlet of the receiver 21 is connected to the inlet side of the eighth internal three-way joint 15h formed inside the channel box 71.
  • One outflow port of the eighth internal three-way joint portion 15h is connected to the other inflow port of the sixth internal three-way joint portion 15f via a refrigerant passage formed inside the flow path box 71 .
  • a first check valve 16a is arranged in the refrigerant passage from one outflow port of the eighth internal three-way joint portion 15h to the other inflow port of the sixth internal three-way joint portion 15f.
  • the first check valve 16a allows the refrigerant to flow from the eighth internal three-way joint portion 15h side to the sixth internal three-way joint portion 15f side, and the refrigerant flows from the sixth internal three-way joint portion 15f side to the eighth internal three-way joint It is prohibited to flow to the part 15h side.
  • the inlet side of the second internal three-way joint 15b formed inside the channel box 71 is connected to the other outlet of the eighth internal three-way joint 15h.
  • the inlet side of the second external three-way joint 152 is connected to the refrigerant outlet of the outdoor heat exchanger 14 of the heat pump cycle 10a. Furthermore, the heat pump cycle 10 a is provided with a third external three-way joint portion 153 .
  • the basic configurations of the second external three-way joint part 152 and the third external three-way joint part 153 are the same as the external three-way joint part 151 described in the first embodiment. Furthermore, in the present embodiment, the external three-way joint 151 is referred to as the first external three-way joint 151 for clarity of explanation.
  • One outlet of the second external three-way joint 152 is connected to the outdoor unit side refrigerant inlet 71c side of the channel box 71 .
  • the outdoor unit side refrigerant inlet 71c communicates with the other inlet of the seventh internal three-way joint 15g.
  • a second check valve 16b and a second fixed throttle 22b are arranged in a refrigerant passage from the outdoor unit side refrigerant inlet 71c to the other inlet of the seventh internal three-way joint portion 15g.
  • the second check valve 16b allows the refrigerant to flow from the outdoor unit side refrigerant inlet 71c side to the seventh internal three-way joint portion 15g side, and allows the refrigerant to flow from the seventh internal three-way joint portion 15g side to the outdoor unit side refrigerant inlet 71c. It is prohibited to flow to the side.
  • the second fixed throttle 22b is a second decompression unit that decompresses the refrigerant flowing into the receiver 21 in the cooling mode or the like.
  • the cooling expansion valve 13b is not integrated. Therefore, the inlet side of the cooling expansion valve 13b is connected to the cooling side refrigerant outlet 71d of the heat pump module 701 .
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet side of the cooling expansion valve 13b.
  • One inlet side of the third external three-way joint 153 is connected to the refrigerant outlet of the indoor evaporator 18 .
  • the other outlet port of the second external three-way joint portion 152 is connected to the other inlet port of the third external three-way joint portion 153 via the bypass passage 24 .
  • the bypass passage 24 is provided with a third on-off valve 17c, a fourth check valve 16d, and a fourth refrigerant pressure temperature sensor 65d.
  • the third on-off valve 17c of this embodiment opens and closes the bypass passage 24.
  • the fourth check valve 16d allows the refrigerant to flow from the third on-off valve 17c side to the third external three-way joint portion 153 side, and the refrigerant flows from the third external three-way joint portion 153 side to the third on-off valve 17c side. prohibited from flowing.
  • the fourth refrigerant pressure and temperature sensor 65d is a bypass side pressure and temperature detector that detects the bypass side refrigerant pressure P4 and the bypass side refrigerant temperature T4 of the refrigerant flowing through the bypass passage 24 .
  • One inlet side of the first external three-way joint 151 is connected to the outlet of the third external three-way joint 153 . Further, in this embodiment, the other inlet side of the first external three-way joint portion 151 is connected to the outlet side of the refrigerant passage of the chiller 19 . The suction port side of the compressor 11 is connected to the outflow port of the first external three-way joint portion 151 .
  • the heating expansion valve 13a, the cooling expansion valve 13c, the first on-off valve 17a, the second on-off valve 17b, and the third on-off valve are provided on the output side of the second control unit 62. 17c is connected.
  • the operation of the vehicle air conditioner 1a of this embodiment having the above configuration will be described. Also in the vehicle air conditioner 1a, the operation mode for air conditioning and the operation mode for cooling are performed like 1st Embodiment. The detailed operation of each operation mode will be described below.
  • (a) Cooling Mode In the heat pump cycle 10a in the cooling mode, the controller 60 fully opens the heating expansion valve 13a and throttles the cooling expansion valve 13b to reduce the pressure.
  • the cooling expansion valve 13c is controlled according to the cooling operation mode. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the fully open heating expansion valve 13a, the outdoor heat exchanger 14, the fixed throttle 22b, the receiver 21, the cooling expansion valve 13b in the throttled state, the indoor evaporator 18, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 14 function as condensers (in other words, radiators) that radiate and condense the refrigerant, and the indoor evaporator 18,
  • a vapor compression refrigeration cycle is configured that functions as an evaporator that evaporates a refrigerant.
  • (b) Dehumidification/heating mode In the heat pump cycle 10a in the dehumidification/heating mode, the controller 60 causes the heating expansion valve 13a to be throttled and the cooling expansion valve 13b to be throttled. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, and the fixed throttle 22b. , the receiver 21, the cooling expansion valve 13b in the throttled state, the indoor evaporator 18, and the suction port of the compressor 11 in this order.
  • a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator.
  • the outdoor heat exchanger 14 when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is higher than the outside air temperature Tam, the outdoor heat exchanger 14 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is lower than the outside air temperature Tam, the outdoor heat exchanger 14 functions as an evaporator. As a result, it is possible to realize dehumidifying and heating the vehicle interior, as in the first embodiment.
  • (c) Heating Mode In the heat pump cycle 10a in the heating mode, the controller 60 throttles the heating expansion valve 13a and fully closes the cooling expansion valve 13b. Further, the control device 60 closes the first on-off valve 17a, opens the second on-off valve 17b, and opens the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the receiver 21, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, the compression
  • the refrigerant circuit is switched to a refrigerant circuit in which the refrigerant circulates in the order of the suction port of the machine 11 .
  • a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 14 functions as an evaporator.
  • the interior of the vehicle can be realized.
  • Cooling Mode During Air Conditioning In the heat pump cycle 10a in the cooling mode during air conditioning, the controller 60 throttles the cooling expansion valve 13c. Furthermore, when the operation mode for air conditioning is the heating mode, the third on-off valve 17c is closed. The operations of the other controlled devices are the same as those in each operation mode for air conditioning.
  • the refrigerant circuit is switched to flow into the refrigerant passage of the chiller 19 decompressed by the cooling expansion valve 13c.
  • a vapor compression refrigeration cycle is configured in which at least the chiller 19 functions as an evaporator.
  • the battery 80 can be cooled as in the first embodiment.
  • the controller 60 operates the compressor 11 . Further, the control device 60 fully opens the heating expansion valve 13a, fully closes the cooling expansion valve 13b, and throttles the cooling expansion valve 13c. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
  • the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, the fixed throttle 22b, the receiver 21, the cooling expansion valve 13c in the throttled state, the chiller 19, the indoor evaporator 18, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • a vapor compression refrigeration cycle is configured in which at least the outdoor heat exchanger 14 functions as a condenser and the chiller 19 functions as an evaporator.
  • the battery 80 can be cooled as in the first embodiment.
  • the vehicle air conditioner 1a of the present embodiment comfortable air conditioning in the vehicle interior and cooling of the battery 80, which is an in-vehicle device, can be performed.
  • the heat pump cycle 10a of the present embodiment is provided with the receiver 21, it is possible to impart a degree of superheat to the refrigerant on the outlet side of the heat exchanger functioning as an evaporator in each operation mode. Therefore, the amount of heat absorbed by the refrigerant in the heat exchanger functioning as an evaporator can be increased. As a result, the coefficient of performance (COP) of the heat pump cycle 10a can be improved, and the operating efficiency of the vehicle air conditioner 1a can be improved.
  • COP coefficient of performance
  • the detection values of the second refrigerant pressure temperature sensor 65b to the fourth refrigerant pressure temperature sensor 65d are used to calculate the degree of superheat of the refrigerant on the outlet side of the heat exchanger functioning as an evaporator. Then, the operations of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c may be controlled so that the calculated degree of superheat approaches a predetermined reference degree of superheat.
  • the heat pump module 701 is employed in this embodiment, the same effect as in the first embodiment can be obtained. That is, according to the heat pump module 701 of the present embodiment, it is possible to achieve both miniaturization of the heat pump cycle 10a and improvement of productivity.
  • the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the first The on-off valve 17a, the second on-off valve 17b, the third on-off valve 17c, the second refrigerant pressure temperature sensor 65b to the fourth refrigerant pressure temperature sensor 65d, etc. are attached to the channel box 71 and integrated.
  • the compressor 11, the water-refrigerant heat exchanger 12, the chiller 19, and the receiver 21 are attached to the side surface of the flow path box 71 by screw fastening or the like. are integrated.
  • the second control unit 62 of the present embodiment includes four substrates: a first substrate portion 624a, a second substrate portion 624b, a third substrate portion 624c, and a fourth substrate portion 624d. made of hard printed circuit board.
  • the first to fourth substrate portions 624a to 624d are electrically connected to the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17, respectively.
  • the first substrate portion 624a to the fourth substrate portion 624d are attached to the mounting surface 712 of the flow channel box 71 via a prism-shaped spacer 622 by means such as screwing.
  • the spacers 622 are arranged on four corner sides of the first substrate portion 624a to the fourth substrate portion 624d. In this embodiment, the spacers 622 having the same length are used, so the first substrate portion 624a to the fourth substrate portion 624d are arranged substantially in the same plane.
  • first board portion 624a to the fourth board portion 624d are electrically connected to each other via a board connector or the like (not shown) as required.
  • a board connector is an electrical connection that is secured directly to a rigid printed circuit board. Therefore, the second control section 62 has a configuration for electrically connecting the first substrate section 624a to the fourth substrate section 624d to each other as required.
  • the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment. That is, it is possible to reduce the work load of selecting and connecting appropriate wires to each of a plurality of electric devices, and achieve both miniaturization of the heat pump cycle and improvement of productivity.
  • each of the substrate portions 624a to 624d of the second control portion 62 can be mounted by overlapping another substrate portion. According to this, it is possible to easily increase the number of electronic components and connectors 620 of the second control section 62, and the degree of freedom in designing the second control section 62 can be improved.
  • the mode of integration of the heat pump module according to the present disclosure is not limited to the above-described embodiments.
  • any electrical device may be selected as the plurality of electrical devices integrated with the heat pump module.
  • the heat pump module may integrate not only the heat pump cycles 10 and 10a, but also electrical devices that form the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 .
  • each electrical device in the channel box 71 is not limited to the mounting position described in the above-described embodiment. That is, the mounting positions of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are arranged as shown in FIGS. may be different from The same applies to the arrangement of a plurality of refrigerant inlets and outlets such as the high pressure side refrigerant inlet 71a.
  • channel box 71, the cover member 72, and the spacer 622 made of metal may be employed. More specifically, the channel box 71, the cover member 72, and the spacer 622 made of a conductive material such as conductive resin, resin coated with conductive paint, or conductive carbon can be employed. .
  • the second control section 62 as the electric board section described in the above-described embodiment may be an electronic board that energizes only electric signals for communication and control.
  • the second control unit 62 may be an electric circuit board through which a drive current or the like flows. Further, it may be a motherboard on which a central processing unit (that is, CPU) or the like is mounted.
  • the second control unit 62 is formed of a plurality of substrates and one electrical device is connected to one substrate.
  • equipment may be connected.
  • the second control unit 62 is formed by a first substrate portion and a second substrate portion, the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are connected to the first substrate portion,
  • the on-off valve 17 may be connected to the second substrate portion.
  • the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b have been described as the refrigerant passages in the flow path box 71.
  • the shape and arrangement of the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b are It is not limited to the embodiments described above.
  • a projecting portion 712a projecting toward the second control unit 62 is formed on the mounting surface 712 of the channel box 71, and the low-pressure side refrigerant passage 70b is formed inside the projecting portion 712a. good too. According to this, the low-pressure side refrigerant passage 70b can be brought closer to the second control section 62, so that the second control section 62 can be more easily cooled by the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 70b.
  • the high-temperature side heat medium circuit 40 of the heat pump cycle 10 may be eliminated, and instead of the water-refrigerant heat exchanger 12, a heat pump cycle having an indoor condenser may be applied.
  • the indoor condenser is a heat exchanger for heating blown air that heats the blown air by exchanging heat between the refrigerant discharged from the compressor 11 and the blown air.
  • the indoor condenser is located within the indoor air conditioning unit 30 as is the heater core 42 . Therefore, the indoor condenser need not be integrated into the heat pump module.
  • the vehicle-mounted device that is the object to be cooled by the heat pump cycle 10 is not limited to the battery 80.
  • the in-vehicle device may be a motor generator, an inverter, a PCU, a transaxle, a control device for ADAS, or the like.
  • the heat pump module according to the present disclosure may be applied to an air conditioner that does not have a device cooling function.
  • R1234yf is used as the refrigerant for the heat pump cycles 10 and 10a
  • the present invention is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • the configurations of the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 are not limited to the examples disclosed in the above embodiments.
  • an electric heater for heating the high temperature side heat medium may be added to the high temperature side heat medium circuit 40 .
  • a low-temperature side external heat exchanger that exchanges heat between the low-temperature side heat medium and the outside air may be added to the low-temperature side heat medium circuit 50 .
  • an electric switching valve may be added to switch the heat medium circuit of the low temperature side heat medium circuit.
  • the electric heater of the high temperature side heat medium circuit 40 and the electric switching valve of the low temperature side heat medium circuit 50 may be integrated with the heat pump module.
  • an ethylene glycol aqueous solution is used as the high-temperature side heat medium and the low-temperature side heat medium
  • the present invention is not limited to this.
  • a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
  • application of the heat pump module according to the present disclosure is not limited to vehicles.
  • it may be applied to a stationary air conditioner with a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.
  • a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.
  • the electric board portion is formed of a single member.
  • the plurality of electric devices each have a connection terminal portion (131a, 131b, 131c, 171) electrically connected to the electric board portion, Each of the connection terminal portions protrudes in the same direction when the plurality of electrical devices are attached to the attachment member, and is arranged to be directly connectable to the electric board portion.
  • a heat pump module as described. (Item 4) 3. Any one of items 1 to 3, wherein the mounting member has a passage forming portion (711) forming a refrigerant passage for circulating a refrigerant and a device forming portion (714) forming a part of the electric device.
  • the heat pump module according to 1.
  • the mounting member has a passage forming portion (711) that forms a refrigerant passage through which the refrigerant flows, As the refrigerant passages, a high pressure side refrigerant passage (70a) through which the high pressure side refrigerant of the heat pump cycle flows and a low pressure side refrigerant passage (70b) through which the low pressure side refrigerant of the heat pump cycle flows are formed, 5.
  • the high-pressure side refrigerant passage and the low-pressure side refrigerant passage according to any one of items 1 to 4, wherein the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage is arranged so as to cool the electric board portion. heat pump module. (Item 6) 6.

Abstract

The present invention provides a heat pump module in which a plurality of component equipment forming heat pump cycles (10, 10a) is integrated, the heat pump module comprising a mounting member (71) and an electrical substrate part (62, 624a to 624d). A plurality of electrical equipment (13a to 13c, 17, 65a, 65c) powered by electricity from among the plurality of component equipment is mounted to the mounting member (71). The electrical substrate part (62, 624a to 624d) is electrically coupled to the electrical equipment (13a to 13c, 17, 65a, 65c) mounted to the mounting member (71) to control the functioning of the electrical equipment (13a to 13c, 17, 65a, 65c).

Description

ヒートポンプモジュールheat pump module 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年6月14日に出願された日本特許出願2021-98849号、および2022年5月24日に出願された日本特許出願2022-84400号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-98849 filed on June 14, 2021 and Japanese Patent Application No. 2022-84400 filed on May 24, 2022. to invoke.
 本開示は、ヒートポンプサイクルを構成する複数の構成機器を一体化させたヒートポンプモジュールに関する。 The present disclosure relates to a heat pump module that integrates a plurality of components that constitute a heat pump cycle.
 従来、ヒートポンプサイクルを構成する複数の構成機器を一体化させたヒートポンプモジュールが知られている。ヒートポンプモジュールは、冷媒回路を切替可能に構成されたヒートポンプサイクルのように、構成機器の数量が多くなるヒートポンプサイクルの小型化を図るために適用して有効である。  Conventionally, a heat pump module is known that integrates multiple components that make up a heat pump cycle. A heat pump module is effectively applied to miniaturize a heat pump cycle having a large number of constituent devices, such as a heat pump cycle having a switchable refrigerant circuit.
 例えば、特許文献1に、複数の冷媒流路が形成された取付部材である接続モジュールに、電気式膨張弁、電磁弁、熱交換器等の構成機器を取り付けることによって形成されたヒートポンプモジュールが開示されている。さらに、特許文献1には、接続モジュールに温度センサや圧力センサ等を取り付けてもよいことが記載されている。 For example, Patent Document 1 discloses a heat pump module formed by attaching components such as an electric expansion valve, an electromagnetic valve, and a heat exchanger to a connection module, which is an attachment member in which a plurality of refrigerant flow paths are formed. It is Furthermore, Patent Document 1 describes that a temperature sensor, a pressure sensor, or the like may be attached to the connection module.
特開2021-47000号公報Japanese Patent Application Laid-Open No. 2021-47000
 ところで、特許文献1のヒートポンプモジュールでは、ヒートポンプサイクルの構成機器のうち、電気式膨張弁や電磁弁のように電気によって作動する複数の電気式機器が一体化されている。これらの電気式機器を適切に作動させるためには、電力を供給するための電力線や制御信号等を送受信するための信号線といった電線を、それぞれの電気式機器に適切に接続しなければならない。 By the way, in the heat pump module of Patent Literature 1, among the components of the heat pump cycle, a plurality of electric devices such as electric expansion valves and solenoid valves that are electrically operated are integrated. In order to properly operate these electrical devices, electric wires such as power lines for supplying power and signal lines for transmitting and receiving control signals must be properly connected to the respective electrical devices.
 ところが、特許文献1のヒートポンプモジュールでは、ヒートポンプサイクル全体としての小型化効果を得るために、ヒートポンプモジュール自体も小型化させている。このため、特許文献1のヒートポンプモジュールでは、狭い領域に複数の電気式機器が近接配置されており、それぞれの電気式機器と対応する電線とを接続する際の作業性が悪化しやすい。その結果、ヒートポンプサイクルの生産性を悪化させてしまう可能性がある。 However, in the heat pump module of Patent Document 1, the heat pump module itself is also downsized in order to obtain the effect of downsizing the heat pump cycle as a whole. For this reason, in the heat pump module of Patent Document 1, a plurality of electric devices are arranged close to each other in a narrow area, and workability is likely to deteriorate when connecting each electric device to the corresponding electric wire. As a result, the productivity of the heat pump cycle may deteriorate.
 本開示は、上記点に鑑み、ヒートポンプサイクルの小型化と生産性の向上との両立を可能とするヒートポンプモジュールを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a heat pump module that enables both miniaturization of the heat pump cycle and improvement of productivity.
 上記目的を達成するため、本開示の1つの態様のヒートポンプモジュールは、ヒートポンプサイクルを構成する複数の構成機器を一体化させたヒートポンプモジュールであって、取付部材と、電気基板部と、を備える。 In order to achieve the above object, a heat pump module according to one aspect of the present disclosure is a heat pump module in which a plurality of components constituting a heat pump cycle are integrated, and includes a mounting member and an electric substrate section.
 取付部材は、複数の構成機器のうち、電気によって作動する複数の電気式機器が取り付けられる。電気基板部は、取付部材に取り付けられた電気式機器の作動を制御するために、電気式機器に電気的に接続される。 Among the plurality of constituent devices, the mounting member is attached with a plurality of electric devices that are operated by electricity. The electrical board portion is electrically connected to the electrical device to control the operation of the electrical device attached to the mounting member.
 これによれば、複数の電気式機器を、取付部材に取り付けて一体化させることによって、ヒートポンプサイクルの小型化を図ることができる。 According to this, the size of the heat pump cycle can be reduced by attaching a plurality of electric devices to the attachment member and integrating them.
 さらに、取付部材に取り付けられた電気式機器が、電気基板部に電気的に接続される。従って、ヒートポンプサイクルを製造する際に、複数の電気式機器のそれぞれに対して適切な電線を選別して接続する作業負担を軽減することができる。従って、ヒートポンプサイクルの小型化と生産性の向上とを両立させることができる。 Furthermore, the electrical device attached to the attachment member is electrically connected to the electric board portion. Therefore, when manufacturing a heat pump cycle, it is possible to reduce the workload of selecting and connecting appropriate electric wires to each of a plurality of electric devices. Therefore, it is possible to achieve both downsizing of the heat pump cycle and improvement of productivity.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態の車両用空調装置のヒートポンプサイクルの模式的な構成図である。 第1実施形態の車両用空調装置の室内空調ユニットの模式的な構成図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態のヒートポンプモジュールのカバー部材および電気基板部を取り除いた状態の外観斜視図である。 図4のV矢視図である。 第1実施形態のヒートポンプモジュールのカバー部材を取り除いた状態の外観斜視図である。 第1実施形態のヒートポンプモジュールの外観斜視図である。 第1実施形態のヒートポンプモジュールの高圧側冷媒通路の配置を示す模試的な断面図である。 第1実施形態のヒートポンプモジュールの低圧側冷媒通路の配置を示す模試的な断面図である。 第2実施形態の車両用空調装置のヒートポンプサイクルの模式的な構成図である。 第2実施形態のヒートポンプモジュールのカバー部材を取り除いた状態の上面図である。 第2実施形態のヒートポンプモジュールの外観斜視図である。 第3実施形態のヒートポンプモジュールの流路ボックスを説明するための模式的な断面図である。 第4実施形態のヒートポンプモジュールのカバー部材を取り除いた状態の外観斜視図である。 第5実施形態のヒートポンプモジュールの外観斜視図である。 第6実施形態のヒートポンプモジュールを側面方向から見た一部断面図である。 第7実施形態のヒートポンプモジュールを側面方向から見た一部断面図である。 第8実施形態のヒートポンプモジュールのカバー部材および電気基板部を取り除いた状態の外観斜視図である。 第8実施形態のヒートポンプモジュールのカバー部材を取り除いた状態の外観斜視図である。 第8実施形態のヒートポンプモジュールの外観斜視図である。 第9実施形態のヒートポンプモジュールを側面方向から見た一部断面図である。 第10実施形態のヒートポンプモジュールの外観斜視図である。 第10実施形態のヒートポンプモジュールの変形例を上方から見た一部断面図である。 第10実施形態のヒートポンプモジュールの変形例の外観斜視図である。 第11実施形態の車両用空調装置のヒートポンプサイクルの模式的な構成図である。 第12実施形態の車両用空調装置のヒートポンプサイクルの模式的な構成図である。 第13実施形態のヒートポンプモジュールのカバー部材を取り除いた状態の外観斜視図である。 他の実施形態のヒートポンプモジュールの低圧側冷媒通路の配置を示す模試的な断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a typical block diagram of the heat pump cycle of the vehicle air conditioner of 1st Embodiment. 2 is a schematic configuration diagram of an indoor air conditioning unit of the vehicle air conditioner of the first embodiment; FIG. It is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment. FIG. 2 is an external perspective view of the heat pump module of the first embodiment with the cover member and the electric substrate section removed; 5 is a view in the direction of arrow V in FIG. 4; FIG. FIG. 2 is an external perspective view of the heat pump module of the first embodiment with a cover member removed; 1 is an external perspective view of a heat pump module according to a first embodiment; FIG. FIG. 4 is a schematic cross-sectional view showing the arrangement of high-pressure side refrigerant passages in the heat pump module of the first embodiment; FIG. 3 is a schematic cross-sectional view showing the arrangement of low-pressure side refrigerant passages in the heat pump module of the first embodiment; FIG. 7 is a schematic configuration diagram of a heat pump cycle of the vehicle air conditioner of the second embodiment; It is a top view of the state where the cover member of the heat pump module of 2nd Embodiment was removed. FIG. 10 is an external perspective view of a heat pump module according to a second embodiment; FIG. 11 is a schematic cross-sectional view for explaining a channel box of the heat pump module of the third embodiment; FIG. 12 is an external perspective view of the heat pump module of the fourth embodiment with the cover member removed; FIG. 11 is an external perspective view of a heat pump module according to a fifth embodiment; It is the partial cross section which looked at the heat pump module of 6th Embodiment from the side surface direction. It is the partial cross section which looked at the heat pump module of 7th Embodiment from the side surface direction. FIG. 20 is an external perspective view of the heat pump module of the eighth embodiment, with the cover member and the electric substrate section removed; FIG. 21 is an external perspective view of the heat pump module of the eighth embodiment with the cover member removed; FIG. 11 is an external perspective view of a heat pump module of an eighth embodiment; It is the partial cross section which looked at the heat pump module of 9th Embodiment from the side direction. FIG. 20 is an external perspective view of a heat pump module according to a tenth embodiment; FIG. 21 is a partial cross-sectional view of a modification of the heat pump module of the tenth embodiment as viewed from above; FIG. 21 is an external perspective view of a modification of the heat pump module of the tenth embodiment; FIG. 11 is a schematic configuration diagram of a heat pump cycle of a vehicle air conditioner of an eleventh embodiment; FIG. 21 is a schematic configuration diagram of a heat pump cycle of a vehicle air conditioner of a twelfth embodiment; FIG. 32 is an external perspective view of the heat pump module of the thirteenth embodiment with the cover member removed; FIG. 10 is a schematic cross-sectional view showing the arrangement of low-pressure side refrigerant passages in a heat pump module of another embodiment;
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 A plurality of embodiments for carrying out the present disclosure will be described below with reference to the drawings. In each embodiment, portions corresponding to items described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only part of the configuration is described in each embodiment, the other embodiments previously described can be applied to other portions of the configuration. Not only combinations of parts that are explicitly stated that combinations are possible in each embodiment, but also partial combinations of embodiments even if they are not explicitly stated unless there is a particular problem with the combination. is also possible.
 (第1実施形態)
 図1~図9を用いて、本開示に係るヒートポンプモジュール70の第1実施形態を説明する。本実施形態のヒートポンプモジュール70は、電気自動車に搭載された車両用空調装置1に適用されている。電気自動車は、走行用の駆動力を電動モータから得る車両である。車両用空調装置1は、空調対象空間である車室内の空調、および車載機器の冷却を行う。従って、車両用空調装置1は、車載機器冷却機能付きの空調装置、あるいは、空調機能付きの車載機器冷却装置と呼ぶことができる。
(First embodiment)
A first embodiment of a heat pump module 70 according to the present disclosure will be described with reference to FIGS. 1 to 9. FIG. The heat pump module 70 of this embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle. An electric vehicle is a vehicle that obtains driving force for running from an electric motor. The vehicle air conditioner 1 air-conditions the interior of the vehicle, which is a space to be air-conditioned, and cools the vehicle-mounted equipment. Therefore, the vehicle air conditioner 1 can be called an air conditioner with an in-vehicle device cooling function or an in-vehicle device cooling device with an air conditioning function.
 より具体的には、車両用空調装置1は、車載機器として、バッテリ80の冷却を行う。バッテリ80は、電気によって作動する複数の車載機器へ供給される電力を蓄える二次電池である。バッテリ80は、積層配置された複数の電池セルを、電気的に直列あるいは並列に接続することによって形成された組電池である。本実施形態の電池セルは、リチウムイオン電池である。 More specifically, the vehicle air conditioner 1 cools the battery 80 as an in-vehicle device. The battery 80 is a secondary battery that stores power to be supplied to a plurality of in-vehicle devices that operate electrically. The battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel. The battery cell of this embodiment is a lithium ion battery.
 バッテリ80は、作動時(すなわち、充放電時)に発熱する。バッテリ80は、低温になると出力が低下しやすく、高温になると劣化が進行しやすいという特性を有している。このため、バッテリ80の温度は、適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。そこで、本実施形態の車両用空調装置1では、バッテリ80の温度が上昇した際に、バッテリ80の冷却を行う。 The battery 80 generates heat during operation (that is, during charging and discharging). The battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment). Therefore, in the vehicle air conditioner 1 of the present embodiment, the battery 80 is cooled when the temperature of the battery 80 rises.
 車両用空調装置1は、ヒートポンプサイクル10、室内空調ユニット30、高温側熱媒体回路40、低温側熱媒体回路50、制御装置60等を備えている。ヒートポンプモジュール70は、ヒートポンプサイクル10を構成する複数の構成機器、および制御装置60の一部を一体化させた構成部品である。 The vehicle air conditioner 1 includes a heat pump cycle 10, an indoor air conditioning unit 30, a high temperature side heat medium circuit 40, a low temperature side heat medium circuit 50, a control device 60, and the like. The heat pump module 70 is a component that integrates a plurality of components constituting the heat pump cycle 10 and part of the control device 60 .
 まず、図1を用いて、ヒートポンプサイクル10について説明する。ヒートポンプサイクル10は、車室内へ送風される送風空気、高温側熱媒体回路40を循環する高温側熱媒体、および低温側熱媒体回路50を循環する低温側熱媒体の温度を調整する蒸気圧縮式の冷凍サイクル装置である。さらに、ヒートポンプサイクル10は、車室内の空調およびバッテリ80の冷却のために、後述する各種運転モードに応じて、冷媒回路を切替可能に構成されている。 First, the heat pump cycle 10 will be described using FIG. The heat pump cycle 10 is of a vapor compression type that adjusts the temperature of the air blown into the passenger compartment, the high temperature side heat medium circulating in the high temperature side heat medium circuit 40, and the low temperature side heat medium circulating in the low temperature side heat medium circuit 50. refrigeration cycle equipment. Furthermore, the heat pump cycle 10 is configured to be able to switch the refrigerant circuit according to various operation modes described later for air conditioning the vehicle interior and cooling the battery 80 .
 ヒートポンプサイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。ヒートポンプサイクル10は、圧縮機11から吐出された高圧側冷媒の圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油は、液相冷媒に相溶性を有するPAGオイルである。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The heat pump cycle 10 constitutes a subcritical refrigeration cycle in which the pressure of the high pressure side refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 圧縮機11は、ヒートポンプサイクル10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、走行用の駆動量を発生させるための機器(例えば、モータジェネレータ)等の少なくとも一部が配置される空間を形成している。 In the heat pump cycle 10, the compressor 11 sucks, compresses, and discharges the refrigerant. The compressor 11 is arranged in the drive unit room on the front side of the passenger compartment. The drive device room forms a space in which at least a part of a device (for example, a motor generator) for generating a drive amount for traveling is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機である。圧縮機11は、後述する制御装置60の第1制御部61から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。従って、圧縮機11は、ヒートポンプサイクル10を構成する複数の構成機器のうち、電気によって作動する電気式機器に含まれる。 The compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement. The compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a first control section 61 of a control device 60, which will be described later. Therefore, the compressor 11 is included in the electric equipment operated by electricity, among the plurality of equipment constituting the heat pump cycle 10 .
 圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧側冷媒と高温側熱媒体回路40を循環する高温側熱媒体とを熱交換させる高温側水冷媒熱交換器である。水冷媒熱交換器12では、冷媒通路を流通する高圧側冷媒の有する熱を熱媒体通路を流通する高温側熱媒体に放熱させて、高温側熱媒体を加熱する。 The inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 . The water-refrigerant heat exchanger 12 is a high-temperature side water-refrigerant heat exchanger that exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40 . In the water-refrigerant heat exchanger 12, the heat of the high pressure side refrigerant flowing through the refrigerant passage is radiated to the high temperature side heat medium flowing through the heat medium passage to heat the high temperature side heat medium.
 水冷媒熱交換器12の冷媒通路の出口には、ヒートポンプモジュール70の高圧側冷媒入口71a側が接続されている。本実施形態のヒートポンプモジュール70では、ヒートポンプサイクル10の複数の構成機器のうち、図1の破線で囲まれた構成機器等が一体化されている。 The high-pressure side refrigerant inlet 71a side of the heat pump module 70 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 . In the heat pump module 70 of the present embodiment, among the plurality of constituent devices of the heat pump cycle 10, the constituent devices enclosed by the dashed lines in FIG. 1 are integrated.
 具体的には、本実施形態のヒートポンプモジュール70では、ヒートポンプサイクル10の構成機器のうち、暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、開閉弁17等が一体化されている。これらの構成機器は、取付部材である流路ボックス71に取り付けられることによって一体化されている。 Specifically, in the heat pump module 70 of the present embodiment, among the components of the heat pump cycle 10, the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the opening/closing valve 17, and the like are integrated. there is These constituent devices are integrated by being attached to a channel box 71 that is an attachment member.
 流路ボックス71は、内部に冷媒通路を形成する通路形成部711を有している。流路ボックス71の外表面には、内部に形成された冷媒通路に連通する複数の冷媒出入口が形成されている。ヒートポンプモジュール70の詳細構成については後述する。 The channel box 71 has a channel forming portion 711 that forms a coolant channel inside. The outer surface of the channel box 71 is formed with a plurality of inlets and outlets communicating with the coolant passages formed inside. A detailed configuration of the heat pump module 70 will be described later.
 流路ボックス71に形成された高圧側冷媒入口71aは、流路ボックス71の内部に形成された冷媒通路を介して、暖房用膨張弁13aの入口に連通している。暖房用膨張弁13aは、後述する暖房モード時等に、水冷媒熱交換器12の冷媒通路から流出して高圧側冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用減圧部である。 A high-pressure side refrigerant inlet 71 a formed in the flow path box 71 communicates with the inlet of the heating expansion valve 13 a through a refrigerant passage formed inside the flow path box 71 . The heating expansion valve 13a reduces the pressure of the high-pressure side refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant that flows out downstream during a heating mode or the like, which will be described later. It is a decompression part for heating.
 暖房用膨張弁13aは、制御装置60の第2制御部62から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される電動式の可変絞り機構である。従って、暖房用膨張弁13aは、電気式機器に含まれる。さらに、暖房用膨張弁13aは、弁体部が絞り通路を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。 The heating expansion valve 13 a is an electric variable throttle mechanism whose operation is controlled by a control signal (specifically, a control pulse) output from the second control section 62 of the control device 60 . Therefore, the heating expansion valve 13a is included in the electrical equipment. Further, the heating expansion valve 13a has a full-open function in which the valve body portion fully opens the throttle passage, thereby functioning as a mere refrigerant passage without exhibiting a flow rate adjusting action and a refrigerant pressure reducing action.
 暖房用膨張弁13aの出口は、流路ボックス71の内部に形成された冷媒通路を介して、流路ボックス71の高圧側冷媒出口71bに連通している。流路ボックス71の高圧側冷媒入口71aから高圧側冷媒出口71bへ至る冷媒通路は、後述する冷房モード時にサイクルの高圧側冷媒を流通させる高圧側冷媒通路70aである。 The outlet of the heating expansion valve 13 a communicates with the high-pressure side refrigerant outlet 71 b of the flow path box 71 via a refrigerant passage formed inside the flow path box 71 . A refrigerant passage from the high-pressure side refrigerant inlet 71a of the channel box 71 to the high-pressure side refrigerant outlet 71b is a high-pressure side refrigerant passage 70a through which the high-pressure side refrigerant of the cycle flows during the cooling mode, which will be described later.
 高圧側冷媒出口71bには、室外熱交換器14の冷媒入口側が接続されている。室外熱交換器14は、暖房用膨張弁13aから流出した冷媒と図示しない冷却ファンにより送風された外気とを熱交換させる室外熱交換部である。室外熱交換器14は、駆動装置室内の前方側に配置されている。このため、車両走行時には、グリルを介して駆動装置室内へ流入した走行風を、室外熱交換器14に当てることができる。 The refrigerant inlet side of the outdoor heat exchanger 14 is connected to the high pressure side refrigerant outlet 71b. The outdoor heat exchanger 14 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 13a and the outside air blown by a cooling fan (not shown). The outdoor heat exchanger 14 is arranged on the front side in the driving device room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 14 .
 室外熱交換器14の冷媒出口には、流路ボックス71の室外器側冷媒入口71c側が接続されている。室外器側冷媒入口71cは、流路ボックス71の内部に形成された第1内部三方継手部15aの流入口に連通している。第1内部三方継手部15aは、流路ボックス71の内部に形成された複数の冷媒通路同士を接続することによって形成された三方継手構造の部位である。 The refrigerant outlet of the outdoor heat exchanger 14 is connected to the outdoor unit side refrigerant inlet 71c side of the channel box 71 . The outdoor unit side refrigerant inlet 71 c communicates with the inlet of the first internal three-way joint 15 a formed inside the flow path box 71 . The first internal three-way joint portion 15 a is a part of a three-way joint structure formed by connecting a plurality of refrigerant passages formed inside the flow path box 71 .
 さらに、本実施形態の流路ボックス71の内部には、第2内部三方継手部15b、および第3内部三方継手部15cが形成されている。第2内部三方継手部15b、第3内部三方継手部15c、および以下の実施形態で説明する内部三方継手部の基本的構成は、いずれも第1内部三方継手部15aと同様である。 Further, inside the channel box 71 of the present embodiment, a second internal three-way joint 15b and a third internal three-way joint 15c are formed. The basic configurations of the second internal three-way joint 15b, the third internal three-way joint 15c, and the internal three-way joint described in the following embodiments are all the same as the first internal three-way joint 15a.
 これらの内部三方継手は、3つの流入出口のうち1つが流入口として用いられ、2つが流出口として用いられた際には、1つの流入口から流入した冷媒の流れを分岐する分岐部となる。また、3つの流入出口のうち2つが流入口として用いられ、1つが流出口として用いられた際には、2つの流入口から流入した冷媒の流れを合流させる合流部となる。 When one of the three inflow ports is used as an inflow port, and two of these internal three-way joints are used as outflow ports, the internal three-way joint serves as a branching portion that branches the flow of the refrigerant that has flowed in from one inflow port. . Further, when two of the three inflow ports are used as inflow ports and one is used as an outflow port, it becomes a confluence portion that merges the flows of the refrigerant that have flowed in from the two inflow ports.
 第1内部三方継手部15aの一方の流出口には、流路ボックス71の内部に形成された冷媒通路を介して、第2内部三方継手部15bの流入口が接続されている。第1内部三方継手部15aの一方の流出口から第2内部三方継手部15bの流入口へ至る冷媒通路には、逆止弁16が配置されている。 One outlet of the first internal three-way joint 15a is connected to the inlet of the second internal three-way joint 15b via a refrigerant passage formed inside the flow path box 71. A check valve 16 is arranged in a refrigerant passage extending from one outflow port of the first internal three-way joint portion 15a to the inflow port of the second internal three-way joint portion 15b.
 逆止弁16は、冷媒が第1内部三方継手部15a側から第2内部三方継手部15b側へ流れることを許容し、冷媒が第2内部三方継手部15b側から第1内部三方継手部15a側へ流れることを禁止している。 The check valve 16 allows the refrigerant to flow from the first internal three-way joint portion 15a side to the second internal three-way joint portion 15b side, and allows the refrigerant to flow from the second internal three-way joint portion 15b side to the first internal three-way joint portion 15a. It is prohibited to flow to the side.
 第2内部三方継手部15bの一方の流出口は、流路ボックス71の内部に形成された冷媒通路を介して、冷房用膨張弁13bの入口に連通している。 One outlet of the second internal three-way joint portion 15b communicates with the inlet of the cooling expansion valve 13b via a refrigerant passage formed inside the flow path box 71 .
 冷房用膨張弁13bは、後述する冷房モード時等に、冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷房用減圧部である。冷房用膨張弁13bの基本的構成は、暖房用膨張弁13aと同様である。さらに、冷房用膨張弁13bは、絞り通路を全閉とすることで、冷媒通路を閉塞させる全閉機能を有している。 The cooling expansion valve 13b is a cooling decompression unit that reduces the pressure of the refrigerant and adjusts the flow rate of the refrigerant flowing out to the downstream side during the cooling mode, etc., which will be described later. The basic configuration of the cooling expansion valve 13b is the same as that of the heating expansion valve 13a. Furthermore, the cooling expansion valve 13b has a fully closing function of closing the refrigerant passage by fully closing the throttle passage.
 冷房用膨張弁13bの出口は、流路ボックス71の内部に形成された冷媒通路を介して、流路ボックス71の冷房側冷媒出口71dに連通している。 The outlet of the cooling expansion valve 13b communicates with the cooling-side refrigerant outlet 71d of the flow path box 71 via a refrigerant passage formed inside the flow path box 71.
 冷房側冷媒出口71dには、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、後述する室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁13bにて減圧された低圧側冷媒と車室内へ送風される送風空気とを熱交換させる冷却用熱交換器である。室内蒸発器18では、低圧側冷媒を蒸発させて吸熱作用を発揮させることによって、送風空気を冷却する。 The refrigerant inlet side of the indoor evaporator 18 is connected to the cooling-side refrigerant outlet 71d. The indoor evaporator 18 is arranged in an air conditioning case 31 of an indoor air conditioning unit 30, which will be described later. The indoor evaporator 18 is a cooling heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the cooling expansion valve 13b and the air blown into the vehicle interior. The indoor evaporator 18 cools the blown air by evaporating the low-pressure side refrigerant and exerting an endothermic effect.
 室内蒸発器18の冷媒出口には、外部三方継手部151の一方の流入口側が接続されている。外部三方継手部151は、互いに連通する3つの流入出口を有する三方継手である。 One inlet side of the external three-way joint 151 is connected to the refrigerant outlet of the indoor evaporator 18 . The external three-way joint portion 151 is a three-way joint having three inlets and outlets communicating with each other.
 第2内部三方継手部15bの他方の流出口は、流路ボックス71の内部に形成された冷媒通路を介して、冷却用膨張弁13cの入口に連通している。 The other outlet of the second internal three-way joint 15b communicates with the inlet of the cooling expansion valve 13c via a refrigerant passage formed inside the flow path box 71.
 冷却用膨張弁13cは、後述するバッテリ冷却モード時等に、冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷却用減圧部である。冷却用膨張弁13cの基本的構成は、冷房用膨張弁13bと同様である。従って、冷却用膨張弁13cは、全閉機能を有している。 The cooling expansion valve 13c is a cooling decompression unit that reduces the pressure of the refrigerant and adjusts the flow rate of the refrigerant flowing out downstream during a battery cooling mode or the like, which will be described later. The basic configuration of the cooling expansion valve 13c is similar to that of the cooling expansion valve 13b. Therefore, the cooling expansion valve 13c has a fully closed function.
 冷房用膨張弁13bおよび冷却用膨張弁13cは、いずれも電気式機器に含まれる。また、冷房用膨張弁13bおよび冷却用膨張弁13cは、冷媒通路を閉塞させることによって、冷媒回路を切り替えることができる。従って、冷房用膨張弁13bおよび冷却用膨張弁13cは、冷媒回路切替部としての機能を兼ね備える。 Both the cooling expansion valve 13b and the cooling expansion valve 13c are included in the electrical device. Further, the cooling expansion valve 13b and the cooling expansion valve 13c can switch the refrigerant circuit by closing the refrigerant passage. Therefore, the cooling expansion valve 13b and the cooling expansion valve 13c also function as a refrigerant circuit switching unit.
 冷却用膨張弁13cの出口は、流路ボックス71の内部に形成された冷媒通路を介して、流路ボックス71の冷却側冷媒出口71eに連通している。 The outlet of the cooling expansion valve 13c communicates with the cooling-side refrigerant outlet 71e of the flow path box 71 through a refrigerant passage formed inside the flow path box 71.
 冷却側冷媒出口71eには、チラー19の冷媒入口側が接続されている。チラー19は、冷却用膨張弁13cにて減圧された低圧側冷媒と低温側熱媒体回路50を循環する低温側熱媒体とを熱交換させる低温側水冷媒熱交換器である。チラー19では、冷媒通路を流通する低圧側冷媒を蒸発させて吸熱作用を発揮させることによって、熱媒体通路を流通する低温側熱媒体を冷却する。 The refrigerant inlet side of the chiller 19 is connected to the cooling-side refrigerant outlet 71e. The chiller 19 is a low-temperature side water-refrigerant heat exchanger that exchanges heat between the low-pressure side refrigerant decompressed by the cooling expansion valve 13 c and the low-temperature side heat medium circulating in the low-temperature side heat medium circuit 50 . The chiller 19 cools the low-temperature side heat medium flowing through the heat medium passage by evaporating the low-pressure side refrigerant flowing through the refrigerant passage and exerting an endothermic action.
 チラー19の冷媒通路の出口には、外部三方継手部151の他方の流入口側が接続されている。外部三方継手部151の流出口には、流路ボックス71の低圧側冷媒入口71f側が接続されている。低圧側冷媒入口71fには、流路ボックス71の内部に形成された冷媒通路を介して、第3内部三方継手部15cの一方の流入口が接続されている。 The other inlet side of the external three-way joint 151 is connected to the outlet of the refrigerant passage of the chiller 19 . The outflow port of the external three-way joint portion 151 is connected to the low-pressure side refrigerant inlet 71f side of the flow path box 71 . One inlet of the third internal three-way joint 15c is connected to the low-pressure side refrigerant inlet 71f via a refrigerant passage formed inside the flow path box 71 .
 また、前述の第1内部三方継手部15aの他方の流出口には、流路ボックス71の内部に形成された冷媒通路を介して、第3内部三方継手部15cの他方の流入口が接続されている。第1内部三方継手部15aの他方の流出口から第3内部三方継手部15cの他方の流入口へ至る冷媒通路には、開閉弁17が配置されている。 In addition, the other outlet port of the first internal three-way joint portion 15a is connected to the other inlet port of the third internal three-way joint portion 15c via a refrigerant passage formed inside the flow path box 71. ing. An on-off valve 17 is arranged in the refrigerant passage from the other outflow port of the first internal three-way joint portion 15a to the other inflow port of the third internal three-way joint portion 15c.
 開閉弁17は、第1内部三方継手部15aから第3内部三方継手部15cへ至る冷媒通路を開閉する電磁弁である。開閉弁17は、制御装置60の第2制御部62から出力される制御電圧によって、開閉作動が制御される。従って、開閉弁17は、電気式機器に含まれる。また、開閉弁17は、冷媒通路を開閉することによって、冷媒回路を切り替えることができる。従って、開閉弁17は、冷媒回路切替部である。 The on-off valve 17 is an electromagnetic valve that opens and closes the refrigerant passage from the first internal three-way joint portion 15a to the third internal three-way joint portion 15c. The opening/closing operation of the opening/closing valve 17 is controlled by a control voltage output from the second control section 62 of the control device 60 . Therefore, the on-off valve 17 is included in the electrical equipment. In addition, the on-off valve 17 can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the on-off valve 17 is a refrigerant circuit switching unit.
 第3内部三方継手部15cの流出口は、流路ボックス71の内部に形成された冷媒通路を介して、流路ボックス71の低圧側冷媒出口71gに連通している。また、流路ボックス71の低圧側冷媒入口71fから第3内部三方継手部15cを介して低圧側冷媒出口71gへ至る冷媒通路は、冷房モード時にサイクルの低圧側冷媒を流通させる低圧側冷媒通路70bである。 The outflow port of the third internal three-way joint portion 15 c communicates with the low-pressure side refrigerant outlet 71 g of the flow path box 71 via a refrigerant passage formed inside the flow path box 71 . In addition, the refrigerant passage from the low-pressure side refrigerant inlet 71f of the flow path box 71 to the low-pressure side refrigerant outlet 71g via the third internal three-way joint portion 15c is a low-pressure side refrigerant passage 70b through which the low-pressure side refrigerant of the cycle flows during the cooling mode. is.
 低圧側冷媒出口71gには、アキュムレータ20の入口側が接続されている。アキュムレータ20は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える低圧側の気液分離器である。アキュムレータ20の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The inlet side of the accumulator 20 is connected to the low pressure side refrigerant outlet 71g. The accumulator 20 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant that has flowed into the accumulator 20 and stores excess liquid-phase refrigerant in the cycle. The gas-phase refrigerant outlet of the accumulator 20 is connected to the suction port side of the compressor 11 .
 次に、高温側熱媒体回路40について説明する。高温側熱媒体回路40は、高温側熱媒体を循環させる回路である。高温側熱媒体回路40では、高温側熱媒体として、エチレングリコール水溶液を採用している。高温側熱媒体回路40には、水冷媒熱交換器12の熱媒体通路、高温側ポンプ41、ヒータコア42等が配置されている。 Next, the high temperature side heat medium circuit 40 will be described. The high temperature side heat medium circuit 40 is a circuit that circulates the high temperature side heat medium. The high temperature side heat medium circuit 40 employs an ethylene glycol aqueous solution as the high temperature side heat medium. A heat medium passage of the water-refrigerant heat exchanger 12 , a high temperature side pump 41 , a heater core 42 and the like are arranged in the high temperature side heat medium circuit 40 .
 高温側ポンプ41は、高温側熱媒体を吸入して圧送する高温側の熱媒体圧送部である。高温側ポンプ41は、高温側熱媒体を水冷媒熱交換器12の熱媒体通路の入口側へ圧送する。高温側ポンプ41は、制御装置60の第1制御部61から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動水ポンプである。 The high-temperature-side pump 41 is a high-temperature-side heat medium pumping unit that sucks and pumps the high-temperature-side heat medium. The high temperature side pump 41 pressure-feeds the high temperature side heat medium to the inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 . The high temperature side pump 41 is an electric water pump whose number of revolutions (that is, pumping capacity) is controlled by a control voltage output from the first control section 61 of the control device 60 .
 水冷媒熱交換器12の熱媒体通路の出口には、ヒータコア42の熱媒体入口側が接続されている。ヒータコア42は、室内空調ユニット30の空調ケース31内に配置されている。ヒータコア42は、水冷媒熱交換器12にて加熱された高温側熱媒体と車室内へ送風される送風空気とを熱交換させる加熱用熱交換部である。ヒータコア42では、高温側熱媒体の有する熱を送風空気に放熱させて、送風空気を加熱する。ヒータコア42の熱媒体出口には、高温側ポンプ41の吸入口側が接続されている。 The heat medium inlet side of the heater core 42 is connected to the outlet of the heat medium passage of the water-refrigerant heat exchanger 12 . The heater core 42 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30 . The heater core 42 is a heating heat exchange portion that exchanges heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the air that is blown into the vehicle interior. The heater core 42 radiates the heat of the high-temperature side heat medium to the blown air to heat the blown air. A heat medium outlet of the heater core 42 is connected to a suction port side of the high temperature side pump 41 .
 従って、本実施形態では、水冷媒熱交換器12および高温側熱媒体回路40の各構成機器によって、圧縮機11から吐出された高圧冷媒を熱源として、送風空気を加熱する加熱部が形成されている。 Therefore, in the present embodiment, the components of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 form a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source. there is
 次に、低温側熱媒体回路50について説明する。低温側熱媒体回路50は、低温側熱媒体を循環させる回路である。低温側熱媒体回路50では、低温側熱媒体として、高温側熱媒体と同種の流体を採用している。低温側熱媒体回路50には、チラー19の水通路、低温側ポンプ51、バッテリ80の冷却水通路80a等が接続されている。 Next, the low temperature side heat medium circuit 50 will be described. The low temperature side heat medium circuit 50 is a circuit that circulates the low temperature side heat medium. In the low temperature side heat medium circuit 50, the same kind of fluid as the high temperature side heat medium is used as the low temperature side heat medium. A water passage of the chiller 19 , a low temperature side pump 51 , a cooling water passage 80 a of the battery 80 , and the like are connected to the low temperature side heat medium circuit 50 .
 低温側ポンプ51は、低温側熱媒体を吸入して圧送する低温側の熱媒体圧送部である。低温側ポンプ51は、低温側熱媒体をチラー19の熱媒体通路の入口側へ圧送する。低温側ポンプ51の基本的構成は、高温側ポンプ41と同様である。 The low-temperature-side pump 51 is a low-temperature-side heat medium pumping unit that sucks and pumps the low-temperature-side heat medium. The low temperature side pump 51 pressure-feeds the low temperature side heat medium to the inlet side of the heat medium passage of the chiller 19 . The basic configuration of the low temperature side pump 51 is similar to that of the high temperature side pump 41 .
 チラー19の熱媒体通路の出口には、バッテリ80の冷却水通路80aの入口側が接続されている。バッテリ80の冷却水通路80aは、積層配置された複数の電池セルを収容するバッテリ専用ケースの内部に形成されている。冷却水通路80aの通路構成は、バッテリ専用ケースの内部で複数の通路を並列的に接続した通路構成となっている。これにより、冷却水通路80aでは、全ての電池セルを均等に冷却できるようにしている。冷却水通路80aの出口には、低温側ポンプ51の吸入口側が接続されている。 The inlet side of the cooling water passage 80 a of the battery 80 is connected to the outlet of the heat medium passage of the chiller 19 . A cooling water passage 80a of the battery 80 is formed inside a dedicated battery case that accommodates a plurality of stacked battery cells. The passage configuration of the cooling water passage 80a is a passage configuration in which a plurality of passages are connected in parallel inside the battery case. As a result, all the battery cells can be evenly cooled in the cooling water passage 80a. The inlet side of the low temperature side pump 51 is connected to the outlet of the cooling water passage 80a.
 次に、図2を用いて、室内空調ユニット30について説明する。室内空調ユニット30は、車室内の空調のために適切な温度に調整された送風空気を、車室内の適切な箇所へ吹き出すために、複数の構成機器を一体化したユニットである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be described using FIG. The indoor air-conditioning unit 30 is a unit that integrates a plurality of components for blowing air adjusted to an appropriate temperature for air-conditioning the vehicle interior to appropriate locations within the vehicle interior. The indoor air conditioning unit 30 is arranged inside the dashboard (instrument panel) at the forefront of the vehicle interior.
 室内空調ユニット30は、送風空気の空気通路を形成する空調ケース31内に、室内送風機32、室内蒸発器18、ヒータコア42等を収容することによって形成されている。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The indoor air conditioning unit 30 is formed by housing an indoor blower 32, an indoor evaporator 18, a heater core 42, etc. in an air conditioning case 31 that forms an air passage for blown air. The air-conditioning case 31 is molded from a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース31の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(すなわち、車室内空気)と外気(すなわち、車室外空気)とを切替導入する。内外気切替装置33は、制御装置60の第1制御部61から出力される制御信号によって、その作動が制御される。 An inside/outside air switching device 33 is arranged on the most upstream side of the air-conditioning case 31 in the blown air flow. The inside/outside air switching device 33 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case 31 . The operation of the inside/outside air switching device 33 is controlled by a control signal output from the first control section 61 of the control device 60 .
 内外気切替装置33の送風空気流れ下流側には、室内送風機32が配置されている。室内送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。室内送風機32は、制御装置60の第1制御部61から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 The indoor blower 32 is arranged on the downstream side of the inside/outside air switching device 33 in the blown air flow. The indoor air blower 32 blows the air sucked through the inside/outside air switching device 33 into the vehicle interior. The indoor fan 32 has its rotation speed (that is, air blowing capacity) controlled by the control voltage output from the first control unit 61 of the control device 60 .
 室内送風機32の送風空気流れ下流側には、室内蒸発器18およびヒータコア42が配置されている。室内蒸発器18は、ヒータコア42よりも、送風空気流れ上流側に配置されている。空調ケース31内には、室内蒸発器18通過後の送風空気を、ヒータコア42を迂回させて流す冷風バイパス通路35が形成されている。 An indoor evaporator 18 and a heater core 42 are arranged on the downstream side of the indoor blower 32 in the blown air flow. The indoor evaporator 18 is arranged upstream of the heater core 42 in the air flow. A cold air bypass passage 35 is formed in the air-conditioning case 31 so that the air that has passed through the indoor evaporator 18 flows around the heater core 42 .
 空調ケース31内の室内蒸発器18の送風空気流れ下流側であって、かつ、ヒータコア42および冷風バイパス通路35の送風空気流れ上流側には、エアミックスドア34が配置されている。 An air mix door 34 is arranged downstream of the indoor evaporator 18 in the air conditioning case 31 and upstream of the heater core 42 and the cold air bypass passage 35 .
 エアミックスドア34は、室内蒸発器18通過後の送風空気のうち、ヒータコア42側を通過させる送風空気の風量と冷風バイパス通路35を通過させる送風空気の風量との風量割合を調整する。エアミックスドア34の駆動用のアクチュエータは、制御装置60の第1制御部61から出力される制御信号によって、その作動が制御される。 The air mix door 34 adjusts the air volume ratio between the volume of air that passes through the heater core 42 side and the volume of air that passes through the cold air bypass passage 35 among the air that has passed through the indoor evaporator 18 . The operation of the actuator for driving the air mix door 34 is controlled by a control signal output from the first control section 61 of the control device 60 .
 ヒータコア42および冷風バイパス通路35の送風空気流れ下流側には、混合空間36が配置されている。混合空間36は、ヒータコア42にて加熱された送風空気と冷風バイパス通路35を通過して加熱されていない送風空気とを混合させる空間である。 A mixing space 36 is arranged on the downstream side of the heater core 42 and the cold air bypass passage 35 in the blown air flow. The mixing space 36 is a space for mixing the blast air heated by the heater core 42 and the blast air that has passed through the cold air bypass passage 35 and is not heated.
 従って、室内空調ユニット30では、エアミックスドア34の開度調整によって、混合空間36にて混合されて車室内へ吹き出される送風空気(すなわち、空調風)の温度を調整することができる。 Therefore, in the indoor air conditioning unit 30, the temperature of the blown air (that is, conditioned air) that is mixed in the mixing space 36 and blown into the vehicle interior can be adjusted by adjusting the opening degree of the air mix door 34.
 空調ケース31の送風空気流れ最下流部には、空調風を車室内の様々な箇所へ向けて吹き出すための図示しない複数の開口穴が形成されている。複数の開口穴には、それぞれの開口穴を開閉する図示しない吹出モードドアが配置されている。吹出モードドアの駆動用のアクチュエータは、制御装置60の第1制御部61から出力される制御信号によって、その作動が制御される。 A plurality of opening holes (not shown) are formed in the most downstream part of the air-conditioning case 31 to blow the air-conditioning air toward various locations in the vehicle compartment. Blow-out mode doors (not shown) for opening and closing the respective openings are arranged in the plurality of openings. The operation of the actuator for driving the blowout mode door is controlled by a control signal output from the first control section 61 of the control device 60 .
 従って、室内空調ユニット30では、吹出モードドアが開閉する開口穴を切り替えることによって、車室内の適切な箇所へ適切な温度に調整された空調風を吹き出すことができる。 Therefore, in the indoor air conditioning unit 30, by switching the opening hole opened and closed by the blow-out mode door, it is possible to blow out conditioned air adjusted to an appropriate temperature to an appropriate location in the vehicle interior.
 次に、図3を用いて、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータ、および周辺回路を有している。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。 Next, the outline of the electric control unit of this embodiment will be described using FIG. The control device 60 has a well-known microcomputer including CPU, ROM, RAM, etc., and peripheral circuits. The control device 60 performs various calculations and processes based on control programs stored in the ROM, and controls the operations of various controlled devices connected to the output side.
 制御装置60は、第1制御部61と第2制御部62とに分割されている。第1制御部61は、ヒートポンプサイクル10の圧縮機11、室内空調ユニット30の室内送風機32、内外気切替装置33、エアミックスドア34の駆動用のアクチュエータ、吹出モードドアの駆動用のアクチュエータ、高温側ポンプ41、低温側ポンプ51等の作動を制御する。 The control device 60 is divided into a first control section 61 and a second control section 62 . The first control unit 61 controls the compressor 11 of the heat pump cycle 10, the indoor blower 32 of the indoor air conditioning unit 30, the inside/outside air switching device 33, the actuator for driving the air mix door 34, the actuator for driving the blowout mode door, the high temperature It controls the operation of the side pump 41, the low temperature side pump 51, and the like.
 第2制御部62は、ヒートポンプサイクル10の暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、および開閉弁17の作動を制御する。第2制御部62は、いわゆる硬質プリント基板で形成された電気基板部である。第2制御部62は、単一の部材で矩形の平板状に形成されている。 The second control unit 62 controls the operation of the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17 of the heat pump cycle 10. The second control section 62 is an electric board section formed of a so-called rigid printed circuit board. The second control unit 62 is formed in a rectangular flat plate shape by a single member.
 従って、第2制御部62は、流路ボックス71に取り付けられた暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、および開閉弁17といった複数の電気式機器に電気的に接続される共通の電気基板部である。また、第2制御部62は、ヒートポンプモジュール70として、他のヒートポンプサイクル10の構成機器と一体化されている。 Therefore, the second control unit 62 is electrically connected to a plurality of electric devices such as the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17 attached to the flow path box 71. It is a common electrical board part that is Also, the second control unit 62 is integrated with other components of the heat pump cycle 10 as a heat pump module 70 .
 第1制御部61の入力側には、内気温センサ63a、外気温センサ63b、日射センサ63c、第1冷媒温度センサ64a、第2冷媒温度センサ64b、第1冷媒圧力温度センサ65a~第3冷媒圧力温度センサ65c、高温側熱媒体温度センサ66a、低温側熱媒体温度センサ66b、バッテリ温度センサ67、空調風温度センサ68等の制御用のセンサ群が接続されている。 The input side of the first control unit 61 includes an inside air temperature sensor 63a, an outside air temperature sensor 63b, a solar radiation sensor 63c, a first refrigerant temperature sensor 64a, a second refrigerant temperature sensor 64b, a first refrigerant pressure temperature sensor 65a to a third refrigerant temperature sensor 65a. A group of control sensors such as a pressure temperature sensor 65c, a high temperature side heat medium temperature sensor 66a, a low temperature side heat medium temperature sensor 66b, a battery temperature sensor 67, and an air conditioning air temperature sensor 68 are connected.
 第1制御部61には、これらのセンサの検出信号が入力される。これらのセンサは、ヒートポンプサイクル10を構成する構成機器に含まれる。さらに、いずれも電気的な信号を出力する。従って、上述したセンサは、いずれも電気式機器に含まれる。 Detection signals from these sensors are input to the first control unit 61 . These sensors are included in the components that make up the heat pump cycle 10 . Furthermore, both output electrical signals. Therefore, all of the sensors described above are included in electrical equipment.
 内気温センサ63aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ63bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63cは、車室内へ照射される日射量Asを検出する日射量検出部である。 The inside air temperature sensor 63a is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 63b is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam. The solar radiation sensor 63c is a solar radiation amount detection unit that detects the amount of solar radiation As irradiated into the vehicle interior.
 第1冷媒温度センサ64aは、圧縮機11から吐出された吐出冷媒の温度Tdを検出する吐出冷媒温度検出部である。第2冷媒温度センサ64bは、室外熱交換器14から流出した冷媒の室外側温度Toを検出する室外器側温度検出部である。 The first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection section that detects the temperature Td of the refrigerant discharged from the compressor 11. The second refrigerant temperature sensor 64b is an outdoor unit side temperature detection section that detects the outdoor temperature To of the refrigerant that has flowed out of the outdoor heat exchanger 14 .
 第1冷媒圧力温度センサ65aは、水冷媒熱交換器12の冷媒通路から流出した冷媒の高圧側冷媒圧力P1および高圧側冷媒温度T1を検出する高圧側圧力温度検出部である。第2冷媒圧力温度センサ65bは、室内蒸発器18から流出した冷媒の室内器側冷媒圧力P2および室内器側冷媒温度T2を検出する室内器側圧力温度検出部である。第3冷媒圧力温度センサ65cは、チラー19から流出した冷媒のチラー側冷媒圧力P3およびチラー側冷媒温度T3を検出するチラー側圧力温度検出部である。 The first refrigerant pressure and temperature sensor 65a is a high-pressure side pressure temperature detector that detects the high-pressure side refrigerant pressure P1 and the high-pressure side refrigerant temperature T1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. The second refrigerant pressure and temperature sensor 65b is an indoor pressure and temperature detector that detects the indoor refrigerant pressure P2 and the indoor refrigerant temperature T2 of the refrigerant that has flowed out of the indoor evaporator 18 . The third refrigerant pressure and temperature sensor 65c is a chiller side pressure and temperature detector that detects the chiller side refrigerant pressure P3 and the chiller side refrigerant temperature T3 of the refrigerant flowing out of the chiller 19 .
 第1冷媒圧力温度センサ65a~第3冷媒圧力温度センサ65cでは、圧力検出部と温度検出部が一体化された検出部を採用しているが、もちろん、それぞれ別体で構成された圧力検出部と温度検出部とを採用してもよい。 The first refrigerant pressure and temperature sensor 65a to the third refrigerant pressure and temperature sensor 65a to the third refrigerant pressure and temperature sensor 65c employ a detection unit in which a pressure detection unit and a temperature detection unit are integrated. and a temperature detection unit may be employed.
 高温側熱媒体温度センサ66aは、ヒータコア42へ流入する高温側熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。低温側熱媒体温度センサ66bは、バッテリ80の冷却水通路80aへ流入する低温側熱媒体の温度である低温側熱媒体温度TWLを検出する低温側熱媒体温度検出部である。 The high-temperature-side heat medium temperature sensor 66a is a high-temperature-side heat-medium temperature detection unit that detects a high-temperature-side heat-medium temperature TWH, which is the temperature of the high-temperature-side heat medium flowing into the heater core . The low temperature side heat medium temperature sensor 66b is a low temperature side heat medium temperature detection unit that detects a low temperature side heat medium temperature TWL, which is the temperature of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80 .
 バッテリ温度センサ67は、バッテリ温度TB(すなわち、バッテリ80の温度)を検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ67は、複数の温度センサを有し、バッテリ80の複数の箇所の温度を検出している。このため、制御装置60では、バッテリ80を形成する各電池セルの温度差を検出することができる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 67 is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80). The battery temperature sensor 67 of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80 . Therefore, the control device 60 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
 空調風温度センサ68は、混合空間36から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The air-conditioning air temperature sensor 68 is an air-conditioning air temperature detection unit that detects the air temperature TAV blown from the mixing space 36 into the vehicle interior.
 第1制御部61の入力側には、空調用の操作パネル69が接続されている。空調用の操作パネル69は、車室内前部の計器盤付近に配置されている。制御装置60には、空調用の操作パネル69に設けられた各種操作スイッチからの操作信号が入力される。空調用の操作パネル69に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。 An air conditioning operation panel 69 is connected to the input side of the first control unit 61 . An air-conditioning operation panel 69 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches provided on an operation panel 69 for air conditioning are input to the control device 60 . Examples of various operation switches provided on the operation panel 69 for air conditioning include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
 オートスイッチは、ユーザが車室内空調の自動制御運転を設定あるいは解除する操作部である。エアコンスイッチは、ユーザが室内蒸発器18にて送風空気の冷却を行うことを要求する操作部である。風量設定スイッチは、ユーザが室内送風機32の風量をマニュアル設定する操作部である。温度設定スイッチは、ユーザが車室内の設定温度Tsetを設定する操作部である。 The auto switch is an operation unit that allows the user to set or cancel the automatic control operation of the cabin air conditioning. The air conditioner switch is an operation unit for requesting that the indoor evaporator 18 cool the blown air. The air volume setting switch is an operation unit for the user to manually set the air volume of the indoor fan 32 . The temperature setting switch is an operation unit for the user to set the set temperature Tset inside the vehicle compartment.
 なお、本実施形態の制御装置60は、その出力側に接続された各種制御対象機器を制御する機器制御部が一体に構成されたものである。つまり、制御装置60のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する機器制御部を形成している。 It should be noted that the control device 60 of the present embodiment is integrally configured with a device control section that controls various controlled devices connected to the output side thereof. That is, the configuration (hardware and software) for controlling the operation of each controlled device in the control device 60 forms a device control section for controlling the operation of each controlled device.
 例えば、制御装置60の第1制御部61うち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部61aを形成している。 For example, in the first control section 61 of the control device 60, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) forms a compressor control section 61a.
 例えば、制御装置60の第2制御部62うち、暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13cの作動を制御する構成は、それぞれ暖房用膨張弁制御部62a、冷房用膨張弁制御部62b、冷却用膨張弁制御部62cを形成している。第2制御部62のうち、開閉弁17の作動を制御する構成は、開閉弁制御部62dを形成している。 For example, in the second control unit 62 of the control device 60, the configurations for controlling the operations of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are the heating expansion valve control unit 62a and the cooling expansion valve control unit 62a, respectively. A valve control section 62b and a cooling expansion valve control section 62c are formed. In the second control section 62, the configuration for controlling the operation of the on-off valve 17 forms an on-off valve control section 62d.
 また、第1制御部61と第2制御部62は、ハーネス601を介して、CAN(Controller Area Network)通信プロトコル等によって互いに通信可能に接続されている。従って、一方の制御部に入力された検出信号あるいは操作信号に基づいて、他方の制御部の出力側に接続された制御対象機器の作動を制御することができる。 In addition, the first control unit 61 and the second control unit 62 are connected via a harness 601 so as to be able to communicate with each other by a CAN (Controller Area Network) communication protocol or the like. Therefore, based on the detection signal or the operation signal input to one control section, the operation of the controlled device connected to the output side of the other control section can be controlled.
 また、図3では、図示の明確化のため、例えば、暖房用膨張弁制御部62aを第2制御部62内に記載しているが、暖房用膨張弁制御部62aの一部または全部が第1制御部61側に形成されていてもよい。つまり、第2制御部62には、暖房用膨張弁制御部62aの一部を形成する配線部のみが配置されていてもよい。このことは、他の機器制御部ついても同様である。 In addition, in FIG. 3, for the sake of clarity, the heating expansion valve control section 62a is shown in the second control section 62, for example, but part or all of the heating expansion valve control section 62a It may be formed on the 1 control unit 61 side. In other words, only the wiring portion forming part of the heating expansion valve control portion 62a may be arranged in the second control portion 62 . This is the same for other device control units.
 また、図3では、第1制御部61を1つの制御装置として示しているが、第1制御部61を複数の制御装置で形成してもよい。例えば、圧縮機制御部61aを別の制御装置として形成してもよい。 Also, although FIG. 3 shows the first control unit 61 as one control device, the first control unit 61 may be formed by a plurality of control devices. For example, the compressor control section 61a may be formed as another control device.
 次に、図4~図7を用いて、ヒートポンプモジュール70の製造方法、並びに、詳細構成について説明する。上述の如く、ヒートポンプモジュール70は、ヒートポンプサイクル10を構成する電気式機器である暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、開閉弁17、並びに、制御装置60の第2制御部62を一体化させた構成部品である。 Next, the manufacturing method and detailed configuration of the heat pump module 70 will be described with reference to FIGS. 4 to 7. FIG. As described above, the heat pump module 70 includes the heating expansion valve 13 a , the cooling expansion valve 13 b , the cooling expansion valve 13 c , the opening/closing valve 17 , and the second valve of the control device 60 . It is a component that integrates the control unit 62 .
 さらに、ヒートポンプモジュール70は、流路ボックス71、カバー部材72を備えている。 Furthermore, the heat pump module 70 has a channel box 71 and a cover member 72 .
 流路ボックス71は、金属(本実施形態では、アルミニウム合金)で形成されている。流路ボックス71は、略直方体形状に形成されている。流路ボックス71の1つの面(本実施形態では、上面)は、電気式機器が取り付けられる取付面712となっている。取付面712には、電気式機器およびコネクタ620を取り付けるための取付穴が形成されている。コネクタ620は、ハーネス601の一方の端部が接続される接続部である。 The channel box 71 is made of metal (aluminum alloy in this embodiment). The channel box 71 is formed in a substantially rectangular parallelepiped shape. One surface (the upper surface in this embodiment) of the channel box 71 is a mounting surface 712 to which electrical equipment is mounted. The mounting surface 712 is formed with mounting holes for mounting the electrical device and the connector 620 . The connector 620 is a connecting portion to which one end of the harness 601 is connected.
 電気式機器が取り付けられる取付穴は、流路ボックス71内に形成された各種冷媒通路に連通している。コネクタ620が取り付けられる取付穴は、取付面712のうち流路ボックス71から突出した板状部の表裏を貫通するように形成されている。また、流路ボックス71の複数の面(本実施形態では、2つの側面)には、上述した高圧側冷媒入口71a等の複数の冷媒出入口が形成されている。 The mounting holes to which the electric devices are mounted communicate with various refrigerant passages formed inside the flow path box 71 . An attachment hole to which the connector 620 is attached is formed so as to penetrate the front and back of the plate-shaped portion of the attachment surface 712 that protrudes from the flow path box 71 . In addition, a plurality of inlets/outlets such as the above-described high-pressure side refrigerant inlet 71a are formed on a plurality of surfaces (two side surfaces in this embodiment) of the flow path box 71 .
 ヒートポンプモジュール70を製造する際には、まず、図4に示すように、流路ボックス71の取付面712に形成された取付穴に、電気式機器およびコネクタ620をネジ締結や圧入等の手段で取り付ける(機器取付工程)。電気式機器と取付穴との隙間には、図示しないシール部材が配置されている。これにより、隙間を介して冷媒が漏れてしまうことが抑制されている。 When manufacturing the heat pump module 70, first, as shown in FIG. Install (equipment installation process). A sealing member (not shown) is arranged in the gap between the electrical device and the mounting hole. This prevents the refrigerant from leaking through the gap.
 流路ボックス71に取り付けられる電気式機器およびコネクタ620は、それぞれ第2制御部62に電気的に接続される接続端子部であるターミナル131a、131b、131c、171を有している。コネクタ620は、第2制御部62に電気的に接続される接続端子部であるターミナル621を有している。 The electrical devices and connectors 620 attached to the channel box 71 have terminals 131a, 131b, 131c, and 171, which are connection terminal sections electrically connected to the second control section 62, respectively. The connector 620 has a terminal 621 which is a connection terminal section electrically connected to the second control section 62 .
 電気式機器およびコネクタ620が流路ボックス71に取り付けられた状態では、図4、図5に示すように、暖房用膨張弁13aのターミナル131a、冷房用膨張弁13bのターミナル131b、冷却用膨張弁13cのターミナル131c、開閉弁17のターミナル171、およびコネクタ620のターミナル621は、いずれも取付面に垂直な方向(本実施形態では上下方向)に突出している。 4 and 5, in a state where the electric device and the connector 620 are attached to the flow path box 71, the terminal 131a of the heating expansion valve 13a, the terminal 131b of the cooling expansion valve 13b, the cooling expansion valve The terminal 131c of 13c, the terminal 171 of the on-off valve 17, and the terminal 621 of the connector 620 all protrude in a direction perpendicular to the mounting surface (vertical direction in this embodiment).
 機器取付工程の完了後、図6に示すように、角柱状のスペーサ622を介して、第2制御部62を流路ボックス71の取付面712にネジ止め等の手段で取り付ける(基板取付工程)。スペーサ622は、上下方向から見たときに第2制御部62の4つの角部側に配置される。第2制御部62は、板面が取付面712と並行となるように取り付けられる。 After the device mounting process is completed, as shown in FIG. 6, the second control unit 62 is mounted on the mounting surface 712 of the flow path box 71 via a prismatic spacer 622 by screwing or other means (substrate mounting process). . The spacers 622 are arranged on the four corner sides of the second control section 62 when viewed in the vertical direction. The second control unit 62 is attached such that its plate surface is parallel to the attachment surface 712 .
 スペーサ622は金属(本実施形態では、ステンレス合金)で形成されている。スペーサ622の少なくとも1つは、第2制御部62のグランド線に電気的に接続されている。このため、流路ボックス71は、スペーサ622を介して、第2制御部62のグランド線に電気的に接続されている。 The spacer 622 is made of metal (stainless alloy in this embodiment). At least one spacer 622 is electrically connected to the ground line of the second control section 62 . Therefore, the channel box 71 is electrically connected to the ground wire of the second control section 62 via the spacer 622 .
 スペーサ622の高さ寸法(すなわち、軸方向長さ)は、電気式機器のターミナル131a、131b、131c、171、およびコネクタ620のターミナル621が、それぞれ第2制御部62に形成された所定の接続部に直接接続されるように設定されている。 The height dimension (that is, the axial length) of the spacer 622 is such that the terminals 131 a , 131 b , 131 c , 171 of the electrical equipment and the terminal 621 of the connector 620 are connected to the predetermined connection formed in the second control section 62 . configured to be directly connected to the
 換言すると、それぞれの電気式機器のターミナル131a、131b、131c、171、およびコネクタ620のターミナル621は、複数の電気式機器およびコネクタ620が流路ボックス71に取り付けられた際に、同一方向に突出しており、第2制御部62に形成された電気配線の接続部に直接接続可能に配置されている。 In other words, the terminals 131a, 131b, 131c, 171 of each electrical device and the terminal 621 of the connector 620 protrude in the same direction when a plurality of electrical devices and connectors 620 are attached to the channel box 71. , and is arranged so as to be directly connectable to the connection portion of the electric wiring formed in the second control portion 62 .
 基板取付工程の完了後、図7に示すように、流路ボックス71の取付面712の外縁部に、カバー部材72を接着や溶着等の手段で取り付ける(カバー取付工程)。これにより、ヒートポンプモジュール70が製造される。カバー部材72は、金属(本実施形態では、アルミニウム合金)で形成されている。 After the substrate mounting process is completed, as shown in FIG. 7, the cover member 72 is mounted on the outer edge of the mounting surface 712 of the channel box 71 by means of adhesion, welding, or the like (cover mounting process). Thus, the heat pump module 70 is manufactured. The cover member 72 is made of metal (aluminum alloy in this embodiment).
 カバー部材72は、1つの面が開口した有底箱状に形成されている。カバー部材72は、流路ボックス71とともに、複数の電気式機器および第2制御部62の収容空間を形成している。カバー部材72と流路ボックス71との隙間、およびコネクタ620と取付穴との隙間には、図示しないシール部材が配置されている。これにより、隙間を介して水分や異物が収容空間内へ侵入してしまうことが抑制されている。 The cover member 72 is formed in the shape of a bottomed box with one side open. The cover member 72 forms a housing space for the plurality of electric devices and the second control section 62 together with the channel box 71 . A sealing member (not shown) is arranged in the gap between the cover member 72 and the flow path box 71 and in the gap between the connector 620 and the mounting hole. This prevents moisture and foreign matter from entering the accommodation space through the gap.
 次に、図8、図9を用いて、ヒートポンプモジュール70の内部に形成される冷媒通路について説明する。 Next, refrigerant passages formed inside the heat pump module 70 will be described with reference to FIGS. 8 and 9. FIG.
 流路ボックス71の内部に形成された冷媒通路のうち高圧側冷媒通路70aは、図8に示すように、取付面712よりも底面713の近くに形成された部位が多い。底面713は、流路ボックス71の取付面712の反対側の面である。一方、低圧側冷媒通路70bは、図9に示すように、底面713よりも取付面712の近くに形成された部位が多い。 Among the refrigerant passages formed inside the flow path box 71, the high-pressure side refrigerant passage 70a is formed closer to the bottom surface 713 than the mounting surface 712, as shown in FIG. The bottom surface 713 is the surface opposite to the mounting surface 712 of the channel box 71 . On the other hand, as shown in FIG. 9, the low-pressure side refrigerant passage 70b has many parts formed closer to the mounting surface 712 than to the bottom surface 713 .
 つまり、低圧側冷媒通路70bは、高圧側冷媒通路70aよりも取付面712の近くに配置される部位が多い。すなわち、低圧側冷媒通路70bは、高圧側冷媒通路70aよりも第2制御部62の近くに配置される部位が多い。 In other words, the low-pressure side refrigerant passage 70b has more portions arranged closer to the mounting surface 712 than the high-pressure side refrigerant passage 70a. That is, the low-pressure side refrigerant passage 70b has more parts that are arranged closer to the second control section 62 than the high-pressure side refrigerant passage 70a.
 このため、高圧側冷媒通路70aおよび低圧側冷媒通路70bは、高圧側冷媒通路70aに高圧側冷媒が流通しても、第2制御部62が高圧側冷媒によって加熱されてしまうことを抑制可能に配置されている。さらに、高圧側冷媒通路70aおよび低圧側冷媒通路70bは、低圧側冷媒通路70bを流通する低圧側冷媒によって第2制御部62を冷却可能に配置されている。 Therefore, the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b can prevent the second control section 62 from being heated by the high-pressure side refrigerant even if the high-pressure side refrigerant flows through the high-pressure side refrigerant passage 70a. are placed. Further, the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b are arranged so that the second control section 62 can be cooled by the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 70b.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。前述の如く、車両用空調装置1は、車室内の空調、および車載機器であるバッテリ80の冷却を行う。車両用空調装置1では、車室内の空調、およびバッテリ80の冷却を行うために、ヒートポンプサイクル10の冷媒回路を切り替えて、各種運転モードを実行する。 Next, the operation of the vehicle air conditioner 1 of this embodiment having the above configuration will be described. As described above, the vehicle air conditioner 1 air-conditions the interior of the vehicle and cools the battery 80, which is an in-vehicle device. The vehicle air conditioner 1 performs various operation modes by switching the refrigerant circuit of the heat pump cycle 10 in order to air-condition the vehicle interior and cool the battery 80 .
 車両用空調装置1の運転モードとしては、車室内の空調を行うための空調用の運転モード、およびバッテリ80の冷却を行うための冷却用の運転モードがある。 The operation modes of the vehicle air conditioner 1 include an air conditioning operation mode for air conditioning the vehicle interior and a cooling operation mode for cooling the battery 80 .
 まず、空調用の運転モードについて説明する。空調用の運転モードには、冷房モード、除湿暖房モード、暖房モードがある。 First, the operation mode for air conditioning will be explained. Operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
 冷房モードは、車室内へ送風される送風空気を冷却して車室内へ吹き出すことによって、車室内の冷房を行う運転モードである。除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行う運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出すことによって、車室内の暖房を行う運転モードである。 The cooling mode is an operation mode that cools the interior of the vehicle by cooling the air that is blown into the interior of the vehicle and blowing it out into the interior of the vehicle. The dehumidification/heating mode is an operation mode in which dehumidification/heating of the vehicle interior is performed by reheating cooled and dehumidified blast air and blowing it into the vehicle interior. The heating mode is an operation mode in which the vehicle interior is heated by heating the blown air and blowing it into the vehicle interior.
 空調用の運転モードの切り替えは、制御装置60に記憶されている空調用の制御プログラムによって行われる。空調用の制御プログラムは、操作パネル69のオートスイッチによって、車室内空調の自動制御運転が設定された際に実行される。空調用の制御プログラムでは、各種センサ群によって検出された検出信号や操作パネル69の操作信号に基づいて、運転モードを切り替える。 The air-conditioning operation mode is switched by the air-conditioning control program stored in the control device 60 . The control program for air conditioning is executed when automatic control operation of the vehicle interior air conditioning is set by the auto switch on the operation panel 69 . The control program for air conditioning switches the operation mode based on detection signals detected by various sensor groups and operation signals from the operation panel 69 .
 空調用の制御プログラムでは、主に夏季のように比較的外気温が高い場合に冷房モードに切り替える。また、主に春季あるいは秋季に除湿暖房モードに切り替える。また、主に冬季のように比較的外気温が低い場合に、暖房モードに切り替える。以下に空調用の各運転モードの詳細作動を説明する。 In the control program for air conditioning, it switches to cooling mode mainly when the outside temperature is relatively high, such as in summer. Moreover, it switches to dehumidification heating mode mainly in spring or autumn. Also, when the outside temperature is relatively low, mainly in winter, the mode is switched to the heating mode. Detailed operation of each operation mode for air conditioning will be described below.
 (a)冷房モード
 冷房モードのヒートポンプサイクル10では、制御装置60が、暖房用膨張弁13aを全開とし、冷房用膨張弁13bを減圧作用を発揮する絞り状態とする。また、制御装置60は、開閉弁17を閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(a) Cooling Mode In the heat pump cycle 10 in the cooling mode, the control device 60 fully opens the heating expansion valve 13a and throttles the cooling expansion valve 13b to reduce the pressure. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
 ここで、冷却用膨張弁13cについては、冷却用の運転モードに応じて制御される。冷却用の運転モードが実行されていない場合は、制御装置60は、冷却用膨張弁13cを全閉状態とする。冷却用膨張弁13cの制御については、他の空調用の運転モードにおいても同様である。 Here, the cooling expansion valve 13c is controlled according to the cooling operation mode. When the cooling operation mode is not being executed, the control device 60 fully closes the cooling expansion valve 13c. The control of the cooling expansion valve 13c is the same in other operation modes for air conditioning.
 このため、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁13a、室外熱交換器14、絞り状態となっている冷房用膨張弁13b、室内蒸発器18、アキュムレータ20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling mode, the refrigerant discharged from the compressor 11 is in the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, and the throttle state. The cooling expansion valve 13b, the indoor evaporator 18, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
 また、冷房モードの高温側熱媒体回路40では、高温側ポンプ41から圧送された高温側熱媒体が、水冷媒熱交換器12の熱媒体通路、ヒータコア42、高温側ポンプ41の吸入口の順に循環する。 Further, in the high temperature side heat medium circuit 40 in the cooling mode, the high temperature side heat medium pressure-fed from the high temperature side pump 41 passes through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41 in this order. Circulate.
 従って、冷房モードのヒートポンプサイクル10では、水冷媒熱交換器12および室外熱交換器14を、冷媒を放熱させて凝縮させる凝縮器(換言すると、放熱器)として機能させ、室内蒸発器18を、冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the heat pump cycle 10 in the cooling mode, the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 14 function as condensers (in other words, radiators) that radiate and condense the refrigerant, and the indoor evaporator 18 A vapor compression refrigeration cycle is configured that functions as an evaporator that evaporates a refrigerant.
 その結果、冷房モードのヒートポンプサイクル10では、水冷媒熱交換器12にて、高温側熱媒体が加熱される。さらに、室内蒸発器18にて、送風空気が冷却される。 As a result, in the heat pump cycle 10 in the cooling mode, the water-refrigerant heat exchanger 12 heats the high temperature side heat medium. Further, the indoor evaporator 18 cools the blown air.
 また、冷房モードの高温側熱媒体回路40では、水冷媒熱交換器12にて加熱された高温側熱媒体が、ヒータコア42へ供給される。 Also, in the high temperature side heat medium circuit 40 in the cooling mode, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
 また、冷房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18にて冷却される。室内蒸発器18にて冷却された送風空気は、エアミックスドア34の開度に応じて、ヒータコア42にて加熱される。これにより、混合空間36における送風空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の冷房が実現される。 Also, in the indoor air conditioning unit 30 in the cooling mode, the air blown from the indoor blower 32 is cooled by the indoor evaporator 18 . The blown air cooled by the indoor evaporator 18 is heated by the heater core 42 according to the opening degree of the air mix door 34 . As a result, the temperature of the blown air in the mixing space 36 approaches the target blowing temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
 目標吹出温度TAOは、車室内へ送風される送風空気の目標温度である。目標吹出温度TAOは、空調用の制御プログラムにおいて、各種センサによって検出された検出信号、および操作パネル69の操作信号を用いて算定される。 The target blowout temperature TAO is the target temperature of the air blown into the vehicle interior. The target blowout temperature TAO is calculated using the detection signals detected by various sensors and the operation signal of the operation panel 69 in the control program for air conditioning.
 (b)除湿暖房モード
 除湿暖房モードのヒートポンプサイクル10では、制御装置60が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを絞り状態とする。また、制御装置60は、開閉弁17を閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(b) Dehumidifying and Heating Mode In the heat pump cycle 10 in the dehumidifying and heating mode, the controller 60 causes the heating expansion valve 13a to be throttled and the cooling expansion valve 13b to be throttled. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、除湿暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、絞り状態となっている暖房用膨張弁13a、室外熱交換器14、絞り状態となっている冷房用膨張弁13b、室内蒸発器18、アキュムレータ20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 For this reason, in the heat pump cycle 10 in the dehumidifying heating mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, and the throttled state. The cooling expansion valve 13b, the indoor evaporator 18, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
 また、除湿暖房モードの高温側熱媒体回路40では、高温側ポンプ41から圧送された高温側熱媒体が、水冷媒熱交換器12の熱媒体通路、ヒータコア42、高温側ポンプ41の吸入口の順に循環する。 In addition, in the high temperature side heat medium circuit 40 in the dehumidification heating mode, the high temperature side heat medium pumped from the high temperature side pump 41 flows through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41. Cycle in order.
 従って、除湿暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を凝縮器として機能させ、室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器14を凝縮器として機能させる。また、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器14を蒸発器として機能させる。 Therefore, in the heat pump cycle 10 in the dehumidification and heating mode, a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator. Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is higher than the outside air temperature Tam, the outdoor heat exchanger 14 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is lower than the outside air temperature Tam, the outdoor heat exchanger 14 is made to function as an evaporator.
 その結果、除湿暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12にて、高温側熱媒体が加熱される。さらに、室内蒸発器18にて、送風空気が冷却される。 As a result, in the heat pump cycle 10 in the dehumidifying and heating mode, the water-refrigerant heat exchanger 12 heats the high temperature side heat medium. Further, the indoor evaporator 18 cools the blown air.
 また、除湿暖房モードの高温側熱媒体回路40では、水冷媒熱交換器12にて加熱された高温側熱媒体が、ヒータコア42へ供給される。 Also, in the high-temperature side heat medium circuit 40 in the dehumidifying and heating mode, the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
 また、除湿暖房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18にて冷却されて除湿される。室内蒸発器18にて除湿された送風空気は、エアミックスドア34の開度に応じて、ヒータコア42にて再加熱される。これにより、混合空間36における送風空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が実現される。 Also, in the indoor air conditioning unit 30 in the dehumidifying and heating mode, the air blown from the indoor blower 32 is cooled and dehumidified by the indoor evaporator 18 . The air dehumidified by the indoor evaporator 18 is reheated by the heater core 42 according to the opening of the air mix door 34 . As a result, the temperature of the blown air in the mixing space 36 approaches the target blowing temperature TAO. Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
 (c)暖房モード
 暖房モードのヒートポンプサイクル10では、制御装置60が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを全閉状態とする。また、制御装置60は、開閉弁17を開く。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(c) Heating Mode In the heat pump cycle 10 in the heating mode, the controller 60 throttles the heating expansion valve 13a and fully closes the cooling expansion valve 13b. Also, the control device 60 opens the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、絞り状態となっている暖房用膨張弁13a、室外熱交換器14、アキュムレータ20、圧縮機11の吸入口の順に冷媒が循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the heating mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, the accumulator 20, the compression The refrigerant circuit is switched to a refrigerant circuit in which the refrigerant circulates in the order of the suction port of the machine 11 .
 また、暖房モードの高温側熱媒体回路40では、高温側ポンプ41から圧送された高温側熱媒体が、水冷媒熱交換器12の熱媒体通路、ヒータコア42、高温側ポンプ41の吸入口の順に循環する。 In addition, in the high temperature side heat medium circuit 40 in the heating mode, the high temperature side heat medium pressure-fed from the high temperature side pump 41 passes through the heat medium passage of the water-refrigerant heat exchanger 12, the heater core 42, and the suction port of the high temperature side pump 41 in this order. Circulate.
 従って、暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を凝縮器として機能させ、室外熱交換器14を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the heating mode heat pump cycle 10, a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 14 functions as an evaporator.
 その結果、暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12にて、高温側熱媒体が加熱される。 As a result, in the heat pump cycle 10 in the heating mode, the water-refrigerant heat exchanger 12 heats the high temperature side heat medium.
 また、暖房モードの高温側熱媒体回路40では、水冷媒熱交換器12にて加熱された熱媒体がヒータコア42へ供給される。 Also, in the high temperature side heat medium circuit 40 in the heating mode, the heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 42 .
 また、暖房モードの室内空調ユニット30では、室内送風機32から送風された送風空気が、室内蒸発器18を通過する。室内蒸発器18を通過した送風空気は、エアミックスドア34の開度に応じて、ヒータコア42にて加熱される。これにより、混合空間36から車室内へ吹き出される送風空気の温度が、目標吹出温度TAOに近づく。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の暖房が実現される。 Also, in the indoor air conditioning unit 30 in the heating mode, the air blown from the indoor blower 32 passes through the indoor evaporator 18 . The blown air that has passed through the indoor evaporator 18 is heated by the heater core 42 according to the opening of the air mix door 34 . As a result, the temperature of the air blown out from the mixing space 36 into the passenger compartment approaches the target air temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
 次に、冷却用の運転モードについて説明する。冷却用の運転モードは、制御装置60に記憶されている冷却用の制御プログラムが実行されることによって行われる。冷却用の制御プログラムでは、バッテリ温度センサ67によって検出されたバッテリ温度TBが、予め定めた基準冷却温度TB1以上となった際に、冷却モードの運転を行う。 Next, the operation mode for cooling will be explained. The cooling operation mode is performed by executing a cooling control program stored in the control device 60 . In the cooling control program, when the battery temperature TB detected by the battery temperature sensor 67 reaches or exceeds a predetermined reference cooling temperature TB1, the cooling mode operation is performed.
 冷却用の制御プログラムは、乗員が車室内の空調を要求しているか否かにかかわらず、車両システムが起動している際、および外部電源からバッテリ80に充電している際に実行される。このため、冷却モードには、空調中の冷却モードおよび非空調中の冷却モードがある。以下に冷却用の各運転モードの詳細作動を説明する。 The cooling control program is executed when the vehicle system is activated and when the battery 80 is being charged from the external power supply, regardless of whether the passenger requests air conditioning in the vehicle compartment. Therefore, the cooling mode includes a cooling mode during air conditioning and a cooling mode during non-air conditioning. The detailed operation of each operation mode for cooling will be described below.
 (d)空調中の冷却モード
 空調中の冷却モードのヒートポンプサイクル10では、制御装置60が、冷却用膨張弁13cを絞り状態とする。さらに、空調用の運転モードが暖房モードになっている際には、開閉弁17を閉じる。その他の制御対象機器の作動は、空調用の各運転モードと同様である。
(d) Cooling Mode During Air Conditioning In the heat pump cycle 10 in the cooling mode during air conditioning, the controller 60 throttles the cooling expansion valve 13c. Furthermore, when the operation mode for air conditioning is the heating mode, the on-off valve 17 is closed. The operations of the other controlled devices are the same as those in each operation mode for air conditioning.
 このため、空調中の冷却モードのヒートポンプサイクル10では、冷却用膨張弁13cにて減圧されたチラー19の冷媒通路へ流入する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling mode during air conditioning, the refrigerant circuit is switched to flow into the refrigerant passage of the chiller 19 depressurized by the cooling expansion valve 13c.
 また、空調中の冷却モードの低温側熱媒体回路50では、低温側ポンプ51から圧送された低温側熱媒体が、チラー19の熱媒体通路、バッテリ80の冷却水通路80a、低温側ポンプ51の吸入口の順に循環する。 In the low temperature side heat medium circuit 50 in the cooling mode during air conditioning, the low temperature side heat medium pumped from the low temperature side pump 51 flows through the heat medium passage of the chiller 19, the cooling water passage 80a of the battery 80, and the low temperature side pump 51. Circulate in the order of the inlet.
 従って、空調中の冷却モードのヒートポンプサイクル10では、少なくともチラー19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、空調中の冷却モードのヒートポンプサイクル10では、チラー19にて、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in cooling mode during air conditioning, a vapor compression refrigeration cycle is configured in which at least the chiller 19 functions as an evaporator. As a result, in the heat pump cycle 10 in the cooling mode during air conditioning, the chiller 19 cools the low temperature side heat medium.
 また、空調中の冷却モードの低温側熱媒体回路50では、チラー19冷却された低温側熱媒体が、バッテリ80の冷却水通路80aへ供給される。これにより、バッテリ80が冷却される。 Also, in the low temperature side heat medium circuit 50 in the cooling mode during air conditioning, the low temperature side heat medium cooled by the chiller 19 is supplied to the cooling water passage 80 a of the battery 80 . Thereby, the battery 80 is cooled.
 (e)非空調中の冷却モード
 非空調中の冷却モードのヒートポンプサイクル10では、制御装置60が、圧縮機11を作動させる。また、制御装置60は、暖房用膨張弁13aを全開とし、冷房用膨張弁13bを全閉とし、冷却用膨張弁13cを絞り状態とする。また、制御装置60は、開閉弁17を閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(e) Cooling Mode without Air Conditioning In the heat pump cycle 10 in the cooling mode without air conditioning, the controller 60 operates the compressor 11 . Further, the control device 60 fully opens the heating expansion valve 13a, fully closes the cooling expansion valve 13b, and throttles the cooling expansion valve 13c. Also, the control device 60 closes the on-off valve 17 . In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁13a、室外熱交換器14、絞り状態となっている冷却用膨張弁13c、チラー19、アキュムレータ20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling mode, the refrigerant discharged from the compressor 11 is in the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, and the throttle state. The cooling expansion valve 13c, the chiller 19, the accumulator 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
 また、非空調中の冷却モードの低温側熱媒体回路50では、低温側ポンプ51から圧送された低温側熱媒体が、チラー19の熱媒体通路、バッテリ80の冷却水通路80a、低温側ポンプ51の吸入口の順に循環する。 In addition, in the low temperature side heat medium circuit 50 in the non-air-conditioned cooling mode, the low temperature side heat medium pumped from the low temperature side pump 51 flows through the heat medium passage of the chiller 19, the cooling water passage 80a of the battery 80, and the low temperature side pump 51. circulates in the order of the intake port.
 従って、非空調中の冷却モードのヒートポンプサイクル10では、少なくとも室外熱交換器14を凝縮器として機能させ、チラー19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、非空調中の冷却モードのヒートポンプサイクル10では、チラー19にて、低温側熱媒体が冷却される。 Therefore, in the non-air-conditioned cooling mode heat pump cycle 10, a vapor compression refrigeration cycle is configured in which at least the outdoor heat exchanger 14 functions as a condenser and the chiller 19 functions as an evaporator. As a result, in the heat pump cycle 10 in the cooling mode during non-air conditioning, the chiller 19 cools the low temperature side heat medium.
 また、非空調中の冷却モードの低温側熱媒体回路50では、チラー19冷却された低温側熱媒体が、バッテリ80の冷却水通路80aへ供給される。これにより、バッテリ80が冷却される。 In addition, in the low temperature side heat medium circuit 50 in the cooling mode during non-air conditioning, the low temperature side heat medium cooled by the chiller 19 is supplied to the cooling water passage 80 a of the battery 80 . Thereby, the battery 80 is cooled.
 以上の如く、本実施形態の車両用空調装置1によれば、車室内の快適な空調および車載機器であるバッテリ80の冷却を行うことができる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior and cooling of the battery 80, which is an in-vehicle device, can be performed.
 さらに、本実施形態では、ヒートポンプモジュール70を採用しているので、ヒートポンプサイクル10の小型化と生産性の向上とを両立させることができる。 Furthermore, in this embodiment, since the heat pump module 70 is employed, both downsizing of the heat pump cycle 10 and improvement in productivity can be achieved.
 より詳細には、本実施形態のヒートポンプサイクル10のように、冷媒回路を切替可能に形成されたヒートポンプサイクルでは、構成機器の数量が増加しやすい。このため、ヒートポンプモジュール70のように複数の構成機器を一体化させることは、ヒートポンプサイクルの小型化のために有効である。 More specifically, like the heat pump cycle 10 of the present embodiment, in a heat pump cycle in which refrigerant circuits are switchable, the number of components tends to increase. Therefore, integrating a plurality of components like the heat pump module 70 is effective for downsizing the heat pump cycle.
 ところが、ヒートポンプサイクルの小型化を効果を得るためには、ヒートポンプモジュール自体を小型化させなければならないので、それぞれの電気式機器に対して、適切な電力線や信号線といった電線を接続する際の作業性が悪化しやすい。その結果、ヒートポンプサイクルの生産性を悪化させてしまう可能性がある。 However, in order to obtain the effect of miniaturization of the heat pump cycle, the heat pump module itself must be miniaturized. tend to deteriorate. As a result, the productivity of the heat pump cycle may deteriorate.
 これに対して、本実施形態のヒートポンプモジュール70では、流路ボックス71に取りけられた複数の電気式機器が、共通の電気基板部である第2制御部62に電気的に接続される。これによれば、複数の電気式機器のそれぞれに対して適切な電線を選別して接続する作業が不要となる。さらに、第2制御部62のコネクタ620にハーネス601を接続して、一体化された複数の電気式機器の作動を制御することができる。 On the other hand, in the heat pump module 70 of the present embodiment, a plurality of electrical devices installed in the channel box 71 are electrically connected to the second control section 62, which is a common electrical board section. This eliminates the need to select and connect appropriate electric wires to each of a plurality of electric devices. Furthermore, the harness 601 can be connected to the connector 620 of the second control section 62 to control the operation of the plurality of integrated electric devices.
 従って、ヒートポンプモジュール70によれば、ヒートポンプサイクルの小型化と生産性の向上との両立を図ることができる。延いては、車両用空調装置1としての生産性を向上させることができる。さらに、複数の電気式機器のそれぞれに対して接続される電線を廃止することができるので、電線およびコネクタ等の部品点数を削減することもできる。 Therefore, according to the heat pump module 70, both miniaturization of the heat pump cycle and improvement of productivity can be achieved. As a result, the productivity of the vehicle air conditioner 1 can be improved. Furthermore, since wires connected to each of the plurality of electric devices can be eliminated, the number of parts such as wires and connectors can be reduced.
 また、本実施形態のヒートポンプモジュール70では、機器取付工程で説明したように、流路ボックス71に取り付けられた状態で、複数の電気式機器のターミナルが、同一方向に延びるように配置される。さらに、基板取付工程で説明したように、複数の電気式機器のターミナルが、第2制御部62に形成された所定の接続部に直接接続される。 Also, in the heat pump module 70 of the present embodiment, as described in the device mounting process, the terminals of a plurality of electrical devices are arranged so as to extend in the same direction while being mounted in the channel box 71 . Furthermore, as described in the board mounting step, the terminals of a plurality of electrical devices are directly connected to predetermined connection portions formed in the second control section 62 .
 これによれば、流路ボックス71に取り付けられた複数の電気式機器のターミナルを、第2制御部62に同時に接続することができる。従って、より一層、ヒートポンプサイクルの生産性を向上させることができる。 According to this, it is possible to simultaneously connect the terminals of a plurality of electrical devices attached to the channel box 71 to the second control section 62 . Therefore, it is possible to further improve the productivity of the heat pump cycle.
 また、本実施形態のヒートポンプモジュール70の流路ボックス71には、高圧側冷媒通路70aおよび低圧側冷媒通路70bが形成されている。そして、低圧側冷媒通路70bは、高圧側冷媒通路70aよりも第2制御部62の近くに配置される部位が多くなるように配置されている。 In addition, a high-pressure side refrigerant passage 70a and a low-pressure side refrigerant passage 70b are formed in the flow path box 71 of the heat pump module 70 of the present embodiment. Further, the low-pressure side refrigerant passage 70b is arranged so that more parts are arranged closer to the second control section 62 than the high-pressure side refrigerant passage 70a.
 これによれば、冷房モード時に、高温の高圧側冷媒が高圧側冷媒通路70aを流通しても、高圧側冷媒によって第2制御部62が加熱されてしまうことを抑制しやすい。さらに、冷房モード時に、低圧側冷媒通路70bを流通する低温の低圧側冷媒によって第2制御部62を冷却しやすい。従って、比較的外気温が高くなる冷房モード時等であっても、第2制御部62の温度上昇を抑制して、第2制御部62の作動を安定させることができる。 According to this, even if the high-temperature high-pressure side refrigerant flows through the high-pressure side refrigerant passage 70a in the cooling mode, it is easy to prevent the second control section 62 from being heated by the high-pressure side refrigerant. Furthermore, in the cooling mode, the second control unit 62 can be easily cooled by the low-temperature low-pressure refrigerant flowing through the low-pressure refrigerant passage 70b. Therefore, even in the cooling mode or the like in which the outside air temperature is relatively high, the temperature rise of the second control section 62 can be suppressed and the operation of the second control section 62 can be stabilized.
 また、本実施形態のヒートポンプモジュール70の流路ボックス71は、金属で形成されており、金属で形成されたスペーサ622を介して、第2制御部62のグランド線に接続されている。これによれば、流路ボックス71を接地することで、第2制御部62のグランドを容易に確保することができる。そして、第2制御部62の耐ノイズ性を向上させて、より一層、第2制御部62の作動を安定させることができる。 Also, the channel box 71 of the heat pump module 70 of the present embodiment is made of metal and connected to the ground line of the second control section 62 via a spacer 622 made of metal. According to this, grounding of the second control unit 62 can be easily ensured by grounding the channel box 71 . Further, the noise resistance of the second control section 62 can be improved, and the operation of the second control section 62 can be further stabilized.
 また、本実施形態のヒートポンプモジュール70では、カバー部材72を備えている。従って、流路ボックス71に取り付けられた電気式機器や第2制御部62の防水性を高めることができる。さらに、カバー部材72が導電性を有する材料で形成されているので、電磁両立性(いわゆる、EMC)を向上させやすい。 Also, the heat pump module 70 of the present embodiment includes a cover member 72 . Therefore, the electrical equipment attached to the channel box 71 and the second control unit 62 can be made more waterproof. Furthermore, since the cover member 72 is made of a conductive material, it is easy to improve electromagnetic compatibility (so-called EMC).
 (第2実施形態)
 本実施形態のヒートポンプモジュール700では、ヒートポンプサイクル10の複数の構成機器のうち、図10の破線で囲まれた構成機器が一体化されている。
(Second embodiment)
In the heat pump module 700 of the present embodiment, among the plurality of constituent devices of the heat pump cycle 10, the constituent devices surrounded by broken lines in FIG. 10 are integrated.
 具体的には、ヒートポンプモジュール700では、ヒートポンプサイクル10を構成する構成機器のうち、暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、開閉弁17、第1冷媒圧力温度センサ65a、および第3冷媒圧力温度センサ65c等が、流路ボックス71に取り付けられることによって一体化されている。 Specifically, in the heat pump module 700, among the constituent devices constituting the heat pump cycle 10, the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the on-off valve 17, and the first refrigerant pressure temperature sensor 65a , and the third refrigerant pressure temperature sensor 65c are integrated by being attached to the channel box 71 .
 さらに、ヒートポンプモジュール700の流路ボックス71の内部には、第4内部三方継手部15dが形成されている。第4内部三方継手部15dは、第1実施形態で説明した外部三方継手部151に対応する内部三方継手部である。このため、本実施形態のヒートポンプサイクル10では、外部三方継手部151は廃止されている。 Further, inside the channel box 71 of the heat pump module 700, a fourth internal three-way joint 15d is formed. The fourth internal three-way joint portion 15d is an internal three-way joint portion corresponding to the external three-way joint portion 151 described in the first embodiment. Therefore, the external three-way joint 151 is eliminated in the heat pump cycle 10 of this embodiment.
 また、図11に示すように、ヒートポンプモジュール700においても、電気式機器およびコネクタ620が流路ボックス71に取り付けられた状態では、暖房用膨張弁13aのターミナル131a、冷房用膨張弁13bのターミナル131b、冷却用膨張弁13cのターミナル131c、開閉弁17のターミナル171、コネクタ620のターミナル621、第1冷媒圧力温度センサ65aのターミナル651a、および第3冷媒圧力温度センサ65cのターミナル651cが、取付面に垂直な方向(図11では、紙面表裏方向)に突出している。 As shown in FIG. 11, in the heat pump module 700 as well, when the electric device and the connector 620 are attached to the flow path box 71, the terminal 131a of the heating expansion valve 13a and the terminal 131b of the cooling expansion valve 13b , the terminal 131c of the cooling expansion valve 13c, the terminal 171 of the on-off valve 17, the terminal 621 of the connector 620, the terminal 651a of the first refrigerant pressure and temperature sensor 65a, and the terminal 651c of the third refrigerant pressure and temperature sensor 65c are mounted on the mounting surface. It protrudes in the vertical direction (in FIG. 11, the front and back directions of the paper surface).
 これらの電気式機器のターミナル131a、131b、131c、171、651a、651c、およびコネクタ620のターミナル621は、第2制御部62に形成された電気配線の接続部に直接接続可能に配置されている。このため、本実施形態では、第1冷媒圧力温度センサ65aおよび第3冷媒圧力温度センサ65cも、第2制御部62に接続される。 Terminals 131 a , 131 b , 131 c , 171 , 651 a , 651 c of these electric devices and terminal 621 of connector 620 are arranged so as to be directly connectable to electrical wiring connection portions formed in second control unit 62 . . Therefore, in the present embodiment, the first refrigerant pressure and temperature sensor 65a and the third refrigerant pressure and temperature sensor 65c are also connected to the second controller 62 .
 さらに、ヒートポンプモジュール700では、ヒートポンプサイクル10の構成機器のうち、圧縮機11、水冷媒熱交換器12、チラー19、アキュムレータ20が、ネジ締結等によって、流路ボックス71の側面に取り付けられて、一体化されている。 Furthermore, in the heat pump module 700, among the components of the heat pump cycle 10, the compressor 11, the water-refrigerant heat exchanger 12, the chiller 19, and the accumulator 20 are attached to the side surface of the flow path box 71 by screw fastening or the like. are integrated.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール700においても、第1実施形態と同様の効果を得ることができる。すなわち、本実施形態のヒートポンプモジュール700によれば、ヒートポンプサイクルの小型化と生産性の向上との両立を図ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, in the heat pump module 700 of the present embodiment as well, the same effects as those of the first embodiment can be obtained. In other words, according to the heat pump module 700 of the present embodiment, both miniaturization of the heat pump cycle and improvement of productivity can be achieved.
 本開示に係るヒートポンプモジュールに取り付けられるヒートポンプサイクルの構成機器は、第1実施形態および第2実施形態に記載された組み合わせに限定されない。つまり、適用されるヒートポンプサイクルの仕様に応じて、適宜決定すればよい。 The components of the heat pump cycle attached to the heat pump module according to the present disclosure are not limited to the combinations described in the first and second embodiments. That is, it may be determined as appropriate according to the specifications of the applied heat pump cycle.
 (第3実施形態)
 本実施形態では、第1実施形態に対して、流路ボックス71の構成を変更した例を説明する。本実施形態の流路ボックス71は、図13に示すように、機器形成部714を有している。機器形成部714は、電気式機器の一部を形成する部位である。
(Third embodiment)
In this embodiment, an example in which the configuration of the channel box 71 is changed from that of the first embodiment will be described. The channel box 71 of this embodiment has a device forming portion 714 as shown in FIG. 13 . The device forming part 714 is a part that forms a part of the electrical device.
 具体的には、本実施形態の機器形成部714は、暖房用膨張弁13aの一部として、シート部133aが固定される部位を形成している。シート部133aは、暖房用膨張弁13aの弁体部132aの弁座である。弁体部132aとシート部133aとの隙間には、冷媒を減圧させる絞り通路が形成される。これにより、暖房用膨張弁13aでは、弁体部132aを変位させることによって、絞り通路の開度を変更することができる。 Specifically, the device forming portion 714 of the present embodiment forms a portion to which the seat portion 133a is fixed as part of the heating expansion valve 13a. The seat portion 133a is a valve seat of the valve body portion 132a of the heating expansion valve 13a. A throttle passage for reducing the pressure of the refrigerant is formed in the gap between the valve body portion 132a and the seat portion 133a. Accordingly, in the heating expansion valve 13a, the opening degree of the throttle passage can be changed by displacing the valve body portion 132a.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 さらに、本実施形態のヒートポンプモジュール70では、流路ボックス71が機器形成部714を有しているので、電気式機器の部品点数を低減することができる。 Furthermore, in the heat pump module 70 of the present embodiment, the channel box 71 has the device forming portion 714, so the number of parts of the electrical device can be reduced.
 なお、機器形成部714は、暖房用膨張弁13aのシート部133aを固定する部位に限定されない。例えば、機器形成部714がシート部を形成していてもよい。また、機器形成部714は、冷房用膨張弁13b、冷却用膨張弁13c、あるいは開閉弁17の一部を形成していてもよい。 Note that the device forming portion 714 is not limited to a portion that fixes the seat portion 133a of the heating expansion valve 13a. For example, the device forming portion 714 may form a seat portion. Further, the device forming portion 714 may form a part of the cooling expansion valve 13 b , the cooling expansion valve 13 c , or the on-off valve 17 .
 (第4実施形態)
 本実施形態では、第1実施形態に対して、流路ボックス71に取り付けられた電気式機器と第2制御部62との接続態様を変更した例を説明する。
(Fourth embodiment)
In the present embodiment, an example will be described in which the connection mode between the electrical device attached to the channel box 71 and the second control section 62 is changed from the first embodiment.
 具体的には、本実施形態では、図14に示すように、第2制御部62の少なくとも一部をフレキシブル基板で形成している。そして、基板取付工程時に、一部の電気式機器の接続端子部(図14では、冷房用膨張弁13bのターミナル131b)を、第2制御部62のうちフレキシブル基板で形成された部位623に接続している。 Specifically, in this embodiment, as shown in FIG. 14, at least part of the second control unit 62 is made of a flexible substrate. Then, during the substrate mounting process, the connection terminal portion of some electric devices (the terminal 131b of the cooling expansion valve 13b in FIG. 14) is connected to the portion 623 of the second control portion 62 formed of the flexible substrate. doing.
 フレキシブル基板は、絶縁性を有する薄膜状の樹脂フィルムに電子部品や導体箔等を貼り合わせることによって形成されている。このため、硬質プリント基板よりも柔らかく、湾曲させることができる。 A flexible substrate is formed by laminating electronic components, conductor foil, etc. to a thin resin film with insulating properties. Therefore, it is softer than a rigid printed circuit board and can be bent.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 さらに、本実施形態のヒートポンプモジュール70では、第2制御部62の少なくとも一部をフレキシブル基板で形成している。従って、一部の電気式機器の仕様を変更して形状が変化した場合等でも、電気式機器と第2制御部62とを容易に接続することが可能となり、電気式機器の設計自由度を向上させることができる。 Furthermore, in the heat pump module 70 of the present embodiment, at least part of the second control section 62 is made of a flexible substrate. Therefore, even if the specifications of some electrical equipment are changed and the shape is changed, the electrical equipment can be easily connected to the second control unit 62, and the degree of freedom in designing the electrical equipment can be improved. can be improved.
 (第5実施形態)
 本実施形態では、第1実施形態に対して、ヒートポンプモジュール70の流路ボックス71に取り付けられる電気式機器のうち、一部の電気式機器を第2制御部62に接続されないように取り付けた例を説明する。
(Fifth embodiment)
In the present embodiment, of the electrical devices attached to the flow channel box 71 of the heat pump module 70, some of the electrical devices are attached so as not to be connected to the second control unit 62, in contrast to the first embodiment. explain.
 具体的には、本実施形態では、図15に示すように、一部の電気式機器(図15では、開閉弁17)が、流路ボックス71のカバー部材72の外部に取り付けられている。本実施形態の開閉弁17は、接続部であるコネクタ170を有している。開閉弁17は、コネクタ170を介して制御装置60の第1制御部61に接続される。 Specifically, in this embodiment, as shown in FIG. 15, some of the electric devices (in FIG. 15, the on-off valve 17) are attached to the outside of the cover member 72 of the channel box 71. The on-off valve 17 of this embodiment has a connector 170 that is a connecting portion. The on-off valve 17 is connected to the first controller 61 of the controller 60 via a connector 170 .
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 (第6実施形態)
 本実施形態では、第1実施形態に対して、コネクタ620の配置を変更した例を説明する。
(Sixth embodiment)
In this embodiment, an example in which the layout of the connector 620 is changed from that of the first embodiment will be described.
 具体的には、本実施形態のコネクタ620は、図16に示すように、第2制御部62の端部に固定されている。コネクタ620の一部は、カバー部材72の側面に形成された貫通穴720を介して、カバー部材72の外部へ突出している。コネクタ620と貫通穴720との隙間には、第1実施形態と同様に、図示しないシール部材が介在されている。 Specifically, the connector 620 of this embodiment is fixed to the end of the second control section 62 as shown in FIG. A portion of the connector 620 protrudes outside the cover member 72 through a through hole 720 formed in the side surface of the cover member 72 . A sealing member (not shown) is interposed in the gap between the connector 620 and the through hole 720, as in the first embodiment.
 なお、図16では、第6実施形態のヒートポンプモジュールを側面方向から見た側面図であって、カバー部材72内を断面として表した一部断面図である。このことは、図17、図21、図27についても同様である。 It should be noted that FIG. 16 is a side view of the heat pump module of the sixth embodiment as seen from the lateral direction, and is a partial cross-sectional view showing the inside of the cover member 72 as a cross section. This also applies to FIGS. 17, 21 and 27. FIG.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 (第7実施形態)
 本実施形態では、第1実施形態に対して、カバー部材72の構成およびコネクタ620の配置を変更した例を説明する。
(Seventh embodiment)
In this embodiment, an example in which the configuration of the cover member 72 and the arrangement of the connector 620 are changed from those of the first embodiment will be described.
 具体的には、本実施形態のカバー部材72は、図17に示すように、側壁部721および天板部722に分割されている。本実施形態のコネクタ620は、第6実施形態と同様に、第2制御部62の端部に固定されている。コネクタ620の一部は、カバー部材72の側壁部721に形成された貫通穴720からカバー部材72の外部へ突出している。さらに、第2制御部62には、スペーサ622が取り付けられている。 Specifically, the cover member 72 of this embodiment is divided into a side wall portion 721 and a top plate portion 722, as shown in FIG. The connector 620 of this embodiment is fixed to the end of the second control section 62 as in the sixth embodiment. A portion of the connector 620 protrudes outside the cover member 72 through a through hole 720 formed in a side wall portion 721 of the cover member 72 . Furthermore, a spacer 622 is attached to the second control section 62 .
 つまり、本実施形態では、側壁部721、コネクタ620、第2制御部62、およびスペーサ622が、カバーユニット723として一体化されている。 That is, in this embodiment, the side wall portion 721 , the connector 620 , the second control portion 62 and the spacer 622 are integrated as the cover unit 723 .
 このため、本実施形態の基板取付工程では、カバーユニット723として一体化された第2制御部62を、スペーサ622を介して、流路ボックス71にネジ止め等の手段で取り付ける。さらに、流路ボックス71の取付面712の外縁部に、側壁部721の一端側(図17では、下方側)を接着や溶着等の手段で取り付ける。 Therefore, in the substrate mounting process of the present embodiment, the second control section 62 integrated as the cover unit 723 is mounted to the channel box 71 via the spacer 622 by means such as screwing. Further, one end side (lower side in FIG. 17) of the side wall portion 721 is attached to the outer edge portion of the attachment surface 712 of the channel box 71 by means of adhesion, welding, or the like.
 また、本実施形態のカバー取付工程では、側壁部721の他端側(図17では、上方側)に、平板状の天板部722を接着や溶着等の手段で取り付ける。側壁部721と流路ボックス71との隙間、および天板部722と側壁部721との隙間には、第1実施形態と同様に、図示しないシール部材が介在されている。 In addition, in the cover mounting process of the present embodiment, a flat top plate portion 722 is mounted on the other end side (the upper side in FIG. 17) of the side wall portion 721 by means of adhesion, welding, or the like. A sealing member (not shown) is interposed in the gap between the side wall portion 721 and the channel box 71 and in the gap between the top plate portion 722 and the side wall portion 721, as in the first embodiment.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 さらに、本実施形態のヒートポンプモジュール70では、カバーユニット723を採用しているので、カバーユニット723の上に、別のカバーユニット723を重ねることによって、基板の段重ね(いわゆる基板のマウント)を行うことができる。これによれば、第2制御部62の電子部品やコネクタ620の数量を容易に増加させることが可能となり、第2制御部62の設計自由度を向上させることができる。 Furthermore, since the heat pump module 70 of the present embodiment employs the cover unit 723, by stacking another cover unit 723 on top of the cover unit 723, stacking of substrates (so-called substrate mounting) is performed. be able to. According to this, it is possible to easily increase the number of electronic components and connectors 620 of the second control section 62, and the degree of freedom in designing the second control section 62 can be improved.
 (第8実施形態)
 本実施形態では、第1実施形態に対して、流路ボックス71およびカバー部材72の構成を変更した例を説明する。
(Eighth embodiment)
In this embodiment, an example in which the configurations of the channel box 71 and the cover member 72 are changed with respect to the first embodiment will be described.
 具体的には、本実施形態の流路ボックス71は、図18に示すように、側壁部715を有している。 Specifically, the channel box 71 of the present embodiment has side walls 715 as shown in FIG.
 側壁部715は、流路ボックス71の取付面712の外縁部を垂直方向(図18では、上方向)に延長させることによって形成されている。側壁部715は、第7実施形態で説明したカバー部材72の側壁部721に対応する部位である。側壁部715の4つの角部には、第2制御部62が固定される支柱部715aが形成されている。支柱部715aは、第1実施形態で説明したスペーサ622に対応する部位である。 The side wall portion 715 is formed by extending the outer edge portion of the mounting surface 712 of the channel box 71 in the vertical direction (upward direction in FIG. 18). The side wall portion 715 is a portion corresponding to the side wall portion 721 of the cover member 72 described in the seventh embodiment. At the four corners of the side wall portion 715, support portions 715a to which the second control portion 62 is fixed are formed. The strut portion 715a is a portion corresponding to the spacer 622 described in the first embodiment.
 また、本実施形態のカバー部材72は、第7実施形態で説明した天板部722と同様の形状となっている。 Further, the cover member 72 of this embodiment has the same shape as the top plate portion 722 described in the seventh embodiment.
 このため、本実施形態の基板取付工程では、図19に示すように、第2制御部62が、側壁部715の支柱部715aにネジ止めされることによって取り付けられる。この際、流路ボックス71は、第2制御部62のグランド線に電気的に接続される。また、本実施形態のカバー取付工程では、図20に示すように、側壁部715の端部に、第1実施形態と同様に、カバー部材72を接着や溶着等の手段で取り付ける。 Therefore, in the board mounting process of the present embodiment, the second control section 62 is mounted by being screwed to the pillar section 715a of the side wall section 715, as shown in FIG. At this time, the channel box 71 is electrically connected to the ground line of the second control section 62 . In addition, in the cover attaching step of this embodiment, as shown in FIG. 20, the cover member 72 is attached to the end of the side wall portion 715 by means of adhesion, welding, or the like, as in the first embodiment.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。本実施形態のヒートポンプモジュール70においても、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. The heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 (第9実施形態)
 本実施形態では、第1実施形態に対して、スペーサ622aの配置を変更した例を説明する。
(Ninth embodiment)
In this embodiment, an example in which the arrangement of spacers 622a is changed from the first embodiment will be described.
 具体的には、本実施形態のスペーサ622aは、図21に示すように、冷房用膨張弁13b、開閉弁17等に取り付けられている。冷房用膨張弁13bや開閉弁17等の外殻を形成する部位は金属で形成されている。従って、本実施形態の流路ボックス71は、スペーサ622a、並びに、冷房用膨張弁13bや開閉弁17等の外殻を形成する部位を介して、第2制御部62のグランド線に接続されている。 Specifically, the spacer 622a of this embodiment is attached to the cooling expansion valve 13b, the opening/closing valve 17, etc., as shown in FIG. Parts forming outer shells such as the cooling expansion valve 13b and the on-off valve 17 are made of metal. Therefore, the flow path box 71 of the present embodiment is connected to the ground line of the second control section 62 via the spacer 622a and the portions forming the outer shell of the cooling expansion valve 13b, the open/close valve 17, and the like. there is
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。本実施形態のヒートポンプモジュール70においても、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. The heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 (第10実施形態)
 本実施形態では、第1実施形態に対して、図22に示すように、カバー部材72に排気口724を形成した例を説明する。排気口724は、収容空間と外部とを連通させる連通穴である。排気口724は、収容空間内の空気を外部へ流出させて、収容空間内の熱を外部へ逃がすために設けられている。このような排気口724は、流路ボックス71に形成されていてもよい。
(Tenth embodiment)
In the present embodiment, as shown in FIG. 22, an example in which an exhaust port 724 is formed in the cover member 72 in contrast to the first embodiment will be described. The exhaust port 724 is a communication hole that communicates the housing space with the outside. The exhaust port 724 is provided to let the air in the accommodation space flow out to the outside and release the heat in the accommodation space to the outside. Such an exhaust port 724 may be formed in the channel box 71 .
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。本実施形態のヒートポンプモジュール70においても、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. The heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment.
 さらに、本実施形態のヒートポンプモジュール70には、排気口724が形成されているので、第2制御部62の温度上昇を抑制して、第2制御部62の作動を安定させることができる。 Furthermore, since the heat pump module 70 of the present embodiment is formed with the exhaust port 724, the temperature rise of the second control section 62 can be suppressed and the operation of the second control section 62 can be stabilized.
 また、排気口724に、透湿部材を配置してもよい。透湿部材は、湿気を含んだ空気を通過させることはできるものの、水を通過させることができない素材で形成される。これによれば、排気口724を介して、外部から収容空間内へ水分が侵入してしまうことを抑制することができる。 Also, a moisture permeable member may be arranged in the exhaust port 724 . The moisture-permeable member is made of a material that allows moisture-laden air to pass through but does not allow water to pass through. According to this, it is possible to prevent moisture from entering the accommodation space from the outside through the exhaust port 724 .
 また、図23に示すように、排気口724に連通する連通路724aを形成してもよい。連通路724aによって空気の移動距離を延ばすことで、外部から収容空間内へ水分が侵入してしまうことを抑制することができる。このような連通路724aは、カバー部材72と流路ボックス71との合わせ面に溝を設けることによって形成することができる。 Also, as shown in FIG. 23, a communication passage 724a communicating with the exhaust port 724 may be formed. By extending the movement distance of the air with the communication path 724a, it is possible to suppress the intrusion of moisture from the outside into the housing space. Such a communication path 724a can be formed by providing a groove in the mating surfaces of the cover member 72 and the flow path box 71. As shown in FIG.
 さらに、連通路724aを蛇行状に形成して、ラビリンスシール構造とすれば、外部から収容空間内へ水分が侵入してしまうことを、より一層効果的に抑制することができる。なお、
 また、図24に示すように、収容空間内の空気を吸い込んで外部へ吹き出す電動ファン724bを配置してもよい。さらに、収容空間内の空間内温度Tmjを検出する温度検出部を配置し、空間内温度Tmjが予め定めた基準収容空間温度以上となった際に、制御装置60が電動ファン724bを作動させるようにしてもよい。
Furthermore, if the communicating path 724a is formed in a meandering shape to form a labyrinth seal structure, it is possible to more effectively suppress the intrusion of moisture from the outside into the housing space. note that,
Also, as shown in FIG. 24, an electric fan 724b may be arranged to draw in the air in the accommodation space and blow it out. Further, a temperature detection unit for detecting the space temperature Tmj in the accommodation space is arranged so that the controller 60 operates the electric fan 724b when the space temperature Tmj becomes equal to or higher than a predetermined reference accommodation space temperature. can be
 (第11実施形態)
 本実施形態では、図25の全体構成図に示す車両用空調装置1aに適用されたヒートポンプモジュール701について説明する。
(Eleventh embodiment)
In this embodiment, a heat pump module 701 applied to a vehicle air conditioner 1a shown in the overall configuration diagram of FIG. 25 will be described.
 具体的には、本実施形態の車両用空調装置1aでは、ヒートポンプサイクル10aを備えている。ヒートポンプサイクル10aは、アキュムレータ20に代えて、レシーバ21を備えている。レシーバ21は、凝縮器として機能する熱交換器から流出した高圧側冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える高圧側の気液分離器である。 Specifically, the vehicle air conditioner 1a of the present embodiment includes a heat pump cycle 10a. The heat pump cycle 10a includes a receiver 21 instead of the accumulator 20. As shown in FIG. The receiver 21 is a high-pressure side gas-liquid separator that separates gas-liquid from the high-pressure side refrigerant that has flowed out of the heat exchanger functioning as a condenser and stores excess liquid-phase refrigerant in the cycle.
 ヒートポンプサイクル10aの水冷媒熱交換器12の冷媒通路の出口には、ヒートポンプモジュール701の高圧側冷媒入口71a側が接続されている。本実施形態のヒートポンプモジュール701では、ヒートポンプサイクル10aの複数の構成機器のうち、図25の破線で囲まれた構成機器等が一体化されている。 The high-pressure side refrigerant inlet 71a side of the heat pump module 701 is connected to the refrigerant passage outlet of the water-refrigerant heat exchanger 12 of the heat pump cycle 10a. In the heat pump module 701 of the present embodiment, among the plurality of constituent devices of the heat pump cycle 10a, the constituent devices and the like surrounded by broken lines in FIG. 25 are integrated.
 より具体的には、ヒートポンプモジュール701では、ヒートポンプサイクル10aの構成機器のうち、暖房用膨張弁13a、冷却用膨張弁13c、第1開閉弁17a、第2開閉弁17b等が一体化されている。 More specifically, in the heat pump module 701, the heating expansion valve 13a, the cooling expansion valve 13c, the first on-off valve 17a, the second on-off valve 17b, and the like, among the components of the heat pump cycle 10a, are integrated. .
 ヒートポンプモジュール701の高圧側冷媒入口71aは、流路ボックス71の内部に形成された第5内部三方継手部15eの流入口に連通している。第5内部三方継手部15eの一方の流出口には、流路ボックス71の内部に形成された冷媒通路を介して、第1開閉弁17aの入口が接続されている。 A high-pressure side refrigerant inlet 71 a of the heat pump module 701 communicates with an inlet of the fifth internal three-way joint 15 e formed inside the flow path box 71 . One outflow port of the fifth internal three-way joint portion 15 e is connected to the inlet of the first on-off valve 17 a via a refrigerant passage formed inside the flow path box 71 .
 第1開閉弁17aの出口は、流路ボックス71の内部に形成された冷媒通路を介して、流路ボックス71の内部に形成された第6内部三方継手部15fの一方の流入口に接続されている。第6内部三方継手部15fの流出口は、流路ボックス71の内部に形成された冷媒通路を介して、暖房用膨張弁13aの入口に接続されている。従って、第1開閉弁17aは、第5内部三方継手部15eの一方の流出口から第6内部三方継手部15fの一方の流入口へ至る冷媒通路を開閉する。 An outlet of the first on-off valve 17a is connected to one inlet of a sixth internal three-way joint 15f formed inside the flow path box 71 via a refrigerant passage formed inside the flow path box 71. ing. The outflow port of the sixth internal three-way joint 15f is connected to the inlet of the heating expansion valve 13a via a refrigerant passage formed inside the flow path box 71 . Therefore, the first on-off valve 17a opens and closes the refrigerant passage from one outflow port of the fifth internal three-way joint portion 15e to one inflow port of the sixth internal three-way joint portion 15f.
 さらに、ヒートポンプサイクル10aでは、第2開閉弁17bおよび第3開閉弁17cを備えている。第1開閉弁17a~第3開閉弁17cの基本的構成は、第1実施形態で説明した開閉弁17と同様である。従って、第1開閉弁17a~第3開閉弁17cは、電気式機器に含まれる。さらに、第1開閉弁17a~第3開閉弁17cは、冷媒回路切替部である。 Furthermore, the heat pump cycle 10a includes a second on-off valve 17b and a third on-off valve 17c. The basic configuration of the first opening/closing valve 17a to the third opening/closing valve 17c is the same as that of the opening/closing valve 17 described in the first embodiment. Therefore, the first on-off valve 17a to the third on-off valve 17c are included in the electrical device. Further, the first on-off valve 17a to the third on-off valve 17c are refrigerant circuit switching units.
 第5内部三方継手部15eの他方の流出口には、流路ボックス71の内部に形成された冷媒通路を介して、第2開閉弁17bの入口が接続されている。 The other outflow port of the fifth internal three-way joint 15e is connected to the inlet of the second on-off valve 17b via a refrigerant passage formed inside the flow path box 71.
 第2開閉弁17bの出口には、流路ボックス71の内部に形成された第7内部三方継手部15gの一方の流入口側に接続されている。第7内部三方継手部15gの流出口には、流路ボックス71の内部に形成された冷媒通路を介して、レシーバ21の入口が接続されている。従って、第2開閉弁17bは、第5内部三方継手部15eの他方の流出口から第7内部三方継手部15gの一方の流入口へ至る冷媒通路を開閉する。 The outlet of the second on-off valve 17b is connected to one inlet side of the seventh internal three-way joint 15g formed inside the channel box 71 . An inlet of the receiver 21 is connected to an outlet of the seventh internal three-way joint 15g via a refrigerant passage formed inside the flow path box 71 . Therefore, the second on-off valve 17b opens and closes the refrigerant passage from the other outflow port of the fifth internal three-way joint portion 15e to one inflow port of the seventh internal three-way joint portion 15g.
 レシーバ21は、第2実施形態で説明したアキュムレータ20と同様に、流路ボックス71の側面に取り付けられて一体化されている。さらに、第5内部三方継手部15eの他方の流出口から第7内部三方継手部15gの一方の流入口へ至る冷媒通路には、第1固定絞り22aが配置されている。第1固定絞り22aは、暖房モード等にレシーバ21へ流入する冷媒を減圧させる第1減圧部である。 The receiver 21 is attached to and integrated with the side surface of the channel box 71 in the same manner as the accumulator 20 described in the second embodiment. Further, a first fixed throttle 22a is arranged in the refrigerant passage from the other outflow port of the fifth internal three-way joint portion 15e to one inflow port of the seventh internal three-way joint portion 15g. The first fixed throttle 22a is a first decompression unit that decompresses the refrigerant flowing into the receiver 21 in heating mode or the like.
 レシーバ21の出口には、流路ボックス71の内部に形成された第8内部三方継手部15hの流入口側が接続されている。第8内部三方継手部15hの一方の流出口には、流路ボックス71の内部に形成された冷媒通路を介して、第6内部三方継手部15fの他方の流入口が接続されている。 The outlet of the receiver 21 is connected to the inlet side of the eighth internal three-way joint 15h formed inside the channel box 71. One outflow port of the eighth internal three-way joint portion 15h is connected to the other inflow port of the sixth internal three-way joint portion 15f via a refrigerant passage formed inside the flow path box 71 .
 第8内部三方継手部15hの一方の流出口から第6内部三方継手部15fの他方の流入口へ至る冷媒通路には、第1逆止弁16aが配置されている。第1逆止弁16aは、冷媒が第8内部三方継手部15h側から第6内部三方継手部15f側へ流れることを許容し、冷媒が第6内部三方継手部15f側から第8内部三方継手部15h側へ流れることを禁止している。 A first check valve 16a is arranged in the refrigerant passage from one outflow port of the eighth internal three-way joint portion 15h to the other inflow port of the sixth internal three-way joint portion 15f. The first check valve 16a allows the refrigerant to flow from the eighth internal three-way joint portion 15h side to the sixth internal three-way joint portion 15f side, and the refrigerant flows from the sixth internal three-way joint portion 15f side to the eighth internal three-way joint It is prohibited to flow to the part 15h side.
 第8内部三方継手部15hの他方の流出口には、流路ボックス71の内部に形成された第2内部三方継手部15bの流入口側が接続されている。 The inlet side of the second internal three-way joint 15b formed inside the channel box 71 is connected to the other outlet of the eighth internal three-way joint 15h.
 また、ヒートポンプサイクル10aの室外熱交換器14の冷媒出口には、第2外部三方継手部152の流入口側が接続されている。さらに、ヒートポンプサイクル10aでは、第3外部三方継手部153を備えている。第2外部三方継手部152および第3外部三方継手部153の基本的構成は、第1実施形態で説明した外部三方継手部151と同様である。さらに、本実施形態では、説明の明確化のため、外部三方継手部151を第1外部三方継手部151と記載する。 The inlet side of the second external three-way joint 152 is connected to the refrigerant outlet of the outdoor heat exchanger 14 of the heat pump cycle 10a. Furthermore, the heat pump cycle 10 a is provided with a third external three-way joint portion 153 . The basic configurations of the second external three-way joint part 152 and the third external three-way joint part 153 are the same as the external three-way joint part 151 described in the first embodiment. Furthermore, in the present embodiment, the external three-way joint 151 is referred to as the first external three-way joint 151 for clarity of explanation.
 第2外部三方継手部152の一方の流出口には、流路ボックス71の室外器側冷媒入口71c側が接続されている。室外器側冷媒入口71cは、第7内部三方継手部15gの他方の流入口に連通している。室外器側冷媒入口71cから第7内部三方継手部15gの他方の流入口へ至る冷媒通路には、第2逆止弁16bおよび第2固定絞り22bが配置されている。 One outlet of the second external three-way joint 152 is connected to the outdoor unit side refrigerant inlet 71c side of the channel box 71 . The outdoor unit side refrigerant inlet 71c communicates with the other inlet of the seventh internal three-way joint 15g. A second check valve 16b and a second fixed throttle 22b are arranged in a refrigerant passage from the outdoor unit side refrigerant inlet 71c to the other inlet of the seventh internal three-way joint portion 15g.
 第2逆止弁16bは、冷媒が室外器側冷媒入口71c側から第7内部三方継手部15g側へ流れることを許容し、冷媒が第7内部三方継手部15g側から室外器側冷媒入口71c側へ流れることを禁止している。第2固定絞り22bは、冷房モード等にレシーバ21へ流入する冷媒を減圧させる第2減圧部である。 The second check valve 16b allows the refrigerant to flow from the outdoor unit side refrigerant inlet 71c side to the seventh internal three-way joint portion 15g side, and allows the refrigerant to flow from the seventh internal three-way joint portion 15g side to the outdoor unit side refrigerant inlet 71c. It is prohibited to flow to the side. The second fixed throttle 22b is a second decompression unit that decompresses the refrigerant flowing into the receiver 21 in the cooling mode or the like.
 また、本実施形態のヒートポンプモジュール701では、冷房用膨張弁13bが一体化されていない。このため、ヒートポンプモジュール701の冷房側冷媒出口71dには、冷房用膨張弁13bの入口側が接続されている。冷房用膨張弁13bの出口側には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18の冷媒出口には、第3外部三方継手部153の一方の入口側が接続されている。 Also, in the heat pump module 701 of the present embodiment, the cooling expansion valve 13b is not integrated. Therefore, the inlet side of the cooling expansion valve 13b is connected to the cooling side refrigerant outlet 71d of the heat pump module 701 . The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet side of the cooling expansion valve 13b. One inlet side of the third external three-way joint 153 is connected to the refrigerant outlet of the indoor evaporator 18 .
 また、第2外部三方継手部152の他方の流出口には、バイパス通路24を介して、第3外部三方継手部153の他方の流入口が接続されている。バイパス通路24には、第3開閉弁17c、第4逆止弁16d、および第4冷媒圧力温度センサ65dが配置されている。 Also, the other outlet port of the second external three-way joint portion 152 is connected to the other inlet port of the third external three-way joint portion 153 via the bypass passage 24 . The bypass passage 24 is provided with a third on-off valve 17c, a fourth check valve 16d, and a fourth refrigerant pressure temperature sensor 65d.
 本実施形態の第3開閉弁17cは、バイパス通路24を開閉する。第4逆止弁16dは、冷媒が第3開閉弁17c側から第3外部三方継手部153側へ流れることを許容し、冷媒が第3外部三方継手部153側から第3開閉弁17c側へ流れることを禁止している。第4冷媒圧力温度センサ65dは、バイパス通路24を流通する冷媒のバイパス側冷媒圧力P4およびバイパス側冷媒温度T4を検出するバイパス側圧力温度検出部である。 The third on-off valve 17c of this embodiment opens and closes the bypass passage 24. The fourth check valve 16d allows the refrigerant to flow from the third on-off valve 17c side to the third external three-way joint portion 153 side, and the refrigerant flows from the third external three-way joint portion 153 side to the third on-off valve 17c side. prohibited from flowing. The fourth refrigerant pressure and temperature sensor 65d is a bypass side pressure and temperature detector that detects the bypass side refrigerant pressure P4 and the bypass side refrigerant temperature T4 of the refrigerant flowing through the bypass passage 24 .
 第3外部三方継手部153の流出口には、第1外部三方継手部151の一方の流入口側が接続されている。また、本実施形態では、チラー19の冷媒通路の出口側に、第1外部三方継手部151の他方の流入口側が接続されている。第1外部三方継手部151の流出口には、圧縮機11の吸入口側が接続されている。 One inlet side of the first external three-way joint 151 is connected to the outlet of the third external three-way joint 153 . Further, in this embodiment, the other inlet side of the first external three-way joint portion 151 is connected to the outlet side of the refrigerant passage of the chiller 19 . The suction port side of the compressor 11 is connected to the outflow port of the first external three-way joint portion 151 .
 また、本実施形態に制御装置60では、第2制御部62の出力側に、暖房用膨張弁13a、冷却用膨張弁13c、第1開閉弁17a、第2開閉弁17b、および第3開閉弁17cが接続される。 Further, in the control device 60 of the present embodiment, the heating expansion valve 13a, the cooling expansion valve 13c, the first on-off valve 17a, the second on-off valve 17b, and the third on-off valve are provided on the output side of the second control unit 62. 17c is connected.
 その他のヒートポンプサイクル10aおよび車両用空調装置1aの構成および作動は、第1実施形態のヒートポンプサイクル10および車両用空調装置1と同様である。 Other configurations and operations of the heat pump cycle 10a and the vehicle air conditioner 1a are the same as those of the heat pump cycle 10 and the vehicle air conditioner 1 of the first embodiment.
 次に、上記構成における本実施形態の車両用空調装置1aの作動について説明する。車両用空調装置1aにおいても、第1実施形態と同様に、空調用の運転モードおよび冷却用の運転モードが実行される。以下、各運転モードの詳細作動を説明する。 Next, the operation of the vehicle air conditioner 1a of this embodiment having the above configuration will be described. Also in the vehicle air conditioner 1a, the operation mode for air conditioning and the operation mode for cooling are performed like 1st Embodiment. The detailed operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードのヒートポンプサイクル10aでは、制御装置60が、暖房用膨張弁13aを全開とし、冷房用膨張弁13bを減圧作用を発揮する絞り状態とする。冷却用膨張弁13cについては、冷却用の運転モードに応じて制御される。また、制御装置60は、第1開閉弁17aを開き、第2開閉弁17bを閉じ、第3開閉弁17cを閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(a) Cooling Mode In the heat pump cycle 10a in the cooling mode, the controller 60 fully opens the heating expansion valve 13a and throttles the cooling expansion valve 13b to reduce the pressure. The cooling expansion valve 13c is controlled according to the cooling operation mode. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、冷房モードのヒートポンプサイクル10aでは、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁13a、室外熱交換器14、固定絞り22b、レシーバ21、絞り状態となっている冷房用膨張弁13b、室内蒸発器18、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10a in the cooling mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the fully open heating expansion valve 13a, the outdoor heat exchanger 14, the fixed throttle 22b, the receiver 21, the cooling expansion valve 13b in the throttled state, the indoor evaporator 18, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
 従って、冷房モードのヒートポンプサイクル10aでは、水冷媒熱交換器12および室外熱交換器14を、冷媒を放熱させて凝縮させる凝縮器(換言すると、放熱器)として機能させ、室内蒸発器18を、冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、第1実施形態と同様に、車室内の冷房を実現することができる。 Therefore, in the heat pump cycle 10a in the cooling mode, the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 14 function as condensers (in other words, radiators) that radiate and condense the refrigerant, and the indoor evaporator 18, A vapor compression refrigeration cycle is configured that functions as an evaporator that evaporates a refrigerant. As a result, as in the first embodiment, cooling of the passenger compartment can be realized.
 (b)除湿暖房モード
 除湿暖房モードのヒートポンプサイクル10aでは、制御装置60が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを絞り状態とする。また、制御装置60は、第1開閉弁17aを開き、第2開閉弁17bを閉じ、第3開閉弁17cを閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(b) Dehumidification/heating mode In the heat pump cycle 10a in the dehumidification/heating mode, the controller 60 causes the heating expansion valve 13a to be throttled and the cooling expansion valve 13b to be throttled. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、除湿暖房モードのヒートポンプサイクル10aでは、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、絞り状態となっている暖房用膨張弁13a、室外熱交換器14、固定絞り22b、レシーバ21、絞り状態となっている冷房用膨張弁13b、室内蒸発器18、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10a in the dehumidifying and heating mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, and the fixed throttle 22b. , the receiver 21, the cooling expansion valve 13b in the throttled state, the indoor evaporator 18, and the suction port of the compressor 11 in this order.
 従って、除湿暖房モードのヒートポンプサイクル10aでは、水冷媒熱交換器12を凝縮器として機能させ、室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the heat pump cycle 10a in the dehumidification and heating mode, a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator.
 さらに、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器14を凝縮器として機能させる。また、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器14を蒸発器として機能させる。その結果、第1実施形態と同様に、車室内の除湿暖房を実現することができる。 Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is higher than the outside air temperature Tam, the outdoor heat exchanger 14 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is lower than the outside air temperature Tam, the outdoor heat exchanger 14 functions as an evaporator. As a result, it is possible to realize dehumidifying and heating the vehicle interior, as in the first embodiment.
 (c)暖房モード
 暖房モードのヒートポンプサイクル10aでは、制御装置60が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを全閉状態とする。また、制御装置60は、第1開閉弁17aを閉じ、第2開閉弁17bを開き、第3開閉弁17cを開く。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(c) Heating Mode In the heat pump cycle 10a in the heating mode, the controller 60 throttles the heating expansion valve 13a and fully closes the cooling expansion valve 13b. Further, the control device 60 closes the first on-off valve 17a, opens the second on-off valve 17b, and opens the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、暖房モードのヒートポンプサイクル10aでは、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、レシーバ21、絞り状態となっている暖房用膨張弁13a、室外熱交換器14、圧縮機11の吸入口の順に冷媒が循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10a in the heating mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the receiver 21, the heating expansion valve 13a in a throttled state, the outdoor heat exchanger 14, the compression The refrigerant circuit is switched to a refrigerant circuit in which the refrigerant circulates in the order of the suction port of the machine 11 .
 従って、暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を凝縮器として機能させ、室外熱交換器14を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、第1実施形態と同様に、車室内を実現することができる。 Therefore, in the heating mode heat pump cycle 10, a vapor compression refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 14 functions as an evaporator. As a result, similar to the first embodiment, the interior of the vehicle can be realized.
 (d)空調中の冷却モード
 空調中の冷却モードのヒートポンプサイクル10aでは、制御装置60が、冷却用膨張弁13cを絞り状態とする。さらに、空調用の運転モードが暖房モードになっている際には、第3開閉弁17cを閉じる。その他の制御対象機器の作動は、空調用の各運転モードと同様である。
(d) Cooling Mode During Air Conditioning In the heat pump cycle 10a in the cooling mode during air conditioning, the controller 60 throttles the cooling expansion valve 13c. Furthermore, when the operation mode for air conditioning is the heating mode, the third on-off valve 17c is closed. The operations of the other controlled devices are the same as those in each operation mode for air conditioning.
 このため、空調中の冷却モードのヒートポンプサイクル10aでは、冷却用膨張弁13cにて減圧されたチラー19の冷媒通路へ流入する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10a in the cooling mode during air conditioning, the refrigerant circuit is switched to flow into the refrigerant passage of the chiller 19 decompressed by the cooling expansion valve 13c.
 従って、空調中の冷却モードのヒートポンプサイクル10aでは、少なくともチラー19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、第1実施形態と同様に、バッテリ80を冷却することができる。 Therefore, in the heat pump cycle 10a in cooling mode during air conditioning, a vapor compression refrigeration cycle is configured in which at least the chiller 19 functions as an evaporator. As a result, the battery 80 can be cooled as in the first embodiment.
 (e)非空調中の冷却モード
 非空調中の冷却モードのヒートポンプサイクル10では、制御装置60が、圧縮機11を作動させる。また、制御装置60は、暖房用膨張弁13aを全開とし、冷房用膨張弁13bを全閉とし、冷却用膨張弁13cを絞り状態とする。また、制御装置60は、第1開閉弁17aを開き、第2開閉弁17bを閉じ、第3開閉弁17cを閉じる。また、制御装置60は、その他の制御対象機器の作動を適宜制御する。
(e) Cooling Mode without Air Conditioning In the heat pump cycle 10 in the cooling mode without air conditioning, the controller 60 operates the compressor 11 . Further, the control device 60 fully opens the heating expansion valve 13a, fully closes the cooling expansion valve 13b, and throttles the cooling expansion valve 13c. Further, the control device 60 opens the first on-off valve 17a, closes the second on-off valve 17b, and closes the third on-off valve 17c. In addition, the control device 60 appropriately controls the operations of other controlled devices.
 このため、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された冷媒が、水冷媒熱交換器12、全開となっている暖房用膨張弁13a、室外熱交換器14、固定絞り22b、レシーバ21、絞り状態となっている冷却用膨張弁13c、チラー19、室内蒸発器18、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling mode, the refrigerant discharged from the compressor 11 passes through the water-refrigerant heat exchanger 12, the heating expansion valve 13a that is fully open, the outdoor heat exchanger 14, the fixed throttle 22b, the receiver 21, the cooling expansion valve 13c in the throttled state, the chiller 19, the indoor evaporator 18, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
 従って、非空調中の冷却モードのヒートポンプサイクル10では、少なくとも室外熱交換器14を凝縮器として機能させ、チラー19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。その結果、第1実施形態と同様に、バッテリ80を冷却することができる。 Therefore, in the non-air-conditioned cooling mode heat pump cycle 10, a vapor compression refrigeration cycle is configured in which at least the outdoor heat exchanger 14 functions as a condenser and the chiller 19 functions as an evaporator. As a result, the battery 80 can be cooled as in the first embodiment.
 以上の如く、本実施形態の車両用空調装置1aによれば、車室内の快適な空調および車載機器であるバッテリ80の冷却を行うことができる。 As described above, according to the vehicle air conditioner 1a of the present embodiment, comfortable air conditioning in the vehicle interior and cooling of the battery 80, which is an in-vehicle device, can be performed.
 さらに、本実施形態のヒートポンプサイクル10aでは、レシーバ21を備えているので、各運転モード時に、蒸発器として機能する熱交換器の出口側冷媒に過熱度を持たせることができる。従って、蒸発器として機能する熱交換器における冷媒の吸熱量を増加させることができる。その結果、ヒートポンプサイクル10aの成績係数(COP)を向上させて、車両用空調装置1aの作動効率を向上させることができる。 Furthermore, since the heat pump cycle 10a of the present embodiment is provided with the receiver 21, it is possible to impart a degree of superheat to the refrigerant on the outlet side of the heat exchanger functioning as an evaporator in each operation mode. Therefore, the amount of heat absorbed by the refrigerant in the heat exchanger functioning as an evaporator can be increased. As a result, the coefficient of performance (COP) of the heat pump cycle 10a can be improved, and the operating efficiency of the vehicle air conditioner 1a can be improved.
 具体的には、第2冷媒圧力温度センサ65b~第4冷媒圧力温度センサ65dの検出値を用いて、蒸発器として機能する熱交換器の出口側冷媒の過熱度を算定する。そして、算定された過熱度が予め定めた基準過熱度に近づくように、暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13cの作動を制御すればよい。 Specifically, the detection values of the second refrigerant pressure temperature sensor 65b to the fourth refrigerant pressure temperature sensor 65d are used to calculate the degree of superheat of the refrigerant on the outlet side of the heat exchanger functioning as an evaporator. Then, the operations of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c may be controlled so that the calculated degree of superheat approaches a predetermined reference degree of superheat.
 また、本実施形態では、ヒートポンプモジュール701を採用しているので、第1実施形態と同様の効果を得ることができる。すなわち、本実施形態のヒートポンプモジュール701によれば、ヒートポンプサイクル10aの小型化と生産性の向上との両立を図ることができる。 In addition, since the heat pump module 701 is employed in this embodiment, the same effect as in the first embodiment can be obtained. That is, according to the heat pump module 701 of the present embodiment, it is possible to achieve both miniaturization of the heat pump cycle 10a and improvement of productivity.
 (第12実施形態)
 本実施形態のヒートポンプモジュール702では、ヒートポンプサイクル10aの複数の構成機器のうち、図26の破線で囲まれた構成機器が一体化されている。
(12th embodiment)
In the heat pump module 702 of the present embodiment, among the plurality of constituent devices of the heat pump cycle 10a, the constituent devices surrounded by broken lines in FIG. 26 are integrated.
 より具体的には、ヒートポンプモジュール702では、図26に示すように、ヒートポンプサイクル10aを構成する電気式機器のうち、暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、第1開閉弁17a、第2開閉弁17b、第3開閉弁17c、第2冷媒圧力温度センサ65b~第4冷媒圧力温度センサ65d等が、流路ボックス71に取り付けられて一体化されている。 More specifically, in the heat pump module 702, as shown in FIG. 26, the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, the first The on-off valve 17a, the second on-off valve 17b, the third on-off valve 17c, the second refrigerant pressure temperature sensor 65b to the fourth refrigerant pressure temperature sensor 65d, etc. are attached to the channel box 71 and integrated.
 さらに、ヒートポンプモジュール702では、ヒートポンプサイクル10aの構成機器のうち、圧縮機11、水冷媒熱交換器12、チラー19、レシーバ21が、ネジ締結等によって、流路ボックス71の側面に取り付けられて、一体化されている。 Furthermore, in the heat pump module 702, among the components of the heat pump cycle 10a, the compressor 11, the water-refrigerant heat exchanger 12, the chiller 19, and the receiver 21 are attached to the side surface of the flow path box 71 by screw fastening or the like. are integrated.
 その他のヒートポンプサイクル10aおよび車両用空調装置1aの構成および作動は、第11実施形態と同様である。従って、本実施形態のヒートポンプモジュール702においても、第11実施形態と同様の効果を得ることができる。すなわち、本実施形態のヒートポンプモジュール702によれば、ヒートポンプサイクルの小型化と生産性の向上との両立を図ることができる。 Other configurations and operations of the heat pump cycle 10a and the vehicle air conditioner 1a are the same as those of the eleventh embodiment. Therefore, in the heat pump module 702 of this embodiment as well, the same effect as in the eleventh embodiment can be obtained. That is, according to the heat pump module 702 of the present embodiment, both miniaturization of the heat pump cycle and improvement of productivity can be achieved.
 (第13実施形態)
 本実施形態では、第1実施形態に対して、第2制御部62を複数の部材で形成した例を説明する。
(13th embodiment)
In the present embodiment, an example in which the second control section 62 is formed of a plurality of members will be described as opposed to the first embodiment.
 具体的には、本実施形態の第2制御部62は、図27に示すように、第1基板部624a、第2基板部624b、第3基板部624c、および第4基板部624dの4枚の硬質プリント基板で形成されている。第1基板部624a~第4基板部624dは、それぞれ暖房用膨張弁13a、冷房用膨張弁13b、冷却用膨張弁13c、および開閉弁17に電気的に接続されている。 Specifically, as shown in FIG. 27, the second control unit 62 of the present embodiment includes four substrates: a first substrate portion 624a, a second substrate portion 624b, a third substrate portion 624c, and a fourth substrate portion 624d. made of hard printed circuit board. The first to fourth substrate portions 624a to 624d are electrically connected to the heating expansion valve 13a, the cooling expansion valve 13b, the cooling expansion valve 13c, and the on-off valve 17, respectively.
 第1基板部624a~第4基板部624dは、それぞれ角柱状のスペーサ622を介して、流路ボックス71の取付面712にネジ止め等の手段で取り付けられている。スペーサ622は、第1基板部624a~第4基板部624dの4つの角部側に配置されている。本実施形態では、同等の長さのスペーサ622を採用しているので、第1基板部624a~第4基板部624dは、概ね同一平面状に配置されている。 The first substrate portion 624a to the fourth substrate portion 624d are attached to the mounting surface 712 of the flow channel box 71 via a prism-shaped spacer 622 by means such as screwing. The spacers 622 are arranged on four corner sides of the first substrate portion 624a to the fourth substrate portion 624d. In this embodiment, the spacers 622 having the same length are used, so the first substrate portion 624a to the fourth substrate portion 624d are arranged substantially in the same plane.
 また、第1基板部624a~第4基板部624dは、必要に応じて、図示しない基板コネクタ等を介して互いに電気的に接続されている。基板コネクタは、硬質プリント基板に直接固定される電気接続部である。従って、第2制御部62は、必要に応じて、第1基板部624a~第4基板部624dを互いに電気的に接続するための構成を有している。 In addition, the first board portion 624a to the fourth board portion 624d are electrically connected to each other via a board connector or the like (not shown) as required. A board connector is an electrical connection that is secured directly to a rigid printed circuit board. Therefore, the second control section 62 has a configuration for electrically connecting the first substrate section 624a to the fourth substrate section 624d to each other as required.
 その他のヒートポンプサイクル10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプモジュール70においても第1実施形態と同様の効果を得ることができる。すなわち、複数の電気式機器のそれぞれに対して適切な電線を選別して接続する作業負担を軽減させて、ヒートポンプサイクルの小型化と生産性の向上との両立を図ることができる。 Other configurations and operations of the heat pump cycle 10 and the vehicle air conditioner 1 are the same as in the first embodiment. Therefore, the heat pump module 70 of this embodiment can also obtain the same effects as those of the first embodiment. That is, it is possible to reduce the work load of selecting and connecting appropriate wires to each of a plurality of electric devices, and achieve both miniaturization of the heat pump cycle and improvement of productivity.
 さらに、本実施形態のヒートポンプモジュール70では、第2制御部62のそれぞれの基板部624a~624d毎に、別の基板部を重ねるマウントを行うことができる。これによれば、第2制御部62の電子部品やコネクタ620の数量を容易に増加させることが可能となり、第2制御部62の設計自由度を向上させることができる。 Furthermore, in the heat pump module 70 of the present embodiment, each of the substrate portions 624a to 624d of the second control portion 62 can be mounted by overlapping another substrate portion. According to this, it is possible to easily increase the number of electronic components and connectors 620 of the second control section 62, and the degree of freedom in designing the second control section 62 can be improved.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 本開示に係るヒートポンプモジュールの一体化の態様は上述の実施形態に限定されない。例えば、ヒートポンプモジュールに一体化される複数の電気式機器として、いずれの電気式機器が選択されていてもよい。さらに、ヒートポンプモジュールに、ヒートポンプサイクル10、10aのみならず、高温側熱媒体回路40、および低温側熱媒体回路50を構成する電気式機器が一体化されていてもよい。 The mode of integration of the heat pump module according to the present disclosure is not limited to the above-described embodiments. For example, any electrical device may be selected as the plurality of electrical devices integrated with the heat pump module. Furthermore, the heat pump module may integrate not only the heat pump cycles 10 and 10a, but also electrical devices that form the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 .
 また、流路ボックス71における各電気式機器の取付位置は、上述の実施形態で説明した取付位置に限定されない。つまり、流路ボックス71内に形成された冷媒通路に応じて、暖房用膨張弁13a、冷房用膨張弁13b、および冷却用膨張弁13cの取付位置が、図4や図11に示された配置と異なっていてもよい。高圧側冷媒入口71a等の複数の冷媒出入口の配置についても同様である。 Also, the mounting position of each electrical device in the channel box 71 is not limited to the mounting position described in the above-described embodiment. That is, the mounting positions of the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are arranged as shown in FIGS. may be different from The same applies to the arrangement of a plurality of refrigerant inlets and outlets such as the high pressure side refrigerant inlet 71a.
 上述の実施形態では、金属で形成された流路ボックス71、カバー部材72、およびスペーサ622を採用した例を説明したが、他の材料で形成された流路ボックス71、カバー部材72、およびスペーサ622を採用してもよい。より具体的には、導電性樹脂、導電性塗料を塗った樹脂、導電性カーボン等、導電性を有する材料で形成された流路ボックス71、カバー部材72、およびスペーサ622を採用することができる。 In the above-described embodiment, an example in which the channel box 71, the cover member 72, and the spacer 622 made of metal has been described. 622 may be employed. More specifically, the channel box 71, the cover member 72, and the spacer 622 made of a conductive material such as conductive resin, resin coated with conductive paint, or conductive carbon can be employed. .
 上述の実施形態で説明した電気基板部としての第2制御部62は、通信、制御用の電気信号のみを通電させる電子基板であってもよい。また、第2制御部62は、駆動電流等が流れる電気回路基板であってもよい。さらに、中央演算処理装置(すなわち、CPU)等を搭載するマザーボードであってもよい。 The second control section 62 as the electric board section described in the above-described embodiment may be an electronic board that energizes only electric signals for communication and control. Also, the second control unit 62 may be an electric circuit board through which a drive current or the like flows. Further, it may be a motherboard on which a central processing unit (that is, CPU) or the like is mounted.
 上述の第13実施形態等では、第2制御部62を複数の基板部で形成し、1つ基板部に1つの電気式機器を接続した例を説明したが、1つの基板部に複数の電気式機器を接続してもよい。例えば、第2制御部62を、第1基板部と第2基板部で形成し、第1基板部に、暖房用膨張弁13a、冷房用膨張弁13b、および冷却用膨張弁13cを接続し、第2基板部に、開閉弁17を接続してもよい。 In the thirteenth embodiment and the like described above, an example in which the second control unit 62 is formed of a plurality of substrates and one electrical device is connected to one substrate has been described. equipment may be connected. For example, the second control unit 62 is formed by a first substrate portion and a second substrate portion, the heating expansion valve 13a, the cooling expansion valve 13b, and the cooling expansion valve 13c are connected to the first substrate portion, The on-off valve 17 may be connected to the second substrate portion.
 上述の実施形態では、流路ボックス71内の冷媒通路として、高圧側冷媒通路70aおよび低圧側冷媒通路70bについて説明したが、高圧側冷媒通路70aおよび低圧側冷媒通路70bの形状や配置態様は、上述の実施形態に限定されない。 In the above-described embodiment, the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b have been described as the refrigerant passages in the flow path box 71. However, the shape and arrangement of the high-pressure side refrigerant passage 70a and the low-pressure side refrigerant passage 70b are It is not limited to the embodiments described above.
 例えば、図27に示すように、流路ボックス71の取付面712に第2制御部62側へ突出した突出部712aを形成して、突出部712aの内部に低圧側冷媒通路70bを形成してもよい。これによれば、低圧側冷媒通路70bを第2制御部62に近づけることができるので、より一層、低圧側冷媒通路70bを流通する低圧側冷媒によって、第2制御部62を冷却しやすくなる。 For example, as shown in FIG. 27, a projecting portion 712a projecting toward the second control unit 62 is formed on the mounting surface 712 of the channel box 71, and the low-pressure side refrigerant passage 70b is formed inside the projecting portion 712a. good too. According to this, the low-pressure side refrigerant passage 70b can be brought closer to the second control section 62, so that the second control section 62 can be more easily cooled by the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 70b.
 本開示に係るヒートポンプモジュールの適用は、上述の実施形態に開示された例に限定されない。 Application of the heat pump module according to the present disclosure is not limited to the examples disclosed in the above embodiments.
 例えば、ヒートポンプサイクル10の高温側熱媒体回路40を廃止し、水冷媒熱交換器12に代えて室内凝縮器を有するヒートポンプサイクルに適用してもよい。室内凝縮器は、圧縮機11から吐出された吐出冷媒と送風空気とを熱交換させて、送風空気を加熱する送風空気加熱用の熱交換器である。室内凝縮器は、ヒータコア42と同様に、室内空調ユニット30内に配置される。このため、室内凝縮器は、ヒートポンプモジュールに一体化する必要はない。 For example, the high-temperature side heat medium circuit 40 of the heat pump cycle 10 may be eliminated, and instead of the water-refrigerant heat exchanger 12, a heat pump cycle having an indoor condenser may be applied. The indoor condenser is a heat exchanger for heating blown air that heats the blown air by exchanging heat between the refrigerant discharged from the compressor 11 and the blown air. The indoor condenser is located within the indoor air conditioning unit 30 as is the heater core 42 . Therefore, the indoor condenser need not be integrated into the heat pump module.
 また、ヒートポンプサイクル10の冷却対象物となる車載機器は、バッテリ80に限定されない。具体的には、車載機器は、モータジェネレータ、インバータ、PCU、トランスアクスル、ADAS用の制御装置等であってもよい。さらに、本開示に係るヒートポンプモジュールは、機器冷却機能を有していない空調装置に適用されていてもよい。 In addition, the vehicle-mounted device that is the object to be cooled by the heat pump cycle 10 is not limited to the battery 80. Specifically, the in-vehicle device may be a motor generator, an inverter, a PCU, a transaxle, a control device for ADAS, or the like. Furthermore, the heat pump module according to the present disclosure may be applied to an air conditioner that does not have a device cooling function.
 また、上述の実施形態では、ヒートポンプサイクル10、10aの冷媒として、R1234yfを採用した例を説明したが、これに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 Also, in the above-described embodiment, an example in which R1234yf is used as the refrigerant for the heat pump cycles 10 and 10a has been described, but the present invention is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 また、高温側熱媒体回路40および低温側熱媒体回路50の構成は、上述の実施形態に開示された例に限定されない。例えば、高温側熱媒体回路40に高温側熱媒体を加熱する電気ヒータを追加してもよい。さらに、低温側熱媒体回路50に低温側熱媒体と外気とを熱交換させる低温側外部熱交換器を追加してもよい。さらに、低温側熱媒体回路の熱媒体回路を切り替える電気式の切替弁を追加してもよい。 Also, the configurations of the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 are not limited to the examples disclosed in the above embodiments. For example, an electric heater for heating the high temperature side heat medium may be added to the high temperature side heat medium circuit 40 . Furthermore, a low-temperature side external heat exchanger that exchanges heat between the low-temperature side heat medium and the outside air may be added to the low-temperature side heat medium circuit 50 . Furthermore, an electric switching valve may be added to switch the heat medium circuit of the low temperature side heat medium circuit.
 そして、高温側熱媒体回路40の電気ヒータや、低温側熱媒体回路50の電気式の切替弁をヒートポンプモジュールに一体化させてもよい。 The electric heater of the high temperature side heat medium circuit 40 and the electric switching valve of the low temperature side heat medium circuit 50 may be integrated with the heat pump module.
 また、上述の実施形態では、高温側熱媒体および低温側熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。例えばジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体を採用してもよい。 Also, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as the high-temperature side heat medium and the low-temperature side heat medium has been described, but the present invention is not limited to this. For example, a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
 また、本開示に係るヒートポンプモジュールの適用は車両用に限定されない。例えば、室内の空調を行いつつ、温度調整対象物(例えば、コンピュータ、サーバ装置、その他の周辺機器)の温度を調整する温度調整機能付きの据え置き型の空調装置等に適用してもよい。 Also, application of the heat pump module according to the present disclosure is not limited to vehicles. For example, it may be applied to a stationary air conditioner with a temperature adjustment function that adjusts the temperature of objects to be temperature-adjusted (eg, computers, server devices, and other peripheral devices) while air-conditioning the room.
 本明細書に開示されたヒートポンプモジュールの特徴を以下の通り示す。
(項目1)
 ヒートポンプサイクル(10、10a)を構成する複数の構成機器を一体化させたヒートポンプモジュールであって、
 前記複数の構成機器のうち、電気によって作動する複数の電気式機器(13a~13c、17、65a、65c)が取り付けられる取付部材(71)と、
 前記取付部材に取り付けられた前記電気式機器の作動を制御するために、前記電気式機器に電気的に接続される電気基板部(62、624a~624d)と、を備えるヒートポンプモジュール。
(項目2)
 前記電気基板部は、単一の部材で形成されている項目1に記載のヒートポンプモジュール。
(項目3)
 前記複数の電気式機器は、それぞれ前記電気基板部に電気的に接続される接続端子部(131a、131b、131c、171)を有し、
 それぞれの前記接続端子部は、前記複数の電気式機器が前記取付部材に取り付けられた際に、同一方向に突出しており、前記電気基板部に直接接続可能に配置されている項目1または2に記載のヒートポンプモジュール。
(項目4)
 前記取付部材は、冷媒を流通させる冷媒通路を形成する通路形成部(711)および前記電気式機器の一部を形成する機器形成部(714)を有している項目1ないし3のいずれか1つに記載のヒートポンプモジュール。
(項目5)
 前記取付部材は、冷媒を流通させる冷媒通路を形成する通路形成部(711)を有し、
 前記冷媒通路として、前記ヒートポンプサイクルの高圧側冷媒を流通させる高圧側冷媒通路(70a)、および前記ヒートポンプサイクルの低圧側冷媒を流通させる低圧側冷媒通路(70b)が形成されており、
 前記高圧側冷媒通路および前記低圧側冷媒通路は、前記低圧側冷媒通路を流通する前記低圧側冷媒によって前記電気基板部を冷却可能に配置されている項目1ないし4のいずれか1つに記載のヒートポンプモジュール。
(項目6)
 前記取付部材は、導電性を有し、前記電気基板部のグランド線に電気的に接続されている項目1ないし5のいずれか1つに記載のヒートポンプモジュール。
(項目7)
 前記取付部材とともに前記電気基板部の収容空間を形成するカバー部材(72)を備える項目1ないし6のいずれか1つに記載のヒートポンプモジュール。
The features of the heat pump module disclosed herein are as follows.
(Item 1)
A heat pump module in which a plurality of components constituting a heat pump cycle (10, 10a) are integrated,
a mounting member (71) to which a plurality of electric devices (13a to 13c, 17, 65a, 65c) operated by electricity among the plurality of constituent devices are mounted;
an electrical board portion (62, 624a-624d) electrically connected to the electrical equipment mounted on the mounting member for controlling operation of the electrical equipment.
(Item 2)
2. The heat pump module according to item 1, wherein the electric board portion is formed of a single member.
(Item 3)
The plurality of electric devices each have a connection terminal portion (131a, 131b, 131c, 171) electrically connected to the electric board portion,
Each of the connection terminal portions protrudes in the same direction when the plurality of electrical devices are attached to the attachment member, and is arranged to be directly connectable to the electric board portion. A heat pump module as described.
(Item 4)
3. Any one of items 1 to 3, wherein the mounting member has a passage forming portion (711) forming a refrigerant passage for circulating a refrigerant and a device forming portion (714) forming a part of the electric device. The heat pump module according to 1.
(Item 5)
The mounting member has a passage forming portion (711) that forms a refrigerant passage through which the refrigerant flows,
As the refrigerant passages, a high pressure side refrigerant passage (70a) through which the high pressure side refrigerant of the heat pump cycle flows and a low pressure side refrigerant passage (70b) through which the low pressure side refrigerant of the heat pump cycle flows are formed,
5. The high-pressure side refrigerant passage and the low-pressure side refrigerant passage according to any one of items 1 to 4, wherein the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage is arranged so as to cool the electric board portion. heat pump module.
(Item 6)
6. The heat pump module according to any one of items 1 to 5, wherein the mounting member has electrical conductivity and is electrically connected to a ground wire of the electric substrate section.
(Item 7)
7. The heat pump module according to any one of items 1 to 6, further comprising a cover member (72) forming an accommodation space for the electric substrate section together with the mounting member.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (7)

  1.  ヒートポンプサイクル(10、10a)を構成する複数の構成機器を一体化させたヒートポンプモジュールであって、
     複数の前記構成機器のうち、電気によって作動する複数の電気式機器(13a~13c、17、65a、65c)が取り付けられる取付部材(71)と、
     前記取付部材に取り付けられた前記電気式機器の作動を制御するために、前記電気式機器に電気的に接続される電気基板部(62、624a~624d)と、を備えるヒートポンプモジュール。
    A heat pump module in which a plurality of components constituting a heat pump cycle (10, 10a) are integrated,
    a mounting member (71) to which a plurality of electric devices (13a to 13c, 17, 65a, 65c) operated by electricity among the plurality of constituent devices are mounted;
    an electrical board portion (62, 624a-624d) electrically connected to the electrical equipment mounted on the mounting member for controlling operation of the electrical equipment.
  2.  前記電気基板部は、単一の部材で形成されている請求項1に記載のヒートポンプモジュール。 The heat pump module according to claim 1, wherein the electric board portion is formed of a single member.
  3.  複数の前記電気式機器は、それぞれ前記電気基板部に電気的に接続される接続端子部(131a、131b、131c、171)を有し、
     それぞれの前記接続端子部は、複数の前記電気式機器が前記取付部材に取り付けられた際に、同一方向に突出しており、前記電気基板部に直接接続可能に配置されている請求項1または2に記載のヒートポンプモジュール。
    The plurality of electric devices each have a connection terminal portion (131a, 131b, 131c, 171) electrically connected to the electric board portion,
    3. Each of said connection terminal portions protrudes in the same direction when a plurality of said electrical devices are attached to said attachment member, and is disposed so as to be directly connectable to said electric board portion. The heat pump module described in .
  4.  前記取付部材は、冷媒を流通させる冷媒通路を形成する通路形成部(711)および前記電気式機器の一部を形成する機器形成部(714)を有している請求項1ないし3のいずれか1つに記載のヒートポンプモジュール。 4. The mounting member according to any one of claims 1 to 3, wherein the mounting member has a passage forming portion (711) forming a coolant passage for circulating a coolant and a device forming portion (714) forming a part of the electric device. 1. A heat pump module according to one.
  5.  前記取付部材は、冷媒を流通させる冷媒通路を形成する通路形成部(711)を有し、
     前記冷媒通路として、前記ヒートポンプサイクルの高圧側冷媒を流通させる高圧側冷媒通路(70a)、および前記ヒートポンプサイクルの低圧側冷媒を流通させる低圧側冷媒通路(70b)が形成されており、
     前記高圧側冷媒通路および前記低圧側冷媒通路は、前記低圧側冷媒通路を流通する前記低圧側冷媒によって前記電気基板部を冷却可能に配置されている請求項1ないし4のいずれか1つに記載のヒートポンプモジュール。
    The mounting member has a passage forming portion (711) that forms a refrigerant passage through which the refrigerant flows,
    As the refrigerant passages, a high pressure side refrigerant passage (70a) through which the high pressure side refrigerant of the heat pump cycle flows and a low pressure side refrigerant passage (70b) through which the low pressure side refrigerant of the heat pump cycle flows are formed,
    5. The high-pressure side coolant passage and the low-pressure side coolant passage according to claim 1, wherein the low-pressure side coolant flowing through the low-pressure side coolant passage is arranged so as to cool the electric board portion. of heat pump modules.
  6.  前記取付部材は、導電性を有し、前記電気基板部のグランド線に電気的に接続されている請求項1ないし5のいずれか1つに記載のヒートポンプモジュール。 The heat pump module according to any one of claims 1 to 5, wherein the mounting member has conductivity and is electrically connected to a ground wire of the electric substrate section.
  7.  前記取付部材とともに前記電気基板部の収容空間を形成するカバー部材(72)を備える請求項1ないし6のいずれか1つに記載のヒートポンプモジュール。 The heat pump module according to any one of claims 1 to 6, further comprising a cover member (72) forming an accommodation space for the electric board portion together with the mounting member.
PCT/JP2022/021534 2021-06-14 2022-05-26 Heat pump module WO2022264770A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-098849 2021-06-14
JP2021098849 2021-06-14
JP2022084400A JP2022190675A (en) 2021-06-14 2022-05-24 heat pump module
JP2022-084400 2022-05-24

Publications (1)

Publication Number Publication Date
WO2022264770A1 true WO2022264770A1 (en) 2022-12-22

Family

ID=84527374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021534 WO2022264770A1 (en) 2021-06-14 2022-05-26 Heat pump module

Country Status (1)

Country Link
WO (1) WO2022264770A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261928B1 (en) * 2022-10-18 2023-04-20 マレリ株式会社 Heat exchange device and cooling water circuit
JP7261921B1 (en) 2021-10-28 2023-04-20 マレリ株式会社 heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211180A (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve gear
WO2020015654A1 (en) * 2018-07-20 2020-01-23 杭州三花研究院有限公司 Electronic expansion valve, manufacturing method thereof, and thermal management assembly
WO2020108514A1 (en) * 2018-11-28 2020-06-04 杭州三花研究院有限公司 Electric valve, heat management assembly and air conditioning system
WO2020192541A1 (en) * 2019-03-27 2020-10-01 杭州三花研究院有限公司 Heat management assembly and heat management system
JP2021047000A (en) * 2019-09-13 2021-03-25 株式会社デンソー Connection module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211180A (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve gear
WO2020015654A1 (en) * 2018-07-20 2020-01-23 杭州三花研究院有限公司 Electronic expansion valve, manufacturing method thereof, and thermal management assembly
WO2020108514A1 (en) * 2018-11-28 2020-06-04 杭州三花研究院有限公司 Electric valve, heat management assembly and air conditioning system
WO2020192541A1 (en) * 2019-03-27 2020-10-01 杭州三花研究院有限公司 Heat management assembly and heat management system
JP2021047000A (en) * 2019-09-13 2021-03-25 株式会社デンソー Connection module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261921B1 (en) 2021-10-28 2023-04-20 マレリ株式会社 heat exchanger
JP2023066363A (en) * 2021-10-28 2023-05-15 マレリ株式会社 Heat exchange device
JP7261928B1 (en) * 2022-10-18 2023-04-20 マレリ株式会社 Heat exchange device and cooling water circuit

Similar Documents

Publication Publication Date Title
CN108800659B (en) Regulated vehicle heating and cooling system and control method
US9786964B2 (en) Refrigeration cycle device for auxiliary heating or cooling
WO2022264770A1 (en) Heat pump module
US20190111756A1 (en) Refrigeration cycle device
US11383583B2 (en) Thermal management device for vehicle
US20220032732A1 (en) Battery heating device for vehicle
US10899198B2 (en) Air conditioner for vehicle
WO2013187433A1 (en) Vehicle air conditioner
US10933717B2 (en) Refrigeration cycle device
JP2019045034A (en) Refrigeration cycle device
WO2014076934A1 (en) Refrigeration cycle device
JP2021047000A (en) Connection module
WO2021075181A1 (en) Refrigeration cycle device
JP2013217631A (en) Refrigeration cycle device
WO2021049435A1 (en) Connection module
WO2020137232A1 (en) Temperature regulator
JP6669042B2 (en) Vehicle air conditioner
WO2015011887A1 (en) Vehicular air conditioning device, and constituent unit thereof
JP2020142789A (en) Heat management system
WO2019082570A1 (en) Vehicular heat management system
WO2019026481A1 (en) Combined heat exchanger
JP2022190675A (en) heat pump module
WO2021095338A1 (en) Refrigeration cycle device
WO2023026869A1 (en) Compressor module
CN111033145A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE