WO2023281602A1 - Thermoplastic resin composition, molded article and product - Google Patents

Thermoplastic resin composition, molded article and product Download PDF

Info

Publication number
WO2023281602A1
WO2023281602A1 PCT/JP2021/025355 JP2021025355W WO2023281602A1 WO 2023281602 A1 WO2023281602 A1 WO 2023281602A1 JP 2021025355 W JP2021025355 W JP 2021025355W WO 2023281602 A1 WO2023281602 A1 WO 2023281602A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
group
thermoplastic resin
mass
Prior art date
Application number
PCT/JP2021/025355
Other languages
French (fr)
Japanese (ja)
Inventor
怜司 森岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/025355 priority Critical patent/WO2023281602A1/en
Priority to JP2023532900A priority patent/JPWO2023281602A1/ja
Publication of WO2023281602A1 publication Critical patent/WO2023281602A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present disclosure relates to thermoplastic resin compositions, molded articles and products.
  • Thermoplastic resins are lighter than metals and easier to process. used below.
  • Patent Document 1 JP-A-2011-256293 discloses a fatty acid amide compound of aminoethylethanolamine.
  • Patent Document 2 JP-A-58-118838 and Patent Document 3 (JP-A-3-290464) disclose polyetheresteramides.
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-278985
  • Patent Document 5 International Publication No. 2014/115745
  • Patent Document 6 International Publication No. 2014/148454 disclose an olefin block and a hydrophilic polymer block
  • Patent Documents 5 and 6 disclose a polyether ester polymer type antistatic agent.
  • Patent Document 1 discloses the combined use of an alkali metal compound, an alkaline earth metal compound (for example, calcium stearate), etc. in order to improve the antistatic effect of the fatty acid amide compound of aminoethylethanolamine.
  • an alkali metal compound such as lithium chloride, potassium acetate, and sodium dodecylbenzenesulfonate is used in combination.
  • Patent Documents 5 and 6 disclose the blending of an alkali metal compound such as potassium acetate or sodium dodecylbenzenesulfonate with a polyether ester polymer type antistatic agent.
  • Patent Document 7 International Publication No. 2021/006192 discloses a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
  • JP 2011-256293 A JP-A-58-118838 JP-A-3-290464 Japanese Unexamined Patent Application Publication No. 2001-278985 WO2014/115745 WO2014/148454 WO2021/006192
  • B1 (olefin skeleton. Melting point: about 130 to 140 ° C.) and B2 (polyamide skeleton. Melting point: about 130 to 140 ° C.) specifically disclosed as a hydrophilic copolymer (B) having a polyoxyethylene chain : about 195-200°C) is not suitable for low-temperature processes because of its high melting point.
  • processing may become difficult, or the time required for processing, kneading, etc. may become longer.
  • it may cause decomposition of other materials.
  • an object of the present disclosure is to use a material with a lower melting point than conventional materials to provide a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
  • thermoplastic resin composition of the present disclosure is Aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6), olefin resin (A7 ), a polyamide resin (A8), and a thermoplastic resin (A) selected from the group consisting of mixtures thereof; a hydrophilic copolymer (B) having an oxyethylene group; and a fatty acid metal salt (C) represented by the following formula (1).
  • R is an alkyl group or alkenyl group having 6 to 40 carbon atoms.
  • the hydrophilic copolymer (B) is a polyhydric alcohol compound (b1 ), an epoxy compound (b2) having two or more epoxy groups, and at least one selected from the group consisting of a polycarboxylic acid compound (b3) via an ester bond.
  • thermoplastic resin (A) by blending the hydrophilic copolymer (B) and the fatty acid metal salt (C) with the thermoplastic resin (A), hydrophilicity to the molded article containing the thermoplastic resin composition Adhesion of both dust stains and hydrophobic dust stains can be suppressed. Therefore, by using a material having a lower melting point than conventional materials, it is possible to provide a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
  • FIG. 5 is a schematic cross-sectional view showing an example of a molded product according to Embodiment 2; 6 is a schematic graph showing composition distribution in the depth direction for an example of a molded article according to Embodiment 2.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment.
  • FIG. 10 is a schematic cross-sectional view showing an example of an air conditioner according to Embodiment 3; BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment.
  • thermoplastic resin composition of the present embodiment is Aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6), olefin resin (A7 ), a polyamide resin (A8), and a thermoplastic resin (A) selected from the group consisting of mixtures thereof; a hydrophilic copolymer (B) having an oxyethylene group; and a fatty acid metal salt (C).
  • thermoplastic resin composition of the present embodiment exhibits a remarkable antifouling effect that adhesion of both hydrophilic dust stains and hydrophobic dust stains is suppressed.
  • This effect is exhibited by a thermoplastic resin composition containing all of the above components (A) to (C), and only component (A), only component (B), only component (C), and and (B) alone, components (A) and (C) alone, or components (B) and (C) alone, it is difficult to obtain such a remarkable antifouling effect.
  • hydrophilic copolymer (B) a plurality of alternating copolymers (a) of the polyester (a1), the hydrophilic polymer (a2) having an oxyethylene group, and (a) are repeatedly and alternately bonded, An ester bond with at least one selected from the group consisting of a polyhydric alcohol compound (b1) having 3 or more hydroxyl groups, an epoxy compound (b2) having 2 or more epoxy groups, and a polycarboxylic acid compound (b3).
  • a hydrophilic copolymer formed by binding via is used.
  • hydrophilic copolymer (B) a material with a lower melting point than conventionally used as the hydrophilic copolymer (B) can be used to suppress a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are difficult to adhere.
  • thermoplastic resin composition of the present embodiment can also have better mechanical strength such as impact resistance.
  • the thermoplastic resin (A) includes aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin ( A6), olefinic resins (A7), polyamide resins (A8), and mixtures thereof.
  • aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6) , the olefin resin (A7), and the polyamide resin (A8) are not particularly limited, but for example, the aromatic polycarbonate resin (A1) and Styrene resin (A2), aromatic polycarbonate resin (A1) and aromatic polyester resin (A3), aromatic polycarbonate resin (A1) and olefin resin (A7), aromatic polycarbonate resin (A1) and methacrylic resin (A5 ), styrene resin (A2) and aromatic polyester resin (A3), styrene resin (A2) and methacrylic resin (A5), styrene resin (A2) and olefin resin (A7), styrene resin (A2) and polyamide resin (A8), polyphenylene ether resin
  • the melting point of the thermoplastic resin (A) is, for example, 150-270°C, preferably 160-230°C.
  • the aromatic polycarbonate resin (A1) is usually obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method, or by polymerizing a carbonate prepolymer by a solid phase transesterification method. or obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
  • the dihydroxy component used here may be one that is usually used as a dihydroxy component for aromatic polycarbonates, and may be bisphenols or aliphatic diols.
  • bisphenols include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1- Phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)-3,3,5 -trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3′-biphenyl)propane, 2,2-bis(4-hydroxy-3-isopropylphenyl)propane, 2,2-bis(3-t- Butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 2,2-bis(3-bromo-4-hydroxyphenyl) Propane, 2,2-bis(3,5-di
  • aliphatic diols examples include 2,2-bis-(4-hydroxycyclohexyl)-propane, 1,1,4-tetradecanediol, octaethylene glycol, 1,1,6-hexadecanediol, 4,4'- Bis(2-hydroxyethoxy)biphenyl, bis ⁇ (2-hydroxyethoxy)phenyl ⁇ methane, 1,1-bis ⁇ (2-hydroxyethoxy)phenyl ⁇ ethane, 1,1-bis ⁇ (2-hydroxyethoxy)phenyl ⁇ -1-phenylethane, 2,2-bis ⁇ (2-hydroxyethoxy)phenyl ⁇ propane, 2,2-bis ⁇ (2-hydroxyethoxy)-3-methylphenyl ⁇ propane, 1,1-bis ⁇ ( 2-hydroxyethoxy)phenyl ⁇ -3,3,5-trimethylcyclohexane, 2,2-bis ⁇ 4-(2-hydroxyethoxy)-3,3′-biphenyl ⁇ propane, 2,2-bis ⁇ (2-hydroxy
  • aromatic bisphenols are preferred, and among them 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4 -hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-sulfonyl Diphenol, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis ⁇ 2-(4-hydroxyphenyl) Propyl ⁇ benzene and 1,4-bis ⁇ 2-(4-hydroxyphenyl)propyl ⁇ benzene are preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl ) cyclohexane, 4,4′-
  • the aromatic polycarbonate resin (A1) may be a branched polycarbonate resin obtained by using a branching agent in combination with the above dihydroxy compound.
  • trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4- ⁇ 4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene ⁇ - ⁇ , ⁇ -dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, 4-bis
  • 1,1,1-tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris (4-Hydroxyphenyl)ethane is preferred.
  • aromatic polycarbonate resins are produced by reaction means known per se for producing ordinary aromatic polycarbonate resins, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester. Basic means of the manufacturing method will be briefly described.
  • the reaction is usually carried out in the presence of an acid binder and a solvent.
  • acid binders include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and amine compounds such as pyridine.
  • Halogenated hydrocarbons such as methylene chloride and chlorobenzene are used as the solvent.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt may also be used to accelerate the reaction.
  • the reaction temperature is usually 0 to 40° C., and the reaction time is several minutes to 5 hours.
  • the transesterification reaction using a carbonic acid diester as a carbonate precursor is carried out by stirring the aromatic dihydroxy component with the carbonic acid diester while heating in an inert gas atmosphere, and distilling off the alcohol or phenol that is produced.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol to be produced, it is usually in the range of 120 to 300°C.
  • the reaction is completed under reduced pressure from the initial stage while the alcohol or phenols produced are distilled off.
  • a catalyst commonly used for transesterification can be used to accelerate the reaction.
  • Examples of carbonic acid diesters used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Among these, diphenyl carbonate is particularly preferred.
  • a terminal terminator can be used in the polymerization reaction.
  • a terminal terminator is used for molecular weight control, and the obtained aromatic polycarbonate resin is end-capped, so that it has excellent thermal stability as compared to other resins.
  • Monofunctional phenols represented by the following formulas (2) to (4) can be shown as such a terminal terminator.
  • A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the alkyl moiety has 1 to 9 carbon atoms), a phenyl group, or a phenylalkyl group (the alkyl moiety has 1 to 9) and r is an integer of 1 to 5 (preferably 1 to 3)].
  • X is -R-O-, -R-CO-O- or -R-O-CO-, where R is a single bond or (preferably 1-5) represents a divalent aliphatic hydrocarbon group, n represents an integer of 10-50.
  • monofunctional phenols represented by the formula (2) include phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenylphenol. , isooctylphenol and the like.
  • the monofunctional phenols represented by the above formulas (3) to (4) are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent. When these are used to block the ends of the aromatic polycarbonate resin, they not only function as a terminal terminating agent or a molecular weight modifier, but also improve the melt flowability of the resin and facilitate molding. These phenols are preferably used because they have the effect of lowering the water absorption rate of .
  • substituted phenols of the above formula (3) those having n of 10 to 30, particularly 10 to 26 are preferred, and specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol and octadecylphenol. , eicosylphenol, docosylphenol, triacontylphenol and the like.
  • substituted phenols of the above formula (4) compounds in which X is -R-CO-O- and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26. is preferred. Specific examples include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate.
  • monofunctional phenols represented by the above formula (2) are preferred, and alkyl-substituted or phenylalkyl-substituted phenols are more preferred, such as p-tert-butylphenol and p-cumylphenol. or 2-phenylphenol is particularly preferred.
  • These monofunctional phenolic terminal terminating agents are desirably introduced into at least 5 mol %, preferably at least 10 mol % of all terminals of the obtained aromatic polycarbonate resin. may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin (A1) may be a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid, such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, or a derivative thereof, within the scope of the present disclosure.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A1) is not limited. However, if the viscosity-average molecular weight is less than 10,000, the strength, etc. will be reduced, and if it exceeds 50,000, the moldability will be reduced. A range of 15,000 to 28,000 is more preferred.
  • the viscosity average molecular weight referred to in the present disclosure is obtained by first using an Ostwald viscometer from a solution in which 0.7 g of an aromatic polycarbonate resin is dissolved in 100 mL of methylene chloride at 20 ° C. to obtain the specific viscosity calculated by the following formula. The obtained specific viscosity is inserted into the following equation to obtain the viscosity average molecular weight Mv.
  • the aromatic polycarbonate resin (A1) preferably has a total chlorine content of 0 to 200 ppm, more preferably 0 to 150 ppm. If the total chlorine content in the aromatic polycarbonate resin exceeds 200 ppm, the hue and heat stability will deteriorate, which is not preferred.
  • Styrene resin (A2) Main components of the styrene-based resin (A2) of the present embodiment include, for example, polystyrene resin (PS), high-impact polystyrene resin (HIPS), alkyl (meth)acrylate monomer and aromatic vinyl monomer.
  • PS polystyrene resin
  • HIPS high-impact polystyrene resin
  • alkyl (meth)acrylate monomer aromatic vinyl monomer
  • MS a copolymer of a vinyl cyanide compound and an aromatic vinyl compound
  • AS a copolymer of a vinyl cyanide compound containing a diene rubber component and an aromatic vinyl compound
  • ABS aromatic vinyl compound
  • AES ethylene- ⁇ -olefin rubber component
  • ASA acrylic rubber component
  • MVS A copolymer of an alkyl (meth)acrylate monomer containing a diene rubber component and an aromatic vinyl compound, an alkyl (meth)acrylate monomer containing a diene rubber component, a vinyl cyanide compound, and an aromatic
  • MABS a copolymer of an alkyl (meth)acrylate monomer containing an acrylic rubber component and an aromatic vinyl compound (MAS), and the like
  • the main component is the component with the largest mass, and the content of the main component in the styrene resin (A2) is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the styrene-based resin (A2) may be a resin having high stereoregularity such as syndiotactic polystyrene obtained by using a catalyst such as a metallocene catalyst during its production.
  • the styrene-based resin (A2) is a polymer, copolymer, or block copolymer with a narrow molecular weight distribution obtained by a method such as anionic living polymerization or radical living polymerization, and a polymer with high stereoregularity. and copolymers.
  • a polystyrene resin is a polymer obtained by polymerizing at least one aromatic vinyl compound by a polymerization method such as solution polymerization, bulk polymerization, suspension polymerization, or bulk-suspension polymerization.
  • Preferred aromatic vinyl compounds include, for example, styrene, alkylstyrenes such as ⁇ -methylstyrene, methylstyrene, ethylstyrene, isopropylstyrene, tert-butylstyrene, phenylstyrene, vinylstyrene, chlorostyrene, bromostyrene, fluorostyrene, chloromethylstyrene, methoxystyrene, ethoxystyrene and the like.
  • aromatic vinyl compounds among these are styrene, p-methylstyrene, m-methylstyrene, p-tert-butylstyrene, p-chlorostyrene, m-chlorostyrene and p-fluorostyrene, especially styrene. preferable.
  • the molecular weight of the polystyrene resin (PS) is not particularly limited, but the weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography) at 135° C. using trichlorobenzene as a solvent is preferably 100, 000 or more, more preferably 150,000 or more.
  • the width of the molecular weight distribution is not limited.
  • a high-impact polystyrene resin is a polymer in which a rubber-like polymer made of butadiene rubber or the like is dispersed in the form of particles in a matrix made of an aromatic vinyl polymer such as PS.
  • HIPS can be obtained, for example, by dissolving a rubber-like polymer in a mixture of an aromatic vinyl monomer and an inert solvent, stirring the mixture, and performing bulk polymerization, suspension polymerization, solution polymerization, or the like.
  • HIPS is, for example, a mixture obtained by mixing a polymer obtained by dissolving a rubber-like polymer in a mixture of an aromatic vinyl monomer and an inert solvent, and an aromatic vinyl polymer obtained separately. There may be.
  • the matrix portion composed of the aromatic vinyl polymer is not particularly limited, but using trichlorobenzene as a solvent at 135° C.
  • the mass average molecular weight in terms of polystyrene as measured by GPC (gel permeation chromatography) is It is preferably 100,000 or more, more preferably 150,000 or more.
  • the average particle size of the rubber-like polymer is not particularly limited, but generally 0.4 to 6.0 ⁇ m is appropriate.
  • styrene and its derivatives eg, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, etc.
  • styrene is the most preferred. preferred. Two or more of these monomers may be used in combination.
  • Polybutadiene, polyisoprene, styrene-butadiene copolymer, and the like can be used as the above rubber-like polymer.
  • examples of polybutadiene include high-cis polybutadiene having a high cis-bond content and low-cis polybutadiene having a low cis-bond content.
  • polybutadiene containing 70% by mass or more of high-cis polybutadiene rubber having 90 mol% or more of cis-1,4 bonds in 100% by mass of the rubber-like polymer is preferably used.
  • a rubber-modified styrene resin obtained by using high-cis polybutadiene rubber alone a rubber-modified styrene resin obtained by using a mixture of high-cis polybutadiene rubber and low-cis polybutadiene rubber, or high-cis polybutadiene rubber.
  • 100 mass of the rubber-like polymer present in the rubber-modified styrenic resin in both the rubber-modified styrenic resin obtained using %, the high-cis polybutadiene rubber is preferably contained in an amount of 70% by mass or more.
  • the high-cis polybutadiene rubber means, for example, a polybutadiene rubber containing 90 mol % or more of cis-1,4 bonds.
  • Low-cis polybutadiene rubber means, for example, polybutadiene rubber having a 1,4-cis bond content of 10 to 40 mol %.
  • the alkyl (meth)acrylate monomer is selected from, for example, methyl (meth)acrylate and phenyl (meth)acrylate is at least one monomer that is In particular, it is preferable to use methyl (meth)acrylate.
  • the notation of "(meth)acrylate” means including both methacrylate and acrylate.
  • aromatic vinyl monomers examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, and the like. can be used, and styrene is particularly preferred. These can be used alone or in combination of two or more.
  • the mass average molecular weight of MS and the composition ratio of methyl (meth) acrylate/styrene are not particularly limited, but the mass average molecular weight is preferably 80,000 to 300,000, more preferably 100,000 to 200,000, and methyl (meth) acrylate. /styrene composition ratio is preferably 80/20 to 40/60, more preferably 70/30 to 50/50.
  • copolymer (AS) of a vinyl cyanide compound and an aromatic vinyl compound acrylonitrile can be preferably used as the vinyl cyanide compound.
  • Styrene and ⁇ -methylstyrene are preferably used as the aromatic vinyl compound.
  • the ratio of the vinyl cyanide compound is preferably 5 to 50% by mass, more preferably 15 to 35% by mass, and the aromatic vinyl compound is preferably 95 to 50 mass %, more preferably 85 to 65 mass %.
  • these vinyl compounds may be mixed with other copolymerizable vinyl compounds.
  • the content of other vinyl compounds is preferably 15% by mass or less in AS.
  • the AS may be produced by any method such as bulk polymerization, suspension polymerization, or emulsion polymerization, but is preferably produced by bulk polymerization. Further, the method of copolymerization may be either one-step copolymerization or multi-step copolymerization.
  • the reduced viscosity of AS is preferably 0.2-1.0 dL/g (20-100 mL/g), more preferably 0.3-0.5 dL/g (30-50 mL/g). If the reduced viscosity is less than 0.2 dL/g (20 mL/g), the impact will be reduced, and if it exceeds 1.0 dL/g (100 mL/g), the workability will be poor.
  • the reduced viscosity was obtained by precisely weighing 0.25 g of a copolymer (AS) obtained by copolymerizing a vinyl cyanide compound and an aromatic vinyl compound and dissolving it in 50 mL of dimethylformamide over 2 hours. was measured in an environment of 30°C using A viscometer with a solvent flowing time of 20 to 100 seconds is used.
  • the reduced viscosity is obtained by the following equation from the number of seconds (t 0 ) of the solvent flowing down and the number of seconds (t) of the solution flowing down.
  • a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing a diene rubber component ABS
  • a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing an ethylene- ⁇ -olefin rubber component AES
  • AES ethylene- ⁇ -olefin rubber component
  • ASA acrylic rubber component
  • MBS copolymer of an alkyl (meth)acrylate monomer containing a diene rubber component and an aromatic vinyl compound
  • MABS alkyl (meth)acrylate monomer containing an acrylic rubber component
  • Copolymers of solids and aromatic vinyl compounds (MAS) are thermoplastic copolymers.
  • the ratio of various rubber components contained in ABS, AES, ASA, MBS, MABS and MAS is preferably 5 to 80% by mass, more preferably 8 to 50% by mass, and particularly preferably 10 to 50% by mass. 30% by mass.
  • Acrylonitrile is particularly preferably used as the vinyl cyanide compound grafted onto the rubber component.
  • Styrene and ⁇ -methylstyrene are particularly preferred as the aromatic vinyl compound to be grafted onto the rubber component.
  • methyl (meth)acrylate and ethyl (meth)acrylate can be preferably used as alkyl (meth)acrylate monomers.
  • the ratio of the component grafted to the rubber component is preferably 20-95% by mass, more preferably 50-90% by mass, relative to 100% by mass of the styrene resin (A2).
  • maleic anhydride, N-substituted maleimide, etc. can be mixed and used for some of the components grafted to the rubber component, and the content of these components is 15% by mass or less in the styrene resin (A2). is preferred.
  • the rubber component exists in the form of particles in ABS, AES, ASA, MBS, MABS and MAS.
  • the particle size of the rubber component is preferably 0.1-5.0 ⁇ m, more preferably 0.15-1.5 ⁇ m, and particularly preferably 0.2-0.8 ⁇ m.
  • the particle size distribution of the rubber component may be a single distribution, or may have two or more peaks.
  • the rubber particles may form a single phase, or may have a salami structure by containing an occluded phase around the rubber particles.
  • ABS, AES, ASA, MBS, MABS and MAS may contain free polymer components (aromatic vinyl compounds, etc.) generated during polymerization.
  • the reduced viscosity of ABS, AES, ASA, MBS, MABS and MAS is preferably 0.2 to 1.0 dL/g (20 to 100 mL/g). , more preferably 0.3 to 0.7 dL/g (30 to 70 mL/g).
  • the ratio of the aromatic vinyl compound or the like grafted to the rubber component is preferably 20 to 200% by mass, more preferably 20 to 70% by mass, relative to the rubber component.
  • ABS, AES, ASA, MBS, MABS and MAS may be produced by any of bulk polymerization, suspension polymerization and emulsion polymerization.
  • ABS is preferably produced by bulk polymerization.
  • Typical bulk polymerization methods include, for example, a continuous bulk polymerization method (so-called Toray method) described in Kagaku Kogaku, Vol. 48, No. 6, p. 415 (1984); 1989) (so-called Mitsui Toatsu method).
  • ABS, AES, ASA, MBS, MABS and MAS can all be suitably used as the styrenic resin (A2).
  • the copolymerization may be carried out in one step or in multiple steps.
  • the ABS, AES, ASA, MBS, MABS and MAS obtained by such a production method are blended with a vinyl compound polymer obtained by separately copolymerizing an aromatic vinyl compound and a vinyl cyanide component.
  • a resin can also be preferably used as the styrene resin (A2).
  • the content of alkali (earth) metals is low from the viewpoint of good thermal stability and hydrolysis resistance.
  • the alkali (earth) metal content in the styrenic resin (A2) is preferably less than 100 ppm, more preferably less than 80 ppm, even more preferably less than 50 ppm, particularly preferably less than 10 ppm.
  • the bulk polymerization method is preferably used also from the viewpoint of reducing the content of alkali (earth) metals.
  • the emulsifier when an emulsifier is used in AS, ABS, etc., the emulsifier is preferably a sulfonate, more preferably an alkylsulfonate. Also, when a coagulant is used, the coagulant is preferably sulfuric acid or an alkaline earth metal salt of sulfuric acid.
  • Rubber components contained in ABS, AES, ASA, MBS, MABS and MAS include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and ⁇ -olefins, and mixtures of ethylene and unsaturated carboxylic acid esters. copolymers, copolymers of ethylene and aliphatic vinyl (eg, ethylene-vinyl acetate copolymers), non-conjugated diene terpolymers of ethylene and propylene, acrylic rubbers, silicone rubbers, and the like.
  • diene-based copolymers include random copolymers and block copolymers of styrene-butadiene, acrylonitrile-butadiene copolymers, and copolymers of (meth)acrylic acid alkyl esters and butadiene.
  • Copolymers of ethylene and ⁇ -olefins include, for example, ethylene-propylene random copolymers and block copolymers, ethylene-butene random copolymers and block copolymers, and the like.
  • copolymers of ethylene and unsaturated carboxylic acid esters include ethylene-methacrylate copolymers and ethylene-butyl acrylate copolymers.
  • non-conjugated diene terpolymers of ethylene and propylene include ethylene-propylene-hexadiene copolymers.
  • acrylic rubbers examples include polybutyl acrylate, poly(2-ethylhexyl acrylate), copolymers of butyl acrylate and 2-ethylhexyl acrylate, and the like.
  • silicone-based rubbers include polyorganosiloxane rubber, and IPN rubber composed of a polyorganosiloxane rubber component and a polyalkyl (meth)acrylate rubber component (that is, a structure in which the two rubber components are intertwined so that they cannot be separated). rubber), IPN type rubber consisting of a polyorganosiloxane rubber component and a polyisobutylene rubber component, and the like.
  • the rubber component is preferably selected from the group consisting of polydiene rubber (such as polybutadiene), acrylic rubber, and ethylene-propylene rubber.
  • the glass transition temperature of the rubber component is typically ⁇ 10° C. to ⁇ 20° C. for acrylic rubber, ⁇ 50° C. to ⁇ 58° C. for ethylene-propylene rubber, and about -100°C.
  • the rubber component content in ABS, AES, ASA, MBS, MABS and MAS used in the present embodiment is preferably 4% by mass to 25% by mass.
  • the content of the rubber component can be adjusted, for example, by adjusting the amount of the rubber component during copolymerization. Further, for example, by mixing an aromatic vinyl copolymer containing a rubber component and an aromatic vinyl polymer or copolymer not containing a rubber component, it is also possible to adjust the content of the rubber component. be.
  • the aromatic polyester resin (A3) is a polymer or copolymer obtained by a condensation reaction of aromatic dicarboxylic acid or its reactive derivative and diol or its ester derivative as main components.
  • aromatic dicarboxylic acids referred to herein include, for example, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4' -biphenyletherdicarboxylic acid, 4,4'-biphenylmethanedicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis(phenoxy)ethane-4,4 aromatic dicarboxylic acids such as '-dicarboxylic acid, 2,5-anthracenedicarboxylic acid, 2,6-anthracenedicarboxylic acid, 4,4'-p-terphenylenedicarboxylic acid, and 2,5-pyridinedicarboxylic acid; be done.
  • diphenylmethane dicarboxylic acid diphenyl ether dicarboxylic acid
  • ⁇ -hydroxyethoxybenzoic acid terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferably used.
  • Aromatic dicarboxylic acids may be used in combination of two or more. If the amount is small, it is also possible to mix and use one or more kinds of aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanedioic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid together with the dicarboxylic acid. .
  • diols examples include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2-methyl-1,3-propanediol, diethylene glycol, and triethylene glycol. and the like.
  • diols such as 1,4-cyclohexanedimethanol.
  • diols containing aromatic rings such as 2,2-bis( ⁇ -hydroxyethoxyphenyl)propane, and mixtures thereof.
  • one or more long-chain diols having a molecular weight of 400 to 6000, ie, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, etc. may be copolymerized.
  • the aromatic polyester resin (A3) can be branched by introducing a small amount of a branching agent.
  • a branching agent includes trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane, pentaerythritol and the like.
  • Copolymer polyester resins such as polyethylene isophthalate/terephthalate and polybutylene terephthalate/isophthalate are also included.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and mixtures thereof, which have well-balanced mechanical properties, can be preferably used.
  • terminal group structure of the aromatic polyester resin (A3) is not particularly limited, and the ratio of the hydroxyl group and the carboxyl group in the terminal group may be approximately the same amount, or the ratio of one may be greater. .
  • the terminal groups may be blocked by, for example, reacting a compound having reactivity with such terminal groups.
  • the method for producing the alkylene glycol ester of aromatic dicarboxylic acid and/or its low polymer is not limited, but usually aromatic dicarboxylic acid or its ester-forming derivative and alkylene glycol or its ester It is produced by reacting a forming derivative with heat.
  • an ethylene glycol ester of terephthalic acid and/or a low polymer thereof used as a raw material for polyethylene terephthalate is obtained by direct esterification reaction of terephthalic acid and ethylene glycol, or by a lower alkyl ester of terephthalic acid and ethylene glycol. or by addition reaction of ethylene oxide to terephthalic acid.
  • the alkylene glycol ester of the aromatic dicarboxylic acid and / or the low polymer thereof, other dicarboxylic acid ester copolymerizable therewith, as an additional component, the effect of the method of the present disclosure is substantially It may be contained in an amount within a range that does not cause damage.
  • other dicarboxylic acid esters may be contained in an amount within the range of 10 mol % or less, preferably 5 mol % or less based on the total molar amount of acid components.
  • the copolymerizable additional component is selected from an ester of an acid component and a glycol component, or an anhydride thereof.
  • Acid components include aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids such as ⁇ -hydroxyethoxybenzoic acid and p-oxybenzoic acid. etc. 1 type or more are mentioned.
  • glycol components include aliphatic, alicyclic and aromatic diol compounds such as alkylene glycol having 2 or more carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A and bisphenol S, and Polyoxyalkylene glycols may be mentioned.
  • the postscript component ester may be used alone, or two or more thereof may be used in combination. However, the copolymerization amount is preferably within the above range.
  • terephthalic acid and/or dimethyl terephthalate When terephthalic acid and/or dimethyl terephthalate is used as a starting material, recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or recovered terephthalic acid obtained by hydrolyzing it is used. , 70 mass % or more can also be used based on the mass of all acid components constituting the polyester.
  • the target polyalkylene terephthalate is preferably polyethylene terephthalate, particularly recovered PET bottles, recovered fiber products, recovered polyester film products, and polymer scraps generated in the manufacturing process of these products. is preferable from the viewpoint of effective utilization of resources.
  • the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed.
  • the depolymerized product is subjected to a transesterification reaction with a lower alcohol, such as methanol, and the reaction mixture is purified to recover lower alkyl esters of terephthalic acid.
  • a polyester resin can be obtained by subjecting this to transesterification with alkylene glycol and polycondensing the obtained phthalic acid/alkylene glycol ester.
  • the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any conventional method may be used.
  • any conventional method may be used.
  • the total content of 4-carboxybenzaldehyde, p-toluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less.
  • the content of monomethyl terephthalate is preferably in the range of 1 to 5000 ppm.
  • a polyester resin can be produced by subjecting terephthalic acid recovered by the above-described method to direct esterification reaction with alkylene glycol and polycondensing the resulting ester.
  • the polycondensation reaction is preferably carried out at a temperature of 230 to 320° C. under normal pressure, under reduced pressure (0.1 Pa to 0.1 MPa), or a combination of these conditions for 15 to 300 minutes. .
  • a reaction stabilizer such as trimethyl phosphate may be added to the reaction system at any stage in polyester production.
  • one or more of antioxidants, ultraviolet absorbers, flame retardants, fluorescent whitening agents, matting agents, color conditioning agents, antifoaming agents, and other additives may be added to the reaction system.
  • the polyester resin preferably contains an antioxidant containing at least one hindered phenol compound. The content thereof is preferably 1% by mass or less with respect to the mass of the polyester resin. If the content exceeds 1% by mass, the heat deterioration of the antioxidant itself may cause the inconvenience of deteriorating the quality of the obtained product.
  • Hindered phenol compounds include, for example, pentaerythritol-tetraextract [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 3,9-bis ⁇ 2-[3-(3- tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro[5,5]undecane and the like. It is also preferable to use these hindered phenol-based antioxidants and thioether-based secondary antioxidants in combination.
  • the method of adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but preferably at any stage after the completion of the transesterification reaction or the esterification reaction until the completion of the polymerization reaction. added.
  • the intrinsic viscosity of the aromatic polyester resin (A3) is preferably in the range of 0.30 to 1.5. When the intrinsic viscosity is within this range, melt molding is easy and the strength of the molding obtained therefrom is high.
  • a more preferable range of the intrinsic viscosity is 0.40 to 1.2, and particularly preferably 0.50 to 1.0.
  • the intrinsic viscosity of the aromatic polyester resin is measured by dissolving the aromatic polyester resin in orthochlorophenol and measuring at a temperature of 35°C. Polyester resins obtained by solid-phase polycondensation are generally used for bottles and the like in many cases, and often have an intrinsic viscosity of 0.70 to 0.90.
  • the content of the cyclic trimer of the ester of the aromatic dicarboxylic acid and alkylene glycol is 0.5% by mass or less and the content of acetaldehyde is 5 ppm or less.
  • the cyclic trimer includes alkylene terephthalate (e.g., ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, hexamethylene terephthalate, etc.) and alkylene naphthalate (e.g., ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate). , hexamethylene naphthalate, etc.).
  • alkylene terephthalate e.g., ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, hexamethylene terephthalate, etc.
  • alkylene naphthalate e.g., ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate, hexamethylene naphthalate, etc.
  • the polyphenylene ether-based resin (A4) may be a mixed resin in which a polystyrene-based resin is mixed in advance with a polyphenylene ether resin, or may consist of a polyphenylene ether resin alone.
  • polyphenylene ether resins examples include homopolymers having a repeating unit structure represented by the following formula (5) and copolymers having a repeating unit structure represented by the following formula (5).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a primary alkyl group having 1 to 7 carbon atoms, a selected from the group consisting of secondary alkyl groups, phenyl groups, haloalkyl groups, aminoalkyl groups, hydrocarbonoxy groups, and halohydrocarbonoxy groups in which at least two carbon atoms separate the halogen and oxygen atoms; is a monovalent group that
  • the above polyphenylene ether resin uses a chloroform solution with a concentration of 0.5 g / dL at 30 ° C.
  • the reduced viscosity was measured with an Ubbelohde viscosity tube. is preferably 0.15 to 2.0 dL/g, more preferably 0.20 to 1.0 dL/g, still more preferably 0.30 to 0.70 dL/g.
  • polyphenylene ether resin examples include, but are not limited to, poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-phenyl-1,4-phenylene ether), homopolymers such as poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and others and copolymers with phenols (eg, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol).
  • poly(2,6-dimethyl-1,4-phenylene ether), 2,6-dimethylphenol and Copolymers with 2,3,6-trimethylphenol are preferred, and poly(2,6-dimethyl-1,4-phenylene ether) is more preferred.
  • a polyphenylene ether resin can be produced by a known method.
  • the method for producing the polyphenylene ether resin is not limited to the following, but for example, using a cuprous salt and amine complex by Hay described in US Pat. No. 3,306,874 as a catalyst, 2,6- A method of oxidative polymerization of xylenol, US Pat. No. 3,306,875, US Pat. No. 3,257,357, US Pat. Examples include the method described in Japanese Patent Application Laid-Open No. 63-152628.
  • polystyrene-based resins that are preliminarily contained in the polyphenylene ether-based resin (A4) include atactic polystyrene, rubber-reinforced polystyrene (high-impact polystyrene, HIPS), and styrene-acrylonitrile copolymers having a styrene content of 50% by mass or more ( AS), ABS resin in which the styrene-acrylonitrile copolymer is reinforced with rubber, etc., and atactic polystyrene and/or high impact polystyrene are preferred.
  • the above polystyrene-based resins may be used singly or in combination of two or more.
  • the polyphenylene ether-based resin (A4) is composed of a polyphenylene ether resin and a polystyrene-based resin, and the mass ratio of the polyphenylene ether resin and the polystyrene-based resin is 97/3 to 5/95. Polyphenylene ether-based resin (A4) is preferably used.
  • the mass ratio of the polyphenylene ether resin and the polystyrene resin is more preferably 90/10 to 10/90, more preferably 80/20 to 10/90, from the viewpoint of better fluidity.
  • the methacrylic resin (A5) used in the present disclosure is substantially a copolymer of alkyl methacrylate and alkyl acrylate, and other aromatic vinyl monomer-free, as long as the object of the present disclosure is not impaired. Vinyl monomers can be copolymerized.
  • the methacrylic resin contains, for example, 30 to 100% by mass of alkyl methacrylate, 0 to 70% by mass of acrylic acid ester, and 0 other vinyl monomers that do not contain copolymerizable aromatic vinyl monomers. It is a polymer obtained by polymerization of monomers containing up to 49% by mass. Further, when the methacrylic resin is a copolymer of alkyl methacrylate and alkyl acrylate, the mass ratio of alkyl methacrylate and alkyl acrylate is based on the total 100 mass% of alkyl methacrylate and alkyl acrylate. As, the alkyl methacrylate is preferably 40 to 90% by mass, more preferably 10 to 60% by mass, and the alkyl methacrylate is preferably 50 to 85% by mass, more preferably 50 to 15% by mass. %.
  • the alkyl methacrylate may have an alkyl group having about 1 to 8 carbon atoms, such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and the like. Among them, methyl methacrylate is preferred. Two or more of these alkyl methacrylates may be used as necessary.
  • the alkyl acrylate may have an alkyl group with about 1 to 8 carbon atoms, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and the like. Among them, methyl acrylate and n-butyl acrylate are preferred. If necessary, two or more of these alkyl acrylates may be used. In that case, n-butyl acrylate is used as the main component, and one or more alkyl acrylates other than n-butyl acrylate are used.
  • n-butyl acrylate and methyl acrylate are used, and n-butyl acrylate is the main component.
  • n-butyl acrylate is the main component means that the mass ratio of n-butyl acrylate exceeds 50% by mass based on the total 100% by mass of two or more alkyl acrylates. .
  • Alkyl methacrylates, alkyl acrylates, and other monomers that do not contain aromatic vinyl monomers are, for example, monofunctional monomers, i.e., have one polymerizable carbon-carbon double bond in the molecule. It may be a compound or a polyfunctional monomer, ie, a compound having at least two polymerizable carbon-carbon double bonds in the molecule.
  • this monofunctional monomer examples include alkenyl cyanides such as acrylonitrile and methacrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, and N-substituted maleimide.
  • polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, and trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • alkenyl esters of unsaturated carboxylic acids such as allyl acid
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate and triallyl isocyanurate. Two or more of these monomers other than alkyl methacrylate, alkyl acrylate, and aromatic vinyl may be used, if necessary.
  • One type of methacrylic resin may be used, or two or more types may be used.
  • the two or more types of methacrylic resins may differ in the type of the monomers constituting the methacrylic resin, or the types of the monomers may be the same, but the mass ratio of each monomer may be different. may be
  • the method of polymerizing the methacrylic resin is not particularly limited, and ordinary bulk polymerization, suspension polymerization, emulsion polymerization, and the like can be used.
  • a so-called high-impact methacrylic resin in which rubber particles are preliminarily compounded can also be used as the methacrylic resin.
  • these high-impact methacrylic resins contain 5 to 40% by mass of rubber component.
  • the rubber component to be blended is not particularly limited, but is preferably one having a refractive index close to that of methacrylic resin, such as a diene-based graft copolymer containing butadiene or the like as a main component, or an acrylic ester/methacrylic ester.
  • methacrylic resin such as a diene-based graft copolymer containing butadiene or the like as a main component, or an acrylic ester/methacrylic ester.
  • methacrylic resin such as a diene-based graft copolymer containing butadiene or the like as a main component, or an acrylic ester/methacrylic ester.
  • methacrylic resin such as a diene-based graft copolymer containing butadiene or the like as a main component, or an acrylic ester/methacrylic ester.
  • examples include a rubber-like polymer having a core-shell type graft structure and
  • the MFR value (230°C, 3.8 kg load) of the methacrylic resin (B) is preferably 5 to 25 g/10 minutes, more preferably 10 to 20 g/10 minutes.
  • the polyarylene sulfide resin (A6) has a resin structure in which a repeating unit is a structure in which arylene and sulfur atoms are bonded.
  • a polyarylene sulfide resin contains a repeating unit represented by the following formula (6).
  • Ar is substituted or unsubstituted arylene.
  • arylene include, but are not particularly limited to, phenylene, naphthylene, biphenylene, terphenylene, and the like.
  • the substituent is not particularly limited, but alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group groups; alkoxy groups such as methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutyloxy group, sec-butyloxy group and tert-butyloxy group; nitro group; amino group; cyano group and the like.
  • alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group groups
  • alkoxy groups such as methoxy group, ethoxy group, propyloxy group, is
  • the above Ar may have a single substituent or may have two or more substituents. When it has two or more substituents, the substituents may be the same or different.
  • polyphenylene sulfide resins in which Ar is substituted or unsubstituted phenylene are preferred.
  • the PPS resin contains at least one repeating unit represented by the following formulas (7) and (8).
  • each R is independently an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group.
  • alkoxy groups such as methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutyloxy group, sec-butyloxy group and tert-butyloxy group; nitro group; amino group; cyano group and the like.
  • n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. Mechanical strength can become it high that n is 0.
  • the PPS resin preferably contains a repeating unit represented by formula (7) from the viewpoint of heat resistance, crystallinity, and the like.
  • the PPS resin may contain a trifunctional structural unit represented by the following formula (9).
  • R is the same as in formulas (7) and (8) above.
  • m is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the content in the PPS resin is 0.001 to 3 mol% with respect to the total number of moles of all structural units. is preferred, and 0.01 to 1 mol % is more preferred.
  • the PPS resin may contain structural units represented by the following formulas (10) to (14).
  • R and n are the same as in formula (7) above.
  • p is an integer of 0 to 6, preferably an integer of 0 to 3, more preferably 0 or 1, and still more preferably 0.
  • the content in the PPS resin is 10 mol% or less with respect to all structural units from the viewpoint of mechanical strength. It is preferably 5 mol % or less, more preferably 3 mol % or less.
  • the total content is preferably the above content.
  • polyarylene sulfide resins described above may be used alone or in combination of two or more.
  • the polyarylene sulfide resin may be linear or branched.
  • the branched type can be obtained by heating a linear type PAS resin in the presence of oxygen.
  • the weight average molecular weight of the polyarylene sulfide resin is preferably 25,000 to 80,000, more preferably 25,000 to 50,000.
  • a weight-average molecular weight of 25,000 or more is preferable because the strength of the material can be maintained.
  • a weight average molecular weight of 80,000 or less is preferable from the viewpoint of moldability.
  • the value of "weight average molecular weight” shall adopt the value measured by the gel permeation chromatography method.
  • the measurement conditions of the said gel permeation chromatography are as follows. That is, using a high-speed GPC HLC-8220 (manufactured by Tosoh Corporation) and a column (TSK-GELGMHX L x 2), 200 mL of a solution of 5 mg of a sample dissolved in 10 g of tetrahydrofuran (THF) was injected into the apparatus, and the flow rate was : 1 mL/min (THF), constant temperature bath temperature: 40°C, measured with a differential refraction (RI) detector.
  • the melt viscosity of the polyarylene sulfide resin measured at 300°C is preferably 2 to 1000 Pa ⁇ s, more preferably 10 to 500 Pa ⁇ s, and even more preferably 60 to 200 Pa ⁇ s.
  • a melt viscosity of 2 Pa ⁇ s or more is preferable because the strength of the material can be maintained.
  • a melt viscosity of 1000 Pa ⁇ s or less is preferable from the viewpoint of moldability.
  • the non-Newtonian index of the polyarylene sulfide resin is preferably 0.90 to 2.00, more preferably 0.90 to 1.50, even more preferably 0.95 to 1.20. .
  • a non-Newtonian exponent of 0.90 or more is preferable because the strength of the material can be maintained.
  • a non-Newtonian index of 2.00 or less is preferable from the viewpoint of moldability.
  • the method for producing the polyarylene sulfide resin described above can be produced by a known method. For example, (1) a method of polymerizing a dihalogenoaromatic compound in the presence of sulfur and sodium carbonate, if necessary, by adding a polyhalogenoaromatic compound or other copolymerization components, and (2) a sulfidating agent in a polar solvent. (3) adding p-chlorothiophenol and, if necessary, other copolymerization components. is added to cause self-condensation.
  • method (2) is versatile and preferable.
  • an alkali metal salt of a carboxylic acid or a sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization.
  • a method for producing a PAS resin (see JP-A-07-228699), or (b) a solid alkali metal sulfide and, in the presence of an aprotic polar organic solvent, a dihalogenoaromatic compound and, if necessary, a polyhalogenoaromatic compound or other copolymerization components are added to form an alkali metal hydrosulfide and an organic
  • the acid alkali metal salt is 0.01 to 0.9 mol of the organic acid alkali metal salt per 1 mol of the sulfur source, and the amount of water in the reaction system is 0.02 mol per 1 mol of the aprotic polar organic solvent.
  • the dihalogeno aromatic compound is not particularly limited, but examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene.
  • the polyhalogenoaromatic compound is not particularly limited, but 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, Benzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like.
  • the polyhalogeno aromatic compounds described above may be used alone or in combination of two or more.
  • the halogen atom contained in each of the above compounds is preferably a chlorine atom or a bromine atom.
  • the post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited, but for example, (1) After the completion of the polymerization reaction, the reaction mixture is left as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is treated with water, the reaction solvent (or , an organic solvent having a similar solubility to the low-molecular-weight polymer), washing once or twice with a solvent such as acetone, methyl ethyl ketone, alcohols, etc., followed by neutralization, washing with water, filtering and drying, (2) After completion of the polymerization reaction, solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (soluble in the polymerization solvent used) are added to the reaction mixture.
  • solvents such as water, ace
  • a reaction solvent or an organic solvent having a solubility equivalent to that of the low-molecular-weight polymer is added to the reaction mixture and stirred, followed by filtration to remove the low-molecular-weight polymer.
  • the drying of the polyarylene sulfide resin may be carried out in a vacuum or in the air, using an inert solvent such as nitrogen. It may be carried out in a gas atmosphere.
  • the olefinic resin (A) is a synthetic resin obtained by polymerizing or copolymerizing an olefinic monomer having a radically polymerizable double bond.
  • the olefinic monomer is not particularly limited, and examples thereof include ⁇ -olefins and conjugated dienes.
  • ⁇ -olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene and the like.
  • conjugated dienes include butadiene and isoprene.
  • the olefinic monomers may be used alone or in combination of two or more.
  • the olefinic resin (A7) is not particularly limited, and examples thereof include homopolymers of ethylene, copolymers of ethylene and ⁇ -olefins other than ethylene, homopolymers of propylene, and propylene and ⁇ -olefins other than propylene. copolymers, homopolymers of butene, and homopolymers or copolymers of conjugated dienes such as butadiene and isoprene.
  • the olefin resin (A7) is preferably a propylene homopolymer or a copolymer of propylene and an ⁇ -olefin other than propylene.
  • ⁇ -olefins for copolymerization other than propylene include linear ⁇ -olefins, branched ⁇ -olefins and the like can be preferably used.
  • Linear olefins include, for example, ethylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1 and the like.
  • Branched ⁇ -olefins include, for example, 2-methylpropene-1,3-methylpentene-1,4-methylpentene-1,5-methylhexene-1,4-methylhexene-1,4,4-dimethyl pentene-1 and the like. These ⁇ -olefins for copolymerization may be used alone or in combination of two or more.
  • the blending amount of these ⁇ -olefins for copolymerization (copolymerization components) in the olefin resin (A) is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the form of the copolymer is not particularly limited, and may be, for example, random type, block type, graft type, or a mixture thereof.
  • Polypropylene copolymers (copolymers of propylene and other monomers) may be any of commonly used random copolymers, block copolymers, and the like.
  • Preferred examples of polypropylene copolymers include propylene-ethylene copolymers, propylene-butene-1 copolymers and propylene-ethylene-butene-1 copolymers.
  • the olefin resin (A7) for example, the above-mentioned polypropylene polymer (polymer of propylene monomer), polypropylene copolymer, etc. may be added with an acid anhydride group, a carboxyl group, a hydroxyl group, an amino group and A functional group-containing olefinic resin into which at least one functional group selected from the group consisting of isocyanate groups has been introduced can also be used.
  • Polyamide resin (A8) is a thermoplastic polymer having an amide bond, the main constituents of which are amino acids, lactams, diamines and dicarboxylic acids or their amide-forming derivatives.
  • a polycondensate obtained by condensing a diamine and a dicarboxylic acid or its acyl active substance can be used.
  • Polymers obtained by polycondensation of aminocarboxylic acids, lactams or amino acids can also be used. Copolymers of these can also be used.
  • Diamines include aliphatic diamines and aromatic diamines.
  • aliphatic diamines include tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methyl Nonamethylenediamine, 2,4-dimethyloctamethylenediamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethyl cyclohexane, 3,8-bis(aminomethyl)tricyclodecane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminoprop
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,6-naphthalenediamine, 4,4′-diphenyldiamine, 3,4′-diphenyldiamine, 4,4′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4' sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 2,2-bis(4-aminophenyl ) propane and the like.
  • dicarboxylic acids examples include adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, diglycolic acid and the like.
  • polyamide resins include, for example, polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610 ), polyhexamethylenedodecanamide (nylon 612), polyundecamethyleneadipamide (nylon 116), polyundecaneamide (nylon 11), polydodecanamide (nylon 12).
  • polytrimethylhexamethylene terephthalamide polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalate/isophthalamide (nylon 6T/6I), polybis(4-aminocyclohexyl)methandodedecamide (nylon PACM12), polybis ( 3-methyl-4-aminocyclohexyl)methandodedecamide (nylon dimethyl PACM12), polymetaxylylene adipamide (nylon MXD6), polyundecamethylene terephthalamide (nylon 11T), polyundecamethylene hexahydroterephthalamide (nylon 11T(H)), and aliphatic-aromatic polyamides such as these copolyamides. Copolymers and mixtures thereof, poly(p-phenylene terephthalamide), poly(p-phenylene terephthalamide-co-isophthalamide) and the like are also included.
  • the hydrophilic copolymer (B) has oxyethylene groups (preferably polyoxyethylene chains). Since the oxyethylene group functions as a hydrophilic segment, the presence of the oxyethylene group exhibits antistatic performance and exhibits the effect of suppressing adhesion of hydrophilic dust stains.
  • the hydrophilic copolymer (B) having an oxyethylene group is present in a large amount on the surface of the molded article without being buried inside, compared to other hydrophilic polymers and antistatic agents. Therefore, the antifouling effect is efficiently exhibited with respect to the added amount of the hydrophilic copolymer (B) having an oxyethylene group. Therefore, the amount of hydrophilic copolymer (B) required to obtain equivalent antifouling performance may be less than that of other hydrophilic polymers.
  • hydrophilic copolymer (B) a plurality of alternating copolymers (a) of a polyester (a1) and a hydrophilic polymer (a2) having an oxyethylene group have three hydroxyl groups.
  • polyhydric alcohol compound (b1) having one or more epoxy groups
  • epoxy compound (b2) having two or more epoxy groups
  • a conjugated hydrophilic copolymer is used.
  • This hydrophilic copolymer (B) has a melting point of about 90 to 100° C., and is disclosed in International Publication No. 2021/006192 (Patent Document 7). The melting point is lower than that of the alternately bonded hydrophilic copolymer” (B1) (melting point: about 135° C.) and “polyether ester amide” (B2) (melting point: about 195-200° C.).
  • thermoplastic resin composition according to the present embodiment can be produced by a low-temperature process and is easy to process.
  • the hydrophilic copolymer (B) is easily dispersed in the thermoplastic resin composition.
  • the materials constituting the thermoplastic resin composition especially materials other than the hydrophilic copolymer (B)) are difficult to decompose.
  • the alternating copolymer (a) is a copolymer in which the polyester (a1) and the hydrophilic polymer (a2) having an oxyethylene group are repeatedly and alternately bonded via ester bonds.
  • the alternating copolymer (a) is a copolymer having alternating multiple blocks derived from the polyester (a1) and multiple blocks derived from the hydrophilic polymer (a2) having an oxyethylene group. is.
  • the terminal of the alternating copolymer (a) may be a block derived from the polyester (a1) or a block derived from the hydrophilic polymer (a2).
  • the terminal of the alternating copolymer (a) is a block derived from the polyester (a1)
  • the terminal has a carboxyl group.
  • the terminal of the alternating copolymer (a) is a block derived from the hydrophilic polymer (a2)
  • the terminal has a hydroxyl group.
  • the terminal functional groups of the alternating copolymer (a) may be the same or different.
  • the alternating copolymer (a) is represented, for example, by the following formula (15) or formula (16).
  • the alternating copolymer (a) represented by formula (15) has carboxyl groups at both ends.
  • the alternating copolymer (a) represented by formula (16) has hydroxyl groups at both ends.
  • the alternating copolymer (a) preferably has carboxyl groups at both ends as shown in formula (15).
  • n is a natural number, preferably an integer of 1-10, more preferably an integer of 1-7, and most preferably an integer of 1-5.
  • polyester (a1) is not particularly limited as long as it is a polyester having carboxyl groups at both ends. and the residue other than the hydroxyl group of are repeatedly and alternately bonded via an ester bond.
  • X represents the residue of the dicarboxylic acid from which the carboxyl group has been removed
  • Y represents the residue of the diol from which the hydroxyl group has been removed.
  • n is preferably an integer of 1-50, more preferably an integer of 5-40, still more preferably an integer of 10-30.
  • the polyester (a1) represented by the above formula (17) can be obtained, for example, by subjecting a dicarboxylic acid and a diol to a polycondensation reaction.
  • Dicarboxylic acids include aliphatic dicarboxylic acids and aromatic dicarboxylic acids, and may be mixtures of aliphatic and aromatic dicarboxylic acids.
  • Aliphatic dicarboxylic acids preferably include aliphatic dicarboxylic acids having 2 to 20 carbon atoms, such as oxalic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 2,5-furandicarboxylic acid, itaconic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, fumaric acid and the like.
  • dicarboxylic acids having 4 to 16 carbon atoms are preferable, and dicarboxylic acids having 6 to 12 carbon atoms are more preferable, from the viewpoint of melting point and heat resistance.
  • the aromatic dicarboxylic acid may be a derivative of aromatic dicarboxylic acid (eg, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.). Also, the aromatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • Aromatic dicarboxylic acids preferably include aromatic dicarboxylic acids having 8 to 20 carbon atoms, such as terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutarate. acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, 3-sulfoisophthalic acid Potassium etc. are mentioned.
  • the dicarboxylic acid used in obtaining the polyester (a1) by polycondensation reaction may be a derivative of dicarboxylic acid (eg, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.).
  • the resulting polyester may be treated with carboxyl groups at both ends. It may be used in the reaction for obtaining the following alternating copolymer (a) without such treatment.
  • Dicarboxylic acids (including derivatives thereof) may be a mixture of two or more.
  • the diol is not particularly limited as long as it is a compound having two hydroxyl groups, and examples thereof include aliphatic diols and aromatic group-containing diols. Also, the diol may be a mixture of two or more.
  • aliphatic diols examples include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol and 1,3-butanediol.
  • polyester represented by the above formula (17) having carboxyl groups at both ends is preferably hydrophobic
  • hydrophilic polyethylene glycol is not preferable among the aliphatic diols.
  • hydrophilic polyethylene glycol can also be used.
  • aromatic group-containing diols examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, ethylene oxide adducts of bisphenol A, Propylene oxide adducts of bisphenol A, 1,4-bis(2-hydroxyethoxy)benzene, resorcinol, and polyhydroxyethyl adducts of mononuclear dihydric phenol compounds (pyrocatechol, etc.).
  • aromatic group-containing diols an ethylene oxide adduct of bisphenol A and 1,4-bis( ⁇ -hydroxyethoxy)benzene are preferred.
  • the polyester (a1) can be obtained, for example, by subjecting the dicarboxylic acid or its derivative and the diol to a polycondensation reaction.
  • the molar ratio of the dicarboxylic acid or its derivative to the diol is preferably 2 or more. preferable.
  • a catalyst that accelerates the esterification reaction may be used during the polycondensation reaction for obtaining the polyester (a1).
  • the catalyst conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate and zinc acetate can be used.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress oxidation of the product.
  • the polyester (a1) having a carboxyl group at both ends forms an ester bond by reacting with a hydrophilic polymer (a2) having a hydroxyl group at both ends, as long as it can form an alternating copolymer (a).
  • a hydrophilic polymer (a2) having a hydroxyl group at both ends is not particularly limited.
  • the carboxyl groups at both ends of the polyester (a1) may be protected or modified, and may be in the form of a precursor.
  • the hydrophilic polymer (a2) having oxyethylene groups is a hydrophilic polymer having oxyethylene groups (preferably polyoxyethylene chains). Also, the hydrophilic polymer (a2) has hydroxyl groups at both ends.
  • the hydrophilic polymer (a2) has one or more groups (oxyethylene groups) represented by the following formula (18), preferably a plurality of groups (oxyethylene groups) represented by the formula (18).
  • the hydrophilic polymer (a2) is more preferably polyethylene glycol (having a polyoxyethylene chain) represented by the following formula (19).
  • m represents an integer of 5-250. m is preferably 20 to 150 from the viewpoint of heat resistance and dust adhesion suppression effect.
  • Polymers having hydroxyl groups at both ends and having one or more groups represented by the formula (18) include, for example, polyethylene glycol obtained by addition reaction of ethylene oxide, and ethylene oxide and other alkylene oxides ( Examples thereof include polyethers obtained by addition reaction with at least one of propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide. This polyether may be a random copolymer or a block copolymer.
  • Another example of the compound having hydroxyl groups at both ends and having one or more groups represented by the above formula (18) is a compound having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, and
  • One of ethylene oxide and other alkylene oxides e.g., propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide, 2,3-butylene oxide, 1,3-butylene oxide, etc.
  • a compound having a structure in which at least one species is added can be mentioned. Addition in these compounds may be either random addition or block addition.
  • active hydrogen atom-containing compounds examples include glycols, dihydric phenols, primary monoamines, secondary diamines and dicarboxylic acids.
  • glycols examples include aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, and araliphatic glycols having 8 to 26 carbon atoms.
  • aliphatic glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane diol, 1,20-eicosanediol, diethylene glycol, triethylene glycol, thiodiethylene glycol and the like.
  • Alicyclic glycols include, for example, 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1-methyl-3,4-cyclohexanediol. , 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1′-dihydroxy-1,1′-dicyclohexyl and the like.
  • aromatic glycols examples include dihydroxymethylbenzene, 1,4-bis( ⁇ -hydroxyethoxy)benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, 2-benzyl-1, 3-propanediol, triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like.
  • phenols having 6 to 30 carbon atoms can be used. Examples thereof include alkyl (having 1 to 10 carbon atoms) and halogen-substituted products thereof.
  • Primary monoamines include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- pentylamine, isopentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine, n-icosylamine and the like.
  • Secondary diamines include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and the number of carbon atoms. Examples include aromatic secondary diamines having 8 to 14 carbon atoms, secondary alkanol diamines having 3 to 22 carbon atoms, and the like.
  • aliphatic secondary diamines include N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dibutylethylenediamine, N,N'-dimethylpropylenediamine, N,N'-diethylpropylenediamine, N,N'-dibutylpropylenediamine, N,N'-dimethyltetramethylenediamine, N,N'-diethyltetramethylenediamine, N,N'-dibutyltetramethylenediamine, N,N'-dimethylhexamethylenediamine, N , N'-diethylhexamethylenediamine, N,N'-dibutylhexamethylenediamine, N,N'-dimethyldecamethylenediamine, N,N'-diethyldecamethylenediamine, N,N'-dibutyldecamethylenediamine, etc. mentioned
  • Heterocyclic secondary diamines include, for example, piperazine and 1-aminopiperidine.
  • alicyclic secondary diamines examples include N,N'-dimethyl-1,2-cyclobutanediamine, N,N'-diethyl-1,2-cyclobutanediamine, N,N'-dibutyl-1,2- Cyclobutanediamine, N,N'-dimethyl-1,4-cyclohexanediamine, N,N'-diethyl-1,4-cyclohexanediamine, N,N'-dibutyl-1,4-cyclohexanediamine, N,N'- dimethyl-1,3-cyclohexanediamine, N,N'-diethyl-1,3-cyclohexanediamine, N,N'-dibutyl-1,3-cyclohexanediamine and the like.
  • aromatic secondary diamines include N,N'-dimethyl-phenylenediamine, N,N'-dimethyl-xylylenediamine, N,N'-dimethyl-diphenylmethanediamine, and N,N'-dimethyl-diphenyletherdiamine. , N,N-dimethyl-benzidine, N,N'-dimethyl-1,4-naphthalenediamine, and the like.
  • secondary alkanol diamines include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, N-methyldipropanolamine and the like.
  • Dicarboxylic acids include dicarboxylic acids having 2 to 20 carbon atoms.
  • Examples of dicarboxylic acids having 2 to 20 carbon atoms include aliphatic dicarboxylic acids, aromatic dicarboxylic acids and alicyclic dicarboxylic acids.
  • aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid, ⁇ -methylglutaric acid, ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, tridecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, octadecanedicarboxylic acid, icosanedicarboxylic acid and the like.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2 ,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, potassium 3-sulfoisophthalate and the like.
  • Alicyclic dicarboxylic acids include, for example, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid. acid, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid, dicyclohexyl-4,4-dicarboxylic acid and the like.
  • One of these active hydrogen atom-containing compounds may be used, or a mixture of two or more of these active hydrogen atom-containing compounds may be used.
  • the hydrophilic polymer (a2) used to obtain the alternating copolymer (a) can form an ester bond by reacting with the polyester (a1) component to form the alternating copolymer (a). Any compound may be used, and hydroxyl groups at both ends of the hydrophilic polymer (a2) may be protected or modified, and may be in the form of a precursor.
  • the alternating copolymer (a) can be obtained by subjecting a polyester (a1) having carboxyl groups at both ends and a hydrophilic polymer (a2) having hydroxyl groups at both ends to a polycondensation reaction.
  • the polyester (a1) and the hydrophilic polymer (a2) if it has a structure in which the ester bond formed by the carboxyl group and the hydroxyl group are repeatedly and alternately bonded, the above-mentioned specific It is not necessary to synthesize the alternating copolymer (a) from the polyester (a1) and the above specific hydrophilic polymer (a2).
  • Both ends of the alternating copolymer (a) are either carboxyl groups or hydroxyl groups depending on the ratio of the amounts of the polyester (a1) and the hydrophilic polymer (a2) used during polymerization.
  • reaction ratio of the polyester (a1) and the hydrophilic polymer (a2) is adjusted so that the amount of the polyester (a1) is 2 mol parts per 1 mol part of the hydrophilic polymer (a2).
  • an alternating copolymer (a) having carboxyl groups at both ends can be obtained.
  • reaction ratio of the polyester (a1) and the hydrophilic polymer (a2) is adjusted so that the amount of the hydrophilic polymer (a2) is 2 mol parts with respect to 1 mol part of the polyester (a1), , an alternating copolymer (c2) having hydroxyl groups at both ends can be obtained.
  • a polycondensation reaction of the polyester (a1) and the hydrophilic polymer (a2) for obtaining the alternating copolymer (a) is carried out without isolating the polyester (a1). may be performed.
  • a catalyst that promotes the esterification reaction may be used during the polycondensation reaction for obtaining the alternating copolymer (a).
  • the catalyst conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate and zinc acetate can be used.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress oxidation of the product.
  • Hydrophilic copolymer (B) is an alternating copolymer (a), polyhydric alcohol compound (b1) having 3 or more hydroxyl groups, epoxy compound (b2) having 2 or more epoxy groups, polycarboxylic acid compound (b3) ) is a copolymer formed by bonding via an ester bond with one selected from the group consisting of
  • the polyester (a1) has carboxyl groups at both ends.
  • the hydrophilic polymer (a2) having an oxyethylene group has hydroxyl groups at both ends.
  • the alternating copolymer (a) is obtained by ester bonding between the carboxyl groups of the polyester (a1) and the hydroxyl groups of the hydrophilic polymer (a2).
  • a plurality of alternating copolymers (a) may contain a polyhydric alcohol compound (b1) or two epoxy groups.
  • a hydrophilic copolymer (B) can be obtained by bonding via an ester bond with at least one of the epoxy compounds (b2) having the above.
  • both ends of the alternating copolymer (a) are hydroxyl groups
  • a plurality of alternating copolymers (a) are bonded via an ester bond with the polycarboxylic acid compound (b3), resulting in hydrophilicity.
  • a copolymer (B) is obtained.
  • the hydrophilic copolymer (B) i.e., the alternating copolymer (a) contained in the hydrophilic copolymer (B) is preferably 1 to 50 mol parts, more preferably 1 to 30 mol parts, and still more preferably 1 to 50 mol parts per 1 mol part of the hydrophilic copolymer (B). 10 mole parts.
  • the hydrophilic copolymer (B) may further contain ester bonds formed by carboxyl groups other than both ends of the polyester (a1) and the polyhydric alcohol compound (b1) or the epoxy compound (b2). Also, it may contain an ester bond formed by a hydroxyl group other than both ends of the hydrophilic polymer (a2) and the polycarboxylic acid (b3).
  • the polyhydric alcohol compound (b1) is not particularly limited as long as it is a compound having 3 or more hydroxyl groups.
  • Examples include glycerin and 1,2,3-butanetriol. , 1,2,4-butanetriol, 2-methyl-1,2,3-propanetriol, 1,2,3-pentanetriol, 1,2,4-pentanetriol, 1,3,5-pentanetriol, 2,3,4-pentanetriol, 2-methyl-2,3,4-butanetriol, trimethylolethane, 2,3,4-hexanetriol, 2-ethyl-1,2,3-butanetriol, trimethylol Propane, 4-propyl-3,4,5-heptanetriol, 2,4-dimethyl-2,3,4-pentanetriol, triethanolamine, triisopropanolamine, 1,3,5-tris(2-hydroxyethyl ) trihydric alcohols such as isocyanurates; Pentaeryth
  • pentahydric alcohols such as adonitol, arabitol, xylitol, triglycerin
  • Hexavalent alcohols such as dipentaerythritol, sorbitol, mannitol, iditol, inositol, dulcitol, talose and allose
  • tripentaerythritol and polypentaerythritol
  • Epoxy compound The epoxy compound (b2) is not particularly limited as long as it is a compound having two or more epoxy groups.
  • epoxy compounds are internally cross-linked with a prepolymer of terminal isocyanate, or polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphate esters, etc.) are used to increase the molecular weight. It may be Two or more kinds of such epoxy compounds (b2) may be used.
  • Polycarboxylic acid compound (b3) Polycarboxylic acid compound Examples of the polycarboxylic acid compound (b3) include carboxylic acids having 3 or more carboxyl groups, and carboxylic acids having 2 or more carboxyl groups and 1 or more hydroxyl groups. Carboxylic acids having 3 or more carboxyl groups are preferred from the viewpoint of the effect of suppressing adhesion of dust. Polycarboxylic acid compound (b3) may be a mixture thereof.
  • Carboxylic acids having 3 or more carboxyl groups may be derivatives thereof (eg, acid anhydrides, alkyl esters, alkali metal salts, acid halides, etc.). Carboxylic acids having 3 or more carboxyl groups and derivatives thereof may be a mixture of two or more.
  • Carboxylic acids having 3 or more carboxyl groups include, for example, aconitic acid, 1,2,3-propanetricarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, 3-butene-1,2,3 -tricarboxylic acid, trimellitic acid, pyromellitic acid, mellitic acid, cyclohexanetricarboxylic acid, naphthalene-1,2,5-tricarboxylic acid, naphthalene-2,6,7-tricarboxylic acid, 1,3,5-pentanetricarboxylic acid , trimesic acid, 3,3′,4-diphenyltricarboxylic acid, benzophenone-3,3′,4-tricarboxylic acid, diphenylsulfone-3,3′,4-tricarboxylic acid, diphenyl ether-3,3′,4-tricarboxylic acid acid, diphenyl-2,2',3,3
  • Carboxylic acids having two or more carboxyl groups and one or more hydroxyl groups may be derivatives thereof (eg, acid anhydrides, alkyl esters, alkali metal salts, acid halides, etc.).
  • the carboxylic acid having two or more carboxyl groups and one or more hydroxyl groups and derivatives thereof may be a mixture of two or more.
  • carboxylic acids having two or more carboxyl groups and one or more hydroxyl groups include tartaric acid, malic acid, citric acid, isocitric acid, citramaric acid, and tartronic acid.
  • the total amount of hydroxyl groups in the polyhydric alcohol compound (b1) used to obtain the alternating copolymer (a) (not the number of hydroxyl groups per polyhydric alcohol compound (b1).
  • the total amount of epoxy groups of the compound (b2) is preferably 0.1 to 4.0 equivalents, more preferably 0.5 to 3.0 equivalents, relative to the total amount of carboxyl groups of the alternating copolymer (a) to be reacted therewith. more preferred.
  • the total amount of carboxyl groups of the polycarboxylic acid (b3) used to obtain the alternating copolymer (a) is 0.1 to 0.1 with respect to the total amount of hydroxyl groups of the alternating copolymer (a) to be reacted therewith. 4.0 equivalents are preferred, and 0.5 to 3.0 equivalents are more preferred.
  • the reaction for obtaining the alternating copolymer (a) may be carried out in various solvents or in a molten state.
  • the polyhydric alcohol compound (b1), the epoxy compound (b2) or , the polycarboxylic acid (b3) may be added, and the reaction for obtaining the hydrophilic copolymer (B) may be performed as it is.
  • the hydroxyl groups of the unreacted hydrophilic polymer (a2) used excessively when synthesizing the alternating copolymer (a) react with some carboxyl groups of the polycarboxylic acid (b3) to form an ester bond. may be formed.
  • Hydrophilic copolymer (B) has a structure in which alternating copolymer (a) and polyhydric alcohol compound (b1), epoxy compound (b2) or polycarboxylic acid (b3) are bonded via ester bonds. If so, it is necessary to synthesize from the above specific alternating copolymer (a) and the above specific polyhydric alcohol compound (b1), epoxy compound (b2), or polycarboxylic acid (b3). no.
  • the polystyrene-equivalent number average molecular weight of the block derived from the polyester (a1) is preferably 800 to 8000, more preferably 1000 to 6000, still more preferably 2000 to 4000. .
  • the polystyrene-equivalent number average molecular weight of the block derived from the hydrophilic polymer (a2) is preferably 400 to 6000, more preferably 1000 to 5000, still more preferably 2000 to 4000. is.
  • the polystyrene-equivalent number-average molecular weight of the blocks derived from the alternating copolymer (a) is preferably 5,000 to 25,000, more preferably 7,000 to 17,000, and more preferably 9,000. ⁇ 13000.
  • the hydrophilic copolymer (B) of the present embodiment exhibits a hydrophilic effect of suppressing adhesion of dust stains by being dispersed in the thermoplastic resin composition
  • the surface resistance value of the hydrophilic copolymer (B) itself is As low as possible is usually preferred.
  • the surface resistance value of the hydrophilic copolymer (B) is preferably 1 ⁇ 10 4 to 1 ⁇ 10 10 ⁇ , more preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 ⁇ .
  • the thermoplastic resin composition may further contain an antistatic agent other than the hydrophilic polymer described above for the purpose of improving the effect of suppressing the adhesion of hydrophilic dust stains.
  • antistatic agents include, for example, surfactants (anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, etc.), ionic liquids, and the like.
  • hydrophilic copolymer (B) having an oxyethylene group also has another special effect.
  • the hydrophilic copolymer (B) and the fatty acid metal salt (C) described later are necessary, but the fatty acid metal salt (C) is hydrophilic. Since it has a lower molecular weight than the copolymer (B) and is less entangled with the thermoplastic resin (A), it may fall off from the surface of the molded product or deteriorate. However, a large amount of the hydrophilic copolymer (B) exists on the surface of the molded product, and the hydrophilic group of the hydrophilic copolymer (B), which prevents the adhesion of hydrophilic dust stains due to its antistatic effect, contains the fatty acid metal salt (C). By attaching a hydrophilic group, the fatty acid metal salt (C) can stably exist on the surface without falling off.
  • both the hydrophilic copolymer (B) having an oxyethylene group and the fatty acid metal salt (C) are present on the surface of the molded article, and exhibit a synergistic effect with each other, resulting in a high effect of suppressing adhesion of amphoteric dust stains. (antifouling property) is exhibited.
  • Fatty acid metal salt (C) is a compound represented by the following formula (1).
  • R is an alkyl group or alkenyl group having 6 to 40 carbon atoms.
  • Additives that generally provide water and oil repellency include silicone oil, fluororesins such as PTFE, and hydrophobic silica such as fumed silica. The effect of suppressing adhesion of dirt was not obtained either. This is because when added to the resin, the additive is buried inside the resin and does not come out to the surface.
  • a fatty acid metal salt (C) is compounded with a thermoplastic resin (A) and a hydrophilic copolymer (B) as a material that can be present at a high concentration on the surface and has hydrophobicity and water and oil repellency. can solve the problem.
  • the fatty acid metal salt used in this embodiment is a fatty acid metal salt represented by formula (1).
  • R is an alkyl group or an alkenyl group, preferably an alkyl group.
  • the contact angle with water is higher than that of petroleum or mineral oil, it is said to have water and oil repellency, and if the contact angle with water is higher than 90 degrees, it is said to be hydrophobic.
  • Fatty acid metal salt (C) corresponds to this.
  • the melting point of the fatty acid metal salt (C) is, for example, 130-180°C, preferably 140-170°C, more preferably 150-160°C.
  • M is at least one metal element selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium.
  • M is preferably at least one metal element selected from aluminum and zinc.
  • the thermoplastic resin composition can exhibit higher antifouling performance.
  • M is more preferably aluminum. In this case, the thermoplastic resin composition can exhibit even higher antifouling performance.
  • the thermal is because the nonpolar groups (hydrophobic groups) of the fatty acid metal salt can be densely arranged on the surface of the molded product containing the plastic resin composition. As the hydrophobic groups become denser, the effect of suppressing adhesion of hydrophobic dust stains increases.
  • the ionic radii of M are respectively 54 for aluminum, 74 for zinc, 100 for calcium and 135 for barium, with aluminum being the smallest followed by zinc. Therefore, in order to enhance the antifouling effect, the metal element M is most preferably aluminum, followed by zinc.
  • fatty acids constituting the fatty acid metal salt (C) of the present embodiment include caproic acid, capric acid, lauric acid, palmitic acid, stearic acid, behenic acid, lignoceric acid, montanic acid, oleic acid, and linoleic acid. is mentioned.
  • Fatty acids are preferably long-chain fatty acids (fatty acids having 12 or more carbon atoms) such as stearic acid, behenic acid, and montanic acid.
  • stearic acid is more preferable for production because it is readily available and inexpensive.
  • fatty acid metal salts (C) include zinc stearate, zinc 12-hydroxystearate, zinc laurate, zinc oleate, zinc 2-ethylhexanoate, aluminum tristearate, (dihydroxy)aluminum monostearate, (Hydroxy)aluminum distearate, aluminum 12-hydroxystearate, aluminum laurate, aluminum oleate, aluminum 2-ethylhexanoate and the like.
  • the fatty acid metal salt (C) is preferably zinc stearate, aluminum tristearate, (dihydroxy)aluminum monostearate, and (hydroxy)aluminum distearate, more preferably (hydroxy)aluminum distearate. be.
  • the fatty acid metal salt (C) may be used singly or in combination of two or more.
  • Aluminum stearate, zinc stearate, calcium stearate, and barium stearate are characterized by smoothness, high water repellency, and low surface free energy (about 21.2 mN/m).
  • a material with a low surface free energy has a stable surface condition, such as a fluororesin (surface free energy: about 21.5 mN/m), so dirt does not adhere easily.
  • thermoplastic resin composition can exhibit higher antifouling performance.
  • aluminum stearate which is a long-chain fatty acid salt of aluminum in which the valence of M is 3, will be described.
  • aluminum stearate examples include mono-type aluminum monostearate [Al(C 17 H 35 COO)(OH) 2 ] containing one stearic acid, di-type aluminum distearate [Al(C 17 H 35 COO) 2 (OH)], and the tri-type aluminum tristearate [Al(C 17 H 35 COO) 3 ], which contains three stearic acids.
  • aluminum tristearate has a large amount of non-polar groups, so it is difficult to migrate to the surface of the molded product (FIG. 4(a)). to a mixture with aluminum monostearate or aluminum distearate. Therefore, aluminum distearate easily migrates to the surface of the molded product (Fig. 4(b)), and has a higher amphoteric dust suppression effect than aluminum tristearate. Even when the valence of M is more than 3, similarly, a ditype fatty acid metal salt having a smaller number of fatty acids than a tritype has a higher amphoteric dust suppression effect.
  • aluminum monostearate has a smaller number of non-polar groups (hydrophobic groups) R than aluminum distearate when the number of aluminum atoms is the same (Fig. 4(c)). Therefore, aluminum distearate has a higher amphoteric dust control effect than aluminum monostearate.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the secondary ionic strength ratio of C 18 H 35 O 2 — to the ionic strength of C 2 H — , which is the main peak during polystyrene analysis, was 0.341 in the case of the molded article using aluminum distearate. , which was 2 to 4 times more than the molded article using aluminum monostearate (0.0687) and the molded article using aluminum tristearate (0.172). Therefore, a molded product using aluminum distearate where y 1 has many non-polar groups (hydrophobic groups) on the surface, and is most likely to exhibit the dust suppressing effect.
  • the ditype fatty acid metal salt suppresses amphoteric dust more than the monotype fatty acid metal salt. Highly effective. Therefore, when the valence of M is 2, y is preferably 0 (x is 2).
  • the amount of the hydrophilic copolymer (B) is preferably 1 to 20 parts by mass, more preferably 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (A). ⁇ 17 parts by mass.
  • the amount of the fatty acid metal salt (C) to be blended is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, based on 100 parts by mass of the thermoplastic resin (A).
  • thermoplastic resin composition of the present embodiment is particularly composed of 100 parts by mass of thermoplastic resin (A), 1 to 20 parts by mass of hydrophilic copolymer (B), and 0.5 to 10 parts by mass of fatty acid metal salt (C) It is preferable to contain the part and
  • the fatty acid metal salt (C) is generally added to the thermoplastic resin composition at a content of 0.5% by mass or less (especially about 0.1%) as a lubricant, mold release agent, etc. for improving moldability.
  • a content of 0.5% by mass or less especially about 0.1%) as a lubricant, mold release agent, etc. for improving moldability.
  • both the hydrophilic copolymer (B) and the fatty acid metal salt (C) are present at high concentrations on the surface of the molded article. The effect of making it exist is exhibited, and the amphoteric antifouling effect is further improved.
  • the amount of the hydrophilic copolymer (B) exceeds 20 parts by mass, the mechanical strength such as elastic modulus is lowered, and when it is less than 1 part by mass, the effect of suppressing adhesion of dust is reduced. become.
  • the amount of the fatty acid metal salt (C) is more than 10 parts by mass, the heat resistance and impact resistance are lowered. will be available.
  • the fatty acid metal salt (C) is generally used for a purpose different from the purpose of the present embodiment, which is to suppress adhesion of both hydrophilic and hydrophobic dust stains.
  • the blending amount of the fatty acid metal salt (C) is less than 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A). Furthermore, it is 0.1 parts by mass or less for use in general manufacturing industries. Further, the effect of the fatty acid metal salt (C) on dust adhesion suppression has not been known so far.
  • the amount of fatty acid metal salt (C) to be blended is preferably 0.5 parts by mass or more, more preferably 1 to 8 parts by mass, per 100 parts by mass of the thermoplastic resin (A). In this case, a good dust suppression effect equal to or better than that obtained by applying a dust suppression coating to the surface of the molded product can be obtained.
  • An example in which 1 part by mass or more of fatty acid metal salt (C) is blended with 100 parts by mass of thermoplastic resin for the purpose of dust suppression has not been known so far.
  • R which is a non-polar hydrophobic group facing the air of the fatty acid metal salt.
  • the antistatic effect of the hydrophilic copolymer (B) having an oxyethylene group enhances the effect of suppressing adhesion of hydrophilic dust stains, and the addition of the fatty acid metal salt (C) together reduces hydrophobic dust.
  • the effect of suppressing the adhesion of dirt is enhanced, and a new effect that is strong against amphoteric dirt can be obtained.
  • thermoplastic resin composition of the present embodiment includes optional components such as heat stabilizers, ultraviolet absorbers, light stabilizers, antibacterial agents, antifungal agents, inorganic Ingredients such as fillers may also be included.
  • thermoplastic resin composition of the present embodiment may contain a thermal stabilizer in order to improve thermal stability during production.
  • heat stabilizer it is preferable to use a phosphorus stabilizer and/or a hindered phenol antioxidant, and it is more preferable to use them together.
  • the amount of the phosphorus-based stabilizer and/or the hindered phenol-based antioxidant added to the thermoplastic resin composition of the present embodiment is not particularly limited.
  • thermoplastic resin composition Since the effect of improving thermal stability is effectively obtained and the blending amount of each of the above essential components is not affected, it is preferably 0.01 to 1 with respect to 100 parts by mass of the thermoplastic resin composition. parts by mass, more preferably 0.01 to 0.6 parts by mass.
  • Phosphorus-based stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, phosphonite compounds, and tertiary phosphines.
  • Phosphites include triphenylphosphite, tris(nonylphenyl)phosphite, tridecylphosphite, distearylpentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl ) pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis ⁇ 2,4-bis(1-methyl-1-phenylethyl)phenyl ⁇ penta Erythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like.
  • phosphite phosphite compound
  • those that react with dihydric phenols and have a cyclic structure can also be used.
  • 2,2′-methylenebis(4,6-di-tert-butylphenyl)(2,4-di-tert-butylphenyl)phosphite 2,2′-methylenebis(4,6-di-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite and 2,2-methylenebis(4,6-di-tert-butylphenyl)octylphosphite.
  • Phosphate esters include triphenyl phosphate and trimethyl phosphate.
  • Phosphonite compounds include tetrakis(di-tert-butylphenyl)-biphenylenediphosphonite, bis(di-tert-butylphenyl)-phenyl-phenylphosphonite, and the like.
  • the phosphonite compound is preferable because it can be used in combination with the above phosphite compound having an aryl group substituted with two or more alkyl groups.
  • Phosphonate esters include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
  • Tertiary phosphines include triphenylphosphine and the like.
  • phosphorus-based stabilizers phosphonite compounds or phosphite compounds represented by the following formula (20) are preferable.
  • R and R' represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different.
  • the phosphonite compound is preferably tetrakis(2,4-di-tert-butylphenyl)-biphenylene diphosphonite.
  • More preferred phosphite compounds among the formula (15) are distearylpentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di- tert-butyl-4-methylphenyl)pentaerythritol diphosphite and bis ⁇ 2,4-bis(1-methyl-1-phenylethyl)phenyl ⁇ pentaerythritol diphosphite.
  • Hindered phenol compounds include tetrakis[methylene-3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate]methane, octadecyl-3-(3,5-di-tert-butyl-4- hydroxyphenyl)propionate, and 3,9-bis[2- ⁇ 3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy ⁇ -1,1-dimethylethyl]-2,4,8 , 10-tetraoxaspiro[5,5]undecane and the like.
  • thermoplastic resin composition of the present embodiment can optionally contain other thermal stabilizers than the phosphorus stabilizer and the hindered phenol antioxidant.
  • the other heat stabilizer is preferably used in combination with at least one of the phosphorus stabilizer and the hindered phenol antioxidant, and particularly preferably in combination with both.
  • heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (details of this stabilizer See Japanese Patent Application Laid-Open No. 7-233160).
  • Irganox HP-136 registered trademark, manufactured by CIBA SPECIALTY CHEMICALS
  • CIBA SPECIALTY CHEMICALS are commercially available.
  • Irganox HP-2921 (registered trademark, manufactured by CIBA Specialty Chemicals) and the like are commercially available as a stabilizer obtained by mixing the lactone stabilizer, phosphite compound, and hindered phenol compound.
  • the amount of the lactone stabilizer added is preferably 0.0005 to 0.05 parts by mass, more preferably 0.001 to 0.03 parts by mass, based on 100 parts by mass of the thermoplastic resin composition.
  • stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. be done.
  • the addition amount of the stabilizer other than the phosphorus stabilizer and/or the hindered phenol antioxidant in the thermoplastic resin composition of the present embodiment is not particularly limited, and is On the other hand, it is preferably 0.0005 to 0.1 parts by mass, more preferably 0.001 to 0.08 parts by mass, and particularly preferably 0.001 to 0.05 parts by mass.
  • thermoplastic resin composition of this embodiment may contain an ultraviolet absorber. Since the thermoplastic resin composition of the present embodiment may be inferior in weather resistance due to the influence of the rubber component and the like, it is effective to add an ultraviolet absorber to improve the weather resistance.
  • Examples of the ultraviolet absorber of the present embodiment include a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, a hydroxyphenyltriazine-based ultraviolet absorber, a cyclic imino ester-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber.
  • An ultraviolet absorber etc. are mentioned.
  • Benzophenone-based UV absorbers include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy -4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydrate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2',4,4'- Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis(5-benzoyl-4-hydroxy -2-methoxyphenyl)methane, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
  • Benzotriazole-based UV absorbers include, for example, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2 -hydroxy-3,5-dicumylphenyl)phenylbenzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2′-methylenebis[4-( 1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl)benzotriazole, 2-( 2-hydroxy-5-tert-oct
  • benzotriazole-based UV absorbers are exemplified by polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton.
  • Polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton include, for example, 2-(2′-hydroxy-5-methacryloxyethylphenyl)-2H-benzotriazole and a vinyl-based monomer copolymerizable therewith. and a copolymer of 2-(2'-hydroxy-5-acryloxyethylphenyl)-2H-benzotriazole and a vinyl monomer copolymerizable with the monomer.
  • hydroxyphenyltriazine-based UV absorbers examples include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(4,6-diphenyl- 1,3,5-triazin-2-yl)-5-methyloxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-ethyloxyphenol, 2-( 4,6-diphenyl-1,3,5-triazin-2-yl)-5-propyloxyphenol, and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5- butyloxyphenol and the like.
  • phenyl group of the above-exemplified compounds such as 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-hexyloxyphenol is 2, A compound substituted with a 4-dimethylphenyl group is exemplified.
  • Cyclic iminoester-based UV absorbers include, for example, 2,2′-p-phenylenebis(3,1-benzoxazin-4-one), 2,2′-(4,4′-diphenylene)bis( 3,1-benzoxazin-4-one), 2,2′-(2,6-naphthalene)bis(3,1-benzoxazin-4-one), and the like.
  • cyanoacrylate ultraviolet absorbers examples include 1,3-bis-[(2′-cyano-3′,3′-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3, 3-diphenylacryloyl)oxy]methyl)propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene, and the like.
  • the UV absorber is a polymer-type UV-absorbing agent obtained by copolymerizing a UV-absorbing monomer and/or a photostable monomer having a hindered amine structure with a monomer such as an alkyl (meth)acrylate. It may be an agent.
  • a (meth)acrylic acid ester is preferably a compound containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic iminoester skeleton, and a cyanoacrylate skeleton in the ester substituent. exemplified.
  • benzotriazole-based and hydroxyphenyltriazine-based UV absorbers are preferred in terms of UV absorption capacity, and cyclic iminoester-based and cyanoacrylate-based UV absorbers are preferred in terms of heat resistance and hue (transparency). is preferred.
  • the ultraviolet absorbers may be used singly or as a mixture of two or more.
  • the content of the ultraviolet absorber is preferably 0.01 to 2 parts by mass, more preferably 0.02 to 2 parts by mass, and still more preferably 0.03 to 1 part by mass, based on 100 parts by mass of the thermoplastic resin composition. parts, particularly preferably 0.05 to 0.5 parts by mass.
  • thermoplastic resin composition of this embodiment may contain a light stabilizer. Since the thermoplastic resin composition of the present embodiment may cause yellowing in the dark, it is effective to add a light stabilizer to prevent such deterioration.
  • HALS Hindered amine light stabilizers
  • HALS are, for example, compounds represented by the following formulas (21) to (24), and combinations of two or more of these compounds.
  • R 1 -R 3 are independent substituents.
  • substituents include hydrogen, ether groups, ester groups, amine groups, amide groups, alkyl groups, alkenyl groups, alkynyl groups, aralkyl groups, cycloalkyl groups, and aryl groups.
  • substituents may contain functional groups.
  • functional groups include, for example, alcohols, ketones, anhydrides, imines, siloxanes, ethers, carboxyl groups, aldehydes, esters, amides, imides, amines, nitriles, ethers, urethanes, and combinations thereof.
  • Hindered amine light stabilizers are preferably compounds derived from substituted piperidine compounds, more preferably compounds derived from alkyl-substituted piperidyl, piperidinyl or piperazinone compounds, and substituted alkoxypiperidinyl compounds.
  • Hindered amine light stabilizers include, but are not limited to, 2,2,6,6-tetramethyl-4-piperidone; 2,2,6,6-tetramethyl-4-piperidinol; -(1,2,2,6,6-pentamethylpiperidyl)-(3′,5′-di-t-butyl-4′-hydroxybenzyl)butylmalonate; di-(2,2,6,6) -tetramethyl-4-piperidyl) sebacate; N-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidinol and oligomers of succinic acid; cyanuric acid and N,N-di(2, Oligomers of 2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine; bis-(2,2,6,6-tetramethyl-4-piperidinyl)succinate; bis-(1-octyloxy-2, 2,6,6-tetramethyl-4-piperidinyl
  • the amount of the hindered amine light stabilizer (HALS) added is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, still more preferably 0.05 to 3 parts by mass, per 100 parts by mass of the thermoplastic resin composition. It is 1 to 1 part by mass.
  • the thermoplastic resin composition of this embodiment may contain an antibacterial agent.
  • the antibacterial agent is not particularly limited. Inorganic antibacterial agents carried on soil, activated carbon, zirconium phosphate, hydroxyapatite, magnesium oxide, magnesium perchlorate, glass and the like can be mentioned. Zinc oxide is preferred as the antimicrobial metal.
  • Zinc oxide is not particularly limited and may be commercially available.
  • metallic zinc is heated to vaporize and burned in air, or zinc sulfate or zinc nitrate is heated. It may be prepared by As zinc oxide, for example, various shapes such as fibrous, plate-like, particulate, and tetrapod-like can be used.
  • the zinc oxide used in this embodiment may be surface-treated with silicon oxide, silicone oil, an organic silicon compound, an organic titanium compound, or the like.
  • Examples of commercially available zinc oxide include "Type 1 zinc oxide”, “Type 2 zinc oxide”, and “Type 3 zinc oxide” classified by JIS K-1410, and pharmacopoeia stipulated in the Japanese Pharmacopoeia.
  • Zinc oxide and anisotropic (columnar, plate-like, tetrapod-like) zinc oxide (zinc oxide having shape anisotropy) prepared through a hydrothermal synthesis process can be mentioned.
  • particulate zinc oxide having an average particle diameter of 50 to 200 nm is preferred, and particulate zinc oxide having an average particle diameter of 100 to 150 nm is particularly preferred.
  • the average particle size referred to here is the particle size at which the cumulative mass distribution is 50% in the particle size distribution obtained by measuring with a laser diffraction/scattering particle size distribution analyzer.
  • the amount of zinc oxide compounded is preferably 0.01 to 1 part by mass, more preferably 0.05 to 0.5 part by mass, and still more preferably 0.1 to 0 part by mass with respect to 100 parts by mass of the thermoplastic resin composition. .3 parts by mass.
  • thermoplastic resin composition of the present embodiment may contain an inorganic filler as a reinforcing filler for the purpose of imparting rigidity and improving strength.
  • inorganic fillers include talc, wollastonite, mica, clay, montmontlilonite, smectite, kaolin, calcium carbonate, glass fibers, glass beads, glass balloons, glass milled fibers, glass flakes, carbon fibers, and carbon flakes. , carbon beads, carbon milled fibers, metal flakes, metal fibers, metal-coated glass fibers, metal-coated carbon fibers, metal-coated glass flakes, silica, ceramic particles, ceramic fibers, ceramic balloons, aramid particles, aramid fibers, polyarylate fibers, Various whiskers such as graphite, potassium titanate whisker, aluminum borate whisker, and basic magnesium sulfate are included. Among them, silicate-based fillers such as talc, wollastonite, mica, glass fiber, and glass milled fiber are preferably used. talc, wollastonite and mica are particularly preferred.
  • the thermoplastic resin composition of the present embodiment contains an additive containing an acidic group such as a carboxylic anhydride group or a sulfonic acid group in order to improve the wettability of the inorganic filler.
  • an acidic group such as a carboxylic anhydride group or a sulfonic acid group in order to improve the wettability of the inorganic filler.
  • the content of the inorganic filler in the present embodiment is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, still more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition. 10 parts by mass. If the amount is less than 0.1 parts by mass, the reinforcing effect of the filler will not be obtained, and if it exceeds 30 parts by mass, the impact strength will be significantly lowered, which is not preferable.
  • thermoplastic resins other than the thermoplastic resin (A) and the hydrophilic copolymer (B) can be blended within a range that does not impair the purpose of the present embodiment.
  • thermoplastic resin a general-purpose thermoplastic resin used in home appliances and OA equipment can be used.
  • thermoplastic resins examples include: Olefin resins, polyolefin resins (high density polyethylene, low density polyethylene, polypropylene, etc.), cyclic olefin resins, and polyester resins (polylactic acid, polyethylene terephthalate, polybutylene terephthalate, etc.), polystyrene (PS resin), acrylonitrile butadiene styrene (ABS resin), and acrylonitrile styrene (AS resin), which are styrene resins; ASA resin obtained by polymerizing acrylic rubber instead of butadiene in ABS resin, AES resin obtained by polymerizing ethylene-based rubber instead of butadiene in ABS resin, Examples include methyl methacrylate butadiene styrene (MBS resin).
  • MBS resin methyl methacrylate butadiene styrene
  • Examples of other general-purpose resins include polyvinyl chloride-based resins (polyvinyl chloride, polyvinylidene chloride, etc.), polymethyl methacrylate-based resins, polyvinyl alcohol, polyethylene terephthalate (PET resin), and polybutylene terephthalate (PBT resin). .
  • Examples of engineering plastics that are particularly strong and have enhanced functions such as heat resistance include polycarbonate resins (BPA type polycarbonate, aliphatic polycarbonate, etc.), polyamide resins, polyphenylene ether resins (PPE resins), Examples include polyoxymethylene resins (polyacetal, etc.), polyphenylene sulfide resins, polyetherimide resins, aromatic polyetherketone resins, polysulfone resins, and polyamideimide resins.
  • BPA type polycarbonate, aliphatic polycarbonate, etc. polyamide resins
  • PPE resins polyphenylene ether resins
  • Examples include polyoxymethylene resins (polyacetal, etc.), polyphenylene sulfide resins, polyetherimide resins, aromatic polyetherketone resins, polysulfone resins, and polyamideimide resins.
  • a plurality of resins are, for example, polymer alloys such as PC/ABS and PC/AS.
  • Such polymer alloys have the features of both polycarbonate (PC resin) and styrene resins (ABS resin, AS resin, etc.) It is used in a wide range of fields such as household goods.
  • the fatty acid metal salt (C) has a lower molecular weight than the thermoplastic resin (A) or the hydrophilic copolymer (B) having an oxyethylene group (preferably a polyoxyethylene chain), any resin can be used as a raw material. However, since the fatty acid metal salt (C) is likely to be exposed on the surface of the molded article, various resins can be blended into the thermoplastic resin composition.
  • the fatty acid metal salt (C) and the hydrophilic copolymer (B) have different melt viscosities during molding.
  • the thermoplastic resin (A) injected into the mold first hardens, then the hydrophilic copolymer (B) hardens, and then the fatty acid metal salt (C) with a low molecular weight hardens. That is, the hydrophilic copolymer (B) and the fatty acid metal salt (C) have slower solidification speeds than the thermoplastic resin (A), and tend to be exposed on the surface of the molded product.
  • the hydrophilic copolymer (B) and the fatty acid metal salt (C) can be blended in the thermoplastic resin (A) because they have different melt viscosities during molding than the thermoplastic resin (A).
  • a resin raw material with a high melting point for example, about 320°C or higher
  • extremely high polarity is difficult to disperse, so it is difficult to obtain the desired dust suppression effect.
  • the hydrophilic copolymer (B) and the fatty acid metal salt (C) are more likely to gather near the surface layer of the molded article than the thermoplastic resin (A), so that the dust suppressing effect is likely to be exhibited.
  • the polar group of the low-molecular-weight fatty acid metal salt (C) has an affinity with the hydrophilic copolymer (B) having an oxyethylene group. Therefore, by attaching the hydrophilic copolymer (B) to the fatty acid metal salt (C), the hydrophilic copolymer (B) and the fatty acid metal salt (C) are prevented from being detached, and a large amount of can exist in Therefore, the effect of suppressing the adhesion of both hydrophilic and hydrophobic dust stains is likely to be exhibited.
  • thermoplastic resin composition Any method is employed for the production of the thermoplastic resin composition of the present embodiment.
  • a thermoplastic resin (A), a hydrophilic copolymer (B), a fatty acid metal salt (C) and optionally other additives are combined with a premixing means such as a V-blender, a Henschel mixer, a mechanochemical apparatus, an extrusion mixer, etc.
  • a premixing means such as a V-blender, a Henschel mixer, a mechanochemical apparatus, an extrusion mixer, etc.
  • the pre-mixture is granulated with an extrusion granulator, briquetting machine, etc. as necessary, and then melt-kneaded with a melt-kneader typified by a vented twin-screw extruder. , and then pelletizing with a pelletizer.
  • thermoplastic resin (A) there is a method of supplying each component independently to a melt kneader represented by a vented twin-screw extruder, or a method of premixing a part of each component and then supplying the rest of the components independently to a melt kneader.
  • a method of pre-mixing a part of each component for example, after pre-mixing the components other than the thermoplastic resin (A), it is mixed with the thermoplastic resin (A), or a method of directly supplying to the extruder. mentioned.
  • one having a vent that can deaerate moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump is preferably installed from the vent for efficiently discharging generated moisture and volatile gas to the outside of the extruder.
  • Such screens include wire meshes, screen changers, sintered metal plates (such as disk filters), and the like.
  • melt-kneader examples include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder with three or more screws, in addition to the twin-screw extruder.
  • thermoplastic resin composition extruded as described above is directly cut and pelletized, or is pelletized by forming strands and then cutting the strands with a pelletizer.
  • the shape of the pellet is preferably cylindrical.
  • the diameter of such a cylinder is preferably 1-5 mm, more preferably 1.5-4 mm, still more preferably 2-3.3 mm.
  • the length of the cylinder is preferably 1-30 mm, more preferably 2-5 mm, and even more preferably 2.5-3.5 mm.
  • thermoplastic resin composition of the present embodiment can be produced by injection-molding the pellets produced as described above to obtain molded articles.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including a method of injecting supercritical fluid), insert molding, in-mold coating molding, heat insulation Mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding can be mentioned.
  • injection compression molding injection press molding
  • gas-assisted injection molding foam molding (including a method of injecting supercritical fluid)
  • insert molding in-mold coating molding
  • heat insulation Mold molding rapid heating and cooling mold molding
  • two-color molding sandwich molding
  • ultra-high speed injection molding can be mentioned.
  • either cold runner method or hot runner method can be selected.
  • thermoplastic resin composition of the present embodiment can be used in the form of various profile extrudates, sheets, films, etc. by extrusion molding.
  • the inflation method, calender method, casting method, and the like can be used for forming sheets and films.
  • the thermoplastic resin composition of the present embodiment can also be formed into a molded product by rotational molding, blow molding, or the like.
  • Embodiment 2 A molded article according to the present embodiment is made of the above thermoplastic resin composition.
  • the effect of suppressing adhesion of both hydrophilic dust stains and hydrophobic dust stains is exhibited by using the above thermoplastic resin composition.
  • the concentration (content in the thermoplastic resin composition) of the fatty acid metal salt (C) in the vicinity of the surface of the molded article (a portion from the surface to a certain depth) is is preferably higher than the concentration of the fatty acid metal salt (C) in the interior of (a portion deeper than a certain depth from the surface).
  • the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface of the molded article is higher than the concentration of the fatty acid metal salt (C) in a portion deeper than 10 nm from the surface of the molded article. preferable.
  • surface of the molded article means at least a part of the surface of the molded article, and does not need to be the entire surface of the molded article. It may be the surface.
  • Such a difference in the concentration of the fatty acid metal salt (C) in the depth direction of the molded product for example, while scraping the surface of the molded product with Ar ions, the molded product in the state of being scraped to each depth. It can be confirmed by performing elemental analysis of the metal element M (measurement of the area ratio of the metal element M) on the surface using X-ray photoelectron spectroscopy (XPS) (see FIG. 2).
  • XPS X-ray photoelectron spectroscopy
  • the concentration of fatty acid metal salt (C) (area ratio of metal element M) at each depth is measured within 10 nm from the surface of the molded product (measurement depth A). and find the highest concentration among them.
  • the concentration of the fatty acid metal salt (C) is measured at a depth (L/2: measurement depth B) half the thickness L of the molded product indicated by the dotted line in FIG. By comparing the measured values of these concentrations, it is possible to confirm the difference in concentration of the fatty acid metal salt (C) in the depth direction of the molded product.
  • the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface is greater than 10 nm from the surface of the molded article. It was more than twice the concentration of the fatty acid metal salt (C) in the deep part.
  • the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface is 3.2% by mass at maximum, and the concentration of the fatty acid metal salt (C) in a portion deeper than 10 nm from the surface of the molded article is The concentration was about 0.3% to 0.6% by weight, the former being about 5-10 times higher than the latter.
  • the R portion is a non-polar group and the remaining portion is a polar group. It is believed that during molding, the polar groups are attached to the mold and the fatty acid metal salt (C) is aligned with the non-polar groups directed toward the inside of the thermoplastic resin composition. Furthermore, after molding, other fatty acid metal salt (C) melted inside the thermoplastic resin composition migrates to the surface.
  • the fatty acid metal salt (C) since the fatty acid metal salt (C) has low compatibility with the thermoplastic resin, when it is blended in an amount equal to or greater than the critical solubility (concentration), it diffuses to the surface of the thermoplastic resin composition (molded article). . In the vicinity of the surface of the thermoplastic resin composition, a plurality of fatty acid metal salts (C) are bonded with their polar groups, and arranged with the hydrophobic group R, which is a non-polar group, facing the outside (air side) of the molded product. Conceivable.
  • the concentration of the fatty acid metal salt (C) in the thermoplastic resin composition is higher than in the interior of the molded article, and the surface of the molded article to which dust stains adhere can be effectively treated. Energy reduction and water and oil repellency effects can be obtained.
  • the fatty acid metal salt (C) is used as a general application such as a lubricant or a mold release agent, a new effect of suppressing adhesion of hydrophobic dust stains on the surface of the molded product is obtained. can get.
  • the component ratio of the thermoplastic resin composition according to Embodiment 1 should be the same at the stage of liquefaction. the above effect can be obtained.
  • the thermoplastic resin composition of the present embodiment it is possible for the thermoplastic resin composition of the present embodiment to contain the optional components described in the first embodiment at the stage of liquefying the resin material.
  • a product according to the present embodiment includes the molded product described above. That is, the above-mentioned molded product is used, for example, as resin parts (internal parts, housings, etc.) of products such as home electric appliances and OA equipment.
  • the product of the present embodiment by including the molded product described above, the effect of improving cleanliness and reducing the frequency of maintenance can be achieved.
  • Products include, for example, personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, fax machines, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, and power tools.
  • VTR TV, iron, hair dryer, rice cooker, microwave oven, audio equipment, audio equipment (audio, laser disc (registered trademark), compact disc, etc.), lighting equipment (LED), remote control, ventilation fan, range hood, refrigerator , air conditioners (air conditioners, dehumidifiers, humidifiers, etc.), air purifiers, vacuum cleaners, rice cookers, cooking heaters, bath products, washroom products, jet towels, fans, typewriters, word processors, automobiles, vehicles Equipment (car navigation, car stereo, etc.), miscellaneous goods, and the like.
  • the above molded products are applied to resin parts such as air conditioners, doors, display devices, insulators, mirrors, measuring instruments, and operation parts of various devices, adhesion of dust dirt is reduced and cleanliness is improved. can be improved and maintenance frequency can be reduced.
  • the molded article is useful as a resin part of a product that cannot be maintained for a long period of time by a user or a trader.
  • thermoplastic resin composition of the present embodiment can be applied as long as the product has a resin part, and can be widely applied without being limited to the uses described above.
  • thermoplastic resin composition is suitable for mass production of products and has extremely high practicability.
  • thermoplastic resin compositions can be applied as exterior members without worrying about surface unevenness, rainbow patterns, glossiness, etc., compared to antifouling paints and coatings. Since it has the advantage of being easy to use, it is suitable for mass production of products and has extremely high practicality.
  • FIG. 5 is a schematic cross-sectional view of the air conditioner according to this embodiment.
  • a main body case 10 of an indoor unit of an air conditioner is formed in a substantially oblong parallelepiped shape, and has an air inlet 11 on its upper surface and an air outlet 12 on its lower front surface. is provided.
  • a pre-filter 17 is provided from the downstream side of the air suction port 11 to the front side of the body case 10 .
  • a front panel 14 is provided to cover the front surface of the body case 10 .
  • a fan 13 is provided in the main body case 10 for sucking indoor air sucked from the air inlet 11 into the room from the air outlet 12 .
  • a heat exchanger 22 is arranged on the upstream side of the fan 13 , and an air passage 21 is provided on the downstream side of the fan 13 , and air passes through the air passage 21 .
  • a drain pan 18 is provided below the heat exchanger 22 .
  • the main body case 10 is provided with a fan motor for driving the fan 13, a control section for controlling the operation of the air conditioner, and the like.
  • the vertical wind direction plates 15 and 16 adjust the blowing angle of the air blown from the air outlet 12 in the vertical direction.
  • the left/right airflow direction plate 19 adjusts the blowing angle of the air blown out from the air outlet 12 in the left/right direction.
  • Support shafts are provided at the ends of the vertical wind direction plates 15 and 16, respectively, and are rotatably and detachably supported by bearings provided on the side walls of the air outlet 12, and the left and right wind direction plates 19 are fixed.
  • Styrene-based resin such as PS or ABS may be used as the constituent material of the front panel 14, the air outlet 12, the left/right wind direction plate 19, the up/down direction plates 15 and 16, the air passage 21, and the rear wall 20.
  • an olefin resin such as polypropylene (PP) is often used.
  • PP polypropylene
  • AS styrene resin
  • thermoplastic resin composition can be suitably used for products that are constantly soiled, such as air conditioners.
  • thermoplastic resin composition As an effect of applying a molded product containing the above thermoplastic resin composition to an air conditioner, it is possible to reduce dirt on the parts, so it can be expected to improve cleanliness and reduce maintenance frequency. In addition, since there is no re-scattering of the dirt, discomfort caused when the odor caused by the dirt reaches with the wind is reduced. In addition, it is possible to suppress the growth of mold that feeds on adhering dirt. In addition, it is difficult to clean products such as air conditioners, which are installed high on the ceiling, and it is necessary for the user to use a stepladder or the like to clean them. can be lowered, which is particularly preferable for elderly people.
  • styrene resins such as ABS and PS or olefin resins such as PP.
  • Styrene-based resins such as ABS and PS or olefin-based resins such as PP are often used for dust boxes of vacuum cleaners.
  • Sirocco fans of various ventilation fans and fans of electric fans often use olefin resins such as PP. In both cases, by reducing dirt, it is possible to reduce the trouble of maintenance.
  • Tensile strength (tensile yield strength) was measured according to ISO 527-1, 2. The measured value was compared with the tensile strength of the styrene resin (Component A) used alone, and evaluated based on the following criteria.
  • the evaluation of the fracture mode indicates the mode in which the test piece does not break and scatter after the impact test, and the penetrating part of the shot center remains uniformly protruding. It was defined as ductile fracture, and brittle fracture when the test piece fractured in the shape of a striking core or a cradle, and the penetrating part remained flat and the end surface of the penetrating part showed a sharp state.
  • the fracture morphology is preferably a ductile fracture morphology rather than a brittle fracture morphology.
  • a high-speed surface impact tester Hydroshot HTM-1 manufactured by Shimadzu Corporation was used.
  • the test conditions were as follows: impact speed of the striking core was 7 m/sec, a semi-circular tip with a radius of 6.35 mm was used, and the hole diameter of the cradle was 25.4 mm.
  • Deflection temperature under load Deflection temperature under load was measured according to ISO 75-1 and 75-2. Note that the measurement load was 1.80 MPa.
  • (6) Evaluation of dust adhesion A square plate of 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) was prepared and left in an environment of 23 ° C. and 50% humidity for one week, and then a dust adhesion test was performed on the square plate. bottom. Kanto loam (11 types of JIS test powder) was used for evaluation of hydrophilic dust adhesion, and carbon black (12 types of JIS test powder) was used for evaluation of hydrophobic dust adhesion.
  • Evaluation of dust adhesion is performed by blowing a certain amount (5 g) of dust on the surface of the molded product with air, and then observing the surface of the molded product at 100x with a digital microscope VHX-5000 manufactured by KEYENCE.
  • the area ratio was determined and evaluated based on the following criteria.
  • the resulting mixture was supplied from the first supply port of the extruder.
  • the supply amount of the raw material (mixture) was precisely measured by a measuring instrument [CWF manufactured by Kubota Corporation].
  • CWF measuring instrument
  • a vented twin-screw extruder with a diameter of 30 mm Japan Steel Works, Ltd. TEX30 ⁇ -38.5BW-3V
  • the screw rotation speed is 200 rpm
  • the discharge rate is 20 kg / h
  • the vent vacuum The raw materials were melt-kneaded under conditions of a viscosity of 3 kPa to obtain pellets of the thermoplastic resin composition.
  • the extrusion temperature the temperature from the first supply port to the die portion was set to the temperature shown in the table.
  • pellets were dried with a hot air circulating dryer for 4 hours at the temperature shown in the table, and then molded into test pieces for evaluation using an injection molding machine (FANUC T-150D).
  • FANUC T-150D an injection molding machine
  • Basic conditions for injection molding were the cylinder temperature and mold temperature shown in the table, and the injection speed of 20 mm/s.
  • ABS A2 component-1 ABS resin [manufactured by Japan A&L Co., Ltd., Clarastic SXH-330 (trade name), weight average molecular weight in terms of standard polystyrene by GPC measurement: 90000, butadiene rubber component: about 17.5% by weight, weight average rubber particle diameter: 0 .40 ⁇ m]
  • PMMA A5 component-1
  • PPS A6 component-1
  • Polyphenylene sulfide resin [16.5 kg of sodium sulfide (containing 49% water of crystallization), 6.5 kg of sodium hydroxide, 5.2 kg of sodium acetate, and 22.0 kg of N-methyl-2-pyrrolidone were charged and dehydrated at 210°C.
  • polyester (600 g) and polyethylene glycol (300 g) having hydroxyl groups at both ends are polymerized in the presence of an antioxidant using a zirconium catalyst at 210° C. under reduced pressure for 7 hours to form carboxyl groups at both ends.
  • the obtained alternating copolymer (300 g) and trimethylolpropane (2.3 g) were polymerized at 240° C. under reduced pressure for 6 hours to convert the blocks derived from the alternating copolymer from trimethylolpropane.
  • thermoplastic resin (A) a thermoplastic resin having an oxyethylene group (B), and a thermoplastic resin composition containing a fatty acid metal salt (C) were molded. It can be confirmed that in the examples, which are good products, an excellent adhesion suppressing effect (antifouling effect) is obtained against hydrophilic and hydrophobic dust stains.

Abstract

A thermoplastic resin composition which contains: a thermoplastic resin (A) that is selected from the group consisting of an aromatic polycarbonate resin (A1), a styrene resin (A2), an aromatic polyester resin (A3), a polyphenylene ether resin (A4), a methacrylic resin (A5), a polyarylene sulfide resin (A6), an olefin resin (A7), a polyamide resin (A8) and a mixture of these resins; a hydrophilic copolymer (B) that has an oxyethylene group; and a fatty acid metal salt (C) that is represented by formula (1). With respect to this thermoplastic resin composition, the hydrophilic copolymer (B) is obtained by bonding a plurality of alternating copolymers (a) of a polyester (a1) and a hydrophilic polymer (a2) having an oxyethylene group to each other by the intermediary of an ester bond with at least one compound that is selected from the group consisting of a polyhydric alcohol compound (b1) having three or more hydroxyl groups, an epoxy compound (b2) having two or more epoxy groups, and a polycarboxylic acid compound (b3). (1): M(OH)y(R-COO)x (In formula (1), R represents an alkyl group having 6 to 40 carbon atoms or an alkenyl group; M represents at least one metal element that is selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium; and each of x and y independently represents an integer of 0 or more, while satisfying the relational expression (x + y) = (valence of M).)

Description

熱可塑性樹脂組成物、成形品および製品Thermoplastic resin compositions, moldings and products
 本開示は、熱可塑性樹脂組成物、成形品および製品に関する。 The present disclosure relates to thermoplastic resin compositions, molded articles and products.
 熱可塑性樹脂は金属よりも軽量で加工が容易であることから、その成形品は、家電製品、OA機器等の製品の内部部品、ハウジング、車両部品、雑貨等の様々な用途に、様々な環境下で使用されている。 Thermoplastic resins are lighter than metals and easier to process. used below.
 これらの熱可塑性樹脂の成形品には、その使用環境、使用方法により、砂塵、埃、煤、油煙等の粉塵汚れが付着したりすることがある。成形品に粉塵汚れが付着すると、見た目が悪くなり、製品の性能の劣化を招く虞もある。 Depending on the environment and method of use, dust, dirt, soot, oil smoke, and other dust stains may adhere to these thermoplastic resin molded products. When dust stains adhere to the molded product, the appearance of the molded product becomes unsightly, and there is a possibility that the performance of the product may be deteriorated.
 そこで、粉塵汚れの付着を抑制する為に、帯電防止剤を用いて熱可塑性樹脂の成形品に帯電防止性能を付与する試みがなされている。 Therefore, in order to suppress the adhesion of dust stains, attempts have been made to impart antistatic performance to thermoplastic resin molded articles using antistatic agents.
 例えば、帯電防止剤を吹き付け、浸漬、塗布等によって成形品の表面に付着させることにより、成形品に帯電防止性能を付与する方法が知られている。しかし、成形品の表面に帯電防止剤を付着させる方法では、帯電防止剤の大半が水溶性の界面活性剤であり、拭き取り、洗浄等によって帯電防止剤が除去され、帯電防止性効果がなくなるという問題がある。 For example, there is a known method of imparting antistatic performance to a molded product by spraying, immersing, or coating an antistatic agent onto the surface of the molded product. However, in the method of attaching an antistatic agent to the surface of a molded product, most of the antistatic agent is a water-soluble surfactant, and the antistatic agent is removed by wiping, washing, etc., and the antistatic effect is lost. There's a problem.
 一方、熱可塑性樹脂に添加剤として帯電防止剤を配合することにより、熱可塑性樹脂の成形品に帯電防止性能を付与する方法(練り込み法)も知られている。この練り込み法は、帯電防止効果の持続性が高いため、近年、注目されている。 On the other hand, there is also known a method (kneading method) of imparting antistatic performance to a thermoplastic resin molded product by adding an antistatic agent as an additive to the thermoplastic resin. This kneading method has been attracting attention in recent years because of its long-lasting antistatic effect.
 練り込み法に用いられる帯電防止剤としては、種々の化合物が知られている。例えば、特許文献1(特開2011-256293号公報)には、アミノエチルエタノールアミンの脂肪酸アミド化合物が開示されている。特許文献2(特開昭58-118838号公報)および特許文献3(特開平3-290464号公報)には、ポリエーテルエステルアミドが開示されている。特許文献4(特開2001-278985号公報)、特許文献5(国際公開第2014/115745号)および特許文献6(国際公開第2014/148454号)には、オレフィンのブロックと親水性ポリマーのブロックとからなるブロックコポリマー等が開示され、また、特許文献5および6には、ポリエーテルエステル系高分子型の帯電防止剤が開示されている。 Various compounds are known as antistatic agents used in the kneading method. For example, Patent Document 1 (JP-A-2011-256293) discloses a fatty acid amide compound of aminoethylethanolamine. Patent Document 2 (JP-A-58-118838) and Patent Document 3 (JP-A-3-290464) disclose polyetheresteramides. Patent Document 4 (Japanese Patent Laid-Open No. 2001-278985), Patent Document 5 (International Publication No. 2014/115745) and Patent Document 6 (International Publication No. 2014/148454) disclose an olefin block and a hydrophilic polymer block In addition, Patent Documents 5 and 6 disclose a polyether ester polymer type antistatic agent.
 なお、特許文献1には、アミノエチルエタノールアミンの脂肪酸アミド化合物の帯電防止効果を向上させる為に、アルカリ金属化合物、アルカリ土類金属化合物(例えば、ステアリン酸カルシウム)などを併用することが開示されている。また、特許文献4には、オレフィンのブロックと親水性ポリマーのブロックとからなるブロックコポリマーの帯電防止効果を向上する為に、塩化リチウム、酢酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルカリ金属化合物を併用することが開示されている。また、特許文献5および特許文献6には、ポリエーテルエステル系高分子型の帯電防止剤に、酢酸カリウムやドデシルベンゼンスルホン酸ナトリウムなどのアルカリ金属化合物を配合することが開示されている。 Patent Document 1 discloses the combined use of an alkali metal compound, an alkaline earth metal compound (for example, calcium stearate), etc. in order to improve the antistatic effect of the fatty acid amide compound of aminoethylethanolamine. there is Further, in Patent Document 4, in order to improve the antistatic effect of a block copolymer consisting of an olefin block and a hydrophilic polymer block, an alkali metal compound such as lithium chloride, potassium acetate, and sodium dodecylbenzenesulfonate is used in combination. It is disclosed to Further, Patent Documents 5 and 6 disclose the blending of an alkali metal compound such as potassium acetate or sodium dodecylbenzenesulfonate with a polyether ester polymer type antistatic agent.
 しかしながら、上記の帯電防止剤は、何れも、砂塵、埃等の親水性の粉塵汚れの付着抑制にはある程度の効果が認められるものの、煤、油煙等の疎水性の粉塵汚れに対する付着抑制効果は、殆ど認められなかった。そこで、特許文献7(国際公開第2021/006192号)には、親水性の粉塵汚れと疎水性の粉塵汚れとの両方が付着し難い樹脂組成物が開示されている。 However, although all of the antistatic agents described above are effective in suppressing adhesion of hydrophilic dust stains such as dust and dirt to some extent, they are not effective in suppressing adhesion of hydrophobic dust stains such as soot and oily smoke. was largely unrecognized. Therefore, Patent Document 7 (International Publication No. 2021/006192) discloses a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
特開2011-256293号公報JP 2011-256293 A 特開昭58-118838号公報JP-A-58-118838 特開平3-290464号公報JP-A-3-290464 特開2001-278985号公報Japanese Unexamined Patent Application Publication No. 2001-278985 国際公開第2014/115745号WO2014/115745 国際公開第2014/148454号WO2014/148454 国際公開第2021/006192号WO2021/006192
 しかしながら、特許文献7の樹脂組成物において、ポリオキシエチレン鎖を有する親水性コポリマー(B)として具体的に開示されるB1(オレフィン骨格。融点:約130~140℃)およびB2(ポリアミド骨格。融点:約195~200℃)は融点が高いため、低温プロセスには適していない。また、加工し難くなったり、加工、混練等に要する時間が長くなったりする可能性もある。また、それに起因して、他の材料の分解が進む場合もある。 However, in the resin composition of Patent Document 7, B1 (olefin skeleton. Melting point: about 130 to 140 ° C.) and B2 (polyamide skeleton. Melting point: about 130 to 140 ° C.) specifically disclosed as a hydrophilic copolymer (B) having a polyoxyethylene chain : about 195-200°C) is not suitable for low-temperature processes because of its high melting point. In addition, processing may become difficult, or the time required for processing, kneading, etc. may become longer. In addition, it may cause decomposition of other materials.
 したがって、本開示の目的は、従来よりも融点が低い材料を用いて、親水性の粉塵汚れと疎水性の粉塵汚れとの両方が付着し難い樹脂組成物を提供することである。 Therefore, an object of the present disclosure is to use a material with a lower melting point than conventional materials to provide a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
 本発明者らは、検討の結果、このような親水性コポリマー(B)として、国際公開第2021/006192号(特許文献7)に開示される「ポリオレフィンとポリオキシエチレン鎖を有する親水性ポリマーとが繰り返し交互に結合してなる親水性コポリマー」(B1)および「ポリエーテルエステルアミド」(B2)よりも融点が低い親水性コポリマーを用いた場合でも、親水性の粉塵汚れと疎水性の粉塵汚れとの両方が付着し難い樹脂組成物を提供できることを見出した。 As a result of investigation, the present inventors found that such a hydrophilic copolymer (B) is disclosed in International Publication No. 2021/006192 (Patent Document 7) "A hydrophilic polymer having a polyolefin and a polyoxyethylene chain. Even when using a hydrophilic copolymer having a lower melting point than the hydrophilic copolymer "(B1) and "polyether ester amide" (B2) in which is repeatedly and alternately bonded, hydrophilic dust stains and hydrophobic dust stains are used. and can provide a resin composition that is difficult to adhere to.
 本開示の熱可塑性樹脂組成物は、
 芳香族ポリカーボネート樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリエステル樹脂(A3)、ポリフェニレンエーテル系樹脂(A4)、メタクリル樹脂(A5)、ポリアリーレンスルフィド樹脂(A6)、オレフィン系樹脂(A7)、ポリアミド樹脂(A8)、および、これらの混合物からなる群から選択される熱可塑性樹脂(A)と、
 オキシエチレン基を有する親水性コポリマー(B)と、
 下記式(1)で表される脂肪酸金属塩(C)と、を含有する。
The thermoplastic resin composition of the present disclosure is
Aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6), olefin resin (A7 ), a polyamide resin (A8), and a thermoplastic resin (A) selected from the group consisting of mixtures thereof;
a hydrophilic copolymer (B) having an oxyethylene group;
and a fatty acid metal salt (C) represented by the following formula (1).
 
M(OH)y(R-COO)x ・・・(1)
 
(式(1)中、Rは、炭素数6~40のアルキル基またはアルケニル基である。Mは、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウムおよびバリウムからなる群から選択される少なくとも1種の金属元素である。xおよびyはそれぞれ独立な0以上の整数であり、x+y=[Mの価数]の関係を満たす。)
 前記親水性コポリマー(B)は、ポリエステル(a1)とオキシエチレン基を有する親水性ポリマー(a2)との交互共重合体(a)の複数が、水酸基を3個以上有する多価アルコール化合物(b1)、エポキシ基を2個以上有するエポキシ化合物(b2)、および、ポリカルボン酸化合物(b3)からなる群から選択される少なくとも1種とのエステル結合を介して結合してなる。

M(OH)y(R-COO)x (1)

(In formula (1), R is an alkyl group or alkenyl group having 6 to 40 carbon atoms. M is at least one metal selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium. is an element, x and y are each independent integers of 0 or more and satisfy the relationship x + y = [valence of M].)
The hydrophilic copolymer (B) is a polyhydric alcohol compound (b1 ), an epoxy compound (b2) having two or more epoxy groups, and at least one selected from the group consisting of a polycarboxylic acid compound (b3) via an ester bond.
 本開示によれば、熱可塑性樹脂(A)に対して、上記の親水性コポリマー(B)および脂肪酸金属塩(C)を配合することで、熱可塑性樹脂組成物を含む成形品への親水性の粉塵汚れと疎水性の粉塵汚れとの両方の付着を抑制することができる。したがって、従来よりも融点が低い材料を用いて、親水性の粉塵汚れと疎水性の粉塵汚れとの両方が付着し難い樹脂組成物を提供することができる。 According to the present disclosure, by blending the hydrophilic copolymer (B) and the fatty acid metal salt (C) with the thermoplastic resin (A), hydrophilicity to the molded article containing the thermoplastic resin composition Adhesion of both dust stains and hydrophobic dust stains can be suppressed. Therefore, by using a material having a lower melting point than conventional materials, it is possible to provide a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are less likely to adhere.
実施の形態2に係る成形品の一例を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing an example of a molded product according to Embodiment 2; 実施の形態2に係る成形品の一例について、深さ方向の組成分布を示す模式的なグラフである。6 is a schematic graph showing composition distribution in the depth direction for an example of a molded article according to Embodiment 2. FIG. 実施の形態に係る熱可塑性樹脂組成物について説明するための概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment. 実施の形態に係る熱可塑性樹脂組成物について説明するための概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment. 実施の形態3に係る空気調和機の一例を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing an example of an air conditioner according to Embodiment 3; 実施の形態に係る熱可塑性樹脂組成物について説明するための概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram for demonstrating the thermoplastic resin composition which concerns on embodiment.
 以下、本開示の実施の形態について説明する。なお、図面において、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。 An embodiment of the present disclosure will be described below. In the drawings, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 実施の形態1.
 本実施の形態の熱可塑性樹脂組成物は、
 芳香族ポリカーボネート樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリエステル樹脂(A3)、ポリフェニレンエーテル系樹脂(A4)、メタクリル樹脂(A5)、ポリアリーレンスルフィド樹脂(A6)、オレフィン系樹脂(A7)、ポリアミド樹脂(A8)、および、これらの混合物からなる群から選択される熱可塑性樹脂(A)と、
 オキシエチレン基を有する親水性コポリマー(B)と、
 脂肪酸金属塩(C)と、を含有する。
Embodiment 1.
The thermoplastic resin composition of the present embodiment is
Aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6), olefin resin (A7 ), a polyamide resin (A8), and a thermoplastic resin (A) selected from the group consisting of mixtures thereof;
a hydrophilic copolymer (B) having an oxyethylene group;
and a fatty acid metal salt (C).
 本実施の形態の熱可塑性樹脂組成物を含む成形品では、親水性の粉塵汚れと疎水性の粉塵汚れとの両方の付着が抑制されるという顕著な防汚効果が奏される。なお、かかる効果は、上記成分(A)~(C)の全てを含む熱可塑性樹脂組成物によって奏され、成分(A)だけ、成分(B)だけ、成分(C)だけ、成分(A)および(B)だけ、成分(A)および(C)だけ、または、成分(B)および(C)だけで、このような顕著な防汚効果を得ることは難しい。 A molded article containing the thermoplastic resin composition of the present embodiment exhibits a remarkable antifouling effect that adhesion of both hydrophilic dust stains and hydrophobic dust stains is suppressed. This effect is exhibited by a thermoplastic resin composition containing all of the above components (A) to (C), and only component (A), only component (B), only component (C), and and (B) alone, components (A) and (C) alone, or components (B) and (C) alone, it is difficult to obtain such a remarkable antifouling effect.
 さらに、前記親水性コポリマー(B)として、ポリエステル(a1)とオキシエチレン基を有する親水性ポリマー(a2)と(が繰り返し交互に結合してなる)の交互共重合体(a)の複数が、水酸基を3個以上有する多価アルコール化合物(b1)、エポキシ基を2個以上有するエポキシ化合物(b2)、および、ポリカルボン酸化合物(b3)からなる群から選択される少なくとも1種とのエステル結合を介して結合してなる親水性コポリマーが用いられる。 Furthermore, as the hydrophilic copolymer (B), a plurality of alternating copolymers (a) of the polyester (a1), the hydrophilic polymer (a2) having an oxyethylene group, and (a) are repeatedly and alternately bonded, An ester bond with at least one selected from the group consisting of a polyhydric alcohol compound (b1) having 3 or more hydroxyl groups, an epoxy compound (b2) having 2 or more epoxy groups, and a polycarboxylic acid compound (b3). A hydrophilic copolymer formed by binding via is used.
 これにより、親水性コポリマー(B)として従来よりも融点が低い材料を用いて、親水性の粉塵汚れと疎水性の粉塵汚れとの両方が付着し難い樹脂組成物を抑制することができる。 As a result, a material with a lower melting point than conventionally used as the hydrophilic copolymer (B) can be used to suppress a resin composition to which both hydrophilic dust stains and hydrophobic dust stains are difficult to adhere.
 なお、本実施の形態の熱可塑性樹脂組成物を含む成形品は、更に良好な耐衝撃性等の機械的強度を併せ持つことも可能である。 A molded article containing the thermoplastic resin composition of the present embodiment can also have better mechanical strength such as impact resistance.
 <熱可塑性樹脂(A)>
 熱可塑性樹脂(A)は、芳香族ポリカーボネート樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリエステル樹脂(A3)、ポリフェニレンエーテル系樹脂(A4)、メタクリル樹脂(A5)、ポリアリーレンスルフィド樹脂(A6)、オレフィン系樹脂(A7)、ポリアミド樹脂(A8)、および、これらの混合物から成る群から選択されるものである。
<Thermoplastic resin (A)>
The thermoplastic resin (A) includes aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin ( A6), olefinic resins (A7), polyamide resins (A8), and mixtures thereof.
 上記の混合物、すなわち、芳香族ポリカーボネート樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリエステル樹脂(A3)、ポリフェニレンエーテル系樹脂(A4)、メタクリル樹脂(A5)、ポリアリーレンスルフィド樹脂(A6)、オレフィン系樹脂(A7)、および、ポリアミド樹脂(A8)から選択される少なくとも2種の樹脂の混合物の例としては、特に限定されるものではないが、例えば、芳香族ポリカーボネート樹脂(A1)とスチレン系樹脂(A2)、芳香族ポリカーボネート樹脂(A1)と芳香族ポリエステル樹脂(A3)、芳香族ポリカーボネート樹脂(A1)とオレフィン系樹脂(A7)、芳香族ポリカーボネート樹脂(A1)とメタクリル樹脂(A5)、スチレン系樹脂(A2)と芳香族ポリエステル樹脂(A3)、スチレン系樹脂(A2)とメタクリル樹脂(A5)、スチレン系樹脂(A2)とオレフィン系樹脂(A7)、スチレン系樹脂(A2)とポリアミド樹脂(A8)、ポリフェニレンエーテル系樹脂(A4)とオレフィン系樹脂(A7)、メタクリル樹脂(A5)とオレフィン系樹脂(A7)、オレフィン系樹脂(A7)とポリアミド樹脂(A8)などの組み合わせを挙げることができる。 A mixture of the above, that is, aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6) , the olefin resin (A7), and the polyamide resin (A8) are not particularly limited, but for example, the aromatic polycarbonate resin (A1) and Styrene resin (A2), aromatic polycarbonate resin (A1) and aromatic polyester resin (A3), aromatic polycarbonate resin (A1) and olefin resin (A7), aromatic polycarbonate resin (A1) and methacrylic resin (A5 ), styrene resin (A2) and aromatic polyester resin (A3), styrene resin (A2) and methacrylic resin (A5), styrene resin (A2) and olefin resin (A7), styrene resin (A2) and polyamide resin (A8), polyphenylene ether resin (A4) and olefin resin (A7), methacrylic resin (A5) and olefin resin (A7), olefin resin (A7) and polyamide resin (A8), etc. can be mentioned.
 なお、熱可塑性樹脂(A)の融点は、例えば150~270℃であり、好ましくは160~230℃である。 The melting point of the thermoplastic resin (A) is, for example, 150-270°C, preferably 160-230°C.
 (芳香族ポリカーボネート樹脂(A1))
 芳香族ポリカーボネート樹脂(A1)は、通常、ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
(Aromatic polycarbonate resin (A1))
The aromatic polycarbonate resin (A1) is usually obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method, or by polymerizing a carbonate prepolymer by a solid phase transesterification method. or obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
 ここで使用されるジヒドロキシ成分としては、通常、芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。 The dihydroxy component used here may be one that is usually used as a dihydroxy component for aromatic polycarbonates, and may be bisphenols or aliphatic diols.
 ビスフェノール類としては、例えば4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5,2,1,02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。 Examples of bisphenols include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1- Phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)-3,3,5 -trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3′-biphenyl)propane, 2,2-bis(4-hydroxy-3-isopropylphenyl)propane, 2,2-bis(3-t- Butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 2,2-bis(3-bromo-4-hydroxyphenyl) Propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 1,1-bis(3-cyclohexyl-4- hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)diphenylmethane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,1-bis( 4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 4,4'-dihydroxy- 3,3′-dimethyldiphenyl sulfoxide, 4,4′-hydroxy-3,3′-dimethyldiphenyl sulfide, 2,2′-diphenyl-4,4′-sulfonyldiphenol, 4,4′-dihydroxy-3, 3′-diphenyldiphenylsulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenylsulfide, 1,3-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis{2-( 4-hydroxyphenyl)propyl}benzene, 1,4-bis(4-hydroxyphenyl)cyclohexane , 1,3-bis(4-hydroxyphenyl)cyclohexane, 4,8-bis(4-hydroxyphenyl)tricyclo[5,2,1,02,6]decane, 4,4′-(1,3-adamantane diyl)diphenol 1,3-bis(4-hydroxyphenyl)-5,7-dimethyladamantane and the like.
 脂肪族ジオール類としては、例えば2,2-ビス-(4-ヒドロキシシクロヘキシル)-プロパン、1,1,4-テトラデカンジオール、オクタエチレングリコール、1,1,6-ヘキサデカンジオール、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス{(2-ヒドロキシエトキシ)フェニル}メタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}エタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-1-フェニルエタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-メチルフェニル}プロパン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-3,3,5-トリメチルシクロヘキサン、2,2-ビス{4-(2-ヒドロキシエトキシ)-3,3’-ビフェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-イソプロピルフェニル}プロパン、2,2-ビス{3-t-ブチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}ブタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}-4-メチルペンタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}オクタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}デカン、2,2-ビス{3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシフェニルプロパン、1,1-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2-ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9-ビス{(2-ヒドロキシエトキシ)フェニル}フルオレン、9,9-ビス{4-(2-ヒドロキシエトキシ)-3-メチルフェニル}フルオレン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テル、1,3-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8-ビス{(2-ヒドロキシエトキシ)フェニル}トリシクロ[5,2,1,02,6]デカン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}-5,7-ジメチルアダマンタン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール(イソソルビド)、1,4:3,6-ジアンヒドロ-D-マンニトール(イソマンニド)、1,4:3,6-ジアンヒドロ-L-イジトール(イソイディッド)等が挙げられる。 Examples of aliphatic diols include 2,2-bis-(4-hydroxycyclohexyl)-propane, 1,1,4-tetradecanediol, octaethylene glycol, 1,1,6-hexadecanediol, 4,4'- Bis(2-hydroxyethoxy)biphenyl, bis{(2-hydroxyethoxy)phenyl}methane, 1,1-bis{(2-hydroxyethoxy)phenyl}ethane, 1,1-bis{(2-hydroxyethoxy)phenyl }-1-phenylethane, 2,2-bis{(2-hydroxyethoxy)phenyl}propane, 2,2-bis{(2-hydroxyethoxy)-3-methylphenyl}propane, 1,1-bis{( 2-hydroxyethoxy)phenyl}-3,3,5-trimethylcyclohexane, 2,2-bis{4-(2-hydroxyethoxy)-3,3′-biphenyl}propane, 2,2-bis{(2- hydroxyethoxy)-3-isopropylphenyl}propane, 2,2-bis{3-t-butyl-4-(2-hydroxyethoxy)phenyl}propane, 2,2-bis{(2-hydroxyethoxy)phenyl}butane , 2,2-bis{(2-hydroxyethoxy)phenyl}-4-methylpentane, 2,2-bis{(2-hydroxyethoxy)phenyl}octane, 1,1-bis{(2-hydroxyethoxy)phenyl }decane, 2,2-bis{3-bromo-4-(2-hydroxyethoxy)phenyl}propane, 2,2-bis{3,5-dimethyl-4-(2-hydroxyethoxy)phenyl}propane, 2 , 2-bis{3-cyclohexyl-4-(2-hydroxyethoxyphenylpropane, 1,1-bis{3-cyclohexyl-4-(2-hydroxyethoxy)phenyl}cyclohexane, bis{(2-hydroxyethoxy)phenyl } diphenylmethane, 9,9-bis{(2-hydroxyethoxy)phenyl}fluorene, 9,9-bis{4-(2-hydroxyethoxy)-3-methylphenyl}fluorene, 1,1-bis{(2- hydroxyethoxy)phenyl}cyclohexane, 1,1-bis{(2-hydroxyethoxy)phenyl}cyclopentane, 4,4'-bis(2-hydroxyethoxy)diphenyl ether, 4,4'-bis(2- hydroxyethoxy)-3,3′-dimethyldiphenyl ether, 1,3-bis[2-{(2-hydroxyethoxy)phenyl}propyl]benzene, 1,4-bis[2-{(2-hydroxyethoxy)phenyl}propyl]benzene, 1,4-bis{(2-hydroxyethoxy)phenyl}cyclohexane, 1,3-bis{(2-hydroxyethoxy)phenyl } cyclohexane, 4,8-bis{(2-hydroxyethoxy)phenyl}tricyclo[5,2,1,02,6]decane, 1,3-bis{(2-hydroxyethoxy)phenyl}-5,7- dimethyladamantane, 3,9-bis(2-hydroxy-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, 1,4:3,6-dianhydro-D -sorbitol (isosorbide), 1,4:3,6-dianhydro-D-mannitol (isomannide), 1,4:3,6-dianhydro-L-iditol (isoidide) and the like.
 これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、および1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-スルホニルジフェノール、および9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上を組み合わせて用いてもよい。 Among these, aromatic bisphenols are preferred, and among them 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4 -hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-sulfonyl Diphenol, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis{2-(4-hydroxyphenyl) Propyl}benzene and 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene are preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl ) cyclohexane, 4,4′-sulfonyldiphenol, and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are preferred. Among them, 2,2-bis(4-hydroxyphenyl)propane, which has excellent strength and good durability, is most preferable. Moreover, these may be used alone or in combination of two or more.
 芳香族ポリカーボネート樹脂(A1)は、分岐化剤を上記のジヒドロキシ化合物と併用してなる分岐化ポリカーボネート樹脂であってもよい。 The aromatic polycarbonate resin (A1) may be a branched polycarbonate resin obtained by using a branching agent in combination with the above dihydroxy compound.
 かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2,2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、または、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸および、これらの酸クロライド等が挙げられる。これらの中でも、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, 4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, acid chlorides thereof, and the like. Among these, 1,1,1-tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris (4-Hydroxyphenyl)ethane is preferred.
 これらの芳香族ポリカーボネート樹脂は、通常の芳香族ポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。 These aromatic polycarbonate resins are produced by reaction means known per se for producing ordinary aromatic polycarbonate resins, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester. Basic means of the manufacturing method will be briefly described.
 カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常、酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。 For reactions using, for example, phosgene as a carbonate precursor, the reaction is usually carried out in the presence of an acid binder and a solvent. Examples of acid binders include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and amine compounds such as pyridine. Halogenated hydrocarbons such as methylene chloride and chlorobenzene are used as the solvent. A catalyst such as a tertiary amine or a quaternary ammonium salt may also be used to accelerate the reaction. At that time, the reaction temperature is usually 0 to 40° C., and the reaction time is several minutes to 5 hours.
 カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下で芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。 The transesterification reaction using a carbonic acid diester as a carbonate precursor is carried out by stirring the aromatic dihydroxy component with the carbonic acid diester while heating in an inert gas atmosphere, and distilling off the alcohol or phenol that is produced. Although the reaction temperature varies depending on the boiling point of the alcohol or phenol to be produced, it is usually in the range of 120 to 300°C. The reaction is completed under reduced pressure from the initial stage while the alcohol or phenols produced are distilled off. Also, a catalyst commonly used for transesterification can be used to accelerate the reaction.
 上記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。 Examples of carbonic acid diesters used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Among these, diphenyl carbonate is particularly preferred.
 本開示において、重合反応においては末端停止剤を使用することができる。末端停止剤は分子量調節のために使用され、また得られた芳香族ポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記式(2)~(4)で表される単官能フェノール類を示すことができる。 In the present disclosure, a terminal terminator can be used in the polymerization reaction. A terminal terminator is used for molecular weight control, and the obtained aromatic polycarbonate resin is end-capped, so that it has excellent thermal stability as compared to other resins. Monofunctional phenols represented by the following formulas (2) to (4) can be shown as such a terminal terminator.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(2)中、Aは水素原子、炭素数1~9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1~9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1~9)であり、rは1~5(好ましくは1~3)の整数である]。 [In the formula (2), A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the alkyl moiety has 1 to 9 carbon atoms), a phenyl group, or a phenylalkyl group (the alkyl moiety has 1 to 9) and r is an integer of 1 to 5 (preferably 1 to 3)].
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(3)および式(4)中、Xは-R-O-、-R-CO-O-または-R-O-CO-である、ここでRは単結合または炭素数1~10(好ましくは1~5)の二価の脂肪族炭化水素基を示し、nは10~50の整数を示す。]
 上記式(2)で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p-tert-ブチルフェノール、p-クレゾール、p-クミルフェノール、2-フェニルフェノール、4-フェニルフェノール、イソオクチルフェノールなどが挙げられる。
[In formulas (3) and (4), X is -R-O-, -R-CO-O- or -R-O-CO-, where R is a single bond or (preferably 1-5) represents a divalent aliphatic hydrocarbon group, n represents an integer of 10-50. ]
Specific examples of monofunctional phenols represented by the formula (2) include phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenylphenol. , isooctylphenol and the like.
 また、上記式(3)~(4)で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類である。これらを用いて芳香族ポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があるため、これらのフェノール類は好ましく使用される。 Further, the monofunctional phenols represented by the above formulas (3) to (4) are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent. When these are used to block the ends of the aromatic polycarbonate resin, they not only function as a terminal terminating agent or a molecular weight modifier, but also improve the melt flowability of the resin and facilitate molding. These phenols are preferably used because they have the effect of lowering the water absorption rate of .
 上記式(3)の置換フェノール類としては、nが10~30、特に10~26のものが好ましく、その具体例としては、例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノール、トリアコンチルフェノール等を挙げることができる。 As the substituted phenols of the above formula (3), those having n of 10 to 30, particularly 10 to 26 are preferred, and specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol and octadecylphenol. , eicosylphenol, docosylphenol, triacontylphenol and the like.
 また、上記式(4)の置換フェノール類としては、Xが-R-CO-O-であり、Rが単結合である化合物が適当であり、nが10~30、特に10~26のものが好適である。その具体例としては、例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。 As the substituted phenols of the above formula (4), compounds in which X is -R-CO-O- and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26. is preferred. Specific examples include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate.
 これらの単官能フェノール類のうち、上記式(2)で表される単官能フェノール類が好ましく、アルキル置換もしくはフェニルアルキル置換のフェノール類がより好ましくは、p-tert-ブチルフェノール、p-クミルフェノールまたは2-フェニルフェノールが特に好ましい。 Among these monofunctional phenols, monofunctional phenols represented by the above formula (2) are preferred, and alkyl-substituted or phenylalkyl-substituted phenols are more preferred, such as p-tert-butylphenol and p-cumylphenol. or 2-phenylphenol is particularly preferred.
 これらの単官能フェノール類の末端停止剤は、得られた芳香族ポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル%末端に導入されることが望ましく、また、末端停止剤は、単独でまたは2種以上を混合して使用してもよい。 These monofunctional phenolic terminal terminating agents are desirably introduced into at least 5 mol %, preferably at least 10 mol % of all terminals of the obtained aromatic polycarbonate resin. may be used alone or in combination of two or more.
 芳香族ポリカーボネート樹脂(A1)は、本開示の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸またはその誘導体を共重合したポリエステルカーボネートであってもよい。 The aromatic polycarbonate resin (A1) may be a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid, such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, or a derivative thereof, within the scope of the present disclosure.
 芳香族ポリカーボネート樹脂(A1)の粘度平均分子量は限定されない。ただし、粘度平均分子量は、10000未満であると強度等が低下し、50000を超えると成形加工特性が低下するようになるので、10000~50000の範囲が好ましく、12000~30000の範囲がより好ましく、15000~28000の範囲がさらに好ましい。なお、本開示でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mLに芳香族ポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mvを求める。 The viscosity average molecular weight of the aromatic polycarbonate resin (A1) is not limited. However, if the viscosity-average molecular weight is less than 10,000, the strength, etc. will be reduced, and if it exceeds 50,000, the moldability will be reduced. A range of 15,000 to 28,000 is more preferred. In addition, the viscosity average molecular weight referred to in the present disclosure is obtained by first using an Ostwald viscometer from a solution in which 0.7 g of an aromatic polycarbonate resin is dissolved in 100 mL of methylene chloride at 20 ° C. to obtain the specific viscosity calculated by the following formula. The obtained specific viscosity is inserted into the following equation to obtain the viscosity average molecular weight Mv.
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
  ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
  [η]=1.23×10-4Mv0.83
  c=0.7
 芳香族ポリカーボネート樹脂(A1)は、樹脂中の全塩素量が好ましくは0~200ppm、より好ましくは0~150ppmである。芳香族ポリカーボネート樹脂中の全塩素量が200ppmを越えると、色相および熱安定性が悪くなるので好ましくない。
Specific viscosity (η SP ) = (tt 0 )/t 0
[t 0 is the number of seconds the methylene chloride falls, t is the number of seconds the sample solution falls]
η SP /c=[η]+0.45×[η] 2c (where [η] is the intrinsic viscosity)
[η]=1.23×10 −4 Mv 0.83
c=0.7
The aromatic polycarbonate resin (A1) preferably has a total chlorine content of 0 to 200 ppm, more preferably 0 to 150 ppm. If the total chlorine content in the aromatic polycarbonate resin exceeds 200 ppm, the hue and heat stability will deteriorate, which is not preferred.
 (スチレン系樹脂(A2))
 本実施の形態のスチレン系樹脂(A2)の主成分としては、例えば、ポリスチレン樹脂(PS)、耐衝撃性ポリスチレン樹脂(HIPS)、アルキル(メタ)アクリレート単量体と芳香族ビニル単量体との共重合体(MS)、シアン化ビニル化合物と芳香族ビニル化合物との共重合体(AS)、ジエン系ゴム成分を含有するシアン化ビニル化合物と芳香族ビニル化合物との共重合体(ABS)、エチレン-αオレフィンゴム成分を含むシアン化ビニル化合物と芳香族ビニル化合物との共重合体(AES)、アクリルゴム成分を含むシアン化ビニル化合物と芳香族ビニル化合物との共重合体(ASA)、ジエン系ゴム成分を含むアルキル(メタ)アクリレート単量体と芳香族ビニル化合物との共重合体(MBS)、ジエン系ゴム成分を含むアルキル(メタ)アクリレート単量体とシアン化ビニル化合物と芳香族ビニル化合物との共重合体(MABS)、アクリルゴム成分を含むアルキル(メタ)アクリレート単量体と芳香族ビニル化合物との共重合体(MAS)などを挙げることができる。
(Styrene resin (A2))
Main components of the styrene-based resin (A2) of the present embodiment include, for example, polystyrene resin (PS), high-impact polystyrene resin (HIPS), alkyl (meth)acrylate monomer and aromatic vinyl monomer. (MS), a copolymer of a vinyl cyanide compound and an aromatic vinyl compound (AS), a copolymer of a vinyl cyanide compound containing a diene rubber component and an aromatic vinyl compound (ABS) , a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing an ethylene-α-olefin rubber component (AES), a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing an acrylic rubber component (ASA), A copolymer (MBS) of an alkyl (meth)acrylate monomer containing a diene rubber component and an aromatic vinyl compound, an alkyl (meth)acrylate monomer containing a diene rubber component, a vinyl cyanide compound, and an aromatic A copolymer with a vinyl compound (MABS), a copolymer of an alkyl (meth)acrylate monomer containing an acrylic rubber component and an aromatic vinyl compound (MAS), and the like can be mentioned.
 なお、主成分とは、最も質量が多い成分であり、スチレン系樹脂(A2)中の主成分の含有率は、好ましくは90質量%以上であり、より好ましくは95質量%以上である。 The main component is the component with the largest mass, and the content of the main component in the styrene resin (A2) is preferably 90% by mass or more, more preferably 95% by mass or more.
 スチレン系樹脂(A2)は、その製造時にメタロセン触媒等の触媒を使用することによって得られた、シンジオタクチックポリスチレン等の高い立体規則性を有する樹脂であってもよい。また、スチレン系樹脂(A2)は、アニオンリビング重合、ラジカルリビング重合等の方法により得られた、分子量分布の狭い重合体、共重合体およびブロック共重合体、並びに、立体規則性の高い重合体および共重合体であってもよい。 The styrene-based resin (A2) may be a resin having high stereoregularity such as syndiotactic polystyrene obtained by using a catalyst such as a metallocene catalyst during its production. The styrene-based resin (A2) is a polymer, copolymer, or block copolymer with a narrow molecular weight distribution obtained by a method such as anionic living polymerization or radical living polymerization, and a polymer with high stereoregularity. and copolymers.
 ポリスチレン樹脂(PS)は、少なくとも一種の芳香族ビニル化合物を溶液重合、塊状重合、懸濁重合、塊状-懸濁重合等の重合方法によって重合して得られる重合体である。好ましい芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ターシャリーブチルスチレンなどのアルキルスチレン、フェニルスチレン、ビニルスチレン、クロロスチレン、ブロモスチレン、フルオロスチレン、クロロメチルスチレン、メトキシスチレン、エトキシスチレン等が挙げられる。これらは一種または二種以上を使用し得る。これらのうち特に好ましい芳香族ビニル化合物は、スチレン、p-メチルスチレン、m-メチルスチレン、p-ターシャリーブチルスチレン、p-クロロスチレン、m-クロロスチレン、p-フルオロスチレンであり、特にスチレンが好ましい。 A polystyrene resin (PS) is a polymer obtained by polymerizing at least one aromatic vinyl compound by a polymerization method such as solution polymerization, bulk polymerization, suspension polymerization, or bulk-suspension polymerization. Preferred aromatic vinyl compounds include, for example, styrene, alkylstyrenes such as α-methylstyrene, methylstyrene, ethylstyrene, isopropylstyrene, tert-butylstyrene, phenylstyrene, vinylstyrene, chlorostyrene, bromostyrene, fluorostyrene, chloromethylstyrene, methoxystyrene, ethoxystyrene and the like. These can be used alone or in combination of two or more. Particularly preferred aromatic vinyl compounds among these are styrene, p-methylstyrene, m-methylstyrene, p-tert-butylstyrene, p-chlorostyrene, m-chlorostyrene and p-fluorostyrene, especially styrene. preferable.
 ポリスチレン樹脂(PS)の分子量について、特に制限はないが、溶媒としてトリクロロベンゼンを用い、135℃において、GPC(ゲルパーミエーションクロマトグラフィー)法により測定したポリスチレン換算の質量平均分子量は、好ましくは100,000以上であり、より好ましくは150,000以上である。なお、分子量分布の広狭は制限されない。 The molecular weight of the polystyrene resin (PS) is not particularly limited, but the weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography) at 135° C. using trichlorobenzene as a solvent is preferably 100, 000 or more, more preferably 150,000 or more. The width of the molecular weight distribution is not limited.
 耐衝撃性ポリスチレン樹脂(HIPS)は、PS等の芳香族ビニル重合体からなるマトリックス中に、ブタジエンゴム等からなるゴム状重合体が粒子状に分散してなる重合体である。HIPSは、例えば、芳香族ビニル単量体と不活性溶媒の混合液に、ゴム状重合体を溶解し、攪拌して塊状重合、懸濁重合、溶液重合等を行うことにより得ることができる。また、HIPSは、例えば、芳香族ビニル単量体と不活性溶媒の混合液にゴム状重合体を溶解して得られた重合体に、別途得られた芳香族ビニル重合体を混合した混合物であってもよい。 A high-impact polystyrene resin (HIPS) is a polymer in which a rubber-like polymer made of butadiene rubber or the like is dispersed in the form of particles in a matrix made of an aromatic vinyl polymer such as PS. HIPS can be obtained, for example, by dissolving a rubber-like polymer in a mixture of an aromatic vinyl monomer and an inert solvent, stirring the mixture, and performing bulk polymerization, suspension polymerization, solution polymerization, or the like. HIPS is, for example, a mixture obtained by mixing a polymer obtained by dissolving a rubber-like polymer in a mixture of an aromatic vinyl monomer and an inert solvent, and an aromatic vinyl polymer obtained separately. There may be.
 HIPSにおいて、芳香族ビニル重合体からなるマトリックス部分について、特に制限されないが、溶媒としてトリクロロベンゼンを用い、135℃において、GPC(ゲルパーミエーションクロマトグラフィー)法により測定したポリスチレン換算の質量平均分子量は、好ましくは100,000以上であり、より好ましくは150,000以上である。また、ゴム状重合体の平均粒子径について、特に制限はないが、一般的には0.4~6.0μmが適当である。 In HIPS, the matrix portion composed of the aromatic vinyl polymer is not particularly limited, but using trichlorobenzene as a solvent at 135° C., the mass average molecular weight in terms of polystyrene as measured by GPC (gel permeation chromatography) is It is preferably 100,000 or more, more preferably 150,000 or more. Also, the average particle size of the rubber-like polymer is not particularly limited, but generally 0.4 to 6.0 μm is appropriate.
 上記の芳香族ビニル単量体としては、スチレン、およびその誘導体(例えば、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン等)が使用できるが、スチレンが最も好適である。なお、これらの単量体の2種以上を併用してもよい。 As the above aromatic vinyl monomer, styrene and its derivatives (eg, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, etc.) can be used, but styrene is the most preferred. preferred. Two or more of these monomers may be used in combination.
 上記のゴム状重合体としては、ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体等が使用できる。ポリブタジエンとしては、シス結合の含有量が高いハイシスポリブタジエン、シス結合の含有量が低いローシスポリブタジエン等が挙げられる。 Polybutadiene, polyisoprene, styrene-butadiene copolymer, and the like can be used as the above rubber-like polymer. Examples of polybutadiene include high-cis polybutadiene having a high cis-bond content and low-cis polybutadiene having a low cis-bond content.
 これらの中でも、シス-1,4結合を90モル%以上有するハイシスポリブタジエンゴムをゴム状重合体100質量%中70質量%以上含有するポリブタジエンが好ましく使用される。 Among these, polybutadiene containing 70% by mass or more of high-cis polybutadiene rubber having 90 mol% or more of cis-1,4 bonds in 100% by mass of the rubber-like polymer is preferably used.
 具体的には、ハイシスポリブタジエンゴムを単独使用して得られるゴム変性スチレン系樹脂、ハイシスポリブタジエンゴムとローシスポリブタジエンゴムを混合使用して得られるゴム変性スチレン系樹脂、または、ハイシスポリブタジエンゴムを使用して得られたゴム変性スチレン系樹脂とローシスポリブタジエンゴムを使用して得られるゴム変性スチレン系樹脂の混合物のいずれにおいても、ゴム変性スチレン系樹脂中に存在するゴム状重合体100質量%中に、ハイシスポリブタジエンゴムを70質量%以上含有することが好ましい。ここで、ハイシスポリブタジエンゴムとは、例えば、シス-1,4結合を90モル%以上の比率で含有するポリブタジエンゴムを意味する。ローシスポリブタジエンゴムとは、例えば、1,4-シス結合の含含有率が10~40モル%であるポリブタジエンゴムを意味する。 Specifically, a rubber-modified styrene resin obtained by using high-cis polybutadiene rubber alone, a rubber-modified styrene resin obtained by using a mixture of high-cis polybutadiene rubber and low-cis polybutadiene rubber, or high-cis polybutadiene rubber. 100 mass of the rubber-like polymer present in the rubber-modified styrenic resin in both the rubber-modified styrenic resin obtained using %, the high-cis polybutadiene rubber is preferably contained in an amount of 70% by mass or more. Here, the high-cis polybutadiene rubber means, for example, a polybutadiene rubber containing 90 mol % or more of cis-1,4 bonds. Low-cis polybutadiene rubber means, for example, polybutadiene rubber having a 1,4-cis bond content of 10 to 40 mol %.
 アルキル(メタ)アクリレート単量体と芳香族ビニル単量体との共重合体(MS)において、アルキル(メタ)アクリレート単量体は、例えば、メチル(メタ)アクリレートおよびフェニル(メタ)アクリレートから選択される少なくとも1種の単量体である。特にメチル(メタ)アクリレートを用いることが好ましい。尚、「(メタ)アクリレート」の表記は、メタクリレートおよびアクリレートのいずれをも含むことを意味する。 In the copolymer (MS) of the alkyl (meth)acrylate monomer and the aromatic vinyl monomer, the alkyl (meth)acrylate monomer is selected from, for example, methyl (meth)acrylate and phenyl (meth)acrylate is at least one monomer that is In particular, it is preferable to use methyl (meth)acrylate. In addition, the notation of "(meth)acrylate" means including both methacrylate and acrylate.
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレンなどが使用でき、特にスチレンが好ましい。これらは1種または2種以上を用いることができる。 Examples of aromatic vinyl monomers include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, and the like. can be used, and styrene is particularly preferred. These can be used alone or in combination of two or more.
 上記MSの質量平均分子量とメチル(メタ)アクリレート/スチレンの組成比については、特に制限されないが、質量平均分子量は、好ましくは80000~300000、より好ましくは100000~200000であり、メチル(メタ)アクリレート/スチレンの組成比率は、好ましくは80/20~40/60、より好ましくは70/30~50/50である。 The mass average molecular weight of MS and the composition ratio of methyl (meth) acrylate/styrene are not particularly limited, but the mass average molecular weight is preferably 80,000 to 300,000, more preferably 100,000 to 200,000, and methyl (meth) acrylate. /styrene composition ratio is preferably 80/20 to 40/60, more preferably 70/30 to 50/50.
 シアン化ビニル化合物と芳香族ビニル化合物との共重合体(AS)において、シアン化ビニル化合物としては、特にアクリロニトリルが好ましく使用できる。また、芳香族ビニル化合物としては、スチレンおよびα-メチルスチレンが好ましく使用できる。 In the copolymer (AS) of a vinyl cyanide compound and an aromatic vinyl compound, acrylonitrile can be preferably used as the vinyl cyanide compound. Styrene and α-methylstyrene are preferably used as the aromatic vinyl compound.
 AS中における各成分の割合としては、全体を100質量%とした場合、シアン化ビニル化合物の割合は、好ましくは5~50質量%、より好ましくは15~35質量%であり、芳香族ビニル化合物の割合は、好ましくは95~50質量%、より好ましくは85~65質量%である。 As for the ratio of each component in AS, when the whole is 100% by mass, the ratio of the vinyl cyanide compound is preferably 5 to 50% by mass, more preferably 15 to 35% by mass, and the aromatic vinyl compound is preferably 95 to 50 mass %, more preferably 85 to 65 mass %.
 更にこれらのビニル化合物に、上記の共重合可能な他のビニル系化合物を混合してもよい。この場合、他のビニル系化合物の含有割合は、AS中15質量%以下であることが好ましい。 Further, these vinyl compounds may be mixed with other copolymerizable vinyl compounds. In this case, the content of other vinyl compounds is preferably 15% by mass or less in AS.
 ASは、塊状重合、懸濁重合、乳化重合などのいずれの方法で製造されたものでもよいが、好ましくは塊状重合によるものである。また、共重合の方法も一段での共重合、または多段での共重合のいずれであってもよい。 The AS may be produced by any method such as bulk polymerization, suspension polymerization, or emulsion polymerization, but is preferably produced by bulk polymerization. Further, the method of copolymerization may be either one-step copolymerization or multi-step copolymerization.
 ASの還元粘度は、好ましくは0.2~1.0dL/g(20~100mL/g)であり、より好ましくは0.3~0.5dL/g(30~50mL/g)である。還元粘度が0.2dL/g(20mL/g)より小さいと衝撃が低下し、1.0dL/g(100mL/g)を越えると加工性が悪くなる。 The reduced viscosity of AS is preferably 0.2-1.0 dL/g (20-100 mL/g), more preferably 0.3-0.5 dL/g (30-50 mL/g). If the reduced viscosity is less than 0.2 dL/g (20 mL/g), the impact will be reduced, and if it exceeds 1.0 dL/g (100 mL/g), the workability will be poor.
 なお、還元粘度は、シアン化ビニル化合物と芳香族ビニル化合物を共重合した共重合体(AS)0.25gを精秤し、ジメチルホルムアミド50mLに2時間かけて溶解させた溶液を、ウベローデ粘度計を用いて30℃の環境で測定したものである。なお、粘度計は溶媒の流下時間が20~100秒のものを用いる。還元粘度は、溶媒の流下秒数(t)と溶液の流下秒数(t)から次式によって求められる。 The reduced viscosity was obtained by precisely weighing 0.25 g of a copolymer (AS) obtained by copolymerizing a vinyl cyanide compound and an aromatic vinyl compound and dissolving it in 50 mL of dimethylformamide over 2 hours. was measured in an environment of 30°C using A viscometer with a solvent flowing time of 20 to 100 seconds is used. The reduced viscosity is obtained by the following equation from the number of seconds (t 0 ) of the solvent flowing down and the number of seconds (t) of the solution flowing down.
  還元粘度(ηsp/C)={(t/t)-1}/0.5
 なお、ジエン系ゴム成分を含むシアン化ビニル化合物と芳香族ビニル化合物との共重合体(ABS)、エチレン-αオレフィンゴム成分を含むシアン化ビニル化合物と芳香族ビニル化合物との共重合体(AES)、アクリルゴム成分を含むシアン化ビニル化合物と芳香族ビニル化合物との共重合体(ASA)、ジエン系ゴム成分を含むアルキル(メタ)アクリレート単量体と芳香族ビニル化合物との共重合体(MBS)、ジエン系ゴム成分を含むアルキル(メタ)アクリレート単量体とシアン化ビニル化合物と芳香族ビニル化合物との共重合体(MABS)、および、アクリルゴム成分を含むアルキル(メタ)アクリレート単量体と芳香族ビニル化合物との共重合体(MAS)は、熱可塑性の共重合体である。
Reduced viscosity (η sp /C) = {(t/t 0 )-1}/0.5
In addition, a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing a diene rubber component (ABS), a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing an ethylene-α-olefin rubber component (AES ), a copolymer of a vinyl cyanide compound and an aromatic vinyl compound containing an acrylic rubber component (ASA), a copolymer of an alkyl (meth)acrylate monomer containing a diene rubber component and an aromatic vinyl compound ( MBS), a copolymer of an alkyl (meth)acrylate monomer containing a diene rubber component, a vinyl cyanide compound and an aromatic vinyl compound (MABS), and an alkyl (meth)acrylate monomer containing an acrylic rubber component Copolymers of solids and aromatic vinyl compounds (MAS) are thermoplastic copolymers.
 本実施の形態において、ABS、AES、ASA、MBS、MABSおよびMAS中に含まれる各種ゴム成分の割合は、好ましくは5~80質量%、より好ましくは8~50質量%、特に好ましくは10~30質量%である。 In the present embodiment, the ratio of various rubber components contained in ABS, AES, ASA, MBS, MABS and MAS is preferably 5 to 80% by mass, more preferably 8 to 50% by mass, and particularly preferably 10 to 50% by mass. 30% by mass.
 ゴム成分にグラフトされるシアン化ビニル化合物としては、特にアクリロニトリルが好ましく使用できる。またゴム成分にグラフトされる芳香族ビニル化合物としては、特にスチレンおよびα-メチルスチレンが好ましく使用できる。 Acrylonitrile is particularly preferably used as the vinyl cyanide compound grafted onto the rubber component. Styrene and α-methylstyrene are particularly preferred as the aromatic vinyl compound to be grafted onto the rubber component.
 更に、アルキル(メタ)アクリレート単量体としては、特にメチル(メタ)アクリレートおよびエチル(メタ)アクリレートが好ましく使用できる。 Furthermore, methyl (meth)acrylate and ethyl (meth)acrylate can be preferably used as alkyl (meth)acrylate monomers.
 ゴム成分にグラフトされる成分の割合は、スチレン系樹脂(A2)100質量%に対して、好ましくは20~95質量%であり、より好ましくは50~90質量%である。更に、上記のゴム成分にグラフトされる成分の一部について、無水マレイン酸、N置換マレイミド等を混合使用することもでき、これらの含有割合はスチレン系樹脂(A2)中15質量%以下であることが好ましい。 The ratio of the component grafted to the rubber component is preferably 20-95% by mass, more preferably 50-90% by mass, relative to 100% by mass of the styrene resin (A2). Furthermore, maleic anhydride, N-substituted maleimide, etc. can be mixed and used for some of the components grafted to the rubber component, and the content of these components is 15% by mass or less in the styrene resin (A2). is preferred.
 ABS、AES、ASA、MBS、MABSおよびMAS中において、ゴム成分は粒子状で存在する。ゴム成分の粒子径は、好ましくは0.1~5.0μm、より好ましくは0.15~1.5μm、特に好ましくは0.2~0.8μmである。ここで、ゴム成分の粒子径の分布は、単一の分布であってもよく、2つ以上の複数のピークを有していてもよい。また、ゴム成分の粒子径のモルフォロジーにおいて、ゴム粒子が単一の相をなしていてもよく、ゴム粒子の周りにオクルード相を含有することによりサラミ構造を有していてもよい。 The rubber component exists in the form of particles in ABS, AES, ASA, MBS, MABS and MAS. The particle size of the rubber component is preferably 0.1-5.0 μm, more preferably 0.15-1.5 μm, and particularly preferably 0.2-0.8 μm. Here, the particle size distribution of the rubber component may be a single distribution, or may have two or more peaks. Further, in terms of the morphology of the particle size of the rubber component, the rubber particles may form a single phase, or may have a salami structure by containing an occluded phase around the rubber particles.
 なお、ABS、AES、ASA、MBS、MABSおよびMASは、重合の際に発生するフリーの重合体成分(芳香族ビニル化合物等)を含有するものであってもよい。 ABS, AES, ASA, MBS, MABS and MAS may contain free polymer components (aromatic vinyl compounds, etc.) generated during polymerization.
 ABS、AES、ASA、MBS、MABSおよびMASの還元粘度(先に記載の方法で求めた30℃での還元粘度)は、好ましくは0.2~1.0dL/g(20~100mL/g)、より好ましくは0.3~0.7dL/g(30~70mL/g)である。 The reduced viscosity of ABS, AES, ASA, MBS, MABS and MAS (reduced viscosity at 30° C. determined by the method described above) is preferably 0.2 to 1.0 dL/g (20 to 100 mL/g). , more preferably 0.3 to 0.7 dL/g (30 to 70 mL/g).
 また、ゴム成分にグラフトされた芳香族ビニル化合物等の割合(グラフト率)は、ゴム成分に対して、好ましくは20~200質量%であり、より好ましくは20~70質量%である。 In addition, the ratio of the aromatic vinyl compound or the like grafted to the rubber component (graft ratio) is preferably 20 to 200% by mass, more preferably 20 to 70% by mass, relative to the rubber component.
 また、ABS、AES、ASA、MBS、MABSおよびMASは、塊状重合、懸濁重合、乳化重合のいずれの方法で製造されたものでもよい。特にABSは塊状重合によって製造されたものが好ましい。尚、代表的な塊状重合法としては、例えば、化学工学 48巻第6号415頁(1984)に記載された連続塊状重合法(いわゆる東レ法)、化学工学 第53巻第6号423頁(1989)に記載された連続塊状重合法(いわゆる三井東圧法)などが挙げられる。 ABS, AES, ASA, MBS, MABS and MAS may be produced by any of bulk polymerization, suspension polymerization and emulsion polymerization. In particular, ABS is preferably produced by bulk polymerization. Typical bulk polymerization methods include, for example, a continuous bulk polymerization method (so-called Toray method) described in Kagaku Kogaku, Vol. 48, No. 6, p. 415 (1984); 1989) (so-called Mitsui Toatsu method).
 本実施の形態において、ABS、AES、ASA、MBS、MABSおよびMASは、いずれもスチレン系樹脂(A2)として好適に使用することができる。また共重合の方法も一段で共重合しても、多段で共重合してもよい。また、かかる製造法により得られたABS、AES、ASA、MBS、MABSおよびMASに、芳香族ビニル化合物とシアン化ビニル成分等とを別途共重合して得たビニル化合物重合体をブレンドしてなる樹脂も、スチレン樹脂(A2)として好ましく使用できる。 In the present embodiment, ABS, AES, ASA, MBS, MABS and MAS can all be suitably used as the styrenic resin (A2). Also, the copolymerization may be carried out in one step or in multiple steps. Further, the ABS, AES, ASA, MBS, MABS and MAS obtained by such a production method are blended with a vinyl compound polymer obtained by separately copolymerizing an aromatic vinyl compound and a vinyl cyanide component. A resin can also be preferably used as the styrene resin (A2).
 AS、ABS、AES、ASA、MBS、MABSおよびMASについては、良好な熱安定性や耐加水分解性などの点から、アルカリ(土類)金属の含有量が少ないことが好ましい。スチレン系樹脂(A2)中のアルカリ(土類)金属の含有率は、好ましくは100ppm未満であり、より好ましくは80ppm未満であり、更に好ましくは50ppm未満であり、特に好ましくは10ppm未満である。このように、アルカリ(土類)金属の含有量を少なくする観点からも、塊状重合法が好適に使用される。 For AS, ABS, AES, ASA, MBS, MABS and MAS, it is preferable that the content of alkali (earth) metals is low from the viewpoint of good thermal stability and hydrolysis resistance. The alkali (earth) metal content in the styrenic resin (A2) is preferably less than 100 ppm, more preferably less than 80 ppm, even more preferably less than 50 ppm, particularly preferably less than 10 ppm. Thus, the bulk polymerization method is preferably used also from the viewpoint of reducing the content of alkali (earth) metals.
 かかる良好な熱安定性や耐加水分解性に関連して、ASおよびABS等において乳化剤を使用する場合、該乳化剤は好適にはスルホン酸塩類であり、より好適にはアルキルスルホン酸塩類である。また凝固剤を使用する場合、該凝固剤は硫酸または硫酸のアルカリ土類金属塩が好適である。 In relation to such good thermal stability and hydrolysis resistance, when an emulsifier is used in AS, ABS, etc., the emulsifier is preferably a sulfonate, more preferably an alkylsulfonate. Also, when a coagulant is used, the coagulant is preferably sulfuric acid or an alkaline earth metal salt of sulfuric acid.
 ABS、AES、ASA、MBS、MABSおよびMASに含まれるゴム成分としては、ポリブタジエン、ポリイソプレン、ジエン系共重合体、エチレンとα-オレフィンとの共重合体、エチレンと不飽和カルボン酸エステルとの共重合体、エチレンと脂肪族ビニルとの共重合体(例えば、エチレン-酢酸ビニル共重合体など)、エチレンとプロピレンとの非共役ジエンターポリマー、アクリル系ゴム、シリコーン系ゴムなどが挙げられる。 Rubber components contained in ABS, AES, ASA, MBS, MABS and MAS include polybutadiene, polyisoprene, diene copolymers, copolymers of ethylene and α-olefins, and mixtures of ethylene and unsaturated carboxylic acid esters. copolymers, copolymers of ethylene and aliphatic vinyl (eg, ethylene-vinyl acetate copolymers), non-conjugated diene terpolymers of ethylene and propylene, acrylic rubbers, silicone rubbers, and the like.
 ジエン系共重合体としては、例えば、スチレン-ブタジエンのランダム共重合体およびブロック共重合体、アクリロニトリル-ブタジエン共重合体、(メタ)アクリル酸アルキルエステルおよびブタジエンの共重合体などが挙げられる。 Examples of diene-based copolymers include random copolymers and block copolymers of styrene-butadiene, acrylonitrile-butadiene copolymers, and copolymers of (meth)acrylic acid alkyl esters and butadiene.
 エチレンとα-オレフィンとの共重合体としては、例えば、エチレン-プロピレンランダム共重合体およびブロック共重合体、エチレン-ブテンのランダム共重合体およびブロック共重合体などが挙げられる。 Copolymers of ethylene and α-olefins include, for example, ethylene-propylene random copolymers and block copolymers, ethylene-butene random copolymers and block copolymers, and the like.
 エチレンと不飽和カルボン酸エステルとの共重合体としては、例えば、エチレン-メタクリレート共重合体、エチレン-ブチルアクリレート共重合体などが挙げられる。 Examples of copolymers of ethylene and unsaturated carboxylic acid esters include ethylene-methacrylate copolymers and ethylene-butyl acrylate copolymers.
 エチレンとプロピレンとの非共役ジエンターポリマーとしては、例えば、エチレン-プロピレン-ヘキサジエン共重合体などが挙げられる。 Examples of non-conjugated diene terpolymers of ethylene and propylene include ethylene-propylene-hexadiene copolymers.
 アクリル系ゴムとしては、例えば、ポリブチルアクリレート、ポリ(2-エチルヘキシルアクリレート)、ブチルアクリレートと2-エチルヘキシルアクリレートとの共重合体などが挙げられる。 Examples of acrylic rubbers include polybutyl acrylate, poly(2-ethylhexyl acrylate), copolymers of butyl acrylate and 2-ethylhexyl acrylate, and the like.
 シリコーン系ゴムとしては、例えば、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とからなるIPN型ゴム(すなわち、2つのゴム成分が分離できないように相互に絡み合った構造を有しているゴム)、ポリオルガノシロキサンゴム成分とポリイソブチレンゴム成分からなるIPN型ゴムなどが挙げられる。 Examples of silicone-based rubbers include polyorganosiloxane rubber, and IPN rubber composed of a polyorganosiloxane rubber component and a polyalkyl (meth)acrylate rubber component (that is, a structure in which the two rubber components are intertwined so that they cannot be separated). rubber), IPN type rubber consisting of a polyorganosiloxane rubber component and a polyisobutylene rubber component, and the like.
 上記ゴム成分は、好ましくは、ポリジエンゴム(ポリブタジエンなど)、アクリル系ゴム、およびエチレン-プロピレンゴムから成る群から選択される。ゴム成分のガラス転移温度は、例えば、典型的には、アクリルゴムについては-10℃~-20℃であり、エチレンープロピレンゴムについては-50℃~-58℃であり、ブタジエンゴムについては約-100℃である。 The rubber component is preferably selected from the group consisting of polydiene rubber (such as polybutadiene), acrylic rubber, and ethylene-propylene rubber. The glass transition temperature of the rubber component, for example, is typically −10° C. to −20° C. for acrylic rubber, −50° C. to −58° C. for ethylene-propylene rubber, and about -100°C.
 本実施の形態で使用されるABS、AES、ASA、MBS、MABSおよびMAS中のゴム成分の含有率は、4質量%~25質量%であることが好ましい。ゴム成分の含有率は、例えば、共重合時のゴム成分の量を調整することにより調整できる。また、例えば、ゴム成分を含有する芳香族ビニル共重合体と、ゴム成分を含有しない芳香族ビニル重合体または共重合体とを混合することにより、ゴム成分の含有率を調整することも可能である。 The rubber component content in ABS, AES, ASA, MBS, MABS and MAS used in the present embodiment is preferably 4% by mass to 25% by mass. The content of the rubber component can be adjusted, for example, by adjusting the amount of the rubber component during copolymerization. Further, for example, by mixing an aromatic vinyl copolymer containing a rubber component and an aromatic vinyl polymer or copolymer not containing a rubber component, it is also possible to adjust the content of the rubber component. be.
 (芳香族ポリエステル樹脂(A3))
 芳香族ポリエステル樹脂(A3)は、芳香族ジカルボン酸、または、その反応性誘導体と、ジオール、または、そのエステル誘導体と、を主成分とする縮合反応により得られる重合体または共重合体である。
(Aromatic polyester resin (A3))
The aromatic polyester resin (A3) is a polymer or copolymer obtained by a condensation reaction of aromatic dicarboxylic acid or its reactive derivative and diol or its ester derivative as main components.
 ここでいう芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、4,4’-ビフェニルメタンジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルイソプロピリデンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、2,5-アントラセンジカルボン酸、2,6-アントラセンジカルボン酸、4,4’-p-ターフェニレンジカルボン酸、2,5-ピリジンジカルボン酸等の芳香族系ジカルボン酸などが挙げられる。また、ジフェニルメタンジカルボン酸、ジフェニルエーテルジカルボン酸、およびβ-ヒドロキシエトキシ安息香酸が挙げられる。特にテレフタル酸、2,6-ナフタレンジカルボン酸が好ましく使用できる。芳香族ジカルボン酸は二種以上を混合して使用してもよい。なお少量であれば、該ジカルボン酸と共にアジピン酸、アゼライン酸、セバシン酸、ドデカンジ酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等を一種以上混合使用することも可能である。 The aromatic dicarboxylic acids referred to herein include, for example, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4' -biphenyletherdicarboxylic acid, 4,4'-biphenylmethanedicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis(phenoxy)ethane-4,4 aromatic dicarboxylic acids such as '-dicarboxylic acid, 2,5-anthracenedicarboxylic acid, 2,6-anthracenedicarboxylic acid, 4,4'-p-terphenylenedicarboxylic acid, and 2,5-pyridinedicarboxylic acid; be done. Also included are diphenylmethane dicarboxylic acid, diphenyl ether dicarboxylic acid, and β-hydroxyethoxybenzoic acid. In particular, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferably used. Aromatic dicarboxylic acids may be used in combination of two or more. If the amount is small, it is also possible to mix and use one or more kinds of aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanedioic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid together with the dicarboxylic acid. .
 ジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、ペンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、2-メチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール等が挙げられる。 Examples of diols include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2-methyl-1,3-propanediol, diethylene glycol, and triethylene glycol. and the like.
 また、1,4-シクロヘキサンジメタノール等の脂環族ジオール等が挙げられる。また、2,2-ビス(β-ヒドロキシエトキシフェニル)プロパン等の芳香環を含有するジオール等、および、それらの混合物等が挙げられる。更に少量であれば、分子量400~6000の長鎖ジオール、すなわちポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合してもよい。 and alicyclic diols such as 1,4-cyclohexanedimethanol. Also included are diols containing aromatic rings such as 2,2-bis(β-hydroxyethoxyphenyl)propane, and mixtures thereof. Furthermore, if the amount is small, one or more long-chain diols having a molecular weight of 400 to 6000, ie, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, etc. may be copolymerized.
 また芳香族ポリエステル樹脂(A3)は少量の分岐剤を導入することにより分岐させることができる。分岐剤の種類に制限はないがトリメシン酸、トリメリチン酸、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 Also, the aromatic polyester resin (A3) can be branched by introducing a small amount of a branching agent. Although the type of branching agent is not limited, it includes trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane, pentaerythritol and the like.
 芳香族ポリエステル樹脂(A3)として、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリへキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレート等が挙げられる。また、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、等の共重合ポリエステル樹脂が挙げられる。これらのうち、機械的性質等のバランスがとれたポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、および、これらの混合物が好ましく使用できる。 As the aromatic polyester resin (A3), polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1 , 2-bis(phenoxy)ethane-4,4′-dicarboxylate and the like. Copolymer polyester resins such as polyethylene isophthalate/terephthalate and polybutylene terephthalate/isophthalate are also included. Among these, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and mixtures thereof, which have well-balanced mechanical properties, can be preferably used.
 また、芳香族ポリエステル樹脂(A3)の末端基構造は、特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量であってもよく、一方の割合が多くてもよい。また、かかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されていてもよい。 In addition, the terminal group structure of the aromatic polyester resin (A3) is not particularly limited, and the ratio of the hydroxyl group and the carboxyl group in the terminal group may be approximately the same amount, or the ratio of one may be greater. . Moreover, the terminal groups may be blocked by, for example, reacting a compound having reactivity with such terminal groups.
 芳香族ジカルボン酸のアルキレングリコールエステル、および/または、その低重合体の製造方法について、制限はないが、通常、芳香族ジカルボン酸、または、そのエステル形成性誘導体と、アルキレングリコール、または、そのエステル形成性誘導体とを、加熱反応させることによって製造される。例えば、ポリエチレンテレフタレートの原料として用いられるテレフタル酸のエチレングリコールエステル、および/または、その低重合体は、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、あるいは、テレフタル酸にエチレンオキサイドを付加反応させる方法により、製造される。 The method for producing the alkylene glycol ester of aromatic dicarboxylic acid and/or its low polymer is not limited, but usually aromatic dicarboxylic acid or its ester-forming derivative and alkylene glycol or its ester It is produced by reacting a forming derivative with heat. For example, an ethylene glycol ester of terephthalic acid and/or a low polymer thereof used as a raw material for polyethylene terephthalate is obtained by direct esterification reaction of terephthalic acid and ethylene glycol, or by a lower alkyl ester of terephthalic acid and ethylene glycol. or by addition reaction of ethylene oxide to terephthalic acid.
 なお、上記の芳香族ジカルボン酸のアルキレングリコールエステル、および/または、その低重合体には、それと共重合可能な他のジカルボン酸エステルが、追加成分として、本開示の方法の効果が実質的に損なわれない範囲内の量含まれていてもよい。具体的には酸成分合計モル量を基準として10モル%以下、好ましくは5モル%以下の範囲内の量で他のジカルボン酸エステルが含まれていてもよい。 In addition, the alkylene glycol ester of the aromatic dicarboxylic acid and / or the low polymer thereof, other dicarboxylic acid ester copolymerizable therewith, as an additional component, the effect of the method of the present disclosure is substantially It may be contained in an amount within a range that does not cause damage. Specifically, other dicarboxylic acid esters may be contained in an amount within the range of 10 mol % or less, preferably 5 mol % or less based on the total molar amount of acid components.
 共重合可能な追加成分は、酸成分とグリコール成分とのエステル、または、その無水物から選ばれる。酸成分として、例えば、アジピン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸等の脂肪族および脂環式のジカルボン酸、並びにヒドロキシカルボン酸、例えば、β-ヒドロキシエトキシ安息香酸、p-オキシ安息香酸等の1種以上が挙げられる。 The copolymerizable additional component is selected from an ester of an acid component and a glycol component, or an anhydride thereof. Acid components include aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids such as β-hydroxyethoxybenzoic acid and p-oxybenzoic acid. etc. 1 type or more are mentioned.
 グリコール成分として、例えば、構成炭素数が2個以上のアルキレングリコール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSのような脂肪族、脂環式、芳香族のジオール化合物およびポリオキシアルキレングリコールが挙げられる。上記追記成分エステルは、単独で用いられてもよく、或はその二種以上を併用してもよい。但しその共重合量は上記の範囲内であることが好ましい。 Examples of glycol components include aliphatic, alicyclic and aromatic diol compounds such as alkylene glycol having 2 or more carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A and bisphenol S, and Polyoxyalkylene glycols may be mentioned. The postscript component ester may be used alone, or two or more thereof may be used in combination. However, the copolymerization amount is preferably within the above range.
 なお、出発原料としてテレフタル酸および/またはテレフタル酸ジメチルを用いる場合には、ポリアルキレンテレフタレートを解重合することによって得られた回収テレフタル酸ジメチル、または、これを加水分解して得られる回収テレフタル酸を、ポリエステルを構成する全酸成分の質量を基準として70質量%以上使用することもできる。この場合、目的ポリアルキレンテレフタレートはポリエチレンテレフタレートであることが好ましく、特に回収されたPETボトル、回収された繊維製品、回収されたポリエステルフィルム製品、さらには、これら製品の製造工程において発生するポリマー屑等をポリエステル製造用原料源として用いることは、資源の有効活用の観点から好ましいことである。 When terephthalic acid and/or dimethyl terephthalate is used as a starting material, recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or recovered terephthalic acid obtained by hydrolyzing it is used. , 70 mass % or more can also be used based on the mass of all acid components constituting the polyester. In this case, the target polyalkylene terephthalate is preferably polyethylene terephthalate, particularly recovered PET bottles, recovered fiber products, recovered polyester film products, and polymer scraps generated in the manufacturing process of these products. is preferable from the viewpoint of effective utilization of resources.
 ここで、回収ポリアルキレンテレフタレートを解重合してテレフタル酸ジメチルを得る方法としては、特に限定はなく、従来公知の方法をいずれも採用することができる。例えば、回収ポリアルキレンテレフタレートをエチレングリコールを用いて解重合した後、解重合生成物を、低級アルコール、例えばメタノールによるエステル交換反応に供し、この反応混合物を精製してテレフタル酸の低級アルキルエステルを回収し、これをアルキレングリコールによるエステル交換反応に供し、得られたフタル酸/アルキレングリコールエステルを重縮合すればポリエステル樹脂を得ることができる。 Here, the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed. For example, after depolymerizing the recovered polyalkylene terephthalate with ethylene glycol, the depolymerized product is subjected to a transesterification reaction with a lower alcohol, such as methanol, and the reaction mixture is purified to recover lower alkyl esters of terephthalic acid. A polyester resin can be obtained by subjecting this to transesterification with alkylene glycol and polycondensing the obtained phthalic acid/alkylene glycol ester.
 また、上記回収された、テレフタル酸ジメチルからテレフタル酸を回収する方法としても、特に制限はなく、従来方法のいずれを用いてもよい。例えば、エステル交換反応により得られた反応混合物からテレフタル酸ジメチルを再結晶法および/または蒸留法により回収した後、高温高圧下で水とともに加熱して加水分解してテレフタル酸を回収することができる。この方法によって得られるテレフタル酸に含まれる不純物において、4-カルボキシベンズアルデヒド、パラトルイル酸、安息香酸およびヒドロキシテレフタル酸ジメチルの含有量が、合計で1ppm以下であることが好ましい。また、テレフタル酸モノメチルの含有量が、1~5000ppmの範囲にあることが好ましい。 Also, the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any conventional method may be used. For example, after recovering dimethyl terephthalate from the reaction mixture obtained by the transesterification reaction by recrystallization and/or distillation, it can be hydrolyzed by heating with water under high temperature and high pressure to recover terephthalic acid. . Among the impurities contained in the terephthalic acid obtained by this method, the total content of 4-carboxybenzaldehyde, p-toluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less. Also, the content of monomethyl terephthalate is preferably in the range of 1 to 5000 ppm.
 上述の方法により回収されたテレフタル酸と、アルキレングリコールとを直接エステル化反応させ、得られたエステルを重縮合することによりポリエステル樹脂を製造することができる。 A polyester resin can be produced by subjecting terephthalic acid recovered by the above-described method to direct esterification reaction with alkylene glycol and polycondensing the resulting ester.
 芳香族ポリエステル樹脂(A3)の製造反応条件にも格別の制限はない。一般に重縮合反応は、230~320℃の温度において、常圧下、または減圧下(0.1Pa~0.1MPa)において、或はこれらの条件を組み合わせて、15~300分間重縮合することが好ましい。 There are no particular restrictions on the production reaction conditions for the aromatic polyester resin (A3). In general, the polycondensation reaction is preferably carried out at a temperature of 230 to 320° C. under normal pressure, under reduced pressure (0.1 Pa to 0.1 MPa), or a combination of these conditions for 15 to 300 minutes. .
 芳香族ポリエステル樹脂(A3)において、反応系に、必要に応じて反応安定剤、例えばトリメチルホスフェートをポリエステル製造における任意の段階で加えてもよい。さらに必要により、反応系に酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、整色剤、消泡剤、その他の添加剤の1種以上を配合してもよい。特に、ポリエステル樹脂中には、少なくとも1種のヒンダードフェノール化合物を含む酸化防止剤が含まれることが好ましい。その含有量は、ポリエステル樹脂の質量に対して、1質量%以下であることが好ましい。その含有量が1質量%をこえると、酸化防止剤自身の熱劣化により、得られた生成物の品質を悪化させるという不都合を生ずることがある。 In the aromatic polyester resin (A3), if necessary, a reaction stabilizer such as trimethyl phosphate may be added to the reaction system at any stage in polyester production. Furthermore, if necessary, one or more of antioxidants, ultraviolet absorbers, flame retardants, fluorescent whitening agents, matting agents, color conditioning agents, antifoaming agents, and other additives may be added to the reaction system. In particular, the polyester resin preferably contains an antioxidant containing at least one hindered phenol compound. The content thereof is preferably 1% by mass or less with respect to the mass of the polyester resin. If the content exceeds 1% by mass, the heat deterioration of the antioxidant itself may cause the inconvenience of deteriorating the quality of the obtained product.
 ヒンダードフェノール化合物としては、例えば、ペンタエリスリトール-テトラエキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。これらヒンダードフェノール系酸化防止剤とチオエーテル系二次酸化防止剤とを併用して用いることも好ましく実施される。 Hindered phenol compounds include, for example, pentaerythritol-tetraextract [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 3,9-bis{2-[3-(3- tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl}-2,4,8,10-tetraoxaspiro[5,5]undecane and the like. It is also preferable to use these hindered phenol-based antioxidants and thioether-based secondary antioxidants in combination.
 上記ヒンダードフェノール系酸化防止剤のポリエステル樹脂への添加方法には特に制限はないが、好ましくはエステル交換反応、またはエステル化反応の終了後、重合反応が完了するまでの間の任意の段階で添加される。 The method of adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but preferably at any stage after the completion of the transesterification reaction or the esterification reaction until the completion of the polymerization reaction. added.
 芳香族ポリエステル樹脂(A3)の固有粘度には制限はないが、0.30~1.5の範囲にあることが好ましい。該固有粘度がこの範囲内にあると、溶融成形が容易で、且つそれから得られる成形物の強度も高いものとなる。上記固有粘度のさらに好ましい範囲は、0.40~1.2であり、特に好ましくは0.50~1.0である。芳香族ポリエステル樹脂の固有粘度は、芳香族ポリエステル樹脂をオルソクロロフェノールに溶解し、35℃の温度において測定される。なお、固相重縮合により得られたポリエステル樹脂は、一般的にボトル等に利用する場合が多く、0.70~0.90の固有粘度を有する場合が多い。 Although there are no restrictions on the intrinsic viscosity of the aromatic polyester resin (A3), it is preferably in the range of 0.30 to 1.5. When the intrinsic viscosity is within this range, melt molding is easy and the strength of the molding obtained therefrom is high. A more preferable range of the intrinsic viscosity is 0.40 to 1.2, and particularly preferably 0.50 to 1.0. The intrinsic viscosity of the aromatic polyester resin is measured by dissolving the aromatic polyester resin in orthochlorophenol and measuring at a temperature of 35°C. Polyester resins obtained by solid-phase polycondensation are generally used for bottles and the like in many cases, and often have an intrinsic viscosity of 0.70 to 0.90.
 上記の芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量が0.5質量%以下であり、かつアセトアルデヒドの含有量が5ppm以下であることが好ましい。 It is preferable that the content of the cyclic trimer of the ester of the aromatic dicarboxylic acid and alkylene glycol is 0.5% by mass or less and the content of acetaldehyde is 5 ppm or less.
 上記環状三量体は、アルキレンテレフタレート(例えば、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、ヘキサメチレンテレフタレート等)、および、アルキレンナフタレート(例えば、エチレンナフタレート、トリメチレンナフタレート、テトラメチレンナフタレート、ヘキサメチレンナフタレート等)を包含する。 The cyclic trimer includes alkylene terephthalate (e.g., ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, hexamethylene terephthalate, etc.) and alkylene naphthalate (e.g., ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate). , hexamethylene naphthalate, etc.).
 (ポリフェニレンエーテル系樹脂(A4))
 ポリフェニレンエーテル系樹脂(A4)は、ポリフェニレンエーテル樹脂に予めポリスチレン系樹脂を混合した混合樹脂であってもよいし、ポリフェニレンエーテル樹脂のみからなってもよい。
(Polyphenylene ether resin (A4))
The polyphenylene ether-based resin (A4) may be a mixed resin in which a polystyrene-based resin is mixed in advance with a polyphenylene ether resin, or may consist of a polyphenylene ether resin alone.
 ポリフェニレンエーテル樹脂としては、例えば、下記式(5)で表される繰り返し単位構造からなるホモ重合体、下記式(5)で表される繰り返し単位構造を有する共重合体が挙げられる。 Examples of polyphenylene ether resins include homopolymers having a repeating unit structure represented by the following formula (5) and copolymers having a repeating unit structure represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(5)中、R、R、RおよびRは、各々独立して、水素原子、ハロゲン原子、炭素数1~7の第1級アルキル基、炭素数1~7の第2級アルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、および、少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群から選択される一価の基である。 In the above formula (5), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a primary alkyl group having 1 to 7 carbon atoms, a selected from the group consisting of secondary alkyl groups, phenyl groups, haloalkyl groups, aminoalkyl groups, hydrocarbonoxy groups, and halohydrocarbonoxy groups in which at least two carbon atoms separate the halogen and oxygen atoms; is a monovalent group that
 上記ポリフェニレンエーテル樹脂は、加工時の流動性、靭性および耐薬品性の観点から、0.5g/dLの濃度のクロロホルム溶液を用いて、30℃の条件下、ウベローデ型粘度管で測定した還元粘度が、0.15~2.0dL/gであることが好ましく、より好ましくは0.20~1.0dL/g、さらに好ましくは0.30~0.70dL/gである。 From the viewpoint of fluidity, toughness and chemical resistance during processing, the above polyphenylene ether resin uses a chloroform solution with a concentration of 0.5 g / dL at 30 ° C. The reduced viscosity was measured with an Ubbelohde viscosity tube. is preferably 0.15 to 2.0 dL/g, more preferably 0.20 to 1.0 dL/g, still more preferably 0.30 to 0.70 dL/g.
 上記ポリフェニレンエーテル樹脂としては、以下に限定されるものではないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等のホモ重合体、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール)との共重合体等の共重合体等が挙げられる。中でも、樹脂組成物としたときの靭性と剛性のバランスや、原料の入手のし易さの観点から、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)がより好ましい。 Examples of the polyphenylene ether resin include, but are not limited to, poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-phenyl-1,4-phenylene ether), homopolymers such as poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and others and copolymers with phenols (eg, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol). Among them, poly(2,6-dimethyl-1,4-phenylene ether), 2,6-dimethylphenol and Copolymers with 2,3,6-trimethylphenol are preferred, and poly(2,6-dimethyl-1,4-phenylene ether) is more preferred.
 ポリフェニレンエーテル樹脂は、公知の方法により製造することができる。ポリフェニレンエーテル樹脂の製造方法としては、以下に限定されるものではないが、例えば、米国特許第3306874号明細書に記載のHayによる第一銅塩とアミンのコンプレックスを触媒として用い、2,6-キシレノールを酸化重合する方法、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、特開昭63-152628号公報等に記載の方法等が挙げられる。 A polyphenylene ether resin can be produced by a known method. The method for producing the polyphenylene ether resin is not limited to the following, but for example, using a cuprous salt and amine complex by Hay described in US Pat. No. 3,306,874 as a catalyst, 2,6- A method of oxidative polymerization of xylenol, US Pat. No. 3,306,875, US Pat. No. 3,257,357, US Pat. Examples include the method described in Japanese Patent Application Laid-Open No. 63-152628.
 ポリフェニレンエーテル系樹脂(A4)に予め含まれるポリスチレン系樹脂としては、アタクチックポリスチレン、ゴム補強されたポリスチレン(ハイインパクトポリスチレン、HIPS)、スチレン含有量が50質量%以上のスチレン-アクリロニトリル共重合体(AS)、該スチレン-アクリロニトリル共重合体がゴム補強されたABS樹脂等が挙げられ、アタクチックポリスチレンおよび/またはハイインパクトポリスチレンが好ましい。 Examples of polystyrene-based resins that are preliminarily contained in the polyphenylene ether-based resin (A4) include atactic polystyrene, rubber-reinforced polystyrene (high-impact polystyrene, HIPS), and styrene-acrylonitrile copolymers having a styrene content of 50% by mass or more ( AS), ABS resin in which the styrene-acrylonitrile copolymer is reinforced with rubber, etc., and atactic polystyrene and/or high impact polystyrene are preferred.
 上記ポリスチレン系樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The above polystyrene-based resins may be used singly or in combination of two or more.
 ポリフェニレンエーテル系樹脂(A4)としては、ポリフェニレンエーテル樹脂とポリスチレン系樹脂とからなり、ポリフェニレンエーテル樹脂とポリスチレン系樹脂との質量割合が、97/3~5/95であるポリフェニレンエーテル系樹脂(A4)を用いることが好ましい。ポリフェニレンエーテル樹脂とポリスチレン系樹脂との質量割合としては、流動性に一層優れる観点から、90/10~10/90であることがより好ましく、80/20~10/90であることがさらに好ましい。 The polyphenylene ether-based resin (A4) is composed of a polyphenylene ether resin and a polystyrene-based resin, and the mass ratio of the polyphenylene ether resin and the polystyrene-based resin is 97/3 to 5/95. Polyphenylene ether-based resin (A4) is preferably used. The mass ratio of the polyphenylene ether resin and the polystyrene resin is more preferably 90/10 to 10/90, more preferably 80/20 to 10/90, from the viewpoint of better fluidity.
 (メタクリル樹脂(A5))
 本開示で使用するメタクリル樹脂(A5)は、実質的にメタクリル酸アルキル、アクリル酸アルキルとの共重合体であり、本開示の目的を損なわない範囲で、芳香族ビニル単量体含まないその他のビニル単量体を共重合することができる。
(Methacrylic resin (A5))
The methacrylic resin (A5) used in the present disclosure is substantially a copolymer of alkyl methacrylate and alkyl acrylate, and other aromatic vinyl monomer-free, as long as the object of the present disclosure is not impaired. Vinyl monomers can be copolymerized.
 メタクリル樹脂は、例えば、メタクリル酸アルキルは30~100質量%と、アクリル酸エステルは0~70質量%と、これらに共重合可能な芳香族ビニル単量体を含まない他のビニル単量体0~49質量%とからなる単量体の重合により得られる重合体である。また、メタクリル樹脂が、メタクリル酸アルキルとアクリル酸アルキルとの共重合体であるとき、メタクリル酸アルキルとアクリル酸アルキルとの質量割合は、メタクリル酸アルキルとアクリル酸アルキルとの合計100質量%を基準として、メタクリル酸アルキルは、好ましくは40~90質量%であり、より好ましくは10~60質量%であり、メタクリル酸アルキルは、好ましくは50~85質量%であり、より好ましくは50~15質量%である。 The methacrylic resin contains, for example, 30 to 100% by mass of alkyl methacrylate, 0 to 70% by mass of acrylic acid ester, and 0 other vinyl monomers that do not contain copolymerizable aromatic vinyl monomers. It is a polymer obtained by polymerization of monomers containing up to 49% by mass. Further, when the methacrylic resin is a copolymer of alkyl methacrylate and alkyl acrylate, the mass ratio of alkyl methacrylate and alkyl acrylate is based on the total 100 mass% of alkyl methacrylate and alkyl acrylate. As, the alkyl methacrylate is preferably 40 to 90% by mass, more preferably 10 to 60% by mass, and the alkyl methacrylate is preferably 50 to 85% by mass, more preferably 50 to 15% by mass. %.
 メタクリル酸アルキルとしては、そのアルキル基の炭素数が1~8程度のものでよく、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、中でも、メタクリル酸メチルが好ましい。メタクリル酸アルキルは、必要に応じてそれらの2種以上を用いてもよい。 The alkyl methacrylate may have an alkyl group having about 1 to 8 carbon atoms, such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and the like. Among them, methyl methacrylate is preferred. Two or more of these alkyl methacrylates may be used as necessary.
 アクリル酸アルキルとしては、そのアルキル基が炭素数1~8程度のものでよく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、中でも、アクリル酸メチル、アクリル酸n-ブチルが好ましい。アクリル酸アルキルは、必要に応じてそれらの2種以上を用いてもよく、その場合、アクリル酸n-ブチルを主成分として用い、さらにアクリル酸n-ブチル以外のアクリル酸アルキルを1種以上用いることが好ましく、アクリル酸n-ブチルとアクリル酸メチルを用い、かつアクリル酸n-ブチルが主成分であることがより好ましい。ここで、アクリル酸n-ブチルが主成分であるとは、2種以上のアクリル酸アルキルの合計100質量%を基準として、アクリル酸n-ブチルの質量割合が50質量%を超えることを意味する。 The alkyl acrylate may have an alkyl group with about 1 to 8 carbon atoms, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and the like. Among them, methyl acrylate and n-butyl acrylate are preferred. If necessary, two or more of these alkyl acrylates may be used. In that case, n-butyl acrylate is used as the main component, and one or more alkyl acrylates other than n-butyl acrylate are used. More preferably, n-butyl acrylate and methyl acrylate are used, and n-butyl acrylate is the main component. Here, n-butyl acrylate is the main component means that the mass ratio of n-butyl acrylate exceeds 50% by mass based on the total 100% by mass of two or more alkyl acrylates. .
 メタクリル酸アルキル、アクリル酸アルキルおよび芳香族ビニル単量体を含まない他の単量体は、例えば、単管能単量体、すなわち分子内に重合性の炭素-炭素二重結合を1個有する化合物であってもよく、多官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を少なくとも2個有する化合物であってもよい。 Alkyl methacrylates, alkyl acrylates, and other monomers that do not contain aromatic vinyl monomers are, for example, monofunctional monomers, i.e., have one polymerizable carbon-carbon double bond in the molecule. It may be a compound or a polyfunctional monomer, ie, a compound having at least two polymerizable carbon-carbon double bonds in the molecule.
 この単官能単量体の例としては、アクリロニトリル、メタクリロニトリルなどのシアン化アルケニル、アクリル酸、メタクリル酸、無水マレイン酸、N-置換マレイミドなどが挙げられる。 Examples of this monofunctional monomer include alkenyl cyanides such as acrylonitrile and methacrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, and N-substituted maleimide.
 また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートなどの多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルなどの不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートなどの多塩基酸のポリアルケニルエステルなどが挙げられる。メタクリル酸アルキルおよびアクリル酸アルキル、芳香族ビニル以外の単量体は、必要に応じてそれらの2種以上を用いてもよい。 Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, and trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Examples include alkenyl esters of unsaturated carboxylic acids such as allyl acid, and polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate and triallyl isocyanurate. Two or more of these monomers other than alkyl methacrylate, alkyl acrylate, and aromatic vinyl may be used, if necessary.
 メタクリル樹脂は、1種を用いてもよいし、2種以上を用いてもよい。2種以上のメタクリル樹脂としては、メタクリル樹脂を構成する単量体の種類が異なるものであってもよいし、単量体の種類は同じであるが、各単量体の質量割合が異なるものであってもよい。 One type of methacrylic resin may be used, or two or more types may be used. The two or more types of methacrylic resins may differ in the type of the monomers constituting the methacrylic resin, or the types of the monomers may be the same, but the mass ratio of each monomer may be different. may be
 メタクリル樹脂の重合方法は特に限定されず、通常の塊状重合、懸濁重合、乳化重合等の方法で行うことができる。 The method of polymerizing the methacrylic resin is not particularly limited, and ordinary bulk polymerization, suspension polymerization, emulsion polymerization, and the like can be used.
 また、メタクリル樹脂には予めゴム粒子を配合した、所謂、高衝撃メタクリル樹脂を使用することもできる。一般に、これらの高衝撃メタクリル樹脂はゴム成分を5~40質量%含有するものである。 In addition, a so-called high-impact methacrylic resin in which rubber particles are preliminarily compounded can also be used as the methacrylic resin. Generally, these high-impact methacrylic resins contain 5 to 40% by mass of rubber component.
 配合されるゴム成分は、特に限定されるものではないが、メタクリル樹脂と屈折率の近いものが好適で、ブタジエン等を主成分とするジエン系グラフト共重合体や、アクリル酸エステル・メタクリル酸エステル類を主成分とするコアシェル型グラフト構造を有するゴム状重合体、肥大化粒子にグラフトしたゴム状重合体などを挙げることができる。 The rubber component to be blended is not particularly limited, but is preferably one having a refractive index close to that of methacrylic resin, such as a diene-based graft copolymer containing butadiene or the like as a main component, or an acrylic ester/methacrylic ester. Examples include a rubber-like polymer having a core-shell type graft structure and a rubber-like polymer grafted to an enlarged particle.
 メタクリル樹脂(B)のMFR値(230℃、3.8kg荷重)は、5~25g/10分であることが好ましく、10~20g/10分であることがより好ましい。 The MFR value (230°C, 3.8 kg load) of the methacrylic resin (B) is preferably 5 to 25 g/10 minutes, more preferably 10 to 20 g/10 minutes.
 (ポリアリーレンスルフィド樹脂(A6))
 ポリアリーレンスルフィド樹脂(A6)は、アリーレンと、硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものである。ポリアリーレンスルフィド樹脂は下記式(6)で表される繰り返し単位を含む。
(Polyarylene sulfide resin (A6))
The polyarylene sulfide resin (A6) has a resin structure in which a repeating unit is a structure in which arylene and sulfur atoms are bonded. A polyarylene sulfide resin contains a repeating unit represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(6)中、Arは置換または非置換のアリーレンである。
 上記アリーレンとしては、特に制限されないが、フェニレン、ナフチレン、ビフェニレン、ターフェニレン等が挙げられる。
In the above formula (6), Ar is substituted or unsubstituted arylene.
Examples of the arylene include, but are not particularly limited to, phenylene, naphthylene, biphenylene, terphenylene, and the like.
 上記Arが置換基を有する場合、当該置換基としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等のアルコキシ基;ニトロ基;アミノ基;シアノ基等が挙げられる。 When Ar has a substituent, the substituent is not particularly limited, but alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group groups; alkoxy groups such as methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutyloxy group, sec-butyloxy group and tert-butyloxy group; nitro group; amino group; cyano group and the like.
 上記Arは、置換基を単独で有していてもよいし、2以上有していてもよい。置換基を2以上有する場合には、当該置換基は同じものであってもよいし、それぞれ異なっていてもよい。 The above Ar may have a single substituent or may have two or more substituents. When it has two or more substituents, the substituents may be the same or different.
 上述のポリアリーレンスルフィド樹脂のうち、Arが置換または非置換のフェニレンであるポリフェニレンスルフィド樹脂(PPS樹脂)であることが好ましい。PPS樹脂は下記式(7)および(8)で表される繰り返し単位を少なくとも1つ含む。 Among the polyarylene sulfide resins described above, polyphenylene sulfide resins (PPS resins) in which Ar is substituted or unsubstituted phenylene are preferred. The PPS resin contains at least one repeating unit represented by the following formulas (7) and (8).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(7)および(8)中、Rとしては、それぞれ独立して、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等のアルコキシ基;ニトロ基;アミノ基;シアノ基等が挙げられる。 In the above formulas (7) and (8), each R is independently an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. groups; alkoxy groups such as methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutyloxy group, sec-butyloxy group and tert-butyloxy group; nitro group; amino group; cyano group and the like.
 また、nは、0~4の整数であり、好ましくは0~2の整数であり、より好ましくは0または1であり、さらに好ましくは0である。nが0であると、機械的強度が高くなり得る。 Also, n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. Mechanical strength can become it high that n is 0.
 上述のうち、PPS樹脂は、耐熱性、結晶性等の観点から、式(7)で表される繰り返し単位を含むことが好ましい。 Among the above, the PPS resin preferably contains a repeating unit represented by formula (7) from the viewpoint of heat resistance, crystallinity, and the like.
 また、PPS樹脂は、下記式(9)で表される3官性の構造単位を含んでいてもよい。 In addition, the PPS resin may contain a trifunctional structural unit represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(9)中、Rは、上記式(7)および(8)と同様である。
 また、mは0~3の整数であり、好ましくは0~2の整数であり、より好ましくは0または1であり、さらに好ましくは0である。
In formula (9) above, R is the same as in formulas (7) and (8) above.
Also, m is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 なお、上記式(9)で表される3官能性の構造単位を含む場合、PPS樹脂中の含有率は、すべての構造単位の合計モル数に対して、0.001~3モル%であることが好ましく、0.01~1モル%であることがより好ましい。 In addition, when the trifunctional structural unit represented by the above formula (9) is included, the content in the PPS resin is 0.001 to 3 mol% with respect to the total number of moles of all structural units. is preferred, and 0.01 to 1 mol % is more preferred.
 さらに、PPS樹脂は、下記式(10)~(14)で表される構造単位を含んでいてもよい。 Furthermore, the PPS resin may contain structural units represented by the following formulas (10) to (14).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(10)~(14)中、Rおよびnは、上記式(7)等と同様である。また、pは0~6の整数であり、好ましくは0~3の整数であり、より好ましくは0または1であり、さらに好ましくは0である。 In formulas (10) to (14) above, R and n are the same as in formula (7) above. Also, p is an integer of 0 to 6, preferably an integer of 0 to 3, more preferably 0 or 1, and still more preferably 0.
 なお、上記式(10)~(14)で表される構造単位を含む場合、PPS樹脂中の含有率は、機械的強度等の観点から、すべての構造単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、3モル%以下であることがさらに好ましい。この際、上記式(10)~(14)で表される構造単位を2以上含む場合には、その合計が上記含有率となることが好ましい。 When structural units represented by the above formulas (10) to (14) are included, the content in the PPS resin is 10 mol% or less with respect to all structural units from the viewpoint of mechanical strength. It is preferably 5 mol % or less, more preferably 3 mol % or less. At this time, when two or more structural units represented by the above formulas (10) to (14) are included, the total content is preferably the above content.
 上述のポリアリーレンスルフィド樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。 The polyarylene sulfide resins described above may be used alone or in combination of two or more.
 ポリアリーレンスルフィド樹脂は、リニア型であってもよいし、分岐型であってもよい。なお、一実施形態において、分岐型は、リニア型PAS樹脂を酸素存在下において加熱することで得ることができる。 The polyarylene sulfide resin may be linear or branched. In one embodiment, the branched type can be obtained by heating a linear type PAS resin in the presence of oxygen.
 ポリアリーレンスルフィド樹脂の重量平均分子量としては、25000~80000であることが好ましく、25000~50000であることがより好ましい。重量平均分子量が25000以上であると、材料強度を保持できることから好ましい。一方、重量平均分子量が80000以下であると、成形性の観点から好ましい。 The weight average molecular weight of the polyarylene sulfide resin is preferably 25,000 to 80,000, more preferably 25,000 to 50,000. A weight-average molecular weight of 25,000 or more is preferable because the strength of the material can be maintained. On the other hand, a weight average molecular weight of 80,000 or less is preferable from the viewpoint of moldability.
 なお、本明細書において、「重量平均分子量」の値は、ゲル浸透クロマトグラフィ法により測定された値を採用するものとする。この際、上記ゲル浸透クロマトグラフィの測定条件は以下の通りである。すなわち、高速GPCであるHLC-8220(東ソー株式会社製)、カラム(TSK-GELGMHX L×2)を使用し、サンプル5mgを10gのテトラヒドロフラン(THF)に溶解した溶液200mLを装置に注入し、流量:1mL/分(THF)、恒温槽温度:40℃、示差屈折(RI)検出器にて測定する。 In addition, in this specification, the value of "weight average molecular weight" shall adopt the value measured by the gel permeation chromatography method. Under the present circumstances, the measurement conditions of the said gel permeation chromatography are as follows. That is, using a high-speed GPC HLC-8220 (manufactured by Tosoh Corporation) and a column (TSK-GELGMHX L x 2), 200 mL of a solution of 5 mg of a sample dissolved in 10 g of tetrahydrofuran (THF) was injected into the apparatus, and the flow rate was : 1 mL/min (THF), constant temperature bath temperature: 40°C, measured with a differential refraction (RI) detector.
 ポリアリーレンスルフィド樹脂の300℃で測定した溶融粘度は、2~1000Pa・sであることが好ましく、10~500Pa・sであることがより好ましく、60~200Pa・sであることがさらに好ましい。溶融粘度が2Pa・s以上であると、材料強度を保持できることから好ましい。一方、溶融粘度が1000Pa・s以下であると、成形性の観点から好ましい。 The melt viscosity of the polyarylene sulfide resin measured at 300°C is preferably 2 to 1000 Pa·s, more preferably 10 to 500 Pa·s, and even more preferably 60 to 200 Pa·s. A melt viscosity of 2 Pa·s or more is preferable because the strength of the material can be maintained. On the other hand, a melt viscosity of 1000 Pa·s or less is preferable from the viewpoint of moldability.
 ポリアリーレンスルフィド樹脂の非ニュートン指数は、0.90~2.00であることが好ましく、0.90~1.50であることがより好ましく、0.95~1.20であることがさらに好ましい。非ニュートン指数の値が0.90以上であると、材料強度を保持できることから好ましい。一方、非ニュートン指数が2.00以下であると、成形性の観点から好ましい。 The non-Newtonian index of the polyarylene sulfide resin is preferably 0.90 to 2.00, more preferably 0.90 to 1.50, even more preferably 0.95 to 1.20. . A non-Newtonian exponent of 0.90 or more is preferable because the strength of the material can be maintained. On the other hand, a non-Newtonian index of 2.00 or less is preferable from the viewpoint of moldability.
 なお、上述のポリアリーレンスルフィド樹脂の製造方法は、公知の方法により製造することができる。例えば、(1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、(3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法等が挙げられる。 The method for producing the polyarylene sulfide resin described above can be produced by a known method. For example, (1) a method of polymerizing a dihalogenoaromatic compound in the presence of sulfur and sodium carbonate, if necessary, by adding a polyhalogenoaromatic compound or other copolymerization components, and (2) a sulfidating agent in a polar solvent. (3) adding p-chlorothiophenol and, if necessary, other copolymerization components. is added to cause self-condensation.
 これらの方法のなかでも、(2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加してもよいし、水酸化アルカリを添加してもよい。 Among these methods, method (2) is versatile and preferable. During the reaction, an alkali metal salt of a carboxylic acid or a sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization.
 上記(2)の方法のなかでも、
(a)加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去されうる速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加えて反応させること、および、反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることにより、PAS樹脂を製造する方法(特開平07-228699号公報参照)、または、
(b)固形のアルカリ金属硫化物および、非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物および、有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(国際公開第2010/058713号参照)
が特に好ましい。
Among the methods of (2) above,
(a) introducing a hydrous sulfidating agent into a heated mixture containing an organic polar solvent and a dihalogenoaromatic compound at a rate such that water can be removed from the reaction mixture, and is optionally added with a polyhalogenoaromatic compound for reaction, and by controlling the amount of water in the reaction system within the range of 0.02 to 0.5 mol per 1 mol of the organic polar solvent. , a method for producing a PAS resin (see JP-A-07-228699), or
(b) a solid alkali metal sulfide and, in the presence of an aprotic polar organic solvent, a dihalogenoaromatic compound and, if necessary, a polyhalogenoaromatic compound or other copolymerization components are added to form an alkali metal hydrosulfide and an organic The acid alkali metal salt is 0.01 to 0.9 mol of the organic acid alkali metal salt per 1 mol of the sulfur source, and the amount of water in the reaction system is 0.02 mol per 1 mol of the aprotic polar organic solvent. Method of reacting while controlling the range of (see International Publication No. 2010/058713)
is particularly preferred.
 上記ジハロゲノ芳香族化合物としては、特に制限されないが、例えば、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、および、上記各化合物の芳香環に炭素原子数1~18のアルキル基を有する化合物が挙げられる。上述のジハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 The dihalogeno aromatic compound is not particularly limited, but examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene. , 4,4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and Compounds having an alkyl group having 1 to 18 carbon atoms in the aromatic ring of each of the above compounds can be mentioned. The above dihalogeno aromatic compounds may be used alone or in combination of two or more.
 上記ポリハロゲノ芳香族化合物としては、特に制限されないが、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。上述のポリハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 The polyhalogenoaromatic compound is not particularly limited, but 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, Benzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. The polyhalogeno aromatic compounds described above may be used alone or in combination of two or more.
 なお、上記各化合物中に含まれるハロゲン原子は、塩素原子または臭素原子であることが好ましい。 The halogen atom contained in each of the above compounds is preferably a chlorine atom or a bromine atom.
 重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法は、特に制限されないが、例えば、
(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(または、低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、
(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、
(3)重合反応終了後、反応混合物に反応溶媒(または低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、
(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、
(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法
等が挙げられる。
The post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited, but for example,
(1) After the completion of the polymerization reaction, the reaction mixture is left as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is treated with water, the reaction solvent (or , an organic solvent having a similar solubility to the low-molecular-weight polymer), washing once or twice with a solvent such as acetone, methyl ethyl ketone, alcohols, etc., followed by neutralization, washing with water, filtering and drying,
(2) After completion of the polymerization reaction, solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (soluble in the polymerization solvent used) are added to the reaction mixture. and a solvent which is a poor solvent for at least polyarylene sulfide) is added as a precipitant to precipitate solid products such as polyarylene sulfide and inorganic salts, which are separated by filtration, washed and dried. ,
(3) After completion of the polymerization reaction, a reaction solvent (or an organic solvent having a solubility equivalent to that of the low-molecular-weight polymer) is added to the reaction mixture and stirred, followed by filtration to remove the low-molecular-weight polymer. a method of washing once or twice or more with a solvent such as acetone, methyl ethyl ketone or alcohols, followed by neutralization, washing with water, filtration and drying;
(4) After completion of the polymerization reaction, a method of adding water to the reaction mixture, washing with water, filtering, and if necessary, acid-treating by adding an acid at the time of washing with water, followed by drying;
(5) A method of filtering the reaction mixture after completion of the polymerization reaction, washing with a reaction solvent once or twice or more if necessary, further washing with water, filtering and drying, and the like.
 なお、上記(1)~(5)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は、真空中で行ってもよく、空気中で行ってもよく、窒素のような不活性ガス雰囲気中で行ってもよい。 In the post-treatment methods exemplified in (1) to (5) above, the drying of the polyarylene sulfide resin may be carried out in a vacuum or in the air, using an inert solvent such as nitrogen. It may be carried out in a gas atmosphere.
 (オレフィン系樹脂(A7))
 オレフィン系樹脂(A)は、ラジカル重合性二重結合を有するオレフィン系単量体を重合または共重合させてなる合成樹脂である。
(Olefin resin (A7))
The olefinic resin (A) is a synthetic resin obtained by polymerizing or copolymerizing an olefinic monomer having a radically polymerizable double bond.
 オレフィン系単量体としては、特に限定されず、例えば、α-オレフィン、共役ジエンなどが挙げられる。α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテンなどが挙げられる。共役ジエンとしては、例えば、ブタジエン、イソプレンなどが挙げられる。オレフィン系単量体は、単独で用いられても二種以上が併用されてもよい。 The olefinic monomer is not particularly limited, and examples thereof include α-olefins and conjugated dienes. Examples of α-olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene and the like. Examples of conjugated dienes include butadiene and isoprene. The olefinic monomers may be used alone or in combination of two or more.
 オレフィン系樹脂(A7)としては、特に限定されず、例えば、エチレンの単独重合体、エチレンとエチレン以外のα-オレフィンとの共重合体、プロピレンの単独重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体、ブテンの単独重合体、ブタジエンやイソプレンなどの共役ジエンの単独重合体または共重合体などが挙げられる。オレフィン系樹脂(A7)としては、プロピレンの単独重合体、または、プロピレンとプロピレン以外のα-オレフィンとの共重合体が好ましい。 The olefinic resin (A7) is not particularly limited, and examples thereof include homopolymers of ethylene, copolymers of ethylene and α-olefins other than ethylene, homopolymers of propylene, and propylene and α-olefins other than propylene. copolymers, homopolymers of butene, and homopolymers or copolymers of conjugated dienes such as butadiene and isoprene. The olefin resin (A7) is preferably a propylene homopolymer or a copolymer of propylene and an α-olefin other than propylene.
 オレフィン系樹脂(A7)がプロピレンと他の単量体との共重合体(ポリプロピレン系共重合体)である場合、プロピレン以外の共重合用α-オレフィンとしては、直鎖状α-オレフィン、分岐状α-オレフィン等を好適に使用することができる。直鎖状オレフィンとしては、例えば、エチレン、ブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1等が挙げられる。分岐状α-オレフィンとしては、例えば、2-メチルプロペン-1、3-メチルペンテン-1、4-メチルペンテン-1、5-メチルヘキセン-1、4-メチルヘキセン-1、4,4-ジメチルペンテン-1等が挙げられる。これらの共重合用α-オレフィンは、単独で、あるいは2種以上を組み合わせて用いてもよい。 When the olefin-based resin (A7) is a copolymer of propylene and other monomers (polypropylene-based copolymer), α-olefins for copolymerization other than propylene include linear α-olefins, branched α-olefins and the like can be preferably used. Linear olefins include, for example, ethylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1 and the like. Branched α-olefins include, for example, 2-methylpropene-1,3-methylpentene-1,4-methylpentene-1,5-methylhexene-1,4-methylhexene-1,4,4-dimethyl pentene-1 and the like. These α-olefins for copolymerization may be used alone or in combination of two or more.
 これらの共重合用α-オレフィン(共重合成分)のオレフィン系樹脂(A)中の配合量としては、好ましくは30質量%以下、より好ましくは20質量%以下である。これらが共重合された場合の共重合体の様式は、特に制限は無く、例えばランダム型、ブロック型、グラフト型、これらの混合物などのいずれであってもよい。ポリプロピレン系共重合体(プロピレンと他の単量体との共重合体)は、一般に用いられるランダム共重合体、ブロック共重合体等のいずれでもよい。ポリプロピレン系共重合体の好ましい例としては、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体などが挙げられる。 The blending amount of these α-olefins for copolymerization (copolymerization components) in the olefin resin (A) is preferably 30% by mass or less, more preferably 20% by mass or less. When these are copolymerized, the form of the copolymer is not particularly limited, and may be, for example, random type, block type, graft type, or a mixture thereof. Polypropylene copolymers (copolymers of propylene and other monomers) may be any of commonly used random copolymers, block copolymers, and the like. Preferred examples of polypropylene copolymers include propylene-ethylene copolymers, propylene-butene-1 copolymers and propylene-ethylene-butene-1 copolymers.
 また、オレフィン系樹脂(A7)としては、たとえば上記のポリプロピレン系重合体(プロピレン単量体の重合体)、ポリプロピレン系共重合体等に、酸無水物基、カルボキシル基、ヒドロキシル基、アミノ基およびイソシアネート基からなる群から選ばれた少なくとも1種の官能基を導入してなる、官能基含有オレフィン系樹脂を用いることもできる。 As the olefin resin (A7), for example, the above-mentioned polypropylene polymer (polymer of propylene monomer), polypropylene copolymer, etc. may be added with an acid anhydride group, a carboxyl group, a hydroxyl group, an amino group and A functional group-containing olefinic resin into which at least one functional group selected from the group consisting of isocyanate groups has been introduced can also be used.
 (ポリアミド樹脂(A8))
 ポリアミド樹脂(A8)は、アミノ酸、ラクタム、ジアミンとジカルボン酸あるいはそのアミド形成性誘導体を主たる構成原料としたアミド結合を有する熱可塑性重合体である。ジアミンと、ジカルボン酸またはそのアシル活性体と、を縮合してなる重縮合物を用いることができる。また、アミノカルボン酸、ラクタムまたはアミノ酸を重縮合してなる重合体を用いることができる。また、これらの共重合体を用いることができる。
(Polyamide resin (A8))
Polyamide resin (A8) is a thermoplastic polymer having an amide bond, the main constituents of which are amino acids, lactams, diamines and dicarboxylic acids or their amide-forming derivatives. A polycondensate obtained by condensing a diamine and a dicarboxylic acid or its acyl active substance can be used. Polymers obtained by polycondensation of aminocarboxylic acids, lactams or amino acids can also be used. Copolymers of these can also be used.
 ジアミンとしては、脂肪族ジアミン、芳香族ジアミンが挙げられる。
 脂肪族ジアミンとしては、例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,8-ビス(アミノメチル)トリシクロデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどが挙げられる。
Diamines include aliphatic diamines and aromatic diamines.
Examples of aliphatic diamines include tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methyl Nonamethylenediamine, 2,4-dimethyloctamethylenediamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethyl cyclohexane, 3,8-bis(aminomethyl)tricyclodecane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, aminoethylpiperazine and the like.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,6-ナフタレンジアミン、4,4’-ジフェニルジアミン、3,4’-ジフェニルジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’スルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(4-アミノフェニル)プロパンなどが挙げられる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,6-naphthalenediamine, 4,4′-diphenyldiamine, 3,4′-diphenyldiamine, 4,4′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4' sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 2,2-bis(4-aminophenyl ) propane and the like.
 ジカルボン酸としては、例えば、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ジグリコール酸などが挙げられる。 Examples of dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, diglycolic acid and the like.
 具体的に、ポリアミド樹脂としては、例えば、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)などの脂肪族ポリアミドが挙げられる。また、ポリトリメチルヘキサメチレンテレフタルアミド、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ナイロン6T/6I)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))、および、これらの共重合ポリアミドなどの脂肪族-芳香族ポリアミドが挙げられる。また、これらの共重合体や混合物、および、ポリ(p-フェニレンテレフタルアミド)、ポリ(p-フェニレンテレフタルアミド-co-イソフタルアミド)などが挙げられる。 Specifically, polyamide resins include, for example, polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610 ), polyhexamethylenedodecanamide (nylon 612), polyundecamethyleneadipamide (nylon 116), polyundecaneamide (nylon 11), polydodecanamide (nylon 12). In addition, polytrimethylhexamethylene terephthalamide, polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalate/isophthalamide (nylon 6T/6I), polybis(4-aminocyclohexyl)methandodedecamide (nylon PACM12), polybis ( 3-methyl-4-aminocyclohexyl)methandodedecamide (nylon dimethyl PACM12), polymetaxylylene adipamide (nylon MXD6), polyundecamethylene terephthalamide (nylon 11T), polyundecamethylene hexahydroterephthalamide (nylon 11T(H)), and aliphatic-aromatic polyamides such as these copolyamides. Copolymers and mixtures thereof, poly(p-phenylene terephthalamide), poly(p-phenylene terephthalamide-co-isophthalamide) and the like are also included.
 <親水性コポリマー(B)>
 親水性コポリマー(B)は、オキシエチレン基(好ましくはポリオキシエチレン鎖)を有する。オキシエチレン基は親水性セグメントとして機能するため、オキシエチレン基を有することで、帯電防止性能を発現し、親水性の粉塵汚れの付着を抑制する効果を発現する。
<Hydrophilic copolymer (B)>
The hydrophilic copolymer (B) has oxyethylene groups (preferably polyoxyethylene chains). Since the oxyethylene group functions as a hydrophilic segment, the presence of the oxyethylene group exhibits antistatic performance and exhibits the effect of suppressing adhesion of hydrophilic dust stains.
 オキシエチレン基を有する親水性コポリマー(B)は、熱可塑性樹脂(A)と混合すると他の親水性ポリマーや帯電防止剤と比較して、熱可塑性樹脂組成物を含む成形品の表面に集まりやすいという特徴がある。すなわち、オキシエチレン基を有する親水性コポリマー(B)は、他の親水性ポリマーや帯電防止剤と比較して、成形品の内部に埋没せずに表面に存在する量が多い。従って、オキシエチレン基を有する親水性コポリマー(B)の添加量に対して効率的に防汚効果が発揮される。このため、同等の防汚性能を得るために必要な親水性コポリマー(B)の添加量は、他の親水性ポリマーよりも少なくてもよい。 Hydrophilic copolymer having an oxyethylene group (B), when mixed with the thermoplastic resin (A), compared to other hydrophilic polymers and antistatic agents, tends to gather on the surface of the molded article containing the thermoplastic resin composition. There is a feature. That is, the hydrophilic copolymer (B) having an oxyethylene group is present in a large amount on the surface of the molded article without being buried inside, compared to other hydrophilic polymers and antistatic agents. Therefore, the antifouling effect is efficiently exhibited with respect to the added amount of the hydrophilic copolymer (B) having an oxyethylene group. Therefore, the amount of hydrophilic copolymer (B) required to obtain equivalent antifouling performance may be less than that of other hydrophilic polymers.
 本実施の形態においては、このような親水性コポリマー(B)として、ポリエステル(a1)とオキシエチレン基を有する親水性ポリマー(a2)との交互共重合体(a)の複数が、水酸基を3個以上有する多価アルコール化合物(b1)、エポキシ基を2個以上有するエポキシ化合物(b2)、および、ポリカルボン酸化合物(b3)からなる群から選択される少なくとも1種とのエステル結合を介して結合してなる親水性コポリマーが用いられる。 In the present embodiment, as such a hydrophilic copolymer (B), a plurality of alternating copolymers (a) of a polyester (a1) and a hydrophilic polymer (a2) having an oxyethylene group have three hydroxyl groups. polyhydric alcohol compound (b1) having one or more epoxy groups, epoxy compound (b2) having two or more epoxy groups, and at least one selected from the group consisting of polycarboxylic acid compound (b3) via an ester bond. A conjugated hydrophilic copolymer is used.
 この親水性コポリマー(B)は、融点が約90~100℃であり、国際公開第2021/006192号(特許文献7)に開示される「ポリオレフィンとポリオキシエチレン鎖を有する親水性ポリマーとが繰り返し交互に結合してなる親水性コポリマー」(B1)(融点:約135℃)および「ポリエーテルエステルアミド」(B2)(融点:約195~200℃)に比べて融点が低い。 This hydrophilic copolymer (B) has a melting point of about 90 to 100° C., and is disclosed in International Publication No. 2021/006192 (Patent Document 7). The melting point is lower than that of the alternately bonded hydrophilic copolymer” (B1) (melting point: about 135° C.) and “polyether ester amide” (B2) (melting point: about 195-200° C.).
 このような従来よりも融点が低い親水性コポリマー(B)を用いることにより、本実施の形態に係る熱可塑性樹脂組成物は、低温プロセスによる製造が可能であり、加工し易い。また、加工時間、混錬時間等が比較的短い場合でも、熱可塑性樹脂組成物中に親水性コポリマー(B)が分散しやすい。また、熱可塑性樹脂組成物を構成する材料(特に親水性コポリマー(B)以外の材料)が分解しにくい。これらの効果は、国際公開第2021/006192号(特許文献7)に開示されるB1またはB2を用いた場合には得られない効果である。 By using such a hydrophilic copolymer (B) having a lower melting point than conventional ones, the thermoplastic resin composition according to the present embodiment can be produced by a low-temperature process and is easy to process. In addition, even when the processing time, kneading time, etc. are relatively short, the hydrophilic copolymer (B) is easily dispersed in the thermoplastic resin composition. In addition, the materials constituting the thermoplastic resin composition (especially materials other than the hydrophilic copolymer (B)) are difficult to decompose. These effects are effects that cannot be obtained when B1 or B2 disclosed in WO2021/006192 (Patent Document 7) is used.
 〔交互共重合体(a)〕
 交互共重合体(a)は、ポリエステル(a1)とオキシエチレン基を有する親水性ポリマー(a2)とがエステル結合によって繰り返し交互に結合してなる共重合体である。言い換えれば、交互共重合体(a)は、ポリエステル(a1)に由来する複数のブロックと、オキシエチレン基を有する親水性ポリマー(a2)に由来する複数のブロックと、を交互に有する共重合体である。
[Alternating copolymer (a)]
The alternating copolymer (a) is a copolymer in which the polyester (a1) and the hydrophilic polymer (a2) having an oxyethylene group are repeatedly and alternately bonded via ester bonds. In other words, the alternating copolymer (a) is a copolymer having alternating multiple blocks derived from the polyester (a1) and multiple blocks derived from the hydrophilic polymer (a2) having an oxyethylene group. is.
 交互共重合体(a)の末端は、ポリエステル(a1)に由来するブロックであってもよく、親水性ポリマー(a2)に由来するブロックであってもよい。なお、交互共重合体(a)の末端がポリエステル(a1)に由来するブロックである場合、当該末端はカルボキシル基を有する。交互共重合体(a)の末端が親水性ポリマー(a2)に由来するブロックである場合、当該末端は水酸基を有する。交互共重合体(a)の末端の官能基は同じであってもよく、異なっていてもよい。 The terminal of the alternating copolymer (a) may be a block derived from the polyester (a1) or a block derived from the hydrophilic polymer (a2). When the terminal of the alternating copolymer (a) is a block derived from the polyester (a1), the terminal has a carboxyl group. When the terminal of the alternating copolymer (a) is a block derived from the hydrophilic polymer (a2), the terminal has a hydroxyl group. The terminal functional groups of the alternating copolymer (a) may be the same or different.
 交互共重合体(a)は、例えば、下記の式(15)または式(16)で表される。式(15)で表される交互共重合体(a)は、両末端にカルボキシル基を有する。式(16)で表される交互共重合体(a)は、両末端に水酸基を有する。交互共重合体(a)は、式(15)に示されるように両末端にカルボキシル基を有することが好ましい。 The alternating copolymer (a) is represented, for example, by the following formula (15) or formula (16). The alternating copolymer (a) represented by formula (15) has carboxyl groups at both ends. The alternating copolymer (a) represented by formula (16) has hydroxyl groups at both ends. The alternating copolymer (a) preferably has carboxyl groups at both ends as shown in formula (15).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記の式(15)および式(16)中、「a1」は、ポリエステル(a1)のカルボキシル基を除いた残基を表し、「a2」は、親水性ポリマー(a2)ジオールの水酸基を除いた残基を表す。nは、自然数であり、好ましくは1~10の整数であり、より好ましくは1~7の整数であり、最も好ましくは1~5の整数である。 In the above formulas (15) and (16), "a1" represents the residue from which the carboxyl group of the polyester (a1) was removed, and "a2" represents the hydrophilic polymer (a2) from which the hydroxyl group of the diol was removed. represents a residue. n is a natural number, preferably an integer of 1-10, more preferably an integer of 1-7, and most preferably an integer of 1-5.
 〔ポリエステル(a1)〕
 ポリエステル(a1)は、両末端にカルボキシル基を有するポリエステルであれば特に限定されないが、好ましくは、下記式(17)で表されるような、ジカルボン酸のカルボキシル基を除いた残基と、ジオールの水酸基を除いた残基とが、エステル結合を介して繰り返し交互に結合してなる構造を有する。
[Polyester (a1)]
The polyester (a1) is not particularly limited as long as it is a polyester having carboxyl groups at both ends. and the residue other than the hydroxyl group of are repeatedly and alternately bonded via an ester bond.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記の式(17)中、Xは、ジカルボン酸のカルボキシル基を除いた残基を表し、Yは、ジオールの水酸基を除いた残基を表す。nは、好ましくは1~50の整数であり、より好ましくは5~40の整数であり、さらに好ましくは10~30の整数である。 In the above formula (17), X represents the residue of the dicarboxylic acid from which the carboxyl group has been removed, and Y represents the residue of the diol from which the hydroxyl group has been removed. n is preferably an integer of 1-50, more preferably an integer of 5-40, still more preferably an integer of 10-30.
 上記の式(17)で表されるポリエステル(a1)は、例えば、ジカルボン酸とジオールとを重縮合反応させることにより得られる。 The polyester (a1) represented by the above formula (17) can be obtained, for example, by subjecting a dicarboxylic acid and a diol to a polycondensation reaction.
 (ジカルボン酸)
 ジカルボン酸としては、脂肪族ジカルボン酸および芳香族ジカルボン酸が挙げられ、脂肪族ジカルボン酸と芳香族ジカルボン酸との混合物でもよい。
(Dicarboxylic acid)
Dicarboxylic acids include aliphatic dicarboxylic acids and aromatic dicarboxylic acids, and may be mixtures of aliphatic and aromatic dicarboxylic acids.
 脂肪族ジカルボン酸としては、好ましくは炭素原子数2~20の脂肪族ジカルボン酸が挙げられ、例えば、シュウ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、2,5-フランジカルボン酸、イタコン酸、1,10-デカンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸、マレイン酸、フマル酸等が挙げられる。これら脂肪族ジカルボン酸の中でも、融点や耐熱性の点から、炭素原子数4~16のジカルボン酸が好ましく、炭素原子数6~12のジカルボン酸がより好ましい。 Aliphatic dicarboxylic acids preferably include aliphatic dicarboxylic acids having 2 to 20 carbon atoms, such as oxalic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 2,5-furandicarboxylic acid, itaconic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, fumaric acid and the like. Among these aliphatic dicarboxylic acids, dicarboxylic acids having 4 to 16 carbon atoms are preferable, and dicarboxylic acids having 6 to 12 carbon atoms are more preferable, from the viewpoint of melting point and heat resistance.
 芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。 The aromatic dicarboxylic acid may be a derivative of aromatic dicarboxylic acid (eg, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.). Also, the aromatic dicarboxylic acid and its derivative may be a mixture of two or more.
 芳香族ジカルボン酸としては、好ましくは炭素原子数8~20の芳香族ジカルボン酸が挙げられ、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウム、3-スルホイソフタル酸カリウム等が挙げられる。 Aromatic dicarboxylic acids preferably include aromatic dicarboxylic acids having 8 to 20 carbon atoms, such as terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, β-phenylglutarate. acid, α-phenyladipic acid, β-phenyladipic acid, biphenyl-2,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, 3-sulfoisophthalic acid Potassium etc. are mentioned.
 なお、ポリエステル(a1)を重縮合反応により得る際に用いるジカルボン酸は、ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。この場合、ジカルボン酸の誘導体とジオールとの反応後に、得られたポリエステルの両末端をカルボキシル基とする処理を行ってもよく、また、ジカルボン酸の誘導体とジオールとの反応得られたポリエステルを、そのような処理を行わずに、次の交互共重合体(a)を得るための反応に用いてもよい。ジカルボン酸(その誘導体を含む)は、2種以上の混合物でもよい。 The dicarboxylic acid used in obtaining the polyester (a1) by polycondensation reaction may be a derivative of dicarboxylic acid (eg, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.). In this case, after the reaction between the dicarboxylic acid derivative and the diol, the resulting polyester may be treated with carboxyl groups at both ends. It may be used in the reaction for obtaining the following alternating copolymer (a) without such treatment. Dicarboxylic acids (including derivatives thereof) may be a mixture of two or more.
 (ジオール)
 ジオールとしては、2つの水酸基を有する化合物であれば特に限定されないが、例えば、脂肪族ジオール、芳香族基含有ジオール等が挙げられる。また、ジオールは、2種以上の混合物でもよい。
(diol)
The diol is not particularly limited as long as it is a compound having two hydroxyl groups, and examples thereof include aliphatic diols and aromatic group-containing diols. Also, the diol may be a mixture of two or more.
 脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、イソソルビド、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、および、水添ビスフェノールAが、粉塵付着抑制効果の観点から好ましい。 Examples of aliphatic diols include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol and 1,3-butanediol. , 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl- 1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane diol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9- nonanediol, 1,10-decanediol, 1,12-octadecanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, 1,2-, 1,3- or 1,4-cyclohexanediol, cyclododecanediol , dimer diol, isosorbide, hydrogenated dimer diol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol and the like. Among these aliphatic diols, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A are preferable from the viewpoint of dust adhesion suppression effect.
 また、上記式(17)で表される両末端にカルボキシル基を有するポリエステルは、疎水性であることが好ましいため、脂肪族ジオールのうち、親水性のポリエチレングリコールは好ましくない。但し、ポリエチレングリコール以外の疎水性のジオールと共に使用する場合は、親水性のポリエチレングリコールを用いることもできる。 In addition, since the polyester represented by the above formula (17) having carboxyl groups at both ends is preferably hydrophobic, hydrophilic polyethylene glycol is not preferable among the aliphatic diols. However, when used together with a hydrophobic diol other than polyethylene glycol, hydrophilic polyethylene glycol can also be used.
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、単核2価フェノール化合物(ピロカテコール等)のポリヒドロキシエチル付加物等が挙げられる。これら芳香族基を有するジオールの中でも、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。 Examples of aromatic group-containing diols include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, ethylene oxide adducts of bisphenol A, Propylene oxide adducts of bisphenol A, 1,4-bis(2-hydroxyethoxy)benzene, resorcinol, and polyhydroxyethyl adducts of mononuclear dihydric phenol compounds (pyrocatechol, etc.). Among these aromatic group-containing diols, an ethylene oxide adduct of bisphenol A and 1,4-bis(β-hydroxyethoxy)benzene are preferred.
 ポリエステル(a1)は、例えば、上記ジカルボン酸またはその誘導体と、上記ジオールと、を重縮合反応させることにより得ることができる。 The polyester (a1) can be obtained, for example, by subjecting the dicarboxylic acid or its derivative and the diol to a polycondensation reaction.
 両末端にカルボキシル基を有するポリエステル(a1)を得る場合、ジオールに対してジカルボン酸またはその誘導体を過剰に使用することが好ましく、ジカルボン酸またはその誘導体のジオールに対するモル比が2以上であることが好ましい。 When obtaining a polyester (a1) having carboxyl groups at both ends, it is preferable to use an excess amount of dicarboxylic acid or its derivative relative to the diol, and the molar ratio of the dicarboxylic acid or its derivative to the diol is preferably 2 or more. preferable.
 ポリエステル(a1)を得るための重縮合反応の際には、エステル化反応を促進する触媒を使用してもよい。触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。なお、ポリエステル(a1)を得るための重縮合反応の際に、生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。 A catalyst that accelerates the esterification reaction may be used during the polycondensation reaction for obtaining the polyester (a1). As the catalyst, conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate and zinc acetate can be used. In the polycondensation reaction for obtaining the polyester (a1), an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress oxidation of the product.
 両末端にカルボキシル基を有するポリエステル(a1)は、両末端に水酸基を有する親水性ポリマー(a2)と反応することでエステル結合を形成し、交互共重合体(a)を形成できるものであれば、特に限定されない。ポリエステル(a1)の両末端のカルボキシル基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。 The polyester (a1) having a carboxyl group at both ends forms an ester bond by reacting with a hydrophilic polymer (a2) having a hydroxyl group at both ends, as long as it can form an alternating copolymer (a). , is not particularly limited. The carboxyl groups at both ends of the polyester (a1) may be protected or modified, and may be in the form of a precursor.
 〔オキシエチレン基を有する親水性ポリマー(a2)〕
 オキシエチレン基を有する親水性ポリマー(a2)は、オキシエチレン基(好ましくはポリオキシエチレン鎖)を有する、親水性のポリマーである。また、親水性ポリマー(a2)は、両末端に水酸基を有する。
[Hydrophilic polymer (a2) having an oxyethylene group]
The hydrophilic polymer (a2) having oxyethylene groups is a hydrophilic polymer having oxyethylene groups (preferably polyoxyethylene chains). Also, the hydrophilic polymer (a2) has hydroxyl groups at both ends.
 親水性ポリマー(a2)は、下記式(18)で示される基(オキシエチレン基)を一つ以上有し、好ましくは複数の式(18)で示される基(オキシエチレン基)を有する。親水性ポリマー(a2)は、より好ましくは、下記式(19)で表される(ポリオキシエチレン鎖を有する)ポリエチレングリコールである。 The hydrophilic polymer (a2) has one or more groups (oxyethylene groups) represented by the following formula (18), preferably a plurality of groups (oxyethylene groups) represented by the formula (18). The hydrophilic polymer (a2) is more preferably polyethylene glycol (having a polyoxyethylene chain) represented by the following formula (19).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(19)中、mは5~250の整数を表す。mは、耐熱性や粉塵付着抑制効果の点から、好ましくは20~150である。 In the above formula (19), m represents an integer of 5-250. m is preferably 20 to 150 from the viewpoint of heat resistance and dust adhesion suppression effect.
 両末端に水酸基を有し、上記式(18)で示される基を一つ以上有するポリマーとしては、例えば、エチレンオキサイドを付加反応させて得られるポリエチレングリコール、および、エチレンオキサイドと他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の少なくとも一種とを付加反応させて得られるポリエーテルが挙げられる。このポリエーテルは、ランダム共重合体であってもよく、ブロック共重合体であってもよい。 Polymers having hydroxyl groups at both ends and having one or more groups represented by the formula (18) include, for example, polyethylene glycol obtained by addition reaction of ethylene oxide, and ethylene oxide and other alkylene oxides ( Examples thereof include polyethers obtained by addition reaction with at least one of propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide. This polyether may be a random copolymer or a block copolymer.
 両末端に水酸基を有し、上記式(18)で示される基を一つ以上有する化合物の別の例としては、活性水素原子含有化合物にエチレンオキサイドが付加してなる構造を有する化合物、並びに、活性水素原子含有化合物にエチレンオキサイドと他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-ブチレンオキサイド、1,4-ブチレンオキサイド、2,3-ブチレンオキサイド、1,3-ブチレンオキサイド等)の1種以上とが付加してなる構造を有する化合物が挙げられる。これらの化合物における付加は、ランダム付加、ブロック付加のいずれでもよい。 Another example of the compound having hydroxyl groups at both ends and having one or more groups represented by the above formula (18) is a compound having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, and One of ethylene oxide and other alkylene oxides (e.g., propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide, 2,3-butylene oxide, 1,3-butylene oxide, etc.) as active hydrogen atom-containing compounds A compound having a structure in which at least one species is added can be mentioned. Addition in these compounds may be either random addition or block addition.
 活性水素原子含有化合物としては、例えば、グリコール、2価フェノール、1級モノアミン、2級ジアミンおよびジカルボン酸が挙げられる。 Examples of active hydrogen atom-containing compounds include glycols, dihydric phenols, primary monoamines, secondary diamines and dicarboxylic acids.
 グリコールとしては、炭素原子数2~20の脂肪族グリコール、炭素原子数5~12の脂環式グリコール、炭素原子数8~26の芳香脂肪族グリコール等が挙げられる。 Examples of glycols include aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, and araliphatic glycols having 8 to 26 carbon atoms.
 脂肪族グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、ジエチレングリコール、トリエチレングリコール、チオジエチレングリコール等が挙げられる。 Examples of aliphatic glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane diol, 1,20-eicosanediol, diethylene glycol, triethylene glycol, thiodiethylene glycol and the like.
 脂環式グリコールとしては、例えば、1-ヒドロキシメチル-1-シクロブタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1-メチル-3,4-シクロヘキサンジオール、2-ヒドロキシメチルシクロヘキサノール、4-ヒドロキシメチルシクロヘキサノール、1,4-シクロヘキサンジメタノール、1,1’-ジヒドロキシ-1,1’-ジシクロヘキシル等が挙げられる。 Alicyclic glycols include, for example, 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1-methyl-3,4-cyclohexanediol. , 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1′-dihydroxy-1,1′-dicyclohexyl and the like.
 芳香族グリコールとしては、例えば、ジヒドロキシメチルベンゼン、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、2-フェニル1,3-プロパンジオール、2-フェニル1,4-ブタンジオール、2-ベンジル1,3-プロパンジオール、トリフェニルエチレングリコール、テトラフェニルエチレングリコール、ベンゾピナコール等が挙げられる。 Examples of aromatic glycols include dihydroxymethylbenzene, 1,4-bis(β-hydroxyethoxy)benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, 2-benzyl-1, 3-propanediol, triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like.
 2価フェノールとしては、炭素数6~30のフェノールが使用でき、例えば、カテコール、レゾルシノール、1,4-ジヒドロキシベンゼン、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルチオエーテル、ビナフトール、これらのアルキル(炭素原子数1~10)またはハロゲン置換体等が挙げられる。 As dihydric phenols, phenols having 6 to 30 carbon atoms can be used. Examples thereof include alkyl (having 1 to 10 carbon atoms) and halogen-substituted products thereof.
 1級モノアミンとしては、炭素原子数1~20の脂肪族1級モノアミンが挙げられ、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、イソブチルアミン、n-ペンチルアミン、イソペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、n-オクタデシルアミン、n-イコシルアミン等が挙げられる。 Primary monoamines include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- pentylamine, isopentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine, n-icosylamine and the like.
 2級ジアミンとしては、炭素原子数4~18の脂肪族2級ジアミン、炭素原子数4~13の複素環式2級ジアミン、炭素原子数6~14の脂環式2級ジアミン、炭素原子数8~14の芳香族2級ジアミン、炭素原子数3~22の2級アルカノールジアミン等が挙げられる。 Secondary diamines include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and the number of carbon atoms. Examples include aromatic secondary diamines having 8 to 14 carbon atoms, secondary alkanol diamines having 3 to 22 carbon atoms, and the like.
 脂肪族2級ジアミンとしては、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N,N’-ジメチルプロピレンジアミン、N,N’-ジエチルプロピレンジアミン、N,N’-ジブチルプロピレンジアミン、N,N’-ジメチルテトラメチレンジアミン、N,N’-ジエチルテトラメチレンジアミン、N,N’-ジブチルテトラメチレンジアミン、N,N’-ジメチルヘキサメチレンジアミン、N,N’-ジエチルヘキサメチレンジアミン、N,N’-ジブチルヘキサメチレンジアミン、N,N’-ジメチルデカメチレンジアミン、N,N’-ジエチルデカメチレンジアミン、N,N’-ジブチルデカメチレンジアミン等が挙げられる。 Examples of aliphatic secondary diamines include N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dibutylethylenediamine, N,N'-dimethylpropylenediamine, N,N'-diethylpropylenediamine, N,N'-dibutylpropylenediamine, N,N'-dimethyltetramethylenediamine, N,N'-diethyltetramethylenediamine, N,N'-dibutyltetramethylenediamine, N,N'-dimethylhexamethylenediamine, N , N'-diethylhexamethylenediamine, N,N'-dibutylhexamethylenediamine, N,N'-dimethyldecamethylenediamine, N,N'-diethyldecamethylenediamine, N,N'-dibutyldecamethylenediamine, etc. mentioned.
 複素環式2級ジアミンとしては、例えば、ピペラジン、1-アミノピペリジン等が挙げられる。 Heterocyclic secondary diamines include, for example, piperazine and 1-aminopiperidine.
 脂環式2級ジアミンとしては、例えば、N,N’-ジメチル-1,2-シクロブタンジアミン、N,N’-ジエチル-1,2-シクロブタンジアミン、N,N’-ジブチル-1,2-シクロブタンジアミン、N,N’-ジメチル-1,4-シクロヘキサンジアミン、N,N’-ジエチル-1,4-シクロヘキサンジアミン、N,N’-ジブチル-1,4-シクロヘキサンジアミン、N,N’-ジメチル-1,3-シクロヘキサンジアミン、N,N’-ジエチル-1,3-シクロヘキサンジアミン、N,N’-ジブチル-1,3-シクロヘキサンジアミン等が挙げられる。 Examples of alicyclic secondary diamines include N,N'-dimethyl-1,2-cyclobutanediamine, N,N'-diethyl-1,2-cyclobutanediamine, N,N'-dibutyl-1,2- Cyclobutanediamine, N,N'-dimethyl-1,4-cyclohexanediamine, N,N'-diethyl-1,4-cyclohexanediamine, N,N'-dibutyl-1,4-cyclohexanediamine, N,N'- dimethyl-1,3-cyclohexanediamine, N,N'-diethyl-1,3-cyclohexanediamine, N,N'-dibutyl-1,3-cyclohexanediamine and the like.
 芳香族2級ジアミンとしては、例えば、N,N’-ジメチル-フェニレンジアミン、N,N’-ジメチル-キシリレンジアミン、N,N’-ジメチル-ジフェニルメタンジアミン、N,N’-ジメチル-ジフェニルエーテルジアミン、N,N-ジメチル-ベンジジン、N,N’-ジメチル-1,4-ナフタレンジアミン等が挙げられる。 Examples of aromatic secondary diamines include N,N'-dimethyl-phenylenediamine, N,N'-dimethyl-xylylenediamine, N,N'-dimethyl-diphenylmethanediamine, and N,N'-dimethyl-diphenyletherdiamine. , N,N-dimethyl-benzidine, N,N'-dimethyl-1,4-naphthalenediamine, and the like.
 2級アルカノールジアミンとしては、例えば、N-メチルジエタノールアミン、N-オクチルジエタノールアミン、N-ステアリルジエタノールアミン、N-メチルジプロパノールアミン等が挙げられる。 Examples of secondary alkanol diamines include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, N-methyldipropanolamine and the like.
 ジカルボン酸としては、炭素原子数2~20のジカルボン酸が挙げられる。炭素原子数2~20のジカルボン酸としては、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環式ジカルボン酸等が挙げられる。 Dicarboxylic acids include dicarboxylic acids having 2 to 20 carbon atoms. Examples of dicarboxylic acids having 2 to 20 carbon atoms include aliphatic dicarboxylic acids, aromatic dicarboxylic acids and alicyclic dicarboxylic acids.
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、β-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、トリデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、オクタデカンジカルボン酸、イコサンジカルボン酸等が挙げられる。 Examples of aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid, β-methylglutaric acid, ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, tridecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, octadecanedicarboxylic acid, icosanedicarboxylic acid and the like.
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウム、3-スルホイソフタル酸カリウム等が挙げられる。 Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, β-phenylglutaric acid, α-phenyladipic acid, β-phenyladipic acid, biphenyl-2 ,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, potassium 3-sulfoisophthalate and the like.
 脂環族ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸、1,3-シクロヘキサンジ酢酸、1,2-シクロヘキサンジ酢酸、ジシクロヘキシル-4,4-ジカルボン酸等が挙げられる。 Alicyclic dicarboxylic acids include, for example, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid. acid, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid, dicyclohexyl-4,4-dicarboxylic acid and the like.
 これらの活性水素原子含有化合物の1種を使用してもよく、これらの活性水素原子含有化合物の2種以上の混合物を使用してもよい。 One of these active hydrogen atom-containing compounds may be used, or a mixture of two or more of these active hydrogen atom-containing compounds may be used.
 なお、交互共重合体(a)を得るために用いられる親水性ポリマー(a2)は、ポリエステル(a1)成分と反応することでエステル結合を形成し、交互共重合体(a)を形成し得る化合物であればよく、親水性ポリマー(a2)両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。 The hydrophilic polymer (a2) used to obtain the alternating copolymer (a) can form an ester bond by reacting with the polyester (a1) component to form the alternating copolymer (a). Any compound may be used, and hydroxyl groups at both ends of the hydrophilic polymer (a2) may be protected or modified, and may be in the form of a precursor.
 交互共重合体(a)は、両末端にカルボキシル基を有するポリエステル(a1)と、両末端に水酸基を有する親水性ポリマー(a2)と、を重縮合反応させることによって得ることができる。 The alternating copolymer (a) can be obtained by subjecting a polyester (a1) having carboxyl groups at both ends and a hydrophilic polymer (a2) having hydroxyl groups at both ends to a polycondensation reaction.
 なお、ポリエステル(a1)と親水性ポリマー(a2)とが、カルボキシル基と水酸基により形成されたエステル結合を介して繰り返し交互に結合してなる構造を有するものであれば、必ずしも上記の具体的なポリエステル(a1)と上記の具体的な親水性ポリマー(a2)とから交互共重合体(a)を合成する必要はない。 Incidentally, the polyester (a1) and the hydrophilic polymer (a2), if it has a structure in which the ester bond formed by the carboxyl group and the hydroxyl group are repeatedly and alternately bonded, the above-mentioned specific It is not necessary to synthesize the alternating copolymer (a) from the polyester (a1) and the above specific hydrophilic polymer (a2).
 交互共重合体(a)の両末端は、重合時に用いられるポリエステル(a1)と親水性ポリマー(a2)との量の比率によって、カルボキシル基または水酸基のいずれかとなる。 Both ends of the alternating copolymer (a) are either carboxyl groups or hydroxyl groups depending on the ratio of the amounts of the polyester (a1) and the hydrophilic polymer (a2) used during polymerization.
 例えば、ポリエステル(a1)と親水性ポリマー(a2)との反応比を、1モル部の親水性ポリマー(a2)に対して、ポリエステル(a1)の量が2モル部となるように調整すれば、両末端にカルボキシル基を有する交互共重合体(a)を得ることができる。また、ポリエステル(a1)と親水性ポリマー(a2)との反応比を、1モル部のポリエステル(a1)に対して、親水性ポリマー(a2)の量が2モル部となるように調整すれば、両末端に水酸基を有する交互共重合体(c2)を得ることができる。 For example, if the reaction ratio of the polyester (a1) and the hydrophilic polymer (a2) is adjusted so that the amount of the polyester (a1) is 2 mol parts per 1 mol part of the hydrophilic polymer (a2). , an alternating copolymer (a) having carboxyl groups at both ends can be obtained. Further, if the reaction ratio of the polyester (a1) and the hydrophilic polymer (a2) is adjusted so that the amount of the hydrophilic polymer (a2) is 2 mol parts with respect to 1 mol part of the polyester (a1), , an alternating copolymer (c2) having hydroxyl groups at both ends can be obtained.
 なお、ポリエステル(a1)の合成反応の完結後に、ポリエステル(a1)を単離せずに、交互共重合体(a)を得るためのポリエステル(a1)と親水性ポリマー(a2)との重縮合反応を行ってもよい。 After completion of the synthesis reaction of the polyester (a1), a polycondensation reaction of the polyester (a1) and the hydrophilic polymer (a2) for obtaining the alternating copolymer (a) is carried out without isolating the polyester (a1). may be performed.
 交互共重合体(a)を得るための重縮合反応の際には、エステル化反応を促進する触媒を使用してもよい。触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、交互共重合体(a)を得るための重縮合反応の際に、生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。 A catalyst that promotes the esterification reaction may be used during the polycondensation reaction for obtaining the alternating copolymer (a). As the catalyst, conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate and zinc acetate can be used. Moreover, in the polycondensation reaction for obtaining the alternating copolymer (a), an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress oxidation of the product.
 〔化合物(b1)~(b3)〕
 親水性コポリマー(B)は、交互共重合体(a)が、水酸基を3個以上有する多価アルコール化合物(b1)、エポキシ基を2個以上有するエポキシ化合物(b2)、ポリカルボン酸化合物(b3)からなる群から選択される1種とのエステル結合を介して結合してなるコポリマーである。
[Compounds (b1) to (b3)]
Hydrophilic copolymer (B) is an alternating copolymer (a), polyhydric alcohol compound (b1) having 3 or more hydroxyl groups, epoxy compound (b2) having 2 or more epoxy groups, polycarboxylic acid compound (b3) ) is a copolymer formed by bonding via an ester bond with one selected from the group consisting of
 本実施の形態において、ポリエステル(a1)は両末端にカルボキシル基を有する。また、オキシエチレン基を有する親水性ポリマー(a2)は、両末端に水酸基を有する。ポリエステル(a1)のカルボキシル基と親水性ポリマー(a2)の水酸基とのエステル結合によって、交互共重合体(a)が得られる。 In the present embodiment, the polyester (a1) has carboxyl groups at both ends. Moreover, the hydrophilic polymer (a2) having an oxyethylene group has hydroxyl groups at both ends. The alternating copolymer (a) is obtained by ester bonding between the carboxyl groups of the polyester (a1) and the hydroxyl groups of the hydrophilic polymer (a2).
 具体的には、例えば、交互共重合体(a)の両末端がカルボキシル基である場合、複数の交互共重合体(a)が、多価アルコール化合物(b1)、または、エポキシ基を2個以上有するエポキシ化合物(b2)の少なくともいずれかとのエステル結合を介して結合することで、親水性コポリマー(B)が得られる。 Specifically, for example, when both ends of the alternating copolymer (a) are carboxyl groups, a plurality of alternating copolymers (a) may contain a polyhydric alcohol compound (b1) or two epoxy groups. A hydrophilic copolymer (B) can be obtained by bonding via an ester bond with at least one of the epoxy compounds (b2) having the above.
 また、交互共重合体(a)の両末端が水酸基である場合、複数の交互共重合体(a)が、ポリカルボン酸化合物(b3)とのエステル結合を介して結合することで、親水性コポリマー(B)が得られる。 Further, when both ends of the alternating copolymer (a) are hydroxyl groups, a plurality of alternating copolymers (a) are bonded via an ester bond with the polycarboxylic acid compound (b3), resulting in hydrophilicity. A copolymer (B) is obtained.
 親水性コポリマー(B)を得るために用いられる親水性コポリマー(B)当りの交互共重合体(a)の数量(すなわち、親水性コポリマー(B)に含まれる交互共重合体(a)に由来するブロックの数量の平均値)は、親水性コポリマー(B)の1モル部に対して、好ましくは1~50モル部であり、より好ましくは1~30モル部であり、さらに好ましくは1~10モル部である。 Derived from the number of alternating copolymers (a) per hydrophilic copolymer (B) used to obtain the hydrophilic copolymer (B) (i.e., the alternating copolymer (a) contained in the hydrophilic copolymer (B) is preferably 1 to 50 mol parts, more preferably 1 to 30 mol parts, and still more preferably 1 to 50 mol parts per 1 mol part of the hydrophilic copolymer (B). 10 mole parts.
 なお、親水性コポリマー(B)は、さらに、ポリエステル(a1)の両末端以外のカルボキシル基と多価アルコール化合物(b1)またはエポキシ化合物(b2)とにより形成されたエステル結合を含んでいてもよく、また、親水性ポリマー(a2)の両末端以外の水酸基とポリカルボン酸(b3)とにより形成されたエステル結合を含んでいてもよい。 The hydrophilic copolymer (B) may further contain ester bonds formed by carboxyl groups other than both ends of the polyester (a1) and the polyhydric alcohol compound (b1) or the epoxy compound (b2). Also, it may contain an ester bond formed by a hydroxyl group other than both ends of the hydrophilic polymer (a2) and the polycarboxylic acid (b3).
 (b1) 水酸基を3個以上有する多価アルコール化合物
 多価アルコール化合物(b1)としては、水酸基を3個以上有する化合物であれば特に制限されず、例えば、グリセリン、1,2,3-ブタントリオール、1,2,4-ブタントリオール、2-メチル-1,2,3-プロパントリオール、1,2,3-ペンタントリオール、1,2,4-ペンタントリオール、1,3,5-ペンタントリオール、2,3,4-ペンタントリオール、2-メチル-2,3,4-ブタントリオール、トリメチロールエタン、2,3,4-ヘキサントリオール、2-エチル-1,2,3-ブタントリオール、トリメチロールプロパン、4-プロピル-3,4,5-ヘプタントリオール、2,4-ジメチル-2,3,4-ペンタントリオール、トリエタノールアミン、トリイソプロパノールアミン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート等の3価アルコール;
ペンタエリスリトール、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,4,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン等の4価アルコール;
アドニトール、アラビトール、キシリトール、トリグリセリン等の5価アルコール;
ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール;
トリペンタエリスリトールおよびポリペンタエリスリトール等が挙げられる。
(b1) Polyhydric alcohol compound having 3 or more hydroxyl groups The polyhydric alcohol compound (b1) is not particularly limited as long as it is a compound having 3 or more hydroxyl groups. Examples include glycerin and 1,2,3-butanetriol. , 1,2,4-butanetriol, 2-methyl-1,2,3-propanetriol, 1,2,3-pentanetriol, 1,2,4-pentanetriol, 1,3,5-pentanetriol, 2,3,4-pentanetriol, 2-methyl-2,3,4-butanetriol, trimethylolethane, 2,3,4-hexanetriol, 2-ethyl-1,2,3-butanetriol, trimethylol Propane, 4-propyl-3,4,5-heptanetriol, 2,4-dimethyl-2,3,4-pentanetriol, triethanolamine, triisopropanolamine, 1,3,5-tris(2-hydroxyethyl ) trihydric alcohols such as isocyanurates;
Pentaerythritol, 1,2,3,4-pentanetetrol, 2,3,4,5-hexanetetrol, 1,2,4,5-pentanetetrol, 1,3,4,5-hexanetetrol , diglycerin, ditrimethylolpropane, sorbitan, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine, etc. alcohol;
pentahydric alcohols such as adonitol, arabitol, xylitol, triglycerin;
Hexavalent alcohols such as dipentaerythritol, sorbitol, mannitol, iditol, inositol, dulcitol, talose and allose;
tripentaerythritol and polypentaerythritol;
 かかる多価アルコール化合物(b1)は、2種以上を使用してもよい。
 (b2) エポキシ化合物
 エポキシ化合物(b2)としては、エポキシ基を2個以上有する化合物であれば特に制限されず、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;
ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリジルエーテル化合物;
エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物等の多価アルコール類のポリグリシジルエーテル;
マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類及びグリシジルメタクリレートの単独重合体または共重合体;
N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;
ビニルシクロヘキセンジエポキシド、ジシクロペンタジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;
エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体;トリグリシジルイソシアヌレート等の複素環化合物;エポキシ化大豆油等が挙げられる。
Two or more of such polyhydric alcohol compounds (b1) may be used.
(b2) Epoxy compound The epoxy compound (b2) is not particularly limited as long as it is a compound having two or more epoxy groups. a polyglycidyl ether compound of;
Dihydroxynaphthalene, biphenol, methylenebisphenol (bisphenol F), methylenebis(orthocresol), ethylidenebisphenol, isopropylidenebisphenol (bisphenol A), isopropylidenebis(orthocresol), tetrabromobisphenol A, 1,3-bis(4- hydroxycumylbenzene), 1,4-bis(4-hydroxycumylbenzene), 1,1,3-tris(4-hydroxyphenyl)butane, 1,1,2,2-tetra(4-hydroxyphenyl) Polyglydyl ether compounds of polynuclear polyhydric phenol compounds such as ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, orthocresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcinol novolak, and terpenephenol;
Polyglycidyl ethers of polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, hexanediol, polyethylene glycol, polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, bisphenol A-ethylene oxide adduct;
Maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimeric acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyrroic acid homopolymers or copolymers of glycidyl esters and glycidyl methacrylates of aliphatic, aromatic or alicyclic polybasic acids such as mellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid and endomethylenetetrahydrophthalic acid;
epoxy compounds having a glycidylamino group such as N,N-diglycidylaniline, bis(4-(N-methyl-N-glycidylamino)phenyl)methane, and diglycidylorthotoluidine;
vinylcyclohexene diepoxide, dicyclopentadiene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxylate, bis(3 epoxidized products of cyclic olefin compounds such as ,4-epoxy-6-methylcyclohexylmethyl)adipate;
Epoxidized conjugated diene polymers such as epoxidized polybutadiene and epoxidized styrene-butadiene copolymer; heterocyclic compounds such as triglycidyl isocyanurate; epoxidized soybean oil and the like.
 なお、これらのエポキシ化合物は、末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)を用いて高分子量化したものであってもよい。かかるエポキシ化合物(b2)は、2種以上を使用してもよい。 In addition, these epoxy compounds are internally cross-linked with a prepolymer of terminal isocyanate, or polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphate esters, etc.) are used to increase the molecular weight. It may be Two or more kinds of such epoxy compounds (b2) may be used.
 (b3) ポリカルボン酸化合物
 ポリカルボン酸化合物(b3)としては、カルボキシル基を3個以上有するカルボン酸、カルボキシル基を2個以上有し且つ水酸基を1個以上有するカルボン酸が挙げられる。粉塵付着抑制効果の点から、カルボキシル基を3個以上有するカルボン酸が好ましい。ポリカルボン酸化合物(b3)は、これらの混合物でもよい。
(b3) Polycarboxylic acid compound Examples of the polycarboxylic acid compound (b3) include carboxylic acids having 3 or more carboxyl groups, and carboxylic acids having 2 or more carboxyl groups and 1 or more hydroxyl groups. Carboxylic acids having 3 or more carboxyl groups are preferred from the viewpoint of the effect of suppressing adhesion of dust. Polycarboxylic acid compound (b3) may be a mixture thereof.
 カルボキシル基を3個以上有するカルボン酸は、その誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。カルボキシル基を3個以上有するカルボン酸およびその誘導体は、2種以上の混合物でもよい。 Carboxylic acids having 3 or more carboxyl groups may be derivatives thereof (eg, acid anhydrides, alkyl esters, alkali metal salts, acid halides, etc.). Carboxylic acids having 3 or more carboxyl groups and derivatives thereof may be a mixture of two or more.
 カルボキシル基を3個以上有するカルボン酸としては、例えば、アコニット酸、1,2,3-プロパントリカルボン酸、ブタン-1,2,3,4-テトラカルボン酸、3-ブテン-1,2,3-トリカルボン酸、トリメリット酸、ピロメリット酸、メリト酸、シクロヘキサントリカルボン酸、ナフタレン-1,2,5-トリカルボン酸、ナフタレン-2,6,7-トリカルボン酸、1,3,5-ペンタントリカルボン酸、トリメシン酸、3,3’,4-ジフェニルトリカルボン酸、ベンゾフェノン-3,3’,4-トリカルボン酸、ジフェニルスルホン-3,3’,4-トリカルボン酸、ジフェニルエーテル-3,3’,4-トリカルボン酸、ジフェニル-2,2’,3,3’-テトラカルボン酸、ベンゾフェノン-2,2’,3,3’-テトラカルボン酸、ジフェニルスルホン-2,2’,3,3’-テトラカルボン酸、ジフェニル-2,2’,3,3’-テトラカルボン酸、ベンゾフェノン-2,2’,3,3’-テトラカルボン酸、ジフェニルスルホン-2,2’,3,3’-テトラカルボン酸、ジフェニルエーテル-2,2’,3,3’-テトラカルボン酸等が挙げられる。さらに、カルボキシル基を3個以上有する酸変性ポリエチレンワックスや、ポリアクリル酸なども使用できる。 Carboxylic acids having 3 or more carboxyl groups include, for example, aconitic acid, 1,2,3-propanetricarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, 3-butene-1,2,3 -tricarboxylic acid, trimellitic acid, pyromellitic acid, mellitic acid, cyclohexanetricarboxylic acid, naphthalene-1,2,5-tricarboxylic acid, naphthalene-2,6,7-tricarboxylic acid, 1,3,5-pentanetricarboxylic acid , trimesic acid, 3,3′,4-diphenyltricarboxylic acid, benzophenone-3,3′,4-tricarboxylic acid, diphenylsulfone-3,3′,4-tricarboxylic acid, diphenyl ether-3,3′,4-tricarboxylic acid acid, diphenyl-2,2',3,3'-tetracarboxylic acid, benzophenone-2,2',3,3'-tetracarboxylic acid, diphenylsulfone-2,2',3,3'-tetracarboxylic acid , diphenyl-2,2′,3,3′-tetracarboxylic acid, benzophenone-2,2′,3,3′-tetracarboxylic acid, diphenylsulfone-2,2′,3,3′-tetracarboxylic acid, diphenyl ether-2,2',3,3'-tetracarboxylic acid and the like. Furthermore, acid-modified polyethylene wax having 3 or more carboxyl groups, polyacrylic acid, and the like can also be used.
 カルボキシル基を2個以上有し且つ水酸基を1個以上有するカルボン酸は、その誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。カルボキシル基を2個以上有し且つ水酸基を1個以上有するカルボン酸およびその誘導体は、2種以上の混合物でもよい。 Carboxylic acids having two or more carboxyl groups and one or more hydroxyl groups may be derivatives thereof (eg, acid anhydrides, alkyl esters, alkali metal salts, acid halides, etc.). The carboxylic acid having two or more carboxyl groups and one or more hydroxyl groups and derivatives thereof may be a mixture of two or more.
 カルボキシル基を2個以上有し且つ水酸基を1個以上有するカルボン酸としては、例えば、酒石酸、リンゴ酸、クエン酸、イソクエン酸、シトラマル酸、タルトロン酸等が挙げられる。 Examples of carboxylic acids having two or more carboxyl groups and one or more hydroxyl groups include tartaric acid, malic acid, citric acid, isocitric acid, citramaric acid, and tartronic acid.
 交互共重合体(a)を得るために用いられる多価アルコール化合物(b1)の水酸基の総量(1つの多価アルコール化合物(b1)辺りの水酸基の数量ではない。以下同様。)、または、エポキシ化合物(b2)のエポキシ基の総量は、それと反応させる交互共重合体(a)のカルボキシル基の総量に対して、0.1~4.0当量が好ましく、0.5~3.0当量がより好ましい。 The total amount of hydroxyl groups in the polyhydric alcohol compound (b1) used to obtain the alternating copolymer (a) (not the number of hydroxyl groups per polyhydric alcohol compound (b1). The same shall apply hereinafter.), or epoxy The total amount of epoxy groups of the compound (b2) is preferably 0.1 to 4.0 equivalents, more preferably 0.5 to 3.0 equivalents, relative to the total amount of carboxyl groups of the alternating copolymer (a) to be reacted therewith. more preferred.
 また、交互共重合体(a)を得るために用いられるポリカルボン酸(b3)のカルボキシル基の総量は、それと反応させる交互共重合体(a)の水酸基の総量に対して、0.1~4.0当量が好ましく、0.5~3.0当量がより好ましい。 Further, the total amount of carboxyl groups of the polycarboxylic acid (b3) used to obtain the alternating copolymer (a) is 0.1 to 0.1 with respect to the total amount of hydroxyl groups of the alternating copolymer (a) to be reacted therewith. 4.0 equivalents are preferred, and 0.5 to 3.0 equivalents are more preferred.
 なお、交互共重合体(a)を得るための反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。 The reaction for obtaining the alternating copolymer (a) may be carried out in various solvents or in a molten state.
 交互共重合体(a)を得るための反応(合成反応)の完結後に、交互共重合体(a)を単離せずに、反応系に多価アルコール化合物(b1)、エポキシ化合物(b2)または、ポリカルボン酸(b3)を加えて、そのまま親水性コポリマー(B)を得るための反応を行ってもよい。その場合、交互共重合体(a)を合成するときに過剰に使用された未反応のポリエステル(a1)のカルボキシル基と、多価アルコール化合物(b1)の一部の水酸基、または、エポキシ化合物(b2)のエポキシ基とが反応して、エステル結合を形成してもよい。また、交互共重合体(a)を合成するときに過剰に使用した未反応の親水性ポリマー(a2)の水酸基とポリカルボン酸(b3)の一部のカルボキシル基とが反応して、エステル結合を形成してもよい。 After completion of the reaction (synthesis reaction) for obtaining the alternating copolymer (a), without isolating the alternating copolymer (a), the polyhydric alcohol compound (b1), the epoxy compound (b2) or , the polycarboxylic acid (b3) may be added, and the reaction for obtaining the hydrophilic copolymer (B) may be performed as it is. In that case, the carboxyl groups of the unreacted polyester (a1) used excessively when synthesizing the alternating copolymer (a), the hydroxyl groups of some of the polyhydric alcohol compounds (b1), or the epoxy compound ( It may react with the epoxy group of b2) to form an ester bond. In addition, the hydroxyl groups of the unreacted hydrophilic polymer (a2) used excessively when synthesizing the alternating copolymer (a) react with some carboxyl groups of the polycarboxylic acid (b3) to form an ester bond. may be formed.
 親水性コポリマー(B)は、交互共重合体(a)と多価アルコール化合物(b1)、エポキシ化合物(b2)またはポリカルボン酸(b3)とが、エステル結合を介して結合した構造を有するものであれば、必ずしも上記の具体的な交互共重合体(a)と、上記の具体的な多価アルコール化合物(b1)、エポキシ化合物(b2)または、ポリカルボン酸(b3)とから合成する必要はない。 Hydrophilic copolymer (B) has a structure in which alternating copolymer (a) and polyhydric alcohol compound (b1), epoxy compound (b2) or polycarboxylic acid (b3) are bonded via ester bonds. If so, it is necessary to synthesize from the above specific alternating copolymer (a) and the above specific polyhydric alcohol compound (b1), epoxy compound (b2), or polycarboxylic acid (b3). no.
 親水性コポリマー(B)における、ポリエステル(a1)に由来するブロックのポリスチレン換算の数平均分子量は、好ましくは800~8000であり、より好ましくは1000~6000であり、さらに好ましくは2000~4000である。 In the hydrophilic copolymer (B), the polystyrene-equivalent number average molecular weight of the block derived from the polyester (a1) is preferably 800 to 8000, more preferably 1000 to 6000, still more preferably 2000 to 4000. .
 親水性コポリマー(B)における、親水性ポリマー(a2)に由来するブロックのポリスチレン換算の数平均分子量は、好ましくは400~6000であり、より好ましくは1000~5000であり、さらに好ましくは2000~4000である。 In the hydrophilic copolymer (B), the polystyrene-equivalent number average molecular weight of the block derived from the hydrophilic polymer (a2) is preferably 400 to 6000, more preferably 1000 to 5000, still more preferably 2000 to 4000. is.
 親水性コポリマー(B)における、交互共重合体(a)に由来するブロックのポリスチレン換算の数平均分子量は、好ましくはで5000~25000であり、より好ましくは7000~17000であり、より好ましくは9000~13000である。 In the hydrophilic copolymer (B), the polystyrene-equivalent number-average molecular weight of the blocks derived from the alternating copolymer (a) is preferably 5,000 to 25,000, more preferably 7,000 to 17,000, and more preferably 9,000. ~13000.
 本実施の形態の親水性コポリマー(B)は、熱可塑性樹脂組成物中に分散することにより親水性の粉塵汚れに対する付着抑制効果を発現するため、親水性コポリマー(B)自体の表面抵抗値は通常できるだけ低い方が好ましい。親水性コポリマー(B)の表面抵抗値は、好ましくは1×10~1×1010Ωであり、より好ましくは1×10~1×10Ωである。 Since the hydrophilic copolymer (B) of the present embodiment exhibits a hydrophilic effect of suppressing adhesion of dust stains by being dispersed in the thermoplastic resin composition, the surface resistance value of the hydrophilic copolymer (B) itself is As low as possible is usually preferred. The surface resistance value of the hydrophilic copolymer (B) is preferably 1×10 4 to 1×10 10 Ω, more preferably 1×10 4 to 1×10 7 Ω.
 親水性の粉塵汚れに対する付着抑制効果を向上させる目的で、熱可塑性樹脂組成物は、上述した親水性ポリマー以外の他の帯電防止剤をさらに含んでいてもよい。他の帯電防止剤としては、例えば、界面活性剤(アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、両性界面活性剤等)、イオン性液体などが挙げられる。 The thermoplastic resin composition may further contain an antistatic agent other than the hydrophilic polymer described above for the purpose of improving the effect of suppressing the adhesion of hydrophilic dust stains. Other antistatic agents include, for example, surfactants (anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, etc.), ionic liquids, and the like.
 また、オキシエチレン基を有する親水性コポリマー(B)は、別の格別な効果も有している。 In addition, the hydrophilic copolymer (B) having an oxyethylene group also has another special effect.
 両性(親水性および疎水性)の防汚性を得るためには、親水性コポリマー(B)と後述する脂肪酸金属塩(C)の両方が必要であるが、脂肪酸金属塩(C)は親水性コポリマー(B)と比較して分子量が小さく、熱可塑性樹脂(A)との絡み合いも少ないため、成形品の表面から脱落したり、劣化したりする可能性がある。しかし、親水性コポリマー(B)が成形品の表面に多く存在し、帯電防止効果により親水性の粉塵汚れの付着を防止する親水性コポリマー(B)の親水基に、脂肪酸金属塩(C)の親水基が付着することによって、脂肪酸金属塩(C)が脱落することなく表面に安定的に存在することができる。 In order to obtain amphoteric (hydrophilic and hydrophobic) antifouling properties, both the hydrophilic copolymer (B) and the fatty acid metal salt (C) described later are necessary, but the fatty acid metal salt (C) is hydrophilic. Since it has a lower molecular weight than the copolymer (B) and is less entangled with the thermoplastic resin (A), it may fall off from the surface of the molded product or deteriorate. However, a large amount of the hydrophilic copolymer (B) exists on the surface of the molded product, and the hydrophilic group of the hydrophilic copolymer (B), which prevents the adhesion of hydrophilic dust stains due to its antistatic effect, contains the fatty acid metal salt (C). By attaching a hydrophilic group, the fatty acid metal salt (C) can stably exist on the surface without falling off.
 脂肪酸金属塩(C)の親水基の逆側には、脂肪酸金属塩(C)の非極性の疎水基であるRがあるため、疎水性の粉塵汚れに対する高い付着抑制効果という、親水性コポリマー(B)だけでは得られない新たな効果が得られる。 On the opposite side of the hydrophilic group of the fatty acid metal salt (C), there is R, which is a non-polar hydrophobic group of the fatty acid metal salt (C), so the hydrophilic copolymer ( A new effect that cannot be obtained by B) alone can be obtained.
 つまり、オキシエチレン基を有する親水性コポリマー(B)と脂肪酸金属塩(C)とが、共に成形品の表面に存在し、互いに相乗効果を発揮することで、両性の粉塵汚れに対する高い付着抑制効果(防汚性)が発揮される。 In other words, both the hydrophilic copolymer (B) having an oxyethylene group and the fatty acid metal salt (C) are present on the surface of the molded article, and exhibit a synergistic effect with each other, resulting in a high effect of suppressing adhesion of amphoteric dust stains. (antifouling property) is exhibited.
 <脂肪酸金属塩(C)>
 脂肪酸金属塩(C)は、下記式(1)で表される化合物である。
<Fatty acid metal salt (C)>
Fatty acid metal salt (C) is a compound represented by the following formula (1).
 
M(OH)y(R-COO)x ・・・(1)
 
(式(1)中、Rは、炭素数6~40のアルキル基またはアルケニル基である。Mは、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウムおよびバリウムからなる群から選択される少なくとも1種の金属元素である。xおよびyはそれぞれ独立な0以上の整数であり、x+y=[Mの価数]の関係を満たす。)
 添加物として、上記の親水性ポリマーや帯電防止剤を用いるだけでは、親水性の粉塵汚れの付着抑制効果は得られるが、一方で疎水性の粉塵汚れの付着抑制効果が低く、後述する比較例では疎水性の粉塵汚れの付着量は半分以下にもならないため、新たな手段が必要である。

M(OH)y(R-COO)x (1)

(In formula (1), R is an alkyl group or alkenyl group having 6 to 40 carbon atoms. M is at least one metal selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium. is an element, x and y are each independent integers of 0 or more and satisfy the relationship x + y = [valence of M].)
Only by using the above hydrophilic polymer or antistatic agent as an additive, the effect of suppressing adhesion of hydrophilic dust stains can be obtained, but on the other hand, the effect of suppressing adhesion of hydrophobic dust stains is low. In this case, the amount of adhesion of hydrophobic dust contaminants is not even less than half, so a new means is required.
 また、一般的に撥水や撥油効果が得られる添加剤としては、シリコーンオイル、PTFEなどのフッ素樹脂、フュームドシリカなどの疎水性シリカなどがあるが、いずれの添加物も疎水性の粉塵汚れの付着抑制効果も得られなかった。これは、樹脂に添加した場合には、樹脂内部に埋没してしまって、上記の添加剤が表面にでてこないためである。表面に高い濃度で存在することができて、かつ、疎水性や撥水撥油性を持つ材料として、脂肪酸金属塩(C)を熱可塑性樹脂(A)と親水性コポリマー(B)と一緒に配合することで課題を解決できる。 Additives that generally provide water and oil repellency include silicone oil, fluororesins such as PTFE, and hydrophobic silica such as fumed silica. The effect of suppressing adhesion of dirt was not obtained either. This is because when added to the resin, the additive is buried inside the resin and does not come out to the surface. A fatty acid metal salt (C) is compounded with a thermoplastic resin (A) and a hydrophilic copolymer (B) as a material that can be present at a high concentration on the surface and has hydrophobicity and water and oil repellency. can solve the problem.
 本実施の形態で使用される脂肪酸金属塩は、式(1)で示される脂肪酸金属塩である。
 
M(OH)y(R-COO)x ・・・(1)
 
(式(1)中、Rは、炭素数6~40のアルキル基またはアルケニル基である。Mは、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウムおよびバリウムからなる群から選択される少なくとも1種の金属元素である。xおよびyはそれぞれ独立な0以上の整数であり、x+y=[Mの価数]の関係を満たす。)
 式(1)において、Rの炭素数は、6~40であり、好ましくは11~27であり、更に好ましくは15~20である。Rの炭素数が6より小さい場合、または、炭素数が40よりも大きい場合、何れも粉塵の付着を防止する効果が小さくなり好ましくない。また、Rは、アルキル基またはアルケニル基であり、好ましくはアルキル基である。
The fatty acid metal salt used in this embodiment is a fatty acid metal salt represented by formula (1).

M(OH)y(R-COO)x (1)

(In formula (1), R is an alkyl group or alkenyl group having 6 to 40 carbon atoms. M is at least one metal selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium. is an element, x and y are each independent integers of 0 or more and satisfy the relationship x + y = [valence of M].)
In formula (1), R has 6 to 40 carbon atoms, preferably 11 to 27 carbon atoms, more preferably 15 to 20 carbon atoms. If the number of carbon atoms in R is less than 6, or if the number of carbon atoms in R is more than 40, the effect of preventing adhesion of dust is reduced, which is undesirable. Also, R is an alkyl group or an alkenyl group, preferably an alkyl group.
 一般に石油・鉱油よりも水との接触角が高いと撥水撥油性があるとされ、水との接触角が90度よりも高いと疎水性だとされている。脂肪酸金属塩(C)はこれに該当する。 In general, if the contact angle with water is higher than that of petroleum or mineral oil, it is said to have water and oil repellency, and if the contact angle with water is higher than 90 degrees, it is said to be hydrophobic. Fatty acid metal salt (C) corresponds to this.
 なお、脂肪酸金属塩(C)の融点は、例えば、130~180℃であり、好ましくは140~170℃であり、より好ましくは150~160℃である。 The melting point of the fatty acid metal salt (C) is, for example, 130-180°C, preferably 140-170°C, more preferably 150-160°C.
 (金属元素M)
 式(1)において、Mは、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウムおよびバリウムからなる群から選択される少なくとも1種の金属元素である。
(Metal element M)
In formula (1), M is at least one metal element selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium.
 Mは、アルミニウムおよび亜鉛から選択される少なくとも1種の金属元素であることが好ましい。この場合、熱可塑性樹脂組成物は、より高い防汚性能を発揮することができる。また、Mは、アルミニウムであることがより好ましい。この場合、熱可塑性樹脂組成物は、更に高い防汚性能を発揮することができる。 M is preferably at least one metal element selected from aluminum and zinc. In this case, the thermoplastic resin composition can exhibit higher antifouling performance. Moreover, M is more preferably aluminum. In this case, the thermoplastic resin composition can exhibit even higher antifouling performance.
 図3を参照して、Mのイオン半径が小さい場合(図3(a1),(a2))は、Mのイオン半径が大きい場合(図3(b1),(b2))に比べて、熱可塑性樹脂組成物を含む成形品の表面に脂肪酸金属塩の非極性基(疎水基)を密に配列できるからである。疎水基が密になると、疎水性の粉塵汚れの付着抑制効果が高まる。Mのイオン半径は、それぞれ、アルミニウムは54、亜鉛は74、カルシウムは100、バリウムは135であり、アルミニウムが最も小さく、次に亜鉛が小さい。このため、防汚効果が高めるために、金属元素Mとしては、アルミニウムが最も最適であり、次に亜鉛が好ましい。 Referring to FIG. 3, when the ionic radius of M is small (FIGS. 3A1 and 3A2), the thermal This is because the nonpolar groups (hydrophobic groups) of the fatty acid metal salt can be densely arranged on the surface of the molded product containing the plastic resin composition. As the hydrophobic groups become denser, the effect of suppressing adhesion of hydrophobic dust stains increases. The ionic radii of M are respectively 54 for aluminum, 74 for zinc, 100 for calcium and 135 for barium, with aluminum being the smallest followed by zinc. Therefore, in order to enhance the antifouling effect, the metal element M is most preferably aluminum, followed by zinc.
 (脂肪酸)
 本実施の形態の脂肪酸金属塩(C)を構成する脂肪酸としては、例えば、カプロン酸、カプリン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸、リグノセリン酸、モンタン酸、オレイン酸、リノール酸等が挙げられる。脂肪酸は、ステアリン酸、ベヘン酸、モンタン酸などの長鎖脂肪酸(炭素数12以上の脂肪酸)であることが好ましい。特に、ステアリン酸は、入手し易く安価なため製造にはより好ましい。
(fatty acid)
Examples of fatty acids constituting the fatty acid metal salt (C) of the present embodiment include caproic acid, capric acid, lauric acid, palmitic acid, stearic acid, behenic acid, lignoceric acid, montanic acid, oleic acid, and linoleic acid. is mentioned. Fatty acids are preferably long-chain fatty acids (fatty acids having 12 or more carbon atoms) such as stearic acid, behenic acid, and montanic acid. In particular, stearic acid is more preferable for production because it is readily available and inexpensive.
 脂肪酸金属塩(C)としては、例えば、ステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛、ラウリン酸亜鉛、オレイン酸亜鉛、2-エチルヘキサン酸亜鉛、トリステアリン酸アルミニウム、モノステアリン酸(ジヒドロキシ)アルミニウム、ジステアリン酸(ヒドロキシ)アルミニウム、12-ヒドロキシステアリン酸アルミニウム、ラウリン酸アルミニウム、オレイン酸アルミニウム、2-エチルヘキサン酸アルミニウムなどが挙げられる。脂肪酸金属塩(C)は、好ましくは、ステアリン酸亜鉛、トリステアリン酸アルミニウム、モノステアリン酸(ジヒドロキシ)アルミニウム、および、ジステアリン酸(ヒドロキシ)アルミニウムであり、更に好ましくは、ジステアリン酸(ヒドロキシ)アルミニウムである。なお、脂肪酸金属塩(C)は、1種または2種以上を組み合わせて用いてもよい。 Examples of fatty acid metal salts (C) include zinc stearate, zinc 12-hydroxystearate, zinc laurate, zinc oleate, zinc 2-ethylhexanoate, aluminum tristearate, (dihydroxy)aluminum monostearate, (Hydroxy)aluminum distearate, aluminum 12-hydroxystearate, aluminum laurate, aluminum oleate, aluminum 2-ethylhexanoate and the like. The fatty acid metal salt (C) is preferably zinc stearate, aluminum tristearate, (dihydroxy)aluminum monostearate, and (hydroxy)aluminum distearate, more preferably (hydroxy)aluminum distearate. be. The fatty acid metal salt (C) may be used singly or in combination of two or more.
 ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム、および、ステアリン酸バリウムは、平滑性と高度の撥水性を有し、表面自由エネルギーが低い(約21.2mN/m)という特徴を有する。表面自由エネルギーが低い材質は、フッ素樹脂(表面自由エネルギー:約21.5mN/m)のように表面状態が安定であるため、汚れが付着しにくい。熱可塑性樹脂組成物を含む成形品の表面に、表面自由エネルギーが低いステアリン酸アルミニウムの層ができることで、カーボンブラック、煤、油煙などの疎水性の粉塵汚れの付着を防止する効果が発現する。また、表面自由エネルギーが低くなることで、ホコリ、砂塵、土などの親水性の粉塵汚れも付着しにくくなる。したがって、熱可塑性樹脂組成物に配合された親水性コポリマー(B)による除電効果に加えて、さらに疎水性の粉塵汚れおよび親水性の粉塵汚れに対する防汚性が向上する。 Aluminum stearate, zinc stearate, calcium stearate, and barium stearate are characterized by smoothness, high water repellency, and low surface free energy (about 21.2 mN/m). A material with a low surface free energy has a stable surface condition, such as a fluororesin (surface free energy: about 21.5 mN/m), so dirt does not adhere easily. By forming a layer of aluminum stearate with low surface free energy on the surface of a molded article containing a thermoplastic resin composition, the effect of preventing the adhesion of hydrophobic dust stains such as carbon black, soot and oil smoke is exhibited. In addition, since the surface free energy is lowered, it becomes difficult for hydrophilic dust stains such as dust, sand, and soil to adhere. Therefore, in addition to the static elimination effect of the hydrophilic copolymer (B) blended in the thermoplastic resin composition, antifouling properties against hydrophobic dust stains and hydrophilic dust stains are improved.
 (価数)
 式(1)において、xおよびyはそれぞれ独立な0以上の整数であり、x+y=[Mの価数]の関係を満たす。
(Valence)
In formula (1), x and y are independent integers of 0 or more and satisfy the relationship x+y=[valence of M].
 Mの価数が1の場合、yは0となるが、Mの価数が2以上の場合、yは0または1以上の整数となる。Mの価数が3以上の場合、yは1であることが好ましい。この場合、熱可塑性樹脂組成物は、より高い防汚性能を発揮することができる。 When the valence of M is 1, y is 0, but when the valence of M is 2 or more, y is 0 or an integer of 1 or more. When the valence of M is 3 or more, y is preferably 1. In this case, the thermoplastic resin composition can exhibit higher antifouling performance.
 一例として、Mの価数が3であるアルミニウムの長鎖脂肪酸塩であるステアリン酸アルミニウムについて説明する。 As an example, aluminum stearate, which is a long-chain fatty acid salt of aluminum in which the valence of M is 3, will be described.
 ステアリン酸アルミニウムとしては、1つのステアリン酸を含むモノタイプのモノステアリン酸アルミニウム〔Al(C1735COO)(OH)〕、2つのステアリン酸を含むジタイプのジステアリン酸アルミニウム〔Al(C1735COO)(OH)〕、および、3つのステアリン酸を含むトリタイプのトリステアリン酸アルミニウム〔Al(C1735COO)〕がある。 Examples of aluminum stearate include mono-type aluminum monostearate [Al(C 17 H 35 COO)(OH) 2 ] containing one stearic acid, di-type aluminum distearate [Al(C 17 H 35 COO) 2 (OH)], and the tri-type aluminum tristearate [Al(C 17 H 35 COO) 3 ], which contains three stearic acids.
 図4を参照して、トリステアリン酸アルミニウムは、非極性基の量が多いために成形品の表面に移行しにくく(図4(a))、更に不安定な物質であるため空気中の水分により加水分解して、モノステアリン酸アルミニウムまたはジステアリン酸アルミニウムとの混合物となりやすい。従って、ジステアリン酸アルミニウムの場合の方が、成形品の表面に移行しやすく(図4(b))、トリステアリン酸アルミニウムよりも両性の粉塵抑制効果が高い。なお、Mの価数が3より多い場合においても、同様に、トリタイプより脂肪酸の数が少ないジタイプの脂肪酸金属塩の方が、両性の粉塵抑制効果が高い。 Referring to FIG. 4, aluminum tristearate has a large amount of non-polar groups, so it is difficult to migrate to the surface of the molded product (FIG. 4(a)). to a mixture with aluminum monostearate or aluminum distearate. Therefore, aluminum distearate easily migrates to the surface of the molded product (Fig. 4(b)), and has a higher amphoteric dust suppression effect than aluminum tristearate. Even when the valence of M is more than 3, similarly, a ditype fatty acid metal salt having a smaller number of fatty acids than a tritype has a higher amphoteric dust suppression effect.
 他方、モノステアリン酸アルミニウムは、ジステアリン酸アルミニウムに比べて、アルミニウムの数が同じ場合に、非極性基(疎水基)であるRの数が少なくなる(図4(c))。従って、ジステアリン酸アルミニウムの場合の方が、モノステアリン酸アルミニウムよりも両性の粉塵抑制効果が高い。 On the other hand, aluminum monostearate has a smaller number of non-polar groups (hydrophobic groups) R than aluminum distearate when the number of aluminum atoms is the same (Fig. 4(c)). Therefore, aluminum distearate has a higher amphoteric dust control effect than aluminum monostearate.
 なお、実際に飛行時間型二次イオン質量分析(TOF-SIMS)を用いて成形品の表面近傍を測定すると、ステアリン酸に由来するC1835 が二次イオンとして検出された。TOF-SIMSの検出深さは一般的に1~2nmとされているため、成形品の最表面にステアリン酸が存在することが確認できた。 When the vicinity of the surface of the molded article was actually measured using time-of-flight secondary ion mass spectrometry (TOF-SIMS), C 18 H 35 O 2 - derived from stearic acid was detected as secondary ions. Since the detection depth of TOF-SIMS is generally 1 to 2 nm, it was confirmed that stearic acid was present on the outermost surface of the molded article.
 ポリスチレン分析時の主要ピークであるCのイオン強度を基準としたときのC1835 の二次イオン強度比は、ジステアリン酸アルミニウムを用いた成形品の場合は0.341であり、モノステアリン酸アルミニウムを用いた成形品の場合(0.0687)およびトリステアリン酸アルミニウムを用いた成形品の場合(0.172)に比べて、2倍~4倍以上であった。従って、y=1であるジステアリン酸アルミニウムを用いた成形品では、表面に非極性基(疎水基)が多く存在しており、粉塵抑制効果を最も発現しやすい。 The secondary ionic strength ratio of C 18 H 35 O 2 to the ionic strength of C 2 H , which is the main peak during polystyrene analysis, was 0.341 in the case of the molded article using aluminum distearate. , which was 2 to 4 times more than the molded article using aluminum monostearate (0.0687) and the molded article using aluminum tristearate (0.172). Therefore, a molded product using aluminum distearate where y=1 has many non-polar groups (hydrophobic groups) on the surface, and is most likely to exhibit the dust suppressing effect.
 なお、前述したMの価数が3以上の場合と同様の理由から、Mの価数が2である場合も、ジタイプの脂肪酸金属塩の方がモノタイプの脂肪酸金属塩よりも両性の粉塵抑制効果が高い。従って、Mの価数が2である場合、yは0(xは2)であることが好ましい。 For the same reason as in the case where the valence of M is 3 or more, when the valence of M is 2, the ditype fatty acid metal salt suppresses amphoteric dust more than the monotype fatty acid metal salt. Highly effective. Therefore, when the valence of M is 2, y is preferably 0 (x is 2).
 <各成分の含有量>
 本実施の形態の熱可塑性樹脂組成物において、親水性コポリマー(B)の配合量は、熱可塑性樹脂(A)100質量部に対して、好ましくは1~20質量部であり、更に好ましくは1~17質量部である。
<Content of each component>
In the thermoplastic resin composition of the present embodiment, the amount of the hydrophilic copolymer (B) is preferably 1 to 20 parts by mass, more preferably 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (A). ~17 parts by mass.
 また、脂肪酸金属塩(C)の配合量は、熱可塑性樹脂(A)100質量部に対して、好ましくは0.5~10質量部であり、更に好ましくは1~8質量部である。 The amount of the fatty acid metal salt (C) to be blended is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, based on 100 parts by mass of the thermoplastic resin (A).
 本実施の形態の熱可塑性樹脂組成物は、特に、熱可塑性樹脂(A)100質量部と、親水性コポリマー(B)1~20質量部と、脂肪酸金属塩(C)0.5~10質量部と、を含有することが好ましい。 The thermoplastic resin composition of the present embodiment is particularly composed of 100 parts by mass of thermoplastic resin (A), 1 to 20 parts by mass of hydrophilic copolymer (B), and 0.5 to 10 parts by mass of fatty acid metal salt (C) It is preferable to contain the part and
 脂肪酸金属塩(C)は、一般的には0.5質量%以下(特に、0.1%程度)で成形性改善のための滑剤、離型剤等として熱可塑性樹脂組成物に配合される場合があるが、0.5質量%より多くの脂肪酸金属塩(C)を配合することで、成形品の表面に親水性コポリマー(B)と脂肪酸金属塩(C)との両方を高濃度で存在させる作用が発揮され、更に両性の防汚効果が向上する。 The fatty acid metal salt (C) is generally added to the thermoplastic resin composition at a content of 0.5% by mass or less (especially about 0.1%) as a lubricant, mold release agent, etc. for improving moldability. Although there are cases, by blending more than 0.5% by mass of the fatty acid metal salt (C), both the hydrophilic copolymer (B) and the fatty acid metal salt (C) are present at high concentrations on the surface of the molded article. The effect of making it exist is exhibited, and the amphoteric antifouling effect is further improved.
 親水性コポリマー(B)の配合量が20質量部を超える場合は、弾性率などの機械強度が低下するようになり、1質量部未満の場合は、粉塵の付着抑制効果の低下が認められるようになる。 When the amount of the hydrophilic copolymer (B) exceeds 20 parts by mass, the mechanical strength such as elastic modulus is lowered, and when it is less than 1 part by mass, the effect of suppressing adhesion of dust is reduced. become.
 脂肪酸金属塩(C)の配合量が10質量部を超える場合は、耐熱性、耐衝撃性が低下するようになり、0.5質量部未満の場合は、粉塵の付着抑制効果の低下が認められるようになる。 When the amount of the fatty acid metal salt (C) is more than 10 parts by mass, the heat resistance and impact resistance are lowered. will be available.
 前述したように一般的に脂肪酸金属塩(C)は、本実施の形態の目的である親水性の粉塵汚れと疎水性の粉塵汚れの両性の粉塵汚れの付着抑制、とは異なる目的で使用されることがある。それは、例えば、特開2004-168055公報、特開2003-183529公報等に開示されるように、滑剤、成形改良剤、離型剤、くもり防止剤等として使用される。この場合、脂肪酸金属塩(C)の配合量は、熱可塑性樹脂(A)100質量部に対して、0.5質量部未満である。更に、一般的な製造業に関わる使い方では0.1質量部以下である。また、脂肪酸金属塩(C)の粉塵付着抑制の効果はこれまで知られていない。 As described above, the fatty acid metal salt (C) is generally used for a purpose different from the purpose of the present embodiment, which is to suppress adhesion of both hydrophilic and hydrophobic dust stains. There is something. It is used, for example, as a lubricant, molding modifier, release agent, antifogging agent, etc., as disclosed in JP-A-2004-168055, JP-A-2003-183529, and the like. In this case, the blending amount of the fatty acid metal salt (C) is less than 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A). Furthermore, it is 0.1 parts by mass or less for use in general manufacturing industries. Further, the effect of the fatty acid metal salt (C) on dust adhesion suppression has not been known so far.
 本実施の形態では、従来の使い方とは全く異なる目的として、親水性の粉塵汚れと疎水性の粉塵汚れの両方の付着抑制効果を得るため、一般的に使用される量よりも脂肪酸金属塩(C)の配合量を十分に多くし、それによって初めて両性の粉塵汚れに対する顕著な付着抑制効果が得られることを見出した。したがって、脂肪酸金属塩(C)の配合量は、熱可塑性樹脂(A)100質量部に対して、好ましくは0.5質量部以上であり、より好ましくは1~8質量部である。この場合、成形品の表面を粉塵抑制コーティングしたものと同等以上の良好な粉塵抑制効果が得られる。粉塵抑制を目的として、熱可塑性樹脂100質量部に対して脂肪酸金属塩(C)を1質量部以上配合した例は、これまで知られていない。 In the present embodiment, the amount of fatty acid metal salt ( It has been found that only by sufficiently increasing the amount of C) can a remarkable effect of suppressing adhesion to amphoteric dust stains be obtained. Therefore, the amount of the fatty acid metal salt (C) to be blended is preferably 0.5 parts by mass or more, more preferably 1 to 8 parts by mass, per 100 parts by mass of the thermoplastic resin (A). In this case, a good dust suppression effect equal to or better than that obtained by applying a dust suppression coating to the surface of the molded product can be obtained. An example in which 1 part by mass or more of fatty acid metal salt (C) is blended with 100 parts by mass of thermoplastic resin for the purpose of dust suppression has not been known so far.
 脂肪酸金属塩の空気中に向いた非極性の疎水基であるRによって、疎水性の粉塵汚れの付着抑制という新たな効果を得ている。脂肪酸金属塩(C)を熱可塑性樹脂(A)に対して0.5質量%以上添加することで、多くの疎水基を熱可塑性樹脂組成物を含む成形品の表面に密に配置することができ、疎水性の粉塵汚れの付着抑制効果が高まる。 A new effect of suppressing adhesion of hydrophobic dust stains is obtained by R, which is a non-polar hydrophobic group facing the air of the fatty acid metal salt. By adding 0.5% by mass or more of the fatty acid metal salt (C) to the thermoplastic resin (A), many hydrophobic groups can be densely arranged on the surface of the molded article containing the thermoplastic resin composition. It is possible to increase the effect of suppressing the adhesion of hydrophobic dust stains.
 後述するように、オキシエチレン基を有する親水性コポリマー(B)の帯電防止効果によって親水性の粉塵汚れの付着抑制効果が高まり、脂肪酸金属塩(C)を併せて配合することで疎水性の粉塵汚れの付着抑制効果が高まり、両性の汚れに強い新たな効果が得られる。 As will be described later, the antistatic effect of the hydrophilic copolymer (B) having an oxyethylene group enhances the effect of suppressing adhesion of hydrophilic dust stains, and the addition of the fatty acid metal salt (C) together reduces hydrophobic dust. The effect of suppressing the adhesion of dirt is enhanced, and a new effect that is strong against amphoteric dirt can be obtained.
 <任意成分>
 本実施の形態の熱可塑性樹脂組成物は、本実施の形態の目的を損なわない範囲で、任意成分として、例えば、熱安定剤、紫外線吸収剤、光安定剤、抗菌剤、防黴剤、無機充填材などの成分を含んでいてもよい。
<Optional component>
The thermoplastic resin composition of the present embodiment includes optional components such as heat stabilizers, ultraviolet absorbers, light stabilizers, antibacterial agents, antifungal agents, inorganic Ingredients such as fillers may also be included.
 (熱安定剤)
 本実施の形態の熱可塑性樹脂組成物は、製造時等の熱安定性を向上するために、熱安定剤を含んでいてもよい。
(Heat stabilizer)
The thermoplastic resin composition of the present embodiment may contain a thermal stabilizer in order to improve thermal stability during production.
 熱安定剤としては、リン系安定剤および/またはヒンダードフェノール系酸化防止剤を用いることが好ましく、これらを併用することがより好ましい。 As the heat stabilizer, it is preferable to use a phosphorus stabilizer and/or a hindered phenol antioxidant, and it is more preferable to use them together.
 本実施の形態の熱可塑性樹脂組成物中のリン系安定剤および/またはヒンダードフェノール系酸化防止剤の添加量は特に制限されない。 The amount of the phosphorus-based stabilizer and/or the hindered phenol-based antioxidant added to the thermoplastic resin composition of the present embodiment is not particularly limited.
 熱安定性の向上効果が効果的に得られ、かつ、上記の各必須成分の配合量に影響を与えないことから、熱可塑性樹脂組成物100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.01~0.6質量部である。 Since the effect of improving thermal stability is effectively obtained and the blending amount of each of the above essential components is not affected, it is preferably 0.01 to 1 with respect to 100 parts by mass of the thermoplastic resin composition. parts by mass, more preferably 0.01 to 0.6 parts by mass.
 リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸、およびこれらのエステル、ホスホナイト化合物および、第3級ホスフィン等が挙げられる。 Phosphorus-based stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, phosphonite compounds, and tertiary phosphines.
 亜リン酸エステル(ホスファイト化合物)としては、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4-ビス(1-メチル-1-フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。 Phosphites (phosphite compounds) include triphenylphosphite, tris(nonylphenyl)phosphite, tridecylphosphite, distearylpentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl ) pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis{2,4-bis(1-methyl-1-phenylethyl)phenyl}penta Erythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like.
 亜リン酸エステル(ホスファイト化合物)としては、上記の他、二価フェノール類と反応し環状構造を有するものも使用できる。 As the phosphite (phosphite compound), in addition to the above, those that react with dihydric phenols and have a cyclic structure can also be used.
 例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、および2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。 For example, 2,2′-methylenebis(4,6-di-tert-butylphenyl)(2,4-di-tert-butylphenyl)phosphite, 2,2′-methylenebis(4,6-di-tert- butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite and 2,2-methylenebis(4,6-di-tert-butylphenyl)octylphosphite.
 リン酸エステル(ホスフェート化合物)としては、トリフェニルホスフェート、およびトリメチルホスフェート等が挙げられる。 Phosphate esters (phosphate compounds) include triphenyl phosphate and trimethyl phosphate.
 ホスホナイト化合物としては、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、およびビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイト等が挙げられる。 Phosphonite compounds include tetrakis(di-tert-butylphenyl)-biphenylenediphosphonite, bis(di-tert-butylphenyl)-phenyl-phenylphosphonite, and the like.
 ホスホナイト化合物は、アルキル基を2以上置換したアリール基を有する上記のホスファイト化合物との併用可能であり、好ましい。 The phosphonite compound is preferable because it can be used in combination with the above phosphite compound having an aryl group substituted with two or more alkyl groups.
 ホスホン酸エステル(ホスホネイト化合物)としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。 Phosphonate esters (phosphonate compounds) include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
 第3級ホスフィンとしては、トリフェニルホスフィン等が挙げられる。
 上記リン系安定剤の中でも、ホスホナイト化合物、もしくは下記式(20)で表されるホスファイト化合物が好ましい。
Tertiary phosphines include triphenylphosphine and the like.
Among the above phosphorus-based stabilizers, phosphonite compounds or phosphite compounds represented by the following formula (20) are preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(20)中、RおよびR’は炭素数6~30のアルキル基または炭素数6~30のアリール基を表し、互いに同一であっても異なっていてもよい。)
 上記の如く、ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトが好ましい。
(In formula (20), R and R' represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different.)
As described above, the phosphonite compound is preferably tetrakis(2,4-di-tert-butylphenyl)-biphenylene diphosphonite.
 上記式(15)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4-ビス(1-メチル-1-フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。 More preferred phosphite compounds among the formula (15) are distearylpentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di- tert-butyl-4-methylphenyl)pentaerythritol diphosphite and bis{2,4-bis(1-methyl-1-phenylethyl)phenyl}pentaerythritol diphosphite.
 ヒンダードフェノール化合物としては、テトラキス[メチレン-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、および3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等が挙げられる。 Hindered phenol compounds include tetrakis[methylene-3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate]methane, octadecyl-3-(3,5-di-tert-butyl-4- hydroxyphenyl)propionate, and 3,9-bis[2-{3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1,1-dimethylethyl]-2,4,8 , 10-tetraoxaspiro[5,5]undecane and the like.
 本実施の形態の熱可塑性樹脂組成物は必要に応じて、リン系安定剤およびヒンダードフェノール系酸化防止剤以外のその他の熱安定剤を含むことができる。 The thermoplastic resin composition of the present embodiment can optionally contain other thermal stabilizers than the phosphorus stabilizer and the hindered phenol antioxidant.
 他の熱安定剤は、リン系安定剤およびヒンダードフェノール系酸化防止剤のうち少なくとも一方と併用されることが好ましく、特に両者と併用されることが好ましい。 The other heat stabilizer is preferably used in combination with at least one of the phosphorus stabilizer and the hindered phenol antioxidant, and particularly preferably in combination with both.
 他の熱安定剤としては、3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物に代表されるラクトン系安定剤(この安定剤の詳細については特開平7-233160号公報を参照されたい)が挙げられる。 Other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (details of this stabilizer See Japanese Patent Application Laid-Open No. 7-233160).
 上記ラクトン系安定剤に関しては、Irganox HP-136(登録商標、CIBA SPECIALTY CHEMICALS社製)等が市販されている。 Regarding the above lactone-based stabilizer, Irganox HP-136 (registered trademark, manufactured by CIBA SPECIALTY CHEMICALS) and the like are commercially available.
 上記ラクトン系安定剤、ホスファイト化合物、およびヒンダードフェノール化合物を混合した安定剤として、Irganox HP-2921(登録商標、CIBA SPECIALTY CHEMICALS社製)等が市販されている。 Irganox HP-2921 (registered trademark, manufactured by CIBA Specialty Chemicals) and the like are commercially available as a stabilizer obtained by mixing the lactone stabilizer, phosphite compound, and hindered phenol compound.
 ラクトン系安定剤の添加量は、熱可塑性樹脂組成物100質量部に対して、好ましくは0.0005~0.05質量部、より好ましくは0.001~0.03質量部である。 The amount of the lactone stabilizer added is preferably 0.0005 to 0.05 parts by mass, more preferably 0.001 to 0.03 parts by mass, based on 100 parts by mass of the thermoplastic resin composition.
 その他の安定剤としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネート等のイオウ含有安定剤が挙げられる。 Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. be done.
 本実施の形態の熱可塑性樹脂組成物中のリン系安定剤および/またはヒンダードフェノール系酸化防止剤以外の他の安定剤の添加量は特に制限されず、熱可塑性樹脂組成物100質量部に対して、好ましくは0.0005~0.1質量部、より好ましくは0.001~0.08質量部、特に好ましくは0.001~0.05質量部である。 The addition amount of the stabilizer other than the phosphorus stabilizer and/or the hindered phenol antioxidant in the thermoplastic resin composition of the present embodiment is not particularly limited, and is On the other hand, it is preferably 0.0005 to 0.1 parts by mass, more preferably 0.001 to 0.08 parts by mass, and particularly preferably 0.001 to 0.05 parts by mass.
 (紫外線吸収剤)
 本実施の形態の熱可塑性樹脂組成物は、紫外線吸収剤を含有してもよい。本実施の形態の熱可塑性樹脂組成物は、ゴム成分等の影響によって耐候性に劣る場合があることから、耐候性を向上するために紫外線吸収剤の配合は有効である。
(Ultraviolet absorber)
The thermoplastic resin composition of this embodiment may contain an ultraviolet absorber. Since the thermoplastic resin composition of the present embodiment may be inferior in weather resistance due to the influence of the rubber component and the like, it is effective to add an ultraviolet absorber to improve the weather resistance.
 本実施の形態の紫外線吸収剤としては、例えば、ベンゾフェノン系の紫外線吸収剤、ベンゾトリアゾール系の紫外線吸収剤、ヒドロキシフェニルトリアジン系の紫外線吸収剤、環状イミノエステル系の紫外線吸収剤、シアノアクリレート系の紫外線吸収剤などが挙げられる。 Examples of the ultraviolet absorber of the present embodiment include a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, a hydroxyphenyltriazine-based ultraviolet absorber, a cyclic imino ester-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber. An ultraviolet absorber etc. are mentioned.
 ベンゾフェノン系の紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが挙げられる。 Benzophenone-based UV absorbers include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy -4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydrate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2',4,4'- Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis(5-benzoyl-4-hydroxy -2-methoxyphenyl)methane, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
 ベンゾトリアゾール系の紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ルなどが挙げられる。他のベンゾトリアゾール系の紫外線吸収剤としては、2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体が例示される。2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体としては、例えば、2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や、2-(2’-ヒドロキシ-5-アクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などが挙げられる。 Benzotriazole-based UV absorbers include, for example, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2 -hydroxy-3,5-dicumylphenyl)phenylbenzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2′-methylenebis[4-( 1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl)benzotriazole, 2-( 2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-4-octoxyphenyl)benzotriazole, 2,2′-methylenebis(4-cumyl-6-benzotriazolephenyl), 2,2′-p-phenylenebis(1,3-benzoxazin-4-one), 2-[2-hydroxy-3-( 3,4,5,6-tetrahydrophthalimidomethyl)-5-methylphenyl]benzotriazole and the like. Other benzotriazole-based UV absorbers are exemplified by polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton. Polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton include, for example, 2-(2′-hydroxy-5-methacryloxyethylphenyl)-2H-benzotriazole and a vinyl-based monomer copolymerizable therewith. and a copolymer of 2-(2'-hydroxy-5-acryloxyethylphenyl)-2H-benzotriazole and a vinyl monomer copolymerizable with the monomer.
 ヒドロキシフェニルトリアジン系の紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが挙げられる。さらに、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記で例示した化合物のフェニル基が2,4-ジメチルフェニル基に置換された化合物が例示される。 Examples of hydroxyphenyltriazine-based UV absorbers include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(4,6-diphenyl- 1,3,5-triazin-2-yl)-5-methyloxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-ethyloxyphenol, 2-( 4,6-diphenyl-1,3,5-triazin-2-yl)-5-propyloxyphenol, and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5- butyloxyphenol and the like. Furthermore, the phenyl group of the above-exemplified compounds such as 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-hexyloxyphenol is 2, A compound substituted with a 4-dimethylphenyl group is exemplified.
 環状イミノエステル系の紫外線吸収剤としては、例えば、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが挙げられる。 Cyclic iminoester-based UV absorbers include, for example, 2,2′-p-phenylenebis(3,1-benzoxazin-4-one), 2,2′-(4,4′-diphenylene)bis( 3,1-benzoxazin-4-one), 2,2′-(2,6-naphthalene)bis(3,1-benzoxazin-4-one), and the like.
 シアノアクリレート系の紫外線吸収剤としては、例えば、1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが挙げられる。 Examples of cyanoacrylate ultraviolet absorbers include 1,3-bis-[(2′-cyano-3′,3′-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3, 3-diphenylacryloyl)oxy]methyl)propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene, and the like.
 さらに、紫外線吸収剤は、紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合してなるポリマー型の紫外線吸収剤であってもよい。紫外線吸収性単量体としては、(メタ)アクリル酸エステルであって、エステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。 Furthermore, the UV absorber is a polymer-type UV-absorbing agent obtained by copolymerizing a UV-absorbing monomer and/or a photostable monomer having a hindered amine structure with a monomer such as an alkyl (meth)acrylate. It may be an agent. As the UV-absorbing monomer, a (meth)acrylic acid ester is preferably a compound containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic iminoester skeleton, and a cyanoacrylate skeleton in the ester substituent. exemplified.
 上記の中でも、紫外線吸収能の点では、ベンゾトリアゾール系およびヒドロキシフェニルトリアジン系の紫外線吸収剤が好ましく、耐熱性や色相(透明性)の点では、環状イミノエステル系およびシアノアクリレート系の紫外線吸収剤が好ましい。上記紫外線吸収剤は、単独であるいは2種以上の混合物で用いてもよい。 Among the above, benzotriazole-based and hydroxyphenyltriazine-based UV absorbers are preferred in terms of UV absorption capacity, and cyclic iminoester-based and cyanoacrylate-based UV absorbers are preferred in terms of heat resistance and hue (transparency). is preferred. The ultraviolet absorbers may be used singly or as a mixture of two or more.
 紫外線吸収剤の含有量は、熱可塑性樹脂組成物100質量部を基準として、好ましくは0.01~2質量部、より好ましくは0.02~2質量部、さらに好ましくは0.03~1質量部、特に好ましくは0.05~0.5質量部である。 The content of the ultraviolet absorber is preferably 0.01 to 2 parts by mass, more preferably 0.02 to 2 parts by mass, and still more preferably 0.03 to 1 part by mass, based on 100 parts by mass of the thermoplastic resin composition. parts, particularly preferably 0.05 to 0.5 parts by mass.
 (光安定剤)
 本実施の形態の熱可塑性樹脂組成物は、光安定剤を含有してもよい。本実施の形態の熱可塑性樹脂組成物は、暗所黄変を起こす場合があることから、かかる劣化を防止するため光安定剤の配合は有効である。
(light stabilizer)
The thermoplastic resin composition of this embodiment may contain a light stabilizer. Since the thermoplastic resin composition of the present embodiment may cause yellowing in the dark, it is effective to add a light stabilizer to prevent such deterioration.
 かかる光安定剤としては、ヒンダードアミン光安定剤(HALS)を好適に用いることができる。HALSは、例えば、以下の式(21)~(24)で示される化合物、およびこれらの化合物の2種以上の組み合わせである。 Hindered amine light stabilizers (HALS) can be suitably used as such light stabilizers. HALS are, for example, compounds represented by the following formulas (21) to (24), and combinations of two or more of these compounds.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(21)~(24)中、R~Rは、独立した置換基である。
 上記置換基としては、例えば、水素、エーテル基、エステル基、アミン基、アミド基、アルキル基、アルケニル基、アルキニル基、アラルキル基、シクロアルキル基、およびアリール基が挙げられる。
In formulas (21)-(24), R 1 -R 3 are independent substituents.
Examples of the substituents include hydrogen, ether groups, ester groups, amine groups, amide groups, alkyl groups, alkenyl groups, alkynyl groups, aralkyl groups, cycloalkyl groups, and aryl groups.
 これらの置換基は、官能基を含有していてもよい。当該官能基としては、例えば、アルコール、ケトン、無水物、イミン、シロキサン、エーテル、カルボキシル基、アルデヒド、エステル、アミド、イミド、アミン、ニトリル、エーテル、ウレタン、および、これらの組み合わせが挙げられる。 These substituents may contain functional groups. Such functional groups include, for example, alcohols, ketones, anhydrides, imines, siloxanes, ethers, carboxyl groups, aldehydes, esters, amides, imides, amines, nitriles, ethers, urethanes, and combinations thereof.
 ヒンダードアミン光安定剤(HALS)としては、置換ピペリジン化合物から誘導される化合物が好ましく、アルキル置換ピペリジル、ピペリジニルまたはピペラジノン化合物、および置換アルコキシピペリジニル化合物から誘導される化合物がより好ましい。 Hindered amine light stabilizers (HALS) are preferably compounds derived from substituted piperidine compounds, more preferably compounds derived from alkyl-substituted piperidyl, piperidinyl or piperazinone compounds, and substituted alkoxypiperidinyl compounds.
 ヒンダードアミン光安定剤としては、以下に限定されるものではないが、例えば、2,2,6,6-テトラメチル-4-ピペリドン;2,2,6,6-テトラメチル-4-ピペリジノール;ビス-(1,2,2,6,6-ペンタメチルピペリジル)-(3',5'-ジ-t-ブチル-4'-ヒドロキシベンジル)ブチルマロネート;ジ-(2,2,6,6-テトラメチル-4-ピペリジル)セバケート;N-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノールとコハク酸のオリゴマー;シアヌル酸とN,N-ジ(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレンジアミンのオリゴマー;ビス-(2,2,6,6-テトラメチル-4-ピペリジニル)スクシネート;ビス-(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート;ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート;テトラキス-(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート;N,N'-ビス-(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサン-1,6-ジアミン;N-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミン;2,2'-[(2,2,6,6-テトラメチル-ピペリジニル)-イミノ]-ビス-[エタノール];ポリ((6-モルホリン-S-トリアジン-2,4-ジイル)(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノヘキサメチレン-(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノ);5-(2,2,6,6-テトラメチル-4-ピペリジニル)-2-シクロ-ウンデシル-オキサゾール);1,1'-(1,2-エタン-ジ-イル)-ビス-(3,3',5,5'-テトラメチル-ピペラジノン);8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ(4.5)デカン-2,4-ジオン;ポリメチルプロピル-3-オキシ-[4(2,2,6,6-テトラメチル)-ピペリジニル]シロキサン;1,2,3,4-ブタン-テトラカルボン酸-1,2,3-トリス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)-4-トリデシルエステル;α-メチルスチレン-N-(2,2,6,6-テトラメチル-4-ピペリジニル)マレイミドとN-ステアリルマレイミドとのコポリマー;1,2,3,4-ブタンテトラカルボン酸-β,β,β',β'-テトラメチル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジエタノールと1,2,2,6,6-ペンタメチル-4-ピペリジニルエステルとのコポリマー;2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジエタノールと1,2,3,4-ブタンテトラカルボン酸、2,2,6,6-テトラメチル-4-ピペリジニルエステルとのβ,β,β',β'-テトラメチル-ポリマー;D-グルシトール、1,3:2,4-ビス-o-(2,2,6,6-テトラメチル-4-ピペリジニルイデン)-;7-オキサ-3,20-ジアザジスピロ[5.1.11.2]-ヘンエイコサン-21-オン-2,2,4,4-テトラメチル-20-(オキシラニルメチル)のオリゴマー;プロパン二酸、[(4-メトキシフェニル)メチレン]-,ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル;ホルムアミド、N,N'-1,6-ヘキサンジイルビス[N-(2,2,6,6-テトラメチル-4-ピペリジニル;1,3,5-トリアジン-2,4,6-トリアミン、N,N'''-[1,2-エタンジイルビス[[[4,6-ビス[ブチル(1,2,2,6,6-ペンタメチル-4-ピペリジニル)アミノ]-1,3,5-トリアジン-2-イル]イミノ]-3,1-プロパンジイル]]-ビス[N',N''-ジブチル-N',N''-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル);ポリ[[6-[(1,1,3,33-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノ]-1,6-ヘキサンジイル[(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]];1,5-ジオキサスピロ(5.5)ウンデカン3,3-ジカルボン酸,ビス(2,2,6,6-テトラメチル-4-ピペリジニル)エステル;1,5-ジオキサスピロ(5.5)ウンデカン3,3-ジカルボン酸,ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル;N-2,2,6,6-テトラメチル-4-ピペリジニル-N-アミノ-オキサミド;4-アクリロイルオキシ-1,2,2,6,6-ペンタメチル-4-ピペリジン;1,5,8,12-テトラキス[2',4'-ビス(1'',2'',2'',6'',6''-ペンタメチル-4''-ピペリジニル(ブチル)アミノ)-1',3',5'-トリアジン-6'-イル]-1,5,8,12-テトラアザドデカン;3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジル)-ピロリジン-2,5-ジオン;1,1'-(1,2-エタン-ジ-イル)-ビス-(3,3',5,5'-テトラ-メチル-ピペラジノン);1,1'1''-(1,3,5-トリアジン-2,4,6-トリイルトリス((シクロヘキシルイミノ)-2,1-エタンジイル)トリス(3,3,5,5-テトラメチルピペラジノン);1,1',1''-(1,3,5-トリアジン-2,4,6-トリイルトリス((シクロヘキシルイミノ)-2,1-エタンジイル)トリス(3,3,4,5,5-テトラメチルピペラジノン)などが挙げられる。 Hindered amine light stabilizers include, but are not limited to, 2,2,6,6-tetramethyl-4-piperidone; 2,2,6,6-tetramethyl-4-piperidinol; -(1,2,2,6,6-pentamethylpiperidyl)-(3′,5′-di-t-butyl-4′-hydroxybenzyl)butylmalonate; di-(2,2,6,6) -tetramethyl-4-piperidyl) sebacate; N-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidinol and oligomers of succinic acid; cyanuric acid and N,N-di(2, Oligomers of 2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine; bis-(2,2,6,6-tetramethyl-4-piperidinyl)succinate; bis-(1-octyloxy-2, 2,6,6-tetramethyl-4-piperidinyl) sebacate; bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate; tetrakis-(2,2,6,6-tetramethyl- 4-piperidyl)-1,2,3,4-butanetetracarboxylate; N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexane-1,6-diamine; N-butyl-2,2,6,6-tetramethyl-4-piperidinamine; 2,2′-[(2,2,6,6-tetramethyl-piperidinyl)-imino]-bis-[ethanol]; Poly((6-morpholine-S-triazine-2,4-diyl)(2,2,6,6-tetramethyl-4-piperidinyl)-iminohexamethylene-(2,2,6,6-tetramethyl- 4-piperidinyl)-imino); 5-(2,2,6,6-tetramethyl-4-piperidinyl)-2-cyclo-undecyl-oxazole); 1,1′-(1,2-ethane-di- yl)-bis-(3,3′,5,5′-tetramethyl-piperazinone); 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro(4 .5) Decane-2,4-dione; polymethylpropyl-3-oxy-[4(2,2,6,6-tetramethyl)-piperidinyl]siloxane; 1,2,3,4-butane-tetracarboxylic acid-1,2,3-tris(1,2,2,6,6-pentamethyl-4-piperidinyl)-4-tridecyl ester; α-methylstyrene-N-(2,2,6,6-tetra Methyl-4-piperidinyl)maleimide and N-steary Copolymer with lumaleimide; 1,2,3,4-butanetetracarboxylic acid-β,β,β',β'-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3 ,9-diethanol and 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol and β,β,β',β'-tetramethyl-polymer with 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl ester; D-glucitol, 1,3: 2,4-bis-o-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 7-oxa-3,20-diazadispiro [5.1.11.2 ]-Heneicosan-21-one-2,2,4,4-tetramethyl-20-(oxiranylmethyl) oligomers; propanedioic acid, [(4-methoxyphenyl)methylene]-, bis(1,2 ,2,6,6-pentamethyl-4-piperidinyl) ester; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); 3,5-triazine-2,4,6-triamine, N,N'''-[1,2-ethanediylbis[[[4,6-bis[butyl(1,2,2,6,6-pentamethyl- 4-piperidinyl)amino]-1,3,5-triazin-2-yl]imino]-3,1-propanediyl]]-bis[N′,N″-dibutyl-N′,N″-bis (1,2,2,6,6-pentamethyl-4-piperidinyl); poly[[6-[(1,1,3,33-tetramethylbutyl)amino]-1,3,5-triazine-2, 4-diyl][(2,2,6,6-tetramethyl-4-piperidinyl)-imino]-1,6-hexanediyl[(2,2,6,6-tetramethyl-4-piperidinyl)imino] ]; 1,5-dioxaspiro(5.5)undecane 3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) ester; 1,5-dioxaspiro(5.5)undecane 3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; N-2,2,6,6-tetramethyl-4-piperidinyl-N-amino-oxamide; 4-acryloyloxy-1,2,2,6,6-pentamethyl-4-piperidine; 1,5,8,1 2-tetrakis[2′,4′-bis(1″,2″,2″,6″,6″-pentamethyl-4″-piperidinyl(butyl)amino)-1′,3′ ,5′-triazin-6′-yl]-1,5,8,12-tetraazadodecane; 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)-pyrrolidine-2 ,5-dione; 1,1′-(1,2-ethane-di-yl)-bis-(3,3′,5,5′-tetra-methyl-piperazinone); 1,1′1″- (1,3,5-triazine-2,4,6-triyltris((cyclohexylimino)-2,1-ethanediyl)tris(3,3,5,5-tetramethylpiperazinone); 1,1′, 1″-(1,3,5-triazine-2,4,6-triyltris((cyclohexylimino)-2,1-ethanediyl)tris(3,3,4,5,5-tetramethylpiperazinone) etc.
 かかるヒンダードアミン光安定剤(HALS)の添加量は、熱可塑性樹脂組成物100質量部に対し好ましくは、0.01~5質量部、更に好ましくは0.05~3質量部、更に好ましくは0.1~1質量部である。 The amount of the hindered amine light stabilizer (HALS) added is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, still more preferably 0.05 to 3 parts by mass, per 100 parts by mass of the thermoplastic resin composition. It is 1 to 1 part by mass.
 (抗菌剤)
 本実施の形態の熱可塑性樹脂組成物は、抗菌剤を含んでいてもよい。抗菌剤としては、特に限定されるものではないが、例えば、酸化亜鉛、銀、銅、亜鉛等の抗菌性金属を、結晶性アルミノケイ酸塩、無定形アルミノケイ酸塩、シリカゲル、活性アルミナ、けいそう土、活性炭、リン酸ジルコニウム、ヒドロキシアパタイト、酸化マグネシウム、過塩素酸マグネシウム、ガラス等に担持してなる無機系抗菌剤が挙げられる。抗菌性金属としては、酸化亜鉛が好ましい。
(Antibacterial agent)
The thermoplastic resin composition of this embodiment may contain an antibacterial agent. The antibacterial agent is not particularly limited. Inorganic antibacterial agents carried on soil, activated carbon, zirconium phosphate, hydroxyapatite, magnesium oxide, magnesium perchlorate, glass and the like can be mentioned. Zinc oxide is preferred as the antimicrobial metal.
 酸化亜鉛は、特に限定されるものでなく、市販されているものであってもよく、例えば、金属亜鉛を熱して気化させ、空気中で燃焼させたものや、硫酸亜鉛または硝酸亜鉛を加熱して調製されたものであってもよい。また、酸化亜鉛としては、例えば、繊維状、板状、粒子状、テトラポッド状などの各種形状のものが使用できる。本実施の形態に用いる酸化亜鉛は、酸化ケイ素、シリコーンオイル、有機ケイ素化合物、有機チタン化合物などで表面処理されていてもよい。 Zinc oxide is not particularly limited and may be commercially available. For example, metallic zinc is heated to vaporize and burned in air, or zinc sulfate or zinc nitrate is heated. It may be prepared by As zinc oxide, for example, various shapes such as fibrous, plate-like, particulate, and tetrapod-like can be used. The zinc oxide used in this embodiment may be surface-treated with silicon oxide, silicone oil, an organic silicon compound, an organic titanium compound, or the like.
 市販されている酸化亜鉛としては、例えば、JIS K-1410で区分される「1種酸化亜鉛」、「2種酸化亜鉛」、「3種酸化亜鉛」や、日本薬局方に規定された局方酸化亜鉛、水熱合成工程を経て調製した異方性(柱状、板状、テトラポット状)の酸化亜鉛(形状異方性を有する酸化亜鉛)が挙げられる。これらの酸化亜鉛の内、平均粒径が50~200nmの粒子状酸化亜鉛が好ましく、特に100~150nmの粒子状酸化亜鉛が好ましい。ここで言う平均粒径とは、レーザ回折/散乱式粒子径分布測定装置により測定して得られた粒度分布において、積算質量分布が50%となる粒径である。 Examples of commercially available zinc oxide include "Type 1 zinc oxide", "Type 2 zinc oxide", and "Type 3 zinc oxide" classified by JIS K-1410, and pharmacopoeia stipulated in the Japanese Pharmacopoeia. Zinc oxide and anisotropic (columnar, plate-like, tetrapod-like) zinc oxide (zinc oxide having shape anisotropy) prepared through a hydrothermal synthesis process can be mentioned. Among these zinc oxides, particulate zinc oxide having an average particle diameter of 50 to 200 nm is preferred, and particulate zinc oxide having an average particle diameter of 100 to 150 nm is particularly preferred. The average particle size referred to here is the particle size at which the cumulative mass distribution is 50% in the particle size distribution obtained by measuring with a laser diffraction/scattering particle size distribution analyzer.
 酸化亜鉛の配合量は、熱可塑性樹脂組成物100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.05~0.5質量部、更に好ましくは0.1~0.3質量部である。 The amount of zinc oxide compounded is preferably 0.01 to 1 part by mass, more preferably 0.05 to 0.5 part by mass, and still more preferably 0.1 to 0 part by mass with respect to 100 parts by mass of the thermoplastic resin composition. .3 parts by mass.
 (無機充填材)
 本実施の形態の熱可塑性樹脂組成物は、剛性を付与し強度を向上する目的で強化フィライーとして、無機充填剤を含んでいてもよい。
(Inorganic filler)
The thermoplastic resin composition of the present embodiment may contain an inorganic filler as a reinforcing filler for the purpose of imparting rigidity and improving strength.
 無機充填材としては、例えば、タルク、ワラストナイト、マイカ、クレー、モンモンリロナイト、スメクタイト、カオリン、炭酸カルシウム、ガラス繊維、ガラスビーズ、ガラスバルーン、ガラスミルドファイバー、ガラスフレーク、炭素繊維、炭素フレーク、カーボンビーズ、カーボンミルドファイバー、金属フレーク、金属繊維、金属コートガラス繊維、金属コート炭素繊維、金属コートガラスフレーク、シリカ、セラミック粒子、セラミック繊維、セラミックバルーン、アラミド粒子、アラミド繊維、ポリアリレート繊維、グラファイト、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、塩基性硫酸マグネシウムなどの各種ウイスカーなどが挙げられる。なかでも、タルク、ワラストナイト、マイカ、ガラス繊維、ガラスミルドファイバーなどのケイ酸塩系の充填材が好ましく使用される。なかでも特に好ましいのは、タルク、ワラストナイトおよびマイカである。 Examples of inorganic fillers include talc, wollastonite, mica, clay, montmontlilonite, smectite, kaolin, calcium carbonate, glass fibers, glass beads, glass balloons, glass milled fibers, glass flakes, carbon fibers, and carbon flakes. , carbon beads, carbon milled fibers, metal flakes, metal fibers, metal-coated glass fibers, metal-coated carbon fibers, metal-coated glass flakes, silica, ceramic particles, ceramic fibers, ceramic balloons, aramid particles, aramid fibers, polyarylate fibers, Various whiskers such as graphite, potassium titanate whisker, aluminum borate whisker, and basic magnesium sulfate are included. Among them, silicate-based fillers such as talc, wollastonite, mica, glass fiber, and glass milled fiber are preferably used. Among them, talc, wollastonite and mica are particularly preferred.
 無機充填材を配合する場合、本実施の形態の熱可塑性樹脂組成物には、無機充填材の濡れ性を向上するためカルボン酸無水物基、スルホン酸基などの酸性基を含んだ添加剤などを含むことができる。 When an inorganic filler is blended, the thermoplastic resin composition of the present embodiment contains an additive containing an acidic group such as a carboxylic anhydride group or a sulfonic acid group in order to improve the wettability of the inorganic filler. can include
 本実施の形態における無機充填材の含有量は熱可塑性樹脂組成物100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~20質量部、更に好ましくは1~10質量部である。かかる配合量が0.1質量部未満では充填材の補強効果が無く、30質量部を超えると衝撃強度が著しく低下するため好ましくない。 The content of the inorganic filler in the present embodiment is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, still more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition. 10 parts by mass. If the amount is less than 0.1 parts by mass, the reinforcing effect of the filler will not be obtained, and if it exceeds 30 parts by mass, the impact strength will be significantly lowered, which is not preferable.
 (他の任意成分)
 本実施の形態で使用可能な他の任意成分としては、着色の為の染料、顔料、消泡剤、可塑剤、滑剤、離型剤および難燃剤等を挙げることができる。更には、熱可塑性樹脂(A)および親水性コポリマー(B)以外の熱可塑性樹脂を本実施の形態の目的を損なわない範囲で配合することも可能である。
(other optional ingredients)
Dyes for coloring, pigments, antifoaming agents, plasticizers, lubricants, release agents, flame retardants, and the like can be given as other optional components that can be used in the present embodiment. Furthermore, thermoplastic resins other than the thermoplastic resin (A) and the hydrophilic copolymer (B) can be blended within a range that does not impair the purpose of the present embodiment.
 このような熱可塑性樹脂としては、汎用樹脂として家電やOA機器で用いられる熱可塑性樹脂を用いることができる。 As such a thermoplastic resin, a general-purpose thermoplastic resin used in home appliances and OA equipment can be used.
 このような熱可塑性樹脂としては、例えば、
 オレフィン系樹脂である、ポリオレフィン系樹脂(高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン等)、環状オレフィン系樹脂、および、ポリエステル系樹脂(ポリ乳酸、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、
 スチレン系樹脂である、ポリスチレン(PS樹脂)、アクリロニトリルブタジエンスチレン(ABS樹脂)、および、アクリロニトリルスチレン(AS樹脂)、
 ABS樹脂のブタジエンに代替しアクリルゴムを重合させたASA樹脂、
 ABS樹脂のブタジエンに代替しエチレン系ゴムを重合させたAES樹脂、
 メチルメタクリレートブタジエンスチレン(MBS樹脂)などが挙げられる。
Examples of such thermoplastic resins include:
Olefin resins, polyolefin resins (high density polyethylene, low density polyethylene, polypropylene, etc.), cyclic olefin resins, and polyester resins (polylactic acid, polyethylene terephthalate, polybutylene terephthalate, etc.),
polystyrene (PS resin), acrylonitrile butadiene styrene (ABS resin), and acrylonitrile styrene (AS resin), which are styrene resins;
ASA resin obtained by polymerizing acrylic rubber instead of butadiene in ABS resin,
AES resin obtained by polymerizing ethylene-based rubber instead of butadiene in ABS resin,
Examples include methyl methacrylate butadiene styrene (MBS resin).
 その他の汎用樹脂の例として、ポリ塩化ビニル系樹脂(ポリ塩化ビニル、ポリ塩化ビニリデン等)、ポリメチルメタクリレート系樹脂、ポリビニルアルコール、ポリエチレンテレフタレート(PET樹脂)、ポリブチレンテレフタレート(PBT樹脂)が挙げられる。 Examples of other general-purpose resins include polyvinyl chloride-based resins (polyvinyl chloride, polyvinylidene chloride, etc.), polymethyl methacrylate-based resins, polyvinyl alcohol, polyethylene terephthalate (PET resin), and polybutylene terephthalate (PBT resin). .
 また、特に強度に優れ、耐熱性のような機能が強化されているエンジニアリングプラスチックの例として、ポリカーボネート樹脂(BPA型ポリカーボネート、脂肪族ポリカーボネート等)、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂(PPE樹脂)、ポリオキシメチレン樹脂(ポリアセタール等)、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、芳香族ポリエーテルケトン樹脂、ポリスルホン系樹脂、ポリアミドイミド樹脂などが挙げられる。 Examples of engineering plastics that are particularly strong and have enhanced functions such as heat resistance include polycarbonate resins (BPA type polycarbonate, aliphatic polycarbonate, etc.), polyamide resins, polyphenylene ether resins (PPE resins), Examples include polyoxymethylene resins (polyacetal, etc.), polyphenylene sulfide resins, polyetherimide resins, aromatic polyetherketone resins, polysulfone resins, and polyamideimide resins.
 これらの樹脂を本実施の形態の熱可塑性樹脂組成物の原料として、単独で用いても良いし、複数の樹脂を組み合わせて用いてもよい。複数の樹脂とは、例えば、PC/ABS、PC/ASなどのポリマーアロイである。このようなポリマーアロイは、ポリカーボネート(PC樹脂)とスチレン系樹脂(ABS樹脂やAS樹脂など)の両方の特長を兼ね備えており、電気・電子関係、OA機器、照明器具、精密機械、自動車部品、家庭用品など幅広い分野で使用される。 These resins may be used singly or in combination as raw materials for the thermoplastic resin composition of the present embodiment. A plurality of resins are, for example, polymer alloys such as PC/ABS and PC/AS. Such polymer alloys have the features of both polycarbonate (PC resin) and styrene resins (ABS resin, AS resin, etc.) It is used in a wide range of fields such as household goods.
 上記熱可塑性樹脂(A)やオキシエチレン基(好ましくはポリオキシエチレン鎖)を有する親水性コポリマー(B)に比べて、脂肪酸金属塩(C)は分子量が低いため、いずれの樹脂を原料に用いても、脂肪酸金属塩(C)は、成形品の表面に露出しやすいため、種々の樹脂を熱可塑性樹脂組成物に配合することが可能である。 Since the fatty acid metal salt (C) has a lower molecular weight than the thermoplastic resin (A) or the hydrophilic copolymer (B) having an oxyethylene group (preferably a polyoxyethylene chain), any resin can be used as a raw material. However, since the fatty acid metal salt (C) is likely to be exposed on the surface of the molded article, various resins can be blended into the thermoplastic resin composition.
 なお、図6を参照して、脂肪酸金属塩(C)と親水性コポリマー(B)とは、成形時の溶融粘度が異なる。成形時には、金型内に射出された熱可塑性樹脂(A)がはじめに固まり、次に親水性コポリマー(B)が固まり、その次に分子量が低い脂肪酸金属塩(C)が固まっていく。つまり、上記熱可塑性樹脂(A)に比べて、親水性コポリマー(B)および脂肪酸金属塩(C)の方が、固化速度が遅いため、成形品の表面に露出しやすい傾向がある。このように、親水性コポリマー(B)および脂肪酸金属塩(C)は、上記熱可塑性樹脂(A)と成形時の溶融粘度が異なるため、熱可塑性樹脂(A)に配合することができる。 It should be noted that, referring to FIG. 6, the fatty acid metal salt (C) and the hydrophilic copolymer (B) have different melt viscosities during molding. During molding, the thermoplastic resin (A) injected into the mold first hardens, then the hydrophilic copolymer (B) hardens, and then the fatty acid metal salt (C) with a low molecular weight hardens. That is, the hydrophilic copolymer (B) and the fatty acid metal salt (C) have slower solidification speeds than the thermoplastic resin (A), and tend to be exposed on the surface of the molded product. As described above, the hydrophilic copolymer (B) and the fatty acid metal salt (C) can be blended in the thermoplastic resin (A) because they have different melt viscosities during molding than the thermoplastic resin (A).
 一方、例えば、融点が高く(例えば、約320℃以上)、極性が極めて高い樹脂原料は、分散が難しいため、所望の粉塵抑制効果が得られにくい。つまり、親水性コポリマー(B)および脂肪酸金属塩(C)は、上記の熱可塑性樹脂(A)よりも、成形品の表層近傍に集まりやすいため、粉塵抑制効果が発現されやすい。 On the other hand, for example, a resin raw material with a high melting point (for example, about 320°C or higher) and extremely high polarity is difficult to disperse, so it is difficult to obtain the desired dust suppression effect. In other words, the hydrophilic copolymer (B) and the fatty acid metal salt (C) are more likely to gather near the surface layer of the molded article than the thermoplastic resin (A), so that the dust suppressing effect is likely to be exhibited.
 さらに、低分子量の脂肪酸金属塩(C)の極性基と、オキシエチレン基を有する親水性コポリマー(B)とが親和性を有している。このため、親水性コポリマー(B)が脂肪酸金属塩(C)に付着することにより、親水性コポリマー(B)および脂肪酸金属塩(C)は、脱離が防止され、成形品の表層近傍に多量に存在することができる。したがって、親水性と疎水性の両方の粉塵汚れに対して付着抑制効果が発現されやすい。 Furthermore, the polar group of the low-molecular-weight fatty acid metal salt (C) has an affinity with the hydrophilic copolymer (B) having an oxyethylene group. Therefore, by attaching the hydrophilic copolymer (B) to the fatty acid metal salt (C), the hydrophilic copolymer (B) and the fatty acid metal salt (C) are prevented from being detached, and a large amount of can exist in Therefore, the effect of suppressing the adhesion of both hydrophilic and hydrophobic dust stains is likely to be exhibited.
 <熱可塑性樹脂組成物の製造>
 本実施の形態の熱可塑性樹脂組成物の製造には、任意の方法が採用される。例えば熱可塑性樹脂(A)、親水性コポリマー(B)、脂肪酸金属塩(C)および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
<Production of thermoplastic resin composition>
Any method is employed for the production of the thermoplastic resin composition of the present embodiment. For example, a thermoplastic resin (A), a hydrophilic copolymer (B), a fatty acid metal salt (C) and optionally other additives are combined with a premixing means such as a V-blender, a Henschel mixer, a mechanochemical apparatus, an extrusion mixer, etc. After sufficiently mixing using, the pre-mixture is granulated with an extrusion granulator, briquetting machine, etc. as necessary, and then melt-kneaded with a melt-kneader typified by a vented twin-screw extruder. , and then pelletizing with a pelletizer.
 他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、熱可塑性樹脂(A)以外の成分を予め予備混合した後、熱可塑性樹脂(A)に混合するか、または押出機に直接供給する方法が挙げられる。 In addition, there is a method of supplying each component independently to a melt kneader represented by a vented twin-screw extruder, or a method of premixing a part of each component and then supplying the rest of the components independently to a melt kneader. There are also methods of As a method of pre-mixing a part of each component, for example, after pre-mixing the components other than the thermoplastic resin (A), it is mixed with the thermoplastic resin (A), or a method of directly supplying to the extruder. mentioned.
 押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, one having a vent that can deaerate moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. A vacuum pump is preferably installed from the vent for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to install a screen in front of the die portion of the extruder to remove foreign matters and the like mixed in the extruded raw material to remove the foreign matters from the resin composition. Such screens include wire meshes, screen changers, sintered metal plates (such as disk filters), and the like.
 溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。 Examples of the melt-kneader include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder with three or more screws, in addition to the twin-screw extruder.
 上記の如く押出された熱可塑性樹脂組成物は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレットの形状は、円柱が好適である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.3mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~3.5mmである。 The thermoplastic resin composition extruded as described above is directly cut and pelletized, or is pelletized by forming strands and then cutting the strands with a pelletizer. The shape of the pellet is preferably cylindrical. The diameter of such a cylinder is preferably 1-5 mm, more preferably 1.5-4 mm, still more preferably 2-3.3 mm. On the other hand, the length of the cylinder is preferably 1-30 mm, more preferably 2-5 mm, and even more preferably 2.5-3.5 mm.
 本実施の形態の熱可塑性樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。 Various products can be produced from the thermoplastic resin composition of the present embodiment by injection-molding the pellets produced as described above to obtain molded articles. In such injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including a method of injecting supercritical fluid), insert molding, in-mold coating molding, heat insulation Mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding can be mentioned. For molding, either cold runner method or hot runner method can be selected.
 また本実施の形態の熱可塑性樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。更に延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本実施の形態の熱可塑性樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。 Also, the thermoplastic resin composition of the present embodiment can be used in the form of various profile extrudates, sheets, films, etc. by extrusion molding. In addition, the inflation method, calender method, casting method, and the like can be used for forming sheets and films. Furthermore, it is possible to form a heat-shrinkable tube by applying a stretching operation. The thermoplastic resin composition of the present embodiment can also be formed into a molded product by rotational molding, blow molding, or the like.
 実施の形態2.
 本実施の形態に係る成形品は、上記の熱可塑性樹脂組成物からなる。本実施の形態に係る成形品では、上記の熱可塑性樹脂組成物からなることにより、親水性の粉塵汚れと疎水性の粉塵汚れとの両方の付着を抑制する効果が奏される。
Embodiment 2.
A molded article according to the present embodiment is made of the above thermoplastic resin composition. In the molded article according to the present embodiment, the effect of suppressing adhesion of both hydrophilic dust stains and hydrophobic dust stains is exhibited by using the above thermoplastic resin composition.
 本実施の形態に係る成形品においては、成形品の表面付近(表面から一定の深さまでの部分)における脂肪酸金属塩(C)の濃度(熱可塑性樹脂組成物中の含有率)が、成形品の内部(表面から一定の深さより深い部分)における脂肪酸金属塩(C)の濃度よりも高いことが好ましい。具体的には、例えば、成形品の表面から10nm以内の部分における脂肪酸金属塩(C)の濃度が、成形品の表面から10nmより深い部分における脂肪酸金属塩(C)の濃度よりも高いことが好ましい。 In the molded article according to the present embodiment, the concentration (content in the thermoplastic resin composition) of the fatty acid metal salt (C) in the vicinity of the surface of the molded article (a portion from the surface to a certain depth) is is preferably higher than the concentration of the fatty acid metal salt (C) in the interior of (a portion deeper than a certain depth from the surface). Specifically, for example, the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface of the molded article is higher than the concentration of the fatty acid metal salt (C) in a portion deeper than 10 nm from the surface of the molded article. preferable.
 なお、ここでいう「成形品の表面」とは、成形品の表面の少なくとも一部の表面を意味し、成形品の表面の全面である必要はなく、成形品の表面のうちの一部の表面であってもよい。 The term "surface of the molded article" as used herein means at least a part of the surface of the molded article, and does not need to be the entire surface of the molded article. It may be the surface.
 このような、成形品の深さ方向における脂肪酸金属塩(C)の濃度の違いは、例えば、Arイオンで成形品の表面を削っていきながら、各々の深さまで削られた状態の成形品の表面に対して、X線光電子分光法(XPS)を用いて金属元素Mの元素分析(金属元素Mの面積比率の測定)を行うことにより、確認することができる(図2参照)。 Such a difference in the concentration of the fatty acid metal salt (C) in the depth direction of the molded product, for example, while scraping the surface of the molded product with Ar ions, the molded product in the state of being scraped to each depth. It can be confirmed by performing elemental analysis of the metal element M (measurement of the area ratio of the metal element M) on the surface using X-ray photoelectron spectroscopy (XPS) (see FIG. 2).
 例えば、図1に示されるように、成形品の表面から10nm以内の部分(測定深さA)について、各々の深さにおける脂肪酸金属塩(C)の濃度(金属元素Mの面積比率)を測定し、その中で最も高い濃度を求める。一方、図1中に点線で示される成形品の厚みLの半分の深さ(L/2:測定深さB)に脂肪酸金属塩(C)の濃度を測定する。これらの濃度の測定値を比較することにより、成形品の深さ方向における脂肪酸金属塩(C)の濃度の違いを確認することができる。 For example, as shown in FIG. 1, the concentration of fatty acid metal salt (C) (area ratio of metal element M) at each depth is measured within 10 nm from the surface of the molded product (measurement depth A). and find the highest concentration among them. On the other hand, the concentration of the fatty acid metal salt (C) is measured at a depth (L/2: measurement depth B) half the thickness L of the molded product indicated by the dotted line in FIG. By comparing the measured values of these concentrations, it is possible to confirm the difference in concentration of the fatty acid metal salt (C) in the depth direction of the molded product.
 例えば、実施例で後述する両性への防汚効果のある成形品のサンプル(試験片)では、表面から10nm以内の部分での脂肪酸金属塩(C)の濃度は、成形品の表面から10nmより深い部分における脂肪酸金属塩(C)の濃度の2倍以上であった。具体的な一例では、表面から10nm以内の部分での脂肪酸金属塩(C)の濃度は、最大3.2質量%であり、成形品の表面から10nmより深い部分における脂肪酸金属塩(C)の濃度は、約0.3質量%~0.6質量%であり、前者は後者の約5~10倍であった。 For example, in a sample (specimen) of a molded article having an antifouling effect on amphiphiles, which will be described later in Examples, the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface is greater than 10 nm from the surface of the molded article. It was more than twice the concentration of the fatty acid metal salt (C) in the deep part. In a specific example, the concentration of the fatty acid metal salt (C) in a portion within 10 nm from the surface is 3.2% by mass at maximum, and the concentration of the fatty acid metal salt (C) in a portion deeper than 10 nm from the surface of the molded article is The concentration was about 0.3% to 0.6% by weight, the former being about 5-10 times higher than the latter.
 脂肪酸金属塩(C)では、Rの部分が非極性基、残りの部分が極性基である。成形中には、金型に極性基が付着し、熱可塑性樹脂組成物の内部側に非極性基を向けた状態で、脂肪酸金属塩(C)が整列すると考えられる。更に、成形後に、熱可塑性樹脂組成物の内部に溶融していた他の脂肪酸金属塩(C)が表面に移行する。 In the fatty acid metal salt (C), the R portion is a non-polar group and the remaining portion is a polar group. It is believed that during molding, the polar groups are attached to the mold and the fatty acid metal salt (C) is aligned with the non-polar groups directed toward the inside of the thermoplastic resin composition. Furthermore, after molding, other fatty acid metal salt (C) melted inside the thermoplastic resin composition migrates to the surface.
 また、脂肪酸金属塩(C)は、熱可塑性樹脂との相溶性が低いため、臨界溶解度(濃度)以上の量が配合されると、熱可塑性樹脂組成物(成形品)の表面に拡散される。熱可塑性樹脂組成物の表面近傍では、複数の脂肪酸金属塩(C)がそれぞれの極性基同士で結合し、成形品の外側(空気側)に非極性基である疎水基Rを向けて配列すると考えられる。 In addition, since the fatty acid metal salt (C) has low compatibility with the thermoplastic resin, when it is blended in an amount equal to or greater than the critical solubility (concentration), it diffuses to the surface of the thermoplastic resin composition (molded article). . In the vicinity of the surface of the thermoplastic resin composition, a plurality of fatty acid metal salts (C) are bonded with their polar groups, and arranged with the hydrophobic group R, which is a non-polar group, facing the outside (air side) of the molded product. Conceivable.
 従って、成形品の表面近傍では、熱可塑性樹脂組成物中の脂肪酸金属塩(C)の濃度が成形品の内部に比べて高くなり、粉塵汚れが付着する成形品の表面において、効率的に表面エネルギーの低減や撥水撥油効果を得ることができる。結果として、脂肪酸金属塩(C)を一般的な用途である滑剤、離型剤等として使用する場合とは異なり、成形品の表面において疎水性の粉塵汚れの付着を抑制するという新たな効果が得られる。 Therefore, in the vicinity of the surface of the molded article, the concentration of the fatty acid metal salt (C) in the thermoplastic resin composition is higher than in the interior of the molded article, and the surface of the molded article to which dust stains adhere can be effectively treated. Energy reduction and water and oil repellency effects can be obtained. As a result, unlike the case where the fatty acid metal salt (C) is used as a general application such as a lubricant or a mold release agent, a new effect of suppressing adhesion of hydrophobic dust stains on the surface of the molded product is obtained. can get.
 なお、成形品を成形する際に樹脂材料を一度液化させた後に任意の形状に成形する場合においては、上記液化の段階で実施の形態1に係る熱可塑性樹脂組成物の成分割合になっていれば上記の効果を得ることができる。例えば、樹脂材料を液化する段階で、本実施の形態の熱可塑性樹脂組成物が実施の形態1に記載された任意成分を含むことも可能である。 In the case of molding a molded product into an arbitrary shape after liquefying the resin material once, the component ratio of the thermoplastic resin composition according to Embodiment 1 should be the same at the stage of liquefaction. the above effect can be obtained. For example, it is possible for the thermoplastic resin composition of the present embodiment to contain the optional components described in the first embodiment at the stage of liquefying the resin material.
 実施の形態3.
 本実施の形態の製品は、上記の成形品を備える。すなわち、上記の成形品は、例えば、家電製品、OA機器等の製品の樹脂製部品(内部部品、ハウジング等)として用いられる。本実施の形態の製品では、上記の成形品を備えることにより、清潔性の向上とメンテナンス頻度の削減の効果が奏される。
Embodiment 3.
A product according to the present embodiment includes the molded product described above. That is, the above-mentioned molded product is used, for example, as resin parts (internal parts, housings, etc.) of products such as home electric appliances and OA equipment. In the product of the present embodiment, by including the molded product described above, the effect of improving cleanliness and reducing the frequency of maintenance can be achieved.
 製品としては、例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD-ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、音声機器(オーディオ、レーザーディスク(登録商標)、コンパクトディスクなど)、照明機器(LED)、リモコン、換気扇、レンジフード、冷蔵庫、空気調和機(エアーコンディショナー、除湿機、加湿機など)、空気清浄機、掃除機、炊飯器、クッキングヒーター、お風呂用品、洗面所用品、ジェットタオル、扇風機、タイプライター、ワードプロセッサー、自動車、車両用機器(カーナビケーション、カーステレオ等)、雑貨などが挙げられる。 Products include, for example, personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, fax machines, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, and power tools. , VTR, TV, iron, hair dryer, rice cooker, microwave oven, audio equipment, audio equipment (audio, laser disc (registered trademark), compact disc, etc.), lighting equipment (LED), remote control, ventilation fan, range hood, refrigerator , air conditioners (air conditioners, dehumidifiers, humidifiers, etc.), air purifiers, vacuum cleaners, rice cookers, cooking heaters, bath products, washroom products, jet towels, fans, typewriters, word processors, automobiles, vehicles Equipment (car navigation, car stereo, etc.), miscellaneous goods, and the like.
 また、例えば、空気調和機、ドア、表示機器、ガイシ、ミラー、計測器、各種機器の操作部などの樹脂製部品に上記の成形品を適用すれば、粉塵汚れの付着が減少し、清潔性が向上して、メンテナンス頻度を減らすことができる。特にユーザや業者が長期間メンテナンスすることができない製品の樹脂部品として、上記の成形品は有用である。 In addition, for example, if the above molded products are applied to resin parts such as air conditioners, doors, display devices, insulators, mirrors, measuring instruments, and operation parts of various devices, adhesion of dust dirt is reduced and cleanliness is improved. can be improved and maintenance frequency can be reduced. In particular, the molded article is useful as a resin part of a product that cannot be maintained for a long period of time by a user or a trader.
 本実施の形態の上記の熱可塑性樹脂組成物を含む成形品は、製品が樹脂部品を備えていれば適用可能であり、前述した用途に限らず広く適用できる。 The molded article containing the above thermoplastic resin composition of the present embodiment can be applied as long as the product has a resin part, and can be widely applied without being limited to the uses described above.
 また、成形のみで防汚効果が簡単に得られるため、防汚効果のある塗装やコーティングに比べると、成形品の移動や塗布作業などの複雑な工程が圧倒的に少ないという利点がある。このため、上記の熱可塑性樹脂組成物を含む成形品は、製品の量産に適し、実用性が極めて高い。また、上記の熱可塑性樹脂組成物を含む成形品は、防汚効果のある塗装やコーティングに比べると、表面の塗りムラ、虹模様、光沢度などを気にすることなく、外観部材として適用しやすい利点があるため、製品の量産に適し、実用性が極めて高い。 In addition, since the antifouling effect can be easily obtained by molding alone, there is an advantage that there are overwhelmingly few complicated processes such as moving the molded product and coating work compared to painting or coating with an antifouling effect. Therefore, a molded article containing the above thermoplastic resin composition is suitable for mass production of products and has extremely high practicability. In addition, molded articles containing the above thermoplastic resin compositions can be applied as exterior members without worrying about surface unevenness, rainbow patterns, glossiness, etc., compared to antifouling paints and coatings. Since it has the advantage of being easy to use, it is suitable for mass production of products and has extremely high practicality.
 図5は本実施の形態に係る空気調和機の断面模式図である。図5に示すように、空気調和機の室内機の本体ケース10は、横長のほぼ直方体状に形成されており、その上面には空気吸込口11が設けられ、前面下部には空気吹出口12が設けられている。空気吸込口11の下流側から本体ケース10の前面側にかけて、プレフィルタ17が設けられている。また、本体ケース10の前面を覆う前面パネル14が設けられている。 FIG. 5 is a schematic cross-sectional view of the air conditioner according to this embodiment. As shown in FIG. 5, a main body case 10 of an indoor unit of an air conditioner is formed in a substantially oblong parallelepiped shape, and has an air inlet 11 on its upper surface and an air outlet 12 on its lower front surface. is provided. A pre-filter 17 is provided from the downstream side of the air suction port 11 to the front side of the body case 10 . A front panel 14 is provided to cover the front surface of the body case 10 .
 本体ケース10内には、空気吸込口11から吸込んだ室内空気を、空気吹出口12から室内に吸出すためのファン13が設けられている。ファン13の上流側には熱交換器22が配設されており、ファン13の下流側には風路21があり、空気が風路21を通過していく。熱交換器22の下には、ドレンパン18が設けられている。 A fan 13 is provided in the main body case 10 for sucking indoor air sucked from the air inlet 11 into the room from the air outlet 12 . A heat exchanger 22 is arranged on the upstream side of the fan 13 , and an air passage 21 is provided on the downstream side of the fan 13 , and air passes through the air passage 21 . A drain pan 18 is provided below the heat exchanger 22 .
 なお、図示してないが、本体ケース10内には、ファン13を駆動するファンモータ、空気調和機の運転を制御する制御部等が設けられている。 Although not shown, the main body case 10 is provided with a fan motor for driving the fan 13, a control section for controlling the operation of the air conditioner, and the like.
 上下風向板15,16は、空気吹出口12から吹出す空気の上下方向の吹出し角度を調整する。左右風向板19は、空気吹出口12から吹出す空気の左右方向の吹出し角度を調整する。上下風向板15,16の端にはそれぞれ支持軸が設けられて、空気吹出口12の側壁に設けた軸受に回動かつ着脱自在に支持されており、左右風向板19は固定されている場合と、手動で方向を設定できる場合と、モーターに駆動されて左右方向に自動で回動できる場合がある。 The vertical wind direction plates 15 and 16 adjust the blowing angle of the air blown from the air outlet 12 in the vertical direction. The left/right airflow direction plate 19 adjusts the blowing angle of the air blown out from the air outlet 12 in the left/right direction. Support shafts are provided at the ends of the vertical wind direction plates 15 and 16, respectively, and are rotatably and detachably supported by bearings provided on the side walls of the air outlet 12, and the left and right wind direction plates 19 are fixed. There are cases where the direction can be set manually, and there are cases where it can be automatically rotated left and right by being driven by a motor.
 ファン13を駆動すると室内空気が空気吸込口11から吸込まれて、プレフィルタ17、熱交換器22、ファン13、風路21、空気吹出口12、左右風向板19、上下風向板15,16の順に通過して、室内に風が吹き出される。空気とともにホコリ、砂塵、繊維等の親水性の粉塵汚れや、油煙、すす、皮脂、タバコ等の疎水性の粉塵汚れが、風と共に各種空気調和機の部材に接触するため、空気吸込口11、プレフィルタ17、熱交換器22、ファン13、風路21、空気吹出口12、左右風向板19および上下風向板15,16は、常に汚損され続ける。また、吸い込まれた空気は前面パネル14のプレフィルタ17に対向した背面壁20にも接触するため、背面壁20も汚損され続ける。 When the fan 13 is driven, indoor air is sucked in through the air suction port 11, and the pre-filter 17, heat exchanger 22, fan 13, air passage 21, air outlet 12, left/right wind direction plate 19, and up/down direction plates 15 and 16. Passing through in order, the wind is blown out into the room. Along with the air, hydrophilic dust stains such as dust, sand, and fibers, and hydrophobic dust stains such as oil smoke, soot, sebum, and tobacco come into contact with various air conditioner members along with the wind. The pre-filter 17, the heat exchanger 22, the fan 13, the air passage 21, the air outlet 12, the left and right wind direction plates 19, and the up and down direction plates 15 and 16 are constantly being soiled. The sucked air also contacts the rear wall 20 facing the pre-filter 17 of the front panel 14, so that the rear wall 20 also continues to be soiled.
 上記の前面パネル14、空気吹出口12、左右風向板19、上下風向板15,16、風路21および背面壁20の構成材料としては、PSまたはABSなどのスチレン系樹脂が使用されることが多い。なお、プレフィルタ17の枠の構成材料としては、ポリプロピレン(PP)等のオレフィン系樹脂が使用されることが多い。ファン13の構成材料としては、PP等のオレフィン系樹脂またはAS等のスチレン系樹脂が使用されることが多い。 Styrene-based resin such as PS or ABS may be used as the constituent material of the front panel 14, the air outlet 12, the left/right wind direction plate 19, the up/down direction plates 15 and 16, the air passage 21, and the rear wall 20. many. As a material for forming the frame of the pre-filter 17, an olefin resin such as polypropylene (PP) is often used. As a constituent material of the fan 13, an olefin resin such as PP or a styrene resin such as AS is often used.
 空気調和機のように常に汚損され続ける製品に対して、上記の熱可塑性樹脂組成物を含む成形品を好適に用いることができる。 A molded article containing the above thermoplastic resin composition can be suitably used for products that are constantly soiled, such as air conditioners.
 空気調和機に上記の熱可塑性樹脂組成物を含む成形品を適用した場合の効果として、部材の汚れを軽減できるので清潔性の向上やメンテナンス頻度の削減が期待できる。また、汚れの再飛散がないため、汚れを原因とする臭気が風と一緒に届くときに生じる不快感が低減される。また、付着した汚れを栄養とするカビの発生を抑制できる。また、空気調和機のように天井に高い位置に備えられた製品は、ユーザが脚立等を使って掃除する必要があり、掃除が困難であるが、上記の成形品の適用により、掃除の頻度を下げることができ、特に高齢者などにとって好ましい。 As an effect of applying a molded product containing the above thermoplastic resin composition to an air conditioner, it is possible to reduce dirt on the parts, so it can be expected to improve cleanliness and reduce maintenance frequency. In addition, since there is no re-scattering of the dirt, discomfort caused when the odor caused by the dirt reaches with the wind is reduced. In addition, it is possible to suppress the growth of mold that feeds on adhering dirt. In addition, it is difficult to clean products such as air conditioners, which are installed high on the ceiling, and it is necessary for the user to use a stepladder or the like to clean them. can be lowered, which is particularly preferable for elderly people.
 また、ファン13の隙間に汚れが堆積して隙間を埋めてしまったり、各種風路の表面に汚れが堆積したりして、空気の通り道が狭まると、風量の低下により冷暖房能力が低下したり、ファンの消費電力が増加したりするという不具合が起こるが、上記の成形品の適用により汚れを抑制することで、購入初期の風量を維持して、消費電力の増加を抑制できる。 In addition, if dirt accumulates in the gaps of the fan 13 and fills the gaps, or if dirt accumulates on the surface of various air paths and narrows the air passage, the cooling and heating capacity will decrease due to the decrease in the air volume. However, by suppressing contamination by applying the above-mentioned molded product, it is possible to maintain the initial airflow at the time of purchase and suppress the increase in power consumption.
 その他にも、例えば、冷蔵庫の野菜トレイは、ABS、PS等のスチレン系樹脂またはPP等のオレフィン系樹脂が使用されることが多い。掃除機のダストボックスは、ABS、PS等のスチレン系樹脂またはPP等のオレフィン系樹脂が使用されることが多い。各種換気扇のシロッコファンや扇風機のファンには、PP等のオレフィン系樹脂が使用されることが多い。いずれも汚れが削減されることで、メンテナンスの手間を削減することができる。 In addition, for example, vegetable trays in refrigerators often use styrene resins such as ABS and PS or olefin resins such as PP. Styrene-based resins such as ABS and PS or olefin-based resins such as PP are often used for dust boxes of vacuum cleaners. Sirocco fans of various ventilation fans and fans of electric fans often use olefin resins such as PP. In both cases, by reducing dirt, it is possible to reduce the trouble of maintenance.
 <評価方法>
(1)引張り強度
 ISO 527-1,2に従い、引張り強度(引張り降伏強度)の測定を実施した。測定値を使用したスチレン系樹脂(A成分)単体の引張り強度と比較し、下記の基準に基づいて評価した。
<Evaluation method>
(1) Tensile strength Tensile strength (tensile yield strength) was measured according to ISO 527-1, 2. The measured value was compared with the tensile strength of the styrene resin (Component A) used alone, and evaluated based on the following criteria.
 [引張り強度の評価基準]
 A:保持率が95%以上、B:保持率が95%未満、90%以上、C:保持率が90%未満、85%以上、D:85%未満
(2)曲げ弾性率
 ISO 178に従い、曲げ弾性率を測定した(試験片寸法:長さ80mm×幅10mm×厚み4mm)。測定値を使用したスチレン系樹脂(A成分)の曲げ弾性率と比較し、下記の基準に基づいて評価した。
[Evaluation Criteria for Tensile Strength]
A: Retention rate is 95% or more, B: Retention rate is less than 95%, 90% or more, C: Retention rate is less than 90%, 85% or more, D: Less than 85% (2) Flexural modulus ISO 178, The flexural modulus was measured (specimen dimensions: length 80 mm×width 10 mm×thickness 4 mm). The measured value was compared with the flexural modulus of the styrene-based resin (Component A) and evaluated according to the following criteria.
 [曲げ弾性率の評価基準]
A:保持率が95%以上、B:保持率が95%未満、90%以上、C:保持率が90%未満、85%以上、D:85%未満
(3)シャルピー衝撃強度
 ISO 179に従い、ノッチ付きのシャルピー衝撃強度の測定を実施した。
(4)面衝撃強度
 150mm×150mm×2mm(厚み)の角板を、射出成型機を用いて成形し、高速面衝撃試験をN=5で実施し、面衝撃強度(破壊エネルギー)を測定し、N=5の平均値を求めた。また、破壊形態について、下記の基準に基づいて評価した。
[Evaluation Criteria for Flexural Modulus]
A: Retention rate is 95% or more, B: Retention rate is less than 95%, 90% or more, C: Retention rate is less than 90%, 85% or more, D: Less than 85% (3) Charpy impact strength According to ISO 179, Notched Charpy impact strength measurements were performed.
(4) Plane impact strength A square plate of 150 mm × 150 mm × 2 mm (thickness) was molded using an injection molding machine, and a high-speed plane impact test was performed at N = 5 to measure the plane impact strength (breaking energy). , N=5 were averaged. Also, the fracture mode was evaluated based on the following criteria.
 [破壊形態の評価基準]
 A:延性的な破壊、B:延性的な破壊と脆性的破壊の混在(延性的は破壊数>脆性的破壊数)、C:延性的な破壊と脆性的破壊の混在(脆性的は破壊数>延性的な破壊数)、D:脆性的な破壊
 なお、破壊形態の評価は、衝撃試験後に試験片が割れて飛び散ることなく、撃芯貫通部は一様に突出して残っている形態を示すものを延性的な破壊、撃芯、あるいは受台の形等に試験片が破壊し、撃芯貫通部が平坦なままに貫通部端面がシャープな状態を示すものを脆性的な破壊とした。破壊形態は、脆性的な破壊形態よりも延性的な破壊形態の方が好ましい。
[Evaluation Criteria for Fracture Mode]
A: ductile fracture, B: mixture of ductile fracture and brittle fracture (ductile fracture number > brittle fracture number), C: mixture of ductile fracture and brittle fracture (brittle fracture number > number of ductile fractures), D: brittle fracture In addition, the evaluation of the fracture mode indicates the mode in which the test piece does not break and scatter after the impact test, and the penetrating part of the shot center remains uniformly protruding. It was defined as ductile fracture, and brittle fracture when the test piece fractured in the shape of a striking core or a cradle, and the penetrating part remained flat and the end surface of the penetrating part showed a sharp state. The fracture morphology is preferably a ductile fracture morphology rather than a brittle fracture morphology.
 また、試験機として、高速面衝撃試験機 ハイドロショットHTM-1(島津製作所(株)製)を使用した。試験条件としては、撃芯の衝突速度を7m/秒とし、先端が半円状で半径6.35mmの撃芯を用い、受台穴径を25.4mmとした。
(5)荷重たわみ温度
 ISO 75-1および75-2に従い、荷重たわみ温度を測定した。なお、測定荷重は1.80MPaで実施した。
(6)粉塵付着性の評価
 150mm×150mm×2mm(厚み)の角板を作成し、23℃、湿度50%の環境にて一週間放置した後、該角板について粉塵付着性の試験を実施した。親水性の粉塵付着性評価には、関東ローム(JIS試験用紛体11種)を使用し、疎水性の粉塵付着性評価には、カーボンブラック(JIS試験用紛体12種)を使用した。
As a tester, a high-speed surface impact tester Hydroshot HTM-1 (manufactured by Shimadzu Corporation) was used. The test conditions were as follows: impact speed of the striking core was 7 m/sec, a semi-circular tip with a radius of 6.35 mm was used, and the hole diameter of the cradle was 25.4 mm.
(5) Deflection temperature under load Deflection temperature under load was measured according to ISO 75-1 and 75-2. Note that the measurement load was 1.80 MPa.
(6) Evaluation of dust adhesion A square plate of 150 mm × 150 mm × 2 mm (thickness) was prepared and left in an environment of 23 ° C. and 50% humidity for one week, and then a dust adhesion test was performed on the square plate. bottom. Kanto loam (11 types of JIS test powder) was used for evaluation of hydrophilic dust adhesion, and carbon black (12 types of JIS test powder) was used for evaluation of hydrophobic dust adhesion.
 粉塵付着性の評価は、粉塵をエアーで成形品表面に一定量(5g)吹きつけた後の、成形品表面をKEYENCE製デジタルマイクロスコープVHX-5000により100倍で観察し、画像処理により粉塵付着面積割合を求めて、下記の基準に基づいて評価した。 Evaluation of dust adhesion is performed by blowing a certain amount (5 g) of dust on the surface of the molded product with air, and then observing the surface of the molded product at 100x with a digital microscope VHX-5000 manufactured by KEYENCE. The area ratio was determined and evaluated based on the following criteria.
 [粉塵付着性の評価基準]
 A:粉塵付着面積割合が3%未満、B:粉塵付着面積割合が3~6%未満、C:粉塵付着面積割合が6~9%未満、D:粉塵付着面積割合が9%以上
 <実施例1~20、比較例1~20>
 表1~表8に示すA~C成分100質量部(A~C成分の総量)、離型剤[理研ビタミン(株)製:リケスター EW400(製品名)]0.3質量部、リン系熱安定剤 [BASF製 IRGAFOS168(製品名)]0.1質量部、フェノール系熱安定剤 [BASF製;IRGANOX1076(製品名)]0.1質量部、ヒンダードアミン系光安定剤 [(株)ADEKA製 アデカスタブ LA-57(製品名)]0.2質量部、および、ベンドトリアゾール系紫外線吸収剤 [シプロ化成(株)製 SEESORB701(製品名)]0.1質量部をV型ブレンダーで混合し、混合物を得た。
[Evaluation Criteria for Dust Adhesion]
A: Dust adhesion area ratio is less than 3%, B: Dust adhesion area ratio is 3 to less than 6%, C: Dust adhesion area ratio is 6 to less than 9%, D: Dust adhesion area ratio is 9% or more <Example 1 to 20, Comparative Examples 1 to 20>
100 parts by mass of components A to C shown in Tables 1 to 8 (total amount of components A to C), release agent [Rikester EW400 (product name) manufactured by Riken Vitamin Co., Ltd.] 0.3 parts by mass, phosphorus heat Stabilizer [IRGAFOS168 (product name) manufactured by BASF] 0.1 parts by mass, phenolic heat stabilizer [manufactured by BASF; LA-57 (product name)] 0.2 parts by mass, and bend triazole-based ultraviolet absorber [SEESORB701 (product name) manufactured by Shipro Kasei Co., Ltd.] 0.1 parts by mass were mixed in a V-type blender, and the mixture was Obtained.
 得られた混合物を押出機の第1供給口から供給した。原料(混合物)の供給量は、計量器[(株)クボタ製CWF]により精密に計測された。原料の押出には、径30mmのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、スクリュー回転数が200rpm、吐出量が20kg/h、ベントの真空度が3kPaの条件で、原料を溶融混練し、熱可塑性樹脂組成物のペレットを得た。なお、押出温度については、第1供給口からダイス部分までの温度を表中に示される温度に設定した。 The resulting mixture was supplied from the first supply port of the extruder. The supply amount of the raw material (mixture) was precisely measured by a measuring instrument [CWF manufactured by Kubota Corporation]. For extruding the raw material, a vented twin-screw extruder with a diameter of 30 mm (Japan Steel Works, Ltd. TEX30α-38.5BW-3V) is used, the screw rotation speed is 200 rpm, the discharge rate is 20 kg / h, and the vent vacuum The raw materials were melt-kneaded under conditions of a viscosity of 3 kPa to obtain pellets of the thermoplastic resin composition. As for the extrusion temperature, the temperature from the first supply port to the die portion was set to the temperature shown in the table.
 得られたペレットの一部は、表中に示される温度で4時間の熱風循環式乾燥機による乾燥の後、射出成形機(FANUC(株)T-150D)を用いて評価用の試験片(実施例1~20および比較例1~20)として成形された。射出成形の基本条件としては、シリンダー温度および金型温度を表中に示される温度とし、射出速度を20mm/sとした。 Some of the obtained pellets were dried with a hot air circulating dryer for 4 hours at the temperature shown in the table, and then molded into test pieces for evaluation using an injection molding machine (FANUC T-150D). Examples 1-20 and Comparative Examples 1-20). Basic conditions for injection molding were the cylinder temperature and mold temperature shown in the table, and the injection speed of 20 mm/s.
 表1~表8に示されるA~C成分(記号表記の各成分)は、以下の通りである。
 〔A成分〕
 (PC:A1成分-1)
 芳香族ポリカーボネート樹脂[帝人(株)製 パンライト L-1225WX ビスフェノールAポリカーボネート樹脂、粘度平均分子量=19700]
 (ABS:A2成分-1)
 ABS樹脂[日本A&L(株)製、クララスチック SXH-330(商品名)、GPC測定による標準ポリスチレン換算の質量平均分子量:90000、ブタジエンゴム成分約17.5質量%、質量平均ゴム粒子径が0.40μm]
 (PET:A3成分-1)
 ポリエチレンテレフタレート樹脂[帝人(株)製 PET樹脂 TR-8580H Ge系触媒使用、IV=0.83]
 (PBT:A3成分-2)
 ポリブチレンテレフタレート樹脂[ポリプラスチックス(株)製 ジュラネックス 500FP EF202X、IV=0.85])
 (m-PPE:A4成分-1)
変性ポリフェニレンエーテル樹脂[2,6-キシレノールを酸化重合して得たポリフェニレンエーテル(濃度0.5g/dLのクロロホルム溶液にて30℃で測定した還元粘度=0.42dL/g)とHIPS(PSジャパン(株)製 H8672)を重量比=40/60にて、直径30mmのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、シリンダー温度300℃、スクリュー回転数200rpm、吐出量20kg/h、ベントの真空度3kPaで溶融混練したもの。]
 (PMMA:A5成分-1)
 ポリメチルメタクリレート樹脂[高衝撃メタクリル樹脂:三菱レイヨン社製、アクリペットIRS204、アクリル樹脂マトリックス成分と、アクリルゴム成分からなるアクリル樹脂、MFR=13g/10分(230℃/3.8kgf)]
 (PPS:A6成分-1)
 ポリフェニレンスルフィド樹脂[硫化ナトリウム16.5kg(結晶水49%を含む)、水酸化ナトリウム6.5kg、酢酸ナトリウム5.2kg、および、N-メチル-2-ピロリドン22.0kgを仕込み210℃で脱水した後、1,4-ジクロルベンゼン20.5kg、N-メチル-2-ピロリドン20.0kgを加え、265℃で5時間反応させた。反応生成物を水洗後、乾燥して得られたもの。ガラス転移温度は90℃、融点は280℃、数平均分子量は11500であった。]
 (PA6:A8成分-1)
 ポリアミド6樹脂[東レ(株)製 アミラン CM1017、融点=225℃]
 (PA66:A8成分-2)
 ポリアミド66樹脂[東レ(株)製 アミラン CM3001-N、融点=260℃]
 〔B成分〕
 以下のようにして製造された親水性コポリマー(表面抵抗値:8×10Ω)
 (B成分の製造)
 1,4-シクロヘキサンジメタノール(544g)とアジピン酸(558g)とイソフタル酸(33g)を、酸化防止剤の存在下で、チタネート系触媒を用いて、210℃、減圧下で3時間重合させ、両末端にカルボキシル基を有するポリエステルを得た。
The components A to C shown in Tables 1 to 8 (symbolic components) are as follows.
[A component]
(PC: A1 component-1)
Aromatic polycarbonate resin [Panlite L-1225WX bisphenol A polycarbonate resin manufactured by Teijin Limited, viscosity average molecular weight = 19700]
(ABS: A2 component-1)
ABS resin [manufactured by Japan A&L Co., Ltd., Clarastic SXH-330 (trade name), weight average molecular weight in terms of standard polystyrene by GPC measurement: 90000, butadiene rubber component: about 17.5% by weight, weight average rubber particle diameter: 0 .40 μm]
(PET: A3 component-1)
Polyethylene terephthalate resin [Teijin Limited PET resin TR-8580H Ge-based catalyst used, IV = 0.83]
(PBT: A3 component-2)
Polybutylene terephthalate resin [DURANEX 500FP EF202X, IV=0.85, manufactured by Polyplastics Co., Ltd.])
(m-PPE: A4 component-1)
Modified polyphenylene ether resin [Polyphenylene ether obtained by oxidative polymerization of 2,6-xylenol (reduced viscosity measured at 30 ° C. in a chloroform solution with a concentration of 0.5 g / dL = 0.42 dL / g) and HIPS (PS Japan Co., Ltd. H8672) at a weight ratio of 40/60, using a vented twin-screw extruder with a diameter of 30 mm (Japan Steel Works, Ltd. TEX30α-38.5BW-3V), a cylinder temperature of 300 ° C., a screw Melt-kneaded at a rotation speed of 200 rpm, a discharge rate of 20 kg/h, and a vent vacuum degree of 3 kPa. ]
(PMMA: A5 component-1)
Polymethyl methacrylate resin [high-impact methacrylic resin: ACRYPET IRS204 manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin composed of acrylic resin matrix component and acrylic rubber component, MFR = 13 g/10 min (230°C/3.8 kgf)]
(PPS: A6 component-1)
Polyphenylene sulfide resin [16.5 kg of sodium sulfide (containing 49% water of crystallization), 6.5 kg of sodium hydroxide, 5.2 kg of sodium acetate, and 22.0 kg of N-methyl-2-pyrrolidone were charged and dehydrated at 210°C. After that, 20.5 kg of 1,4-dichlorobenzene and 20.0 kg of N-methyl-2-pyrrolidone were added and reacted at 265° C. for 5 hours. Obtained by drying the reaction product after washing with water. The glass transition temperature was 90°C, the melting point was 280°C, and the number average molecular weight was 11,500. ]
(PA6: A8 component-1)
Polyamide 6 resin [Amilan CM1017 manufactured by Toray Industries, Inc., melting point = 225°C]
(PA66: A8 component-2)
Polyamide 66 resin [Amilan CM3001-N manufactured by Toray Industries, Inc., melting point = 260°C]
[B component]
Hydrophilic copolymer produced as follows (surface resistance: 8×10 8 Ω)
(Production of component B)
1,4-cyclohexanedimethanol (544 g), adipic acid (558 g) and isophthalic acid (33 g) are polymerized in the presence of an antioxidant using a titanate-based catalyst at 210° C. under reduced pressure for 3 hours, A polyester having carboxyl groups at both ends was obtained.
 当該ポリエステル(600g)と両末端に水酸基を有するポリエチレングリコール(300g)とを、酸化防止剤の存在下で、ジルコニウム触媒を用いて、210℃、減圧下で7時間重合させ、両末端にカルボキシル基を有する交互共重合体を得た。 The polyester (600 g) and polyethylene glycol (300 g) having hydroxyl groups at both ends are polymerized in the presence of an antioxidant using a zirconium catalyst at 210° C. under reduced pressure for 7 hours to form carboxyl groups at both ends. An alternating copolymer having
 得られた交互共重合体(300g)とトリメチロールプロパン(2.3g)とを、240℃、減圧下で6時間重合させ、交互共重合体に由来するブロックがトリメチロールプロパンに由来するブロックを介して結合してなる構造を有する親水性コポリマー(B成分:PEPO)を得た。得られたB成分の表面抵抗値は、8×10Ωであった。また、B成分の融点は、約90~100℃であった。 The obtained alternating copolymer (300 g) and trimethylolpropane (2.3 g) were polymerized at 240° C. under reduced pressure for 6 hours to convert the blocks derived from the alternating copolymer from trimethylolpropane. A hydrophilic copolymer (Component B: PEPO) having a structure formed by bonding via The obtained surface resistance value of the B component was 8×10 8 Ω. Also, the melting point of the B component was about 90 to 100°C.
 〔C成分〕
 (StAl)
 ジステアリン酸(ヒドロキシ)アルミニウム[日油株式会社製、アルミニウムステアレート600(製品名)、金属含有量=8.5~10.0%、遊離脂肪酸=12.0%以下、融点:150~160℃]
 得られた評価用の試験片(実施例1~20および比較例1~20)についての上記(1)~(6)の評価結果を表1~表8に示す。ただし、全ての実施例および比較例について、上記(1)~(6)の評価の全てを行ったわけではない。
[Component C]
(StAl)
(Hydroxy) aluminum distearate [manufactured by NOF Corporation, aluminum stearate 600 (product name), metal content = 8.5 to 10.0%, free fatty acid = 12.0% or less, melting point: 150 to 160 ° C. ]
Tables 1 to 8 show the evaluation results of the above (1) to (6) for the obtained test pieces for evaluation (Examples 1 to 20 and Comparative Examples 1 to 20). However, not all of the above evaluations (1) to (6) were performed for all the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1~表8に示される評価結果から、熱可塑性樹脂(A)、オキシエチレン基を有する親水性コポリマー(B)、および、脂肪酸金属塩(C)を含有する熱可塑性樹脂組成物を含む成形品である実施例では、親水性および疎水性の粉塵汚れに対して優れた付着抑制効果(防汚効果)が得られることが確認できる。 From the evaluation results shown in Tables 1 to 8, a thermoplastic resin (A), a hydrophilic copolymer having an oxyethylene group (B), and a thermoplastic resin composition containing a fatty acid metal salt (C) were molded. It can be confirmed that in the examples, which are good products, an excellent adhesion suppressing effect (antifouling effect) is obtained against hydrophilic and hydrophobic dust stains.
 さらに、各成分の配合量を調整することで、成形品の良好な機械的強度も得られることが確認できる。 Furthermore, it can be confirmed that good mechanical strength of the molded product can be obtained by adjusting the blending amount of each component.
 また、脂肪酸金属塩(C)として、ジステアリン酸(ヒドロキシ)アルミニウムを用いた場合(すなわち、金属元素Mの価数が3である場合に、2つの脂肪酸を含む金属塩を用いた場合)において、ステアリン酸亜鉛、モノステアリン酸アルミニウムまたはトリステアリン酸アルミニウムを用いた場合に比べて、親水性の粉塵汚れと疎水性の粉塵汚れの両方に対する付着抑制効果(防汚効果)がより優れる傾向が認められる。 In addition, when (hydroxy)aluminum distearate is used as the fatty acid metal salt (C) (that is, when the metal element M has a valence of 3 and a metal salt containing two fatty acids is used), Compared to the case of using zinc stearate, aluminum monostearate or aluminum tristearate, there is a tendency for the adhesion suppression effect (antifouling effect) to be superior to both hydrophilic dust stains and hydrophobic dust stains. .
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 10 本体ケース、11 空気吸込口、12 空気吹出口、13 ファン、14 前面パネル、15,16 上下風向板、17 プレフィルタ、18 ドレンパン、19 左右風向板、20 背面壁、21 風路、22 熱交換器。 10 main body case, 11 air inlet, 12 air outlet, 13 fan, 14 front panel, 15, 16 vertical wind direction plate, 17 pre-filter, 18 drain pan, 19 left and right wind direction plate, 20 rear wall, 21 air passage, 22 heat exchanger.

Claims (10)

  1.  芳香族ポリカーボネート樹脂(A1)、スチレン系樹脂(A2)、芳香族ポリエステル樹脂(A3)、ポリフェニレンエーテル系樹脂(A4)、メタクリル樹脂(A5)、ポリアリーレンスルフィド樹脂(A6)、オレフィン系樹脂(A7)、ポリアミド樹脂(A8)、および、これらの混合物からなる群から選択される熱可塑性樹脂(A)と、
     オキシエチレン基を有する親水性コポリマー(B)と、
     下記式(1)で表される脂肪酸金属塩(C)と、を含有し、
     前記親水性コポリマー(B)は、ポリエステル(a1)とオキシエチレン基を有する親水性ポリマー(a2)との交互共重合体(a)の複数が、水酸基を3個以上有する多価アルコール化合物(b1)、エポキシ基を2個以上有するエポキシ化合物(b2)、および、ポリカルボン酸化合物(b3)からなる群から選択される少なくとも1種とのエステル結合を介して結合してなる、熱可塑性樹脂組成物。
     
    M(OH)y(R-COO)x ・・・(1)
     
    (式(1)中、Rは、炭素数6~40のアルキル基またはアルケニル基である。Mは、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウムおよびバリウムからなる群から選択される少なくとも1種の金属元素である。xおよびyはそれぞれ独立な0以上の整数であり、x+y=[Mの価数]の関係を満たす。)
    Aromatic polycarbonate resin (A1), styrene resin (A2), aromatic polyester resin (A3), polyphenylene ether resin (A4), methacrylic resin (A5), polyarylene sulfide resin (A6), olefin resin (A7 ), a polyamide resin (A8), and a thermoplastic resin (A) selected from the group consisting of mixtures thereof;
    a hydrophilic copolymer (B) having an oxyethylene group;
    and a fatty acid metal salt (C) represented by the following formula (1),
    The hydrophilic copolymer (B) is a polyhydric alcohol compound (b1 ), an epoxy compound (b2) having two or more epoxy groups, and at least one selected from the group consisting of a polycarboxylic acid compound (b3) and a thermoplastic resin composition formed by bonding via an ester bond. thing.

    M(OH)y(R-COO)x (1)

    (In formula (1), R is an alkyl group or alkenyl group having 6 to 40 carbon atoms. M is at least one metal selected from the group consisting of aluminum, zinc, calcium, magnesium, lithium and barium. is an element, x and y are each independent integers of 0 or more and satisfy the relationship x + y = [valence of M].)
  2.  前記熱可塑性樹脂(A)100質量部と、前記親水性コポリマー(B)1~20質量部と、前記脂肪酸金属塩(C)0.5~10質量部と、を含有する、請求項1に記載の熱可塑性樹脂組成物。 Claim 1, containing 100 parts by mass of the thermoplastic resin (A), 1 to 20 parts by mass of the hydrophilic copolymer (B), and 0.5 to 10 parts by mass of the fatty acid metal salt (C) The thermoplastic resin composition described.
  3.  前記式(1)において、Mが、アルミニウムおよび亜鉛から選択される少なくとも1種の金属元素である、請求項1または2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein in the formula (1), M is at least one metal element selected from aluminum and zinc.
  4.  前記式(1)において、Mがアルミニウムである、請求項3に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 3, wherein M is aluminum in the formula (1).
  5.  前記式(1)において、Mの価数が3以上であり、yが1である、請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 4, wherein in the formula (1), the valence of M is 3 or more and y is 1.
  6.  スチレン系樹脂(A2)が、PS樹脂、HIPS樹脂、MS樹脂、ABS樹脂、AS樹脂、AES樹脂、ASA樹脂、MBS樹脂、MABS樹脂、MAS樹脂、および、これらの混合物からなる群から選択される、請求項1~5のいずれか1項に記載の熱可塑性樹脂組成物。 The styrene resin (A2) is selected from the group consisting of PS resin, HIPS resin, MS resin, ABS resin, AS resin, AES resin, ASA resin, MBS resin, MABS resin, MAS resin, and mixtures thereof , The thermoplastic resin composition according to any one of claims 1 to 5.
  7.  芳香族ポリエステル樹脂(A3)が、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、および、これらの混合物からなる群から選択される、請求項1~6のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 6, wherein the aromatic polyester resin (A3) is selected from the group consisting of polybutylene terephthalate resin, polyethylene terephthalate resin, and mixtures thereof.
  8.  請求項1~7のいずれか1項に記載の熱可塑性樹脂組成物を含む成形品。 A molded article containing the thermoplastic resin composition according to any one of claims 1 to 7.
  9.  前記成形品の表面から一定の深さまでの部分における前記脂肪酸金属塩(C)の濃度が、前記成形品の表面から一定の深さより深い部分における前記脂肪酸金属塩(C)の濃度よりも高い、請求項8に記載の成形品。 The concentration of the fatty acid metal salt (C) in a portion from the surface of the molded article to a certain depth is higher than the concentration of the fatty acid metal salt (C) in a portion deeper than a certain depth from the surface of the molded article. A molded article according to claim 8 .
  10.  請求項8または9に記載の成形品を備える製品。 A product comprising the molded article according to claim 8 or 9.
PCT/JP2021/025355 2021-07-05 2021-07-05 Thermoplastic resin composition, molded article and product WO2023281602A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025355 WO2023281602A1 (en) 2021-07-05 2021-07-05 Thermoplastic resin composition, molded article and product
JP2023532900A JPWO2023281602A1 (en) 2021-07-05 2021-07-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025355 WO2023281602A1 (en) 2021-07-05 2021-07-05 Thermoplastic resin composition, molded article and product

Publications (1)

Publication Number Publication Date
WO2023281602A1 true WO2023281602A1 (en) 2023-01-12

Family

ID=84801450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025355 WO2023281602A1 (en) 2021-07-05 2021-07-05 Thermoplastic resin composition, molded article and product

Country Status (2)

Country Link
JP (1) JPWO2023281602A1 (en)
WO (1) WO2023281602A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217931A (en) * 2002-12-27 2004-08-05 Sanyo Chem Ind Ltd Antistatic agent and antistatic resin composition
WO2006100844A1 (en) * 2005-03-18 2006-09-28 Mitsui Chemicals, Inc. Water environment sensitive polymer having biodegradability, process for production thereof, and water-degradable material
JP2006265533A (en) * 2005-02-28 2006-10-05 Sanyo Chem Ind Ltd Method for manufacturing electric equipment
WO2014115745A1 (en) * 2013-01-23 2014-07-31 株式会社Adeka Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
JP2017128676A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same
WO2021006192A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Thermoplastic resin composition, molded article and product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217931A (en) * 2002-12-27 2004-08-05 Sanyo Chem Ind Ltd Antistatic agent and antistatic resin composition
JP2006265533A (en) * 2005-02-28 2006-10-05 Sanyo Chem Ind Ltd Method for manufacturing electric equipment
WO2006100844A1 (en) * 2005-03-18 2006-09-28 Mitsui Chemicals, Inc. Water environment sensitive polymer having biodegradability, process for production thereof, and water-degradable material
WO2014115745A1 (en) * 2013-01-23 2014-07-31 株式会社Adeka Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
JP2017128676A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same
WO2021006192A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Thermoplastic resin composition, molded article and product

Also Published As

Publication number Publication date
JPWO2023281602A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US6780917B2 (en) Aromatic polycarbonate resin composition
KR100842192B1 (en) Flame-retardant resin composition
EP2524946B1 (en) Polycarbonate resin composition
JP5436219B2 (en) Resin composition
EP3339373B1 (en) Polycarbonate resin composition
JP5868871B2 (en) Automotive lamp extension molding
CN114072461B (en) Thermoplastic resin composition, molded article and product
JP4090893B2 (en) Flame retardant thermoplastic resin composition
JP5352076B2 (en) Resin composition
JP2009197057A (en) Resin molding material
JP2003213144A (en) Flame-retardant thermoplastic resin composition
JP2017132913A (en) Antibacterial polycarbonate resin composition
JP2010195935A (en) Flame-retardant resin composition
JP4547100B2 (en) Aromatic polycarbonate resin composition
JP6043523B2 (en) Polyphenylene ether / polycarbonate flame-retardant resin composition
JP5030703B2 (en) Thermoplastic resin composition and resin molded product
JP2003128905A (en) Thermoplastic resin composition
JP2003277597A (en) Glass fiber-reinforced polycarbonate resin composition
JP4080851B2 (en) Flame retardant resin composition
WO2023281602A1 (en) Thermoplastic resin composition, molded article and product
JP2002105295A (en) Thermoplastic resin composition
JP6861868B2 (en) Thermoplastic resin compositions, articles and products
JP5558926B2 (en) Flame retardant polycarbonate resin composition
WO2024004603A1 (en) Thermoplastic resin composition, and molded product
JP5111457B2 (en) Method for producing aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023532900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE