WO2023280269A1 - 生物信息识别模组及电子设备 - Google Patents

生物信息识别模组及电子设备 Download PDF

Info

Publication number
WO2023280269A1
WO2023280269A1 PCT/CN2022/104357 CN2022104357W WO2023280269A1 WO 2023280269 A1 WO2023280269 A1 WO 2023280269A1 CN 2022104357 W CN2022104357 W CN 2022104357W WO 2023280269 A1 WO2023280269 A1 WO 2023280269A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive pixel
pixel unit
biological information
area
identification module
Prior art date
Application number
PCT/CN2022/104357
Other languages
English (en)
French (fr)
Inventor
孙建成
王海生
毕莹
Original Assignee
北京极豪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121542761.1U external-priority patent/CN215987333U/zh
Priority claimed from CN202110768263.7A external-priority patent/CN113553925A/zh
Priority claimed from CN202110970555.9A external-priority patent/CN113780103B/zh
Priority claimed from CN202121992729.3U external-priority patent/CN216161104U/zh
Application filed by 北京极豪科技有限公司 filed Critical 北京极豪科技有限公司
Priority to US18/569,397 priority Critical patent/US20240273937A1/en
Publication of WO2023280269A1 publication Critical patent/WO2023280269A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris

Definitions

  • This application relates to the technical field of electronic devices, in particular to a biological information identification module and electronic equipment.
  • the biological information identification applied to electronic devices such as mobile phones and tablet computers mainly uses optical fingerprint identification.
  • the fingerprint is irradiated and reflected by the light source of the display panel, and received by the optical detection device. , Record or analyze the reflected light of fingerprints carrying specific biological information to achieve the function of recording fingerprints or identifying specific fingerprints.
  • the requirements for the thinning and miniaturization of fingerprint recognition modules installed inside electronic devices are also getting higher and higher.
  • the volume of the optical detection device for identification should also be continuously reduced, and in order to ensure the accuracy of biological information identification, the collection area of biological information on the display screen should be at least within a small area, which leads to fingerprint identification.
  • the structure of the module is difficult to further shrink, which greatly affects the miniaturization of electronic equipment.
  • the embodiment of the present application provides a biological information identification module and electronic equipment, which can receive light beams carrying biological information in a larger area without increasing the overall volume of the module.
  • An embodiment of the present application provides a biometric information identification module, which may include an optical path guiding layer and an optical sensor; the optical path guiding layer includes a plurality of optical channels, the optical sensor includes a plurality of photosensitive pixel units, and adjacent At least two photosensitive pixel units form a photosensitive pixel unit group; the biological information identification module also includes a gap area arranged between the at least two photosensitive pixel unit groups, and the light beam carrying biological information above the gap area is passed through an optical channel by at least one photosensitive pixel unit group. The pixel unit receives.
  • the optical channel may include an inclined optical channel, and there is an included angle between the inclined optical channel and a straight line perpendicular to the surface of the optical sensor.
  • the photosensitive pixel unit may include: a first photosensitive pixel unit, and the first photosensitive pixel unit receives the light beam above the gap region adjacent to the first photosensitive pixel unit through an inclined light channel.
  • the inclined light channel corresponding to the first photosensitive pixel unit may be inclined toward the center of the photosensitive pixel unit group along the direction of the light beam.
  • the photosensitive pixel unit may include: a first photosensitive pixel unit, and the first photosensitive pixel unit receives the light beam above the gap region adjacent to other photosensitive pixel units except the first photosensitive pixel unit through an inclined optical channel.
  • the photosensitive pixel units other than the first photosensitive pixel unit may include: photosensitive pixel units located on opposite sides of the first photosensitive pixel unit in the same photosensitive pixel unit group.
  • the inclined light channels corresponding to two photosensitive pixel units that are symmetrical with respect to the center of the photosensitive pixel unit group in the photosensitive pixel unit group may intersect above the center.
  • the included angles between two inclined light channels that are symmetrical with respect to the center of the photosensitive pixel unit group may be the same.
  • the included angles of the inclined light channels corresponding to the photosensitive pixel units equidistant from the center of the photosensitive pixel unit group may be the same.
  • the included angle of the inclined light channel that is closer to the center of the photosensitive pixel unit group may be less than or equal to the distance from the center of the photosensitive pixel unit group The included angle of the inclined light channel.
  • the optical path guiding layer may include at least two light-shielding layers arranged at intervals, aperture holes may be formed on the light-shielding layers, and at least two corresponding aperture holes on the at least two light-shielding layers form at least a part of the light channel .
  • the optical path guiding layer may further include a microlens group disposed on the light shielding layer, the microlens group includes a plurality of microlens units, and the microlens units form at least a part of the optical channel.
  • the light beam carrying biological information can be received by a photosensitive pixel unit group through a microlens unit.
  • a plurality of photosensitive pixel units constituting the photosensitive pixel unit group may be combined in the form of N*M, wherein N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2.
  • the gap region may form at least one strip-shaped region or at least one region connected horizontally and vertically on the optical sensor.
  • the gap area may include a first reserved area for arranging circuit signal lines.
  • the gap area may further include a second reserved area for setting circuit components.
  • an electronic device which may include a display screen, and a biometric information identification module as described in any one of the preceding items arranged below the display screen.
  • a biometric information identification area may be provided on the display screen.
  • the biometric information identification area includes a plurality of partitions corresponding to a plurality of photosensitive pixel unit groups.
  • the light beams carrying biometric information from the subregions pass through the optical channel and are driven by the corresponding photosensitive pixel unit groups. Pixel cell group received.
  • the area of the orthographic projection of at least one partition on the optical sensor may be larger than the area of its corresponding photosensitive pixel unit group.
  • the orthographic projections of at least two adjacent subregions on the optical sensor may have overlapping regions.
  • the overlapping area can be rectangular, and the width of the overlapping area can be between 3-5 microns.
  • the biological information identification module includes an optical path guiding layer and an optical sensor; the optical path guiding layer includes a plurality of optical channels, the optical sensor includes a plurality of photosensitive pixel units, and at least two adjacent photosensitive pixel units form a photosensitive pixel unit group
  • the biological information identification module also includes a gap area arranged between at least two photosensitive pixel unit groups, and the light beam carrying biological information above the gap area is received by at least one photosensitive pixel unit through the optical channel.
  • the light beam carrying biological information can be transmitted to the optical sensor through multiple optical channels, so as to be received and recognized by the photosensitive pixel unit of the optical sensor; at the same time, the light beam carrying biological information located above the gap area can pass through the optical channel Received by at least one photosensitive pixel unit, its normal transmission will not be affected.
  • the present application arranges the gap area between at least two photosensitive pixel unit groups, and makes the light beam carrying biological information above the gap area received by at least one photosensitive pixel unit through the optical channel.
  • the present application can make more The light beam carrying biological information in a large area enters the optical sensor, that is, when the total area of the photosensitive pixel unit (that is, the area of the photosensitive area) remains unchanged, the biological information collection area of the display screen is increased, so that the biological information
  • the identification module can receive more optical signals of light beams carrying biological information, and then obtain more biological information, which is conducive to the accuracy of biological information identification; on the other hand, without increasing the biological information collection area of the display
  • the application can improve the effective utilization rate of the total area of the photosensitive pixel unit of the optical sensor (that is, the area of the photosensitive area), reduce the area of the photosensitive area of the optical sensor, thereby reducing the volume of the optical sensor, and then adopt this application
  • the provided electronic equipment of the biological information identification module saves more internal space, and can reduce the cost of the biological information identification module at the same time.
  • Fig. 1 is one of the structural schematic diagrams of a biological information identification module provided by the embodiment of the present application;
  • Fig. 2 is the sectional view of A-A place in Fig. 1;
  • Fig. 3 is one of the structural schematic diagrams of the optical sensor in the biological information identification module provided by the embodiment of the present application;
  • Fig. 4 is the second structural schematic diagram of the optical sensor in the biometric information identification module provided by the embodiment of the present application.
  • Fig. 5 is the third structural schematic diagram of the optical sensor in the biometric information identification module provided by the embodiment of the present application.
  • Fig. 6 is the sectional view of B-B place among Fig. 3;
  • Fig. 7 is one of the sectional views at C-C place in Fig. 3;
  • Fig. 8 is the second sectional view of C-C place in Fig. 3;
  • Fig. 9 is the third sectional view of C-C place in Fig. 3.
  • Fig. 10 is the fourth structural schematic diagram of the optical sensor in the biometric information identification module provided by the embodiment of the present application.
  • Fig. 11 is the sectional view of D-D place in Fig. 2;
  • Fig. 12 is the second structural schematic diagram of a biological information identification module provided by the embodiment of the present application.
  • Fig. 13 is one of the semi-perspective schematic diagrams in which the aperture hole is mapped to the optical sensor in a biometric information recognition module provided by the embodiment of the present application;
  • Fig. 14 is the second semi-perspective schematic diagram of the aperture aperture mapped to the optical sensor in a biometric information recognition module provided by the embodiment of the present application;
  • Fig. 15 is the third semi-perspective schematic diagram of the aperture aperture mapped to the optical sensor in a biological information recognition module provided by the embodiment of the present application;
  • Fig. 16 is the third structural schematic diagram of a biological information identification module provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 18 is a semi-perspective schematic diagram of the positional relationship between the display screen and the photosensitive pixel unit group and the gap area after seeing through in an electronic device provided by an embodiment of the present application.
  • Icons 10-optical path guide layer; 11-optical channel; 111-oblique optical channel; ⁇ -angle between the inclined optical channel and a straight line perpendicular to the surface of the optical sensor; 12A-first light-shielding layer; 12B-second light-shielding Layer; 121-first aperture; 122-second aperture; 13-microlens group; 131-microlens unit; 20-optical sensor; 21-photosensitive pixel unit group; 211, 211a, 211b, 211c, 211d, 211e, 211f, 211g, 211h, 211i, 211j, 211n, 211r, 211s, 211t, 211u, 211v-photosensitive pixel unit; 211A-first photosensitive pixel unit; 211B-other photosensitive pixel unit; 30-gap area; 31-first gap area; 32-second gap area; 40-display screen; 41-biological information identification area; 411-partition; 412-overlapping
  • orientation or positional relationship indicated by the terms “inner”, “outer”, etc. is based on the orientation or positional relationship shown in the drawings, or the usual placement of the application product when it is used. Orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present application.
  • first”, “second”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • setting and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct It can also be connected indirectly through an intermediary, or it can be the internal communication of two elements.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct It can also be connected indirectly through an intermediary, or it can be the internal communication of two elements.
  • Biometric identification technology has been widely applied to various terminal equipment or electronic devices.
  • Biometric identification technologies include but are not limited to fingerprint identification, palmprint identification, vein identification, iris identification, face identification, living body identification, anti-counterfeiting identification and other technologies.
  • fingerprint identification usually includes optical fingerprint identification, capacitive fingerprint identification and ultrasonic fingerprint identification.
  • the fingerprint identification module can be placed in a partial or entire area under the display to form an under-display optical fingerprint identification; or, the optical fingerprint identification module can also be placed Some or all of them are integrated into the display screen of the electronic device to form an in-display optical fingerprint recognition.
  • the display screen may be an organic light emitting diode (Organic Light Emitting Diode, OLED) display screen or a liquid crystal display screen (Liquid Crystal Display, LCD) or the like.
  • Fingerprint recognition methods usually include steps such as fingerprint image acquisition, preprocessing, feature extraction, and feature matching. Some or all of the above steps can be realized by traditional computer vision (Computer Vision, CV) algorithm, or by artificial intelligence (Artificial Intelligence, AI) based deep learning algorithm. Fingerprint recognition technology can be applied to portable or mobile terminals such as smartphones, tablet computers, and game devices, as well as other electronic devices such as smart door locks, cars, and bank ATMs, for fingerprint unlocking, fingerprint payment, fingerprint attendance, identity authentication, etc. .
  • the biological information identification module applied under the display screen usually needs to confirm and identify the individual to which the specific biological information belongs by receiving, recording or analyzing the reflected light carrying specific biological information.
  • the display screen on the screen it first needs to realize the required display function. Therefore, the acquisition area that can be divided for the identification of biological information under the screen is very limited, and for the extraction of biological information, it is required to have enough space. Accurate identification information can only be obtained based on the light beam carrying biological information. On this basis, the more light beams carrying biological information the module can obtain, the greater its recognition accuracy, anti-interference ability, and ability to identify counterfeiting. can be improved accordingly.
  • the biometric information identification module does not necessarily have to be integrated under the display screen of the display device.
  • the biometric information module can exist as a separate module for biometric information identification.
  • a transparent protective glass plate or a protective film layer can be provided on the biological information module, so that the light beam carrying biological information passes through the protective glass plate and enters the biological information identification module, and then is recognized by the biological information identification module.
  • the embodiment of the present application provides a biometric information identification module
  • the biometric identification module may be a fingerprint identification module
  • the biometric identification module may include an optical path guiding layer 10 and an optical Sensor 20
  • the optical path guiding layer 10 may include a plurality of optical channels 11
  • the optical sensor 20 may include a plurality of photosensitive pixel units 211, and at least two adjacent photosensitive pixel units 211 form a photosensitive pixel unit group 21
  • the biometric information identification module also It may include a gap region 30 arranged between at least two photosensitive pixel unit groups 21 , and the light beam carrying biological information above the gap region 30 may be received by at least one photosensitive pixel unit 211 through the optical channel 11 .
  • the biometric information identification module of this embodiment can be applied to common terminal devices, such as handheld display devices such as mobile phones and tablet computers, or household liquid crystal display appliances such as televisions, desktop computers, air conditioners, and refrigerators.
  • the biological information identification module is used to identify the light beams carrying biological information.
  • the light beams carrying biological information may be palm prints, palm veins, joint lines, irises, human faces, etc. from human palms.
  • the biometric information may be a fingerprint from a human finger.
  • the following will mainly take fingerprint recognition on a handheld display device that is more common in real life as an example for illustration.
  • Figure 2 is one of the structural schematic diagrams of the biological information identification module provided by the embodiment of the present application.
  • the biological information identification module may include an optical path guide layer 10 arranged up and down along the orientation shown in Figure 2 and Optical sensor 20.
  • the optical path guiding layer 10 may be located above the optical sensor 20, and the optical path guiding layer 10 may include a plurality of optical channels 11, and the plurality of optical channels 11 may be configured to allow the light beams carrying biological information to pass through, so as to be incident on the optical sensor 20. sensor 20.
  • the above-mentioned multiple optical channels 11 can be arranged on the optical path guiding layer 10 in a matrix form, or arranged in a ring on the optical path guiding layer 10 , which is not specifically limited in this application.
  • the cross-sectional shape of the light channel 11 can be an inclined square (parallelogram), or an inclined trapezoid with a large upper and a smaller lower, as long as the light beam carrying biological information can pass through the light beam as much as possible. It is sufficient that the channel 11 is successfully received by the optical sensor 20 .
  • the cross-sectional shape of the optical channel 11 is an inclined trapezoid
  • a reflective film can also be provided in the optical channel 11.
  • the cross-sectional shape of the optical channel 11 When the shape is an inclined trapezoid, those skilled in the art can specifically set and arrange the corresponding optical elements in the optical channel 11 according to the actual situation.
  • the optical sensor 20 may include a plurality of photosensitive pixel units 211 , and adjacent photosensitive pixel units 211 may form a photosensitive pixel unit group 21 .
  • each photosensitive pixel unit 211 of the optical sensor 20 can receive an incident light beam carrying biological information.
  • the number and position of the photosensitive pixel units 211 constituting the photosensitive pixel unit group 21 are not specifically limited in this embodiment of the present application.
  • a plurality of photosensitive pixel units 211 in the same photosensitive pixel unit group 21 should be adjacent to each other, for example, at least two photosensitive pixel units 211 adjacent to each other can form a photosensitive pixel unit group 21, and for example, three photosensitive pixel units 211 adjacent to each other in sequence
  • the pixel units 211 can form a rectangular photosensitive pixel unit group 21, and for example, a plurality of photosensitive pixel units 211 forming the photosensitive pixel unit group 21 can be combined in the form of N*M, where N is greater than or equal to 1 is an integer, and M is an integer greater than or equal to 2.
  • the plurality of photosensitive pixel units 211 constituting the photosensitive pixel unit group 21 are presented in the form of 2*2, 2*3, 3*3, 4*4, 4*3 or 5*5, etc. enumerate.
  • N and M may or may not be equal (when N and M are equal, a plurality of photosensitive pixel units 211 constituting the photosensitive pixel unit group 21 are combined in the form of N*N).
  • the multiple photosensitive pixel unit groups 21 that make up the photosensitive pixel unit group 21 in this application does not contain the form of 1*1. That is, as long as one photosensitive pixel unit 211 is not used as a photosensitive pixel unit group 21 , all belong to the combinable forms of the photosensitive pixel unit group 21 provided by the embodiment of the present application, and are not exhaustive here.
  • FIG. 3 shows a schematic structural diagram of a plurality of photosensitive pixel units 211 forming the photosensitive pixel unit group 21 in a form of 3*3, and the photosensitive pixel unit group 21 includes 4 groups.
  • the optical sensor 20 is not limited to include 4 groups of photosensitive pixel unit groups 21, and may be more than 4 groups
  • FIG. 3 is only an example given in this application; as shown in FIG. Schematic diagram of the structure when the unit group 21 includes 4 groups.
  • the optical sensor 20 is not limited to include 4 groups of photosensitive pixel unit groups 21 , which may be more than 4 groups.
  • FIG. 5 shows a schematic structural diagram of a plurality of photosensitive pixel units 211 forming the photosensitive pixel unit group 21 in a form of 2*4, and the photosensitive pixel unit group 21 includes two groups.
  • the optical sensor 20 is not limited to include 2 groups of photosensitive pixel unit groups 21 , which may be more than 2 groups.
  • the light-receiving surface of the optical sensor 20 can be a plane, and can also be designed as a protruding arc, a concave arc, an inclined surface, etc. according to actual needs.
  • a common form is adopted, that is, an optical
  • the photosensitive receiving surface of the sensor 20 is designed to be a plane, so the receiving surface of each photosensitive pixel unit group 21 forming the photosensitive receiving surface of the optical sensor 20 is also a plane, and the photosensitive pixel units 211 of a photosensitive pixel unit group 21 are formed.
  • the receiving side jointly forms a planar receiving surface of one photosensitive pixel unit group 21 , and the photosensitive receiving surfaces of multiple photosensitive pixel unit groups 21 collectively serve as the photosensitive area of the optical sensor 20 .
  • the biological information identification module provided in this embodiment may further include a gap area 30 disposed between at least two photosensitive pixel unit groups 21 .
  • the above-mentioned gap region 30 may be provided between two adjacent photosensitive pixel unit groups 21 (as shown in FIG. 1 and FIG. 3 ); or, it may also be provided between some adjacent photosensitive pixel unit groups 21 .
  • it may only be arranged between photosensitive pixel unit groups 21 distributed up and down (as shown in FIG. 4 and FIG. 5 ).
  • it may only be arranged between the left and right photosensitive pixel unit groups 21 (not shown in the figure).
  • the present application arranges the gap area 30 between at least two photosensitive pixel unit groups 21, and makes the light beam above the gap area 30 received by at least one photosensitive pixel unit 211, which can expand the biological information collection area.
  • the gap area 30 can be used for arranging circuit signal lines to collect electrical signals.
  • the gap region 30 can be used for arranging circuit components thereon.
  • the circuit signal lines and/or circuit elements of the present application can minimize the impact on the optical sensor 20. occupancy of the overall area, thereby saving more area for arranging the photosensitive pixel unit 211, and thus effectively reducing the photosensitive area of the optical sensor 20 without increasing the biological information collection area of the display screen 40 area, reduce the cost of the module, maximize the structural size utilization of the biometric information identification module as much as possible, and save more internal space for the electronic equipment using the biometric information identification module of the embodiment of the present application.
  • the gap area 30 can be set between any two photosensitive pixel unit groups 21, so that on the entire optical sensor 20 Forming a horizontal and vertical grid consisting of gaps 30, it can be a plurality of gaps 30 formed continuously in the same or parallel direction, or a plurality of gaps 30 formed in other regular or irregular ways various combinations of shapes.
  • the width of the gap region 30 may be between 10 ⁇ m and 30 ⁇ m, for example, the width of the gap region 30 may be 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m or 30 ⁇ m, etc., the present application No longer list them one by one. Specifically, for the number, position, shape and size of the gap area 30 , those skilled in the art can make specific settings according to the required circuit signal lines and/or circuit elements.
  • the photosensitive pixel unit groups 21 are arranged in a matrix, and correspondingly, the shape of the above-mentioned gap area 30 is a rectangle.
  • the rectangular gap area 30 is only a situation presented when corresponding to the photosensitive pixel units 211 arranged in a matrix form, and it is not the only restriction on the shape of the gap area 30 of the present application or the only possibility of the embodiment of the present application. Supported scenarios.
  • the shape of the gap region 30 should be related to the arrangement form of the plurality of photosensitive pixel unit groups 21 , and the specific shape depends on the actual situation, which is not limited in this application.
  • the gap area 30 may form at least one strip-shaped area or at least one horizontally and vertically cross-connected area on the optical sensor 20 .
  • FIG. 3 is one of the structural schematic diagrams of the optical sensor 20.
  • the gap area 30 is a region formed on the optical sensor 20 with a horizontal and vertical cross connection; as shown in FIG. 4, FIG. 4 is The second schematic diagram of the structure of the optical sensor 20 , in this case, the gap area 30 is a strip-shaped area formed on the optical sensor 20 .
  • the above-mentioned gap area 30 may also be a plurality of cross-connected areas formed on the optical sensor 20 or a plurality of strip-shaped areas formed on the optical sensor 20. In the foregoing description, it has been The form of the gap region 30 is exemplified and will not be enumerated here.
  • the gap area 30 may include a first reserved area for arranging circuit signal lines; and/or, the gap area 30 may also include a first reserved area for A second reserved area of the circuit element is set.
  • the first reserved area and the second reserved area can be respectively a horizontally arranged area and a vertically arranged area; when the gap When the area 30 is a plurality of cross-connected areas formed on the optical sensor 20, the first reserved area can be set on one area crossed vertically and vertically, and the second reserved area can be set on another area crossed vertically and horizontally.
  • the first reserved area and the second reserved area can be different positions of the strip-shaped area respectively; when the gap area 30 is formed on the optical sensor When there are multiple strip-shaped areas on the sensor 20, the first reserved area can be set on one strip-shaped area, and the second reserved area can be set on the other strip-shaped area.
  • the light beam carrying biological information above the gap area 30 can be received by at least one photosensitive pixel unit 211 through the optical channel 11, so that the gap area 30 set in this application will not affect the biological information carried above it.
  • the normal reception of the light beam of information has an impact (the light beam carrying biological information located above the gap area 30 can be received by at least one photosensitive pixel unit 211), so that the biological information identification module provided by the application will be able to display
  • the biological information collection area of the screen 40 the area of the photosensitive area of the optical sensor 20 is effectively reduced, thereby reducing the volume of the optical sensor 20 and reducing the cost of the biological information identification module.
  • FIG. 6 is a cross-sectional view at A-A shown in FIG. 3. It can be seen from FIG. 3 and FIG.
  • the photosensitive pixel unit 211 receives. It should be noted that what is shown in FIG. 3 and FIG. 6 is only a case of the embodiment of the present application.
  • a specific light-sensing pixel unit 211 in 21 (corresponding to the light-sensing pixel unit 211g of the light-sensing pixel unit group 21 in the form of 3*3 in FIG. 3 ) receives the situation.
  • the light beam carrying biological information located above the laterally disposed gap region 30 may also be received by one or more photosensitive pixel units 211 near the center of the photosensitive pixel unit group 21 .
  • the biological information identification module provided by the embodiment of the present application includes an optical path guiding layer 10 and an optical sensor 20; the optical path guiding layer 10 includes a plurality of optical channels 11, and the optical sensor 20 includes a plurality of photosensitive pixel units 211, adjacent At least two photosensitive pixel unit groups 21 are formed into photosensitive pixel unit groups 21; the biological information identification module also includes a gap area 30 arranged between at least two photosensitive pixel unit groups 21, and the light beam carrying biological information above the gap area 30 passes through The light channel 11 is received by at least one photosensitive pixel unit 211 .
  • the light beam carrying biological information can be transmitted to the optical sensor 20 through a plurality of optical channels 11, so as to be received and recognized by the photosensitive pixel unit 211 of the optical sensor 20;
  • the light beam can be received by at least one photosensitive pixel unit 211 through the optical channel 11, and its normal transmission will not be affected.
  • the gap area 30 is arranged between at least two photosensitive pixel unit groups 21, and the light beam carrying biological information above the gap area 30 is received by at least one photosensitive pixel unit 211 through the optical channel 11, so that, on the one hand,
  • the present application can make the light beams carrying biological information in a larger area enter the optical sensor 20, that is, under the condition that the total area of the photosensitive pixel unit 211 (that is, the area of the photosensitive area) remains unchanged, the biological information of the display screen 40 is increased.
  • the biological information identification module can receive more optical signals of beams carrying biological information, and then obtain more biological information, which is conducive to the accuracy of biological information identification;
  • the present application can improve the effective utilization rate of the total area of the photosensitive pixel unit 211 of the optical sensor 20 (that is, the area of the photosensitive area), reduce the area of the photosensitive area of the optical sensor 20, Therefore, the volume of the optical sensor 20 is reduced, thereby saving more internal space for the electronic device using the biometric information identification module provided by the present application, and at the same time reducing the cost of the biometric information identification module.
  • the optical channel 11 of the optical path guiding layer 10 may include an inclined optical channel 111, and the inclined optical channel 111 is aligned with a straight line perpendicular to the surface of the optical sensor 20. There may be an angle ⁇ between them.
  • the optical channel 11 includes the inclined optical channel 111
  • the light beams carrying biological information positioned outside the display screen 40 that is, the display directly facing the optical sensor 20
  • the area outside the area of the screen 40 can also be incident on the photosensitive area of the optical sensor 20 through the guiding effect of the inclined optical channel 111, so that the light incident range of the light beam carrying biological information is increased, and the optical sensor 20 can be as far as possible.
  • the light beam carrying biological information in a larger area above can be received accurately. It can be seen intuitively from the direction shown in FIG. 2 that the photosensitive pixel unit group 21 of the biological information identification module provided in this embodiment can receive the light beam carrying biological information located above the gap area.
  • the optical channel 11 is set as an inclined optical channel 111
  • the optical sensor 20 can receive a collection area of biological information larger than the area of its own photosensitive area.
  • the included angle ⁇ between the above-mentioned inclined light channel 111 and a straight line perpendicular to the surface of the optical sensor 20 may be between 0° and 45°.
  • the included angle ⁇ between the inclined optical channel 111 and a straight line perpendicular to the surface of the optical sensor 20 may be 0°, 2°, 5°, 10°, 15°, 30°, 40° or 45°.
  • the optical channel 11 of the optical path guiding layer 10 includes an inclined optical channel 111, it may also include an optical channel 11 that is not inclined.
  • the inclined optical channel 111 located at the center of the optical path guiding layer 10 may be The included angle ⁇ with the straight line perpendicular to the surface of the optical sensor 20 is 0° (that is, it can be considered that the optical channel 11 here is not inclined and does not have the included angle ⁇ ).
  • the clip of the inclined light channel 111 arranged from the central light channel 11 to the straight direction away from the central light channel 11 The angle of angle ⁇ can be set in increments.
  • the present application does not limit the formation manner of the optical channel 11 .
  • the light channel 11 may be composed of collimating holes; for another example, the light channel 11 may also be composed of at least two layers of aperture holes; for another example, the light channel 11 may also be composed of microlenses and at least two layers of aperture holes.
  • FIG. 1 and FIG. 13 to FIG. 15 show a structural schematic diagram of the upper section and lower section of the optical channel 11 mapped onto the optical sensor 20. It should be noted that, in FIG. 1 and FIG. 13 to FIG.
  • the large circle in the middle represents the cross-section of the upper part of the light channel 11, for example, it can be the uppermost diaphragm hole; the small circle in the figure represents the cross-section of the lower part of the light channel 11, for example, it can be the lowermost diaphragm hole; among Fig. 14 and Fig. 15
  • the dotted line with an arrow shown in indicates the transmission direction of the light beam (that is, the light beam is transmitted toward the center of the photosensitive pixel unit group 21 ).
  • the center of the lowermost diaphragm hole can be aligned with the center of the pixel unit, and the example shown in the figure is not limited.
  • the optical channel 11 in the embodiment of the present application is only illustrated in the form of the upper part and the lower part (that is, the upper cross-sectional aperture is large, and the lower cross-sectional aperture is small) for illustration, and should not be regarded as the shape of the optical channel 11 of the present application. the only limitation.
  • the aperture of the optical channel 11 may also be consistent from top to bottom.
  • the photosensitive pixel unit 211 may include: a first photosensitive pixel unit 211A, and the first photosensitive pixel unit 211A receives the The light beam above the gap region 30 .
  • the first photosensitive pixel unit 211A is one of the photosensitive pixel unit groups 21
  • the photosensitive pixel unit 211g then the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 in the horizontal direction.
  • the first photosensitive pixel unit 211A is the photosensitive pixel unit 211i in the photosensitive pixel unit group 21, then the first photosensitive pixel unit 211A can receive the photosensitive pixel unit 211A above the gap area 30 in the horizontal direction as shown in FIG.
  • the light beam above the gap area 30 in the vertical direction can also be received.
  • the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 adjacent to the first photosensitive pixel unit 211A through the inclined light channel 111 .
  • the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 (ie, the second gap region 32 in FIG.
  • the first photosensitive pixel unit 211A is the photosensitive pixel unit group 21
  • the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 below it (that is, the first gap region 31 in FIG. 5 ).
  • the first photosensitive pixel unit 211A can receive the light beam above one or more of the gap regions 30 adjacent to the first photosensitive pixel unit 211A through the inclined optical channel 111 .
  • the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 above it and/or the gap region 30 on the right.
  • the inclined light channel 111 corresponding to the first photosensitive pixel unit 211A may be inclined toward the center of the photosensitive pixel unit group 21 along the direction of the light beam. In this way, all light beams carrying biological information can be obliquely incident towards the center of the photosensitive pixel unit group 21, so as to increase the number of light beams incident on the photosensitive area of the optical sensor 20 as much as possible. There is no need to specially divide the wiring area for wiring and other arrangements, so the area of the optical sensor 20 can be reduced correspondingly, thereby reducing the volume of the entire module.
  • the inclined light channel 111 corresponding to the first photosensitive pixel unit 211A is inclined toward the center of the photosensitive pixel unit group 21 along the direction of the light beam, which may include various situations.
  • the above-mentioned center may be the central axis of the photosensitive pixel unit group 21 .
  • the dotted line with arrows shown in FIG. 14 represents the transmission direction of the light beam, that is, the light beam transmits toward the center of the photosensitive pixel unit group 21 .
  • the inclined light channel 111 corresponding to the first photosensitive pixel unit 211A (assumed to be the first photosensitive pixel unit 211 on the left side of the first row of each photosensitive pixel unit group 21) faces the horizontal center of the photosensitive pixel unit group 21 along the direction of the light beam. The axis is tilted.
  • the gap area above the first photosensitive pixel unit 211A i.e. The light beam in the second gap area 32
  • the first photosensitive pixel unit 211A the gap area above the first photosensitive pixel unit 211A
  • the part of the gap area below the first photosensitive pixel unit 211A That is, the light beam in the first gap area 31
  • the gap region 30 includes at least one area connected horizontally and vertically, for example, as shown in FIG.
  • the horizontal central axis of the group 21 is inclined (assuming that the first photosensitive pixel unit 211A is the first photosensitive pixel unit 211 on the left side of the first row of each photosensitive pixel unit group 21); the inclined light channel 111 corresponding to the first photosensitive pixel unit 211A is also It can be inclined toward the geometric center of the photosensitive pixel unit group 21 along the direction of the light beam (assuming that the first photosensitive pixel unit 211A is the first photosensitive pixel unit 211 on the right side of the first row of each photosensitive pixel unit group 21); the first photosensitive pixel unit 211A
  • the corresponding inclined light channel 111 can be inclined toward the vertical central axis of the photosensitive pixel unit group 21 along the direction of the light beam (assuming that the first photosensitive pixel unit 211A is the first photosensitive pixel on the right side of the second row of each photosensitive pixel unit group 21 unit 211).
  • the light-sensing pixel unit 211 may include: a first light-sensing pixel unit 211A, and the first light-sensing pixel unit 211A receives and communicates with other pixels other than the first light-sensing pixel unit 211A The light beam above the gap area 30 adjacent to the other photosensitive pixel units 211 .
  • the first photosensitive pixel unit 211A can receive light beams above the adjacent gap region 30 of other photosensitive pixel units 211B except itself through the inclined light channel 111 .
  • the first photosensitive pixel unit 211A is a photosensitive pixel unit 211 in the 3*3 combined photosensitive pixel unit group 21
  • the first photosensitive pixel unit 211A is a photosensitive pixel unit 211i
  • the first photosensitive pixel unit 211A can receive the light beam above the gap region 30 adjacent to the photosensitive pixel unit 211h.
  • the first light-sensing pixel unit 211A receiving the light beam above the gap region 30 adjacent to the light-sensing pixel unit 211h is only an example of the present application, and it does not mean that when the light-sensing pixel unit 211i is used as the first light-sensing pixel unit 211A,
  • the light beams received by other photosensitive pixel units 211 adjacent to the gap area 30 are specifically limited.
  • the first photosensitive pixel unit 211A when the first photosensitive pixel unit 211A is the photosensitive pixel unit 211i, the first photosensitive pixel unit 211A can also receive the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211f or receive the photosensitive The light beams and the like above the gap region 30 adjacent to the pixel unit 211g will not be listed one by one in this application.
  • the above-mentioned photosensitive pixel units 211 other than the first photosensitive pixel unit 211A may include: photosensitive pixels located on the opposite side of the first photosensitive pixel unit 211A in the same photosensitive pixel unit group 21 Unit 211.
  • the photosensitive pixel unit 211 on the opposite side includes a photosensitive pixel unit 211 opposite to the upper and lower mirror surfaces of the first photosensitive pixel unit 211A, and a photosensitive pixel unit 211 opposite to the left and right mirror surfaces of the first photosensitive pixel unit 211A.
  • the photosensitive pixel unit 211 opposite to the first photosensitive pixel unit 211A may include: photosensitive pixels located on the opposite side of the first photosensitive pixel unit 211A in the same photosensitive pixel unit group 21 Unit 211.
  • the photosensitive pixel unit 211 on the opposite side includes a photosensitive pixel unit 211 opposite to the upper and lower mirror surfaces of the first photosensitive pixel unit 211A, and a photosensitive pixel unit 211 opposite to the left and right
  • the first photosensitive pixel unit 211A is one photosensitive pixel unit 211 in the photosensitive pixel unit group 21 combined in the form of 3*3 shown in FIG. Photosensitive pixel unit 211a), at this time, the first photosensitive pixel unit 211A can receive the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211g opposite to the upper and lower mirror surfaces of the photosensitive pixel unit 211a; or, the first photosensitive pixel unit 211A It can receive the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211c opposite to the left and right mirror surfaces of the photosensitive pixel unit 211a; or, the first photosensitive pixel unit 211A can receive the photosensitive pixel unit 211i diagonal to the photosensitive pixel unit 211a The light beam above the adjacent gap zone 30 .
  • It may include a photosensitive pixel unit 211 (photosensitive pixel unit 211b) above the first photosensitive pixel unit 211A, a photosensitive pixel unit 211 (photosensitive pixel unit 211h) below the first photosensitive pixel unit 211A, and a photosensitive pixel on the left side of the first photosensitive pixel unit 211A.
  • Unit 211 (photosensitive pixel unit 211d), photosensitive pixel unit 211 (photosensitive pixel unit 211f) on the right side of the first photosensitive pixel unit 211A, photosensitive pixel unit 211 (photosensitive pixel unit 211g, first photosensitive pixel unit 211A) diagonal to the first photosensitive pixel unit 211A Pixel unit 211c, first photosensitive pixel unit 211a, first photosensitive pixel unit 211i).
  • the inclined light channels 111 corresponding to the two photosensitive pixel units 211 that are symmetrical with respect to the center of the photosensitive pixel unit group 21 in the photosensitive pixel unit group 21 may be above the center Intersect, so that the first photosensitive pixel unit 211A receives the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211 centrally symmetrical to the first photosensitive pixel unit 211A in the same photosensitive pixel unit group 21 through the inclined light channel 111 .
  • FIG. 3 and FIG. A plurality of photosensitive pixel units 211 constituting the photosensitive pixel unit group 21 are combined in the form of 3*3, and the two photosensitive pixel units 211 symmetrical to the center of the photosensitive pixel unit group 21 are respectively photosensitive pixel unit 211d and photosensitive pixel unit 211f as an example, in the cross-section of the plane where the connection line of the two photosensitive pixel units 211 is located, a schematic structural diagram as shown in Figure 7 can be obtained.
  • Group 21 intersects above the center.
  • the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211d can be received by the photosensitive pixel unit 211f through the corresponding inclined light channel 111
  • the light beam above the gap area 30 adjacent to the photosensitive pixel unit 211f can be received by the photosensitive pixel unit 211d through the corresponding inclined light channel 111 .
  • the two inclined optical channels 111 form an overlapping area in the optical path guiding layer 10.
  • Two photosensitive pixel units 211 that are symmetrical to the center of the photosensitive pixel unit group 21 are photosensitive pixel unit 211d and photosensitive pixel unit 211f as an example.
  • the inclined light channels 111 corresponding to the two photosensitive pixel units 211 are above the center of the photosensitive pixel unit group 21 and intersectingly arranged in the optical path guiding layer 10 .
  • the optical path guiding layer 10 shown in FIG. 8 is a relatively thick layer, and the optical channel 11 is completely formed therein. If the optical path guiding layer 10 includes multiple light-shielding layers, the intersection points of the inclined optical channels 111 It can also be located between two shading layers.
  • the inclined light channels 111 corresponding to the two photosensitive pixel units 211 that are symmetrical to the center of the photosensitive pixel unit group 21 in the photosensitive pixel unit group 21 may not intersect above the center.
  • the oblique light channels 111 corresponding to the two photosensitive pixel units 211 that are symmetrical with respect to the center of the photosensitive pixel unit group 21 in the photosensitive pixel unit group 21 do not intersect above the center. a form and should not be considered as a limitation of this application.
  • the angle between two inclined optical channels 111 that are symmetrical to the center of the photosensitive pixel unit group 21 same.
  • the inclined light channel 111 corresponding to the photosensitive pixel unit 211d corresponds to the photosensitive pixel unit 211f
  • the included angles between the inclined optical channels 111 and the straight lines perpendicular to the surface of the optical sensor 20 are equal.
  • the inclined optical channel corresponding to the photosensitive pixel unit 211 equidistant from the center of the photosensitive pixel unit group 21
  • the included angles of 111 can be the same.
  • the included angle of the inclined light channel 111 closest to the center of the photosensitive pixel unit group 21 may be smaller than It is equal to the included angle ⁇ of the inclined light channel 111 far from the center of the photosensitive pixel unit group 21 .
  • the optical path guiding layer 10 may include at least two light-shielding layers arranged at intervals, and aperture holes may be formed on the light-shielding layers. At least The corresponding at least two diaphragm holes on the two light-shielding layers form at least a part of the light channel 11 .
  • the above-mentioned at least two light-shielding layers can be divided into the first light-shielding layer 12A and the second light-shielding layer 12B; The hole 121 and the second diaphragm hole 122 on the second light shielding layer 12B.
  • the light-shielding layer includes more than two layers, the division continues in the same way.
  • the light-shielding layer includes two layers as an example for illustration.
  • the light beam carrying biological information can enter the optical sensor 20 through the first aperture 121 of the first light-shielding layer 12A and the second aperture 122 of the second light-shielding layer 12B in sequence, thereby being detected by the photosensitive pixel unit 211 on the optical sensor 20 Received.
  • the setting of the light-shielding layer is for the convenience of guiding the light beam carrying the biological information to be incident on the light-sensing area of the optical sensor 20 from the aperture hole of the light-shielding layer.
  • this application is not limited.
  • the above-mentioned light-shielding layer may include two layers, three layers or four layers, and the specific number of layers may be determined by those skilled in the art according to actual conditions.
  • FIG. 13 shows a structural schematic view of the projection of the first aperture 121 and the second aperture 122 on the optical sensor 20 when the light-shielding layer includes two layers.
  • the first aperture 121 shown in FIG. 13 is a hole provided on the first light-shielding layer 12A for guiding light beams through;
  • the second aperture 122 is provided on the second light-shielding layer 12A.
  • the aperture of the first aperture 121 is larger than the aperture of the second aperture 122, and the second aperture 122 is closer to the central area of the photosensitive pixel unit group 21 than the first aperture 121 .
  • the application does not limit the cross-sectional shapes of the first aperture hole 121 and the second aperture hole 122 .
  • the cross-sectional diameters of the first aperture hole 121 and the second aperture hole 122 may be one or more of circular, square, or irregular shapes.
  • the optical path guiding layer 10 may also include a microlens group 13 disposed on the light shielding layer.
  • the microlens group 13 may include a plurality of microlens units 131,
  • the microlens unit 131 may form at least a part of the light channel 11 .
  • the microlens unit 131 and the aperture can jointly form the light channel 11 .
  • the microlens unit 131 can converge and guide the light beams carrying biological information to a certain extent. That is, the microlens unit 131 can gather as many light beams carrying biological information as possible to guide them to the photosensitive area of the optical sensor 20 .
  • the light beams carrying biological information converged by the microlens unit 131 can pass through at least two apertures of the light-shielding layer in sequence, and then enter the optical sensor 20 to be received by the photosensitive pixel unit 211 of the optical sensor 20 .
  • the light beam carrying biological information may be received by a photosensitive pixel unit group 21 through a microlens unit 131 . That is, one microlens unit 131 corresponds to one photosensitive pixel unit group 21 .
  • FIG. 17 another aspect of the embodiment of the present application provides an electronic device, which may include a display screen 40 , and a biometric information identification module as described in any one of the foregoing below the display screen 40 . .
  • the user can place the carrier with individual biological characteristics such as fingers and palms on the biometric information identification area 41 of the display screen 40.
  • the light beam irradiated on the fingerprint path and reflected can convert the irradiated
  • the texture feature of the finger position is carried as fingerprint information, and the light beam carrying the fingerprint information enters the optical sensor 20 after being guided and transmitted by the optical path guide layer 10 in the biometric information identification module.
  • the light beam carrying biological information in a larger area can be incident on the optical sensor 20, so that the electronic device receives more light signals reflected from the fingerprint, thereby Obtain more fingerprint information.
  • the pixel collection range of the optical sensor 20 can be effectively increased, the identification accuracy of biometric information identification can be improved, and the electronic information can be reduced simultaneously.
  • the manufacturing cost of the equipment is reduced, the volume of the module is reduced, and more internal space is saved for the electronic equipment.
  • a biometric information identification area 41 may be provided on the display screen 40.
  • the biometric information identification area 41 may be a fingerprint identification area.
  • the biometric information identification area 41 may be It includes a plurality of subregions 411 corresponding to a plurality of photosensitive pixel unit groups 21 , and light beams carrying biometric information from the subregions 411 can be received by corresponding photosensitive pixel unit groups 21 through the optical channel 11 .
  • the number of the above-mentioned partitions 411 is not limited, for example, it may include 2 partitions 411 , 3 partitions 411 , 4 partitions 411 (as shown in FIG. 18 ) or 5 partitions 411 and so on.
  • the present application does not limit the shape of the partition 411, which may be a square or a polygon.
  • the shape of the partition 411 may correspond to the arrangement of the photosensitive pixel unit groups 21 of the optical sensor 20 .
  • the shape of the partition 411 may be square; if the photosensitive pixel unit group 21 is polygonal, the shape of the partition 411 is also polygonal.
  • the orthographic area of at least one partition 411 on the optical sensor 20 may be larger than the area of its corresponding photosensitive pixel unit group 21 . In this way, when the carrier with individual biological characteristics of the user is attached to the biological information identification area 41 of the display screen 40, each partition 411 can obtain as much biological information as possible, so that the light beam carrying the biological information is incident on the optical sensor 20. Photosensitive area.
  • the orthographic projection of at least two adjacent subregions 411 on the optical sensor 20 may have an overlapping area 412 . That is, as shown in FIG. 18 , two adjacent partitions 411 have overlapping regions 412 . In this way, the situation that the light beam carrying biological information located between the two partitions 411 cannot be received by the optical sensor 20 can be avoided, thereby improving the collection range of the light beam carrying biological information.
  • the above-mentioned overlapping area 412 can be rectangular, and the width W3 of the overlapping area can be 3-5 microns between.
  • the width W3 of the overlapping region may be 3 ⁇ m, 4 ⁇ m or 5 ⁇ m and so on.
  • the application discloses a biological information identification module and electronic equipment.
  • the biological information identification module includes an optical path guiding layer and an optical sensor; the optical path guiding layer includes a plurality of optical channels, the optical sensor includes a plurality of photosensitive pixel units, and at least two adjacent photosensitive pixel units form a photosensitive pixel unit group;
  • the module also includes a gap area arranged between at least two photosensitive pixel unit groups, and the light beam carrying biological information above the gap area is received by at least one photosensitive pixel unit through the optical channel.
  • the electronic device includes a display screen and a biological information identification module arranged under the display screen. The biological information identification module and electronic equipment can receive the light beams carrying biological information in a larger area without increasing the overall volume of the module.
  • biometric information identification module and electronic equipment of the present application are reproducible and can be applied in various industrial applications.
  • biometric information identification module and electronic equipment of the present application can be applied to the field of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供一种生物信息识别模组及电子设备,涉及电子器件技术领域。该生物信息识别模组包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元,相邻的至少两个感光像素单元组成感光像素单元组;生物信息识别模组还包括设置在至少两个感光像素单元组之间的间隙区,间隙区上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。该电子设备包括显示屏以及设置在显示屏下方生物信息识别模组。该生物信息识别模组及电子设备能够在不增加模组整体体积的情况下,接收更大区域范围内的携带生物信息的光束。

Description

生物信息识别模组及电子设备
相关申请的交叉引用
本申请要求于2021年8月23日提交中国国家知识产权局的申请号为202110970555.9、名称为“生物信息识别模组及电子设备”的中国专利申请的优先权,要求于2021年8月23日提交中国国家知识产权局的申请号为202121992729.3、名称为“生物信息识别模组及电子设备”的中国专利申请的优先权,要求于2021年7月7日提交中国国家知识产权局的申请号为202110768263.7、名称为“生物信息识别模组及电子设备”的中国专利申请的优先权,并且要求于2021年7月7日提交中国国家知识产权局的申请号为202121542761.1、名称为“生物信息识别模组及电子设备”的中国专利申请的优先权,这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子器件技术领域,具体涉及一种生物信息识别模组及电子设备。
背景技术
随着以手持移动终端为主导的终端电子设备智能化的高速发展,人体生物信息识别在电子设备中的应用越来越深入和广泛,从以前的通过生物信息识别解锁以唤醒电子设备,逐步发展到各种软件程序的身份识别、身份认证等。随着生物信息识别在电子设备中的广泛应用,生物信息识别的准确性以及电子设备,特别是显示类的电子设备对于指纹信息的识别能力和识别速度都随之提高。
相关技术中,应用于手机、平板电脑一类的电子设备上的生物信息识别,例如指纹识别,识别的方式主要为光学指纹识别,通常通过显示面板的光源照射指纹并反射,通过光学检测器件接收、记录或分析携带有特定生物信息的指纹反射光达到对指纹进行记录或者对特定指纹进行识别的功能。近年来,随着手机、平板电脑一类的电子设备的小型化要求,对于设置于电子设备内部的指纹识别模组的薄型化、小型化的要求也越来越高,如此则要求,实现指纹识别的光学检测器件的体积也要不断缩小,而为了保证对于生物信息识别的准确性,在显示屏上对于生物信息的采集面积至少应当保证在一个较小的面积范围内,这就导致指纹识别模组的结构难以进一步缩小,从而极大的影响了电子设备的小型化。
发明内容
本申请实施例提供一种生物信息识别模组及电子设备,能够在不增加模组整体体积的情况下,接收更大区域范围内的携带生物信息的光束。
本申请实施例提供了一种生物信息识别模组,该生物信息识别模组可以包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元,相邻的至少两个感光像素单元组成感光像素单元组;生物信息识别模组还包括设置在至少两个感光像素单元组之间的间隙区,间隙区上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。
可选地,光通道可以包括倾斜光通道,倾斜光通道与垂直于光学传感器表面的直线之间具有夹角。
可选地,感光像素单元可以包括:第一感光像素单元,第一感光像素单元通过倾斜光通道接收与第一感光像素单元相邻的间隙区上方的光束。
可选地,第一感光像素单元对应的倾斜光通道可以沿着光束的方向朝向感光像素单元组的中心倾斜。
可选地,感光像素单元可以包括:第一感光像素单元,第一感光像素单元通过倾斜光通道接收与除第一感光像素单元以外的其它感光像素单元相邻的间隙区上方的光束。
可选地,除第一感光像素单元以外的其它感光像素单元可以包括:在同一感光像素单元组中、位于第一感光像素单元对侧的感光像素单元。
可选地,在感光像素单元组内的、相对于该感光像素单元组的中心对称的两个感光像素单元对应的倾斜光通道可以在中心的上方相交。
可选地,与一个感光像素单元组对应的多个倾斜光通道中,相对于该感光像素单元组的中心对称的两个倾斜光通道的夹角可以相同。
可选地,与一个感光像素单元组对应的多个倾斜光通道中,与该感光像素单元组的中心等距的感光像素单元所对应的倾斜光通道的夹角可以相同。
可选地,与一个感光像素单元组对应的多个倾斜光通道中,与该感光像素单元组的中心距离近的倾斜光通道的夹角角度可以小于等于与该感光像素单元组的中心距离远的倾斜光通道的夹角角度。
可选地,光路引导层可以包括间隔设置的至少两层遮光层,在遮光层上可以形成有光阑孔,至少两层的遮光层上对应的至少两个光阑孔形成光通道的至少一部分。
可选地,光路引导层还可以包括在遮光层上设置的微透镜组,微透镜组包括多个微透镜单元,微透镜单元形成光通道的至少一部分。
可选地,携带生物信息的光束可以通过一个微透镜单元被一个感光像素单元组接收。
可选地,组成感光像素单元组的多个感光像素单元可以以N*M的形式组合,其中,N为大于等于1的整数,M为大于等于2的整数。
可选地,间隙区可以在光学传感器上形成至少一个带状区域或者至少一个横纵交叉连接的区域。
可选地,间隙区可以包括用于排设电路信号线的第一预留区。
可选地,间隙区还可以包括用于设置电路元件的第二预留区。
本申请实施例的另一方面,提供一种电子设备,该电子设备可以包括显示屏,以及设置在显示屏下方的如前述任意一项的生物信息识别模组。
可选地,在显示屏上可以设置有生物信息识别区,生物信息识别区包括与多个感光像素单元组对应的多个分区,来自分区的携带生物特征信息的光束通过光通道由对应的感光像素单元组接收。
可选地,至少一个分区在光学传感器上的正投影面积可以大于其对应的感光像素单元组的面积。
可选地,相邻的至少两个分区可以在光学传感器上的正投影具有重叠区。
可选地,重叠区可以为矩形,重叠区的宽度可以在3-5微米之间。
本申请的有益效果至少可以包括:
本申请提供的生物信息识别模组,包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元,相邻的至少两个感光像素单元组成感光像素单元组;生物信息识别模组还包括设置在至少两个感光像素单元组之间的间隙区,间 隙区上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。这样,在使用时,携带生物信息的光束可以通过多个光通道传输至光学传感器,从而被光学传感器的感光像素单元接收并识别;同时,位于间隙区上方的携带生物信息的光束可以经光通道被至少一个感光像素单元接收,其正常传输也不会受到影响。本申请通过将间隙区设置于至少两个感光像素单元组之间,且使得间隙区上方的携带生物信息的光束经光通道被至少一个感光像素单元接收,如此,一方面,本申请能够使得更大区域范围内的携带生物信息的光束入射光学传感器,即在感光像素单元的总面积(即感光区域的面积)不变的情况下,增大了显示屏的生物信息采集面积,从而使得生物信息识别模组能够接收到更多的携带生物信息的光束的光信号,进而获得更多的生物信息,从而有利于生物信息识别的精准性;另一方面,在不必增加显示屏的生物信息采集面积的情况下,本申请可以提高光学传感器的感光像素单元的总面积(即感光区域的面积)的有效利用率,减小光学传感器的感光区域面积,从而缩小光学传感器的体积,进而为采用本申请提供的生物信息识别模组的电子设备节省出更多的内部空间,同时可以降低生物信息识别模组的成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请实施例提供的一种生物信息识别模组的结构示意图之一;
图2是图1中A-A处的断面图;
图3是本申请实施例提供的生物信息识别模组中光学传感器的结构示意图之一;
图4是本申请实施例提供的生物信息识别模组中光学传感器的结构示意图之二;
图5是本申请实施例提供的生物信息识别模组中光学传感器的结构示意图之三;
图6是图3中B-B处的断面图;
图7是图3中C-C处的断面图之一;
图8是图3中C-C处的断面图之二;
图9是图3中C-C处的断面图之三;
图10是本申请实施例提供的生物信息识别模组中光学传感器的结构示意图之四;
图11是图2中D-D处的断面图;
图12是本申请实施例提供的一种生物信息识别模组的结构示意图之二;
图13是本申请实施例提供的一种生物信息识别模组中光阑孔映射至光学传感器上的半透视示意图之一;
图14是本申请实施例提供的一种生物信息识别模组中光阑孔映射至光学传感器上的半透视示意图之二;
图15是本申请实施例提供的一种生物信息识别模组中光阑孔映射至光学传感器上的半透视示意图之三;
图16是本申请实施例提供的一种生物信息识别模组的结构示意图之三;
图17是本申请实施例提供的一种电子设备的结构示意图;
图18是本申请实施例提供的一种电子设备中显示屏透视后与感光像素单元组和间隙区 的位置关系的半透视示意图。
图标:10-光路引导层;11-光通道;111-倾斜光通道;θ-倾斜光通道与垂直于光学传感器表面的直线之间的夹角;12A-第一遮光层;12B-第二遮光层;121-第一光阑孔;122-第二光阑孔;13-微透镜组;131-微透镜单元;20-光学传感器;21-感光像素单元组;211、211a、211b、211c、211d、211e、211f、211g、211h、211i、211j、211n、211r、211s、211t、211u、211v-感光像素单元;211A-第一感光像素单元;211B-其他感光像素单元;30-间隙区;31-第一间隙区;32-第二间隙区;40-显示屏;41-生物信息识别区;411-分区;412-重叠区;W3-重叠区的宽度。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
生物识别技术已广泛地应用到各种终端设备或电子装置上。生物特征识别技术包括但不限于指纹识别、掌纹识别、静脉识别、虹膜识别、人脸识别、活体识别、防伪识别等技术。其中,指纹识别通常包括光学指纹识别、电容式指纹识别和超声波指纹识别。随着全面屏技术的兴起,可以将指纹识别模组设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹识别;或者,也可以将光学指纹识别模组的部分或者全部集成至电子设备的显示屏内部,从而形成屏内(In-display)光学指纹识别。所述显示屏可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示屏或液晶显示屏(LiquidCrystal Display,LCD)等。指纹识别方法通常包括指纹图像的获取、预处理、特征提取、特征匹配等步骤。上述步骤中的部分或者全部可以通过传统计算机视觉(Computer Vision,CV)算法实现,也可以通过基于人工智能(Artificial Intelligence,AI)的深度学习算法实现。指纹识别技术可以应用在智能手机、平板电脑、游戏设备等便携式或移动终端,以及智能门锁、汽车、银行自动柜员机等其他电子设备,以用于指纹解锁、指纹支付、指纹考勤、身份认证等。
应用于显示屏下的生物信息识别模组,通常需要通过接收、记录或分析携带有特定生物信息的反射光来实现对特定生物信息所属的个体的确认和识别,对于设置于生物信息识别模组上的显示屏来说,其自身首先需要实现所需的显示功能,因此,能够划分出来用于进行屏下生物信息识别的采集面积非常有限,而对于生物信息的提取,又要求需要有足够的携带生物信息的光束作为基础才能够得出准确的识别信息,在此基础上,模组能够获得的携带有生物信息的光束越多,其识别准确性、抗干扰能力、对于造假的识别能力等才能 够相应的得到提高。因此,如何在此有限的生物信息采集面积内充分的获取携带有特定生物信息的反射光束,并对这些反射光束进行处理,以从反射光束中获得尽可能多的特定的生物信息,从而有效的提高对于生物特征信息所属人进行确认和识别的准确性,是生物信息识别模组在具体应用中亟待解决和提高的重要问题。
当然,生物信息识别模组也未必需要必须集成于显示装置的显示屏下,在其他可行的应用场景中,生物信息模组可以作为单独的用于生物信息识别的模组存在。例如,可以在生物信息模组上设置透明的保护玻璃板或保护膜层,从而使得携带有生物信息的光束透过保护玻璃板入射至生物信息识别模组,进而被生物信息识别模组识别。
基于此,请参照图1和图2,本申请实施例提供了一种生物信息识别模组,该生物识别模组可以为指纹识别模组,该生物识别模组可以包括光路引导层10以及光学传感器20;光路引导层10可以包括多个光通道11,光学传感器20可以包括多个感光像素单元211,相邻的至少两个感光像素单元211组成感光像素单元组21;生物信息识别模组还可以包括设置在至少两个感光像素单元组21之间的间隙区30,间隙区30上方的携带生物信息的光束可以经光通道11被至少一个感光像素单元211接收。
需要说明的是,本实施例的生物信息识别模组可以应用于常见的终端设备,例如手机、平板电脑等手持显示设备,或者电视机、台式电脑、空调、冰箱等家用液晶显示类电器。另外,该生物信息识别模组用于对携带生物信息的光束进行识别,示例地,该携带生物信息的光束可以是来自人体手掌的掌纹、掌静脉、关节纹路、虹膜、人脸等。作为示例而非限制,生物信息可以为来自人体手指的指纹。为了便于理解,下文将主要以现实生活中较为常见的手持显示设备上的指纹识别为例进行示例说明。
图2为本申请实施例提供的生物信息识别模组的结构示意图之一,如图2所示,生物信息识别模组可以包括沿图2中所示方位上、下设置的光路引导层10和光学传感器20。其中,光路引导层10可以位于光学传感器20的上方,且光路引导层10可以包括多个光通道11,该多个光通道11可以配置成用于供携带生物信息的光束通过,从而入射至光学传感器20。需要说明的是,在本实施例中,上述多个光通道11可以呈矩阵形式排布于光路引导层10上,也可以呈环形排布于光路引导层10上,本申请不做具体限制。还有,光通道11的截面形状可以是呈倾斜的方形(平行四边形),也可以是呈倾斜的上大、下小的梯形等,只要能使得携带生物信息的光束尽可能多的通过该光通道11顺利被光学传感器20接收即可。例如,当光通道11的截面形状为倾斜的梯形时,为了减小光束在光通道11内的光损失,还可以在光通道11内对应设置反射膜等,具体地,当光通道11的截面形状为倾斜的梯形时,该光通道11内对应设置的光学元件本领域技术人员可以根据实际情况进行具体设置和排布。
如图3所示,上述光学传感器20可以包括多个感光像素单元211,相邻的感光像素单元211可以组成感光像素单元组21。其中,光学传感器20的每个感光像素单元211都能够接收入射的携带有生物信息的光束。其中,组成感光像素单元组21的感光像素单元211的数量和位置在本申请实施例中未进行具体的限定。同一个感光像素单元组21中的多个感光像素单元211应当相互邻接,例如,至少相互邻接的两个感光像素单元211可以组成一个感光像素单元组21,又例如,依次相邻的三个感光像素单元211可以组成一个呈矩形的感光像素单元组21,又例如,还可以是,组成感光像素单元组21的多个感光像素单元211 以N*M的形式组合,其中,N为大于等于1的整数,M为大于等于2的整数。示例地,组成感光像素单元组21的多个感光像素单元211以2*2、2*3、3*3、4*4、4*3或者5*5等形式呈现,本申请不再一一列举。在本实施例中,N和M可以相等也可以不相等(当N和M相等时,则为组成感光像素单元组21的多个感光像素单元211以N*N的形式组合)。但须注意的是,当组成感光像素单元组21的多个感光像素单元211以N*M的形式组合时,由于M为大于等于2的整数,所以本申请组成感光像素单元组21的多个感光像素单元不包含1*1的形式。即,只要不是由1个感光像素单元211作为一个感光像素单元组21的形式,均属于本申请实施例提供的感光像素单元组21的可组合形式,在此不做穷举。
如图3所示,图3示出的是组成感光像素单元组21的多个感光像素单元211以3*3的形式呈现,且感光像素单元组21包括4组时的结构示意图。在这里,需要说明的是,当组成感光像素单元组21的多个感光像素单元211以3*3的形式呈现时,光学传感器20不限于包括4组感光像素单元组21,可以是大于4组,图3仅为本申请给出的一种示例;如图4所示,图4示出的是组成感光像素单元组21的多个感光像素单元211以2*2的形式呈现,且感光像素单元组21包括4组时的结构示意图。同样地,当组成感光像素单元组21的多个感光像素单元211以2*2的形式呈现时,光学传感器20不限于包括4组感光像素单元组21,其可以是大于4组。如图5所示,图5示出的是组成感光像素单元组21的多个感光像素单元211以2*4的形式呈现,且感光像素单元组21包括2组时的结构示意图。同样地,当组成感光像素单元组21的多个感光像素单元211以2*4的形式呈现时,光学传感器20不限于包括2组感光像素单元组21,其可以是大于2组。
需要说明的是,光学传感器20的感光接收面可以为平面,也可以根据实际需要设计为突出的弧面、凹陷的弧面、斜面等,在本实施例中,采用通常常见的形式,即光学传感器20的感光接收面设计为平面,那么,组成光学传感器20的感光接收面的每个感光像素单元组21的接收面也为平面,组成一个感光像素单元组21的多个感光像素单元211的接收侧共同形成一个感光像素单元组21的平面的接收面,多个感光像素单元组21的感光接收面共同作为光学传感器20的感光区域。
请参照图3至图5所示,本实施例提供的生物信息识别模组还可以包括设置在至少两个感光像素单元组21之间的间隙区30。示例地,上述间隙区30可以在相邻的两个感光像素单元组21之间均设置(如图1和图3);或者,也可以在部分相邻的感光像素单元组21之间。例如,可以仅设置于上下分布的感光像素单元组21之间(如图4和图5)。又例如,可以仅设置于左右分布的感光像素单元组21之间(图未示)。再例如,可以设置于部分上下分布的感光像素单元组21之间,和/或,部分左右分布的感光像素单元组21之间(图未示)。其中,本申请将间隙区30设置于至少两个感光像素单元组21之间,且使得间隙区30上方的光束被至少一个感光像素单元211接收,可以扩大生物信息采集面积。示例地,在一种可行的实施例中,该间隙区30可以用于电路信号线的排布,以收集电信号。在另一种可行的实施例中,该间隙区30可以用于电路元件在其上进行排布。在至少两个感光像素单元组21之间设置间隙区30并在间隙区排布电路信号线后,就能够在光学传感器20上不再设置走线区域,从而节省光学传感器20的结构尺寸。
由于本实施例提供的间隙区30是设置在至少两个感光像素单元组21之间的,因此,在一定程度上,本申请的电路信号线和/或电路元件可以尽可能减少对光学传感器20的整 体面积的占用,从而节省出更多的面积用于排布感光像素单元211,进而可以实现在不增加显示屏40的生物信息采集面积的情况下,有效减小了光学传感器20的感光区域面积,降低模组的成本,使得生物信息识别模组的结构尺寸利用率尽可能的最大化,进而为采用本申请实施例的生物信息识别模组的电子设备节省出更多的内部空间。
其中,本申请实施例中对于间隙区30的设置数量和设置位置不做具体限定,例如,可以为在任意两个感光像素单元组21之间均设置间隙区30,从而在整个光学传感器20上形成由间隙区30组成的横纵交叉的网格状,可以为以相同或平行的方向连续形成的多个间隙区30,也可以为其他的规律或不规律的方式形成的多个间隙区30的各种组合形状。
在本申请的一种可实现的实施例中,上述间隙区30的宽度可以在10μm至30μm之间,示例地,间隙区30的宽度可以为10μm、15μm、20μm、25μm或者30μm等,本申请不再一一列举。具体地,对于间隙区30的数量、位置、形状以及尺寸等,本领域技术人员可以根据所需设置的电路信号线和/或电路元件的情况进行具体设置。
另外,在图4中,感光像素单元组21呈矩阵形式排布,对应地,上述间隙区30的形状呈长方形。应理解,该长方形的间隙区30仅为对应矩阵形式排布的感光像素单元211时所呈现的一种情况,并非是对本申请的间隙区30的形状的唯一限制或者是本申请实施例唯一可以支持的方案。间隙区30的形状应当与多个感光像素单元组21的排布形式有关,具体形状根据实际情况而定,本申请不做限定。
示例地,间隙区30可以在光学传感器20上形成至少一个带状区域或者至少一个横纵交叉连接的区域。如图3所示,图3为光学传感器20的结构示意图之一,在该情况下,间隙区30为形成在光学传感器20上一个横纵交叉连接的区域;如图4所示,图4为光学传感器20的结构示意图之二,在该情况下,间隙区30为形成在光学传感器20上一个带状区域。当然,在其他的实施例中,上述间隙区30还可以是形成在光学传感器20上多个横纵交叉连接的区域或者是形成在光学传感器20上多个带状区域,在前述说明中,已经对间隙区30的形成形式进行了举例说明,此处不再枚举。
此外,在本申请实施例的一种可选的实施方式中,上述间隙区30可以包括用于排设电路信号线的第一预留区;和/或,上述间隙区30还可以包括用于设置电路元件的第二预留区。示例地,当间隙区30为形成在光学传感器20上的一个横纵交叉连接的区域时,第一预留区和第二预留区可以分别为横向设置的区域和纵向设置的区域;当间隙区30为形成在光学传感器20上的多个横纵交叉连接的区域时,第一预留区可以设置于一个横纵交叉的区域上,第二预留区可以设置于另一个横纵交叉的区域上;当间隙区30为形成在光学传感器20上一个带状区域时,第一预留区和第二预留区可以分别为该带状区域的不同位置;当间隙区30为形成在光学传感器20上多个带状区域时,第一预留区可以设置于一个带状区域上,第二预留区可以设置于另一个带状区域上。
在本申请实施例中,间隙区30上方的携带生物信息的光束可以经过光通道11被至少一个感光像素单元211接收,这样,本申请设置的间隙区30也不会对位于其上方的携带生物信息的光束的正常接收造成影响(位于间隙区30上方的携带生物信息的光束可以被至少一个感光像素单元211接收),如此一来,本申请提供的生物信息识别模组将可以在不增加显示屏40的生物信息采集面积的情况下,有效减小光学传感器20的感光区域面积,从而减小光学传感器20的体积,降低生物信息识别模组的成本。
请参照图6所示,图6为图3所示的A-A处的断面图,通过图3和图6可以看出,位于间隙区30上方的携带生物信息的光束可以通过光通道11被至少一个感光像素单元211接收。需要说明的是,图3和图6所示的仅为本申请实施例的一种情况,通过使光通道11倾斜,位于横向设置的间隙区30上方的携带生物信息的光束被感光像素单元组21中的一个特定的感光像素单元211(对应至图3中,即为3*3形式的感光像素单元组21的感光像素单元211g)接收的情况。在其他的实施例中,位于横向设置的间隙区30上方的携带生物信息的光束还可以是被感光像素单元组21中靠近中心的一个或多个感光像素单元211所接收等。
综上,本申请实施例提供的生物信息识别模组,包括光路引导层10以及光学传感器20;光路引导层10包括多个光通道11,光学传感器20包括多个感光像素单元211,相邻的至少两个感光像素单元组21成感光像素单元组21;生物信息识别模组还包括设置在至少两个感光像素单元组21之间的间隙区30,间隙区30上方的携带生物信息的光束经光通道11被至少一个感光像素单元211接收。这样,在使用时,携带生物信息的光束可以通过多个光通道11传输至光学传感器20,从而被光学传感器20的感光像素单元211接收并识别;同时,位于间隙区30上方的携带生物信息的光束可以经光通道11被至少一个感光像素单元211接收,其正常传输也不会受到影响。本申请通过将间隙区30设置于至少两个感光像素单元组21之间,且使得间隙区30上方的携带生物信息的光束经光通道11被至少一个感光像素单元211接收,如此,一方面,本申请能够使得更大区域范围内的携带生物信息的光束入射光学传感器20,即在感光像素单元211的总面积(即感光区域的面积)不变的情况下,增大了显示屏40的生物信息采集面积,从而使得生物信息识别模组能够接收到更多的携带生物信息的光束的光信号,进而获得更多的生物信息,从而有利于生物信息识别的精准性;另一方面,在不必增加显示屏40的生物信息采集面积的情况下,本申请可以提高光学传感器20的感光像素单元211的总面积(即感光区域的面积)的有效利用率,减小光学传感器20的感光区域面积,从而缩小光学传感器20的体积,进而为采用本申请提供的生物信息识别模组的电子设备节省出更多的内部空间,同时可以降低生物信息识别模组的成本。
请参照图2所示,在本申请实施例的一种可实现的实施方式中,光路引导层10的光通道11可以包括倾斜光通道111,倾斜光通道111与垂直于光学传感器20表面的直线之间可以具有夹角θ。如此,在光学传感器20的感光区域面积不变的情况下,由于光通道11中包括倾斜光通道111,这样,位于显示屏40外侧的携带生物信息的光束(即与光学传感器20正对的显示屏40的区域之外的区域)也能够通过倾斜光通道111的导向作用入射至光学传感器20的感光区域,从而使得携带生物信息的光束的入光范围增大,进而使得光学传感器20能够尽可能地接收到上方更大面积范围内的携带有生物信息的光束。由图2中示出的方向能够直观看到,本实施例提供的生物信息识别模组的感光像素单元组21可以接收到位于间隙区上方的携带生物信息的光束。很显然,本申请由于将光通道11设置为倾斜光通道111,可以使得光学传感器20接收到比其自身的感光区域的面积更大生物信息的采集面积。
示例地,上述倾斜光通道111与垂直于光学传感器20表面的直线之间的夹角θ可以在0°至45°之间。示例地,倾斜光通道111与垂直于光学传感器20表面的直线之间的夹角θ可以为0°、2°、5°、10°、15°、30°、40°或者45°等。
需要说明的是,光路引导层10的光通道11包括倾斜光通道111的同时,同样可以还包括不呈倾斜状态的光通道11,例如,可以使得位于光路引导层10最中心的倾斜光通道111与垂直于光学传感器20表面的直线之间的夹角θ为0°(即可以认为此处的光通道11是不呈倾斜状态、不具有该夹角θ的光通道11)。示例地,在一种实施例中,与感光像素单元组21对应的多个光通道11中,自中心的光通道11向远离中心的光通道11的直线方向排布的倾斜光通道111的夹角θ的角度可以呈递增的形式设置。
在这里,需要说明的是,本申请对光通道11的形成方式不做限定。例如,光通道11可以由准直孔组成;又例如,光通道11也可以由至少两层光阑孔组成;再例如,光通道11还可以由微透镜和至少两层光阑孔组成。请参照图1和图13至图15,图中示出的是光通道11的上部截面和下部截面映射到光学传感器20上的结构示意图,需要说明的是,在图1和图13至图15中大圆表示光通道11上部的横截面,例如可以是最上层的光阑孔;图中小圆表示光通道11下部的横截面,例如,可以是最下层的光阑孔;图14和图15中的示出的带箭头的虚线表示光束的传输方向(即光束朝向感光像素单元组21的中心传输)。
优选地,可以将最下层光阑孔的中心与像素单元的中心对位,而不以图中画出的示例为限制。应理解,本申请实施例中光通道11仅是以上大下小(即上部横截面孔径大,下部横截面孔径小)的形式进行举例说明,不应当看做是对本申请的光通道11的形状的唯一限制。示例地,在其他可行的实施例中,光通道11的孔径还可以是上下一致的。
在本申请实施例的一种可行的实施方式中,感光像素单元211可以包括:第一感光像素单元211A,第一感光像素单元211A通过倾斜光通道111接收与第一感光像素单元211A相邻的间隙区30上方的光束。
请参照图3和图6所示,以组成感光像素单元组21的多个感光像素单元211以3*3的形式组合为例进行说明,第一感光像素单元211A为该感光像素单元组21中的感光像素单元211g,则该第一感光像素单元211A可以接收水平方向的间隙区30上方的光束。需要说明的是,当第一感光像素单元211A为该感光像素单元组21中的感光像素单元211i时,则该第一感光像素单元211A可以接收如图3所示的水平方向的间隙区30上方的光束,也可以接收竖直方向的间隙区30上方的光束。
当生物信息识别模组只包括带状区域时,第一感光像素单元211A可以通过倾斜光通道111接收与第一感光像素单元211A相邻的间隙区30上方的光束。以组成感光像素单元组21的多个感光像素单元211为如图5所示的2*4的形式组合为例进行说明,假设第一感光像素单元211A为感光像素单元组21的感光像素单元211j为例,该第一感光像素单元211A可以接收其上方的间隙区30(即图5中的第二间隙区32)上方的光束;假设第一感光像素单元211A为感光像素单元组21的感光像素单元211n为例,该第一感光像素单元211A可以接收其下方的间隙区30(即图5中的第一间隙区31)上方的光束。
当生物信息识别模组至少包括横纵交叉连接的区域时,第一感光像素单元211A可以通过倾斜光通道111接收与第一感光像素单元211A相邻的其中一个或者多个间隙区30上方的光束。以组成感光像素单元组21的多个感光像素单元211以如图3所示的3*3的形式组合为例进行说明,假设第一感光像素单元211A为感光像素单元组21的感光像素单元211v为例,该第一感光像素单元211A可以接收其上方的间隙区30和/或右边的间隙区30上方的光束。
另外,请参照图9,在本申请实施例的一种实施方式中,第一感光像素单元211A对应的倾斜光通道111可以沿着光束的方向朝向感光像素单元组21的中心倾斜。这样,所有携带生物信息的光束能够都朝向感光像素单元组21的中心倾斜入射,从而使得入射至光学传感器20的感光区域的光束尽可能的增多,而光学传感器20由于通过间隙区30进行线路的走线等排布,不需要再专门划分走线区域,所以光学传感器20的面积还能够相应的减少,从而缩小整个模组的体积。
其中,第一感光像素单元211A对应的倾斜光通道111沿着光束的方向朝向感光像素单元组21的中心倾斜,可以包括多种情况。例如,当间隙区30只包括带状区域时,上述中心可以为感光像素单元组21的中心轴线。示例地,如图14所示,在这里,需要说明的是,图14中示出的带箭头的虚线表示光束的传输方向,即光束朝向感光像素单元组21的中心传输。图14中的直径较大的圆孔是光通道11远离光学传感器20的一端的横截面,直径较小的圆孔是光通道11靠近光学传感器20的一端的横截面。此时第一感光像素单元211A(假设为每个感光像素单元组21第一排左边第一个感光像素单元211)对应的倾斜光通道111沿光束的方向朝向感光像素单元组21的水平的中心轴线倾斜。示例地,当每个感光像素单元组21第一排左边第一个感光像素单元211作为该感光像素单元组21的第一感光像素单元211A时,第一感光像素单元211A上方的间隙区(即第二间隙区32)的光束由第一感光像素单元211A接收。示例地,当每个感光像素单元组21第二排左边第一个感光像素单元211作为该感光像素单元组21的第一感光像素单元211A时,第一感光像素单元211A下方的部分间隙区(即第一间隙区31)的光束由第一感光像素单元211A接收。
又例如,当间隙区30包括至少一个横纵交叉连接的区域时,示例地,如图15所示,此时第一感光像素单元211A对应的倾斜光通道111可以沿光束的方向朝向感光像素单元组21的水平的中心轴线倾斜(假设第一感光像素单元211A为每个感光像素单元组21第一排左边第一个感光像素单元211);第一感光像素单元211A对应的倾斜光通道111还可以沿光束的方向朝向感光像素单元组21的几何中心倾斜(假设第一感光像素单元211A为每个感光像素单元组21第一排右边第一个感光像素单元211);第一感光像素单元211A对应的倾斜光通道111又可以沿光束的方向朝向感光像素单元组21的竖直的中心轴线倾斜(假设第一感光像素单元211A为每个感光像素单元组21第二排右边第一个感光像素单元211)。
在另一种可行的实施例中,可选地,感光像素单元211可以包括:第一感光像素单元211A,第一感光像素单元211A通过倾斜光通道111接收与除第一感光像素单元211A以外的其它感光像素单元211相邻的间隙区30上方的光束。
换言之,第一感光像素单元211A可以通过倾斜光通道111接收除自身以外的其他感光像素单元211B相邻的间隙区30上方的光束。请参照图3和图11,当第一感光像素单元211A为该3*3形式组合的感光像素单元组21中的一个感光像素单元211时,假设第一感光像素单元211A为感光像素单元211i,则该第一感光像素单元211A可以接收与感光像素单元211h相邻的间隙区30上方的光束。应理解,第一感光像素单元211A接收与感光像素单元211h相邻的间隙区30上方的光束仅为本申请的一种示例,并非是对当感光像素单元211i作为第一感光像素单元211A时,其所接收的其它感光像素单元211相邻的间隙区30上方的光束的特定限制。例如,在其他的实施例中,当第一感光像素单元211A为感光像素单元211i时,该第一感光像素单元211A还可以是接收与感光像素单元211f相邻的间隙区30上 方的光束或者感光像素单元211g相邻的间隙区30上方的光束等等,本申请不再一一列举。
其中,在本申请的一些实施例中,上述除第一感光像素单元211A以外的其它感光像素单元211可以包括:在同一感光像素单元组21中、位于第一感光像素单元211A对侧的感光像素单元211。在这里,需要说明的是,对侧的感光像素单元211包括与第一感光像素单元211A上、下镜面相对的感光像素单元211、与第一感光像素单元211A左、右镜面相对的感光像素单元211,以及第一感光像素单元211A对角的感光像素单元211。示例地,以第一感光像素单元211A为图3示出的3*3形式组合的感光像素单元组21中的一个感光像素单元211为例(为便于描述,假设该第一感光像素单元211A为感光像素单元211a),这时,第一感光像素单元211A可以接收与感光像素单元211a上、下镜面相对的感光像素单元211g相邻的间隙区30上方的光束;或者,第一感光像素单元211A可以接收与感光像素单元211a左、右镜面相对的感光像素单元211c相邻的间隙区30上方的光束;再或者,第一感光像素单元211A可以接收与感光像素单元211a对角的感光像素单元211i相邻的间隙区30上方的光束。
可以包括第一感光像素单元211A上方的感光像素单元211(感光像素单元211b)、第一感光像素单元211A下方的感光像素单元211(感光像素单元211h)、第一感光像素单元211A左边的感光像素单元211(感光像素单元211d)、第一感光像素单元211A右边的感光像素单元211(感光像素单元211f)、第一感光像素单元211A对角的感光像素单元211(感光像素单元211g、第一感光像素单元211c、第一感光像素单元211a、第一感光像素单元211i)。
在本申请实施例的一种实施方式中,在感光像素单元组21内的、相对于该感光像素单元组21的中心对称的两个感光像素单元211对应的倾斜光通道111可以在中心的上方相交,使得第一感光像素单元211A通过倾斜光通道111接收在同一感光像素单元组21中、与第一感光像素单元211A中心对称的感光像素单元211相邻的间隙区30上方的光束。
示例地,当两个倾斜光通道111在感光像素单元组21的中心的上方相交时,为便于理解,请参照图3和图7所示,在一种可实现的方式中,本实施例以组成感光像素单元组21的多个感光像素单元211以3*3的形式组合,以相对于该感光像素单元组21的中心对称的两个感光像素单元211分别为感光像素单元211d和感光像素单元211f为例,在对该两个感光像素单元211的连线所在平面断面可以得到如图7所述的结构示意图,此时,两个感光像素单元211分别对应的倾斜光通道111在感光像素单元组21的中心的上方相交。当组成感光像素单元组21的多个感光像素单元211以3*3的形式组合时,感光像素单元211d相邻的间隙区30上方的光束可以通过对应的倾斜光通道111被感光像素单元211f接收,感光像素单元211f相邻的间隙区30上方的光束可以通过对应的倾斜光通道111被感光像素单元211d接收。
示例地,在另一种可实现的方式中,还可以为使得两个倾斜光通道111在光路引导层10内形成交叠区域,为便于理解,请参照图3和图8所示,仍旧以相对于该感光像素单元组21的中心对称的两个感光像素单元211分别为感光像素单元211d和感光像素单元211f为例,对该两个感光像素单元211的连线所在的平面断面可以得到如图8所述的结构示意图,此时,两个感光像素单元211分别对应的倾斜光通道111在感光像素单元组21的中心的上方且在光路引导层10内呈相交设置。需要说明的是,图8中示出的光路引导层10为 一个较厚的层级,光通道11包括在其中完整的形成,若光路引导层10包括多个遮光层,倾斜光通道111的相交点也可以位于两个遮光层之间。
在本实施例中,在感光像素单元组21内的、相对于该感光像素单元组21的中心对称的两个感光像素单元211对应的倾斜光通道111在中心的上方也可以不相交。示例地,为便于对比理解,请结合如图3和图9所示,相对于该感光像素单元组21的中心对称的两个感光像素单元211分别通过各自对应的倾斜光通道111接收与自身相邻的间隙区30上方的光束,而非接收与对方相邻的间隙区30上方的光束。当然,这种情况仅为本申请提供的在感光像素单元组21内的、相对于该感光像素单元组21的中心对称的两个感光像素单元211对应的倾斜光通道111在中心的上方不相交的一种形式,不应当看作是本申请的限制。
在本申请实施例的一种实施方式中,与一个感光像素单元组21对应的多个倾斜光通道111中,相对于该感光像素单元组21的中心对称的两个倾斜光通道111的夹角相同。例如,如图3和图7所示,当组成感光像素单元组21的多个感光像素单元211以3*3的形式组合时,感光像素单元211d对应的倾斜光通道111与感光像素单元211f对应的倾斜光通道111分别与垂直于光学传感器20表面的直线之间的夹角相等。
示例地,在另一种实施例中,与一个感光像素单元组21对应的多个倾斜光通道111中,与该感光像素单元组21的中心等距的感光像素单元211所对应的倾斜光通道111的夹角可以相同。
以图3所示的组成感光像素单元组21的多个感光像素单元211以3*3的形式组合为例进行说明,则对应地,除感光像素单元211e对应的倾斜光通道111之外,其余的感光像素单元211对应的倾斜光通道111分别与该感光像素单元组21的中心线之间的夹角θ的角度是相等的。当感光像素单元组21呈其他形式组合时,本领域技术人员可以同理推导得到,故本申请不再赘述。
示例地,在再一种实施例中,与一个感光像素单元组21对应的多个倾斜光通道111中,与该感光像素单元组21的中心距离近的倾斜光通道111的夹角角度可以小于等于与该感光像素单元组21的中心距离远的倾斜光通道111的夹角θ的角度。
请参考图2所示,即越靠近该感光像素单元组21中心的感光像素单元211,其对应的倾斜光通道111与感光像素单元组21的中心线之间的夹角θ越小;反之,夹角θ越大。以图10所示的组成感光像素单元组21的多个感光像素单元211以4*4的形式组合为例进行说明,感光像素单元组21的感光像素单元211r、感光像素单元211s、感光像素单元211t、感光像素单元211u分别对应的倾斜光通道111与感光像素单元组21的中心线之间的夹角θ的角度小于该感光像素单元组21的其他感光像素单元211B对应的倾斜光通道111与感光像素单元组21的中心线之间的夹角θ的角度。在这里,需要说明的是,每个感光像素单元组21的倾斜光通道111的倾斜角度可以是一致的。换言之,每个感光像素单元组21可以完全相同(请参照图2所示)。
请再结合参照图12和图13,在本申请的一种可选的实施例中,光路引导层10可以包括间隔设置的至少两层遮光层,在遮光层上可以形成有光阑孔,至少两层的遮光层上对应的至少两个光阑孔形成光通道11的至少一部分。
为便于描述和理解,上述至少两层遮光层可以分述为第一遮光层12A和第二遮光层12B;遮光层上的光阑孔可以分为位于第一遮光层12A上的第一光阑孔121和位于第二遮光层 12B上的第二光阑孔122。其中,当遮光层包括超过两层时,则同理继续划分。以下本实施例中将以遮光层包括两层为例进行示例说明。携带生物信息的光束能够依次通过第一遮光层12A的第一光阑孔121和第二遮光层12B的第二光阑孔122入射至光学传感器20,从而被光学传感器20上的感光像素单元211所接收。
应理解,遮光层的设置是为了便于引导携带生物信息的光束自遮光层的光阑孔入射至光学传感器20的感光区域上,具体地,光阑孔的设置可根据光通道11的倾斜程度设置,本申请不做限制。示例地,上述遮光层可以包括两层、三层或者四层等,具体层数本领域技术人员可以根据实际情况而定。
请再结合参照图13,图13示出的是遮光层包括两层时,第一光阑孔121和第二光阑孔122投影在光学传感器20上的结构示意图。在这里,需要说明的是,图13所示出的第一光阑孔121为设置于第一遮光层12A上的用于引导光束通过的孔;第二光阑孔122是设置于第二遮光层12B上的用于引导光束通过的孔。在本实施例中,第一光阑孔121的孔径大于第二光阑孔122的孔径,且第二光阑孔122相对第一光阑孔121而言更靠近感光像素单元组21的中心区域。这样,便可以实现光束依次自第一光阑孔121和第二光阑孔122后光束是呈朝向感光像素单元211的中心收敛的。除此之外,本申请对第一光阑孔121和第二光阑孔122的截面形状也不做限制。示例地,第一光阑孔121和第二光阑孔122的截面直径可以为圆形、方形或者不规则图形中的一种或者多种等。
请再结合参照图16,在本申请实施例的一种实施方式中,光路引导层10还可以包括在遮光层上设置的微透镜组13,微透镜组13可以包括多个微透镜单元131,微透镜单元131可以形成光通道11的至少一部分。这样一来,微透镜单元131和光阑孔便可以共同形成光通道11。
其中,微透镜单元131能够对携带生物信息的光束起到一定程度的汇聚和导向作用。即微透镜单元131能够汇聚尽可能多的携带生物信息的光束以导向至光学传感器20的感光区域中。通过微透镜单元131汇聚后的携带生物信息的光束能够依次经过至少两层遮光层的光阑孔后入射至光学传感器20,从而被光学传感器20的感光像素单元211所接收。
在本申请实施例的一种实施方式中,携带生物信息的光束可以通过一个微透镜单元131被一个感光像素单元组21接收。即,一个微透镜单元131对应一个感光像素单元组21。
请再结合参照图17,本申请实施例的另一方面,提供一种电子设备,该电子设备可以包括显示屏40,以及设置在显示屏40下方的如前述任意一项的生物信息识别模组。
这样,用户可以将手指、手掌等具备个体生物特征的载体贴合放置于显示屏40的生物信息识别区41,以屏下指纹识别为例,照射在手指纹路上并反射的光束能够将照射的手指位置的纹路特征作为指纹信息进行携带,携带有指纹信息的光束经过生物信息识别模组中光路引导层10的引导传输后入射光学传感器20。本申请通过接收间隙区30上方的携带生物信息的光束,可以使得更大区域范围内的携带生物信息的光束入射到光学传感器20,使得电子设备接收到更多的来自指纹反射的光信号,从而获得更多的指纹信息,如此,在不增加显示屏40的生物信息识别区41的面积的情况下,能够有效增加光学传感器20的像素采集范围,提高生物信息识别的识别精度,同时能够降低电子设备的制造成本,减少模组的体积,为电子设备节省出更多的内部空间。
请再结合参照图18,在本申请实施例的一种实施方式中,在显示屏40上可以设置有生 物信息识别区41,生物信息识别区41可以为指纹识别区,生物信息识别区41可以包括与多个感光像素单元组21对应的多个分区411,来自分区411的携带生物特征信息的光束可以通过光通道11由对应的感光像素单元组21接收。其中,上述分区411的个数不做限定,例如可以包括2个分区411、3个分区411、4个分区411(如图18)或者5个分区411等。还有,本申请对分区411的形状不做限定,其可以是方形或者多边形等。可选地,分区411的形状可以与光学传感器20的感光像素单元组21的排布方式相对应。例如,若感光像素单元组21为方形,则分区411的形状可以为方形;若感光像素单元组21为多边形,则分区411的形状也为多边形。
为了获取到更多的携带生物信息的光束,在本申请实施例的一种实施方式中,至少一个分区411在光学传感器20上的正投影面积可以大于其对应的感光像素单元组21的面积。这样,用户带有个体生物特征的载体贴合放置于显示屏40的生物信息识别区41时,各个分区411可以获取尽可能多的生物信息,从而将携带该生物信息光束入射至光学传感器20的感光区域。
在本申请实施例的一种实施方式中,相邻的至少两个分区411可以在光学传感器20上的正投影具有重叠区412。即如图18所示,相邻的两个分区411具有重叠区412。这样,可以避免位于两个分区411之间的携带生物信息的光束无法被光学传感器20接收的情况发生,从而提高携带生物信息的光束的采集范围。
为避免重叠区412过大造成面积浪费,或者重叠区412域较小导致发生漏采集的情况,在本实施例中,上述重叠区412可以为矩形,重叠区的宽度W3可以在3-5微米之间。示例地,该重叠区的宽度W3可以为3μm、4μm或者5μm等。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请公开了一种生物信息识别模组及电子设备。该生物信息识别模组包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元,相邻的至少两个感光像素单元组成感光像素单元组;生物信息识别模组还包括设置在至少两个感光像素单元组之间的间隙区,间隙区上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。该电子设备包括显示屏以及设置在显示屏下方生物信息识别模组。该生物信息识别模组及电子设备能够在不增加模组整体体积的情况下,接收更大区域范围内的携带生物信息的光束。
此外,可以理解的是,本申请的生物信息识别模组及电子设备是可以重现的,并且可以应用在多种工业应用中。例如,本申请的生物信息识别模组及电子设备可以应用于电子器件领域。

Claims (22)

  1. 一种生物信息识别模组,其中,所述生物信息识别模组包括光路引导层以及光学传感器;所述光路引导层包括多个光通道,所述光学传感器包括多个感光像素单元,相邻的至少两个所述感光像素单元组成感光像素单元组;
    所述生物信息识别模组还包括设置在至少两个所述感光像素单元组之间的间隙区,所述间隙区上方的携带生物信息的光束经所述光通道被至少一个所述感光像素单元接收。
  2. 根据权利要求1所述的生物信息识别模组,其中,所述光通道包括倾斜光通道,所述倾斜光通道与垂直于所述光学传感器表面的直线之间具有夹角。
  3. 根据权利要求2所述的生物信息识别模组,其中,所述感光像素单元包括:第一感光像素单元,所述第一感光像素单元通过所述倾斜光通道接收与所述第一感光像素单元相邻的所述间隙区上方的光束。
  4. 根据权利要求3所述的生物信息识别模组,其中,所述第一感光像素单元对应的所述倾斜光通道沿着所述光束的方向朝向所述感光像素单元组的中心倾斜。
  5. 根据权利要求2所述的生物信息识别模组,其中,所述感光像素单元包括:第一感光像素单元,所述第一感光像素单元通过所述倾斜光通道接收与除所述第一感光像素单元以外的其它感光像素单元相邻的所述间隙区上方的光束。
  6. 根据权利要求5所述的生物信息识别模组,其中,除所述第一感光像素单元以外的其它感光像素单元包括:在同一感光像素单元组中、位于所述第一感光像素单元对侧的感光像素单元。
  7. 根据权利要求5所述的生物信息识别模组,其中,在所述感光像素单元组内的、相对于该感光像素单元组的中心对称的两个所述感光像素单元对应的所述倾斜光通道在所述中心的上方相交。
  8. 根据权利要求2至7中的任意一项所述的生物信息识别模组,其中,与一个所述感光像素单元组对应的多个所述倾斜光通道中,相对于该感光像素单元组的中心对称的两个所述倾斜光通道的夹角相同。
  9. 根据权利要求8所述的生物信息识别模组,其中,与一个所述感光像素单元组对应的多个所述倾斜光通道中,与该感光像素单元组的中心等距的所述感光像素单元所对应的所述倾斜光通道的夹角相同。
  10. 根据权利要求2至9中的任意一项所述的生物信息识别模组,其中,与一个所述感光像素单元组对应的多个所述倾斜光通道中,与该感光像素单元组的中心距离近的所述倾斜光通道的夹角角度小于等于与该感光像素单元组的中心距离远的所述倾斜光通道的夹 角角度。
  11. 根据权利要求1至10中的任意一项所述的生物信息识别模组,其中,所述光路引导层包括间隔设置的至少两层遮光层,在所述遮光层上形成有光阑孔,至少两层的所述遮光层上对应的至少两个光阑孔形成所述光通道的至少一部分。
  12. 根据权利要求11所述的生物信息识别模组,其中,所述光路引导层还包括在所述遮光层上设置的微透镜组,所述微透镜组包括多个微透镜单元,所述微透镜单元形成所述光通道的至少一部分。
  13. 根据权利要求12所述的生物信息识别模组,其中,携带生物信息的光束通过一个所述微透镜单元被一个所述感光像素单元组接收。
  14. 根据权利要求1至13中的任意一项所述的生物信息识别模组,其中,组成所述感光像素单元组的多个感光像素单元以N*M的形式组合,其中,N为大于等于1的整数,M为大于等于2的整数。
  15. 根据权利要求1至14中的任意一项所述的生物信息识别模组,其中,所述间隙区在所述光学传感器上形成至少一个带状区域或者至少一个横纵交叉连接的区域。
  16. 根据权利要求1至15中的任意一项所述的生物信息识别模组,其中,所述间隙区包括用于排设电路信号线的第一预留区。
  17. 根据权利要求16所述的生物信息识别模组,其中,所述间隙区还包括用于设置电路元件的第二预留区。
  18. 一种电子设备,其中,所述电子设备包括显示屏,以及设置在所述显示屏下方的根据权利要求1至17中的任意一项所述的生物信息识别模组。
  19. 根据权利要求18所述的电子设备,其中,在所述显示屏上设置有生物信息识别区,所述生物信息识别区包括与多个感光像素单元组对应的多个分区,来自所述分区的携带生物特征信息的光束通过光通道由对应的所述感光像素单元组接收。
  20. 根据权利要求19所述的电子设备,其中,至少一个所述分区在所述光学传感器上的正投影面积大于其对应的所述感光像素单元组的面积。
  21. 根据权利要求20所述的电子设备,其中,相邻的至少两个所述分区在所述光学传感器上的正投影具有重叠区。
  22. 根据权利要求21所述的电子设备,其中,所述重叠区为矩形,所述重叠区的宽度在3-5微米之间。
PCT/CN2022/104357 2021-07-07 2022-07-07 生物信息识别模组及电子设备 WO2023280269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/569,397 US20240273937A1 (en) 2021-07-07 2022-07-07 Biometric information recognition module and electronic device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202121542761.1U CN215987333U (zh) 2021-07-07 2021-07-07 生物信息识别模组及电子设备
CN202110768263.7 2021-07-07
CN202121542761.1 2021-07-07
CN202110768263.7A CN113553925A (zh) 2021-07-07 2021-07-07 生物信息识别模组及电子设备
CN202121992729.3 2021-08-23
CN202110970555.9A CN113780103B (zh) 2021-08-23 2021-08-23 生物信息识别模组及电子设备
CN202121992729.3U CN216161104U (zh) 2021-08-23 2021-08-23 生物信息识别模组及电子设备
CN202110970555.9 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023280269A1 true WO2023280269A1 (zh) 2023-01-12

Family

ID=84800326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104357 WO2023280269A1 (zh) 2021-07-07 2022-07-07 生物信息识别模组及电子设备

Country Status (2)

Country Link
US (1) US20240273937A1 (zh)
WO (1) WO2023280269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113780103A (zh) * 2021-08-23 2021-12-10 北京极豪科技有限公司 生物信息识别模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180286925A1 (en) * 2017-03-30 2018-10-04 Samsung Display Co., Ltd. Organic light emitting display device
CN110163159A (zh) * 2019-05-24 2019-08-23 上海思立微电子科技有限公司 屏下指纹识别结构的准直器贴合方法
CN111108511A (zh) * 2019-07-12 2020-05-05 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111353405A (zh) * 2019-07-17 2020-06-30 上海思立微电子科技有限公司 指纹识别装置、指纹识别系统以及电子设备
CN113780103A (zh) * 2021-08-23 2021-12-10 北京极豪科技有限公司 生物信息识别模组及电子设备
CN216161104U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 生物信息识别模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180286925A1 (en) * 2017-03-30 2018-10-04 Samsung Display Co., Ltd. Organic light emitting display device
CN110163159A (zh) * 2019-05-24 2019-08-23 上海思立微电子科技有限公司 屏下指纹识别结构的准直器贴合方法
CN111108511A (zh) * 2019-07-12 2020-05-05 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111353405A (zh) * 2019-07-17 2020-06-30 上海思立微电子科技有限公司 指纹识别装置、指纹识别系统以及电子设备
CN113780103A (zh) * 2021-08-23 2021-12-10 北京极豪科技有限公司 生物信息识别模组及电子设备
CN216161104U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 生物信息识别模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113780103A (zh) * 2021-08-23 2021-12-10 北京极豪科技有限公司 生物信息识别模组及电子设备
CN113780103B (zh) * 2021-08-23 2024-06-25 天津极豪科技有限公司 生物信息识别模组及电子设备

Also Published As

Publication number Publication date
US20240273937A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
CN109863506B (zh) 指纹识别装置和电子设备
CN111095286B (zh) 指纹检测装置和电子设备
CN111108511B (zh) 指纹检测装置和电子设备
CN216161104U (zh) 生物信息识别模组及电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2020118699A1 (zh) 指纹识别装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
WO2020133479A1 (zh) 光学指纹识别模组及电子设备
CN111095279B (zh) 指纹检测装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
CN211319246U (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN113780103B (zh) 生物信息识别模组及电子设备
WO2019148798A1 (en) Pattern identification device and display apparatus
WO2021007964A1 (zh) 指纹检测装置和电子设备
WO2023280269A1 (zh) 生物信息识别模组及电子设备
WO2021022560A1 (zh) 指纹检测装置和电子设备
CN216161103U (zh) 一种生物信息识别模组及电子设备
WO2021007953A1 (zh) 指纹检测装置和电子设备
WO2021008088A1 (zh) 指纹检测装置和电子设备
WO2021082680A1 (zh) 图像采集光学结构及鉴别真假生物特征的方法和电子设备
CN210864757U (zh) 指纹检测装置和电子设备
CN218160442U (zh) 一种显示面板、识别装置和电子设备
KR20220000736U (ko) 광학 지문 인식 장치, 광학 지문 인식 방법 및 터치 단말
WO2023025152A1 (zh) 一种生物信息识别模组及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18569397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE