WO2023281868A1 - Joint structure - Google Patents

Joint structure Download PDF

Info

Publication number
WO2023281868A1
WO2023281868A1 PCT/JP2022/015071 JP2022015071W WO2023281868A1 WO 2023281868 A1 WO2023281868 A1 WO 2023281868A1 JP 2022015071 W JP2022015071 W JP 2022015071W WO 2023281868 A1 WO2023281868 A1 WO 2023281868A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
electrodes
protective layer
resin
joint
Prior art date
Application number
PCT/JP2022/015071
Other languages
French (fr)
Japanese (ja)
Inventor
修一 舟橋
達矢 福谷
智明 田所
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280048013.9A priority Critical patent/CN117616880A/en
Priority to JP2023533429A priority patent/JPWO2023281868A1/ja
Publication of WO2023281868A1 publication Critical patent/WO2023281868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present disclosure relates to a bonded structure, and more particularly to a bonded structure in which an element member is electrically bonded (or mounted) to a circuit board via a bonding portion (also referred to as a “mounted structure”). .
  • Patent Document 2 in order to prevent ion migration that may occur between a pair of external electrodes of the electronic component, of the four side surfaces of the substantially rectangular parallelepiped electronic component, the side surface facing the main surface of the circuit board is excluded. It discloses that three side surfaces (claim 1) or four side surfaces (claims 2 and 3) of a substantially rectangular parallelepiped electronic component are coated with a coating resin layer.
  • JP 2014-157951 A WO2017/110136 JP 2021-58894 A JP 2013-149774 A
  • chip parts and the like have been used as electronic parts that are electrically connected to circuit boards, but instead of chip parts, it is possible to use element members in which the element structure is formed on another substrate (base material). Conceivable.
  • Patent Document 2 which relates to a joint structure in which a chip component is electrically joined to a circuit board
  • ion migration is defined as ionization of a metal component of one electrode between electrodes having a potential difference and migration toward the other electrode. It is a phenomenon in which the insulation between electrodes is reduced or the electrodes are short-circuited due to the metal that migrates and precipitates, and it is described that this phenomenon is likely to occur under high humidity conditions.
  • an element member in which an element structure including a ceramic part and a pair of electrodes is formed on a substrate (base material) is electrically connected to a circuit board.
  • ion migration (hereinafter also simply referred to as “migration”) is the ionization of the metal component of one electrode between electrodes with a potential difference, moving toward the other electrode, and the deposited metal Insulation (in other words, resistance) between electrodes decreases, and in extreme cases short-circuiting occurs between the electrodes. It has been found that the resistance of the electrode increases, and in extreme cases, a phenomenon in which the one electrode is melted through (hereinafter referred to as "open”) may occur.
  • Migration occurs depending on the strength of the electric field, in other words, it occurs in proportion to the load voltage and in inverse proportion to the distance between the electrodes.
  • the element member includes an element electrode including a pair of internal electrodes and a pair of external electrodes
  • the electrodes are dissolved first by migration, resulting in a high resistance.
  • the resistance of the joint structure In a high-humidity environment, it is not preferable for the resistance of the joint structure to become significantly lower or higher than the initial value due to ion migration, because in any case the electrical properties of the joint structure will be impaired.
  • circuit board has a second protective layer disposed on the second base material, and the pair of land electrodes are exposed from the second protective layer. junction structure.
  • the first resin material is polyimide resin, polyamideimide resin, epoxy resin, liquid crystal polymer, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, polyurethane resin, polyamide resin, polyetherimide.
  • a junction structure in which an element member including a ceramic part and an element electrode including a pair of internal electrodes and a pair of external electrodes is electrically bonded to a circuit board, and Also provided is a bonded structure exhibiting stable electrical properties.
  • FIG. 1 is a schematic cross-sectional view showing a bonded structure according to one embodiment (Embodiment 1) of the present disclosure.
  • 2A and 2B are diagrams for explaining the manufacturing method of the bonded structure in the embodiment of FIG. 1
  • FIGS. 3A and 3B are diagrams for explaining the manufacturing method of the bonded structure in the embodiment of FIG. is a schematic cross-sectional view of the element member
  • FIG. 3(b) is a schematic top view of the element member
  • FIG. 3(a) is a view taken along line AA in FIG. 3(b). It is a schematic schematic cross-sectional view at the time).
  • 4A and 4B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 1, FIG.
  • FIG. 4A being a schematic cross-sectional view of a circuit board
  • FIG. 4A is a schematic top view
  • FIG. 4A is a schematic cross-sectional view taken along line BB in FIG. 4B
  • FIG. 5 is a schematic enlarged cross - sectional view of the joint portion of the joint structure in the embodiment of FIG. 1
  • FIG. 5(b) shows a case where L 2 /L 1 exceeds 3 (for example, 3.5)
  • L 1 is the length of the junction region of the external electrode
  • L 2 is 5 shows the external electrode 4a, the land electrode 14a and the joint portion 30a, but the external electrode 4b, the land electrode 14b and the joint portion 30b are the same).
  • FIG. 3 for example, 3.5
  • FIG. 6 is a schematic cross-sectional view showing a bonded structure according to another embodiment (embodiment 2) of the present disclosure.
  • 7A and 7B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 6, FIG. 7A being a schematic cross-sectional view of an element member, and FIG. FIG. 7A is a schematic top view (FIG. 7A is a schematic cross-sectional view taken along line AA in FIG. 7B).
  • FIG. 8 is a schematic cross-sectional view showing a joined structure according to another embodiment (embodiment 3) of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view showing a bonded structure according to another embodiment (Embodiment 4) of the present disclosure.
  • FIGS. 10A and 10B are diagrams illustrating a method for manufacturing a bonded structure in the embodiment of FIG. 9, FIG. 10A being a schematic cross-sectional view of an element member, and FIG. FIG. 10(a) is a schematic top view (FIG. 10(a) is a schematic cross-sectional view taken along line AA in FIG. 10(b)).
  • 11A and 11B are schematic schematic cross-sectional views showing a bonded structure according to another embodiment (embodiment 5) of the present disclosure, in which FIG. ) shows a cross section including a ceramic part (FIG. 11(a) is a schematic schematic cross-sectional view when viewed along the EE line in FIGS. 12(b) and 13(b), and FIG.
  • FIG. 11(b) is a schematic cross-sectional view taken along line FF in FIGS. 12(b) and 13(b)).
  • 12A and 12B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 11, FIG. 12A being a schematic cross-sectional view of an element member, FIG. 12(a) is a schematic top view (FIG. 12(a) is a schematic cross-sectional view taken along line CC in FIG. 12(b)).
  • 13A and 13B are diagrams for explaining a method for manufacturing a bonded structure according to the embodiment of FIG. 11, FIG. 13A being a schematic cross-sectional view of a circuit board, FIG. 13(a) is a schematic top view (FIG. 13(a) is a schematic cross-sectional view taken along line DD in FIG. 13(b)).
  • FIG. 14 is a schematic cross-sectional view showing a comparative bonded structure in which a chip component is bonded to a circuit board.
  • the joint structure 40 of this embodiment includes: A pair of device electrodes 2a and 2b (hereinafter also referred to as device electrodes 2) including a pair of internal electrodes 3a and 3b and a pair of external electrodes 4a and 4b (hereinafter also referred to as device electrodes 2), a ceramic portion 5, and a first protective layer 6 are the first base material.
  • the ceramic portion 5 is covered with a first protective layer 6, the pair of external electrodes 4a and 4b are exposed from the first protective layer 6, and the pair of internal electrodes 3a and 3b are positioned within the ceramic portion 5 and
  • the thickness t of 5 is 40 ⁇ m or less. According to this embodiment, such a configuration provides a joint structure that exhibits stable electrical characteristics even in a high-humidity environment.
  • joint structure 40 of the present embodiment will be described in detail through its manufacturing method. It should be noted that the description of each member and/or material can similarly apply to the joint structure 40 finally obtained unless otherwise specified.
  • the element electrodes 2 are formed on the surface of the first substrate 1 .
  • the surface of the first base material 1 on which the element electrodes 2 are formed is also referred to as the "principal surface" of the first base material 1.
  • the first base material 1 may be any appropriate base material (or substrate) as long as the surface portion on which the device electrodes 2 are formed is insulating.
  • the first base material 1 may be a flexible substrate (base layer).
  • the first base material 1 may contain any appropriate resin material (second resin material).
  • the resin material (second resin material) used for the first base material 1 includes at least one selected from the group consisting of, for example, polyimide-based resin, polyester-based resin, glass-epoxy resin, liquid crystal polymer (LCP), and the like. can be anything.
  • the first substrate 1 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire first substrate 1, 30% by mass or less).
  • the other component preferably has lower moisture permeability than the resin material.
  • the present embodiment is not limited to this, and the first base material 1 may be a rigid substrate.
  • the rigid substrate may be a conventional rigid substrate (which may consist of glass-epoxy resin, paper-phenolic resin, paper-epoxy resin, etc.).
  • the thickness of the first base material 1 can be selected as appropriate, and can be, for example, 10 ⁇ m or more and 5 mm or less.
  • the thickness of the first substrate 1 may be relatively thin, for example 10 ⁇ m or more and 80 ⁇ m or less, particularly 60 ⁇ m or less, more particularly 50 ⁇ m or less.
  • the method of forming the element electrodes 2 on the surface of the first base material 1 is not particularly limited.
  • a metal foil for example, Cu foil
  • the metal foil on the first base material 1 is patterned according to the shape of the device electrode 2 by photolithography,
  • the element electrode 2 in other words, the internal The electrodes 3a, 3b and the external electrodes 4a, 4b may be integrally formed (in this case, an adhesive layer may remain between the first substrate 1 and the element electrodes 2).
  • the device electrode 2 having a fine structure can be formed with high accuracy.
  • the present embodiment is not limited to this, and although it is less preferable, for example, a conductive paste is applied (for example, printed) on the first base material 1 in a pattern corresponding to the shape of the element electrode 2,
  • the element electrodes 2 may be formed by appropriately heating. The heating may be performed simultaneously with the formation of the ceramic portion 5, which will be described later, or separately.
  • the device electrodes 2 are formed using any appropriate conductive material, and can be made of metal, for example.
  • the Ag content in the device electrode 2 may be, for example, 20% by mass or less, particularly 10% by mass or less, and preferably substantially 0% by mass.
  • a conductive paste containing Ag-containing particles such as Ag particles or particles containing Ag and Pd
  • the ceramic material is The internal and/or external electrodes often contained Ag, since the sintering can be co-sintered with the Ag-containing particles.
  • the Ag content of the device electrode 2 is reduced as described above, preferably by substantially not containing Ag, so that the finally obtained junction structure 40 Even when the is used under high humidity conditions, there is a problem between the external electrodes 4a and 4b resulting from migration (compared to a bonded structure in which a chip component or a bonding member having a higher Ag content in the external electrode is bonded to a circuit board) This can reduce or prevent the growth of dendrites at the junction structure 40, and effectively reduce or prevent the resistance of the junction structure 40 from being lowered (short circuit in a significant case).
  • the device electrode 2 includes a base material made of at least one metal selected from the group consisting of Cu, Al, Ni, Sn, Ti, Zn, Fe, etc., and Ni, Au , Sn, Zn, Cr, W, Pd, Pt, Cu, etc., and a plated layer (which may be a single layer or multi-layer structure) made of at least one metal selected from the group consisting of.
  • the thickness of the element electrode 2 is not particularly limited as long as it is smaller than the thickness of the later-described ceramic portion 5. For example, it is 30 ⁇ m or less, particularly 20 ⁇ m or less. Such a relatively thin element electrode 2 would likely be susceptible to dissolution due to migration if it were not covered by joints 30a and 30b and the first protective layer 6, which will be described later.
  • the shape of the element electrode 2 (including the pair of internal electrodes 3a and 3b and the pair of external electrodes 4a and 4b) is determined according to the electrical characteristics and dimensions desired for the element member 10 and thus the junction structure 40. It can be selected as appropriate according to, for example.
  • ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG. 2(b), ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG. 2(b), ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG. 2(b), ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG. 2(b), ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG.
  • the ceramic portion 5 can be formed using any appropriate ceramic material depending on the functions desired for the element member 10 .
  • a raw material mixture containing particles of a predetermined metal oxide (ceramic material) is applied (e.g., printed) onto predetermined areas of the first substrate 1 and the element electrodes 2 by any suitable method.
  • the ceramic portion 5 can be formed by firing by heating, annealing and/or drying as appropriate.
  • the heating (including firing) temperature can be set according to the ceramic material used, but it is preferable that the heating does not substantially cause deformation of the first substrate 1 .
  • the thickness t (see FIGS. 1 and 3(a)) of the ceramic portion 5 should be 40 ⁇ m or less.
  • the thickness t of the ceramic portion refers to the height from the surface (main surface) of the first substrate 1 to the surface of the ceramic portion 5 opposite to the main surface.
  • the lower limit of the thickness of the ceramic portion 5 may be larger than the thickness of the element electrode 2, but may be larger than the thickness of the element electrode 2 by, for example, 2 ⁇ m or more, particularly 5 ⁇ m or more.
  • the present embodiment is not bound by any theory, since the thickness t of the ceramic part 5 is so small, the bonding interface between the layers of the joint structure 40 finally obtained has less unevenness, resulting in sealing.
  • migration can be suppressed, and the resistance of the joint structure 40 is increased (open in extreme cases) and/or reduced. It is possible to effectively reduce or prevent (short circuit in a serious case).
  • a first protective layer 6 covering the ceramic portion 5 is formed.
  • the first protective layer 6 may contain any appropriate material as long as the portions that contact the ceramic portion 5 and the element electrodes 2 are insulative.
  • the first protective layer 6 may be flexible.
  • the first protective layer 6 may contain any suitable resin material (first resin material).
  • the resin material (first resin material) used for the first protective layer 6 includes, for example, polyimide resin, polyamideimide resin, epoxy resin, liquid crystal polymer (LCP), polyethylene resin, polypropylene resin, polystyrene resin, It may contain at least one selected from the group consisting of polyester-based resins, polyurethane-based resins, polyamide-based resins (including nylon), polyetherimide-based resins, and (meth)acrylic-based resins.
  • LCP is preferable because it has relatively low moisture permeability and is therefore more effective in suppressing migration.
  • the first protective layer 6 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire first protective layer 6, 30% by mass or less).
  • the other component preferably has lower moisture permeability than the resin material.
  • the method of forming the first protective layer 6 covering the ceramic portion 5 is not particularly limited. For example, using a first protective layer 6 having an area sufficiently larger than that of the ceramic portion 5, the first protective layer 6 including an adhesive layer is formed on the ceramic portion 5 (or the first protective layer 6 is formed via an adhesive). ), followed by pressure bonding, the first protective layer 6 covering the ceramic part 5 can be formed.
  • the adhesive may be one that can be adhered at room temperature or one that can be adhered by heating. Heating for forming may be performed simultaneously or separately.
  • the first protective layer 6 may be a single layer or multiple layers, and in the latter case may contain one or more adhesive layers as appropriate.
  • the first protective layer 6 may or may not be a coverlay layer derived from a so-called coverlay.
  • the surface of the first protective layer 6 may be water-repellent as it is, and/or may be subjected to water-repellent finishing as necessary.
  • the thickness of the first protective layer 6 can be appropriately selected according to the moisture permeability of the first protective layer 6, and can be, for example, 10 ⁇ m or more, particularly 15 ⁇ m or more, and more particularly 20 ⁇ m or more. Although the upper limit of the thickness of the first protective layer 6 is not particularly limited, the thickness can be, for example, 50 ⁇ m or less, particularly 40 ⁇ m or less, and more particularly 30 ⁇ m or less.
  • the first protective layer 6 can be formed on any appropriate region as long as it covers the ceramic portion 5 and exposes the pair of external electrodes 4a and 4b.
  • the first protective layer 6 can be formed between the external electrodes 4a and 4b on the surface (main surface) of the first substrate 1, as shown in FIG. It can also be formed on the outer peripheral region of the surface (principal surface), and more preferably, it can be formed so as to surround each of the external electrodes 4a and 4b as shown in FIG. 3(b).
  • the portions located within the ceramic portion 5 are internal electrodes 3a and 3b, and the portions exposed from the first protective layer 6 are external electrodes 4a and 4b.
  • the element electrode 2 may further include a portion adjacent to the external electrodes 4a, 4b, which is located outside the ceramic portion 5 but is covered with the first protective layer 6, and these portions (particularly dissolution resulting from migration ) may be considered to be included in the internal electrodes 3a, 3b.
  • the internal electrodes 3a and 3b may have a comb-like shape in which the tooth portions face each other, as shown in FIG. 3(b).
  • a ceramic portion 5 may be formed between the external electrodes 4a and 4b so as to be separated from each other as much as possible, as shown in FIG.
  • the protective layer 6 is formed between the external electrodes 4a and 4b, and when a second protective layer 16, which will be described later, is present on the circuit board 20, the second protective layer 16 is formed between the land electrodes 14a and 14b).
  • a ceramic portion 5 may be formed adjacent to the external electrodes 4a and 4b, as described in detail in Embodiment 5.
  • the arrangement and/or shape of the internal electrodes 3a, 3b and the external electrodes 4a, 4b are not limited to this, and the electrical properties desired for the element member 10 and thus the junction structure 40 and the junction structure 40 are desired. It can be appropriately selected according to the dimensions and the like.
  • the ceramic portion 5 by covering the ceramic portion 5 with the first protective layer 6 and setting the thickness t (see FIGS. 1 and 3A) of the ceramic portion 5 to 40 ⁇ m or less, the final Even when the joint structure 40 obtained in 1 is used under high humidity conditions, the dissolution of the internal electrodes 3a and/or 3b (for example, near the external electrodes 4a and/or 4b) due to migration is reduced or prevented. As a result, it is possible to effectively reduce or prevent an increase in the resistance of the junction structure 40 (open in extreme cases).
  • the element member 10 can be manufactured as described above.
  • a pair of land electrodes 14a and 14b and lead wires 15a and 15b are formed on the surface of the second base material 11, respectively.
  • the surface on which the land electrodes 14a and 14b of the second base material 1 are formed is also referred to as the "main surface" of the second base material 11.
  • the second base material 11 may be any appropriate base material (or substrate) as long as the surface portions on which the land electrodes 14a, 14b and lead lines 15a, 15b are formed are insulating.
  • the second base material 11 may be a flexible substrate (base layer).
  • the second base material 11 may contain any appropriate resin material (third resin material).
  • the resin material (third resin material) used for the second base material 11 may be the same as the resin material (second resin material) described above for the first base material 1 .
  • the second base material 11 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire second base material 11, 30% by mass or less).
  • the other component preferably has lower moisture permeability than the resin material.
  • the present embodiment is not limited to this, and the second base material 11 may be a rigid substrate.
  • the rigid substrate may be similar to the rigid substrates described above for the first substrate 1 .
  • the thickness of the second base material 11 can be selected as appropriate, and can be, for example, 10 ⁇ m or more and 5 mm or less.
  • the thickness of the second substrate 11 may be relatively thin, for example 10 ⁇ m or more and 80 ⁇ m or less, particularly 60 ⁇ m or less, more particularly 50 ⁇ m or less.
  • the method of forming the land electrodes 14a, 14b and the lead lines 15a, 15b is not particularly limited.
  • a metal foil for example, Cu foil
  • the metal foil on the second base material 11 is photolithographically processed to form the land electrodes 14a, 14b and the lead lines 15a, 15b.
  • a pattern is formed according to the shape, and the surface of the patterned metal (for example, a Cu base material) is appropriately plated electrolytically or electrolessly (for example, a plated layer containing Ni and/or Au) to form a land electrode.
  • 14a, 14b and lead lines 15a, 15b may be integrally formed (in this case, adhesive layers remain between the second base material 11 and the land electrodes 14a, 14b and lead lines 15a, 15b). can be used).
  • the present embodiment is not limited to this.
  • a conductive paste is applied (for example, printed) on the second base material 11 in a pattern corresponding to the shapes of the land electrodes 14a, 14b and the lead wires 15a, 15b.
  • the land electrodes 14a, 14b and the lead wires 15a, 15b may be formed by appropriately heating.
  • the land electrodes 14a, 14b and lead lines 15a, 15b are formed using any appropriate conductive material, and can be made of metal, for example.
  • the Ag content in the land electrodes 14a, 14b and lead wires 15a, 15b may be, for example, 20% by mass or less, particularly 10% by mass or less, and preferably substantially 0% by mass.
  • the land electrodes 14a, 14b have a small Ag content as described above, and preferably contain substantially no Ag.
  • the migration-induced migration between the land electrodes 14a, 14b (compared to a bonded structure in which a chip component or a bonding member is bonded to a circuit board having a higher Ag content in the land electrode) It is possible to reduce or prevent the growth of dendrites, and to effectively reduce or prevent a decrease in the resistance of the junction structure 40 (a short circuit in a significant case).
  • the land electrodes 14a, 14b and the lead wires 15a, 15b are made of at least one metal selected from the group consisting of Cu, Al, Ni, Sn, Ti, Zn, Fe, etc. and a plated layer (which can be a single layer or multi-layer structure) made of at least one metal selected from the group consisting of Ni, Au, Sn, Zn, Cr, W, Pd, Pt, Cu, etc. may be configured.
  • the thickness of the land electrodes 14a, 14b and the lead wires 15a, 15b is not particularly limited, but may be, for example, 30 ⁇ m or more, particularly 20 ⁇ m or more, and may be, for example, 50 ⁇ m or less, particularly 35 ⁇ m or less.
  • Such relatively thin land electrodes 14a, 14b would be susceptible to dissolution due to migration if they were not covered by joints 30a, 30b (and second protective layer 16, if present), which will be described later. can be considered easy.
  • the arrangement and shape of the land electrodes 14a, 14b can be appropriately selected according to the arrangement and shape of the external electrodes 4a, 4b.
  • the arrangement and shape of the lead wires 15a and 15b can be appropriately selected according to the desired dimensions and terminal positions of the joint structure 40 finally obtained.
  • the circuit board 20 may have a second protective layer 16 disposed on the second base material 11 .
  • a pair of land electrodes 14 a and 14 b are exposed from the second protective layer 16 .
  • the second protective layer 16 can be formed on any appropriate area of the second substrate 11 as long as the pair of land electrodes 14a, 14b are exposed.
  • the second protective layer 16 can be formed between the land electrodes 14a and 14b on the surface (main surface) of the second substrate 11, as shown in FIG. It can also be formed on the outer peripheral region of the surface (principal surface), and more preferably, it can be formed so as to surround each of the land electrodes 14a and 14b as shown in FIG. 4(b).
  • the second protective layer 16 may or may not be a coverlay layer derived from a so-called coverlay.
  • the surface of the second protective layer 16 may be water-repellent as it is, and/or may be subjected to water-repellent finishing as necessary.
  • the circuit board 20 can be manufactured as described above.
  • the element member 10 and the circuit board 20 produced above are arranged so that the ceramic part 5 and the first protective layer 6 are present between the first base material 1 and the second base material 11, and are opposed to each other.
  • the pair of external electrodes 4a, 4b and the pair of land electrodes 14a, 14b are electrically joined at joints 30a, 30b.
  • the joints 30a, 30b are not particularly limited as long as they can electrically join the external electrodes 4a, 4b and the land electrodes 14a, 14b, but may contain a solder material, for example.
  • the solder material may be lead-free solder material.
  • the lead-free solder material may be, for example, Sn--Cu based, Sn--Ag based, Sn--Ag--Cu based, Sn--Zn based, Sn--Bi based, and the like.
  • the Ag content in the solder material can be, for example, 20% by weight or less, in particular 10% by weight or less.
  • the method of forming the joints 30a and 30b is not particularly limited.
  • a conductive paste containing particles of a solder material is applied (e.g., printed) onto land electrodes 14a, 14b, after which element member 10 and circuit board 20 are attached to ceramic portion 5 and first protective layer 6. It is arranged so as to exist between the first base material 1 and the second base material 11, and the pair of external electrodes 4a, 4b is placed on the conductive paste on the pair of land electrodes 14a, 14b facing thereto.
  • joint portions 30a and 30b for electrically joining the external electrodes 4a and 4b and the land electrodes 14a and 14b are formed.
  • the heating temperature can be set to be at or above the melting point of the solder material used, but the heating causes the first substrate 1, the second substrate 11, the first protective layer 6, and the second protective layer, if present, to melt. Preferably, substantially no deformation of 16 occurs.
  • the thickness of the conductive paste containing particles of solder material applied (for example, printed) on the land electrodes 14a, 14b is from the surface opposite to the surface (main surface) of the first substrate 1 of the external electrodes 4a, 4b.
  • the maximum height h 1 (see FIG. 1) to the surface of the first protective layer 6 opposite to the device electrode 2 and the surfaces of the land electrodes 14a and 14b opposite to the surface (principal surface) of the second substrate 11 to the land electrodes 14a, 14b of the second protective layer 16 and the surface of the second protective layer 16 opposite to the maximum height h 2 (see FIG. 1). It can be set appropriately so that the solder material sufficiently wets and spreads on the exposed surfaces of the external electrodes 4a and 4b and the exposed surfaces of the land electrodes 14a and 14b when joined to 20 .
  • Conductive pastes containing particles of solder material may contain any suitable other ingredients in addition to particles of solder material as described above.
  • Such other ingredients may be fluxes, viscosity modifiers, solvents, and the like.
  • Flux is not particularly limited, and any known flux may be used.
  • the flux may use a flux composition containing rosin modifications, such as those described in US Pat.
  • Such a flux composition is said to be able to coat particles of solder material and suppress migration.
  • the modified rosin is composed of rosin or a rosin derivative and the following structural formula: NH 3-n (R—OH) n (n ⁇ 3) It can be a rosin-modified product consisting of a reaction product with an alkanolamine represented by.
  • Such modified rosin can be obtained by reacting rosin or a rosin derivative, an organic acid and an alkanolamine. More specifically, such modified rosin is an amide bond obtained by condensation of the COOH group of rosin or a rosin derivative and the NH 3-n group in the above structural formula (1), or the COOH group of rosin or a rosin derivative and It has an ester bond obtained by condensation with the OH group in the structural formula (1).
  • the solder material melts during the heating, wets and spreads on the exposed surfaces of the pair of external electrodes 4a and 4b and the pair of land electrodes 14a and 14b, and then solidifies as the temperature drops to form the joints. 30a and 30b are formed.
  • the area of the bonding regions of the land electrodes 14a, 14b should be substantially equal to or greater than the area of the bonding regions of the external electrodes 4a, 4b facing each other (i.e., 1 times or more).
  • the area of the bonding regions of the land electrodes 14a and 14b is preferably three times or less the area of the bonding regions of the external electrodes 4a and 4b facing each other.
  • the bonding region of the external electrodes 4a and 4b refers to the region of the surface of the external electrodes 4a and 4b on the side opposite to the first base material 1.
  • the exposed surfaces of the external electrodes 4a, 4b refer to the joint regions of the external electrodes 4a, 4b and the side surfaces of the external electrodes 4a, 4b between the first substrate 1 and the joint regions.
  • the bonding area of the land electrodes 14a and 14b refers to the area of the surface of the land electrodes 14a and 14b opposite to the second base material 11 .
  • the exposed surfaces of the land electrodes 14a and 14b refer to the joint regions of the land electrodes 14a and 14b and the side surfaces of the land electrodes 14a and 14b between the second base material 11 and the joint regions.
  • the ratio of the area of the bonding regions of the land electrodes 14a and 14b to the area of the bonding regions of the external electrodes 4a and 4b is 3 times or less, for example, the width of the bonding regions of the external electrodes 4a and 4b is reduced to the width of the land electrodes 14a and 14b. are the same, as shown in FIG .
  • the ratio is 3 times or less (that is, L 2 /L 1 is 3 or less), so that when the element member 10 is joined to the circuit board 20, the solder material is applied to the exposed surfaces (bonding regions and side surfaces) of the external electrodes 4a and 4b. ) and the exposed surfaces (joint areas and side surfaces) of the land electrodes 14a and 14b.
  • the joints 30a, 30b thus formed can sufficiently cover the external electrodes 4a, 4b and the land electrodes 14a, 14b (without substantially exposing them). According to the joints 30a and 30b obtained in this manner, even when the finally obtained joint structure 40 is used under high humidity conditions, it is caused by migration (exposed from the joints 30a and 30b). It is possible to reduce or prevent dissolution of the land electrodes 14a and/or 14b (at the portion where the connection is made), and effectively reduce or prevent the joining structure 40 from increasing in resistance (opening in a significant case). Although this embodiment is not bound by any theory, even if migration occurs due to the use of the joint structure 40 under high humidity conditions, the external electrodes 4a, 4b and the land electrodes 14a, 14b are (substantially exposed).
  • the solder material of the joints 30a, 30b is selectively melted, and the electrical properties of the joint structure 40 are likely to be affected by the external electrodes 4a, 4b and/or Since the melting of the land electrodes 14a and 14b is reduced or prevented, stable electrical characteristics can be obtained.
  • the width of the bonding regions of the external electrodes 4a and 4b is greater than the width of the land electrodes.
  • the widths of the bonding regions of 14a and 14b are the same, as shown in FIG.
  • the solder material does not sufficiently wet and spread on the exposed surfaces (bonding regions and side surfaces) of the external electrodes 4a and 4b and the exposed surfaces (bonding regions and side surfaces) of the land electrodes 14a and 14b.
  • Portions of the electrodes 14a, 14b may remain uncovered by the joints 30a, 30b and remain exposed. (The exposed portions of the land electrodes 14a and 14b may be covered with a resin material, as described later in Embodiments 3 and 4, if necessary.)
  • the joint structure 40 of the present embodiment can be produced.
  • the surface of the first protective layer 6 opposite to the first base material 1 (main surface) is the first base material 1 (main surface) of the pair of external electrodes 4a and 4b. ) in the direction of the second base material 11 .
  • the path between the external electrodes 4a and 4b is no longer linear due to the protrusions located between them, and the larger the protrusions, the more difficult it is for water to enter.
  • water intrusion is suppressed or inhibited (compared to the case where the protrusion is not present or the protrusion is smaller).
  • the size of the protrusion is, for example, 5 ⁇ m or more, particularly 10 ⁇ m or more, and the upper limit is the contact of the first protective layer 6 with the circuit board 20 (more specifically, the second protective layer 16 if present). can be defined.
  • the surface of the second protective layer 16 opposite to the second base material 11 serves as a pair of land electrodes. It protrudes in the direction of the first substrate 1 from the surfaces of the 14a and 14b opposite to the second substrate 11 (main surface).
  • the path between the land electrodes 14a and 14b is no longer linear due to the protrusions positioned between them, and the larger the protrusions, the more difficult it is for water to enter.
  • the size of the protrusion is, for example, 5 ⁇ m or more, particularly 10 ⁇ m or more, and the upper limit can be defined by the contact of the second protective layer 16 with the element member 10 (more specifically, the first protective layer 6).
  • the joint structure 40 of the present embodiment unlike Patent Document 1, for example, it is not necessary to cover the entire element member 10 with a protective film made of a resin material from the surface of the element member 10 opposite to the circuit board 20. . With such a joint structure 40, it is easy to confirm whether the element member 10 is properly electrically joined to the circuit board 20, and the element member 10 can be replaced in the event of a failure. Further, when a plurality of element members 10 are joined to one circuit board 20, if a defect is found in a certain element member 10, only the element member 10 can be replaced.
  • the joint structure 40 that exhibits stable electrical characteristics even in a high humidity environment is provided.
  • the bonded structure 40 of the present embodiment can exhibit stable electrical characteristics and can have drip-proof or waterproof properties even when used in contact with a liquid containing ions (water, bodily fluids, etc.). .
  • the ceramic portion 5 may contain a thermistor material (for example, an NTC thermistor material).
  • a thermistor material for example, an NTC thermistor material
  • Such a joint structure 40 can be used as a moisture-resistant (or drip-proof or waterproof, hereinafter the same) temperature sensor, and is preferably a moisture-resistant thin and flexible temperature sensor (for example, an NTC thermistor). obtain.
  • a thin and flexible temperature sensor having moisture resistance can be suitably used in, for example, in-vehicle applications and healthcare applications. If the temperature sensor is assumed to be used in a temperature range of -55°C to 150°C, for example, dew condensation occurs when the temperature changes from low to high. Also, in healthcare applications, it may be envisaged that the temperature sensor will come into direct contact with bodily fluids.
  • the joint structure 40 of the present embodiment can exhibit stable electrical characteristics even when used as a temperature sensor exposed to such dew condensation and bodily fluids.
  • the bonded structure 40 of the present embodiment has excellent sealing properties as described above, and the outer surface of the bonded structure 40 (more specifically, the surface opposite to the main surface of the first base material 1, Since there is no portion where the metal is exposed on both the main surface and the surface on the opposite side of the second base material 11, it exhibits high insulation against the external environment, and not only contacts with liquids, Even if the joint structure 40 comes into contact with a conductor such as a human body, electric shock, short circuit, noise, etc. can be prevented from occurring.
  • a conductor such as a human body
  • Embodiment 2 This embodiment is a modified example of Embodiment 1, and relates to an aspect in which one or both of the first protective layer and the first base material include a metal layer.
  • the points different from the above-described first embodiment will be mainly described, and unless otherwise specified, the same description as in the first embodiment can be applied.
  • the first protective layer 6 and the first base material 1 includes a metal layer. 6 and 7, more specifically, the first protective layer 6 further includes a first metal layer 7 in addition to the first resin material described above in the first embodiment.
  • the first base material 1 further includes a second metal layer 8 in addition to the second resin material described above in the first embodiment.
  • the first metal layer 7 may be provided on the first protective layer 6 in any suitable manner as long as it does not come into direct contact with the ceramic portion 5 .
  • the second metal layer 8 can be provided on the first substrate 1 in any suitable manner as long as it does not directly contact the device electrodes 2 (including the internal electrodes 3a, 3b and the external electrodes 4a, 4b). (Note that FIGS. 6 and 7 correspond to FIGS. 1 and 3 referred to in the first embodiment, respectively.)
  • the first metal layer 7 and the second metal layer 8 may comprise any suitable metal, for example may consist of metal. Such metals are not particularly limited, but may be, for example, at least one selected from the group consisting of Cu, Al, Ni, Au, and the like.
  • the first metal layer 7 and the second metal layer 8 may consist of the same material (including metal) or different materials (including metal).
  • the thickness of the first metal layer 7 and the second metal layer 8 can be, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the first metal layer 7 and the second metal layer 8 can have the same or different thicknesses.
  • the method of manufacturing the first protective layer 6 and the first base material 1, which respectively include the first metal layer 7 and the second metal layer 8, is not particularly limited.
  • the first protective layer 6 can be formed by sandwiching a metal foil between two films made of a predetermined resin material (optionally with an adhesive interposed therebetween) and pressing them at room temperature or under heat.
  • the first base material 1 can also be formed in the same manner.
  • the metal layer has lower moisture permeability than the resin material.
  • the resin material is excellent in workability, insulating properties, etc., and can be flexible. Therefore, by combining the metal layer and the resin material, the element structure 41 including the first protective layer 6 and the first base material 1 having low moisture permeability without adversely affecting the electrical properties and flexibility of the element structure 41. can be realized.
  • migration can be further suppressed by the first protective layer 6 and the first base material 1 having low moisture permeability compared to the bonded structure of Embodiment 1, and migration can be further suppressed in a high-humidity environment.
  • a junction structure 41 is provided that exhibits even more stable electrical characteristics.
  • both the first protective layer 6 and the first base material 1 include metal layers, but the present embodiment is not limited to this and is less preferable. However, only one of the first protective layer 6 and the first substrate 1 may contain the metal layer.
  • Embodiment 3 This embodiment is a modified example of Embodiments 1 and 2, and relates to an aspect in which the joint portion is covered with a cured resin material.
  • the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
  • joint portions 30a and 30b are covered with a cured resin material (cured resin material, fourth resin material) 31.
  • cured resin material cured resin material, fourth resin material
  • the cured resin material 31 may be any appropriate resin material (fourth resin material) cured by moisture, heat and/or radiation (including light, ultraviolet rays, etc.) as long as it has insulating properties. may be a cured product of a moisture-curable (so-called room-temperature-curable), radiation (eg, ultraviolet)-curable, and/or thermosetting resin material. Such cured resin materials may be, for example, silicone-based resins, acrylic-based resins, epoxy-based resins, and the like.
  • the cured resin material 31 covers at least part, preferably substantially all of the surfaces of the joints 30a, 30b that are not in contact with the external electrodes 4a, 4b and the land electrodes 14a, 14b. If there are portions of the external electrodes 4a, 4b and/or the land electrodes 14a, 14b that are not covered with the joints 30a, 30b, the cured resin material 31 can also cover such portions.
  • the cured resin material 31 may or may not fill substantially the entire space between the element member 10 and the circuit board 20 except for the joints 30a and 30b.
  • the method of producing the cured resin material 31 covering the joints 30a and 30b is not particularly limited.
  • an uncured resin material is applied around the joints 30a and 30b (preferably not in contact with the external electrodes 4a and 4b and the land electrodes 14a and 14b). It can be formed by applying the coating so as to cover substantially all of the surface) and then curing in a suitable manner depending on the uncured resin material used.
  • the cured resin material 31, which is cured after supplying the uncured resin material closely adheres to and covers the joints 30a and 30b (and preferably the external electrodes 4a and 4b and the land electrodes 14a and 14b) to seal them. can be stopped.
  • an additional step for covering the joints 30a and 30b with the cured resin material 31 is required.
  • 30b (including a solder material) can further suppress migration by the cured resin material 31, thereby providing a joint structure 42 that exhibits more stable electrical characteristics even in a high-humidity environment.
  • the bonded portions 30a and 30b are made of a cured resin.
  • the present embodiment is not limited to this, and either the first protective layer 6 or the first base material 1 may include a metal layer.
  • the bonded portions 30a and 30b are coated with a cured resin material 31. may be
  • Embodiment 4 This embodiment is a modified example of Embodiments 1 and 2, and relates to an aspect in which the joint is covered with a thermoplastic resin material.
  • the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
  • joint portions 30a and 30b are covered with a thermoplastic resin material (fifth resin material) 32.
  • a thermoplastic resin material (fifth resin material) 32.
  • the thermoplastic resin material 32 may be any suitable thermoplastic resin material (the thermoplastic resin material once heated and melted, the fifth resin material) as long as it has insulating properties.
  • suitable thermoplastic resin materials may be, for example, polyester-based resins, polyethylene-based resins, polypropylene-based resins, polystyrene-based resins, polyurethane-based resins, nylon-based resins, polyetherimide-based resins, and the like.
  • the thermoplastic resin material 32 covers at least part, preferably substantially all, of the surfaces of the joints 30a, 30b that are not in contact with the external electrodes 4a, 4b and the land electrodes 14a, 14b. If there are portions of the external electrodes 4a, 4b and/or the land electrodes 14a, 14b that are not covered with the joints 30a, 30b, the thermoplastic resin material 32 can also cover such portions.
  • the thermoplastic resin material 32 may or may not fill substantially the entire space between the element member 10 and the circuit board 20 except for the joints 30a and 30b.
  • the method of manufacturing the thermoplastic resin material 32 covering the joints 30a and 30b is not particularly limited.
  • the first protective layer 6 after forming the first protective layer 6, the first protective layer 6 (and/or the first base material 1) A thermoplastic resin material 32' is applied (for example, printed) thereon so as to surround the external electrodes 4a and 4b, and the element member 10 is produced.
  • FIG. 10 is a diagram corresponding to FIG. 7 referred to in Embodiment 2.
  • a joint portion is attached to a circuit board 20 in the same manner as in Embodiment 1 or 2.
  • thermoplastic resin material 32' When joining with 30a and 30b (including the solder material), the thermoplastic resin material 32' is also heated and melted when the solder material is heated and melted.
  • the thermoplastic resin material 32' which is formed by heating and melting the thermoplastic resin material 32' once, and then solidifying after being naturally deformed, forms the joint portions 30a and 30b (and preferably the external electrodes 4a and 4b and the land electrodes 14a and 14b). It is possible to seal them by coating them in close contact with each other.
  • thermoplastic resin material 32 By covering the joints 30a and 30b (including the solder material) with the thermoplastic resin material 32, migration can also be suppressed in the joints 30a and 30b.
  • thermoplastic resin material 32 covering 30a and 30b (including the solder material) can further suppress migration, thereby providing a joint structure 43 that exhibits more stable electrical characteristics even in a high humidity environment.
  • the bonded portions 30a and 30b are Although the one coated with the thermoplastic resin material 32 is shown, the present embodiment is not limited to this, and either one of the first protective layer 6 and the first substrate 1 includes a metal layer. may Alternatively, as a modified example of Embodiment 1, in a bonded structure including the first protective layer 6 and the first base material 1 that do not contain a metal layer, the bonded portions 30a and 30b are coated with a thermoplastic resin material 32. can be anything.
  • Embodiment 5 This embodiment is a modified example of Embodiments 1 and 2, and relates to a mode in which the joint includes an anisotropically conductive material.
  • the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
  • the joint 30' contains an anisotropically conductive material.
  • the anisotropically conductive material forming the joint portion 30′ is formed by dispersing a plurality of conductive particles 33 having at least a conductive surface in any suitable resin material (binder resin, sixth resin material) 34. obtain.
  • a resin material may be a curable resin material, a thermoplastic resin material, or a mixture thereof, as long as it has insulating properties. It may be a cured product of a curable resin material (including light, ultraviolet rays, etc.).
  • the anisotropic conductive material forming the joint portion 30′ is not particularly limited, and any suitable anisotropic conductive material, such as a film-like or paste-like anisotropic conductive material (anisotropic conductive film (ACF) or Anisotropic Conductive Paste (ACP)).
  • ACF anisotropic conductive film
  • ACP Anisotropic Conductive Paste
  • the anisotropic conductive material as a raw material before forming the joint portion 30' is a composition containing the conductive particles 33 and a resin material (sixth resin material or its precursor), and optionally other components (for example, curing agents, fillers, solvents, etc.).
  • the resin material (sixth resin material or its precursor) constituting the composition is any suitable resin material curable by moisture, heat and/or radiation (including light, ultraviolet rays, etc.), or thermoplastic It may be a resin material, a mixture thereof, or the like.
  • the resin material forming the composition may be, for example, a thermosetting and/or radiation-curable resin material, and may be cured by heating and/or radiation irradiation when forming the joint 30'.
  • the resin material that constitutes the composition may typically be a thermosetting resin material, and is not particularly limited. It may contain one.
  • the conductive particles 33 are particles that exhibit conductivity when the joints 30′ are formed and that can electrically connect the external electrodes 4a′ and 4b′ and the land electrodes 14a′ and 14b′. good.
  • Such conductive particles 33 may be, for example, particles made of a conductive material, or particles in which an insulating coating is formed on a core made of a conductive material, or a core made of any appropriate resin material.
  • it may be a particle having a layer made of a conductive material and an insulating coating formed thereon.
  • the average particle size of the conductive particles 33 may be, for example, 20 ⁇ m or less, particularly 15 ⁇ m or less, and the lower limit is not particularly limited, but may be, for example, 1 ⁇ m or more, particularly 5 ⁇ m or more.
  • the average particle size means the median size, and can be measured using, for example, a laser diffraction particle size distribution analyzer.
  • the conductive substance that forms the conductive particles can be a metal or a metal-containing substance. If the resin material is a thermosetting resin material, the metal preferably does not melt at the heating temperature used to form the joint 30'.
  • the metal may include, for example, at least one selected from the group consisting of Au, Ni, Pd and Cu, but is not limited thereto. If present, the thickness of the layer of electrically conductive material may be, for example, 0.1 ⁇ m or more, in particular 0.5 ⁇ m or more, more particularly 1 ⁇ m or more, the upper limit being defined by the particle size of the conductive particles.
  • the insulating coating may consist of any suitable resin material or the like.
  • the thickness of the insulating coating is destroyed by pressure between the external electrodes 4a', 4b' and the land electrodes 14a', 14b' when forming the joint 30', and the electrical connection between them is broken.
  • it may be 50 ⁇ m or less, particularly 25 ⁇ m or less, and the lower limit may be set as appropriate, but may be, for example, 1 ⁇ m or more.
  • the anisotropic conductive material includes, for example, conductive particles having a metal having a melting point of 400 ° C. or higher on the conductive surface, a curable compound that can be cured by heating, and a thermosetting material, as described in Patent Document 4. It may be a composition containing an agent and a flux. Metals having a melting point of 400° C. or higher include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and alloys thereof. is mentioned. Alternatively, tin-doped indium oxide (ITO) may be used as the metal.
  • ITO tin-doped indium oxide
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer or a gold layer on their outer surface.
  • the curable compound is not particularly limited, and includes a curable compound having an unsaturated double bond, a curable compound having an epoxy group or a thiirane group, and the like, and includes a curable compound having a (meth)acryloyl group. is preferred.
  • the heat curing agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, acid anhydrides and thermal radical generators.
  • the above flux is not particularly limited, but for example, zinc chloride, mixtures of zinc chloride and inorganic halides, mixtures of zinc chloride and inorganic acids, molten salts, phosphoric acid, derivatives of phosphoric acid, organic halides, hydrazine, Examples include organic acids and pine resin.
  • the conductive particles 33 are formed between the external electrodes 4a' and 4b' and the land electrodes 14a' and 14b' in the joint portion 30'. By being sandwiched between them, they are electrically connected, and the resin material (sixth resin material) 34 includes the conductive particles 33, the external electrodes 4a' and 4b', and the land electrodes 14a' and 14b'. to cover.
  • the pair of internal electrodes 14' and 14b', the ceramic portion 5' and a first protective layer 6' are formed.
  • the method of manufacturing the joint 30' is not particularly limited.
  • a pair of external electrodes 4a', 4b' and a pair of land electrodes 14a', 14b' arranged to exist between the material 1' and the second base material 11' and facing each other are anisotropic.
  • the anisotropic conductive material in the joint portion 30' By including the anisotropic conductive material in the joint portion 30', the external electrodes 4a', 4b', the land electrodes 14a, '14b', and all of the conductive particles 33 therebetween are all at once by the resin material 34. Migration can be suppressed.
  • the bonded portion 30' in the bonded structure 44 in which both the first protective layer 6' and the first base material 1' include metal layers, contains an anisotropic conductive material, but the present embodiment is not limited to this, and either one of the first protective layer 6' and the first substrate 1' contains a metal layer.
  • the bonded portion 30' in the bonded structure including the first protective layer 6' and the first base material 11' that do not contain a metal layer, contains an anisotropic conductive material. There may be.
  • Example 1 relates to the joint structure described above in the first embodiment.
  • ⁇ Element material 10% by mass of manganese acetylacetonate (total mass of metal oxide particles ), ethanol was added as a solvent, and mixed for 16 hours to obtain a raw material mixture in the form of a slurry.
  • a Cu layer with a thickness of 12 ⁇ m is patterned into a predetermined shape by photolithography on a first substrate (base layer) that is a polyimide film with a thickness of 25 ⁇ m.
  • a plated layer and an Au plated layer were sequentially formed electrolessly. The total thickness of these plating layers was 3 ⁇ m.
  • the Cu/Ni/Au element electrodes (thickness 15 ⁇ m) were used as portions corresponding to the pair of internal electrodes, and a pair of comb-shaped counter electrodes were arranged with a comb-teeth electrode spacing of 1.0 mm (d, FIG. 2 ( a), and on both sides of the pair of comb-shaped counter electrodes, a portion corresponding to the pair of external electrodes has a width (W 1 ) of 0.4 mm and a length (L 1 ) of 0.2 mm. It was made in a rectangular shape.
  • a precursor laminate was obtained by supplying the raw material mixture obtained above in the form of a sheet having a thickness of 20 ⁇ m onto the device electrode and the exposed surface of the first substrate by a doctor blade method. After drying this precursor laminate at 100° C. for 10 hours, it is heated at 270° C. for 30 minutes under a pressure of 100 MPa using a heating press, and then heated to 250° C. to remove unnecessary organic matter that may remain. was annealed for 10 hours to form a ceramic portion having a thickness (t) of 20 ⁇ m. A 25 ⁇ m-thick coverlay (epoxy resin (EP) adhesive layer and polyimide resin (PI) cover layer) were pressed together.
  • EP epoxy resin
  • PI polyimide resin
  • NTC thermistor a thermistor sample having a width of 0.8 mm, a length of 1.6 mm and a total thickness of about 50 ⁇ m as an element member.
  • Circuit board A 12 ⁇ m thick Cu layer is patterned into a predetermined shape by photolithography on a second base material (base layer) that is a 25 ⁇ m thick polyimide film, and then the surface of the patterned Cu base material. Then, a Ni plating layer and an Au plating layer were sequentially formed electrolessly. The total thickness of these plating layers was 3 ⁇ m.
  • a pair of rectangular land electrodes made of Cu/Ni/Au (thickness 15 ⁇ m) with a width (W 2 ) of 0.4 mm and a length (L 2 ) of 0.2 mm were produced together with a pair of lead wires. .
  • a 25 ⁇ m-thick coverlay (consisting of an adhesive layer of epoxy resin (EP) and a cover layer of polyimide resin (PI)) was press-bonded.
  • a circuit board having a total thickness of about 50 ⁇ m was thus obtained.
  • Example 1 On the pair of land electrodes of the circuit board, a conductive paste mainly composed of SnAgCu-based solder material (consisting of 3% by mass of Ag, 0.5% by mass of Cu, and the balance of Sn) is printed with a thickness of 60 ⁇ m. Then, the thermistor sample prepared above as an element member was placed on a circuit board so that the pair of land electrodes and the pair of external electrodes faced each other, and subjected to reflow at 240° C. for 10 seconds to form a circuit. A thermistor sample was mounted on the board. Thus, a joined structure of Example 1 was obtained.
  • SnAgCu-based solder material consisting of 3% by mass of Ag, 0.5% by mass of Cu, and the balance of Sn
  • Examples 2 and 3 relate to the bonded structure described above in the first embodiment.
  • Example 2 Same as Example 1 except that the thickness (t) of the ceramic portion was set to 30 ⁇ m (Example 2), 40 ⁇ m (Example 3), and 50 ⁇ m (Comparative Example 1) (the total thickness of the thermistor sample was about 50 ⁇ m). Then, a bonded structure was obtained.
  • Example 4 relates to an aspect (that is, a modified example of Embodiment 1) in which the first protective layer and the first base material do not contain a metal film in the bonded structure described above in Embodiment 3.
  • Example 5 relates to an aspect (that is, a modified example of Embodiment 1) in which the first protective layer and the first base material do not contain a metal film in the bonded structure described above in Embodiment 3.
  • a 25 ⁇ m thick liquid crystal polymer (LCP) film was placed as the first protective layer instead of a 25 ⁇ m thick coverlay (total thickness of the thermistor sample about 50 ⁇ m), and (ii) After forming the joints, between the element member (thermistor sample) and the circuit board, a room temperature curing silicone resin is supplied around the pair of joints, left to stand for an appropriate time, and the joints A bonded structure was obtained in the same manner as in Example 1, except that the space around and in the vicinity of was filled with the cured silicone resin.
  • LCP liquid crystal polymer
  • Example 6 relates to a mode in which the first protective layer and the first base material in the bonded structure described above in Embodiment 3 contain a metal film (that is, a modified example of Embodiment 2).
  • a Cu foil (thickness 12 ⁇ m) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 ⁇ m.
  • a 25 ⁇ m thick liquid crystal polymer (LCP) film was placed on top of which a ceramic placing a Cu foil (12 ⁇ m thick) of the same dimensions as the part, on top of which a 12 ⁇ m thick liquid crystal polymer (LCP) film was placed (total thickness of the thermistor sample about 100 ⁇ m), and (iii ) After forming the joints, between the element member (thermistor sample) and the circuit board, a room temperature curing silicone resin is supplied around the pair of joints, left to stand for an appropriate time, and joined A bonded structure was obtained in the same manner as in Example 1, except that the space around and in the vicinity of the part was filled with the cured silicone resin.
  • Example 7 relates to a mode in which the first protective layer and the first base material include a metal film in the bonded structure described above in Embodiment 4 (that is, a modified example of Embodiment 2).
  • a Cu foil (thickness 12 ⁇ m) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 ⁇ m.
  • a 25 ⁇ m thick liquid crystal polymer (LCP) film was used, on top of which a ceramic A Cu foil (12 ⁇ m thick) of the same dimensions as the part was placed, and a 12 ⁇ m thick liquid crystal polymer (LCP) film was placed on top of it (total thickness of the thermistor sample was about 100 ⁇ m), and (iii ) A bonded structure was obtained in the same manner as in Example 1, except that a polyethylene (PE) film was pressure-bonded around the pair of land electrodes before the conductive paste was printed.
  • PE polyethylene
  • PE is a thermoplastic resin, which once melted during heating (reflow) during bonding with a solder material, naturally deformed, and then solidified to cover the periphery of the bonded portion.
  • Examples 8-10 relate to the bonded structure described above in Embodiment 1.
  • the dimensions of the pair of external electrodes of the element member were rectangular with a width (W 1 ) of 0.4 mm and a length (L 1 ) of 0.1 mm, and (ii) a pair of circuit boards.
  • the dimensions of the land electrodes of are rectangular with a width (W 2 ) of 0.4 mm and a length (L 2 ) of 0.2 mm (Example 8), 0.3 mm (Example 9), and 0.35 mm (Example 10).
  • a bonded structure was obtained in the same manner as in Example 1, except for the above.
  • Example 11 relates to a mode in which the first protective layer and the first base material in the bonded structure described above in Embodiment 5 include a metal film (that is, a modified example of Embodiment 2).
  • a Cu foil (thickness 12 ⁇ m) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 ⁇ m.
  • a ceramic part adjacent to a pair of external electrodes (iii) as the first protective layer, the thickness A liquid crystal polymer (LCP) film with a thickness of 25 ⁇ m is placed, a Cu foil (thickness of 12 ⁇ m) having the same dimensions as the ceramic part is placed thereon, and a liquid crystal polymer (LCP) film with a thickness of 12 ⁇ m is further placed thereon.
  • Comparative Example 2 relates to a bonded structure in which a conventional general chip component is bonded to a circuit board.
  • NTC thermistor manufactured by Murata Manufacturing Co., Ltd. see chip part 50 shown in FIG. 14.
  • a pair of internal electrodes 43a and 43b and a pair of external electrodes 44a and 44b are made of Ag—Pd, the thickness (t) of the ceramic portion 45 is 0.8 mm, the overall length is 1.6 mm and the overall width is 0.8 mm, and the dimensions of the bonding area of the external electrodes are the width (
  • a bonded structure (see FIG. 14) was obtained in the same manner as in Example 1 except that W 1 was 0.4 mm and length (L 1 ) was 0.2 mm.
  • Comparative Example 3 relates to a bonded structure in which a conventional general chip component is bonded to a circuit board.
  • a room-temperature curing silicone resin is supplied around the pair of joints between the chip component and the circuit board, left to stand for an appropriate period of time, and the surroundings of the joints and therebetween.
  • a bonded structure was obtained in the same manner as in Comparative Example 2, except that the adjacent space was filled with the cured silicone resin.
  • Example 1 For the bonded structure in which migration occurred, visual observation and elemental analysis by EDX were performed together. In all of Examples 1 to 3 and Comparative Example 1, migration occurred due to dissolution of the internal electrode in the vicinity of the external electrode, resulting in high resistance. In particular, in Comparative Example 1, clear areas where the adhesion of the first protective layer was insufficient were observed. However, in Examples 1 to 3, compared to Comparative Example 1, it was confirmed that the time until migration occurred was longer, and higher resistance value stability was exhibited. In Example 4, Cu dendrites were observed after 500 hours and the resistance decreased, and in Examples 5 and 6, no change of 3% or more in resistance value was observed even after 1000 hours. From these results, it is preferable to coat the solder joints with silicone resin rather than as they are.
  • Example 8 the solder joints were able to cover the external electrodes and the land electrodes, but in Example 10, the solder joints could not sufficiently cover the land electrodes, resulting in high resistance due to dissolution of the land electrodes. bottom.
  • Example 11 migration resistance of 1000 hours or longer, similar to Examples 5 to 7, was confirmed.
  • Comparative Examples 2 and 3 Ag dendrites were observed and the resistance was lowered.
  • the joint structure of the present disclosure is suitably used in electronic devices that can be used in high humidity environments, but is not limited to such uses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided is a joint structure in which an element member comprising a ceramic portion and an element electrode including a pair of inner electrodes and a pair of outer electrodes is electrically joined to a circuit board, the joint structure exhibiting stable electric characteristics under a high-humidity environment. A joint structure comprising: an element member in which a ceramic portion and an element electrode including a pair of inner electrodes and a pair of outer electrodes are formed on a first base material, wherein the ceramic portion is coated with a first protection layer, the pair of outer electrodes are exposed from the first protection layer, and the pair of inner electrodes are positioned inside the ceramic portion, the ceramic portion having a thickness of less than or equal to 40 μm; a circuit board having a pair of land electrodes formed on a second base material; and a joint portion electrically joining the pair of outer electrodes and the pair of land electrodes opposite each other, with the ceramic portion and the first protection layer disposed between the first base material and the second base material.

Description

接合構造体junction structure
 本開示は、接合構造体に関し、より詳細には、素子部材が回路基板に接合部を介して電気的に接合(または実装)された接合構造体(「実装構造体」とも称され得る)に関する。 TECHNICAL FIELD The present disclosure relates to a bonded structure, and more particularly to a bonded structure in which an element member is electrically bonded (or mounted) to a circuit board via a bonding portion (also referred to as a “mounted structure”). .
 従来、セラミック部と一対の外部電極とを備えるチップ部品などの電子部品が回路基板にはんだ材料により接合された接合構造体が知られている(特許文献1、2参照)。 Conventionally, there has been known a bonded structure in which an electronic component such as a chip component having a ceramic portion and a pair of external electrodes is bonded to a circuit board with a solder material (see Patent Documents 1 and 2).
 かかる接合構造体においては、イオンマイグレーション対策が重要な課題になっている。特許文献2は、電子部品の一対の外部電極間にて発生し得るイオンマイグレーションを防止するために、略直方体形状の電子部品の4つの側面のうちの回路基板の主面に相対する側面を除く3つの側面(請求項1)、あるいは、略直方体形状の電子部品の4つの側面(請求項2、3)をコーティング樹脂層で被覆することを開示している。 Countermeasures against ion migration have become an important issue in such a bonded structure. In Patent Document 2, in order to prevent ion migration that may occur between a pair of external electrodes of the electronic component, of the four side surfaces of the substantially rectangular parallelepiped electronic component, the side surface facing the main surface of the circuit board is excluded. It discloses that three side surfaces (claim 1) or four side surfaces (claims 2 and 3) of a substantially rectangular parallelepiped electronic component are coated with a coating resin layer.
特開2014-157951号公報JP 2014-157951 A 国際公開第2017/110136号WO2017/110136 特開2021-58894号公報JP 2021-58894 A 特開2013-149774号公報JP 2013-149774 A
 従来、回路基板に電気的に接合する電子部品としてチップ部品などが使用されてきたが、チップ部品に代えて、素子構造を別の基板(基材)上に形成した素子部材を使用することが考えられる。 Conventionally, chip parts and the like have been used as electronic parts that are electrically connected to circuit boards, but instead of chip parts, it is possible to use element members in which the element structure is formed on another substrate (base material). Conceivable.
 チップ部品を回路基板に電気的に接合した接合構造体に関する特許文献2には、イオンマイグレーションとは、電位差のある電極間において、一方の電極の金属成分がイオン化して、他方の電極に向かって移動し、析出した金属により、電極間の絶縁性が低下したり、電極間が短絡(ショート)したりする現象であり、高湿条件下において発生し易い旨が記載されている。 In Patent Document 2, which relates to a joint structure in which a chip component is electrically joined to a circuit board, ion migration is defined as ionization of a metal component of one electrode between electrodes having a potential difference and migration toward the other electrode. It is a phenomenon in which the insulation between electrodes is reduced or the electrodes are short-circuited due to the metal that migrates and precipitates, and it is described that this phenomenon is likely to occur under high humidity conditions.
 これに対して、本発明者らの更なる研究によれば、セラミック部と一対の電極とを備える素子構造を基板(基材)上に形成した素子部材を回路基板に電気的に接合した接合構造体では、イオンマイグレーション(以下、単に「マイグレーション」とも言う)は、電位差のある電極間において、一方の電極の金属成分がイオン化して、他方の電極に向かって移動し、析出した金属により、電極間の絶縁性(換言すれば抵抗)が低下し、著しい場合には電極間がショートする現象のほか、一方の電極の金属成分がイオン化し、該一方の電極が溶解することにより、電極間の抵抗が高くなり、著しい場合には該一方の電極の溶解が貫通する(以下、「オープン」と言う)現象も起こり得ることが判明した。マイグレーションは電界強度の大きさに依存して発生し、換言すれば、負荷電圧に比例し、かつ、電極間距離に反比例して発生する。本発明者らの研究により、上記素子部材が、一対の内部電極および一対の外部電極を含む素子電極を備える場合、マイグレーションにより、電極の溶解が先に起こって高抵抗化するという問題があることが判明した。従来一般的なチップ部品の場合には、マイグレーションによる低抵抗化の問題に対処してきたが、電極厚みが厚いことで、マイグレーションによる高抵抗化は実質的に問題になっていなかった。 On the other hand, according to further research by the present inventors, an element member in which an element structure including a ceramic part and a pair of electrodes is formed on a substrate (base material) is electrically connected to a circuit board. In a structure, ion migration (hereinafter also simply referred to as “migration”) is the ionization of the metal component of one electrode between electrodes with a potential difference, moving toward the other electrode, and the deposited metal Insulation (in other words, resistance) between electrodes decreases, and in extreme cases short-circuiting occurs between the electrodes. It has been found that the resistance of the electrode increases, and in extreme cases, a phenomenon in which the one electrode is melted through (hereinafter referred to as "open") may occur. Migration occurs depending on the strength of the electric field, in other words, it occurs in proportion to the load voltage and in inverse proportion to the distance between the electrodes. According to the studies of the present inventors, when the element member includes an element electrode including a pair of internal electrodes and a pair of external electrodes, there is a problem that the electrodes are dissolved first by migration, resulting in a high resistance. There was found. Conventionally, in the case of general chip components, the problem of low resistance due to migration has been dealt with, but due to the thick electrodes, high resistance due to migration has not been a substantial problem.
 高湿環境下にて、イオンマイグレーションにより、接合構造体の抵抗が、初期値より著しく低くまたは高くなることは、いずれにしても、接合構造体の電気特性が損なわれるため好ましくない。 In a high-humidity environment, it is not preferable for the resistance of the joint structure to become significantly lower or higher than the initial value due to ion migration, because in any case the electrical properties of the joint structure will be impaired.
 本開示の目的は、セラミック部と、一対の内部電極および一対の外部電極を含む素子電極とを備える素子部材が回路基板に電気的に接合された接合構造体であって、高湿環境下においても安定した電気特性を示す接合構造体を提供することにある。 An object of the present disclosure is to provide a junction structure in which an element member including a ceramic portion and an element electrode including a pair of internal electrodes and a pair of external electrodes is electrically bonded to a circuit board, and is used in a high-humidity environment. Another object of the present invention is to provide a joint structure exhibiting stable electrical characteristics.
[1]
 セラミック部、ならびに一対の内部電極および一対の外部電極を含む素子電極が第1基材上に形成された素子部材であって、該セラミック部は第1保護層で被覆され、該一対の外部電極は該第1保護層から露出し、該一対の内部電極は該セラミック部内に位置し、該セラミック部の厚さが40μm以下である、素子部材と、
 一対のランド電極が第2基材上に形成された回路基板と、
 前記セラミック部および前記第1保護層が前記第1基材と前記第2基材との間に配置された状態で、互いに対向する前記一対の外部電極と前記一対のランド電極とを電気的に接合する接合部と
を含む、接合構造体。
[1]
An element member in which a ceramic part and element electrodes including a pair of internal electrodes and a pair of external electrodes are formed on a first substrate, the ceramic part being covered with a first protective layer, and the pair of external electrodes is exposed from the first protective layer, the pair of internal electrodes are located in the ceramic portion, and the thickness of the ceramic portion is 40 μm or less;
a circuit board having a pair of land electrodes formed on a second substrate;
electrically connecting the pair of external electrodes and the pair of land electrodes facing each other in a state in which the ceramic part and the first protective layer are arranged between the first base material and the second base material; A bonded structure comprising a bonding joint.
[2]
 前記第1保護層の前記第1基材に対して反対側の表面が、前記一対の外部電極の前記第1基材に対して反対側の表面よりも、前記第2基材の方向へ突出している、上記[1]に記載の接合構造体。
[2]
The surface of the first protective layer opposite to the first substrate protrudes toward the second substrate from the surfaces of the pair of external electrodes opposite to the first substrate. The joined structure according to [1] above.
[3]
 前記回路基板が、前記第2基材上に配置された第2保護層を有し、前記一対のランド電極は該第2保護層から露出している、上記[1]または[2]に記載の接合構造体。
[3]
The above [1] or [2], wherein the circuit board has a second protective layer disposed on the second base material, and the pair of land electrodes are exposed from the second protective layer. junction structure.
[4]
 前記第2保護層の前記第2基材に対して反対側の表面が、前記一対のランド電極の前記第2基材に対して反対側の表面よりも、前記第1基材の方向へ突出している、上記[3]に記載の接合構造体。
[4]
The surface of the second protective layer opposite to the second substrate protrudes toward the first substrate more than the surfaces of the pair of land electrodes opposite to the second substrate. The joined structure according to [3] above.
[5]
 前記第1保護層が、第1樹脂材料を含む、上記[1]~[4]のいずれかに記載の接合構造体。
[5]
The joined structure according to any one of [1] to [4] above, wherein the first protective layer contains a first resin material.
[6]
 前記第1樹脂材料が、ポリイミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、液晶ポリマー、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテルイミド系樹脂、および(メタ)アクリル系樹脂からなる群より選択される少なくとも1つを含む、上記[5]に記載の接合構造体。
[6]
The first resin material is polyimide resin, polyamideimide resin, epoxy resin, liquid crystal polymer, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, polyurethane resin, polyamide resin, polyetherimide. The joint structure according to [5] above, which contains at least one selected from the group consisting of acrylic resins and (meth)acrylic resins.
[7]
 前記第1保護層が、第1金属層を更に含む、上記[5]または[6]に記載の接合構造体。
[7]
The joined structure according to [5] or [6] above, wherein the first protective layer further includes a first metal layer.
[8]
 前記第1基材が、第2樹脂材料および第2金属層を含む、上記[1]~[7]のいずれかに記載の接合構造体。
[8]
The joined structure according to any one of [1] to [7] above, wherein the first base material includes a second resin material and a second metal layer.
[9]
 前記第2基材が、第3樹脂材料を含むフレキシブル基板である、上記[1]~[8」のいずれかに記載の接合構造体。
[9]
The joined structure according to any one of [1] to [8] above, wherein the second base material is a flexible substrate containing a third resin material.
[10]
 前記接合部が、はんだ材料を含む、上記[1]~[9]のいずれかに記載の接合構造体。
[10]
The joint structure according to any one of [1] to [9] above, wherein the joint includes a solder material.
[11]
 前記一対のランド電極の接合領域の面積が、前記一対の外部電極の接合領域の面積の3倍以下である、上記[10]に記載の接合構造体。
[11]
The junction structure according to [10] above, wherein the area of the junction regions of the pair of land electrodes is three times or less the area of the junction regions of the pair of external electrodes.
[12]
 前記接合部が、第4樹脂材料として硬化樹脂材料で被覆されている、上記[1]~[11]のいずれかに記載の接合構造体。
[12]
The bonded structure according to any one of [1] to [11] above, wherein the bonded portion is coated with a cured resin material as the fourth resin material.
[13]
 前記接合部が、第5樹脂材料として熱可塑性樹脂材料で被覆されている、上記[1]~[11]のいずれかに記載の接合構造体。
[13]
The joint structure according to any one of [1] to [11] above, wherein the joint portion is coated with a thermoplastic resin material as the fifth resin material.
[14]
 前記接合部が、異方導電性材料を含む、上記[1]~[9]のいずれかに記載の接合構造体。
[14]
The joined structure according to any one of [1] to [9] above, wherein the joint contains an anisotropically conductive material.
[15]
 前記セラミック部が、前記一対の外部電極間に形成されている、上記[1]~[14]のいずれかに記載の接合構造体。
[15]
The joint structure according to any one of [1] to [14] above, wherein the ceramic portion is formed between the pair of external electrodes.
[16]
 前記セラミック部が、前記一対の外部電極に隣接して形成されている、上記[1]~[14]のいずれかに記載の接合構造体。
[16]
The joint structure according to any one of [1] to [14] above, wherein the ceramic portion is formed adjacent to the pair of external electrodes.
[17]
 前記セラミック部がサーミスタ材料を含み、前記接合構造体が温度センサである、上記[1]~[16]のいずれかに記載の接合構造体。
[17]
The joint structure according to any one of [1] to [16] above, wherein the ceramic portion contains a thermistor material, and the joint structure is a temperature sensor.
 本開示によれば、セラミック部と、一対の内部電極および一対の外部電極を含む素子電極とを備える素子部材が回路基板に電気的に接合された接合構造体であって、高湿環境下においても安定した電気特性を示す接合構造体が提供される。 According to the present disclosure, a junction structure in which an element member including a ceramic part and an element electrode including a pair of internal electrodes and a pair of external electrodes is electrically bonded to a circuit board, and Also provided is a bonded structure exhibiting stable electrical properties.
図1は、本開示の1つの実施形態(実施形態1)における接合構造体を示す概略模式断面図である。FIG. 1 is a schematic cross-sectional view showing a bonded structure according to one embodiment (Embodiment 1) of the present disclosure. 図2は、図1の実施形態における接合構造体の製造方法を説明する図であって、図2(a)および(b)は、素子部材の作製工程を順次示す概略模式上面図である。2A and 2B are diagrams for explaining the manufacturing method of the bonded structure in the embodiment of FIG. 1, and FIGS. 図3は、図1の実施形態における接合構造体の製造方法を説明する図であって、図2(b)の後工程にて作製された素子部材を示す図であり、図3(a)は素子部材の概略模式断面図であり、図3(b)は素子部材の概略模式上面図である(図3(a)は、図3(b)中のA-A線に沿って見たときの概略模式断面図である)。3A and 3B are diagrams for explaining the manufacturing method of the bonded structure in the embodiment of FIG. is a schematic cross-sectional view of the element member, and FIG. 3(b) is a schematic top view of the element member (FIG. 3(a) is a view taken along line AA in FIG. 3(b). It is a schematic schematic cross-sectional view at the time). 図4は、図1の実施形態における接合構造体の製造方法を説明する図であって、図4(a)は回路基板の概略模式断面図であり、図4(b)は回路基板の概略模式上面図である(図4(a)は、図4(b)中のB-B線に沿って見たときの概略模式断面図である)。4A and 4B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 1, FIG. 4A being a schematic cross-sectional view of a circuit board, FIG. 4A is a schematic top view (FIG. 4A is a schematic cross-sectional view taken along line BB in FIG. 4B). 図5は、図1の実施形態における接合構造体の接合部分の概略模式拡大断面図であって、図5(a)は、L/Lが3以下である(例えば3である)場合を示し、図5(b)は、L/Lが3を超える(例えば3.5である)場合を示す(Lは、外部電極の接合領域の長さであり、Lは、ランド電極の接合領域の長さである。図5は外部電極4a、ランド電極14aおよび接合部30aについて示すが、外部電極4b、ランド電極14bおよび接合部30bについても同様である)。FIG. 5 is a schematic enlarged cross - sectional view of the joint portion of the joint structure in the embodiment of FIG. 1 , and FIG. , and FIG. 5(b) shows a case where L 2 /L 1 exceeds 3 (for example, 3.5) (L 1 is the length of the junction region of the external electrode, L 2 is 5 shows the external electrode 4a, the land electrode 14a and the joint portion 30a, but the external electrode 4b, the land electrode 14b and the joint portion 30b are the same). 図6は、本開示のもう1つの実施形態(実施形態2)における接合構造体を示す概略模式断面図である。FIG. 6 is a schematic cross-sectional view showing a bonded structure according to another embodiment (embodiment 2) of the present disclosure. 図7は、図6の実施形態における接合構造体の製造方法を説明する図であって、図7(a)は素子部材の概略模式断面図であり、図7(b)は素子部材の概略模式上面図である(図7(a)は、図7(b)中のA-A線に沿って見たときの概略模式断面図である)。7A and 7B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 6, FIG. 7A being a schematic cross-sectional view of an element member, and FIG. FIG. 7A is a schematic top view (FIG. 7A is a schematic cross-sectional view taken along line AA in FIG. 7B). 図8は、本開示のもう1つの実施形態(実施形態3)における接合構造体を示す概略模式断面図である。FIG. 8 is a schematic cross-sectional view showing a joined structure according to another embodiment (embodiment 3) of the present disclosure. 図9は、本開示のもう1つの実施形態(実施形態4)における接合構造体を示す概略模式断面図である。FIG. 9 is a schematic cross-sectional view showing a bonded structure according to another embodiment (Embodiment 4) of the present disclosure. 図10は、図9の実施形態における接合構造体の製造方法を説明する図であって、図10(a)は素子部材の概略模式断面図であり、図10(b)は素子部材の概略模式上面図である(図10(a)は、図10(b)中のA-A線に沿って見たときの概略模式断面図である)。10A and 10B are diagrams illustrating a method for manufacturing a bonded structure in the embodiment of FIG. 9, FIG. 10A being a schematic cross-sectional view of an element member, and FIG. FIG. 10(a) is a schematic top view (FIG. 10(a) is a schematic cross-sectional view taken along line AA in FIG. 10(b)). 図11は、本開示のもう1つの実施形態(実施形態5)における接合構造体を示す概略模式断面図であって、図11(a)は、接合部を含む断面を示し、図11(b)は、セラミック部を含む断面を示す(図11(a)は、図12(b)および図13(b)中のE-E線に沿って見たときの概略模式断面図であり、図11(b)は、図12(b)および図13(b)中のF-F線に沿って見たときの概略模式断面図である)。11A and 11B are schematic schematic cross-sectional views showing a bonded structure according to another embodiment (embodiment 5) of the present disclosure, in which FIG. ) shows a cross section including a ceramic part (FIG. 11(a) is a schematic schematic cross-sectional view when viewed along the EE line in FIGS. 12(b) and 13(b), and FIG. 11(b) is a schematic cross-sectional view taken along line FF in FIGS. 12(b) and 13(b)). 図12は、図11の実施形態における接合構造体の製造方法を説明する図であって、図12(a)は素子部材の概略模式断面図であり、図12(b)は素子部材の概略模式上面図である(図12(a)は、図12(b)中のC-C線に沿って見たときの概略模式断面図である)。12A and 12B are diagrams for explaining a method for manufacturing a bonded structure in the embodiment of FIG. 11, FIG. 12A being a schematic cross-sectional view of an element member, FIG. 12(a) is a schematic top view (FIG. 12(a) is a schematic cross-sectional view taken along line CC in FIG. 12(b)). 図13は、図11の実施形態における接合構造体の製造方法を説明する図であって、図13(a)は回路基板の概略模式断面図であり、図13(b)は回路基板の概略模式上面図である(図13(a)は、図13(b)中のD-D線に沿って見たときの概略模式断面図である)。13A and 13B are diagrams for explaining a method for manufacturing a bonded structure according to the embodiment of FIG. 11, FIG. 13A being a schematic cross-sectional view of a circuit board, FIG. 13(a) is a schematic top view (FIG. 13(a) is a schematic cross-sectional view taken along line DD in FIG. 13(b)). 図14は、チップ部品を回路基板に接合した比較例の接合構造体を示す概略模式断面図である。FIG. 14 is a schematic cross-sectional view showing a comparative bonded structure in which a chip component is bonded to a circuit board.
 本開示のいくつかの実施形態について、以下、図面を参照しながら詳述するが、本開示はこれら実施形態に限定されない。なお、同様の部材には同様の参照符号を付し、特段説明のない限り、同様の説明が当て嵌まり得る。 Several embodiments of the present disclosure will be described in detail below with reference to the drawings, but the present disclosure is not limited to these embodiments. Similar members are denoted by similar reference numerals, and similar descriptions can be applied unless otherwise specified.
(実施形態1)
 図1~4を参照して、本実施形態の接合構造体40は、
 一対の内部電極3a、3bおよび一対の外部電極4a、4bをそれぞれ含む一対の素子電極2a、2b(以下、素子電極2とも称する)、セラミック部5、ならびに第1保護層6が第1基材1上に形成された素子部材10と、
 一対のランド電極14a、14bが第2基材11上に形成された回路基板20と、
 セラミック部5および第1保護層6が第1基材1と第2基材11との間に配置された状態で、互いに対向する一対の外部電極4a、4bと一対のランド電極14a、14bとをそれぞれ電気的に接合する接合部30a、30bとを含む。
(Embodiment 1)
1 to 4, the joint structure 40 of this embodiment includes:
A pair of device electrodes 2a and 2b (hereinafter also referred to as device electrodes 2) including a pair of internal electrodes 3a and 3b and a pair of external electrodes 4a and 4b (hereinafter also referred to as device electrodes 2), a ceramic portion 5, and a first protective layer 6 are the first base material. an element member 10 formed on 1;
a circuit board 20 having a pair of land electrodes 14a and 14b formed on a second base material 11;
A pair of external electrodes 4a, 4b and a pair of land electrodes 14a, 14b facing each other are arranged in a state in which the ceramic part 5 and the first protective layer 6 are arranged between the first base material 1 and the second base material 11. and junctions 30a and 30b that electrically join the .
 セラミック部5は第1保護層6で被覆され、一対の外部電極4a、4bは、第1保護層6から露出し、一対の内部電極3a、3bは、セラミック部5内に位置し、セラミック部5の厚さtは、40μm以下である。本実施形態によれば、かかる構成により、高湿環境下においても安定した電気特性を示す接合構造体が提供される。 The ceramic portion 5 is covered with a first protective layer 6, the pair of external electrodes 4a and 4b are exposed from the first protective layer 6, and the pair of internal electrodes 3a and 3b are positioned within the ceramic portion 5 and The thickness t of 5 is 40 μm or less. According to this embodiment, such a configuration provides a joint structure that exhibits stable electrical characteristics even in a high-humidity environment.
 以下、本実施形態の接合構造体40について、その製造方法を通じて詳述する。なお、各部材および/または材料に関する説明は、特段断りのない限り、最終的に得られる接合構造体40においても同様に当て嵌まり得る。 Below, the joint structure 40 of the present embodiment will be described in detail through its manufacturing method. It should be noted that the description of each member and/or material can similarly apply to the joint structure 40 finally obtained unless otherwise specified.
・素子部材
 図2(a)に示すように、第1基材1の表面上に素子電極2を形成する。(以下、第1基材1の素子電極2が形成される表面を、第1基材1の「主面」とも言う。)
Element Member As shown in FIG. 2( a ), the element electrodes 2 are formed on the surface of the first substrate 1 . (Hereinafter, the surface of the first base material 1 on which the element electrodes 2 are formed is also referred to as the "principal surface" of the first base material 1.)
 第1基材1は、素子電極2が形成される表面部分が絶縁性である限り、任意の適切な基材(または基板)であってよい。例えば、第1基材1は、フレキシブル基板(ベース層)であってよい。特に限定されないが、第1基材1は、任意の適切な樹脂材料(第2樹脂材料)を含むものであってよい。第1基材1に用いられる樹脂材料(第2樹脂材料)は、例えばポリイミド系樹脂、ポリエステル系樹脂、ガラス-エポキシ樹脂、液晶ポリマー(LCP)などからなる群より選択される少なくとも1つを含むものであってよい。第1基材1は、上記樹脂材料から成っていても、場合により、上記樹脂材料に加えて他の成分を比較的少量(第1基材1の全体に対して、例えば50質量%未満、特に30質量%以下)で含んでいてもよい。上記他の成分は、上記樹脂材料より透湿性が低いものが好ましい。しかしながら、本実施形態はこれに限定されず、第1基材1は、リジッド基板であってもよい。リジッド基板は、従来一般的なリジッド基板(ガラス-エポキシ樹脂、紙-フェノール樹脂、紙-エポキシ樹脂などから成り得る)を使用してよい。 The first base material 1 may be any appropriate base material (or substrate) as long as the surface portion on which the device electrodes 2 are formed is insulating. For example, the first base material 1 may be a flexible substrate (base layer). Although not particularly limited, the first base material 1 may contain any appropriate resin material (second resin material). The resin material (second resin material) used for the first base material 1 includes at least one selected from the group consisting of, for example, polyimide-based resin, polyester-based resin, glass-epoxy resin, liquid crystal polymer (LCP), and the like. can be anything. Even if the first substrate 1 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire first substrate 1, 30% by mass or less). The other component preferably has lower moisture permeability than the resin material. However, the present embodiment is not limited to this, and the first base material 1 may be a rigid substrate. The rigid substrate may be a conventional rigid substrate (which may consist of glass-epoxy resin, paper-phenolic resin, paper-epoxy resin, etc.).
 第1基材1の厚さは、適宜選択され得るが、例えば10μm以上5mm以下であり得る。第1基材1がフレキシブル基板である場合、第1基材1の厚さは、比較的薄いものであり得、例えば10μm以上80μm以下、特に60μm以下、より特に50μm以下であり得る。 The thickness of the first base material 1 can be selected as appropriate, and can be, for example, 10 μm or more and 5 mm or less. When the first substrate 1 is a flexible substrate, the thickness of the first substrate 1 may be relatively thin, for example 10 μm or more and 80 μm or less, particularly 60 μm or less, more particularly 50 μm or less.
 第1基材1の表面上に素子電極2を形成する方法は特に限定されない。例えば、第1基材1上に接着剤で金属箔(例えばCu箔)を接着して、第1基材1上の金属箔をフォトリソグラフィにより、素子電極2の形状に応じてパターン形成し、適宜、パターン形成した金属(例えばCu母材)の表面に、電解または無電解で金属めっき(例えばNiおよび/またはAuを含むめっき層)を施すことにより、素子電極2を(換言すれば、内部電極3a、3bおよび外部電極4a、4bを一体的に)形成してよい(なお、この場合、第1基材1と素子電極2との間に接着剤層が残存してよい)。かかる方法によれば、微細な構造を有する素子電極2を高精度に形成することができる。しかしながら、本実施形態はこれに限定されず、好ましさは劣るが、例えば、第1基材1上に導電性ペーストを、素子電極2の形状に応じたパターンで適用(例えば印刷)し、適宜、加熱することにより、素子電極2を形成してもよい。加熱は、後述するセラミック部5の形成と同時に行っても、別々に行ってもよい。 The method of forming the element electrodes 2 on the surface of the first base material 1 is not particularly limited. For example, a metal foil (for example, Cu foil) is adhered to the first base material 1 with an adhesive, and the metal foil on the first base material 1 is patterned according to the shape of the device electrode 2 by photolithography, Appropriately, the element electrode 2 (in other words, the internal The electrodes 3a, 3b and the external electrodes 4a, 4b may be integrally formed (in this case, an adhesive layer may remain between the first substrate 1 and the element electrodes 2). According to such a method, the device electrode 2 having a fine structure can be formed with high accuracy. However, the present embodiment is not limited to this, and although it is less preferable, for example, a conductive paste is applied (for example, printed) on the first base material 1 in a pattern corresponding to the shape of the element electrode 2, The element electrodes 2 may be formed by appropriately heating. The heating may be performed simultaneously with the formation of the ceramic portion 5, which will be described later, or separately.
 素子電極2は、任意の適切な導電性材料を用いて形成され、例えば金属から成り得る。素子電極2におけるAg含有量は、例えば20質量%以下、特に10質量%以下であり得、好ましくは実質的に0質量%である。従来一般的なチップ部品では、内部電極および/または外部電極の材料にAg含有粒子(Ag粒子またはAgおよびPdを含む粒子等)を含む導電性ペーストを使用すると、セラミック素体の形成時にセラミック材料とAg含有粒子とを共焼結できるので、内部電極および/または外部電極がAgを含むことが多かった。しかしながら、かかるチップ部品を回路基板にはんだ材料で接合するとき、およびこれにより得られた接合構造体を高湿条件下で使用する間に、一対の外部電極間でAgが析出してデンドライトが成長し易く、チップ部品の抵抗の低下、場合によりショートを招く恐れがあった。これに対して、本実施形態においては、素子電極2のAg含有量を上記のように小さく、好ましくはAgを実質的に含まないようにすることによって、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、(外部電極のAg含有量がより高いチップ部品または接合部材を回路基板に接合した接合構造体に比べて)マイグレーションに由来する外部電極4a、4b間でのデンドライトの成長を低減ないし防止できて、接合構造体40の低抵抗化(著しい場合にはショート)を効果的に低減ないし防止することができる。 The device electrodes 2 are formed using any appropriate conductive material, and can be made of metal, for example. The Ag content in the device electrode 2 may be, for example, 20% by mass or less, particularly 10% by mass or less, and preferably substantially 0% by mass. Conventionally, in general chip parts, if a conductive paste containing Ag-containing particles (such as Ag particles or particles containing Ag and Pd) is used as the material for internal electrodes and/or external electrodes, the ceramic material is The internal and/or external electrodes often contained Ag, since the sintering can be co-sintered with the Ag-containing particles. However, when such a chip component is joined to a circuit board with a solder material, and while the joint structure thus obtained is used under high humidity conditions, Ag precipitates between the pair of external electrodes and dendrites grow. There is a danger that the resistance of the chip component will decrease and, in some cases, a short circuit will occur. On the other hand, in the present embodiment, the Ag content of the device electrode 2 is reduced as described above, preferably by substantially not containing Ag, so that the finally obtained junction structure 40 Even when the is used under high humidity conditions, there is a problem between the external electrodes 4a and 4b resulting from migration (compared to a bonded structure in which a chip component or a bonding member having a higher Ag content in the external electrode is bonded to a circuit board) This can reduce or prevent the growth of dendrites at the junction structure 40, and effectively reduce or prevent the resistance of the junction structure 40 from being lowered (short circuit in a significant case).
 本実施形態を限定するものではないが、素子電極2は、Cu、Al、Ni、Sn、Ti、Zn、Feなどからなる群より選択される少なくとも1つの金属から成る母材と、Ni、Au、Sn、Zn、Cr、W、Pd、Pt、Cuなどからなる群より選択される少なくとも1つの金属から成るめっき層(単層または多層構造であり得る)とで構成されていてよい。 Although not limited to this embodiment, the device electrode 2 includes a base material made of at least one metal selected from the group consisting of Cu, Al, Ni, Sn, Ti, Zn, Fe, etc., and Ni, Au , Sn, Zn, Cr, W, Pd, Pt, Cu, etc., and a plated layer (which may be a single layer or multi-layer structure) made of at least one metal selected from the group consisting of.
 素子電極2の厚さは、後述するセラミック部5の厚さより小さければ特段限定されないが、例えば30μm以下、特に20μm以下で、下限は特段限定されないが、例えば1μm以上であり得る。このように比較的薄い素子電極2は、後述する接合部30a、30bおよび第1保護層6による被覆が仮になかったとしたならば、マイグレーションによる溶解の影響を受け易いと考えられ得る。 The thickness of the element electrode 2 is not particularly limited as long as it is smaller than the thickness of the later-described ceramic portion 5. For example, it is 30 μm or less, particularly 20 μm or less. Such a relatively thin element electrode 2 would likely be susceptible to dissolution due to migration if it were not covered by joints 30a and 30b and the first protective layer 6, which will be described later.
 素子電極2(一対の内部電極3a、3bおよび一対の外部電極4a、4bを含む)の形状は、素子部材10ひいては接合構造体40に所望される電気特性および接合構造体40に所望される寸法等に応じて適宜選択され得る。 The shape of the element electrode 2 (including the pair of internal electrodes 3a and 3b and the pair of external electrodes 4a and 4b) is determined according to the electrical characteristics and dimensions desired for the element member 10 and thus the junction structure 40. It can be selected as appropriate according to, for example.
 次に、図2(b)に示すように、第1基材1および素子電極2の所定の領域上に、セラミック部5を形成する。 Next, as shown in FIG. 2(b), ceramic portions 5 are formed on predetermined regions of the first substrate 1 and the element electrodes 2. Next, as shown in FIG.
 セラミック部5は、素子部材10に所望される機能に応じて任意の適切なセラミック材料を用いて形成され得る。例えば、概略的には、所定の金属酸化物の粒子(セラミック材料)を含む原料混合物を、第1基材1および素子電極2の所定の領域上に任意の適切な方法で適用(例えば印刷)し、その後、加熱により焼成し、適宜、アニールおよび/または乾燥することで、セラミック部5が形成され得る。加熱(焼成を含む)温度は、使用するセラミック材料に応じて設定され得るが、加熱により第1基材1の変形を実質的に生じないことが好ましい。 The ceramic portion 5 can be formed using any appropriate ceramic material depending on the functions desired for the element member 10 . For example, in general, a raw material mixture containing particles of a predetermined metal oxide (ceramic material) is applied (e.g., printed) onto predetermined areas of the first substrate 1 and the element electrodes 2 by any suitable method. Then, the ceramic portion 5 can be formed by firing by heating, annealing and/or drying as appropriate. The heating (including firing) temperature can be set according to the ceramic material used, but it is preferable that the heating does not substantially cause deformation of the first substrate 1 .
 セラミック部5の厚さt(図1、図3(a)参照)は、40μm以下であればよい。セラミック部の厚さtは、第1基材1の表面(主面)からセラミック部5の該主面と反対側の表面までの高さを言う。セラミック部5の厚さの下限値は、素子電極2の厚さより大きければよいが、素子電極2の厚さよりも、例えば2μm以上、特に5μm以上大きいものであり得る。本実施形態はいかなる理論によっても拘束されないが、セラミック部5の厚さtが、このように小さいことによって、最終的に得られる接合構造体40の各層の接着界面での凹凸が少ないことで封止性が向上し、該接合構造体40を高湿条件下で使用する場合にも、マイグレーションを抑制できて、接合構造体40の高抵抗化(著しい場合にはオープン)および/または低抵抗化(著しい場合にはショート)を効果的に低減ないし防止することができる。 The thickness t (see FIGS. 1 and 3(a)) of the ceramic portion 5 should be 40 μm or less. The thickness t of the ceramic portion refers to the height from the surface (main surface) of the first substrate 1 to the surface of the ceramic portion 5 opposite to the main surface. The lower limit of the thickness of the ceramic portion 5 may be larger than the thickness of the element electrode 2, but may be larger than the thickness of the element electrode 2 by, for example, 2 μm or more, particularly 5 μm or more. Although the present embodiment is not bound by any theory, since the thickness t of the ceramic part 5 is so small, the bonding interface between the layers of the joint structure 40 finally obtained has less unevenness, resulting in sealing. When the joint structure 40 is used under high-humidity conditions, migration can be suppressed, and the resistance of the joint structure 40 is increased (open in extreme cases) and/or reduced. It is possible to effectively reduce or prevent (short circuit in a serious case).
 その後、図3(a)~(b)に示すように、セラミック部5を被覆する第1保護層6を形成する。 After that, as shown in FIGS. 3(a) and 3(b), a first protective layer 6 covering the ceramic portion 5 is formed.
 第1保護層6は、セラミック部5および素子電極2と接触する部分が絶縁性である限り、任意の適切な材料を含むものであってよい。例えば、第1保護層6は、フレキシブルであってよい。代表的には、第1保護層6は、任意の適切な樹脂材料(第1樹脂材料)を含むものであり得る。第1保護層6に用いられる樹脂材料(第1樹脂材料)は、例えばポリイミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、液晶ポリマー(LCP)、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂(ナイロンを含む)、ポリエーテルイミド系樹脂、および(メタ)アクリル系樹脂などからなる群より選択される少なくとも1つを含むものであってよい。なかでも、LCPは透湿性が比較的低く、よって、マイグレーション抑制に一層効果的であるので好ましい。第1保護層6は、上記樹脂材料から成っていても、場合により、上記樹脂材料に加えて他の成分を比較的少量(第1保護層6の全体に対して、例えば50質量%未満、特に30質量%以下)で含んでいてもよい。上記他の成分は、上記樹脂材料より透湿性が低いものが好ましい。 The first protective layer 6 may contain any appropriate material as long as the portions that contact the ceramic portion 5 and the element electrodes 2 are insulative. For example, the first protective layer 6 may be flexible. Typically, the first protective layer 6 may contain any suitable resin material (first resin material). The resin material (first resin material) used for the first protective layer 6 includes, for example, polyimide resin, polyamideimide resin, epoxy resin, liquid crystal polymer (LCP), polyethylene resin, polypropylene resin, polystyrene resin, It may contain at least one selected from the group consisting of polyester-based resins, polyurethane-based resins, polyamide-based resins (including nylon), polyetherimide-based resins, and (meth)acrylic-based resins. Among them, LCP is preferable because it has relatively low moisture permeability and is therefore more effective in suppressing migration. Even if the first protective layer 6 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire first protective layer 6, 30% by mass or less). The other component preferably has lower moisture permeability than the resin material.
 セラミック部5を被覆する第1保護層6を形成する方法は特に限定されない。例えば、セラミック部5より十分に大きい面積を有する第1保護層6を用いて、セラミック部5上に接着剤層を含む第1保護層6を(または接着剤を介して第1保護層6を)配置し、その後、圧着することで、セラミック部5を被覆する第1保護層6が形成され得る。接着剤は、常温で接着可能なものであっても、加熱により接着可能なものであってよく、後者の場合には、第1保護層6の接着のための加熱を、後述する接合部を形成するための加熱と同時に行っても、別々に行ってもよい。 The method of forming the first protective layer 6 covering the ceramic portion 5 is not particularly limited. For example, using a first protective layer 6 having an area sufficiently larger than that of the ceramic portion 5, the first protective layer 6 including an adhesive layer is formed on the ceramic portion 5 (or the first protective layer 6 is formed via an adhesive). ), followed by pressure bonding, the first protective layer 6 covering the ceramic part 5 can be formed. The adhesive may be one that can be adhered at room temperature or one that can be adhered by heating. Heating for forming may be performed simultaneously or separately.
 第1保護層6は単層であっても、多層であってもよく、後者の場合、適宜、1つまたは2つ以上の接着剤層を含んでいてよい。第1保護層6は、いわゆるカバーレイに由来するカバーレイ層であっても、なくてもよい。第1保護層6の表面は、そのままで撥水性を有するものであってよく、および/または、必要に応じて撥水加工を施してもよい。 The first protective layer 6 may be a single layer or multiple layers, and in the latter case may contain one or more adhesive layers as appropriate. The first protective layer 6 may or may not be a coverlay layer derived from a so-called coverlay. The surface of the first protective layer 6 may be water-repellent as it is, and/or may be subjected to water-repellent finishing as necessary.
 第1保護層6の厚さは、第1保護層6の透湿性に応じて適宜選択され得るが、例えば10μm以上、特に15μm以上、より特に20μm以上とされ得る。第1保護層6の厚さの上限値は特段限定されないが、厚さは、例えば50μm以下、特に40μm以下、より特に30μm以下であり得る。 The thickness of the first protective layer 6 can be appropriately selected according to the moisture permeability of the first protective layer 6, and can be, for example, 10 µm or more, particularly 15 µm or more, and more particularly 20 µm or more. Although the upper limit of the thickness of the first protective layer 6 is not particularly limited, the thickness can be, for example, 50 μm or less, particularly 40 μm or less, and more particularly 30 μm or less.
 第1保護層6は、セラミック部5を被覆し、一対の外部電極4a、4bを露出させている限り、任意の適切な領域上に形成され得る。第1保護層6は、例えば図3(a)に示すように、第1基材1の表面(主面)の外部電極4a、4b間に形成され得、好ましくは更に第1基材1の表面(主面)の外周領域上にも形成され得、より好ましくは図3(b)に示すように、外部電極4a、4bの各々を取り囲むように形成され得る。 The first protective layer 6 can be formed on any appropriate region as long as it covers the ceramic portion 5 and exposes the pair of external electrodes 4a and 4b. The first protective layer 6 can be formed between the external electrodes 4a and 4b on the surface (main surface) of the first substrate 1, as shown in FIG. It can also be formed on the outer peripheral region of the surface (principal surface), and more preferably, it can be formed so as to surround each of the external electrodes 4a and 4b as shown in FIG. 3(b).
 素子電極2のうち、セラミック部5内に位置する部分が内部電極3a、3bであり、第1保護層6から露出している部分が外部電極4a、4bである。素子電極2は、セラミック部5外に位置するが第1保護層6で被覆されている部分を、外部電極4a、4bに隣接して更に含み得、これら部分は、(特にマイグレーションに由来する溶解について言及するときに)内部電極3a、3bに含めて考えて差し支えない。 Of the element electrodes 2, the portions located within the ceramic portion 5 are internal electrodes 3a and 3b, and the portions exposed from the first protective layer 6 are external electrodes 4a and 4b. The element electrode 2 may further include a portion adjacent to the external electrodes 4a, 4b, which is located outside the ceramic portion 5 but is covered with the first protective layer 6, and these portions (particularly dissolution resulting from migration ) may be considered to be included in the internal electrodes 3a, 3b.
 内部電極3a、3bは、例えば図3(b)に示すように、歯の部分が互いに対向する櫛歯型の形状を有していてよい。 For example, the internal electrodes 3a and 3b may have a comb-like shape in which the tooth portions face each other, as shown in FIG. 3(b).
 外部電極4a、4bは、例えば図3(b)に示すように、可能な限り互いに離間するように、これらの間にセラミック部5が形成されていてよい(この場合、上述したように第1保護層6が外部電極4a、4b間に形成され、後述する第2保護層16が回路基板20に存在する場合には、第2保護層16がランド電極14a、14b間に形成される)。(また例えば、場合により、実施形態5にて詳述するように、外部電極4a、4bに隣接して、セラミック部5が形成されていてもよい。) A ceramic portion 5 may be formed between the external electrodes 4a and 4b so as to be separated from each other as much as possible, as shown in FIG. The protective layer 6 is formed between the external electrodes 4a and 4b, and when a second protective layer 16, which will be described later, is present on the circuit board 20, the second protective layer 16 is formed between the land electrodes 14a and 14b). (Furthermore, for example, depending on the case, a ceramic portion 5 may be formed adjacent to the external electrodes 4a and 4b, as described in detail in Embodiment 5.)
 しかしながら、内部電極3a、3bおよび外部電極4a、4bの配置および/または形状は、これに限定されず、素子部材10ひいては接合構造体40に所望される電気特性および接合構造体40に所望される寸法等に応じて適宜選択され得る。 However, the arrangement and/or shape of the internal electrodes 3a, 3b and the external electrodes 4a, 4b are not limited to this, and the electrical properties desired for the element member 10 and thus the junction structure 40 and the junction structure 40 are desired. It can be appropriately selected according to the dimensions and the like.
 本実施形態によれば、セラミック部5を第1保護層6で被覆し、かつ、セラミック部5の厚さt(図1、図3(a)参照)を40μm以下とすることによって、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、マイグレーションに由来する(例えば外部電極4aおよび/または4b近傍での)内部電極3aおよび/または3bの溶解を低減ないし防止できて、接合構造体40の高抵抗化(著しい場合にはオープン)を効果的に低減ないし防止することができる。 According to this embodiment, by covering the ceramic portion 5 with the first protective layer 6 and setting the thickness t (see FIGS. 1 and 3A) of the ceramic portion 5 to 40 μm or less, the final Even when the joint structure 40 obtained in 1 is used under high humidity conditions, the dissolution of the internal electrodes 3a and/or 3b (for example, near the external electrodes 4a and/or 4b) due to migration is reduced or prevented. As a result, it is possible to effectively reduce or prevent an increase in the resistance of the junction structure 40 (open in extreme cases).
 以上のようにして、素子部材10が作製され得る。 The element member 10 can be manufactured as described above.
・回路基板
 図4(a)~(b)に示すように、第2基材11の表面上に一対のランド電極14a、14bおよびこれらの各々からの引き出し線15a、15bを形成する。(以下、第2基材1のランド電極14a、14bが形成される表面を、第2基材11の「主面」とも言う。)
Circuit Board As shown in FIGS. 4(a) and 4(b), a pair of land electrodes 14a and 14b and lead wires 15a and 15b are formed on the surface of the second base material 11, respectively. (Hereinafter, the surface on which the land electrodes 14a and 14b of the second base material 1 are formed is also referred to as the "main surface" of the second base material 11.)
 第2基材11は、ランド電極14a、14bおよび引き出し線15a、15bが形成される表面部分が絶縁性である限り、任意の適切な基材(または基板)であってよい。例えば、第2基材11は、フレキシブル基板(ベース層)であってよい。特に限定されないが、第2基材11は、任意の適切な樹脂材料(第3樹脂材料)を含むものであってよい。第2基材11に用いられる樹脂材料(第3樹脂材料)は、第1基材1について上述した樹脂材料(第2樹脂材料)と同様であってよい。第2基材11は、上記樹脂材料から成っていても、場合により、上記樹脂材料に加えて他の成分を比較的少量(第2基材11の全体に対して、例えば50質量%未満、特に30質量%以下)で含んでいてもよい。上記他の成分は、上記樹脂材料より透湿性が低いものが好ましい。しかしながら、本実施形態はこれに限定されず、第2基材11は、リジッド基板であってもよい。リジッド基板は、第1基材1について上述したリジッド基板と同様であってよい。 The second base material 11 may be any appropriate base material (or substrate) as long as the surface portions on which the land electrodes 14a, 14b and lead lines 15a, 15b are formed are insulating. For example, the second base material 11 may be a flexible substrate (base layer). Although not particularly limited, the second base material 11 may contain any appropriate resin material (third resin material). The resin material (third resin material) used for the second base material 11 may be the same as the resin material (second resin material) described above for the first base material 1 . Even if the second base material 11 is made of the above resin material, in some cases, in addition to the above resin material, other components may be added in a relatively small amount (for example, less than 50% by mass with respect to the entire second base material 11, 30% by mass or less). The other component preferably has lower moisture permeability than the resin material. However, the present embodiment is not limited to this, and the second base material 11 may be a rigid substrate. The rigid substrate may be similar to the rigid substrates described above for the first substrate 1 .
 第2基材11の厚さは、適宜選択され得るが、例えば10μm以上5mm以下であり得る。第2基材11がフレキシブル基板である場合、第2基材11の厚さは、比較的薄いものであり得、例えば10μm以上80μm以下、特に60μm以下、より特に50μm以下であり得る。 The thickness of the second base material 11 can be selected as appropriate, and can be, for example, 10 μm or more and 5 mm or less. When the second substrate 11 is a flexible substrate, the thickness of the second substrate 11 may be relatively thin, for example 10 μm or more and 80 μm or less, particularly 60 μm or less, more particularly 50 μm or less.
 ランド電極14a、14bおよび引き出し線15a、15bを形成する方法は特に限定されない。例えば、第2基材11上に接着剤で金属箔(例えばCu箔)を接着して、第2基材11上の金属箔をフォトリソグラフィにより、ランド電極14a、14bおよび引き出し線15a、15bの形状に応じてパターン形成し、適宜、パターン形成した金属(例えばCu母材)の表面に、電解または無電解で金属めっき(例えばNiおよび/またはAuを含むめっき層)を施すことにより、ランド電極14a、14bおよび引き出し線15a、15bを一体的に形成してよい(なお、この場合、第2基材11とランド電極14a、14bおよび引き出し線15a、15bとの間に接着剤層が残存してよい)。しかしながら、本実施形態はこれに限定されず、例えば、第2基材11上に導電性ペーストを、ランド電極14a、14bおよび引き出し線15a、15bの形状に応じたパターンで適用(例えば印刷)し、適宜、加熱することにより、ランド電極14a、14bおよび引き出し線15a、15bを形成してもよい。 The method of forming the land electrodes 14a, 14b and the lead lines 15a, 15b is not particularly limited. For example, a metal foil (for example, Cu foil) is adhered to the second base material 11 with an adhesive, and the metal foil on the second base material 11 is photolithographically processed to form the land electrodes 14a, 14b and the lead lines 15a, 15b. A pattern is formed according to the shape, and the surface of the patterned metal (for example, a Cu base material) is appropriately plated electrolytically or electrolessly (for example, a plated layer containing Ni and/or Au) to form a land electrode. 14a, 14b and lead lines 15a, 15b may be integrally formed (in this case, adhesive layers remain between the second base material 11 and the land electrodes 14a, 14b and lead lines 15a, 15b). can be used). However, the present embodiment is not limited to this. For example, a conductive paste is applied (for example, printed) on the second base material 11 in a pattern corresponding to the shapes of the land electrodes 14a, 14b and the lead wires 15a, 15b. The land electrodes 14a, 14b and the lead wires 15a, 15b may be formed by appropriately heating.
 ランド電極14a、14bおよび引き出し線15a、15bは、任意の適切な導電性材料を用いて形成され、例えば金属から成り得る。ランド電極14a、14bおよび引き出し線15a、15bにおけるAg含有量は、例えば20質量%以下、特に10質量%以下であり得、好ましくは実質的に0質量%である。本実施形態においては、ランド電極14a、14bのAg含有量を上記のように小さく、好ましくはAgを実質的に含まないようにすることによって、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、(チップ部品または接合部材を、ランド電極のAg含有量がより高い回路基板に接合した接合構造体に比べて)マイグレーションに由来するランド電極14a、14b間でのデンドライトの成長を低減ないし防止できて、接合構造体40の低抵抗化(著しい場合にはショート)を効果的に低減ないし防止することができる。 The land electrodes 14a, 14b and lead lines 15a, 15b are formed using any appropriate conductive material, and can be made of metal, for example. The Ag content in the land electrodes 14a, 14b and lead wires 15a, 15b may be, for example, 20% by mass or less, particularly 10% by mass or less, and preferably substantially 0% by mass. In the present embodiment, the land electrodes 14a, 14b have a small Ag content as described above, and preferably contain substantially no Ag. Even when used under such conditions, the migration-induced migration between the land electrodes 14a, 14b (compared to a bonded structure in which a chip component or a bonding member is bonded to a circuit board having a higher Ag content in the land electrode) It is possible to reduce or prevent the growth of dendrites, and to effectively reduce or prevent a decrease in the resistance of the junction structure 40 (a short circuit in a significant case).
 本実施形態を限定するものではないが、ランド電極14a、14bおよび引き出し線15a、15bは、Cu、Al、Ni、Sn、Ti、Zn、Feなどからなる群より選択される少なくとも1つの金属から成る母材と、Ni、Au、Sn、Zn、Cr、W、Pd、Pt、Cuなどからなる群より選択される少なくとも1つの金属から成るめっき層(単層または多層構造であり得る)とで構成されていてよい。 Although not limited to this embodiment, the land electrodes 14a, 14b and the lead wires 15a, 15b are made of at least one metal selected from the group consisting of Cu, Al, Ni, Sn, Ti, Zn, Fe, etc. and a plated layer (which can be a single layer or multi-layer structure) made of at least one metal selected from the group consisting of Ni, Au, Sn, Zn, Cr, W, Pd, Pt, Cu, etc. may be configured.
 ランド電極14a、14bおよび引き出し線15a、15bの厚さは、特段限定されないが、例えば30μm以上、特に20μm以上であり得、例えば50μm以下、特に35μm以下であり得る。このように比較的薄いランド電極14a、14bは、後述する接合部30a、30b(および存在する場合には第2保護層16)による被覆が仮になかったとしたならば、マイグレーションによる溶解の影響を受け易いと考えられ得る。 The thickness of the land electrodes 14a, 14b and the lead wires 15a, 15b is not particularly limited, but may be, for example, 30 μm or more, particularly 20 μm or more, and may be, for example, 50 μm or less, particularly 35 μm or less. Such relatively thin land electrodes 14a, 14b would be susceptible to dissolution due to migration if they were not covered by joints 30a, 30b (and second protective layer 16, if present), which will be described later. can be considered easy.
 ランド電極14a、14bの配置および形状は、外部電極4a、4bの配置および形状に応じて適宜選択され得る。引き出し線15a、15bの配置および形状は、最終的に得られる接合構造体40に所望される寸法および端子位置等に応じて適宜選択され得る。 The arrangement and shape of the land electrodes 14a, 14b can be appropriately selected according to the arrangement and shape of the external electrodes 4a, 4b. The arrangement and shape of the lead wires 15a and 15b can be appropriately selected according to the desired dimensions and terminal positions of the joint structure 40 finally obtained.
 本実施形態に必須ではないが、回路基板20は、第2基材11上に配置された第2保護層16を有していてよい。一対のランド電極14a、14bは、第2保護層16から露出している。 Although not essential for this embodiment, the circuit board 20 may have a second protective layer 16 disposed on the second base material 11 . A pair of land electrodes 14 a and 14 b are exposed from the second protective layer 16 .
 第2保護層16は、一対のランド電極14a、14bを露出させている限り、第2基材11の任意の適切な領域上に形成され得る。第2保護層16は、例えば図4(a)に示すように、第2基材11の表面(主面)のランド電極14a、14b間に形成され得、好ましくは更に第2基材11の表面(主面)の外周領域上にも形成され得、より好ましくは図4(b)に示すように、ランド電極14a、14bの各々を取り囲むように形成され得る。 The second protective layer 16 can be formed on any appropriate area of the second substrate 11 as long as the pair of land electrodes 14a, 14b are exposed. The second protective layer 16 can be formed between the land electrodes 14a and 14b on the surface (main surface) of the second substrate 11, as shown in FIG. It can also be formed on the outer peripheral region of the surface (principal surface), and more preferably, it can be formed so as to surround each of the land electrodes 14a and 14b as shown in FIG. 4(b).
 その他、第1保護層6について上述した説明が、第2保護層16にも同様に当て嵌まり得る。第2保護層16は、いわゆるカバーレイに由来するカバーレイ層であっても、なくてもよい。第2保護層16の表面は、そのままで撥水性を有するものであってよく、および/または、必要に応じて撥水加工を施してもよい。 In addition, the above description of the first protective layer 6 can be applied to the second protective layer 16 as well. The second protective layer 16 may or may not be a coverlay layer derived from a so-called coverlay. The surface of the second protective layer 16 may be water-repellent as it is, and/or may be subjected to water-repellent finishing as necessary.
 以上のようにして、回路基板20が作製され得る。 The circuit board 20 can be manufactured as described above.
・接合部
 上記で作製した素子部材10および回路基板20を、セラミック部5および第1保護層6が第1基材1と第2基材11との間に存在するように配置し、互いに対向する一対の外部電極4a、4bと一対のランド電極14a、14bとを接合部30a、30bで電気的に接合する。
・Joining part The element member 10 and the circuit board 20 produced above are arranged so that the ceramic part 5 and the first protective layer 6 are present between the first base material 1 and the second base material 11, and are opposed to each other. The pair of external electrodes 4a, 4b and the pair of land electrodes 14a, 14b are electrically joined at joints 30a, 30b.
 接合部30a、30bは、外部電極4a、4bとランド電極14a、14bとを電気的に接合し得る限り特段限定されないが、例えば、はんだ材料を含むものであってよい。はんだ材料は、鉛フリーはんだ材料が使用され得る。鉛フリーはんだ材料は、例えば、Sn-Cu系、Sn-Ag系、Sn-Ag-Cu系、Sn-Zn系、Sn-Bi系などであってよい。はんだ材料におけるAg含有量は、例えば20質量%以下、特に10質量%以下であり得る。 The joints 30a, 30b are not particularly limited as long as they can electrically join the external electrodes 4a, 4b and the land electrodes 14a, 14b, but may contain a solder material, for example. The solder material may be lead-free solder material. The lead-free solder material may be, for example, Sn--Cu based, Sn--Ag based, Sn--Ag--Cu based, Sn--Zn based, Sn--Bi based, and the like. The Ag content in the solder material can be, for example, 20% by weight or less, in particular 10% by weight or less.
 接合部30a、30bを形成する方法は特に限定されない。代表的には、はんだ材料の粒子を含む導電性ペーストをランド電極14a、14b上に適用(例えば印刷)し、その後、素子部材10および回路基板20を、セラミック部5および第1保護層6が第1基材1と第2基材11との間に存在するように配置し、一対の外部電極4a、4bが、これに対向する一対のランド電極14a、14b上の導電性ペースト上に載るように重ね合わせ、このように重ね合わせた状態でリフロー炉等にて加熱することにより、外部電極4a、4bとランド電極14a、14bとを電気的に接合する接合部30a、30bが形成される。加熱温度は、使用するはんだ材料の融点以上になるように設定され得るが、加熱により第1基材1、第2基材11、第1保護層6、および存在する場合には第2保護層16の変形を実質的に生じないことが好ましい。 The method of forming the joints 30a and 30b is not particularly limited. Typically, a conductive paste containing particles of a solder material is applied (e.g., printed) onto land electrodes 14a, 14b, after which element member 10 and circuit board 20 are attached to ceramic portion 5 and first protective layer 6. It is arranged so as to exist between the first base material 1 and the second base material 11, and the pair of external electrodes 4a, 4b is placed on the conductive paste on the pair of land electrodes 14a, 14b facing thereto. By stacking them in such a manner and heating them in a reflow furnace or the like in such a stacked state, joint portions 30a and 30b for electrically joining the external electrodes 4a and 4b and the land electrodes 14a and 14b are formed. . The heating temperature can be set to be at or above the melting point of the solder material used, but the heating causes the first substrate 1, the second substrate 11, the first protective layer 6, and the second protective layer, if present, to melt. Preferably, substantially no deformation of 16 occurs.
 はんだ材料の粒子を含む導電性ペーストをランド電極14a、14b上に適用(例えば印刷)する厚さは、外部電極4a、4bの第1基材1の表面(主面)と反対側の表面から第1保護層6の素子電極2と反対側の表面までの最大高さh(図1参照)と、ランド電極14a、14bの第2基材11の表面(主面)と反対側の表面から第2保護層16のランド電極14a、14bと反対側の表面までの最大高さh(図1参照)との合計より大きくなり、好ましくは、後述するように、素子部材10を回路基板20へ接合するときにはんだ材料が外部電極4a、4bの露出表面およびランド電極14a、14bの露出表面にて十分に濡れ広がるように、適宜設定され得る。 The thickness of the conductive paste containing particles of solder material applied (for example, printed) on the land electrodes 14a, 14b is from the surface opposite to the surface (main surface) of the first substrate 1 of the external electrodes 4a, 4b. The maximum height h 1 (see FIG. 1) to the surface of the first protective layer 6 opposite to the device electrode 2 and the surfaces of the land electrodes 14a and 14b opposite to the surface (principal surface) of the second substrate 11 to the land electrodes 14a, 14b of the second protective layer 16 and the surface of the second protective layer 16 opposite to the maximum height h 2 (see FIG. 1). It can be set appropriately so that the solder material sufficiently wets and spreads on the exposed surfaces of the external electrodes 4a and 4b and the exposed surfaces of the land electrodes 14a and 14b when joined to 20 .
 はんだ材料の粒子を含む導電性ペーストは、上述したようなはんだ材料の粒子に加えて、任意の適切な他の成分を含み得る。かかる他の成分は、フラックス、粘度調整剤、溶剤などであり得る。フラックスは、特に限定されず、既知のものを使用してよい。例えば、フラックスは、特許文献3に記載されるような、ロジン変性物を含むフラックス組成物を使用してよい。かかるフラックス組成物は、はんだ材料の粒子を被覆してマイグレーションを抑制可能であるとされている。上記ロジン変性物は、ロジンまたはロジン誘導体と、下記構造式:
NH3-n(R-OH) (n≦3)
で表されるアルカノールアミンとの反応物からなるロジン変性物であり得る。かかるロジン変性物は、ロジンまたはロジン誘導体と、有機酸と、アルカノールアミンとを反応させることにより得ることができる。より詳細には、かかるロジン変性物は、ロジンもしくはロジン誘導体のCOOH基と上記構造式(1)におけるNH3-n基とが縮合して得られるアミド結合、またはロジンもしくはロジン誘導体のCOOH基と上記構造式(1)におけるOH基とが縮合して得られるエステル結合を有する。
Conductive pastes containing particles of solder material may contain any suitable other ingredients in addition to particles of solder material as described above. Such other ingredients may be fluxes, viscosity modifiers, solvents, and the like. Flux is not particularly limited, and any known flux may be used. For example, the flux may use a flux composition containing rosin modifications, such as those described in US Pat. Such a flux composition is said to be able to coat particles of solder material and suppress migration. The modified rosin is composed of rosin or a rosin derivative and the following structural formula:
NH 3-n (R—OH) n (n≦3)
It can be a rosin-modified product consisting of a reaction product with an alkanolamine represented by. Such modified rosin can be obtained by reacting rosin or a rosin derivative, an organic acid and an alkanolamine. More specifically, such modified rosin is an amide bond obtained by condensation of the COOH group of rosin or a rosin derivative and the NH 3-n group in the above structural formula (1), or the COOH group of rosin or a rosin derivative and It has an ester bond obtained by condensation with the OH group in the structural formula (1).
 はんだ材料は、上記加熱の間に溶融し、一対の外部電極4a、4bの露出表面および一対のランド電極14a、14bの露出表面にて濡れ広がり、その後、温度が低下するにつれて凝固して接合部30a、30bを形成する。十分な導通性および接合強度を得るためには、ランド電極14a、14bの接合領域の面積は、それぞれ対向する外部電極4a、4bの接合領域の面積と実質的に等しいかそれ以上(即ち、1倍以上)であることが好ましい。また、ランド電極14a、14bの接合領域の面積は、それぞれ対向する外部電極4a、4bの接合領域の面積の3倍以下であることが好ましい。 The solder material melts during the heating, wets and spreads on the exposed surfaces of the pair of external electrodes 4a and 4b and the pair of land electrodes 14a and 14b, and then solidifies as the temperature drops to form the joints. 30a and 30b are formed. In order to obtain sufficient conductivity and bonding strength, the area of the bonding regions of the land electrodes 14a, 14b should be substantially equal to or greater than the area of the bonding regions of the external electrodes 4a, 4b facing each other (i.e., 1 times or more). Also, the area of the bonding regions of the land electrodes 14a and 14b is preferably three times or less the area of the bonding regions of the external electrodes 4a and 4b facing each other.
 なお、外部電極4a、4bの接合領域とは、外部電極4a、4bの第1基材1と反対側の表面の領域を言う。外部電極4a、4bの露出表面とは、外部電極4a、4bの接合領域と、外部電極4a、4bの第1基材1と該接合領域との間の側面とを合わせたものを言う。ランド電極14a、14bの接合領域とは、ランド電極14a、14bの第2基材11と反対側の表面の領域を言う。ランド電極14a、14bの露出表面とは、ランド電極14a、14bの接合領域と、ランド電極14a、14bの第2基材11と該接合領域との間の側面とを合わせたものを言う。 The bonding region of the external electrodes 4a and 4b refers to the region of the surface of the external electrodes 4a and 4b on the side opposite to the first base material 1. The exposed surfaces of the external electrodes 4a, 4b refer to the joint regions of the external electrodes 4a, 4b and the side surfaces of the external electrodes 4a, 4b between the first substrate 1 and the joint regions. The bonding area of the land electrodes 14a and 14b refers to the area of the surface of the land electrodes 14a and 14b opposite to the second base material 11 . The exposed surfaces of the land electrodes 14a and 14b refer to the joint regions of the land electrodes 14a and 14b and the side surfaces of the land electrodes 14a and 14b between the second base material 11 and the joint regions.
 外部電極4a、4bの接合領域の面積に対するランド電極14a、14bの接合領域の面積の比が3倍以下であることによって、例えば、外部電極4a、4bの接合領域の幅がランド電極14a、14bの接合領域の幅が同一である場合は、図5(a)に示すように、外部電極4a、4bの接合領域の長さLに対するランド電極14a、14bの接合領域の長さLの比が3倍以下(即ち、L/Lが3以下)であることによって、素子部材10を回路基板20へ接合するときにはんだ材料が外部電極4a、4bの露出表面(接合領域および側面)およびランド電極14a、14bの露出表面(接合領域および側面)にて十分に濡れ広がることができる。これにより形成される接合部30a、30bは、外部電極4a、4bおよびランド電極14a、14bを(実質的に露出させることなく)十分に被覆できる。このようにして得られた接合部30a、30bによれば、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、マイグレーションに由来する(接合部30a、30bから露出した部分での)ランド電極14aおよび/または14bの溶解を低減ないし防止できて、接合構造体40の高抵抗化(著しい場合にはオープン)を効果的に低減ないし防止することができる。本実施形態はいかなる理論によっても拘束されないが、接合構造体40を高湿条件下で使用することでマイグレーションが起こっても、外部電極4a、4bおよびランド電極14a、14bは(実質的に露出することなく)接合部30a、30bで被覆されているので、接合部30a、30bのはんだ材料が選択的に溶解し、接合構造体40の電気特性に影響を与え易い外部電極4a、4bおよび/またはランド電極14a、14bの溶解が低減ないし防止されるので、安定した電気特性が得られる。 When the ratio of the area of the bonding regions of the land electrodes 14a and 14b to the area of the bonding regions of the external electrodes 4a and 4b is 3 times or less, for example, the width of the bonding regions of the external electrodes 4a and 4b is reduced to the width of the land electrodes 14a and 14b. are the same, as shown in FIG . The ratio is 3 times or less (that is, L 2 /L 1 is 3 or less), so that when the element member 10 is joined to the circuit board 20, the solder material is applied to the exposed surfaces (bonding regions and side surfaces) of the external electrodes 4a and 4b. ) and the exposed surfaces (joint areas and side surfaces) of the land electrodes 14a and 14b. The joints 30a, 30b thus formed can sufficiently cover the external electrodes 4a, 4b and the land electrodes 14a, 14b (without substantially exposing them). According to the joints 30a and 30b obtained in this manner, even when the finally obtained joint structure 40 is used under high humidity conditions, it is caused by migration (exposed from the joints 30a and 30b). It is possible to reduce or prevent dissolution of the land electrodes 14a and/or 14b (at the portion where the connection is made), and effectively reduce or prevent the joining structure 40 from increasing in resistance (opening in a significant case). Although this embodiment is not bound by any theory, even if migration occurs due to the use of the joint structure 40 under high humidity conditions, the external electrodes 4a, 4b and the land electrodes 14a, 14b are (substantially exposed). ), the solder material of the joints 30a, 30b is selectively melted, and the electrical properties of the joint structure 40 are likely to be affected by the external electrodes 4a, 4b and/or Since the melting of the land electrodes 14a and 14b is reduced or prevented, stable electrical characteristics can be obtained.
 これに対して、外部電極4a、4bの接合領域の面積に対するランド電極14a、14bの接合領域の面積の比が3倍を超える場合、例えば、外部電極4a、4bの接合領域の幅がランド電極14a、14bの接合領域の幅が同一である場合は、図5(b)に示すように、L/Lが3を超える、特に3.5以上である場合には、素子部材10を回路基板20へ接合するときにはんだ材料が外部電極4a、4bの露出表面(接合領域および側面)およびランド電極14a、14bの露出表面(接合領域および側面)にて十分に濡れ広がらずに、ランド電極14a、14bの一部が接合部30a、30bで被覆されず、露出したまま残存し得る。(なお、ランド電極14a、14bの露出部分は、必要に応じて、例えば実施形態3~4等で後述するように樹脂材料で被覆してよい。) On the other hand, when the ratio of the area of the bonding regions of the land electrodes 14a and 14b to the area of the bonding regions of the external electrodes 4a and 4b exceeds three times, for example, the width of the bonding regions of the external electrodes 4a and 4b is greater than the width of the land electrodes. When the widths of the bonding regions of 14a and 14b are the same, as shown in FIG. When bonding to the circuit board 20, the solder material does not sufficiently wet and spread on the exposed surfaces (bonding regions and side surfaces) of the external electrodes 4a and 4b and the exposed surfaces (bonding regions and side surfaces) of the land electrodes 14a and 14b. Portions of the electrodes 14a, 14b may remain uncovered by the joints 30a, 30b and remain exposed. (The exposed portions of the land electrodes 14a and 14b may be covered with a resin material, as described later in Embodiments 3 and 4, if necessary.)
 以上のようにして、本実施形態の接合構造体40が作製され得る。 As described above, the joint structure 40 of the present embodiment can be produced.
 本実施形態の接合構造体40では、第1保護層6の第1基材1(主面)に対して反対側の表面が、一対の外部電極4a、4bの第1基材1(主面)に対して反対側の表面よりも、第2基材11の方向へ突出している。この場合、外部電極4aと外部電極4bとの間の経路が、それらの間に位置する上記突出により直線状でなくなり、上記突出が大きいほど水が浸入し難くなる。かかる構成によって、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、(上記突出がないまたは上記突出がより小さい場合に比べて)、水の侵入を抑制ないし阻害することができ、マイグレーションに由来する外部電極4a、4b間でのデンドライトの成長を低減ないし防止できて、接合構造体40の低抵抗化(著しい場合にはショート)を効果的に低減ないし防止することができる。上記突出の大きさは、例えば5μm以上、特に10μm以上で、上限は、第1保護層6が回路基板20(より詳細には、存在する場合には第2保護層16)と接触することによって規定され得る。 In the joint structure 40 of the present embodiment, the surface of the first protective layer 6 opposite to the first base material 1 (main surface) is the first base material 1 (main surface) of the pair of external electrodes 4a and 4b. ) in the direction of the second base material 11 . In this case, the path between the external electrodes 4a and 4b is no longer linear due to the protrusions located between them, and the larger the protrusions, the more difficult it is for water to enter. With such a configuration, even when the finally obtained bonded structure 40 is used under high humidity conditions, water intrusion is suppressed or inhibited (compared to the case where the protrusion is not present or the protrusion is smaller). It can reduce or prevent the growth of dendrites between the external electrodes 4a and 4b due to migration, and effectively reduce or prevent a decrease in the resistance of the junction structure 40 (a short circuit in a significant case). be able to. The size of the protrusion is, for example, 5 μm or more, particularly 10 μm or more, and the upper limit is the contact of the first protective layer 6 with the circuit board 20 (more specifically, the second protective layer 16 if present). can be defined.
 また、本実施形態の接合構造体40では、第2保護層16が存在する場合、第2保護層16の第2基材11(主面)に対して反対側の表面が、一対のランド電極14a、14bの第2基材11(主面)に対して反対側の表面よりも、第1基材1の方向へ突出している。この場合、ランド電極14aとランド電極14bとの間の経路が、それらの間に位置する上記突出により直線状でなくなり、上記突出が大きいほど水が浸入し難くなる。かかる構成によって、最終的に得られた接合構造体40を高湿条件下で使用する場合にも、(上記突出がないまたは上記突出がより小さい場合に比べて)水の侵入を抑制ないし阻害することができ、マイグレーションに由来するランド電極14a、14b間でのデンドライトの成長を低減ないし防止できて、接合構造体40の低抵抗化(著しい場合にはショート)を効果的に低減ないし防止することができる。上記突出の大きさは、例えば5μm以上、特に10μm以上で、上限は、第2保護層16が素子部材10(より詳細には第1保護層6)と接触することによって規定され得る。 In addition, in the joint structure 40 of the present embodiment, when the second protective layer 16 is present, the surface of the second protective layer 16 opposite to the second base material 11 (main surface) serves as a pair of land electrodes. It protrudes in the direction of the first substrate 1 from the surfaces of the 14a and 14b opposite to the second substrate 11 (main surface). In this case, the path between the land electrodes 14a and 14b is no longer linear due to the protrusions positioned between them, and the larger the protrusions, the more difficult it is for water to enter. With such a configuration, even when the finally obtained bonded structure 40 is used under high humidity conditions, water intrusion is suppressed or inhibited (compared to the case where the protrusion is not provided or the protrusion is smaller). It is possible to reduce or prevent the growth of dendrites between the land electrodes 14a and 14b due to migration, and to effectively reduce or prevent a decrease in the resistance of the junction structure 40 (short circuit in a significant case). can be done. The size of the protrusion is, for example, 5 μm or more, particularly 10 μm or more, and the upper limit can be defined by the contact of the second protective layer 16 with the element member 10 (more specifically, the first protective layer 6).
 なお、本実施形態の接合構造体40は、例えば特許文献1とは異なり、素子部材10の回路基板20と反対側の表面から、樹脂材料から成る保護被膜で素子部材10全体を覆う必要がない。かかる接合構造体40では、素子部材10が回路基板20に適切に電気的に接合されているかどうか確認し易く、故障が起こった場合には、素子部材10を交換することができる。また、1つの回路基板20に複数の素子部材10を接合した場合において、ある素子部材10において不良が見つかったときは、当該素子部材10のみを交換することができる。 In addition, in the joint structure 40 of the present embodiment, unlike Patent Document 1, for example, it is not necessary to cover the entire element member 10 with a protective film made of a resin material from the surface of the element member 10 opposite to the circuit board 20. . With such a joint structure 40, it is easy to confirm whether the element member 10 is properly electrically joined to the circuit board 20, and the element member 10 can be replaced in the event of a failure. Further, when a plurality of element members 10 are joined to one circuit board 20, if a defect is found in a certain element member 10, only the element member 10 can be replaced.
 上述した説明から理解されるように、本実施形態によれば、高湿環境下においても安定した電気特性を示す接合構造体40が提供される。本実施形態の接合構造体40は、イオンを含有する液体(水、体液等)と接触して使用されても、安定した電気特性を示すことができ、防滴性ないし防水性を有し得る。 As can be understood from the above description, according to the present embodiment, the joint structure 40 that exhibits stable electrical characteristics even in a high humidity environment is provided. The bonded structure 40 of the present embodiment can exhibit stable electrical characteristics and can have drip-proof or waterproof properties even when used in contact with a liquid containing ions (water, bodily fluids, etc.). .
 本実施形態の接合構造体40において、セラミック部5がサーミスタ材料(例えば、NTCサーミスタ材料)を含んでいてよい。かかる接合構造体40は、耐湿性(または防滴性ないし防水性、以下同様)を有する温度センサとして使用され得、好ましくは、耐湿性を有する薄型かつフレキシブルな温度センサ(例えばNTCサーミスタ)であり得る。耐湿性を有する薄型かつフレキシブルな温度センサは、例えば、車載用途やヘルスケア用途などにおいて好適に利用され得る。温度センサは、例えば-55℃~150℃の温度範囲での使用が想定される場合、低温から高温へ温度変化すると結露が生じる。また、ヘルスケア用途では、温度センサが体液に直接接触することが想定される場合もあり得る。本実施形態の接合構造体40は、かかる結露や体液に曝される温度センサとして使用しても、安定した電気特性を示すことができる。本実施形態の接合構造体40は、上述したように封止性に優れ、かつ、接合構造体40の外側表面(より詳細には、第1基材1の主面と反対側の表面と、第2基材11の主面と反対側の表面との双方)に、金属が露出している箇所が存在しないため、外部環境に対して高い絶縁性を示し、液体との接触のみならず、人体その他の導電体と接合構造体40が接触した場合にも、感電、ショート、ノイズなどの発生を防止することができる。 In the joint structure 40 of this embodiment, the ceramic portion 5 may contain a thermistor material (for example, an NTC thermistor material). Such a joint structure 40 can be used as a moisture-resistant (or drip-proof or waterproof, hereinafter the same) temperature sensor, and is preferably a moisture-resistant thin and flexible temperature sensor (for example, an NTC thermistor). obtain. A thin and flexible temperature sensor having moisture resistance can be suitably used in, for example, in-vehicle applications and healthcare applications. If the temperature sensor is assumed to be used in a temperature range of -55°C to 150°C, for example, dew condensation occurs when the temperature changes from low to high. Also, in healthcare applications, it may be envisaged that the temperature sensor will come into direct contact with bodily fluids. The joint structure 40 of the present embodiment can exhibit stable electrical characteristics even when used as a temperature sensor exposed to such dew condensation and bodily fluids. The bonded structure 40 of the present embodiment has excellent sealing properties as described above, and the outer surface of the bonded structure 40 (more specifically, the surface opposite to the main surface of the first base material 1, Since there is no portion where the metal is exposed on both the main surface and the surface on the opposite side of the second base material 11, it exhibits high insulation against the external environment, and not only contacts with liquids, Even if the joint structure 40 comes into contact with a conductor such as a human body, electric shock, short circuit, noise, etc. can be prevented from occurring.
(実施形態2)
 本実施形態は、実施形態1の改変例であって、第1保護層および第1基材の一方または双方が、金属層を含む態様に関する。本実施形態では、上述した実施形態1と異なる点を中心に説明し、特段断りのない限り、実施形態1と同様の説明が当て嵌まり得る。
(Embodiment 2)
This embodiment is a modified example of Embodiment 1, and relates to an aspect in which one or both of the first protective layer and the first base material include a metal layer. In this embodiment, the points different from the above-described first embodiment will be mainly described, and unless otherwise specified, the same description as in the first embodiment can be applied.
 本実施形態の接合構造体41においては、第1保護層6および第1基材1の少なくとも一方が、金属層を含む。図6~7を参照して、より詳細には、第1保護層6は、実施形態1にて上述した第1樹脂材料に加えて、第1金属層7を更に含む。第1基材1は、実施形態1にて上述した第2樹脂材料に加えて、第2金属層8を更に含む。第1金属層7は、セラミック部5と直接接触しない限り、第1保護層6に任意の適切な態様で備えられ得る。第2金属層8は、素子電極2(内部電極3a、3bおよび外部電極4a、4bを含む)と直接接触しない限り、第1基材1に任意の適切な態様で備えられ得る。(なお、図6および図7は、実施形態1にて参照した図1および図3にそれぞれ対応する図である。) In the bonded structure 41 of this embodiment, at least one of the first protective layer 6 and the first base material 1 includes a metal layer. 6 and 7, more specifically, the first protective layer 6 further includes a first metal layer 7 in addition to the first resin material described above in the first embodiment. The first base material 1 further includes a second metal layer 8 in addition to the second resin material described above in the first embodiment. The first metal layer 7 may be provided on the first protective layer 6 in any suitable manner as long as it does not come into direct contact with the ceramic portion 5 . The second metal layer 8 can be provided on the first substrate 1 in any suitable manner as long as it does not directly contact the device electrodes 2 (including the internal electrodes 3a, 3b and the external electrodes 4a, 4b). (Note that FIGS. 6 and 7 correspond to FIGS. 1 and 3 referred to in the first embodiment, respectively.)
 第1金属層7および第2金属層8は、任意の適切な金属を含んで成り得、例えば金属から成っていてよい。かかる金属は、特段限定されないが、例えばCu、Al、Ni、Auなどからなる群より選択される少なくとも1つであってよい。第1金属層7および第2金属層8は、同じ材料(金属を含む)から成っていても、異なる材料(金属を含む)から成っていてもよい。 The first metal layer 7 and the second metal layer 8 may comprise any suitable metal, for example may consist of metal. Such metals are not particularly limited, but may be, for example, at least one selected from the group consisting of Cu, Al, Ni, Au, and the like. The first metal layer 7 and the second metal layer 8 may consist of the same material (including metal) or different materials (including metal).
 第1金属層7および第2金属層8の厚さは、例えば1μm以上30μm以下であり得る。第1金属層7および第2金属層8は、同じまたは異なる厚さを有し得る。 The thickness of the first metal layer 7 and the second metal layer 8 can be, for example, 1 μm or more and 30 μm or less. The first metal layer 7 and the second metal layer 8 can have the same or different thicknesses.
 第1金属層7および第2金属層8をそれぞれ含む第1保護層6および第1基材1の作製方法は、特段限定されない。例えば、第1保護層6は、所定の樹脂材料から成る2つのフィルム間に金属箔を(適宜、接着剤を介して)挟んで、常温または加熱下にて圧着することで形成できる。第1基材1も同様にして形成できる。 The method of manufacturing the first protective layer 6 and the first base material 1, which respectively include the first metal layer 7 and the second metal layer 8, is not particularly limited. For example, the first protective layer 6 can be formed by sandwiching a metal foil between two films made of a predetermined resin material (optionally with an adhesive interposed therebetween) and pressing them at room temperature or under heat. The first base material 1 can also be formed in the same manner.
 金属層は、樹脂材料よりも低い透湿性を有する。一方、樹脂材料は、加工性、絶縁性等に優れ、フレキシブルであり得る。よって、金属層と樹脂材料とを組み合わせることで、素子構造41の電気特性およびフレキシビリティに悪影響を及ぼすことなく、低い透湿性を有する第1保護層6および第1基材1を備える素子構造41を実現できる。  The metal layer has lower moisture permeability than the resin material. On the other hand, the resin material is excellent in workability, insulating properties, etc., and can be flexible. Therefore, by combining the metal layer and the resin material, the element structure 41 including the first protective layer 6 and the first base material 1 having low moisture permeability without adversely affecting the electrical properties and flexibility of the element structure 41. can be realized.
 よって、本実施形態によれば、実施形態1の接合構造体に比べて、低い透湿性を有する第1保護層6および第1基材1によりマイグレーションをより一層抑制できて、高湿環境下においてもより一層安定した電気特性を示す接合構造体41が提供される。 Therefore, according to this embodiment, migration can be further suppressed by the first protective layer 6 and the first base material 1 having low moisture permeability compared to the bonded structure of Embodiment 1, and migration can be further suppressed in a high-humidity environment. A junction structure 41 is provided that exhibits even more stable electrical characteristics.
 なお、図6~7に示す態様では、第1保護層6および第1基材1の双方が金属層を含む例を示したが、本実施形態はこれに限定されず、好ましさは劣るが、第1保護層6および第1基材1のいずれか一方のみが、金属層を含むものであってもよい。 In the embodiments shown in FIGS. 6 and 7, both the first protective layer 6 and the first base material 1 include metal layers, but the present embodiment is not limited to this and is less preferable. However, only one of the first protective layer 6 and the first substrate 1 may contain the metal layer.
(実施形態3)
 本実施形態は、実施形態1および2の改変例であって、接合部が硬化樹脂材料で被覆されている態様に関する。本実施形態では、上述した実施形態1または2と異なる点を中心に説明し、特段断りのない限り、実施形態1または2と同様の説明が当て嵌まり得る。
(Embodiment 3)
This embodiment is a modified example of Embodiments 1 and 2, and relates to an aspect in which the joint portion is covered with a cured resin material. In this embodiment, the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
 図8に示すように、本実施形態の接合構造体42においては、接合部30a、30bが、硬化樹脂材料(硬化した樹脂材料、第4樹脂材料)31で被覆されている。(なお、図8は、実施形態2にて参照した図6に対応する図である。) As shown in FIG. 8, in the joint structure 42 of the present embodiment, joint portions 30a and 30b are covered with a cured resin material (cured resin material, fourth resin material) 31. As shown in FIG. (Note that FIG. 8 is a diagram corresponding to FIG. 6 referred to in the second embodiment.)
 硬化樹脂材料31は、絶縁性を有する限り、湿気、熱および/または放射線(光、紫外線等を含む)などで硬化した任意の適切な樹脂材料(第4樹脂材料)であってよく、代表的には、湿気硬化性(いわゆる常温硬化型)、放射線(例えば紫外線)硬化性、および/または熱硬化性の樹脂材料の硬化物であってよい。かかる硬化樹脂材料は、例えば、シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂などであり得る。 The cured resin material 31 may be any appropriate resin material (fourth resin material) cured by moisture, heat and/or radiation (including light, ultraviolet rays, etc.) as long as it has insulating properties. may be a cured product of a moisture-curable (so-called room-temperature-curable), radiation (eg, ultraviolet)-curable, and/or thermosetting resin material. Such cured resin materials may be, for example, silicone-based resins, acrylic-based resins, epoxy-based resins, and the like.
 硬化樹脂材料31は、接合部30a、30bのうち、外部電極4a、4bおよびランド電極14a、14bと接触していない表面の少なくとも一部、好ましくは実質的に全部を被覆する。外部電極4a、4bおよび/またはランド電極14a、14bのうち、接合部30a、30bで被覆されていない部分が存在する場合には、硬化樹脂材料31は、かかる部分も被覆し得る。硬化樹脂材料31は、素子部材10と回路基板20との間にて、接合部30a、30b以外の空間の実質的に全部を充填していても、していなくてもよい。 The cured resin material 31 covers at least part, preferably substantially all of the surfaces of the joints 30a, 30b that are not in contact with the external electrodes 4a, 4b and the land electrodes 14a, 14b. If there are portions of the external electrodes 4a, 4b and/or the land electrodes 14a, 14b that are not covered with the joints 30a, 30b, the cured resin material 31 can also cover such portions. The cured resin material 31 may or may not fill substantially the entire space between the element member 10 and the circuit board 20 except for the joints 30a and 30b.
 接合部30a、30bを被覆する硬化樹脂材料31の作製方法は、特段限定されない。例えば、実施形態1または2の接合構造体を作製した後、未硬化の樹脂材料を接合部30a、30bの周囲に(好ましくは、外部電極4a、4bおよびランド電極14a、14bと接触していない表面の実質的に全部を被覆するように)供給し、その後、使用した未硬化の樹脂材料に応じて適切な方法で硬化させることで形成できる。未硬化の樹脂材料を供給した後に硬化形成された硬化樹脂材料31は、接合部30a、30b(ならびに好ましくは外部電極4a、4bおよびランド電極14a、14b)に密着して被覆してこれらを封止することができる。 The method of producing the cured resin material 31 covering the joints 30a and 30b is not particularly limited. For example, after producing the joint structure of Embodiment 1 or 2, an uncured resin material is applied around the joints 30a and 30b (preferably not in contact with the external electrodes 4a and 4b and the land electrodes 14a and 14b). It can be formed by applying the coating so as to cover substantially all of the surface) and then curing in a suitable manner depending on the uncured resin material used. The cured resin material 31, which is cured after supplying the uncured resin material, closely adheres to and covers the joints 30a and 30b (and preferably the external electrodes 4a and 4b and the land electrodes 14a and 14b) to seal them. can be stopped.
 硬化樹脂材料31で接合部30a、30b(はんだ材料を含む)を被覆することで、接合部30a、30bにおいてもマイグレーションを抑制できる。 By covering the joints 30a and 30b (including the solder material) with the cured resin material 31, migration can also be suppressed in the joints 30a and 30b.
 よって、本実施形態によれば、実施形態1および2の接合構造体に比べて、硬化樹脂材料31で接合部30a、30bを被覆するための追加の工程を要することとなるものの、接合部30a、30b(はんだ材料を含む)を被覆する硬化樹脂材料31によりマイグレーションをより一層抑制できて、高湿環境下においてもより一層安定した電気特性を示す接合構造体42が提供される。 Therefore, according to the present embodiment, as compared with the joint structures of Embodiments 1 and 2, an additional step for covering the joints 30a and 30b with the cured resin material 31 is required. , 30b (including a solder material) can further suppress migration by the cured resin material 31, thereby providing a joint structure 42 that exhibits more stable electrical characteristics even in a high-humidity environment.
 なお、図8に示す態様では、実施形態2の改変例として、第1保護層6および第1基材1の双方が金属層を含む接合構造体42において、接合部30a、30bが、硬化樹脂材料31で被覆されているものを示したが、本実施形態はこれに限定されず、第1保護層6および第1基材1のいずれか一方が、金属層を含むものであってもよい。あるいは、実施形態1の改変例として、金属層を含まない第1保護層6および第1基材1を備える接合構造体において、接合部30a、30bが、硬化樹脂材料31で被覆されているものであってもよい。 In the aspect shown in FIG. 8, as a modified example of Embodiment 2, in the bonded structure 42 in which both the first protective layer 6 and the first base material 1 include metal layers, the bonded portions 30a and 30b are made of a cured resin. Although the one coated with the material 31 is shown, the present embodiment is not limited to this, and either the first protective layer 6 or the first base material 1 may include a metal layer. . Alternatively, as a modified example of Embodiment 1, in the bonded structure including the first protective layer 6 and the first base material 1 that do not contain a metal layer, the bonded portions 30a and 30b are coated with a cured resin material 31. may be
(実施形態4)
 本実施形態は、実施形態1および2の改変例であって、接合部が熱可塑性樹脂材料で被覆されている態様に関する。本実施形態では、上述した実施形態1または2と異なる点を中心に説明し、特段断りのない限り、実施形態1または2と同様の説明が当て嵌まり得る。
(Embodiment 4)
This embodiment is a modified example of Embodiments 1 and 2, and relates to an aspect in which the joint is covered with a thermoplastic resin material. In this embodiment, the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
 図9に示すように、本実施形態の接合構造体43においては、接合部30a、30bが、熱可塑性樹脂材料(第5樹脂材料)32で被覆されている。(なお、図9は、実施形態2にて参照した図6に対応する図である。) As shown in FIG. 9, in the joint structure 43 of the present embodiment, joint portions 30a and 30b are covered with a thermoplastic resin material (fifth resin material) 32. As shown in FIG. (Note that FIG. 9 is a diagram corresponding to FIG. 6 referred to in the second embodiment.)
 熱可塑性樹脂材料32は、絶縁性を有する限り、任意の適切な熱可塑性樹脂材料(一旦加熱溶融した熱可塑性樹脂材料、第5樹脂材料)であってよい。かかる熱可塑性樹脂材料は、例えば、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリウレタン系樹脂、ナイロン系樹脂、ポリエーテルイミド系樹脂などであり得る。 The thermoplastic resin material 32 may be any suitable thermoplastic resin material (the thermoplastic resin material once heated and melted, the fifth resin material) as long as it has insulating properties. Such thermoplastic resin materials may be, for example, polyester-based resins, polyethylene-based resins, polypropylene-based resins, polystyrene-based resins, polyurethane-based resins, nylon-based resins, polyetherimide-based resins, and the like.
 熱可塑性樹脂材料32は、接合部30a、30bのうち、外部電極4a、4bおよびランド電極14a、14bと接触していない表面の少なくとも一部、好ましくは実質的に全部を被覆する。外部電極4a、4bおよび/またはランド電極14a、14bのうち、接合部30a、30bで被覆されていない部分が存在する場合には、熱可塑性樹脂材料32は、かかる部分も被覆し得る。熱可塑性樹脂材料32は、素子部材10と回路基板20との間にて、接合部30a、30b以外の空間の実質的に全部を充填していても、していなくてもよい。 The thermoplastic resin material 32 covers at least part, preferably substantially all, of the surfaces of the joints 30a, 30b that are not in contact with the external electrodes 4a, 4b and the land electrodes 14a, 14b. If there are portions of the external electrodes 4a, 4b and/or the land electrodes 14a, 14b that are not covered with the joints 30a, 30b, the thermoplastic resin material 32 can also cover such portions. The thermoplastic resin material 32 may or may not fill substantially the entire space between the element member 10 and the circuit board 20 except for the joints 30a and 30b.
 接合部30a、30bを被覆する熱可塑性樹脂材料32の作製方法は、特段限定されない。例えば、実施形態1または2の接合構造体を作製する際に、図10に示すように、第1保護層6を形成した後、第1保護層6(および/または第1基材1)の上に、外部電極4a、4bを取り囲むように熱可塑性樹脂材料32’を適用(例えば印刷)して、素子部材10を作製する。(なお、図10は、実施形態2にて参照した図7に対応する図である。)その後、かかる素子部材10を使用して、実施形態1または2と同様にして回路基板20に接合部30a、30b(はんだ材料を含む)で接合すると、はんだ材料の加熱溶融時に熱可塑性樹脂材料32’も加熱溶融する。熱可塑性樹脂材料32’が一旦加熱溶融し、自然に変形した後に固まって形成された熱可塑性樹脂材料32は、接合部30a、30b(ならびに好ましくは外部電極4a、4bおよびランド電極14a、14b)に密着して被覆してこれらを封止することができる。 The method of manufacturing the thermoplastic resin material 32 covering the joints 30a and 30b is not particularly limited. For example, when producing the bonded structure of Embodiment 1 or 2, as shown in FIG. 10, after forming the first protective layer 6, the first protective layer 6 (and/or the first base material 1) A thermoplastic resin material 32' is applied (for example, printed) thereon so as to surround the external electrodes 4a and 4b, and the element member 10 is produced. (It should be noted that FIG. 10 is a diagram corresponding to FIG. 7 referred to in Embodiment 2.) After that, using such an element member 10, a joint portion is attached to a circuit board 20 in the same manner as in Embodiment 1 or 2. When joining with 30a and 30b (including the solder material), the thermoplastic resin material 32' is also heated and melted when the solder material is heated and melted. The thermoplastic resin material 32', which is formed by heating and melting the thermoplastic resin material 32' once, and then solidifying after being naturally deformed, forms the joint portions 30a and 30b (and preferably the external electrodes 4a and 4b and the land electrodes 14a and 14b). It is possible to seal them by coating them in close contact with each other.
 熱可塑性樹脂材料32で接合部30a、30b(はんだ材料を含む)を被覆することで、接合部30a、30bにおいてもマイグレーションを抑制できる。 By covering the joints 30a and 30b (including the solder material) with the thermoplastic resin material 32, migration can also be suppressed in the joints 30a and 30b.
 よって、本実施形態によれば、実施形態1および2の接合構造体に比べて、熱可塑性樹脂材料32で接合部30a、30bを被覆するための追加の工程を要することとなるものの、接合部30a、30b(はんだ材料を含む)を被覆する熱可塑性樹脂材料32によりマイグレーションをより一層抑制できて、高湿環境下においてもより一層安定した電気特性を示す接合構造体43が提供される。 Therefore, according to the present embodiment, compared to the joint structures of Embodiments 1 and 2, an additional step for covering the joints 30a and 30b with the thermoplastic resin material 32 is required. The thermoplastic resin material 32 covering 30a and 30b (including the solder material) can further suppress migration, thereby providing a joint structure 43 that exhibits more stable electrical characteristics even in a high humidity environment.
 なお、図9~10に示す態様では、実施形態2の改変例として、第1保護層6および第1基材1の双方が金属層を含む接合構造体43において、接合部30a、30bが、熱可塑性樹脂材料32で被覆されているものを示したが、本実施形態はこれに限定されず、第1保護層6および第1基材1のいずれか一方が、金属層を含むものであってもよい。あるいは、実施形態1の改変例として、金属層を含まない第1保護層6および第1基材1を備える接合構造体において、接合部30a、30bが、熱可塑性樹脂材料32で被覆されているものであってもよい。 9 and 10, as a modified example of Embodiment 2, in the bonded structure 43 in which both the first protective layer 6 and the first base material 1 include metal layers, the bonded portions 30a and 30b are Although the one coated with the thermoplastic resin material 32 is shown, the present embodiment is not limited to this, and either one of the first protective layer 6 and the first substrate 1 includes a metal layer. may Alternatively, as a modified example of Embodiment 1, in a bonded structure including the first protective layer 6 and the first base material 1 that do not contain a metal layer, the bonded portions 30a and 30b are coated with a thermoplastic resin material 32. can be anything.
(実施形態5)
 本実施形態は、実施形態1および2の改変例であって、接合部が異方導電性材料を含む態様に関する。本実施形態では、上述した実施形態1または2と異なる点を中心に説明し、特段断りのない限り、実施形態1または2と同様の説明が当て嵌まり得る。
(Embodiment 5)
This embodiment is a modified example of Embodiments 1 and 2, and relates to a mode in which the joint includes an anisotropically conductive material. In this embodiment, the points different from the above-described first or second embodiment will be mainly described, and the description similar to that of the first or second embodiment can be applied unless otherwise specified.
 図11~13、特に図11(a)に示すように、本実施形態の接合構造体44においては、接合部30’が、異方導電性材料を含む。 As shown in FIGS. 11 to 13, particularly FIG. 11(a), in the joint structure 44 of the present embodiment, the joint 30' contains an anisotropically conductive material.
 接合部30’を成す異方導電性材料は、少なくとも表面が導電性である複数の導電性粒子33が、任意の適切な樹脂材料(バインダー樹脂、第6樹脂材料)34中に分散されてなり得る。かかる樹脂材料(第6樹脂材料)は、絶縁性を有する限り、硬化樹脂材料、熱可塑性樹脂材料、またはそれらの混合物などであってよく、代表的には、熱硬化性および/または放射線(例えば光、紫外線等を含む)硬化性の樹脂材料の硬化物であってよい。 The anisotropically conductive material forming the joint portion 30′ is formed by dispersing a plurality of conductive particles 33 having at least a conductive surface in any suitable resin material (binder resin, sixth resin material) 34. obtain. Such a resin material (sixth resin material) may be a curable resin material, a thermoplastic resin material, or a mixture thereof, as long as it has insulating properties. It may be a cured product of a curable resin material (including light, ultraviolet rays, etc.).
 接合部30’を成す異方性導電材料は、特に限定されず、任意の適切な異方性導電材料、例えばフィルム状またはペースト状の異方性導電材料(異方性導電フィルム(ACF)または異方性導電ペースト(ACP))を使用して得られたものであってよい。 The anisotropic conductive material forming the joint portion 30′ is not particularly limited, and any suitable anisotropic conductive material, such as a film-like or paste-like anisotropic conductive material (anisotropic conductive film (ACF) or Anisotropic Conductive Paste (ACP)).
 接合部30’を形成する前の原料としての異方性導電材料は、導電性粒子33および樹脂材料(第6樹脂材料またはその前駆体)を含む組成物であり、適宜、他の成分(例えば硬化剤、フィラー、溶剤等)を含み得る。 The anisotropic conductive material as a raw material before forming the joint portion 30' is a composition containing the conductive particles 33 and a resin material (sixth resin material or its precursor), and optionally other components (for example, curing agents, fillers, solvents, etc.).
 上記組成物を成す樹脂材料(第6樹脂材料またはその前駆体)は、湿気、熱および/または放射線(光、紫外線等を含む)などで硬化可能な任意の適切な樹脂材料、あるいは、熱可塑性樹脂材料、またはそれらの混合物などであってよい。上記組成物を成す樹脂材料は、例えば、熱硬化性および/または放射線硬化性の樹脂材料であり得、接合部30’を形成する際の加熱および/または放射線照射により硬化し得る。上記組成物を成す樹脂材料は、代表的には熱硬化性樹脂材料であり得、特に限定されないが、例えばエポキシ系樹脂、(メタ)アクリル系樹脂、シリコーン樹脂などからなる群より選択される少なくとも1つを含むものであってよい。 The resin material (sixth resin material or its precursor) constituting the composition is any suitable resin material curable by moisture, heat and/or radiation (including light, ultraviolet rays, etc.), or thermoplastic It may be a resin material, a mixture thereof, or the like. The resin material forming the composition may be, for example, a thermosetting and/or radiation-curable resin material, and may be cured by heating and/or radiation irradiation when forming the joint 30'. The resin material that constitutes the composition may typically be a thermosetting resin material, and is not particularly limited. It may contain one.
 導電性粒子33は、接合部30’を形成したときに導電性を示して、外部電極4a’、4b’とランド電極14a’、14b’との間を電気的に接続し得る粒子であればよい。かかる導電性粒子33は、例えば、導電性物質から成る粒子であってよく、あるいは、導電性物質から成るコアに絶縁性コーティングが形成された粒子、または、任意の適切な樹脂材料などから成るコアに、導電性物質から成る層と、絶縁性コーティングとが形成された粒子であってもよい。導電性粒子33の平均粒径は、例えば20μm以下、特に15μm以下であり得、下限は特に限定されないが、例えば1μm以上、特に5μm以上であり得る。なお、平均粒径はメジアン径を意味し、例えば、レーザー回折式粒度分布測定装置などを用いて測定され得る。 The conductive particles 33 are particles that exhibit conductivity when the joints 30′ are formed and that can electrically connect the external electrodes 4a′ and 4b′ and the land electrodes 14a′ and 14b′. good. Such conductive particles 33 may be, for example, particles made of a conductive material, or particles in which an insulating coating is formed on a core made of a conductive material, or a core made of any appropriate resin material. In addition, it may be a particle having a layer made of a conductive material and an insulating coating formed thereon. The average particle size of the conductive particles 33 may be, for example, 20 μm or less, particularly 15 μm or less, and the lower limit is not particularly limited, but may be, for example, 1 μm or more, particularly 5 μm or more. The average particle size means the median size, and can be measured using, for example, a laser diffraction particle size distribution analyzer.
 導電性粒子を成す導電性物質は、金属または金属含有物質であり得る。金属は、上記樹脂材料が熱硬化性樹脂材料である場合、接合部30’を形成するときの加熱温度で溶融しないことが好ましい。金属は、例えばAu、Ni、PdおよびCuからなる群より選択される少なくとも1つを含んでいてよいが、これに限定されない。存在する場合、導電性物質から成る層の厚さは、例えば0.1μm以上、特に0.5μm以上、より特に1μm以上であり得、上限は導電性粒子の粒径によって規定される。 The conductive substance that forms the conductive particles can be a metal or a metal-containing substance. If the resin material is a thermosetting resin material, the metal preferably does not melt at the heating temperature used to form the joint 30'. The metal may include, for example, at least one selected from the group consisting of Au, Ni, Pd and Cu, but is not limited thereto. If present, the thickness of the layer of electrically conductive material may be, for example, 0.1 μm or more, in particular 0.5 μm or more, more particularly 1 μm or more, the upper limit being defined by the particle size of the conductive particles.
 存在する場合、絶縁性コーティングは、任意の適切な樹脂材料などから成ってよい。絶縁性コーティングの厚さは、接合部30’を形成する際に外部電極4a’、4b’とランド電極14a’、14b’との間での加圧により破壊されて、これらの間を電気的に接続し得るように比較的薄いものとされ、例えば50μm以下、特に25μm以下であり得、下限は適宜設定してよいが、例えば1μm以上であり得る。 The insulating coating, if present, may consist of any suitable resin material or the like. The thickness of the insulating coating is destroyed by pressure between the external electrodes 4a', 4b' and the land electrodes 14a', 14b' when forming the joint 30', and the electrical connection between them is broken. For example, it may be 50 μm or less, particularly 25 μm or less, and the lower limit may be set as appropriate, but may be, for example, 1 μm or more.
 異方性導電材料は、例えば特許文献4に記載されるような、融点が400℃以上である金属を導電性の表面に有する導電性粒子と、加熱により硬化可能な硬化性化合物と、熱硬化剤と、フラックスとを含む組成物であってよい。上記融点が400℃以上である金属は、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を外側の表面に有することが好ましい。上記硬化性化合物としては特に限定されず、不飽和二重結合を有する硬化性化合物及びエポキシ基又はチイラン基を有する硬化性化合物等が挙げられ、(メタ)アクリロイル基を有する硬化性化合物を含むことが好ましい。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤、酸無水物及び熱ラジカル発生剤等が挙げられる。上記フラックスは、特に限定されないが、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。 The anisotropic conductive material includes, for example, conductive particles having a metal having a melting point of 400 ° C. or higher on the conductive surface, a curable compound that can be cured by heating, and a thermosetting material, as described in Patent Document 4. It may be a composition containing an agent and a flux. Metals having a melting point of 400° C. or higher include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and alloys thereof. is mentioned. Alternatively, tin-doped indium oxide (ITO) may be used as the metal. Only one kind of the above metals may be used, or two or more kinds thereof may be used in combination. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer or a gold layer on their outer surface. The curable compound is not particularly limited, and includes a curable compound having an unsaturated double bond, a curable compound having an epoxy group or a thiirane group, and the like, and includes a curable compound having a (meth)acryloyl group. is preferred. Examples of the heat curing agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, acid anhydrides and thermal radical generators. The above flux is not particularly limited, but for example, zinc chloride, mixtures of zinc chloride and inorganic halides, mixtures of zinc chloride and inorganic acids, molten salts, phosphoric acid, derivatives of phosphoric acid, organic halides, hydrazine, Examples include organic acids and pine resin.
 図11(a)に示すように、本実施形態の接合構造体44においては、接合部30’のうち、導電性粒子33が外部電極4a’、4b’とランド電極14a’、14b’との間に挟持されることで、これらの間を電気的に接合すると共に、樹脂材料(第6樹脂材料)34が、導電性粒子33、外部電極4a’、4b’およびランド電極14a’、14b’を被覆する。 As shown in FIG. 11(a), in the joint structure 44 of the present embodiment, the conductive particles 33 are formed between the external electrodes 4a' and 4b' and the land electrodes 14a' and 14b' in the joint portion 30'. By being sandwiched between them, they are electrically connected, and the resin material (sixth resin material) 34 includes the conductive particles 33, the external electrodes 4a' and 4b', and the land electrodes 14a' and 14b'. to cover.
 図11~13に示す本実施形態の接合構造体44においては、図12を参照して、一対の外部電極4a’、4b’に隣接して、一対の内部電極14’、14b’、セラミック部5’および第1保護層6’が形成されている。 In the joint structure 44 of the present embodiment shown in FIGS. 11 to 13, referring to FIG. 12, the pair of internal electrodes 14' and 14b', the ceramic portion 5' and a first protective layer 6' are formed.
 接合部30’の作製方法は、特段限定されない。例えば、図12に示す素子部材10’および図13に示す回路基板20’をそれぞれ作製し、素子部材10’および回路基板20’を、セラミック部5’および第1保護層6’が第1基材1’と第2基材11’との間に存在するように配置し、互いに対向する一対の外部電極4a’、4b’と一対のランド電極14a’、14b’との間に異方性導電材料を挟んで、適宜加熱しながら、加圧することにより、これらの間を接合部30’で電気的に接合することができる。 The method of manufacturing the joint 30' is not particularly limited. For example, an element member 10' shown in FIG. 12 and a circuit board 20' shown in FIG. A pair of external electrodes 4a', 4b' and a pair of land electrodes 14a', 14b' arranged to exist between the material 1' and the second base material 11' and facing each other are anisotropic. By sandwiching the conductive material and applying pressure while heating appropriately, it is possible to electrically join them at the joining portion 30'.
 接合部30’が異方性導電材料を含むことで、外部電極4a’、4b’、ランド電極14a、’14b’、ならびにこれらの間の導電性粒子33の全てにおいて、樹脂材料34によって一度にマイグレーションを抑制できる。 By including the anisotropic conductive material in the joint portion 30', the external electrodes 4a', 4b', the land electrodes 14a, '14b', and all of the conductive particles 33 therebetween are all at once by the resin material 34. Migration can be suppressed.
 よって、本実施形態によれば、実施形態1および2の接合構造体に比べて、接合部30’を形成するための加圧工程を要することとなるものの、接合部30’の樹脂材料34によりマイグレーションを一度に抑制できて、高湿環境下においても安定した電気特性を示す接合構造体44が提供される。 Therefore, according to this embodiment, as compared with the bonded structures of Embodiments 1 and 2, a pressurizing process for forming the bonding portion 30' is required, but the resin material 34 of the bonding portion 30' A joint structure 44 that can suppress migration at once and exhibits stable electrical characteristics even in a high-humidity environment is provided.
 なお、図11~13に示す態様では、実施形態2の改変例として、第1保護層6’および第1基材1’の双方が金属層を含む接合構造体44において、接合部30’が、異方性導電材料を含むものを示したが、本実施形態はこれに限定されず、第1保護層6’および第1基材1’のいずれか一方が、金属層を含むものであってもよい。あるいは、実施形態1の改変例として、金属層を含まない第1保護層6’および第1基材11’を備える接合構造体において、接合部30’が、異方性導電材料を含むものであってもよい。 11 to 13, as a modified example of Embodiment 2, in the bonded structure 44 in which both the first protective layer 6' and the first base material 1' include metal layers, the bonded portion 30' is , contains an anisotropic conductive material, but the present embodiment is not limited to this, and either one of the first protective layer 6' and the first substrate 1' contains a metal layer. may Alternatively, as a modified example of Embodiment 1, in the bonded structure including the first protective layer 6' and the first base material 11' that do not contain a metal layer, the bonded portion 30' contains an anisotropic conductive material. There may be.
(実施例1)
 実施例1は、実施形態1にて上述した接合構造体に関する。
(Example 1)
Example 1 relates to the joint structure described above in the first embodiment.
 ・素子部材(サーミスタ試料)
 Mn:Ni:Coを3:1:2(原子比)の割合で含む、平均粒径約0.2μmの金属酸化物粒子に、マンガンアセチルアセトネートを10質量%(金属酸化物粒子の全質量に対して)の割合で添加し、エタノールを溶媒として添加し、16時間混合して、スラリーの形態の原料混合物を得た。厚さ25μmのポリイミドフィルムである第1基材(ベース層)上に、厚さ12μmのCu層をフォトリソグラフィにより所定の形状にパターン形成し、次いで、パターン形成したCu母材の表面に、Niめっき層およびAuめっき層を無電解で順次形成した。これらめっき層の合計厚さは3μmとした。これにより、Cu/Ni/Auの素子電極(厚さ15μm)を、一対の内部電極に対応する部分として櫛歯状の一対の対向電極を1.0mmの櫛歯電極間隔(d、図2(a)参照)にて、および、かかる櫛歯状の一対の対向電極の両側に、一対の外部電極に対応する部分として幅(W)0.4mmおよび長さ(L)0.2mmの矩形にて作製した。かかる素子電極および第1基材の露出面上に、上記で得られた原料混合物をドクターブレード法により厚さ20μmのシートの形態で供給して、前駆積層体を得た。この前駆積層体を100℃で10時間乾燥させた後、加熱プレス機を用いて100MPaの加圧下にて270℃で30分間加熱し、その後、残存し得る不要な有機物を除去するために250℃で10時間アニールして、厚さ(t)20μmのセラミック部を形成した。得られたセラミック部を被覆し、かつ、一対の外部電極を露出させるように、セラミック部上および第1基材の外周領域上に、第1保護層として、厚さ25μmのカバーレイ(エポキシ樹脂(EP)の接着層とポリイミド樹脂(PI)のカバー層から成る)を圧着した。その後ダイシングソーでカットして、素子部材として、上面から見た寸法が幅0.8mmおよび長さ1.6mmで合計厚さが約50μmのサーミスタ試料(NTCサーミスタ)を得た。
・Element material (thermistor sample)
10% by mass of manganese acetylacetonate (total mass of metal oxide particles ), ethanol was added as a solvent, and mixed for 16 hours to obtain a raw material mixture in the form of a slurry. A Cu layer with a thickness of 12 μm is patterned into a predetermined shape by photolithography on a first substrate (base layer) that is a polyimide film with a thickness of 25 μm. A plated layer and an Au plated layer were sequentially formed electrolessly. The total thickness of these plating layers was 3 μm. As a result, the Cu/Ni/Au element electrodes (thickness 15 μm) were used as portions corresponding to the pair of internal electrodes, and a pair of comb-shaped counter electrodes were arranged with a comb-teeth electrode spacing of 1.0 mm (d, FIG. 2 ( a), and on both sides of the pair of comb-shaped counter electrodes, a portion corresponding to the pair of external electrodes has a width (W 1 ) of 0.4 mm and a length (L 1 ) of 0.2 mm. It was made in a rectangular shape. A precursor laminate was obtained by supplying the raw material mixture obtained above in the form of a sheet having a thickness of 20 μm onto the device electrode and the exposed surface of the first substrate by a doctor blade method. After drying this precursor laminate at 100° C. for 10 hours, it is heated at 270° C. for 30 minutes under a pressure of 100 MPa using a heating press, and then heated to 250° C. to remove unnecessary organic matter that may remain. was annealed for 10 hours to form a ceramic portion having a thickness (t) of 20 μm. A 25 μm-thick coverlay (epoxy resin (EP) adhesive layer and polyimide resin (PI) cover layer) were pressed together. After that, it was cut with a dicing saw to obtain a thermistor sample (NTC thermistor) having a width of 0.8 mm, a length of 1.6 mm and a total thickness of about 50 μm as an element member.
・回路基板
 厚さ25μmのポリイミドフィルムである第2基材(ベース層)上に、厚さ12μmのCu層をフォトリソグラフィにより所定の形状にパターン形成し、次いで、パターン形成したCu母材の表面に、Niめっき層およびAuめっき層を無電解で順次形成した。これらめっき層の合計厚さは3μmとした。これにより、Cu/Ni/Au(厚さ15μm)から成る一対のランド電極を幅(W)0.4mmおよび長さ(L)0.2mmの矩形にて、一対の引き出し線と共に作製した。得られた一対のランド電極を露出させ、その他の表面を被覆するように、第2基材の一対のランド電極の間を含む領域(一対の引き出し線のランド電極近傍部分も含む)上に、第2保護層として、厚さ25μmのカバーレイ(エポキシ樹脂(EP)の接着層とポリイミド樹脂(PI)のカバー層から成る)を圧着した。これにより、合計厚さが約50μmの回路基板を得た。
Circuit board A 12 μm thick Cu layer is patterned into a predetermined shape by photolithography on a second base material (base layer) that is a 25 μm thick polyimide film, and then the surface of the patterned Cu base material. Then, a Ni plating layer and an Au plating layer were sequentially formed electrolessly. The total thickness of these plating layers was 3 μm. As a result, a pair of rectangular land electrodes made of Cu/Ni/Au (thickness 15 μm) with a width (W 2 ) of 0.4 mm and a length (L 2 ) of 0.2 mm were produced together with a pair of lead wires. . On the region including between the pair of land electrodes of the second substrate (including the portion near the land electrodes of the pair of lead wires) so as to expose the pair of obtained land electrodes and cover the other surface, As the second protective layer, a 25 μm-thick coverlay (consisting of an adhesive layer of epoxy resin (EP) and a cover layer of polyimide resin (PI)) was press-bonded. A circuit board having a total thickness of about 50 μm was thus obtained.
・接合部
 上記の回路基板の一対のランド電極上に、SnAgCu系はんだ材料(Ag3質量%、Cu0.5質量%、および残部のSnから成る)を主とする導電性ペーストを厚さ60μmで印刷し、素子部材として上記で作製したサーミスタ試料を回路基板上に、一対のランド電極と一対の外部電極とが対向するように配置して、240℃にて10秒間のリフローに付して、回路基板にサーミスタ試料を実装した。これにより、実施例1の接合構造体を得た。
・Junction On the pair of land electrodes of the circuit board, a conductive paste mainly composed of SnAgCu-based solder material (consisting of 3% by mass of Ag, 0.5% by mass of Cu, and the balance of Sn) is printed with a thickness of 60 μm. Then, the thermistor sample prepared above as an element member was placed on a circuit board so that the pair of land electrodes and the pair of external electrodes faced each other, and subjected to reflow at 240° C. for 10 seconds to form a circuit. A thermistor sample was mounted on the board. Thus, a joined structure of Example 1 was obtained.
(実施例2~3および比較例1)
 実施例2~3は、実施形態1にて上述した接合構造体に関する。
(Examples 2-3 and Comparative Example 1)
Examples 2 and 3 relate to the bonded structure described above in the first embodiment.
 セラミック部の厚さ(t)を30μm(実施例2)、40μm(実施例3)、50μm(比較例1)としたこと(サーミスタ試料の合計厚さ約50μm)以外は、実施例1と同様にして接合構造体を得た。 Same as Example 1 except that the thickness (t) of the ceramic portion was set to 30 μm (Example 2), 40 μm (Example 3), and 50 μm (Comparative Example 1) (the total thickness of the thermistor sample was about 50 μm). Then, a bonded structure was obtained.
(実施例4)
 実施例4は、実施形態3にて上述した接合構造体において、第1保護層および第1基材が金属膜を含まない態様(即ち、実施形態1の改変例)に関する。
(Example 4)
Example 4 relates to an aspect (that is, a modified example of Embodiment 1) in which the first protective layer and the first base material do not contain a metal film in the bonded structure described above in Embodiment 3.
 接合部を形成した後、素子部材(サーミスタ試料)と回路基板との間にて、一対の接合部の周囲に、常温硬化型のシリコーン樹脂を供給し、適切な時間静置して、接合部の周囲およびその近傍の空間を、硬化したシリコーン樹脂で満たしたこと以外は、実施例1と同様にして接合構造体を得た。 After forming the joints, between the element member (thermistor sample) and the circuit board, a room temperature curing silicone resin is supplied around the pair of joints, left to stand for an appropriate time, and the joints A bonded structure was obtained in the same manner as in Example 1, except that the space around and in the vicinity of was filled with the cured silicone resin.
(実施例5)
 実施例5は、実施形態3にて上述した接合構造体において、第1保護層および第1基材が金属膜を含まない態様(即ち、実施形態1の改変例)に関する。
(Example 5)
Example 5 relates to an aspect (that is, a modified example of Embodiment 1) in which the first protective layer and the first base material do not contain a metal film in the bonded structure described above in Embodiment 3.
 (i)第1保護層として、厚さ25μmのカバーレイに代えて、厚さ25μmの液晶ポリマー(LCP)のフィルムを配置したこと(サーミスタ試料の合計厚さ約50μm)、ならびに、(ii)接合部を形成した後、素子部材(サーミスタ試料)と回路基板との間にて、一対の接合部の周囲に、常温硬化型のシリコーン樹脂を供給し、適切な時間静置して、接合部の周囲およびその近傍の空間を、硬化したシリコーン樹脂で満たしたこと、以外は、実施例1と同様にして接合構造体を得た。 (i) a 25 μm thick liquid crystal polymer (LCP) film was placed as the first protective layer instead of a 25 μm thick coverlay (total thickness of the thermistor sample about 50 μm), and (ii) After forming the joints, between the element member (thermistor sample) and the circuit board, a room temperature curing silicone resin is supplied around the pair of joints, left to stand for an appropriate time, and the joints A bonded structure was obtained in the same manner as in Example 1, except that the space around and in the vicinity of was filled with the cured silicone resin.
(実施例6)
 実施例6は、実施形態3にて上述した接合構造体において、第1保護層および第1基材が金属膜を含む態様(即ち、実施形態2の改変例)に関する。
(Example 6)
Example 6 relates to a mode in which the first protective layer and the first base material in the bonded structure described above in Embodiment 3 contain a metal film (that is, a modified example of Embodiment 2).
 (i)第1基材として、厚さ25μmのポリイミドフィルム(ベース層)の下面側(主面と反対側の表面)に、セラミック部と同じ寸法のCu箔(厚さ12μm)を、厚さ12μmのLCP(ベース層と同じ寸法を有する)で挟んだ積層体を使用したこと、(ii)第1保護層として、厚さ25μmの液晶ポリマー(LCP)のフィルムを配置し、その上にセラミック部と同じ寸法のCu箔(厚さ12μm)を配置し、更にその上に厚さ12μmの液晶ポリマー(LCP)のフィルムを配置したこと(サーミスタ試料の合計厚さ約100μm)、ならびに、(iii)接合部を形成した後、素子部材(サーミスタ試料)と回路基板との間にて、一対の接合部の周囲に、常温硬化型のシリコーン樹脂を供給し、適切な時間静置して、接合部の周囲およびその近傍の空間を、硬化したシリコーン樹脂で満たしたこと、以外は、実施例1と同様にして接合構造体を得た。 (i) As a first substrate, a Cu foil (thickness 12 μm) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 μm. (ii) as a first protective layer, a 25 μm thick liquid crystal polymer (LCP) film was placed on top of which a ceramic placing a Cu foil (12 μm thick) of the same dimensions as the part, on top of which a 12 μm thick liquid crystal polymer (LCP) film was placed (total thickness of the thermistor sample about 100 μm), and (iii ) After forming the joints, between the element member (thermistor sample) and the circuit board, a room temperature curing silicone resin is supplied around the pair of joints, left to stand for an appropriate time, and joined A bonded structure was obtained in the same manner as in Example 1, except that the space around and in the vicinity of the part was filled with the cured silicone resin.
(実施例7)
 実施例7は、実施形態4にて上述した接合構造体において、第1保護層および第1基材が金属膜を含む態様(即ち、実施形態2の改変例)に関する。
(Example 7)
Example 7 relates to a mode in which the first protective layer and the first base material include a metal film in the bonded structure described above in Embodiment 4 (that is, a modified example of Embodiment 2).
 (i)第1基材として、厚さ25μmのポリイミドフィルム(ベース層)の下面側(主面と反対側の表面)に、セラミック部と同じ寸法のCu箔(厚さ12μm)を、厚さ12μmのLCP(ベース層と同じ寸法を有する)で挟んだ積層体を使用したこと、(ii)第1保護層として、厚さ25μmの液晶ポリマー(LCP)のフィルムを配置し、その上にセラミック部と同じ寸法のCu箔(厚さ12μm)を配置し、更にその上に厚さ12μmの液晶ポリマー(LCP)のフィルムを配置したこと(サーミスタ試料の合計厚さ約100μm)、ならびに、(iii)導電性ペーストを印刷する前に、一対のランド電極の周囲にポリエチレン(PE)のフィルムを圧着したこと、以外は、実施例1と同様にして接合構造体を得た。なお、PEは熱可塑性樹脂であり、はんだ材料での接合時の加熱(リフロー)の間に一旦溶融し、自然に変形した後に固まって、接合部の周囲を被覆した。 (i) As a first substrate, a Cu foil (thickness 12 μm) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 μm. (ii) as a first protective layer a 25 μm thick liquid crystal polymer (LCP) film was used, on top of which a ceramic A Cu foil (12 μm thick) of the same dimensions as the part was placed, and a 12 μm thick liquid crystal polymer (LCP) film was placed on top of it (total thickness of the thermistor sample was about 100 μm), and (iii ) A bonded structure was obtained in the same manner as in Example 1, except that a polyethylene (PE) film was pressure-bonded around the pair of land electrodes before the conductive paste was printed. Note that PE is a thermoplastic resin, which once melted during heating (reflow) during bonding with a solder material, naturally deformed, and then solidified to cover the periphery of the bonded portion.
(実施例8~10)
 実施例8~10は、実施形態1にて上述した接合構造体に関する。
(Examples 8-10)
Examples 8-10 relate to the bonded structure described above in Embodiment 1.
 (i)素子部材(サーミスタ試料)の一対の外部電極の寸法を幅(W)0.4mmおよび長さ(L)0.1mmの矩形としたこと、ならびに、(ii)回路基板の一対のランド電極の寸法を幅(W)0.4mmおよび長さ(L)0.2mm(実施例8)、0.3mm(実施例9)、0.35mm(実施例10)の矩形としたこと、以外は、実施例1と同様にして接合構造体を得た。 (i) The dimensions of the pair of external electrodes of the element member (thermistor sample) were rectangular with a width (W 1 ) of 0.4 mm and a length (L 1 ) of 0.1 mm, and (ii) a pair of circuit boards. The dimensions of the land electrodes of are rectangular with a width (W 2 ) of 0.4 mm and a length (L 2 ) of 0.2 mm (Example 8), 0.3 mm (Example 9), and 0.35 mm (Example 10). A bonded structure was obtained in the same manner as in Example 1, except for the above.
(実施例11)
 実施例11は、実施形態5にて上述した接合構造体において、第1保護層および第1基材が金属膜を含む態様(即ち、実施形態2の改変例)に関する。
(Example 11)
Example 11 relates to a mode in which the first protective layer and the first base material in the bonded structure described above in Embodiment 5 include a metal film (that is, a modified example of Embodiment 2).
 (i)第1基材として、厚さ25μmのポリイミドフィルム(ベース層)の下面側(主面と反対側の表面)に、セラミック部と同じ寸法のCu箔(厚さ12μm)を、厚さ12μmのLCP(ベース層と同じ寸法を有する)で挟んだ積層体を使用したこと、(ii)一対の外部電極に隣接してセラミック部を形成したこと、(iii)第1保護層として、厚さ25μmの液晶ポリマー(LCP)のフィルムを配置し、その上にセラミック部と同じ寸法のCu箔(厚さ12μm)を配置し、更にその上に厚さ12μmの液晶ポリマー(LCP)のフィルムを配置したこと(サーミスタ試料の合計厚さ約100μm)、ならびに、(iii)素子部材と回路基板とを、平均粒径10μmで、平均厚み0.1μmのAuがコートされた樹脂粒子をエポキシ樹脂中に含む厚さ25μmの異方性導電フィルム(ACF)を使用して(圧着)接合したこと、以外は、実施例1と同様にして接合構造体を得た。 (i) As a first substrate, a Cu foil (thickness 12 μm) having the same dimensions as the ceramic part is placed on the lower surface side (the surface opposite to the main surface) of a polyimide film (base layer) having a thickness of 25 μm. (ii) forming a ceramic part adjacent to a pair of external electrodes; (iii) as the first protective layer, the thickness A liquid crystal polymer (LCP) film with a thickness of 25 μm is placed, a Cu foil (thickness of 12 μm) having the same dimensions as the ceramic part is placed thereon, and a liquid crystal polymer (LCP) film with a thickness of 12 μm is further placed thereon. (iii) the element member and the circuit board were placed (total thickness of the thermistor sample: about 100 μm); A bonded structure was obtained in the same manner as in Example 1, except that an anisotropic conductive film (ACF) with a thickness of 25 μm contained in was used for (crimping) bonding.
(比較例2)
 比較例2は、従来一般的なチップ部品を回路基板に接合した接合構造体に関する。
(Comparative example 2)
Comparative Example 2 relates to a bonded structure in which a conventional general chip component is bonded to a circuit board.
 素子部材に代えて、市販のチップ部品を使用したこと(株式会社村田製作所製のNTCサーミスタであり、図14に示すチップ部品50を参照のこと。一対の内部電極43a、43bおよび一対の外部電極44a、44bはAg-Pdから成り、セラミック部45の厚さ(t)0.8mm、全体の長さ1.6mmおよび全体の幅0.8mmであり、外部電極の接合領域の寸法は幅(W)0.4mmおよび長さ(L)0.2mmの矩形であった。)こと以外は、実施例1と同様にして接合構造体(図14参照)を得た。 Instead of element members, commercially available chip parts (NTC thermistor manufactured by Murata Manufacturing Co., Ltd., see chip part 50 shown in FIG. 14. A pair of internal electrodes 43a and 43b and a pair of external electrodes 44a and 44b are made of Ag—Pd, the thickness (t) of the ceramic portion 45 is 0.8 mm, the overall length is 1.6 mm and the overall width is 0.8 mm, and the dimensions of the bonding area of the external electrodes are the width ( A bonded structure (see FIG. 14) was obtained in the same manner as in Example 1 except that W 1 was 0.4 mm and length (L 1 ) was 0.2 mm.
(比較例3)
 比較例3は、従来一般的なチップ部品を回路基板に接合した接合構造体に関する。
(Comparative Example 3)
Comparative Example 3 relates to a bonded structure in which a conventional general chip component is bonded to a circuit board.
 接合部を形成した後、チップ部品と回路基板との間にて、一対の接合部の周囲に、常温硬化型のシリコーン樹脂を供給し、適切な時間静置して、接合部の周囲およびその近傍の空間を、硬化したシリコーン樹脂で満たしたこと以外は、比較例2と同様にして接合構造体を得た。 After forming the joints, a room-temperature curing silicone resin is supplied around the pair of joints between the chip component and the circuit board, left to stand for an appropriate period of time, and the surroundings of the joints and therebetween. A bonded structure was obtained in the same manner as in Comparative Example 2, except that the adjacent space was filled with the cured silicone resin.
(評価)
 実施例1~11および比較例1~3で作製した接合構造体について、水への浸漬試験により抵抗値の変化(マイグレーションが発生するまでの平均時間)を調べて、その安定性を評価した。
(evaluation)
The joint structures produced in Examples 1 to 11 and Comparative Examples 1 to 3 were subjected to an immersion test in water to examine changes in resistance value (average time until migration occurred) and evaluate their stability.
 各実施例および比較例につき、同様にして3個の接合構造体を作製し、これらに(純水に浸漬しない状態で)5Vの電圧を印加したときの抵抗値の平均値を測定して初期値とし、これらを純水に浸漬した状態で5Vの電圧を印加して抵抗値が初期値から3%以上変化するまでの平均時間を測定した。抵抗値が3%以上変化した場合、マイグレーションが発生したと考えて差し支えない。浸漬および電圧印加開始から500時間たっても抵抗値が3%以上変化しない場合は、500時間の次は1000時間にて抵抗値が3%以上変化するかどうかを調べた。結果を表1に示す。(表1中、「>500hr」は、500時間の時点では抵抗値が3%以上変化しなかったが、1000時間の時点では抵抗値が3%以上変化したことを意味し、「>1000hr」は、1000時間の時点でも抵抗値が3%以上変化したことを意味する。) For each example and comparative example, three bonded structures were prepared in the same manner, and a voltage of 5 V was applied to them (without being immersed in pure water). A voltage of 5 V was applied to the samples while they were immersed in pure water, and the average time until the resistance value changed by 3% or more from the initial value was measured. If the resistance value changes by 3% or more, it can be considered that migration has occurred. When the resistance value did not change by 3% or more even after 500 hours from the start of immersion and voltage application, it was examined whether the resistance value changed by 3% or more at 1000 hours after 500 hours. Table 1 shows the results. (In Table 1, ">500hr" means that the resistance value did not change by 3% or more at the time of 500 hours, but the resistance value changed by 3% or more at the time of 1000 hours. means that the resistance value changed by 3% or more even after 1000 hours.)
Figure JPOXMLDOC01-appb-T000001
 * 第1基材:LCP+Cu+PI 約50μm
 ** チップ部品
Figure JPOXMLDOC01-appb-T000001
* 1st base material: LCP+Cu+PI about 50μm
** chip parts
 マイグレーションが発生した接合構造体については、目視観察およびEDXによる元素分析を併せて行った。
 実施例1~3および比較例1は、すべて、外部電極付近の内部電極溶解によるマイグレーション発生で、高抵抗化した。特に、比較例1では、明らかな第1保護層の接着不足箇所が観察された。しかしながら、実施例1~3では、比較例1に比べて、マイグレーション発生までの時間が長くなり、より高い抵抗値安定性を示すことが確認された。
 実施例4では500時間を経過した後にCuデンドライトが観察され低抵抗化し、実施例5および6では1000時間を経過した時点でも3%以上の抵抗値変化が観測されなかった。これら結果より、はんだ接合部は、そのままよりも、シリコーン樹脂で被覆したほうが好ましいこと、ならびに、第1保護層は、カバーレイ層(エポキシ樹脂およびポリイミド樹脂)よりも、LCPか、Cu箔を挟んだLCPのほうが好ましいことが確認された。
 実施例8および9では、はんだ接合部で外部電極およびランド電極を被覆できたが、実施例10では、はんだ接合部がランド電極を十分に被覆できず、ランド電極の溶解による高抵抗化が発生した。
 実施例11では、実施例5~7と同様の1000時間以上のマイグレーション耐性が確認できた。
 比較例2、3ではAgデンドライトが観察され低抵抗化した。
For the bonded structure in which migration occurred, visual observation and elemental analysis by EDX were performed together.
In all of Examples 1 to 3 and Comparative Example 1, migration occurred due to dissolution of the internal electrode in the vicinity of the external electrode, resulting in high resistance. In particular, in Comparative Example 1, clear areas where the adhesion of the first protective layer was insufficient were observed. However, in Examples 1 to 3, compared to Comparative Example 1, it was confirmed that the time until migration occurred was longer, and higher resistance value stability was exhibited.
In Example 4, Cu dendrites were observed after 500 hours and the resistance decreased, and in Examples 5 and 6, no change of 3% or more in resistance value was observed even after 1000 hours. From these results, it is preferable to coat the solder joints with silicone resin rather than as they are. However, it was confirmed that LCP is preferable.
In Examples 8 and 9, the solder joints were able to cover the external electrodes and the land electrodes, but in Example 10, the solder joints could not sufficiently cover the land electrodes, resulting in high resistance due to dissolution of the land electrodes. bottom.
In Example 11, migration resistance of 1000 hours or longer, similar to Examples 5 to 7, was confirmed.
In Comparative Examples 2 and 3, Ag dendrites were observed and the resistance was lowered.
 本開示の接合構造体は、高湿環境下にて使用され得る電子機器において好適に利用されるが、かかる用途のみに限定されない。 The joint structure of the present disclosure is suitably used in electronic devices that can be used in high humidity environments, but is not limited to such uses.
 本願は、2021年7月9日付けで日本国にて出願された特願2021-114406に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-114406 filed in Japan on July 9, 2021, the entire contents of which are incorporated herein by reference.
  1、1’ 第1基材
  2、2a、2b 素子電極
  3a、3b、3a’、3b’ 内部電極
  4a、4b、4a’、4b’ 外部電極
  5、5’ セラミック部
  6、6’ 第1保護層
  7、7’ 第1金属層
  8、8’ 第2金属層
  10、10’ 素子部材
  11、11’ 第2基材
  14a、14b、14a’、14b’ ランド電極
  15a、15b、15a’、15b’ 引き出し線
  16、16’ 第2保護層
  20、20’ 回路基板
  30a、30b 接合部(はんだ材料)
  30’ 接合部(異方性導電材料)
  31 硬化樹脂材料
  32、32’ 熱可塑性樹脂材料
  33 導電性粒子
  34 樹脂材料
  40、41、42、43、44 接合構造体
  43a、43b 内部電極
  44a、44b 外部電極
  45 セラミック部
  50 チップ部品
  60 接合構造体
1, 1' first substrate 2, 2a, 2b element electrodes 3a, 3b, 3a', 3b' internal electrodes 4a, 4b, 4a', 4b' external electrodes 5, 5' ceramic portions 6, 6' first protection Layers 7, 7' First metal layers 8, 8' Second metal layers 10, 10' Element members 11, 11' Second substrates 14a, 14b, 14a', 14b' Land electrodes 15a, 15b, 15a', 15b 'Leader lines 16, 16' Second protective layers 20, 20' Circuit boards 30a, 30b Joints (solder material)
30' junction (anisotropic conductive material)
31 cured resin material 32, 32' thermoplastic resin material 33 conductive particles 34 resin material 40, 41, 42, 43, 44 joint structure 43a, 43b internal electrode 44a, 44b external electrode 45 ceramic part 50 chip component 60 joint structure body

Claims (17)

  1.  セラミック部、ならびに一対の内部電極および一対の外部電極を含む素子電極が第1基材上に形成された素子部材であって、該セラミック部は第1保護層で被覆され、該一対の外部電極は該第1保護層から露出し、該一対の内部電極は該セラミック部内に位置し、該セラミック部の厚さが40μm以下である、素子部材と、
     一対のランド電極が第2基材上に形成された回路基板と、
     前記セラミック部および前記第1保護層が前記第1基材と前記第2基材との間に配置された状態で、互いに対向する前記一対の外部電極と前記一対のランド電極とを電気的に接合する接合部と
    を含む、接合構造体。
    An element member in which a ceramic part and element electrodes including a pair of internal electrodes and a pair of external electrodes are formed on a first substrate, the ceramic part being covered with a first protective layer, and the pair of external electrodes is exposed from the first protective layer, the pair of internal electrodes are located in the ceramic portion, and the thickness of the ceramic portion is 40 μm or less;
    a circuit board having a pair of land electrodes formed on a second substrate;
    electrically connecting the pair of external electrodes and the pair of land electrodes facing each other in a state in which the ceramic part and the first protective layer are arranged between the first base material and the second base material; A bonded structure comprising a bonding joint.
  2.  前記第1保護層の前記第1基材に対して反対側の表面が、前記一対の外部電極の前記第1基材に対して反対側の表面よりも、前記第2基材の方向へ突出している、請求項1に記載の接合構造体。 The surface of the first protective layer opposite to the first substrate protrudes toward the second substrate from the surfaces of the pair of external electrodes opposite to the first substrate. The bonded structure of claim 1, wherein
  3.  前記回路基板が、前記第2基材上に配置された第2保護層を有し、前記一対のランド電極は該第2保護層から露出している、請求項1または2に記載の接合構造体。 3. The joining structure according to claim 1, wherein the circuit board has a second protective layer disposed on the second base material, and the pair of land electrodes are exposed from the second protective layer. body.
  4.  前記第2保護層の前記第2基材に対して反対側の表面が、前記一対のランド電極の前記第2基材に対して反対側の表面よりも、前記第1基材の方向へ突出している、請求項3に記載の接合構造体。 The surface of the second protective layer opposite to the second substrate protrudes toward the first substrate more than the surfaces of the pair of land electrodes opposite to the second substrate. 4. The bonded structure of claim 3, wherein:
  5.  前記第1保護層が、第1樹脂材料を含む、請求項1~4のいずれかに記載の接合構造体。 The bonded structure according to any one of claims 1 to 4, wherein the first protective layer contains a first resin material.
  6.  前記第1樹脂材料が、ポリイミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、液晶ポリマー、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテルイミド系樹脂、および(メタ)アクリル系樹脂からなる群より選択される少なくとも1つを含む、請求項5に記載の接合構造体。 The first resin material is polyimide resin, polyamideimide resin, epoxy resin, liquid crystal polymer, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, polyurethane resin, polyamide resin, polyetherimide. The joint structure according to claim 5, comprising at least one selected from the group consisting of acrylic resins and (meth)acrylic resins.
  7.  前記第1保護層が、第1金属層を更に含む、請求項5または6に記載の接合構造体。 The bonded structure according to claim 5 or 6, wherein the first protective layer further includes a first metal layer.
  8.  前記第1基材が、第2樹脂材料および第2金属層を含む、請求項1~7のいずれかに記載の接合構造体。 The bonded structure according to any one of claims 1 to 7, wherein the first base material includes a second resin material and a second metal layer.
  9.  前記第2基材が、第3樹脂材料を含むフレキシブル基板である、請求項1~8のいずれかに記載の接合構造体。 The bonded structure according to any one of claims 1 to 8, wherein the second base material is a flexible substrate containing a third resin material.
  10.  前記接合部が、はんだ材料を含む、請求項1~9のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 9, wherein the joint contains a solder material.
  11.  前記一対のランド電極の接合領域の面積が、前記一対の外部電極の接合領域の面積の3倍以下である、請求項10に記載の接合構造体。 11. The junction structure according to claim 10, wherein the area of the junction regions of the pair of land electrodes is three times or less the area of the junction regions of the pair of external electrodes.
  12.  前記接合部が、第4樹脂材料として硬化樹脂材料で被覆されている、請求項1~11のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 11, wherein the joint portion is coated with a cured resin material as a fourth resin material.
  13.  前記接合部が、第5樹脂材料として熱可塑性樹脂材料で被覆されている、請求項1~11のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 11, wherein the joint portion is coated with a thermoplastic resin material as the fifth resin material.
  14.  前記接合部が、異方導電性材料を含む、請求項1~9のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 9, wherein the joint contains an anisotropically conductive material.
  15.  前記セラミック部が、前記一対の外部電極間に形成されている、請求項1~14のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 14, wherein the ceramic portion is formed between the pair of external electrodes.
  16.  前記セラミック部が、前記一対の外部電極に隣接して形成されている、請求項1~14のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 14, wherein the ceramic portion is formed adjacent to the pair of external electrodes.
  17.  前記セラミック部がサーミスタ材料を含み、前記接合構造体が温度センサである、請求項1~16のいずれかに記載の接合構造体。 The joint structure according to any one of claims 1 to 16, wherein the ceramic part contains a thermistor material, and the joint structure is a temperature sensor.
PCT/JP2022/015071 2021-07-09 2022-03-28 Joint structure WO2023281868A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280048013.9A CN117616880A (en) 2021-07-09 2022-03-28 Joint structure
JP2023533429A JPWO2023281868A1 (en) 2021-07-09 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114406 2021-07-09
JP2021-114406 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023281868A1 true WO2023281868A1 (en) 2023-01-12

Family

ID=84801724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015071 WO2023281868A1 (en) 2021-07-09 2022-03-28 Joint structure

Country Status (3)

Country Link
JP (1) JPWO2023281868A1 (en)
CN (1) CN117616880A (en)
WO (1) WO2023281868A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031651A (en) * 2002-06-26 2004-01-29 Sony Corp Element mounting substrate and its manufacturing method
JP2006080322A (en) * 2004-09-10 2006-03-23 Ishizuka Electronics Corp Chip type compound electronic part
US20170127944A1 (en) * 2015-11-05 2017-05-11 Nano And Advanced Materials Institute Limited Temperature sensor for tracking body temperature based on printable nanomaterial thermistor
WO2020031768A1 (en) * 2018-08-10 2020-02-13 株式会社村田製作所 Thermistor and method for producing thermistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031651A (en) * 2002-06-26 2004-01-29 Sony Corp Element mounting substrate and its manufacturing method
JP2006080322A (en) * 2004-09-10 2006-03-23 Ishizuka Electronics Corp Chip type compound electronic part
US20170127944A1 (en) * 2015-11-05 2017-05-11 Nano And Advanced Materials Institute Limited Temperature sensor for tracking body temperature based on printable nanomaterial thermistor
WO2020031768A1 (en) * 2018-08-10 2020-02-13 株式会社村田製作所 Thermistor and method for producing thermistor

Also Published As

Publication number Publication date
CN117616880A (en) 2024-02-27
JPWO2023281868A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US9082532B2 (en) Ceramic electronic component
US5221038A (en) Method for forming tin-indium or tin-bismuth solder connection having increased melting temperature
CN112201435B (en) Coil assembly and method of manufacturing the same
CN105282994B (en) Bonded body and method for producing same
JP2017191929A (en) Multilayer capacitor and manufacturing method thereof
JPH09139559A (en) Connection structure of circuit board
WO2009081929A1 (en) Mounted board and method for manufacturing the same
KR20180112643A (en) Multilayered capacitor
JPH10303518A (en) Board for mounting electronic component, electronic component mounting board and method of bonding tin/zinc alloy
JP5398455B2 (en) Anisotropic conductive film and manufacturing method thereof
KR20050022303A (en) Circuit device
WO1998036626A1 (en) Printed circuit assembly
WO2012057227A1 (en) Method for connecting electronic part and connecting structure
JP2016207842A (en) Connection structure of circuit member, connection method and connection material
WO2023281868A1 (en) Joint structure
CN110463362A (en) The method of modified metal conductive layer
JPWO2018037871A1 (en) Resin multilayer substrate, transmission line, module, and module manufacturing method
JP2002120086A (en) Lead-free solder and its production method
WO2010147002A1 (en) Electrode connection structure, conductive adhesive used therefor, and electronic device
JP2015026839A (en) Electronic module and method for manufacturing electronic module
EP2445322B1 (en) Connection method
JP5113390B2 (en) Wiring connection method
JP4715000B2 (en) Manufacturing method of chip-type electronic component
JP5827522B2 (en) Wiring board connection method
JP2011018787A (en) Component mounting substrate, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533429

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280048013.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE