WO2020031768A1 - Thermistor and method for producing thermistor - Google Patents

Thermistor and method for producing thermistor Download PDF

Info

Publication number
WO2020031768A1
WO2020031768A1 PCT/JP2019/029615 JP2019029615W WO2020031768A1 WO 2020031768 A1 WO2020031768 A1 WO 2020031768A1 JP 2019029615 W JP2019029615 W JP 2019029615W WO 2020031768 A1 WO2020031768 A1 WO 2020031768A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
water
layer
particles
repellent
Prior art date
Application number
PCT/JP2019/029615
Other languages
French (fr)
Japanese (ja)
Inventor
陽士 馬淵
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020536477A priority Critical patent/JP6996634B2/en
Publication of WO2020031768A1 publication Critical patent/WO2020031768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a thermistor and a method for manufacturing the thermistor.
  • the resistance drift of the thermistor is considered to be caused by the thermistor layer absorbing ambient moisture. Therefore, as a means for suppressing the resistance drift, a water-repellent film is formed on the surface of the thermistor layer (for example, see Patent Document 1).
  • the present invention has been made to solve the above-described problem, and has as its object to provide a thermistor capable of suppressing resistance drift while reducing the thickness of the thermistor layer. Another object of the present invention is to provide a method for manufacturing the thermistor.
  • the thermistor of the present invention is a thermistor including an insulating film, a thermistor layer provided on the insulating film, and a pair of electrodes provided on a main surface of the thermistor layer, wherein the thermistor layer is And a coated thermistor particle whose surface is coated with a water-repellent film, and an organic polymer component.
  • the method for producing a thermistor of the present invention comprises the steps of: treating the surface of the thermistor particles with a water-repellent agent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film; And a step of obtaining a thermistor layer paste containing an organic polymer component, and a step of forming the thermistor layer and a pair of electrodes by printing and drying the thermistor layer paste and the metal paste on an insulating film, respectively. And.
  • thermistor capable of suppressing resistance drift while reducing the thickness of the thermistor layer.
  • FIG. 1 is a sectional view schematically showing an example of the thermistor of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the thermistor of the present invention.
  • FIG. 3 is a sectional view schematically showing an example of a conventional thermistor.
  • FIG. 4 is a sectional view schematically showing another example of the thermistor of the present invention.
  • FIG. 5 is an example of the synthetic mapping of the Fe element and the Si element.
  • the thermistor of the present invention will be described.
  • the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more individual desirable configurations of the present invention described below is also the present invention.
  • the thermistor of the present invention is characterized in that the surfaces of the thermistor particles contained in the thermistor layer are covered with a water-repellent film.
  • FIG. 1 is a sectional view schematically showing an example of the thermistor of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the thermistor of the present invention.
  • FIG. 1 is a sectional view taken along line II of the thermistor shown in FIG.
  • the thermistor 1 shown in FIGS. 1 and 2 includes an insulating film 10, a thermistor layer 20 provided on the insulating film 10, and provided on the insulating film 10 and below the thermistor layer 20. And a pair of electrodes 31 and 32 provided.
  • FIG. 1 the upper part of FIG. 1 is referred to as “upper”, and the lower part of FIG.
  • “up” and “down” mean relative directions in the thermistor, and do not mean “vertical upward” and “vertical downward”.
  • the pair of electrodes 31 and 32 are provided between the insulating film 10 and the thermistor layer 20 in the vertical direction. As shown in FIG. 2, the pair of electrodes 31 and 32 have a comb-shaped structure, and are arranged alternately and spaced apart from each other. Thus, the electrodes 31 and 32 face each other. In addition, the structure of the pair of electrodes 31 and 32 is not limited to the comb shape.
  • the thermistor layer 20 is a layer including a coated thermistor particle 21 ⁇ / b> A in which the surface of the thermistor particle 21 is coated with a water-repellent film 22 and an organic polymer component 23. Specifically, the coated thermistor particles 21A are dispersed in the organic polymer component 23. As described above, in the thermistor 1 shown in FIG. 1, the surface of the thermistor particles 21 included in the thermistor layer 20 is covered with the water-repellent film 22.
  • FIG. 3 is a sectional view schematically showing an example of a conventional thermistor.
  • the thermistor 100 shown in FIG. 3 includes an insulating film 10, a thermistor layer 20 provided on the insulating film 10, a water-repellent film 22 provided on the surface of the thermistor layer 20, and And a pair of electrodes 31 and 32 provided below the thermistor layer 20.
  • the thermistor layer 20 is a layer containing thermistor particles 21 and an organic polymer component 23.
  • the surface of the thermistor layer 20 is covered with the water-repellent film 22.
  • the thickness indicated by T 22 in order to obtain the effect of suppressing the resistance drift, the thickness indicated by T 22 because) must greatly, in thickness (FIG. 3 of the thermistor layer 20, also to reduce the thickness) indicated by T 20 would entire thermistor 100 becomes thicker.
  • the thickness indicated by T 22 in order to obtain the effect of suppressing the resistance drift, the thickness indicated by T 22 because) must greatly, in thickness (FIG. 3 of the thermistor layer 20, also to reduce the thickness) indicated by T 20 would entire thermistor 100 becomes thicker.
  • the thickness of the thermistor particles 21 are covered with water-repellent film 22, (in FIG. 1, the thickness indicated by T 22) the thickness of the water-repellent film 22 is a nm level also for the effect of suppressing the resistance drift is obtained (in FIG. 1, the thickness indicated by T 20) the thickness of the thermistor layer 20 enables thinning the entire thermistor 1 by reducing the.
  • both the pair of electrodes 31 and 32 are provided below the thermistor layer 20, but the pair of electrodes 31 and 32 may be both provided on the thermistor layer 20.
  • one electrode may be provided above the thermistor layer 20 and the other electrode may be provided below the thermistor layer 20.
  • FIG. 4 is a sectional view schematically showing another example of the thermistor of the present invention.
  • an electrode 31, a thermistor layer 20, and an electrode 32 are sequentially laminated on an insulating film 10. That is, the pair of electrodes 31 and 32 has a sandwich structure that is disposed so as to sandwich the thermistor layer 20 in the vertical direction. Thus, the electrodes 31 and 32 face each other.
  • the material of the thermistor particles contained in the thermistor layer preferably has a negative temperature coefficient (NTC).
  • NTC negative temperature coefficient
  • a spinel type oxide containing a transition metal element as a main component for example, (Mn, Ni) 3 O 4 , (Mn, Co) 3 O 4 , (Mn, Fe) 3 O 4 , (Mn, Ni, Co) 3 O 4 , (Mn, Ni, Fe) 3 O 4 ), perovskite-type oxide (for example, Y (Cr, Mn) O 3 , (La, Ca) (Cr, Mn) O 3 ).
  • AlN, SiC, etc. may be used.
  • the average particle size of the thermistor particles present in the thermistor layer is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, more preferably 0.4 ⁇ m or more and 2 ⁇ m or less.
  • the average particle size of the thermistor particles present in the thermistor layer is determined by observing a cross section of the thermistor layer in a range of 30 ⁇ m ⁇ 30 ⁇ m, and measuring the particle size of each thermistor particle at 10 or more points by the line segment method. Then, it means the average particle size of the circle equivalent diameter of each thermistor particle present in the visual field.
  • a water-repellent film can be formed on the surface of the thermistor particle by treating the surface of the thermistor particle with a water-repellent agent.
  • the water-repellent film is chemically bonded to the thermistor particles. Since the water-repellent film chemically bonded to the thermistor particles is a denser film than the water-repellent film physically bonded to the thermistor layer, resistance drift can be further suppressed.
  • the fact that the water-repellent film is chemically bonded to the thermistor particles can be confirmed by using, for example, Fourier transform infrared spectroscopy (FT-IR).
  • FT-IR Fourier transform infrared spectroscopy
  • water repellent examples include hydrocarbon-based, fluorine-based, silicon-based water-repellents, and combinations of these water-repellents.
  • the structure of the water repellent is not particularly limited as long as it has water repellency, such as oil or resin having water repellency, or a coupling agent having water repellency.
  • hydrocarbon-based water repellent examples include stearic acid (CH 3 (CH 2 ) 16 COOH).
  • silicon-based water repellent examples include a silane coupling agent.
  • a water-repellent film formed using a fluorine-based water-repellent agent contains an F element
  • a water-repellent film formed using a silicon-based water-repellent agent contains a Si element.
  • the thickness of the water-repellent film is more preferably is preferably 1nm or more, and 2nm or more.
  • the thickness of the water-repellent film is preferably 10 nm or less, more preferably 5 nm or less.
  • element mapping is performed on a cross section of the thermistor layer, and a region where an element specific to the water-repellent agent (for example, Si element in the case of a silicon-based water-repellent agent) is concentrated. This is possible by measuring the thickness of the water-repellent film.
  • an element specific to the water-repellent agent for example, Si element in the case of a silicon-based water-repellent agent
  • the entire surface of the thermistor particle is coated with the water-repellent film, but a part of the surface of the thermistor particle that is not coated with the water-repellent film may be present. .
  • the organic polymer component contained in the thermistor layer may contain a thermosetting resin or may contain a thermoplastic resin.
  • a thermosetting resin for example, epoxy resin, epoxy acrylate resin, phenol novolak type epoxy resin, phenol resin, urethane resin, silicone resin, polyamide resin, polyimide resin, and the like can be used. Any one of the above-described thermosetting resins may be used alone, or two or more kinds may be used in combination.
  • thermoplastic resin for example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic, polyester, polyvinyl acetal resin, polyvinyl butyral resin, fluororesin, liquid crystal polymer, polyphenyl sulfide resin, diallyl phthalate resin, A polyvinyl alcohol resin or the like can be used. Any one of the above-described thermoplastic resins may be used alone, or two or more kinds may be used in combination.
  • the organic polymer component does not contain an element specific to the water-repellent agent.
  • the organic polymer component may contain an element specific to the water repellent.
  • the porosity of the thermistor layer is preferably 10% or more, and more preferably 20% or more.
  • the thermistor layer should have a certain porosity.
  • a water-repellent film is formed on the surface of the thermistor layer, if the porosity of the thermistor layer increases, the water-repellent film cannot follow the surface shape of the thermistor layer, causing a resistance drift.
  • the resistance drift can be sufficiently suppressed even when the porosity of the thermistor layer is high.
  • the porosity of the thermistor layer is preferably 45% or less, more preferably 40% or less.
  • the porosity of the thermistor layer can be calculated by the following method.
  • the porosity of the thermistor layer is calculated by observing the cross section of the thermistor layer at a magnification of 5000 using a scanning electron microscope (SEM) and binarizing light and dark using image analysis software.
  • SEM scanning electron microscope
  • the thickness of the thermistor layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the thickness of the thermistor layer is preferably at least 10 ⁇ m, more preferably at least 15 ⁇ m.
  • the thickness of the thermistor layer can be measured by the following method. Using a SEM, three cross sections of the thermistor layer are randomly observed so that the whole in the thickness direction of the thermistor layer is in one field of view. In one visual field, the thickness of the thermistor layer is measured at three places. The above measurement is performed in all the visual fields, and the average value in all the measurement locations is defined as the thermistor layer thickness.
  • the material of the insulating film for example, polyethylene terephthalate, polyester, polypropylene, polyethylene naphthalate, polyphenylene sulfide, polyimide, polyethylene, polyvinyl alcohol, polycarbonate, polystyrene, polyvinyl acetal, polyvinyl butyral, ionomer resin , Polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer, nylon and the like.
  • the thickness of the insulating film is not particularly limited, but is preferably 10 ⁇ m or more and 125 ⁇ m or less.
  • the electrodes can be formed using a metal paste such as a silver paste or a copper paste.
  • the thickness of the electrode is not particularly limited, but is, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, and preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the method for producing a thermistor of the present invention comprises the steps of: treating the surface of the thermistor particles with a water repellent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film; And a step of obtaining a thermistor layer paste containing an organic polymer component, and a step of forming the thermistor layer and a pair of electrodes by printing and drying the thermistor layer paste and the metal paste on an insulating film, respectively. And.
  • the thermistor particles are obtained, for example, by firing and pulverizing a raw material mixture containing a powder such as a Mn source and a Ni source.
  • the raw material mixture may further include a powder such as an Fe source or a Co source.
  • Mn source for example, Mn 3 O 4 , MnCO 3 or the like is used.
  • Ni source for example, NiO, NiCO 3 or the like is used.
  • Fe source for example, Fe 2 O 3 or the like is used.
  • Co source for example, CoCO 3 is used.
  • the average particle size of the thermistor particles is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, more preferably 0.4 ⁇ m or more and 2 ⁇ m or less.
  • the average particle size of the thermistor particles can be determined by a laser diffraction / scattering method and is expressed as a median diameter (D 50 ). Note that the average particle size of the thermistor particles of the raw material may be considered to be the same as the average particle size of the thermistor particles present in the thermistor layer constituting the thermistor as a finished product.
  • the surface of the thermistor particles is treated with a water repellent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film.
  • the surface treatment method is not particularly limited. For example, a method of immersing the thermistor particles in a water-repellent liquid diluted in a solvent, a method of spray-applying a water-repellent agent to the thermistor particles, a method of spraying a thermistor in a volatilized water-repellent material atmosphere A method of exposing the particles may, for example, be mentioned.
  • TG-DTA measurement is performed under the following measurement conditions, and it is confirmed that the weight is reduced by 1% by weight or more when the temperature is maintained at 500 ° C.
  • the weight of the thermistor particles whose surface is not covered with the water-repellent film is reduced by only about 0.5% by weight.
  • Temperature range 25 to 500 ° C, maintained at 500 ° C until weight loss stops.
  • a thermistor layer paste containing the coated thermistor particles and the organic polymer component is obtained.
  • a solvent may be added to the thermistor layer paste.
  • the solvent for example, ethylene glycol, cellosolve, carbitol, butyl carbitol, butyl carbitol acetate, dipropylene glycol methyl ether acetate and the like are used.
  • the thermistor layer paste and the metal paste are printed in a predetermined pattern on the insulating film and dried to form a thermistor layer and a pair of electrodes, respectively.
  • the metal paste for example, a silver paste, a copper paste, or the like can be used.
  • the thermistor layer paste and the metal paste can be printed using a technique such as screen printing.
  • a heat treatment after printing the thermistor layer paste and the metal paste on the insulating film.
  • the solvent and the like contained in the thermistor layer paste and the metal paste can be removed.
  • the solvent contained in the thermistor layer paste and the metal paste can also be removed by leaving the printed paste at room temperature and drying it.
  • the thermistor of the present invention is obtained.
  • Example 1-1 (Preparation of thermistor particles)
  • a thermistor particle obtained by calcining a mixture of Mn oxide, Ni oxide and Fe oxide, a cobblestone having a diameter of 2 mm (partially stabilized zirconia, PSZ), and pure water are placed in a 1 L poly-jar, and the pot is placed.
  • the thermistor particles were pulverized by rotating them at 110 rpm for 8 hours on a frame. After pulverization, it was poured on a hot plate to remove water. Subsequently, the particles were sieved with a mesh to remove coarse particles.
  • thermistor particles having an average particle diameter D 50 of about 2 ⁇ m and a specific surface area SSA of 10.2 m 2 / g were obtained.
  • thermoistor layer paste (Preparation of thermistor layer paste) The obtained coated thermistor particles, a phenol resin as an organic polymer component, and a solvent were mixed and stirred with a centrifugal stirrer to obtain a thermistor layer paste. The solvent was added in an amount of about 25% by weight based on the total weight of the coated thermistor particles and the organic polymer component.
  • L / S line / space
  • Thermistor layer paste was screen-printed so that the thermistor layer overlapped the electrode pattern, and then dried in an oven at 150 ° C. for 24 hours to form a thermistor layer having a thickness of 20 ⁇ m and a porosity of 7%. Thus, a thermistor was manufactured.
  • the porosity of the thermistor layer was calculated by the following method.
  • the porosity of the thermistor layer was calculated by observing the cross section of the sample polished by ion milling at 5000 times magnification using SEM and binarizing light and dark using image analysis software.
  • Example 1-2 and Example 1-3 A thermistor was produced in the same manner as in Example 1-1, except that the surface treatment was performed while changing the charged amount of the water repellent to the thermistor particles.
  • Example 1-1 A thermistor was manufactured in the same manner as in Example 1-1, except that the surface treatment using the water repellent was not performed.
  • FIG. 5 is an example of the synthetic mapping of the Fe element and the Si element. As shown in FIG. 5, a region where Si elements are concentrated is used as a water-repellent film, and its thickness is measured. In FIG. 5, the thickness of the water-repellent film is 2 nm.
  • each thermistor when the surface and the cross section of each thermistor were observed by SEM, no cracking or peeling was observed. Further, when the resistance value (25 ° C.) of each thermistor was measured using a tester, it was confirmed that a thermistor having a B constant (25 ° C./50° C.) of 3000 K or more was obtained.
  • the resistance drift was 1.0% / h in Comparative Example 1-1 in which the surface of the thermistor particle was not covered with the water-repellent film, whereas the surface of the thermistor particle was covered with the water-repellent film.
  • the resistance drift is 0.1% / h or less. From comparison between Example 1-1, Example 1-2 and Example 1-3, it is considered that the thicker the water-repellent film, the more the resistance drift tends to be suppressed.
  • Example 2-1 A thermistor was produced in the same manner as in Example 1-2, except that stearic acid was used as a water repellent instead of the silane coupling agent.
  • Example 2-1 using stearic acid as a water repellent, the resistance drift was 0.1% / h or less.
  • weight loss starts around 300 ° C. because thermistor particles coated with stearic acid are used. If another resin is contained in the thermistor layer, another peak appears, so that stearic acid can be detected.
  • Example 3-1 to Example 3-6 In screen printing for forming the thermistor layer, a thermistor was manufactured in the same manner as in Example 1-1, except that the mesh size and the like were changed and thermistor layers having different porosity were formed. However, the thickness of the water-repellent film was 2 nm. The thickness of the thermistor layer was 95 ⁇ m.
  • Comparative Examples 3-1 to 3-6 in Comparative Example 3-1 in which the porosity of the thermistor layer is 5%, the resistance drift is 0.1% / h.
  • the porosity of the thermistor layer is 10% or more as in Example 3-6, it is considered that the water-repellent film cannot follow the thermistor layer and the resistance drift increases.
  • Comparative Examples 3-1 to 3-6 since it is necessary to make the water-repellent film thick in order to make the resistance drift the same as in Examples 3-1 to 3-6, the entire thermistor is used. It is difficult to reduce the thickness.
  • Example 3-1 to 3-6 not only Example 3-1 in which the porosity of the thermistor layer is 5% but also thermistors as in Examples 3-2 to 3-6. Even if the porosity of the layer is 10% or more, the resistance drift can be suppressed.
  • the thickness of the thermistor layer is 20 ⁇ m and no water-repellent film is formed on the surface of the thermistor layer, so that the entire thermistor can be reduced in thickness.
  • the present invention is not limited to the configuration of the embodiment described above.
  • a silicone resin is used instead of a phenol resin as the organic polymer component of the thermistor layer in the examples 1-1 to 1-3, the examples 1-1 to 1-3 may be used. It was confirmed that the same effect of suppressing the resistance drift as described above was obtained.
  • thermoistor 10 insulating film 20 thermistor layer 21 thermistor particles 21A coated thermistor particles 22 water-repellent film 23 organic polymer component 31,32 electrodes T 20 thicknesses of T 22 water-repellent film of the thermistor layer

Abstract

This thermistor comprises: an insulating film, a thermistor layer disposed on the insulating film, and a pair of electrodes disposed on the primary surface of the thermistor layer. The thermistor layer contains an organic polymer component and covered thermistor particles, the surface of the thermistor particles being covered by a water-repellent film.

Description

サーミスタ、及び、サーミスタの製造方法Thermistor and method of manufacturing thermistor
本発明は、サーミスタ、及び、サーミスタの製造方法に関する。 The present invention relates to a thermistor and a method for manufacturing the thermistor.
温度センサなどに用いられるサーミスタとして、近年、絶縁性フィルム上にサーミスタ層が設けられた、フィルム型のサーミスタの開発が進められている。サーミスタにおいては、時間の経過とともにサーミスタの抵抗値が増加する、抵抗ドリフトと呼ばれる問題が生じる。 In recent years, as a thermistor used for a temperature sensor or the like, a film-type thermistor having a thermistor layer provided on an insulating film has been developed. In the thermistor, a problem called resistance drift occurs in which the resistance value of the thermistor increases with time.
サーミスタの抵抗ドリフトは、サーミスタ層が周囲の水分を吸収することにより生じると考えられている。そこで、抵抗ドリフトを抑制する手段として、サーミスタ層の表面に撥水膜を形成することが行われている(例えば、特許文献1参照)。 The resistance drift of the thermistor is considered to be caused by the thermistor layer absorbing ambient moisture. Therefore, as a means for suppressing the resistance drift, a water-repellent film is formed on the surface of the thermistor layer (for example, see Patent Document 1).
特開2016-145756号公報JP 2016-145756 A
サーミスタ層の表面に撥水膜を形成する場合、撥水膜が薄いと、サーミスタ層への水分の浸入を充分に防ぐことができないため、抵抗ドリフトを抑制する効果が得られにくい。一方、撥水膜が厚いと、抵抗ドリフトは抑制されるものの、サーミスタの薄型化が困難となり、フレキシブル特性が得られにくくなる。 In the case where a water-repellent film is formed on the surface of the thermistor layer, if the water-repellent film is thin, it is difficult to sufficiently prevent moisture from penetrating into the thermistor layer. On the other hand, when the water-repellent film is thick, although resistance drift is suppressed, it is difficult to reduce the thickness of the thermistor, and it is difficult to obtain flexible characteristics.
本発明は、上記の問題を解決するためになされたものであり、サーミスタ層を薄くしつつ、抵抗ドリフトを抑制することができるサーミスタを提供することを目的とする。また、本発明は、上記サーミスタの製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problem, and has as its object to provide a thermistor capable of suppressing resistance drift while reducing the thickness of the thermistor layer. Another object of the present invention is to provide a method for manufacturing the thermistor.
本発明のサーミスタは、絶縁性フィルムと、上記絶縁性フィルム上に設けられたサーミスタ層と、上記サーミスタ層の主面に設けられた一対の電極と、を備えるサーミスタであって、上記サーミスタ層は、サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子と、有機高分子成分と、を含む。 The thermistor of the present invention is a thermistor including an insulating film, a thermistor layer provided on the insulating film, and a pair of electrodes provided on a main surface of the thermistor layer, wherein the thermistor layer is And a coated thermistor particle whose surface is coated with a water-repellent film, and an organic polymer component.
本発明のサーミスタの製造方法は、撥水剤を用いてサーミスタ粒子の表面を処理することにより、上記サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子を得る工程と、上記被覆サーミスタ粒子と、有機高分子成分とを含むサーミスタ層ペーストを得る工程と、絶縁性フィルム上に、上記サーミスタ層ペースト及び金属ペーストを印刷して乾燥することにより、サーミスタ層及び一対の電極をそれぞれ形成する工程と、を備える。 The method for producing a thermistor of the present invention comprises the steps of: treating the surface of the thermistor particles with a water-repellent agent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film; And a step of obtaining a thermistor layer paste containing an organic polymer component, and a step of forming the thermistor layer and a pair of electrodes by printing and drying the thermistor layer paste and the metal paste on an insulating film, respectively. And.
本発明によれば、サーミスタ層を薄くしつつ、抵抗ドリフトを抑制することができるサーミスタを提供することができる。 According to the present invention, it is possible to provide a thermistor capable of suppressing resistance drift while reducing the thickness of the thermistor layer.
図1は、本発明のサーミスタの一例を模式的に示す断面図である。FIG. 1 is a sectional view schematically showing an example of the thermistor of the present invention. 図2は、本発明のサーミスタの一例を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an example of the thermistor of the present invention. 図3は、従来のサーミスタの一例を模式的に示す断面図である。FIG. 3 is a sectional view schematically showing an example of a conventional thermistor. 図4は、本発明のサーミスタの別の一例を模式的に示す断面図である。FIG. 4 is a sectional view schematically showing another example of the thermistor of the present invention. 図5は、Fe元素とSi元素の合成マッピングの一例である。FIG. 5 is an example of the synthetic mapping of the Fe element and the Si element.
以下、本発明のサーミスタについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the thermistor of the present invention will be described.
However, the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more individual desirable configurations of the present invention described below is also the present invention.
[サーミスタ]
本発明のサーミスタにおいては、サーミスタ層に含まれるサーミスタ粒子の表面が撥水膜で被覆されていることを特徴としている。
[Thermistor]
The thermistor of the present invention is characterized in that the surfaces of the thermistor particles contained in the thermistor layer are covered with a water-repellent film.
図1は、本発明のサーミスタの一例を模式的に示す断面図である。図2は、本発明のサーミスタの一例を模式的に示す平面図である。なお、図1は、図2に示すサーミスタのI-I線断面図である。 FIG. 1 is a sectional view schematically showing an example of the thermistor of the present invention. FIG. 2 is a plan view schematically showing an example of the thermistor of the present invention. FIG. 1 is a sectional view taken along line II of the thermistor shown in FIG.
図1及び図2に示すサーミスタ1は、絶縁性フィルム10と、絶縁性フィルム10上に設けられたサーミスタ層20と、絶縁性フィルム10の上であって、かつ、サーミスタ層20の下に設けられた一対の電極31及び32と、を備えている。 The thermistor 1 shown in FIGS. 1 and 2 includes an insulating film 10, a thermistor layer 20 provided on the insulating film 10, and provided on the insulating film 10 and below the thermistor layer 20. And a pair of electrodes 31 and 32 provided.
本明細書では、説明の便宜上、図1の上方を「上」といい、下方を「下」という。本発明のサーミスタにおいて、「上」及び「下」とは、サーミスタにおける相対的な向きを意味するものであり、「鉛直上方」及び「鉛直下方」を意味するものではない。 In this specification, for convenience of explanation, the upper part of FIG. 1 is referred to as “upper”, and the lower part of FIG. In the thermistor of the present invention, “up” and “down” mean relative directions in the thermistor, and do not mean “vertical upward” and “vertical downward”.
図1及び図2に示すサーミスタ1では、一対の電極31及び32は、上下方向において絶縁性フィルム10とサーミスタ層20との間に設けられている。図2に示すように、一対の電極31及び32は、櫛歯型の構造を有しており、互いに離間して交互に配置されている。これにより、電極31及び32は、互いに対向している。なお、一対の電極31及び32の構造は、櫛歯型に限定されるものではない。 In the thermistor 1 shown in FIGS. 1 and 2, the pair of electrodes 31 and 32 are provided between the insulating film 10 and the thermistor layer 20 in the vertical direction. As shown in FIG. 2, the pair of electrodes 31 and 32 have a comb-shaped structure, and are arranged alternately and spaced apart from each other. Thus, the electrodes 31 and 32 face each other. In addition, the structure of the pair of electrodes 31 and 32 is not limited to the comb shape.
サーミスタ層20は、サーミスタ粒子21の表面が撥水膜22で被覆された被覆サーミスタ粒子21Aと、有機高分子成分23と、を含む層である。具体的には、有機高分子成分23中に被覆サーミスタ粒子21Aが分散している。このように、図1に示すサーミスタ1においては、サーミスタ層20に含まれるサーミスタ粒子21の表面が撥水膜22で被覆されている。 The thermistor layer 20 is a layer including a coated thermistor particle 21 </ b> A in which the surface of the thermistor particle 21 is coated with a water-repellent film 22 and an organic polymer component 23. Specifically, the coated thermistor particles 21A are dispersed in the organic polymer component 23. As described above, in the thermistor 1 shown in FIG. 1, the surface of the thermistor particles 21 included in the thermistor layer 20 is covered with the water-repellent film 22.
図3は、従来のサーミスタの一例を模式的に示す断面図である。
図3に示すサーミスタ100は、絶縁性フィルム10と、絶縁性フィルム10上に設けられたサーミスタ層20と、サーミスタ層20の表面に設けられた撥水膜22と、絶縁性フィルム10の上であって、かつ、サーミスタ層20の下に設けられた一対の電極31及び32と、を備えている。サーミスタ層20は、サーミスタ粒子21と、有機高分子成分23と、を含む層である。このように、図3に示すサーミスタ100においては、サーミスタ層20の表面が撥水膜22で被覆されている。
FIG. 3 is a sectional view schematically showing an example of a conventional thermistor.
The thermistor 100 shown in FIG. 3 includes an insulating film 10, a thermistor layer 20 provided on the insulating film 10, a water-repellent film 22 provided on the surface of the thermistor layer 20, and And a pair of electrodes 31 and 32 provided below the thermistor layer 20. The thermistor layer 20 is a layer containing thermistor particles 21 and an organic polymer component 23. Thus, in the thermistor 100 shown in FIG. 3, the surface of the thermistor layer 20 is covered with the water-repellent film 22.
サーミスタ層20の表面が撥水膜22で被覆されている図3に示すサーミスタ100では、抵抗ドリフトを抑制する効果を得るためには撥水膜22の厚み(図3中、T22で示す厚み)を大きくしなければならないため、サーミスタ層20の厚み(図3中、T20で示す厚み)を小さくしてもサーミスタ100全体が厚くなってしまう。これに対し、サーミスタ粒子21の表面が撥水膜22で被覆されている図1に示すサーミスタ1では、撥水膜22の厚み(図1中、T22で示す厚み)がnmレベルであっても抵抗ドリフトを抑制する効果が得られるため、サーミスタ層20の厚み(図1中、T20で示す厚み)を小さくすることでサーミスタ1全体を薄くすることができる。 In the thermistor 100 shown in FIG. 3 the surface of the thermistor layer 20 is covered with water-repellent film 22, in thickness (FIG. 3 of the water-repellent film 22 in order to obtain the effect of suppressing the resistance drift, the thickness indicated by T 22 because) must greatly, in thickness (FIG. 3 of the thermistor layer 20, also to reduce the thickness) indicated by T 20 would entire thermistor 100 becomes thicker. In contrast, in the thermistor 1 shown in FIG. 1, the surface of the thermistor particles 21 are covered with water-repellent film 22, (in FIG. 1, the thickness indicated by T 22) the thickness of the water-repellent film 22 is a nm level also for the effect of suppressing the resistance drift is obtained (in FIG. 1, the thickness indicated by T 20) the thickness of the thermistor layer 20 enables thinning the entire thermistor 1 by reducing the.
図1に示すサーミスタ1では、一対の電極31及び32がどちらもサーミスタ層20の下に設けられているが、一対の電極31及び32は、どちらもサーミスタ層20の上に設けられていてもよいし、一方の電極がサーミスタ層20の上、他方の電極がサーミスタ層20の下に設けられていてもよい。 In the thermistor 1 illustrated in FIG. 1, both the pair of electrodes 31 and 32 are provided below the thermistor layer 20, but the pair of electrodes 31 and 32 may be both provided on the thermistor layer 20. Alternatively, one electrode may be provided above the thermistor layer 20 and the other electrode may be provided below the thermistor layer 20.
図4は、本発明のサーミスタの別の一例を模式的に示す断面図である。
図4に示すサーミスタ2では、絶縁性フィルム10の上に、電極31、サーミスタ層20及び電極32が順に積層されている。すなわち、一対の電極31及び32は、サーミスタ層20を上下方向に挟んで配置されるサンドイッチ構造を有している。これにより、電極31及び32は、互いに対向している。
FIG. 4 is a sectional view schematically showing another example of the thermistor of the present invention.
In the thermistor 2 shown in FIG. 4, an electrode 31, a thermistor layer 20, and an electrode 32 are sequentially laminated on an insulating film 10. That is, the pair of electrodes 31 and 32 has a sandwich structure that is disposed so as to sandwich the thermistor layer 20 in the vertical direction. Thus, the electrodes 31 and 32 face each other.
本発明のサーミスタにおいて、サーミスタ層に含まれるサーミスタ粒子の材料は、負の温度係数(NTC)を有することが好ましい。サーミスタ粒子の材料としては、例えば、遷移金属元素を主成分とするスピネル型酸化物(例えば(Mn,Ni)、(Mn,Co)、(Mn,Fe)、(Mn,Ni,Co)、(Mn,Ni,Fe))、ペロブスカイト型酸化物(例えばY(Cr,Mn)O、(La,Ca)(Cr,Mn)O)などが挙げられる。その他、AlN、SiCなどであってもよい。 In the thermistor of the present invention, the material of the thermistor particles contained in the thermistor layer preferably has a negative temperature coefficient (NTC). As the material of the thermistor particles, for example, a spinel type oxide containing a transition metal element as a main component (for example, (Mn, Ni) 3 O 4 , (Mn, Co) 3 O 4 , (Mn, Fe) 3 O 4 , (Mn, Ni, Co) 3 O 4 , (Mn, Ni, Fe) 3 O 4 ), perovskite-type oxide (for example, Y (Cr, Mn) O 3 , (La, Ca) (Cr, Mn) O 3 ). In addition, AlN, SiC, etc. may be used.
本発明のサーミスタにおいて、サーミスタ層中に存在するサーミスタ粒子の平均粒径は、0.1μm以上、5μm以下であることが好ましく、0.4μm以上、2μm以下であることがより好ましい。
なお、サーミスタ層中に存在するサーミスタ粒子の平均粒径とは、30μm×30μmの範囲に視野を定めてサーミスタ層の断面を観察し、各サーミスタ粒子の粒径を線分法で10箇所以上測定したとき、当該視野に存在する各サーミスタ粒子の円相当径の平均粒径を意味する。
In the thermistor of the present invention, the average particle size of the thermistor particles present in the thermistor layer is preferably 0.1 μm or more and 5 μm or less, more preferably 0.4 μm or more and 2 μm or less.
The average particle size of the thermistor particles present in the thermistor layer is determined by observing a cross section of the thermistor layer in a range of 30 μm × 30 μm, and measuring the particle size of each thermistor particle at 10 or more points by the line segment method. Then, it means the average particle size of the circle equivalent diameter of each thermistor particle present in the visual field.
本発明のサーミスタにおいては、例えば、撥水剤を用いてサーミスタ粒子の表面を処理することにより、サーミスタ粒子の表面に撥水膜を形成することができる。この場合、撥水膜は、サーミスタ粒子と化学的に結合している。サーミスタ粒子と化学的に結合している撥水膜は、サーミスタ層と物理的に結合している撥水膜と比べて緻密な膜となるため、抵抗ドリフトをより抑制することができる。
なお、撥水膜がサーミスタ粒子と化学的に結合していることは、例えば、フーリエ変換赤外分光分析(FT-IR)を用いて確認することができる。
In the thermistor of the present invention, for example, a water-repellent film can be formed on the surface of the thermistor particle by treating the surface of the thermistor particle with a water-repellent agent. In this case, the water-repellent film is chemically bonded to the thermistor particles. Since the water-repellent film chemically bonded to the thermistor particles is a denser film than the water-repellent film physically bonded to the thermistor layer, resistance drift can be further suppressed.
The fact that the water-repellent film is chemically bonded to the thermistor particles can be confirmed by using, for example, Fourier transform infrared spectroscopy (FT-IR).
撥水剤としては、例えば、炭化水素系、フッ素系、シリコン系などの撥水剤、又は、これらの撥水剤の組み合わせが挙げられる。撥水剤の構造としては、撥水性を有するオイルや樹脂、撥水性を有するカップリング剤など、撥水性を有するものであれば特に限定されない。 Examples of the water repellent include hydrocarbon-based, fluorine-based, silicon-based water-repellents, and combinations of these water-repellents. The structure of the water repellent is not particularly limited as long as it has water repellency, such as oil or resin having water repellency, or a coupling agent having water repellency.
炭化水素系の撥水剤としては、例えば、ステアリン酸(CH(CH16COOH)などが挙げられる。
シリコン系の撥水剤としては、例えば、シランカップリング剤などが挙げられる。
例えば、フッ素系の撥水剤を用いて形成された撥水膜はF元素を含み、シリコン系の撥水剤を用いて形成された撥水膜はSi元素を含む。
Examples of the hydrocarbon-based water repellent include stearic acid (CH 3 (CH 2 ) 16 COOH).
Examples of the silicon-based water repellent include a silane coupling agent.
For example, a water-repellent film formed using a fluorine-based water-repellent agent contains an F element, and a water-repellent film formed using a silicon-based water-repellent agent contains a Si element.
本発明のサーミスタにおいては、抵抗ドリフトを抑制する観点から、撥水膜の厚み(図1中、T22で示す厚み)は、1nm以上であることが好ましく、2nm以上であることがより好ましい。
一方、撥水膜が厚くなりすぎると、サーミスタ粒子間の距離が広がり、抵抗値が許容できなくなる。そのため、撥水膜の厚みは、10nm以下であることが好ましく、5nm以下であることがより好ましい。
In the thermistor of the present invention, the resistance drift from the viewpoint of suppressing, (in FIG. 1, the thickness indicated T 22) the thickness of the water-repellent film is more preferably is preferably 1nm or more, and 2nm or more.
On the other hand, if the water-repellent film is too thick, the distance between the thermistor particles increases, and the resistance becomes unacceptable. Therefore, the thickness of the water-repellent film is preferably 10 nm or less, more preferably 5 nm or less.
撥水膜の厚みの測定は、例えば、サーミスタ層の断面について元素マッピングを行い、撥水剤に特有の元素(例えば、シリコン系の撥水剤であればSi元素)が集中している領域を撥水膜として、その厚みを測定することにより可能である。 For the measurement of the thickness of the water-repellent film, for example, element mapping is performed on a cross section of the thermistor layer, and a region where an element specific to the water-repellent agent (for example, Si element in the case of a silicon-based water-repellent agent) is concentrated. This is possible by measuring the thickness of the water-repellent film.
本発明のサーミスタにおいては、サーミスタ粒子の表面の全体が撥水膜で被覆されていることが好ましいが、サーミスタ粒子の表面の一部に撥水膜で被覆されていない部分が存在してもよい。 In the thermistor of the present invention, it is preferable that the entire surface of the thermistor particle is coated with the water-repellent film, but a part of the surface of the thermistor particle that is not coated with the water-repellent film may be present. .
本発明のサーミスタにおいて、サーミスタ層に含まれる有機高分子成分は、熱硬化性樹脂を含んでもよいし、熱可塑性樹脂を含んでもよい。
熱硬化性樹脂としては、例えば、エポキシ樹脂、エポキシアクリレート樹脂、フェノールノボラック型エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリイミド樹脂などを用いることができる。熱硬化性樹脂は、上述のいずれか1つを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、アクリル、ポリエステル、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、フッ素系樹脂、液晶ポリマー、ポリフェニルサルファイド樹脂、ジアリルフタレート樹脂、ポリビニルアルコール樹脂などを用いることができる。熱可塑性樹脂は、上述のいずれか1つを単独で用いてよいし、2種類以上を組み合わせて用いてもよい。
In the thermistor of the present invention, the organic polymer component contained in the thermistor layer may contain a thermosetting resin or may contain a thermoplastic resin.
As the thermosetting resin, for example, epoxy resin, epoxy acrylate resin, phenol novolak type epoxy resin, phenol resin, urethane resin, silicone resin, polyamide resin, polyimide resin, and the like can be used. Any one of the above-described thermosetting resins may be used alone, or two or more kinds may be used in combination.
As the thermoplastic resin, for example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, acrylic, polyester, polyvinyl acetal resin, polyvinyl butyral resin, fluororesin, liquid crystal polymer, polyphenyl sulfide resin, diallyl phthalate resin, A polyvinyl alcohol resin or the like can be used. Any one of the above-described thermoplastic resins may be used alone, or two or more kinds may be used in combination.
元素マッピングにより撥水膜の厚みを測定することを考慮すると、有機高分子成分は、撥水剤に特有の元素を含まないことが好ましい。一方、有機高分子成分が撥水剤に特有の元素を含んでいると、元素マッピングにより撥水膜の厚みを測定することは困難であるが、抵抗ドリフトを抑制するという本発明の効果は得られる。そのため、有機高分子成分は、撥水剤に特有の元素を含んでいてもよい。 Considering that the thickness of the water-repellent film is measured by element mapping, it is preferable that the organic polymer component does not contain an element specific to the water-repellent agent. On the other hand, when the organic polymer component contains an element peculiar to the water repellent, it is difficult to measure the thickness of the water repellent film by element mapping, but the effect of the present invention of suppressing the resistance drift is obtained. Can be Therefore, the organic polymer component may contain an element specific to the water repellent.
本発明のサーミスタにおいて、サーミスタ層の空隙率は、10%以上であることが好ましく、20%以上であることがより好ましい。
サーミスタのフレキシブル特性を得るためには、サーミスタ層はある程度の空隙率を有する方がよい。しかし、サーミスタ層の表面に撥水膜が形成されている従来のサーミスタでは、サーミスタ層の空隙率が高くなると、サーミスタ層の表面形状に撥水膜が追従することができず、抵抗ドリフトが生じてしまう。これに対し、サーミスタ粒子の表面が撥水膜で被覆されている本発明のサーミスタでは、サーミスタ層の空隙率が高い場合であっても、抵抗ドリフトを充分に抑制することができる。
In the thermistor of the present invention, the porosity of the thermistor layer is preferably 10% or more, and more preferably 20% or more.
In order to obtain the flexible characteristics of the thermistor, the thermistor layer should have a certain porosity. However, in a conventional thermistor in which a water-repellent film is formed on the surface of the thermistor layer, if the porosity of the thermistor layer increases, the water-repellent film cannot follow the surface shape of the thermistor layer, causing a resistance drift. Would. On the other hand, in the thermistor of the present invention in which the surface of the thermistor particles is covered with the water-repellent film, the resistance drift can be sufficiently suppressed even when the porosity of the thermistor layer is high.
一方、サーミスタ層の空隙率が高くなりすぎると、サーミスタ層が脆くなり、形状を維持することが困難となる。また、サーミスタ層の空隙率が高くなりすぎると、抵抗値がオープンになる。
以上の点を考慮すると、本発明のサーミスタにおいて、サーミスタ層の空隙率は、45%以下であることが好ましく、40%以下であることがより好ましい。
On the other hand, when the porosity of the thermistor layer is too high, the thermistor layer becomes brittle, and it becomes difficult to maintain the shape. If the porosity of the thermistor layer is too high, the resistance value becomes open.
Considering the above points, in the thermistor of the present invention, the porosity of the thermistor layer is preferably 45% or less, more preferably 40% or less.
サーミスタ層の空隙率は、以下の方法により計算することができる。
走査型電子顕微鏡(SEM)を用いてサーミスタ層の断面を5000倍の倍率で観察し、画像解析ソフトを用いて明暗を二値化処理することにより、サーミスタ層の空隙率を計算する。
The porosity of the thermistor layer can be calculated by the following method.
The porosity of the thermistor layer is calculated by observing the cross section of the thermistor layer at a magnification of 5000 using a scanning electron microscope (SEM) and binarizing light and dark using image analysis software.
本発明のサーミスタにおいては、フレキシブル特性を得る観点から、サーミスタ層の厚み(図1中、T20で示す厚み)は、100μm以下であることが好ましく、50μm以下であることがより好ましい。
一方、サーミスタ層の厚みは、10μm以上であることが好ましく、15μm以上であることがより好ましい。
In the thermistor of the present invention, from the viewpoint of obtaining a flexible property, (in FIG. 1, the thickness indicated by T 20) the thickness of the thermistor layer is preferably 100μm or less, more preferably 50μm or less.
On the other hand, the thickness of the thermistor layer is preferably at least 10 μm, more preferably at least 15 μm.
サーミスタ層の厚みは、以下の方法により測定することができる。
SEMを用いて、サーミスタ層の厚み方向における全体が1つの視野に入るように、サーミスタ層の断面を3箇所ランダムに観察する。1つの視野において、サーミスタ層の厚みを、3箇所計測する。全ての視野において上記の計測を行い、全ての計測箇所における平均値をサーミスタ層の厚みとする。
The thickness of the thermistor layer can be measured by the following method.
Using a SEM, three cross sections of the thermistor layer are randomly observed so that the whole in the thickness direction of the thermistor layer is in one field of view. In one visual field, the thickness of the thermistor layer is measured at three places. The above measurement is performed in all the visual fields, and the average value in all the measurement locations is defined as the thermistor layer thickness.
本発明のサーミスタにおいて、絶縁性フィルムの材料としては、例えば、ポリエチレンテレフタラート、ポリエステル、ポリプロピレン、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリイミド、ポリエチレン、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリビニルアセタール、ポリビニルブチラール、アイオノマー樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレンビニルアルコール共重合体、ナイロンなどが挙げられる。 In the thermistor of the present invention, as the material of the insulating film, for example, polyethylene terephthalate, polyester, polypropylene, polyethylene naphthalate, polyphenylene sulfide, polyimide, polyethylene, polyvinyl alcohol, polycarbonate, polystyrene, polyvinyl acetal, polyvinyl butyral, ionomer resin , Polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer, nylon and the like.
本発明のサーミスタにおいて、絶縁性フィルムの厚みは特に限定されないが、10μm以上、125μm以下であることが好ましい。 In the thermistor of the present invention, the thickness of the insulating film is not particularly limited, but is preferably 10 μm or more and 125 μm or less.
本発明のサーミスタにおいて、電極は、例えば、銀ペースト、銅ペーストなどの金属ペーストを用いて形成することができる。電極の厚みは特に限定されないが、例えば、0.1μm以上、50μm以下であり、好ましくは5μm以上、15μm以下である。 In the thermistor of the present invention, the electrodes can be formed using a metal paste such as a silver paste or a copper paste. The thickness of the electrode is not particularly limited, but is, for example, 0.1 μm or more and 50 μm or less, and preferably 5 μm or more and 15 μm or less.
[サーミスタの製造方法]
以下、本発明のサーミスタの製造方法について説明する。
本発明のサーミスタの製造方法は、撥水剤を用いてサーミスタ粒子の表面を処理することにより、上記サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子を得る工程と、上記被覆サーミスタ粒子と、有機高分子成分とを含むサーミスタ層ペーストを得る工程と、絶縁性フィルム上に、上記サーミスタ層ペースト及び金属ペーストを印刷して乾燥することにより、サーミスタ層及び一対の電極をそれぞれ形成する工程と、を備える。
[Thermistor manufacturing method]
Hereinafter, a method for manufacturing the thermistor of the present invention will be described.
The method for producing a thermistor of the present invention comprises the steps of: treating the surface of the thermistor particles with a water repellent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film; And a step of obtaining a thermistor layer paste containing an organic polymer component, and a step of forming the thermistor layer and a pair of electrodes by printing and drying the thermistor layer paste and the metal paste on an insulating film, respectively. And.
本発明のサーミスタの製造方法において、サーミスタ粒子は、例えば、Mn源、Ni源などの粉末を含む原料混合物を焼成し、粉砕することにより得られる。原料混合物は、さらにFe源、Co源などの粉末を含んでもよい。Mn源として、例えば、Mn、MnCOなどが用いられる。Ni源として、例えば、NiO、NiCOなどが用いられる。Fe源として、例えば、Feなどが用いられる。Co源として、例えば、CoCOなどが用いられる。 In the method for producing a thermistor according to the present invention, the thermistor particles are obtained, for example, by firing and pulverizing a raw material mixture containing a powder such as a Mn source and a Ni source. The raw material mixture may further include a powder such as an Fe source or a Co source. As the Mn source, for example, Mn 3 O 4 , MnCO 3 or the like is used. As the Ni source, for example, NiO, NiCO 3 or the like is used. As the Fe source, for example, Fe 2 O 3 or the like is used. As the Co source, for example, CoCO 3 is used.
本発明のサーミスタの製造方法において、サーミスタ粒子の平均粒径は、0.1μm以上、5μm以下であることが好ましく、0.4μm以上、2μm以下であることがより好ましい。
なお、サーミスタ粒子の平均粒径は、レーザー回折・散乱法により求めることができ、メディアン径(D50)として表される。なお、原料のサーミスタ粒子の平均粒径は、完成品であるサーミスタを構成するサーミスタ層中に存在するサーミスタ粒子の平均粒径と同じであるとみなして差し支えない。
In the method for producing a thermistor of the present invention, the average particle size of the thermistor particles is preferably 0.1 μm or more and 5 μm or less, more preferably 0.4 μm or more and 2 μm or less.
The average particle size of the thermistor particles can be determined by a laser diffraction / scattering method and is expressed as a median diameter (D 50 ). Note that the average particle size of the thermistor particles of the raw material may be considered to be the same as the average particle size of the thermistor particles present in the thermistor layer constituting the thermistor as a finished product.
本発明のサーミスタの製造方法においては、撥水剤を用いてサーミスタ粒子の表面を処理することにより、サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子を得る。
表面処理の方法は特に限定されず、例えば、溶剤に希釈された撥水剤液にサーミスタ粒子を浸す方法、撥水剤をサーミスタ粒子にスプレー塗布する方法、揮発させた撥水性材料雰囲気下にサーミスタ粒子を晒す方法などが挙げられる。
In the method for producing a thermistor of the present invention, the surface of the thermistor particles is treated with a water repellent to obtain coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film.
The surface treatment method is not particularly limited. For example, a method of immersing the thermistor particles in a water-repellent liquid diluted in a solvent, a method of spray-applying a water-repellent agent to the thermistor particles, a method of spraying a thermistor in a volatilized water-repellent material atmosphere A method of exposing the particles may, for example, be mentioned.
本発明のサーミスタの製造方法において、撥水剤としては、[サーミスタ]で説明したものを使用することができ、例えば、炭化水素系、フッ素系、シリコン系などの撥水剤、又は、これらの撥水剤の組み合わせが挙げられる。
好適に使用できる撥水剤は、ガラスに塗布した撥水剤の接触角(媒体:HO)を測定した際、接触角が65度以上(好ましくは70度以上)であるものである。
In the method for producing a thermistor according to the present invention, as the water repellent, those described in [Thermistor] can be used. For example, hydrocarbon-based, fluorine-based, silicon-based water-repellents, or the like. Combinations of water repellents are included.
A water repellent that can be suitably used has a contact angle of 65 degrees or more (preferably 70 degrees or more) when the contact angle (medium: H 2 O) of the water repellent applied to glass is measured.
サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子では、以下の測定条件でTG-DTA測定を行い、500℃で維持した際、1重量%以上重量が減少することが確認される。一方、表面が撥水膜で被覆されていないサーミスタ粒子では、0.5重量%程度しか重量が減少しない。
 温度範囲:25~500℃、重量減少が止まるまで500℃で保持
 昇温速度:20℃/min
 測定雰囲気:N
For the coated thermistor particles in which the surface of the thermistor particles is coated with a water-repellent film, TG-DTA measurement is performed under the following measurement conditions, and it is confirmed that the weight is reduced by 1% by weight or more when the temperature is maintained at 500 ° C. On the other hand, the weight of the thermistor particles whose surface is not covered with the water-repellent film is reduced by only about 0.5% by weight.
Temperature range: 25 to 500 ° C, maintained at 500 ° C until weight loss stops. Temperature rise rate: 20 ° C / min
Measurement atmosphere: N 2
このようにして得られた被覆サーミスタ粒子と、有機高分子成分とを混合することにより、被覆サーミスタ粒子と、有機高分子成分とを含むサーミスタ層ペーストを得る。サーミスタ層ペーストの粘度を調整するために、サーミスタ層ペーストに溶剤を添加してもよい。溶剤としては、例えば、エチレングリコール、セロソルブ、カルビトール、ブチルカルビトール、ブチルカルビトールアセテート、ジプロピレングリコールメチルエーテルアセテート等が用いられる。 By mixing the coated thermistor particles thus obtained and the organic polymer component, a thermistor layer paste containing the coated thermistor particles and the organic polymer component is obtained. In order to adjust the viscosity of the thermistor layer paste, a solvent may be added to the thermistor layer paste. As the solvent, for example, ethylene glycol, cellosolve, carbitol, butyl carbitol, butyl carbitol acetate, dipropylene glycol methyl ether acetate and the like are used.
続いて、絶縁性フィルム上に、上記サーミスタ層ペースト及び金属ペーストを所定のパターンに印刷して乾燥することにより、サーミスタ層及び一対の電極をそれぞれ形成する。
金属ペーストとしては、例えば、銀ペースト、銅ペーストなどを用いることができる。サーミスタ層ペースト及び金属ペーストは、スクリーン印刷などの手法を用いて印刷することができる。
Subsequently, the thermistor layer paste and the metal paste are printed in a predetermined pattern on the insulating film and dried to form a thermistor layer and a pair of electrodes, respectively.
As the metal paste, for example, a silver paste, a copper paste, or the like can be used. The thermistor layer paste and the metal paste can be printed using a technique such as screen printing.
本発明のサーミスタの製造方法においては、絶縁性フィルム上にサーミスタ層ペースト及び金属ペーストを印刷した後に、熱処理を行うことが好ましい。熱処理を行うことにより、サーミスタ層ペースト及び金属ペーストに含まれる溶剤等を除去することができる。ただし、サーミスタ層ペースト及び金属ペーストに含まれる溶剤は、印刷後のペーストを室温で放置して乾燥させることによっても除去することが可能である。 In the method for manufacturing a thermistor of the present invention, it is preferable to perform a heat treatment after printing the thermistor layer paste and the metal paste on the insulating film. By performing the heat treatment, the solvent and the like contained in the thermistor layer paste and the metal paste can be removed. However, the solvent contained in the thermistor layer paste and the metal paste can also be removed by leaving the printed paste at room temperature and drying it.
以上により、本発明のサーミスタが得られる。 Thus, the thermistor of the present invention is obtained.
以下、本発明のサーミスタをより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, examples showing the thermistor of the present invention more specifically will be described. Note that the present invention is not limited to only these examples.
[実施例1-1]
(サーミスタ粒子の準備)
Mn酸化物、Ni酸化物及びFe酸化物の混合物を焼成して得られたサーミスタ粒子と、直径2mmの玉石(部分安定化ジルコニア、PSZ)と、純水とを1Lポリ広口瓶に入れ、ポット架上で回転数110rpm、8時間回転させることにより、サーミスタ粒子の粉砕処理を行った。粉砕後、ホットプレート上に流し込んで水分を除去した。続いて、メッシュで篩通して、粗粒を除去した。その結果、平均粒径D50が約2μm、比表面積SSAが10.2m/gであるサーミスタ粒子を得た。
[Example 1-1]
(Preparation of thermistor particles)
A thermistor particle obtained by calcining a mixture of Mn oxide, Ni oxide and Fe oxide, a cobblestone having a diameter of 2 mm (partially stabilized zirconia, PSZ), and pure water are placed in a 1 L poly-jar, and the pot is placed. The thermistor particles were pulverized by rotating them at 110 rpm for 8 hours on a frame. After pulverization, it was poured on a hot plate to remove water. Subsequently, the particles were sieved with a mesh to remove coarse particles. As a result, thermistor particles having an average particle diameter D 50 of about 2 μm and a specific surface area SSA of 10.2 m 2 / g were obtained.
(サーミスタ粒子の表面処理)
得られたサーミスタ粒子の表面を、撥水剤としてシランカップリング剤を用いて処理することにより、サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子を得た。
(Surface treatment of thermistor particles)
The surface of the obtained thermistor particles was treated with a silane coupling agent as a water repellent to obtain coated thermistor particles in which the surfaces of the thermistor particles were coated with a water-repellent film.
(サーミスタ層ペーストの作製)
得られた被覆サーミスタ粒子と、有機高分子成分であるフェノール樹脂と、溶剤とを混合し、遠心攪拌機で撹拌することにより、サーミスタ層ペーストを得た。溶剤は、被覆サーミスタ粒子および有機高分子成分の合計重量の約25重量%の量を添加した。
(Preparation of thermistor layer paste)
The obtained coated thermistor particles, a phenol resin as an organic polymer component, and a solvent were mixed and stirred with a centrifugal stirrer to obtain a thermistor layer paste. The solvent was added in an amount of about 25% by weight based on the total weight of the coated thermistor particles and the organic polymer component.
(電極パターンの形成)
絶縁性フィルムとして、15cm角のPETシート(東レ製 ルミラー(登録商標)T60、厚み75μm)上に、42個の電極パターンを形成した。金属ペーストとして市販の銀ペースト(アサヒ化学研究所製 LS-453)をスクリーン印刷した後、オーブンで大気雰囲気下、150℃、30分間乾燥した。このようにして、膜厚10μm、ライン/スペース(L/S)=50μm/50μm、長辺2.5mm、短辺1.5mm内に複数の櫛歯状電極パターンを得た。
(Formation of electrode pattern)
As an insulating film, 42 electrode patterns were formed on a 15 cm square PET sheet (Lumirror (registered trademark) T60, manufactured by Toray Industries, Inc., thickness: 75 μm). A commercially available silver paste (LS-453, manufactured by Asahi Chemical Laboratory) was screen-printed as a metal paste, and then dried in an oven at 150 ° C. for 30 minutes in an air atmosphere. In this way, a plurality of comb-shaped electrode patterns were obtained with a film thickness of 10 μm, line / space (L / S) = 50 μm / 50 μm, a long side of 2.5 mm, and a short side of 1.5 mm.
(サーミスタ層の形成)
電極パターンにサーミスタ層が重なるように、サーミスタ層ペーストをスクリーン印刷した後、オーブンで150℃、24時間乾燥することにより、膜厚20μm、空隙率7%のサーミスタ層を形成した。以上により、サーミスタを作製した。
(Formation of thermistor layer)
Thermistor layer paste was screen-printed so that the thermistor layer overlapped the electrode pattern, and then dried in an oven at 150 ° C. for 24 hours to form a thermistor layer having a thickness of 20 μm and a porosity of 7%. Thus, a thermistor was manufactured.
サーミスタ層の空隙率は、以下の方法により計算した。
イオンミリングで断面研磨したサンプルの断面を、SEMを用いて5000倍の倍率で観察し、画像解析ソフトを用いて明暗を二値化処理することにより、サーミスタ層の空隙率を計算した。
The porosity of the thermistor layer was calculated by the following method.
The porosity of the thermistor layer was calculated by observing the cross section of the sample polished by ion milling at 5000 times magnification using SEM and binarizing light and dark using image analysis software.
[実施例1-2及び実施例1-3]
サーミスタ粒子に対する撥水剤の仕込み量を変更して表面処理を実施したことを除いて、実施例1-1と同様の方法によりサーミスタを作製した。
[Example 1-2 and Example 1-3]
A thermistor was produced in the same manner as in Example 1-1, except that the surface treatment was performed while changing the charged amount of the water repellent to the thermistor particles.
[比較例1-1]
撥水剤を用いた表面処理を実施しなかったことを除いて、実施例1-1と同様の方法によりサーミスタを作製した。
[Comparative Example 1-1]
A thermistor was manufactured in the same manner as in Example 1-1, except that the surface treatment using the water repellent was not performed.
(撥水膜の厚みの測定)
各サーミスタについて、透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)でサーミスタ粒子の断面を観察し、撥水膜の厚みを測定した。結果を表1に示す。なお、撥水膜の厚みは、サーミスタ粒子に含有されているFe元素、及び、シランカップリング剤に含有されているSi元素の合成マッピングより算出した。
(Measurement of thickness of water-repellent film)
For each thermistor, the cross section of the thermistor particles was observed with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope, and the thickness of the water-repellent film was measured. Table 1 shows the results. The thickness of the water-repellent film was calculated from synthetic mapping of the Fe element contained in the thermistor particles and the Si element contained in the silane coupling agent.
図5は、Fe元素とSi元素の合成マッピングの一例である。
図5に示すように、Si元素が集中している領域を撥水膜として、その厚みを測定する。図5では、撥水膜の厚みを2nmとした。
FIG. 5 is an example of the synthetic mapping of the Fe element and the Si element.
As shown in FIG. 5, a region where Si elements are concentrated is used as a water-repellent film, and its thickness is measured. In FIG. 5, the thickness of the water-repellent film is 2 nm.
(抵抗値の測定)
各サーミスタについて、予め、ドライルームで抵抗値測定用にサンプルを切り出し、乾燥剤入りの密閉容器(湿度:0%)に1日程度保管した。
乾燥剤入りの密閉容器からサンプルを取り出した後、直ちに気相抵抗測定機にセットし、抵抗値を測定した。サンプルを測定治具に取り付けてから1時間放置後に再度抵抗値を測定し、その差から抵抗ドリフトを計算した。サンプルを測定治具に取り付けた直後に測定した初期抵抗値、及び、抵抗ドリフトを表1に示す。
(Measurement of resistance value)
For each thermistor, a sample was cut out in advance in a dry room for resistance measurement and stored in a closed container (humidity: 0%) containing a desiccant for about one day.
Immediately after taking out the sample from the closed container containing the desiccant, the sample was set in a gas phase resistance measuring instrument and the resistance value was measured. After the sample was attached to the measuring jig and left for 1 hour, the resistance value was measured again, and the resistance drift was calculated from the difference. Table 1 shows the initial resistance value and the resistance drift measured immediately after the sample was attached to the measuring jig.
なお、各サーミスタの表面及び断面をSEMで観察したところ、割れや剥離は確認されなかった。また、テスターを用いて各サーミスタの抵抗値(25℃)を測定したところ、1MΩ以下となり、B定数(25℃/50℃)が3000K以上であるサーミスタができていることが確認された。 In addition, when the surface and the cross section of each thermistor were observed by SEM, no cracking or peeling was observed. Further, when the resistance value (25 ° C.) of each thermistor was measured using a tester, it was confirmed that a thermistor having a B constant (25 ° C./50° C.) of 3000 K or more was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1より、サーミスタ粒子の表面が撥水膜で被覆されていない比較例1-1では抵抗ドリフトが1.0%/hであるのに対し、サーミスタ粒子の表面が撥水膜で被覆されている実施例1-1、実施例1-2及び実施例1-3では抵抗ドリフトが0.1%/h以下である。実施例1-1、実施例1-2及び実施例1-3の比較から、撥水膜が厚くなるほど、抵抗ドリフトが抑制される傾向にあると考えられる。 According to Table 1, the resistance drift was 1.0% / h in Comparative Example 1-1 in which the surface of the thermistor particle was not covered with the water-repellent film, whereas the surface of the thermistor particle was covered with the water-repellent film. In Examples 1-1, 1-2, and 1-3, the resistance drift is 0.1% / h or less. From comparison between Example 1-1, Example 1-2 and Example 1-3, it is considered that the thicker the water-repellent film, the more the resistance drift tends to be suppressed.
[実施例2-1]
シランカップリング剤に代えて、ステアリン酸を撥水剤として使用したことを除いて、実施例1-2と同様の方法によりサーミスタを作製した。
[Example 2-1]
A thermistor was produced in the same manner as in Example 1-2, except that stearic acid was used as a water repellent instead of the silane coupling agent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2より、撥水剤としてステアリン酸を使用した実施例2-1においても、抵抗ドリフトが0.1%/h以下である。
なお、実施例2-1のサーミスタ層をTG-DTA測定すると、ステアリン酸がコートされているサーミスタ粒子を用いるため、300℃付近で重量減少が開始される。サーミスタ層に別の樹脂が入っていた場合には、別のピークが現れるため、ステアリン酸を検出することができる。
As can be seen from Table 2, in Example 2-1 using stearic acid as a water repellent, the resistance drift was 0.1% / h or less.
When the thermistor layer of Example 2-1 is subjected to TG-DTA measurement, weight loss starts around 300 ° C. because thermistor particles coated with stearic acid are used. If another resin is contained in the thermistor layer, another peak appears, so that stearic acid can be detected.
[実施例3-1~実施例3-6]
サーミスタ層を形成する際のスクリーン印刷において、メッシュサイズ等を変更し、空隙率の異なるサーミスタ層を形成したことを除いて、実施例1-1と同様の方法によりサーミスタを作製した。ただし、撥水膜の厚みは2nmとした。サーミスタ層の厚みは95μmとした。
[Example 3-1 to Example 3-6]
In screen printing for forming the thermistor layer, a thermistor was manufactured in the same manner as in Example 1-1, except that the mesh size and the like were changed and thermistor layers having different porosity were formed. However, the thickness of the water-repellent film was 2 nm. The thickness of the thermistor layer was 95 μm.
[比較例3-1~比較例3-6]
サーミスタ粒子の表面処理を実施する代わりに、サーミスタ層を形成した後、サーミスタ層の表面に撥水膜を形成したことを除いて、実施例3-1~実施例3-6と同様の方法によりサーミスタを作製した。なお、比較例3-1~比較例3-6では、実施例3-1~実施例3-6と抵抗ドリフトを同程度にするために、撥水膜の厚みを4mmより大きくする必要があった。
[Comparative Example 3-1 to Comparative Example 3-6]
Instead of carrying out the surface treatment of the thermistor particles, a method similar to that of Examples 3-1 to 3-6 is used except that a thermistor layer is formed and then a water-repellent film is formed on the surface of the thermistor layer. A thermistor was manufactured. In Comparative Examples 3-1 to 3-6, it is necessary to make the thickness of the water-repellent film larger than 4 mm in order to make the resistance drift approximately the same as in Examples 3-1 to 3-6. Was.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表3中、「薄型化」においては、絶縁性フィルムを除いたサーミスタの厚みが100μm以下である場合を○(良)、100μmを超える場合を×(不良)として評価した。 In Table 3, “thinning” was evaluated as ○ (good) when the thickness of the thermistor excluding the insulating film was 100 μm or less, and as x (defective) when the thickness exceeded 100 μm.
比較例3-1~比較例3-6のうち、サーミスタ層の空隙率が5%である比較例3-1では抵抗ドリフトが0.1%/hであるが、比較例3-2~比較例3-6のようにサーミスタ層の空隙率が10%以上であると、サーミスタ層に撥水膜が追従できず、抵抗ドリフトが大きくなると考えられる。また、比較例3-1~比較例3-6では、実施例3-1~実施例3-6と抵抗ドリフトを同程度にするために撥水膜を厚くする必要があるため、サーミスタ全体を薄型化することが困難である。 Among Comparative Examples 3-1 to 3-6, in Comparative Example 3-1 in which the porosity of the thermistor layer is 5%, the resistance drift is 0.1% / h. When the porosity of the thermistor layer is 10% or more as in Example 3-6, it is considered that the water-repellent film cannot follow the thermistor layer and the resistance drift increases. Further, in Comparative Examples 3-1 to 3-6, since it is necessary to make the water-repellent film thick in order to make the resistance drift the same as in Examples 3-1 to 3-6, the entire thermistor is used. It is difficult to reduce the thickness.
一方、実施例3-1~実施例3-6においては、サーミスタ層の空隙率が5%である実施例3-1だけでなく、実施例3-2~実施例3-6のようにサーミスタ層の空隙率が10%以上であっても抵抗ドリフトを抑制することができる。また、実施例3-1~実施例3-6では、サーミスタ層の厚みが20μmであり、サーミスタ層の表面に撥水膜を形成しないため、サーミスタ全体を薄型化することができる。 On the other hand, in Examples 3-1 to 3-6, not only Example 3-1 in which the porosity of the thermistor layer is 5% but also thermistors as in Examples 3-2 to 3-6. Even if the porosity of the layer is 10% or more, the resistance drift can be suppressed. In Examples 3-1 to 3-6, the thickness of the thermistor layer is 20 μm and no water-repellent film is formed on the surface of the thermistor layer, so that the entire thermistor can be reduced in thickness.
本発明は、上記に記載の実施例の構成に限定されるものではない。
例えば、実施例1-1~実施例1-3において、サーミスタ層の有機高分子成分としてフェノール樹脂に代えてシリコーン樹脂を配合した場合であっても、実施例1-1~実施例1-3と同様の抵抗ドリフト抑制効果が得られることを確認した。
The present invention is not limited to the configuration of the embodiment described above.
For example, even if a silicone resin is used instead of a phenol resin as the organic polymer component of the thermistor layer in the examples 1-1 to 1-3, the examples 1-1 to 1-3 may be used. It was confirmed that the same effect of suppressing the resistance drift as described above was obtained.
1,2,100 サーミスタ
10 絶縁性フィルム
20 サーミスタ層
21 サーミスタ粒子
21A 被覆サーミスタ粒子
22 撥水膜
23 有機高分子成分
31,32 電極
20 サーミスタ層の厚み
22 撥水膜の厚み
1,2,100 thermistor 10 insulating film 20 thermistor layer 21 thermistor particles 21A coated thermistor particles 22 water-repellent film 23 organic polymer component 31,32 electrodes T 20 thicknesses of T 22 water-repellent film of the thermistor layer

Claims (5)

  1. 絶縁性フィルムと、
    前記絶縁性フィルム上に設けられたサーミスタ層と、
    前記サーミスタ層の主面に設けられた一対の電極と、を備えるサーミスタであって、
    前記サーミスタ層は、サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子と、有機高分子成分と、を含む、サーミスタ。
    An insulating film;
    A thermistor layer provided on the insulating film,
    A pair of electrodes provided on the main surface of the thermistor layer,
    The thermistor, wherein the thermistor layer includes coated thermistor particles in which the surfaces of the thermistor particles are coated with a water-repellent film, and an organic polymer component.
  2. 前記撥水膜の厚みが、1nm以上、10nm以下である、請求項1に記載のサーミスタ。 The thermistor according to claim 1, wherein the thickness of the water-repellent film is 1 nm or more and 10 nm or less.
  3. 前記サーミスタ層の空隙率が、10%以上、45%以下である、請求項1又は2に記載のサーミスタ。 The thermistor according to claim 1 or 2, wherein the porosity of the thermistor layer is 10% or more and 45% or less.
  4. 前記サーミスタ層の厚みが、100μm以下である、請求項1~3のいずれか1項に記載のサーミスタ。 The thermistor according to claim 1, wherein the thickness of the thermistor layer is 100 μm or less.
  5. 撥水剤を用いてサーミスタ粒子の表面を処理することにより、前記サーミスタ粒子の表面が撥水膜で被覆された被覆サーミスタ粒子を得る工程と、
    前記被覆サーミスタ粒子と、有機高分子成分とを含むサーミスタ層ペーストを得る工程と、
    絶縁性フィルム上に、前記サーミスタ層ペースト及び金属ペーストを印刷して乾燥することにより、サーミスタ層及び一対の電極をそれぞれ形成する工程と、を備える、サーミスタの製造方法。
    Treating the surface of the thermistor particles with a water repellent to obtain coated thermistor particles in which the thermistor particles are coated with a water repellent film;
    A step of obtaining a thermistor layer paste containing the coated thermistor particles and an organic polymer component;
    Forming a thermistor layer and a pair of electrodes by printing and drying the thermistor layer paste and the metal paste on an insulating film, respectively.
PCT/JP2019/029615 2018-08-10 2019-07-29 Thermistor and method for producing thermistor WO2020031768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536477A JP6996634B2 (en) 2018-08-10 2019-07-29 Thermistor and method of manufacturing thermistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151625 2018-08-10
JP2018-151625 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031768A1 true WO2020031768A1 (en) 2020-02-13

Family

ID=69415245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029615 WO2020031768A1 (en) 2018-08-10 2019-07-29 Thermistor and method for producing thermistor

Country Status (2)

Country Link
JP (1) JP6996634B2 (en)
WO (1) WO2020031768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281868A1 (en) * 2021-07-09 2023-01-12 株式会社村田製作所 Joint structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431597A (en) * 1977-08-15 1979-03-08 Matsushita Electric Ind Co Ltd Manufacturing method of humidity senser
JPH0590010A (en) * 1991-09-30 1993-04-09 Matsushita Electric Ind Co Ltd Thick-film thermistor
JP2016145756A (en) * 2015-02-09 2016-08-12 三菱マテリアル株式会社 Temperature sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138901B2 (en) 2004-03-30 2006-11-21 General Electric Company Temperature measuring device and system and method incorporating the same
JP5090010B2 (en) 2007-02-08 2012-12-05 ローム株式会社 Encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431597A (en) * 1977-08-15 1979-03-08 Matsushita Electric Ind Co Ltd Manufacturing method of humidity senser
JPH0590010A (en) * 1991-09-30 1993-04-09 Matsushita Electric Ind Co Ltd Thick-film thermistor
JP2016145756A (en) * 2015-02-09 2016-08-12 三菱マテリアル株式会社 Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281868A1 (en) * 2021-07-09 2023-01-12 株式会社村田製作所 Joint structure

Also Published As

Publication number Publication date
JPWO2020031768A1 (en) 2021-03-11
JP6996634B2 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
Yu et al. Interface control of bulk ferroelectric polarization
US10983012B2 (en) Temperature sensor
CN103370754B (en) Laminated semiconductor ceramic capacitor with rheostat function and manufacture method thereof
WO2012035938A1 (en) Semiconductor ceramic element and method for producing same
Kim et al. Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates
WO2020031768A1 (en) Thermistor and method for producing thermistor
Dash et al. Ferroelectric ceramic dispersion to enhance the β phase of polymer for improving dielectric and ferroelectric properties of the composites
JPWO2018138993A1 (en) Temperature sensor
Stöcker et al. Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2
Ali The influence of yttrium-ions on the optical and electrical behavior of PVA polymeric films
Swain et al. Large magnetoelectric coupling in 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 film on Ni foil
Borkar et al. Novel optically active lead-free relaxor ferroelectric (Ba0. 6Bi0. 2Li0. 2) TiO3
Thenmozhi et al. Electronic structure and chemical bonding in La1− xSrxMnO3 perovskite ceramics
Li et al. Property Regulation Principle in Mn‐Doped BF–BT Ceramics: Competitive Control of Domain Switching By Defect Dipoles and Domain Configuration
Newacheck et al. On the magnetoelectric performance of multiferroic particulate composite materials
JPWO2017200000A1 (en) Solid-junction photoelectric conversion element and manufacturing method thereof
Kathiresan et al. Effect of Sr and La co-doping on structural and electrical properties of RF sputtered PZT thin films
Yamada et al. Coherent epitaxy of a ferroelectric heterostructure on a trilayered buffer for integration into silicon
TW200832466A (en) Method for fabricating multilayer ceramic electronic component and multilayer ceramic electronic component
Sakai et al. Effects of NiO addition on (K, Na, Li) NbO3–BaZrO3–(Bi, Na) TiO3-based ceramics
Pradhan et al. Nonstoichiometric charge defect induced relaxor antiferroelectric ordering in La modified Bi0. 5 (Na0. 80K0. 20) 0.5 TiO3 relaxor ferroelectric
Ngo et al. Study of digital and analog resistive switching memories based on methylammonium lead iodide (MAPbI3) perovskite by experiments and DFT calculations
Gholipur et al. Flexible MWCNT/PVA/Mn Ferrite/AC Metacomposites with Tunable Negative Permittivity for Low-Frequency Reflectors and Optical Sensors
Sakai et al. Scission of 2D Inorganic Nanosheets via Physical Adsorption on a Nonflat Surface
Kumar et al. Low leakage current, enhanced energy storage, and fatigue endurance in room-temperature deposited (Pb0. 93La0. 07)(Zr0. 82Ti0. 18) O3 thick films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847763

Country of ref document: EP

Kind code of ref document: A1