WO2023280600A1 - Séparateur pour électrolyse d'une solution aqueuse alcaline - Google Patents

Séparateur pour électrolyse d'une solution aqueuse alcaline Download PDF

Info

Publication number
WO2023280600A1
WO2023280600A1 PCT/EP2022/067372 EP2022067372W WO2023280600A1 WO 2023280600 A1 WO2023280600 A1 WO 2023280600A1 EP 2022067372 W EP2022067372 W EP 2022067372W WO 2023280600 A1 WO2023280600 A1 WO 2023280600A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
porous
porous support
separator according
polymer resin
Prior art date
Application number
PCT/EP2022/067372
Other languages
English (en)
Inventor
Cristina TUDISCO
Hanne VERWAEST
Willem Mues
Original Assignee
Agfa-Gevaert Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa-Gevaert Nv filed Critical Agfa-Gevaert Nv
Publication of WO2023280600A1 publication Critical patent/WO2023280600A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a separator for alkaline water electrolysis.
  • Hydrogen is used in several industrial processes, for example its use as raw material in the chemical industry and as a reducing agent in the metallurgy industry.
  • Hydrogen is a fundamental building block for the manufacture of ammonia, and hence fertilizers, and of methanol, used in the manufacture of many polymers. Refineries, where hydrogen is used for the processing of intermediate oil products, are another area of use.
  • Hydrogen is also being considered an important future energy carrier, which means it can store and deliver energy in a usable form. Energy is released by an exothermic combustion reaction with oxygen thereby forming water.
  • Alkaline water electrolysis is an important manufacturing process wherein electricity may be converted into hydrogen.
  • a so-called separator or diaphragm is used to separate the electrodes of different polarity to prevent a short circuit between these electronic conducting parts (electrodes) and to prevent the recombination of hydrogen (formed at the cathode) and oxygen (formed at the anode) by avoiding gas crossover. While serving in all these functions, the separator should also be a highly ionic conductor for transportation of hydroxyl ions from the cathode to the anode.
  • a separator typically includes a porous support. Such a porous support reinforces the separator facilitating the manipulation of the separator and the introduction of the separator in an electrolyser as disclosed in EP-A 232923 (Hydrogen Systems).
  • EP-A 1776490 discloses a process of preparing a reinforced separator.
  • the process leads to a membrane with symmetrical characteristics.
  • the process includes the steps of providing a porous support as a web and a suitable dope solution, guiding the web in a vertical position, equally coating both sides of the web with the dope solution to produce a web coated support, and applying a symmetrical surface pore formation step and a symmetrical coagulation step to the dope coated web to produce a reinforced membrane.
  • W02009/147084 and W02009/147086 (Agfa Gevaert and VITO) disclose manufacturing methods to produce a reinforced membrane with symmetrical characteristics as described in EP-A 1776490.
  • the porous support used in these manufacturing methods have a thickness of more than 190 pm.
  • a porous support may decrease the ionic conductivity through the separator and therefore the efficiency of the electrolytic process.
  • a separator used in alkaline water electrolysis acts as a gas separator by preventing hydrogen bubbles formed at the cathode and oxygen bubbles formed at the anode during the electrolysis coming together.
  • the separator has to ensure sufficient diffusion of hydroxide ions through it to obtain a high enough ionic conductivity.
  • a high ionic conductivity is typically realized by impregnation of the separator with electrolyte, typically KOH.
  • Figure 1 shows schematically an embodiment of a separator according to the present invention.
  • Figure 2 shows schematically another embodiment of a separator according to the present invention.
  • Figure 3 shows schematically some examples of a pore diameter distribution in the thickness direction of a separator.
  • Figure 4 shows schematically an embodiment of a manufacturing method of a separator as shown in Figure 2.
  • Figure 5 shows schematically another embodiment of a manufacturing method of a separator as shown in Figure 2.
  • the separator for alkaline electrolysis (1 ) comprises a porous support (100) and a porous layer (200) provided on a side of the porous support, characterized in that the separator has a water permeability of 250 to 800 l/bar/h/m 2 , preferably from 300 to 600 l/bar/h/m 2 [026] It has been found that separators having a water permeability from 300 to 600 l/bar/h/m 2 have sufficient gas separation properties while ensuring a good ionic conductivity, the latter measured as ionic resistance (see below). [027] The water permeability is preferably measured on a separator after a so- called chemical cleaning step.
  • the separator may contain chemical residues, the result of the manufacturing method and chemicals used therein, that may influence the water permeability, for example by partially blocking pores of the separator.
  • a typical chemical residue may be polyvinylpyrrolidone, which is a typical ingredient of a dope solution (see below).
  • the separator is typically soaked into a solution containing for example hydrogen chloride (HCI), nitric acid (HNO3), hydrrogen peroxide (H2O2), sodiumhypochlorite (NaCIO) or a mixture thereof.
  • HCI hydrogen chloride
  • HNO3 nitric acid
  • H2O2 hydrrogen peroxide
  • NaCIO sodiumhypochlorite
  • the water permeability (WP) of a separator is the extent to which the separator allows water to pass through at a given pressure. The water permeability is measured as the height of water (Volume) pressed through a separator during a fixed time (T) at a fixed pressure (P).
  • the WP was measured by measuring the time (T) needed to pass 50 ml of demineralized water (V) through a circular separator sample having a diameter of 48 mm (A) at an overpressure of 1 bar (P).
  • A membrane area (m 2 )
  • the type of hydrophilic particles and their particle size distribution and the type of polymer resin may of course also influence the water permeability.
  • the other ingredients of the dope solution mentioned below may also have an influence on the water permeability.
  • a separator for alkaline electrolysis (1 ) typically comprises a porous support (100) and a porous layer (200) provided on a side of the porous support (see Figure 1).
  • the porous layer (200) is preferably provided on a side of a porous support as described below.
  • Figure 2 schematically depicts another embodiment of a separator according to the present invention wherein a first (250) porous support is provided on one side of the porous support (100) and a second (250’) porous layer is provided on the other side of the porous support (100).
  • the first (250) and second (250’) porous layers may be identical or different from each other.
  • the porous layers are preferably provided on the support as described below.
  • the thickness of the separator (t2) is preferably from 50 to 750 pm, more preferably from 75 to 500 pm, most preferably from 100 to 250 pm, particularly preferred from 125 to 200 pm. Increasing the thickness of the separator typically results in a higher physical strength of the separator. However, increasing the thickness of the separator typically also results in a decrease of the electrolysis efficiency due to an increase of the ionic resistance.
  • the separator preferably has an ionic resistance at 80°C in a 30 wt% aqueous KOH solution of 0.1 ohm. cm 2 or less, more preferably of 0.07 ohm. cm 2 or less.
  • the ionic resistance may be determined with an Inolab® Multi 9310 IDS apparatus available from VWR, part of Avantor, equipped with a TetraCon 925 conductivity cell available from Xylem.
  • a separator according to the present invention is preferably prepared by the application of a coating solution, also referred to herein as a dope solution, on one or both sides of a porous support.
  • a coating solution also referred to herein as a dope solution
  • the dope solution preferably comprises a polymer resin, hydrophilic inorganic particles and a solvent.
  • a porous layer is then obtained after a phase inversion step wherein the polymer resin forms a three-dimensional porous polymer network.
  • the dope solution(s) Upon application of the dope solution(s) on one or both sides of the porous support, the dope solution(s) preferably impregnate the porous support.
  • the porous support is more preferably completely impregnated with the dope solution(s). Such impregnation of the dope solution(s) into the porous support ensures that after phase inversion the three-dimensional porous polymer network also extends into the porous support, resulting in an improved adhesion between the porous layer and porous support.
  • the separator includes pores having a pore diameter that is sufficiently small to prevent recombination of hydrogen and oxygen by avoiding gas crossover in the longitudinal direction of the separator.
  • the pore diameter may not be too small to ensure an efficient penetration of electrolyte into the separator.
  • the pores are preferably characterized using the Bubble Point Test method described in American Society for Testing and Materials Standard (ASMT) Method F316. This technique is based on the displacement of a wetting liquid embedded in the separator by applying an inert pressurised gas. Only through-pores are measured in this way.
  • ASMT American Society for Testing and Materials Standard
  • the most challenging part for the gas to displace the liquid along the entire pore path is the most constricted section of the pore, also known as pore throat.
  • the diameter of a pore measured with the Bubble Point Test method is the diameter of that pore throat, regardless of where the pore throat is positioned in the pore path.
  • the pores preferably have a maximum pore diameter (PDmax) measured with the Bubble Point Test method of from 0.05 to 2 pm, more preferably from 0.10 to 1 pm, most preferably from 0.15 to 0.5 pm.
  • PDmax maximum pore diameter measured with the Bubble Point Test method
  • FIG. 3 schematically depicts so called through-pores a to e having various shapes.
  • Through-pores referred to herein are pores that enables transport from one side to the separator to the other side of the separator.
  • the pore throat (p) is shown for the different pore shapes.
  • porous support and porous layer(s) of the separator are not separately shown in Figure 3.
  • the separator in Figure 3 may be the separator shown in Figure 1 or Figure 2.
  • the pore throat may be situated:
  • the pore throat is situated at a distance d3 and/or d4 from one or both outer surfaces of the separator.
  • the distances d3 and d4 may be identical or different from each other.
  • the distances d3 and d4 are preferably from 0 to 15 pm, more preferably from 0 to 10 pm from respectively the outer surfaces A” and B” of the separator.
  • the pore diameter at both outer surfaces may be substantially identical or different from each other.
  • Substantially identical referred to herein means that a ratio of the pore diameter of both surfaces is from 0.9 to 1.1.
  • Pore diameters at the outer surface of a separator may also be measured with Scanning Electrode Microscopy (SEM) as disclosed in EP-A 3652362.
  • the Bubble Point Test method may be adapted to measure a maximum pore diameter (PDmax) on both sides of a separator by using a grid supporting one side of the separator during the measurement. Another measurement is then carried out using the grid supporting to other side of the separator.
  • PDmax maximum pore diameter
  • the PDmax measured for both sides of the separator may be substantially identical or different from each other.
  • a preferred separator of which both sides have substantial identical pore diameters measured with the Bubble Point Test method is disclosed in EP-A 1776480, W02009/147084 and EP-A 3312306.
  • a preferred separator of which both sides have different pore diameters measured with the Bubble Point Test method is disclosed in EP-A 3652362.
  • the maximum pore diameter at the outer surface of a first porous layer PDmax(1) is preferably between 0.05 and 0.3 pm, more preferably between 0.08 and 0.25 pm, most preferably between 0.1 and 0.2 pm and the maximum pore diameter at the outer surface of a second porous layer PDmax(2) is preferably between 0.2 and 6.5 pm, more preferably between 0.2 and 1.50 pm, most preferably between 0.2 and 0.5 pm.
  • the ratio between PDmax(2) and PDmax(1) is preferably between 1.1 to 20, more preferably between 1.25 and 10, most preferably between 2 and 7.5.
  • the smaller PDmax(1) ensure an efficient separation of hydrogen and oxygen while PDmax(2) ensures a good penetration of the electrolyte in the separator resulting in a sufficient ionic conductivity.
  • the porosity of the separator is preferably between 30 and 70 %, more preferably between 40 and 60 %.
  • the porosity of a separator is measured ...
  • a separator having a porosity within the above ranges typically has excellent ion permeability and excellent gas barrier properties because the pores of the diaphragm are continuously filled with an electrolyte solution.
  • a porosity of 80 % or higher would result in a too low mechanical strength of the separator and a too high permeation of electrolyte, the latter resulting in an increase of the HTO (wt% hydrogen present in the oxygen formed at the anode).
  • the porous support is used to reinforce the separator to ensure its mechanical strength.
  • a thickness of the porous support (t1 ) is preferably 350 pm or less, more preferably 200 pm or less, most preferably 100 pm or less, particularly preferred 75 pm or less.
  • the thickness of the porous support is preferably 20 pm or more, more preferably 40 pm or more.
  • the porous support may be selected from the group consisting of a porous fabric and a porous ceramic plate.
  • the porous support is preferably a porous fabric, more preferably a porous polymer fabric.
  • the porous polymer fabric may be woven or non-woven.
  • Woven fabrics typically have a better dimensional stability and homogeneity of open area and thickness.
  • the manufacture of woven fabrics with a thickness of 100 pm or less is more complex resulting in more expensive fabrics.
  • the manufacture of non-woven fabrics is less complex, even for fabrics having a thickness of 100 pm or less.
  • non-woven fabrics may have a larger open area.
  • the open area of the porous support is preferably between 30 and 80%, more preferably between 40 and 70 %, to ensure a good penetration of the electrolyte into the support.
  • Suitable porous polymer fabrics are prepared from polypropylene, polyethylene (PE), polysulfone (PS), polyphenylene sulfide (PPS), polyamide/nylon (PA), polyether sulfone (PES), polyphenyl sulfone (PPSU), polyethylene terephthalate (PET), polyether-ether ketone (PEEK), sulfonated polyether-ether keton (s-PEEK), monochlorotrifluoroethylene (CTFE), copolymers of ethylene with tetrafluorethylene (ETFE) or chlorotrifluorethylene (ECTFE), polyimide, polyether imide and m-aramide.
  • a preferred polymer fabric is prepared from polypropylene (PP) or polyphenylene sulphide (PPS), most preferably from polyphenylene sulphide (PPS).
  • PP polypropylene
  • PPS polyphenylene sulphide
  • a polyphenylene sulfide based porous support has a high resistance to high- temperature, high concentration alkaline solutions and a high chemical stability against active oxygen evolved from an anode during the water electrolysis process. Also, polyphenylene sulphide can be easily processed into various forms such as a woven fabric or a non-woven fabric.
  • the density of the porous support is preferably between 0.1 to 0.7 g/cm 3 .
  • the porous support is preferably a continuous web to enable a manufacturing process as disclosed in EP-A 1776490 and W02009/147084.
  • the width of the web is preferably between 30 and 300 cm, more preferably between 40 and 200 cm.
  • the porous layer preferably comprises a polymer resin.
  • the polymer resin forms a three dimensional porous network, the result of a phase inversion step in the preparation of the separator, as described below.
  • the polymer resin may be selected from a fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), an olefin resin such as polypropylene (PP), and an aromatic hydrocarbon resin such as polyethylene terephthalate (PET) and polystyrene (PS).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PS polystyrene
  • PVDF and vinylidenefluoride (VDF)-copolymers are preferred for their oxidation/reduction resistance and film-forming properties.
  • terpolymers of VDF, hexanefluoropropylene (FIFP) and chlorotrifluoroethylene (CTFE) are preferred for their excellent swelling properties, heat resistance and adhesion to electrodes.
  • Another preferred polymer resin is an aromatic hydrocarbon resin for their excellent heat and alkali resistance.
  • aromatic hydrocarbon resin include polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyphenyl sulfone, polyacrylate, polyetherimide, polyimide, and polyamide-imide.
  • a particular preferred polymer resin is selected from the group consisting of polysulfone, polyethersulfone and polyphenylsulfone, polysulfone being the most preferred.
  • the molecular weight (Mw) of polysulfones, polyether sulfones and polyphenyl sulfones is preferably between 10000 and 500000, more preferably between 25000 and 250000.
  • Mw molecular weight
  • the Mw is too low, the physical strength of the porous layer may become insufficient.
  • the Mw is too high, the viscosity of the dope solution may become too high.
  • the hydrophilic layer preferably comprises hydrophilic particles.
  • Preferred hydrophilic particles are selected from metal oxides and metal hydroxides.
  • Preferred metal oxides are selected from the group consisting of zirconium oxide, titanium oxide, bismuth oxide, cerium oxide and magnesium oxide.
  • Preferred metal hydroxides are selected from the group consisting of zirconium hydroxide, titanium hydroxide, bismuth hydroxide, cerium hydroxide and magnesium hydroxide.
  • a particularly preferred magnesium hydroxide is disclosed in EP-A 3660188, paragraphs [0040] to [0063]
  • hydrophilic particles are barium sulfate particles.
  • hydrophilic particles that may be used are nitrides and carbides of Group IV elements of the periodic tables.
  • the hydrophilic particles preferably have a D50 particle size of 0.05 to 2.0 pm, more preferably of 0.1 to 1.5 pm, most preferably of 0.15 to 1.00 pm, particularly preferred of 0.2 to 0.75 pm.
  • the D50 particle size is preferably less than or equal to 0.7 pm, preferably less than or equal to 0.55 pm, more preferably less than or equal to 0.40 pm.
  • the D50 particle size is preferably measured using laser diffraction, for example using a Mastersizer from Malvern Panalytical.
  • the amount of the hydrophilic particles relative to the total dry weight of the porous layer is preferably at least 50 wt%, more preferably at least 75 wt%.
  • the weight ratio of hydrophilic particles to polymer resin is preferably more then 60/40, more preferably more than 70/30, most preferably more than 75/25.
  • a preferred preparation method of a separator according to a first embodiment comprises the steps of:
  • the applied dope solution preferably completely impregnates the porous support before performing the phase inversion.
  • a preferred method of manufacturing a reinforced separator is disclosed in EP-A 1776490 and W02009/147084 for symmetric separators and EP-A 3652362 for asymmetric separators. These methods result in web-reinforced separators wherein the web, i.e. the porous support, is nicely embedded in the separator, without appearance of the web at a surface of the separator.
  • the dope solution preferably comprises a polymer resin as described above, hydrophilic particles as described above and a solvent.
  • the solvent of the dope solution is preferably an organic solvent wherein the polymer resin can be dissolved. Moreover, the organic solvent is preferably miscible in water.
  • the solvent is preferably selected from N-methyl-pyrrolidone (NMP), N-ethyl-pyrrolidone (NEP), N-butyl-pyrrolidone (NBP), N,N-dimethyl- formamide (DMF), formamide, dimethylsulfoxide (DMSO), N,N-dimethyl- acetamide (DMAC), acetonitrile, and mixtures thereof.
  • NBP N-butyl- pyrrolidone
  • the dope solution may further comprise other ingredients to optimize the properties of the obtained polymer layers, for example their porosity and the maximum pore diameter at their outer surface.
  • the dope solution preferably comprises an additive to optimize the pore size at the surface and inside of the porous layer.
  • additives may be organic or inorganic compounds, or a combination thereof.
  • Organic compounds which may influence the pore formation in the porous layers include polyethylene glycol, polyethylene oxide, polypropylene glycol, ethylene glycol, tripropylene glycol, glycerol, polyhydric alcohols, dibutyl phthalate (DBP), diethyl phthalate (DEP), diundecyl phthalate (DUP), isononanoic acid or neo decanoic acid, polyvinylpyrrolidone, polyvinyl- alcohol, polyvinylacetate, polyethyleneimine, polyacrylic acid, methylcellulose and dextran.
  • DBP dibutyl phthalate
  • DEP diethyl phthalate
  • DUP diundecyl phthalate
  • isononanoic acid or neo decanoic acid polyvinylpyrrolidone
  • polyvinyl- alcohol polyvinylacetate
  • polyethyleneimine polyacrylic acid
  • dextran dextran
  • Preferred organic compounds which may influence the pore formation in the porous layers are selected from polyethylene glycol, polyethylene oxide and polyvinyl- pyrrolidone.
  • a preferred polyethylene glycol has a molecular weight of from 10000 to 50000, a preferred polyethylene oxide has a molecular weight of from 50000 to 300000, and a preferred polyvinylpyrrolidone has a molecular weight of from 30000 to 1 000000.
  • a particularly preferred organic compound which may influence the pore formation in the porous layers is glycerol.
  • the amount of compounds which may influence the pore formation is preferably between 0.1 and 15 wt%, more preferably between 0.5 and 5 wt% relative to the total weight of the dope solution.
  • Inorganic compounds which may influence the pore formation include calcium chloride, magnesium chloride, lithium chloride and barium sulfate.
  • a combination of two or more additives that influence the pore formation may be used.
  • the dope solutions provided on either side of the porous support may be the same or different. Applying the dope solution
  • the dope solution may be applied on the surface of a substrate, preferably a porous support, by any coating or casting technique.
  • a preferred coating technique is extrusion coating.
  • the dope solutions are applied by a slot die coating technique wherein two slot coating dies ( Figures 4 and 5, 600 and 600’) are located on either side of a porous support.
  • the slot coating dies are capable of holding the dope solution at a predetermined temperature, distributing the dope solutions uniformly over the support, and adjusting the coating thickness of the applied dope solutions.
  • the viscosity of the dope solutions measured at a shear rate of 100 s _1 and a temperature of 20°C is at least 20 Pa.s, more preferably at least 30 Pa.s, most preferably at least 40 Pa.s.
  • the dope solutions are preferably shear-thinning.
  • the ratio of the viscosity at a shear rate of 1 s _1 to the viscosity at a shear rate of 100 s _1 is preferably at least 2, more preferably at least 2.5, most preferably at least 5.
  • the porous support is preferably a continuous web, which is transported downwards between the slot coating dies (600, 600’) as shown in Figures 4 and 5.
  • the porous support becomes impregnated with the dope solutions.
  • the porous support becomes fully impregnated with the applied dope solutions.
  • the applied dope solution After applying the dope solution onto a porous support, the applied dope solution is subjected to phase inversion. In the phase inversion step, the applied dope solution is transformed into a porous hydrophilic layer.
  • both dope solutions applied on a porous support are subjected to phase inversion.
  • phase inversion mechanism may be used to prepare the porous hydrophilic layers from the applied dope solutions.
  • the phase inversion step preferably includes a so-called Liquid Induced
  • phase Separation (LIPS) step Phase Separation (LIPS) step, a Vapour Induced Phase Separation (VIPS) step or a combination of a VIPS and a LIPS step.
  • the phase inversion step preferably includes both a VIPS and a LIPS step.
  • this is carried out by immersing the porous support coated on both sides with the dope solutions into a non-solvent bath, also referred to as coagulation bath.
  • a non-solvent bath also referred to as coagulation bath.
  • the non-solvent is preferably water, mixtures of water and an aprotic solvent selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylsulfoxide (DMSO) and dimethylacetamide (DMAC), water solutions of water-soluble polymers such as PVP or PVA, or mixtures of water and alcohols, such as ethanol, propanol or isopropanol.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • DMAC dimethylacetamide
  • water solutions of water-soluble polymers such as PVP or PVA
  • alcohols such as ethanol, propanol or isopropanol.
  • the non-solvent is most preferably water.
  • the temperature of the coagulation bath is preferably between 20 and 90°C, more preferably between 40 and 70°C.
  • the continuous web (100) coated on either side with a dope solution is transported downwards, in a vertical position, towards the coagulation bath (800) as shown in Figures 4 and 5.
  • the porous support coated with the dope solutions is exposed to non-solvent vapour, preferably humid air.
  • the coagulation step included both a VIPS and a LIPS step.
  • the VIPS step is carried out before the LIPS step.
  • the porous support coated with the dope solutions is first exposed to humid air (VIPS step) prior to immersion in a water bath (LIPS step).
  • VIPS is carried out in the area 400, between the slot coating dies (600, 600’) and the surface of the non-solvent in the coagulation bath (800), which is shielded from the environment with for example thermal isolated metal plates (500).
  • the extent and rate of water transfer in the VIPS step can be controlled by adjusting the velocity of the air, the relative humidity and temperature of the air, as well as the exposure time.
  • the exposure time may be adjusted by changing the distance d between the slot coating dies (600, 600’) and the surface of the non-solvent in the coagulation bath (800) and/or the speed with which the elongated web 100 is transported from the slot coating dies towards the coagulation bath.
  • the relative humidity in the VIPS area (400) may be adjusted by the temperature of the coagulation bath and the shielding of the VIPS area (400) from the environment and from the coagulation bath.
  • the speed of the air may be adjusted by the rotating speed of the ventilators (420) in the VIPS area (400).
  • the VIPS step carried out on one side of the separator and on the other side of the separator, resulting in the second porous polymer layer, may be identical ( Figure 4) or different ( Figure 5) from each other.
  • a washing step may be carried out.
  • a drying step is preferably carried out.
  • Figures 4 and 5 schematically illustrates a preferred embodiment to manufacture a separator according to the present invention.
  • the porous support is preferably a continuous web (100).
  • the web is unwinded from a feed roller (700) and guided downwards in a vertical position between two coating units (600) and (600’).
  • a dope solution is coated on either side of the web.
  • the coating thickness on either side of the web may be adjusted by optimizing the viscosity of the dope solutions and the distance between the coating units and the surface of the web.
  • Preferred coating units are described in EP-A 2296825, paragraphs [0043], [0047], [0048], [0060],
  • the LIPS step is carried out.
  • the VIPS step is carried out before entering the coagulation bath in the VIPS areas.
  • the VIPS area (400) is identical on both sides of the coated web, while in Figure 5, the VIPS areas (400(1)) and (400(2)) on either side of the coated web are different.
  • the relative humidity (RH) and the air temperature in de VIPS area may be optimized using thermally isolated metal plates.
  • the VIPS area (400) is completely shielded from the environment with such metal plates (500).
  • the RH and temperature of the air is then mainly determined by the temperature of the coagulation bath.
  • the air speed in the VIPS area may be adjusted by a ventilator (420).
  • the VIPS areas (400(1 )) and (400(2)) are different from each other.
  • the VIPS area (400(1)) on one side of the coated web including a metal plate (500(1)) is identical to the VIPS area (400) in Figure 4.
  • the VIPS area (400(2)) on the other side of the coated web is different from the area (400(1)).
  • the VIPS area (400(2)) is now shielded from the coagulation bath by a thermally isolated metal plate (500(2)).
  • there is no ventilator present in the VIPS area 400(2) This results in a VIPS area (400(1)) having a higher RH and air temperature compared to the RH and air temperature of the other VIPS area (400(2)).
  • a high RH and/or a high air speed in a VIPS area typically result in a larger maximum pore diameter.
  • the RH in one VIPS area is preferably above 85%, more preferably above 90%, most preferably above 95% while the RH in another VIPS area is preferably below 80%, more preferably below 75%, most preferably below 70%.
  • the reinforced separator is then transported to a rolled up system (700).
  • a liner may be provided on one side of the separator before rolling up the separator and the applied liner.
  • the separator for alkaline water electrolysis according to the present invention may be a used in an alkaline water electrolyser.
  • An electrolysis cell typically consists of two electrodes, an anode and a cathode, separated by a separator. An electrolyte is present between both electrodes.
  • An electrolyte solution is typically an alkaline solution.
  • Preferred electrolyte solutions are aqueous solutions of electrolytes selected from sodium hydroxide or potassium hydroxide. Potassium hydroxide electrolytes are often preferred due to their higher specific conductivity.
  • the concentration of the electrolyte in the electrolyte solution is preferably from 20 to 40 wt%, relative to the total weight of the electrolyte solution.
  • the temperature of the electrolyte solution is preferably from 50°C to 120°C, more preferably from 75°C to 100°C.
  • An electrode typically include a substrate provided with a so-called catalyst layer.
  • the catalyst layer may be different for the anode, where oxygen is formed, and the cathode, where hydrogen is formed.
  • Typical substrates are made from electrically conductive materials selected from the group consisting of nickel, iron, soft steels, stainless steels, vanadium, molybdenum, copper, silver, manganese, platinum group elements, graphite, and chromium.
  • the substrates may be made from an electrically conductive alloy of two or more metals or a mixture of two or more electrically conductive materials.
  • a preferred material is nickel or nickel- based alloys. Nickel has a good stability in strong alkaline solutions, has a good conductivity and is relatively cheap.
  • the catalyst layer provided on the anode preferably has a high oxygen generating ability.
  • the catalyst layer preferably includes nickel, cobalt, iron, and platinum group elements.
  • the catalyst layer may include these elements as elemental metals, compounds (e.g., oxides), composite oxides or alloys made of multiple metal elements, or mixtures thereof.
  • Preferred catalyst layers include plated nickel, plated alloys of nickel and cobalt or nickel and iron, complex oxides including nickel and cobalt such as LaNiCb, LaCoCb, and NiCo204, compounds of platinum group elements such as iridium oxide, or carbon materials such as graphene.
  • the Raney nickel structure is formed by selectively leaching aluminium or zinc from a Ni-AI or Ni-Zn alloy. Lattice vacancies formed during leaching result in a large surface area and a high density of lattice defects, which are active sites for the electrocatalytic reaction to take place.
  • the catalyst layer may also include organic substances such as polymers to improve the durability and the adhesion towards the substrate.
  • the catalyst layer provided on the cathode preferably has a high hydrogen generating ability.
  • the catalyst layer preferably includes nickel, cobalt, iron, and platinum group elements.
  • the catalyst layer may include a metal, a compound such as an oxide, a complex oxide or alloy composed of a plurality of metal elements, or a mixture thereof.
  • a preferred catalyst layer is formed from Raney Nickel;
  • Raney alloys made of combinations of multiple materials (e.g. nickel and aluminium, nickel and tin); porous coatings made by spraying nickel compounds or cobalt compounds by plasma thermal spraying; alloys and composite compounds of nickel and an element selected from cobalt, iron, molybdenum, silver, and copper, for example; elementary metals and oxides of platinum group elements with high hydrogen generation abilities (e.g. platinum and ruthenium); mixtures of elementary metals or oxides of those platinum group element metals and compounds of another platinum group element (e.g. iridium or palladium) or compounds of rare earth metals (e.g. lanthanum and cerium); and carbon materials (e.g. graphene).
  • multiple materials e.g. nickel and aluminium, nickel and tin
  • porous coatings made by spraying nickel compounds or cobalt compounds by plasma thermal spraying
  • alloys and composite compounds of nickel and an element selected from cobalt, iron, molybdenum, silver, and copper for example
  • the above described materials may be laminated in a plurality of layers, or may be contained in the catalyst layer.
  • An organic material such as a polymer material, may be contained for improved durability or adhesiveness to the substrate.
  • a typical alkaline water electrolyser include several electrolytic cells, also referred to stack of electrolytic cells, described above.

Abstract

L'invention concerne un séparateur pour l'électrolyse alcaline (1) comprenant un support poreux (100) et une couche poreuse (200) disposée sur un côté du support poreux, caractérisé en ce que le séparateur a une perméabilité à l'eau comprise entre 250 et 800 l/bar/h/m2.
PCT/EP2022/067372 2021-07-08 2022-06-24 Séparateur pour électrolyse d'une solution aqueuse alcaline WO2023280600A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21184445.1 2021-07-08
EP21184445 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023280600A1 true WO2023280600A1 (fr) 2023-01-12

Family

ID=76845050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/067372 WO2023280600A1 (fr) 2021-07-08 2022-06-24 Séparateur pour électrolyse d'une solution aqueuse alcaline

Country Status (1)

Country Link
WO (1) WO2023280600A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232923A1 (fr) 1986-01-08 1987-08-19 Hydrogen Systems N.V. Diaphragmes perméables aux ions pour cellules électrolytiques
US6896777B2 (en) * 2001-02-26 2005-05-24 Solvay Solexis S.P.A. Porous hydrophilic membranes
EP1776480A2 (fr) 2004-08-06 2007-04-25 Tycoon R & D Ltd Marqueurs et procedes pour le depistage prenatal d'anomalies chromosomiques
EP1776490A2 (fr) 2004-08-11 2007-04-25 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Séparateur renforcé par un tissu et méthode de production en continu.
WO2009147084A1 (fr) 2008-06-02 2009-12-10 Agfa-Gevaert Procédé de production d'un séparateur renforcé par une bande perméable aux ions
WO2009147086A1 (fr) 2008-06-02 2009-12-10 Agfa-Gevaert Appareil et procédé de production d'un séparateur renforcé par une bande perméable aux ions et séparateur pouvant être obtenu avec ces derniers
EP3085815A1 (fr) 2013-12-18 2016-10-26 Kawasaki Jukogyo Kabushiki Kaisha Diaphragme pour électrolyse d'eau alcaline, son procédé de production, et appareil d'électrolyse d'eau alcaline
EP3272908A1 (fr) 2015-03-18 2018-01-24 Asahi Kasei Kabushiki Kaisha Membrane pour électrolyse d'eau alcaline, appareil d'électrolyse d'eau alcaline, procédé pour produire de l'hydrogène, et procédé pour produire une membrane pour électrolyse d'eau alcaline
EP3312306A1 (fr) 2015-06-16 2018-04-25 Kawasaki Jukogyo Kabushiki Kaisha Diaphragme pour l'électrolyse d'eau alcaline et procédé pour la fabrication de ce dernier
EP3652362A1 (fr) 2017-07-10 2020-05-20 Agfa-Gevaert N.V. Séparateur renforcé destiné à une hydrolyse alcaline
EP3660188A1 (fr) 2017-07-26 2020-06-03 Nippon Shokubai Co., Ltd. Diaphragme pour l'électrolyse de l'eau alcaline, son procédé de production, et procédé de production d'une membrane composite inorganique-organique

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232923A1 (fr) 1986-01-08 1987-08-19 Hydrogen Systems N.V. Diaphragmes perméables aux ions pour cellules électrolytiques
US6896777B2 (en) * 2001-02-26 2005-05-24 Solvay Solexis S.P.A. Porous hydrophilic membranes
EP1776480A2 (fr) 2004-08-06 2007-04-25 Tycoon R & D Ltd Marqueurs et procedes pour le depistage prenatal d'anomalies chromosomiques
EP1776490A2 (fr) 2004-08-11 2007-04-25 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Séparateur renforcé par un tissu et méthode de production en continu.
WO2009147084A1 (fr) 2008-06-02 2009-12-10 Agfa-Gevaert Procédé de production d'un séparateur renforcé par une bande perméable aux ions
WO2009147086A1 (fr) 2008-06-02 2009-12-10 Agfa-Gevaert Appareil et procédé de production d'un séparateur renforcé par une bande perméable aux ions et séparateur pouvant être obtenu avec ces derniers
EP2296825A1 (fr) 2008-06-02 2011-03-23 Agfa-Gevaert N.V. Procédé de production d'un séparateur renforcé par une bande perméable aux ions
US20110171377A1 (en) * 2008-06-02 2011-07-14 Agfa-Gevaert N.V. Process for producing an ion-permeable web-reinforced separator
EP3085815A1 (fr) 2013-12-18 2016-10-26 Kawasaki Jukogyo Kabushiki Kaisha Diaphragme pour électrolyse d'eau alcaline, son procédé de production, et appareil d'électrolyse d'eau alcaline
EP3272908A1 (fr) 2015-03-18 2018-01-24 Asahi Kasei Kabushiki Kaisha Membrane pour électrolyse d'eau alcaline, appareil d'électrolyse d'eau alcaline, procédé pour produire de l'hydrogène, et procédé pour produire une membrane pour électrolyse d'eau alcaline
EP3312306A1 (fr) 2015-06-16 2018-04-25 Kawasaki Jukogyo Kabushiki Kaisha Diaphragme pour l'électrolyse d'eau alcaline et procédé pour la fabrication de ce dernier
EP3652362A1 (fr) 2017-07-10 2020-05-20 Agfa-Gevaert N.V. Séparateur renforcé destiné à une hydrolyse alcaline
EP3660188A1 (fr) 2017-07-26 2020-06-03 Nippon Shokubai Co., Ltd. Diaphragme pour l'électrolyse de l'eau alcaline, son procédé de production, et procédé de production d'une membrane composite inorganique-organique

Similar Documents

Publication Publication Date Title
US20230243054A1 (en) A Separator for Alkaline Water Electrolysis
CN112159989B (zh) 碱性水电解用隔膜
CN110023542B (zh) 碱水电解用复极式电解槽以及氢制造方法
WO2019011844A1 (fr) Séparateur renforcé destiné à une hydrolyse alcaline
EP3575444A1 (fr) Cellule électrolytique bipolaire, récipient électrolytique bipolaire et procédé de fabrication d'hydrogène
JP7275371B2 (ja) アルカリ水電解用セパレータ
US20230125657A1 (en) Proton exchange membranes for electrochemical reactions
WO2023280600A1 (fr) Séparateur pour électrolyse d'une solution aqueuse alcaline
WO2023280760A1 (fr) Séparateur pour l'électrolyse alcaline d'eau
WO2023280598A1 (fr) Séparateur pour électrolyse d'une solution aqueuse alcaline
WO2023118088A1 (fr) Séparateur pour cellule électrolytique
WO2023208776A1 (fr) Séparateur pour électrolyse d'eau alcaline
US20230332310A1 (en) A Separator for Water Electrolysis
WO2023232551A1 (fr) Séparateur pour l' électrolyse de l'eau
US20230356440A1 (en) A Manufacturing Method for a Reinforced Separator
US20240068116A1 (en) Microporous asymmetric organic/inorganic composite membrane
KR20230150210A (ko) 분리막 및 이를 포함하는 전기화학 전환 셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22737848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022737848

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE