WO2023025152A1 - 一种生物信息识别模组及电子设备 - Google Patents

一种生物信息识别模组及电子设备 Download PDF

Info

Publication number
WO2023025152A1
WO2023025152A1 PCT/CN2022/114273 CN2022114273W WO2023025152A1 WO 2023025152 A1 WO2023025152 A1 WO 2023025152A1 CN 2022114273 W CN2022114273 W CN 2022114273W WO 2023025152 A1 WO2023025152 A1 WO 2023025152A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive pixel
vacant
unit
units
biological information
Prior art date
Application number
PCT/CN2022/114273
Other languages
English (en)
French (fr)
Inventor
孙建成
王海生
毕莹
Original Assignee
北京极豪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121992540.4U external-priority patent/CN216161103U/zh
Priority claimed from CN202110970567.1A external-priority patent/CN113780104A/zh
Application filed by 北京极豪科技有限公司 filed Critical 北京极豪科技有限公司
Publication of WO2023025152A1 publication Critical patent/WO2023025152A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Definitions

  • This application relates to the technical field of electronic devices, in particular to a biological information identification module and electronic equipment.
  • Fingerprint identification is a kind of biological information identification, and its identification method is mainly optical fingerprint identification.
  • the light source of the display panel illuminates the fingerprint and reflects it, and receives, records or analyzes the reflected light of the fingerprint carrying specific biological information through the optical detection device, so as to achieve the function of recording fingerprints or identifying specific fingerprints.
  • the requirements for thinner and smaller fingerprint recognition modules installed inside electronic devices are also getting higher and higher.
  • electronic devices such as mobile phones and tablet computers mainly use the fingerprint recognition module under the display to receive, record or analyze the reflected light of fingerprints carrying specific biological information to realize the recognition of specific fingerprints. Due to the small size of electronic devices In order to meet the requirements of modernization, the size of the optical detection device for fingerprint identification should also be continuously reduced. In order to ensure the accuracy of biometric information identification, the collection area of biometric information on the display screen should be at least within a small area, but However, the structure of the fingerprint identification module is difficult to further shrink, which greatly affects the miniaturization requirements of electronic equipment.
  • the embodiments of the present application provide a biometric information identification module and electronic equipment, which can reduce the structural size of the biometric information identification module and make the module structure miniaturized.
  • the embodiment of the present application provides a biometric information identification module.
  • the biometric information identification module may include an optical path guiding layer and an optical sensor; At least one vacant unit among the photosensitive pixel units; the light beam carrying biological information above the vacant unit can be received by the at least one photosensitive pixel unit through the optical channel.
  • the optical channel may include an inclined optical channel, and there is an angle between the inclined optical channel and a straight line perpendicular to the surface of the optical sensor; the light beam carrying biological information above the empty unit is received by the photosensitive pixel unit through the inclined optical channel.
  • the optical sensor may include a plurality of vacant units, and the plurality of vacant units are discretely distributed in the plurality of photosensitive pixel units.
  • the dummy unit may have the same shape as the photosensitive pixel unit; and/or, the dummy unit may have the same area as the photosensitive pixel unit.
  • the number of vacant units may be smaller than the number of photosensitive pixel units.
  • a plurality of photosensitive pixel units and at least one vacant unit may form a photosensitive pixel unit group; at least part of the photosensitive pixel units in the photosensitive pixel unit group may have oblique optical channels.
  • the number of dummy units and photosensitive pixel units in each photosensitive pixel unit group on the optical sensor may be the same, and the arrangement rules of the dummy units and photosensitive pixel units in each photosensitive pixel unit group may be the same.
  • the optical channel corresponding to at least one photosensitive pixel unit that is symmetrical to the center of the vacant unit in the photosensitive pixel unit group may be an oblique optical channel.
  • the center of the photosensitive pixel unit group may be a vacant unit.
  • light channels corresponding to at least two photosensitive pixel units that are symmetrical to the center of the vacant unit may intersect above the center.
  • the photosensitive pixel unit group may include a plurality of vacant units, and a photosensitive pixel unit is arranged between two vacant units.
  • the light beam above the vacant unit may enter at least one photosensitive pixel unit adjacent to the vacant unit through the inclined light channel.
  • the included angles of the light channels corresponding to the plurality of photosensitive pixel units with equal spacing to the vacant unit may be the same.
  • a plurality of photosensitive pixel units and dummy units constituting the photosensitive pixel unit group may be arranged and combined in the form of M*N, wherein M is an integer greater than or equal to 1, and N is an integer greater than or equal to 2.
  • the total area of the plurality of photosensitive pixel units in the photosensitive pixel unit group may be greater than or equal to the total area of the vacant units.
  • the vacant unit may include a first reserved area for arranging circuit signal lines.
  • the vacant unit may further include a second reserved area for setting circuit components.
  • an insulating layer and a conductive layer may be arranged in sequence on the back side of the optical sensor, and a via hole is provided to penetrate through the optical sensor and the insulating layer to communicate with the conductive layer, and two vacant units spaced apart from each other are communicated with the conductive layer through the via hole.
  • an electronic device which may include a display screen, and a biometric information identification module according to any one of the preceding items arranged below the display screen.
  • a biological information identification area may be provided on the display screen, and light beams from the biological information identification area above the vacant units are received by corresponding photosensitive pixel units through the optical channel.
  • the biometric information identification module includes an optical path guiding layer and an optical sensor; the optical path guiding layer includes a plurality of optical channels, and the optical sensor includes a plurality of photosensitive pixel units and at least one vacant unit arranged between the plurality of photosensitive pixel units ; The light beam carrying biological information above the vacant unit is received by at least one photosensitive pixel unit through the optical channel.
  • the biological information identification module can be transmitted to the optical sensor through multiple optical channels, so that it can be received and identified by the photosensitive pixel unit of the optical sensor; at the same time, the light beam carrying biological information located above the vacant unit can be The optical channel is received by at least one photosensitive pixel unit, and its normal transmission will not be affected.
  • the vacant unit is arranged between a plurality of photosensitive pixel units, and the light beam carrying biological information above the vacant unit is received by at least one photosensitive pixel unit after passing through the optical channel, so that the photosensitive pixel unit other than the vacant unit It can completely receive the light beam carrying biological information within the range of the biological information collection area of the display screen, which improves the optical signal receiving ability of the photosensitive pixel unit, so that the biological information identification module can receive more optical signals of the light beam carrying biological information , so as to obtain more biological information, which is beneficial to the accuracy of biological information identification; in addition, without increasing the biological information collection area of the display screen, the application can also improve the effective utilization of the photosensitive area of the optical sensor , reducing the photosensitive region area of the optical sensor, thereby reducing the volume of the optical sensor, thereby saving more internal space for the electronic device using the biometric information identification module provided by the application, and at the same time reducing the cost of the biometric information identification module .
  • Fig. 1 is one of the structural schematic diagrams of a biological information identification module provided by the embodiment of the present application;
  • Fig. 2 is A-A sectional view among Fig. 1;
  • Fig. 3 is one of the structural schematic diagrams of an optical sensor in a biometric information recognition module provided by an embodiment of the present application;
  • Fig. 4 is the second structural schematic diagram of an optical sensor in a biometric information identification module provided by an embodiment of the present application
  • Fig. 5 is the third structural schematic diagram of an optical sensor in a biometric information identification module provided by an embodiment of the present application.
  • Fig. 6 is the fourth structural schematic diagram of an optical sensor in a biometric information recognition module provided by an embodiment of the present application.
  • Fig. 7 is the fifth structural schematic diagram of an optical sensor in a biometric information recognition module provided by an embodiment of the present application.
  • Fig. 8 is the sixth structural schematic diagram of an optical sensor in a biometric information recognition module provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of the photosensitive pixel unit group in Fig. 8.
  • Fig. 10 is the seventh structural schematic diagram of an optical sensor in a biometric information identification module provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of the photosensitive pixel unit group in Fig. 10;
  • Fig. 12 is a B-B sectional view among Fig. 11;
  • Fig. 13 is the eighth structural schematic diagram of an optical sensor in a biometric information identification module provided by an embodiment of the present application.
  • Fig. 14 is a C-C sectional view among Fig. 13;
  • Fig. 15 is a schematic structural diagram of the photosensitive pixel unit group in Fig. 13;
  • Fig. 16 is a D-D sectional view among Fig. 15;
  • Fig. 17 is one of the structural schematic diagrams of another embodiment of Fig. 15;
  • Fig. 18 is the second structural diagram of another embodiment of Fig. 15;
  • Fig. 19 is a D'-D' sectional view among Fig. 18;
  • Fig. 20 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Icons 100-optical path guiding layer; 101-optical channel; 102-oblique optical channel; ⁇ , ⁇ 1 , ⁇ 2 , ⁇ ' 1 , ⁇ ' 2 , ⁇ 3 , ⁇ ' 3 - angles; 200-optical sensor; 201-photosensitive pixel unit group; 202, 202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h, 202i, 202j, 202k-photosensitive pixel unit; 203, 203A, 203B, 203C-vacant unit; 300-display screen ; 301-biological information identification area.
  • orientation or positional relationship indicated by the terms “inner”, “outer”, etc. is based on the orientation or positional relationship shown in the drawings, or the usual placement of the application product when it is used. Orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present application.
  • first”, “second”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • setting and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct It can also be connected indirectly through an intermediary, or it can be the internal communication of two elements.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct It can also be connected indirectly through an intermediary, or it can be the internal communication of two elements.
  • Biometric identification technology has been widely applied to various terminal equipment or electronic devices.
  • Biometric identification technologies include but are not limited to fingerprint identification, palmprint identification, vein identification, iris identification, face identification, living body identification, anti-counterfeiting identification and other technologies.
  • fingerprint identification usually includes optical fingerprint identification, capacitive fingerprint identification and ultrasonic fingerprint identification.
  • the fingerprint identification module can be placed in a partial or entire area under the display to form an under-display optical fingerprint identification; or, the optical fingerprint identification module can also be placed Some or all of them are integrated into the display screen of the electronic device to form an in-display optical fingerprint recognition.
  • the display screen may be an organic light emitting diode (Organic Light Emitting Diode, OLED) display screen or a liquid crystal display screen (Liquid Crystal Display, LCD) or the like.
  • Fingerprint recognition methods usually include steps such as fingerprint image acquisition, preprocessing, feature extraction, and feature matching. Some or all of the above steps can be realized by traditional computer vision (Computer Vision, CV) algorithm, or by artificial intelligence (Artificial Intelligence, AI) based deep learning algorithm. Fingerprint recognition technology can be applied to portable or mobile terminals such as smartphones, tablet computers, and game devices, as well as other electronic devices such as smart door locks, cars, and bank ATMs, for fingerprint unlocking, fingerprint payment, fingerprint attendance, identity authentication, etc. .
  • the biological information identification module applied under the display screen usually needs to confirm and identify the individual to which the specific biological information belongs by receiving, recording or analyzing the reflected light carrying specific biological information.
  • the display screen on the screen it first needs to realize the required display function. Therefore, the acquisition area that can be divided for the identification of biological information under the screen is very limited, and for the extraction of biological information, it is required to have enough space. Accurate identification information can only be obtained based on the light beam carrying biological information. On this basis, the more light beams carrying biological information the module can obtain, the greater its recognition accuracy, anti-interference ability, and ability to identify counterfeiting. can be improved accordingly.
  • the biometric information identification module does not necessarily have to be integrated under the display screen of the display device.
  • the biometric information module can exist as a separate module for biometric information identification.
  • a transparent protective glass plate or a protective film layer can be provided on the biological information module, so that the light beam carrying biological information passes through the protective glass plate and enters the biological information identification module, and then is recognized by the biological information identification module.
  • the biometric information recognition module may include an optical path guiding layer 100 and an optical sensor 200; the optical path guiding layer 100 may include a plurality of optical channels 101, and the optical sensor 200 may include a plurality of photosensitive pixel units 202 and set At least one vacant unit 203 between the plurality of photosensitive pixel units 202 ; the light beam carrying biological information above the vacant unit 203 can be received by the at least one photosensitive pixel unit 202 through the optical channel 101 .
  • FIG. 2 is one of the structural schematic diagrams of the biometric information recognition module provided by the embodiment of the present application.
  • the layer 100 may include a plurality of optical channels 101, and each optical channel 101 can allow a light beam carrying biological information to pass through, and the light beam carrying biological information is incident on the optical sensor 200 below through the optical channel 101 of the upper optical path guiding layer 100, It is received by at least one photosensitive pixel unit 202 on the optical sensor 200 .
  • the optical channel 101 is configured to transmit the light beam carrying biological information on it to the corresponding photosensitive pixel unit 202.
  • the shape and size of the optical channel 101 there is no specific limitation on the shape and size of the optical channel 101, as long as it can make The light beams carrying biological information can pass through the optical channel 101 as much as possible and be received by the optical sensor 200 smoothly.
  • the longitudinal section of the optical channel 101 can be quadrilateral, trapezoidal, etc., and the cross section of the optical channel 101 can be circular or square. wait.
  • the optical sensor 200 may include a plurality of photosensitive pixel units 202, and may also include at least one vacant unit 203.
  • the vacant unit 203 means that no photosensitive pixel for receiving an optical signal is arranged at the position of the optical sensor 200.
  • the vacant unit 203 can be located between a plurality of photosensitive pixel units 202, wherein each photosensitive pixel unit 202 can receive the light beam carrying biological information through the optical channel 101, and the vacant unit 203
  • the upper light beam carrying biological information can be received by at least one photosensitive pixel unit 202 in the plurality of photosensitive pixel units 202 after passing through the optical channel 101, so that in the case of a vacant unit 203, it is still possible to guarantee the detection of the incident biological information.
  • the light beam is received efficiently.
  • the optical sensor 200 may include one vacant unit 203 and twenty-four photosensitive pixel units 202, and one vacant unit 203 and the twenty-four photosensitive pixel units 202 around it may form 5* 5 array structures.
  • the light beam carrying biological information above the vacant unit 203 passes through the optical channel 101 above the vacant unit 203 as shown in FIG. identification of information.
  • the optical sensor 200 is usually divided into tens of thousands of pixel units for setting the photosensitive pixel unit 202 or the vacant unit 203.
  • the drawings in this application cannot be composed of such a large number of units. Therefore, here and in the following drawings are shown and described in a small number of examples. Those skilled in the art should know that the optical sensor 200 in practical application can be illustrated in the present application. The illustration and description are partial examples, and the actual arrangement of the pixel units of the actual optical sensor 200 is formed by repeated arrangement.
  • the optical channel 101 and the photosensitive pixel unit 202 may have a one-to-one correspondence, and the light beam carrying biological information above the vacant unit 203 may pass through the corresponding light After the channel 101, it is received by a photosensitive pixel unit 202 adjacent to the vacant unit 203, but this is not necessary.
  • the corresponding relationship between the optical channel 101 and the pixel unit on the optical sensor 200 can also be many-to-one or other corresponding methods, as long as it is According to the corresponding relationship, as many light beams carrying biological information as possible can be received by the photosensitive pixel unit 202 on the optical sensor 200 .
  • FIG. 1 is only an optional implementation of the embodiment of the present application, and the number of photosensitive pixel units 202 and vacant units 203 in the optical sensor 200 and the combination form between the two are not limited to the above-mentioned FIG. 1 implementation.
  • the number and arrangement of the dummy unit 203 and the photosensitive pixel unit 202 can be combined in various ways, but there is at least one dummy unit 203 .
  • the optical sensor 200 may also be as shown in FIG. 3 or FIG. 4 , and FIG. 3 and FIG. 4 show a combined form of two dummy units 203 and four photosensitive pixel units 202 to form a 2*3 rectangular array.
  • the distribution forms of the two vacant units 203 are also different.
  • the units 203 are completely separated on both sides by a photosensitive pixel unit 202 .
  • FIG. 5 shows a combined form of a 2*3 rectangular array formed by three dummy units 203 and three photosensitive pixel units 202
  • FIG. 6 shows three dummy units 203 and one photosensitive pixel unit 202 The combined form of the formed 2*2 square array.
  • FIG. 1 and FIG. 6 show the arrangement of square arrays with equal numbers of horizontal rows and vertical columns formed by vacant units 203 and photosensitive pixel units 202.
  • FIG. 3 to FIG. 5 all show the arrangement of the rectangular arrays with unequal numbers of horizontal rows and vertical columns formed by the dummy units 203 and the photosensitive pixel units 202 .
  • the number of the vacant units 203 and the photosensitive pixel units 202 may also include other arrangements, and the vacant units 203 and the photosensitive pixel units 202 may also be set in other shapes than the square in the drawings, etc., not herein To repeat, those skilled in the art can design specific settings and arrangements according to actual conditions.
  • the biological information identification module includes an optical path guiding layer 100 and an optical sensor 200; the optical path guiding layer 100 includes a plurality of optical channels 101, and the optical sensor 200 includes a plurality of photosensitive pixel units 202 and is arranged on a plurality of photosensitive pixel units 202 There is at least one empty unit 203 in between; the light beam carrying biological information above the empty unit 203 is received by at least one photosensitive pixel unit 202 through the optical channel 101 .
  • the light beam carrying the biological information can be transmitted to the optical sensor 200 through a plurality of optical channels 101, so as to be received and identified by the photosensitive pixel unit 202 of the optical sensor 200;
  • the beam of biological information can be received by at least one photosensitive pixel unit 202 through the optical channel 101, and its normal transmission will not be affected.
  • the vacant unit 203 is arranged between a plurality of photosensitive pixel units 202, and the light beam carrying biological information above the vacant unit 203 is received by at least one photosensitive pixel unit 202 after passing through the optical channel 101, so that the vacant unit 203
  • the other photosensitive pixel units 202 can completely receive the light beams carrying biological information within the range of the biological information collection area of the display screen, which improves the light signal receiving ability of the photosensitive pixel unit 202, so that the biometric information identification module can receive more
  • the light signal of the light beam carrying biological information can obtain more biological information, which is beneficial to the accuracy of biological information identification; in addition, without increasing the biological information collection area of the display screen, the application can also improve the optical sensor
  • the effective utilization of the area of the photosensitive area of 200 reduces the area of the photosensitive area of the optical sensor 200, thereby reducing the volume of the optical sensor 200, thereby saving more internal space for electronic equipment using the biometric information identification module provided by this application , while reducing the cost of biometric identification modules.
  • the optical channel 101 may include an inclined optical channel 102 , and there may be an included angle between the inclined optical channel 102 and a straight line perpendicular to the surface of the optical sensor 200 ⁇ ; the light beam carrying biological information above the vacant unit 203 can be received by the photosensitive pixel unit 202 through the inclined optical channel 102 .
  • a plurality of photosensitive pixel units 202 of the optical sensor 200 can jointly form the photosensitive area of the optical sensor 200. Since the optical channel 101 includes the inclined optical channel 102, the light beam carrying biological information can be guided and transmitted by the inclined optical channel 102. When the area of the photosensitive region of 200 remains unchanged, the light beam carrying biological information from outside the photosensitive pixel unit 202 is guided and transmitted to at least one photosensitive pixel unit 202 through the inclined optical channel 102, thereby reducing the number of photosensitive pixel units.
  • the light beam carrying biological information can still be fully and effectively received by the optical sensor 200, the effective utilization rate of the photosensitive region area of the optical sensor 200 can be improved, and the photosensitive area of the optical sensor 200 can be reduced. area, thereby reducing the volume of the optical sensor 200 .
  • the light-receiving surface of the optical sensor 200 can also be set as a variety of different surface types according to needs, including but not limited to a flat surface, a convex arc surface, a concave arc surface, an inclined surface, etc., in the embodiment of the present application
  • the conventional optical sensor 200 which is a plane, is taken as an example for illustration.
  • the photoreceiving surface may be composed of a plurality of photosensitive pixel units 202 of the optical sensor 200 and surfaces of the dummy units 203 .
  • the included angle ⁇ between the inclined optical channel 102 and a straight line perpendicular to the surface of the optical sensor 200, and the included angle ⁇ is between 0° and 60°.
  • the included angle ⁇ is set to 0°, 2°, 5°, 10°, 15°, 35°, 40°, 53°, 60°, etc., which will not be listed here.
  • the included angle ⁇ of the inclined optical channels 102 can be from the central inclined optical channel 102 to the angle of the inclined optical channel 102 away from the center.
  • the direction is set in the form of increasing angle, that is, ⁇ 1 ⁇ ⁇ 2 , ⁇ ' 1 ⁇ ' 2 , and, with the center slanted light channel 102 as the center, the slanted light channels 102 on both sides can be symmetrically set, and the symmetrical two
  • the optical sensor 200 includes one vacant unit 203 has been illustrated in FIGS. 1 and 2 .
  • the optical sensor 200 may include a plurality of vacant units 203 , the multiple vacant units 203 may be discretely distributed among the multiple photosensitive pixel units 202 .
  • the discrete distribution among the multiple vacant units 203 may include: a situation as shown in FIG. Each photosensitive pixel unit 202 is completely isolated and absolutely not connected; or, in another situation as shown in FIG. There is a theoretical connection relationship between them, but they are relatively disjointed.
  • the above two situations are the discrete distribution among the plurality of vacant units 203 defined in the embodiment of the present application.
  • the plurality of vacant units 203 need to be separated by photosensitive pixel units 202 .
  • the non-connection between multiple vacant units 203 means that the multiple vacant units 203 do not form a face-to-face connection, which is to avoid the formation of a larger area that does not receive the light beams carrying biological information between the vacant units 203 that are connected to each other. , so that the surrounding photosensitive pixel units 202 cannot completely and accurately receive the light beams carrying biological information corresponding to the vacant units 203 , resulting in the loss of the light beams carrying biological information.
  • four light-sensitive pixel units 202 may be arranged around the empty unit 203A, which are light-sensitive pixel unit 202a, light-sensitive pixel unit 202b, light-sensitive pixel unit 202c, and light-sensitive pixel unit 202d.
  • There are two photosensitive pixel units 202 which are respectively photosensitive pixel unit 202a and photosensitive pixel unit 202c.
  • the connection between the vacant unit 203A and the vacant unit 203B can only be formed through diagonal points. The connection formed by the diagonal points has been carried out in the foregoing content.
  • the vacant unit 203A is connected to the photosensitive pixel unit 202a, the photosensitive pixel unit 202b, and the photosensitive pixel unit 202c through surface-to-surface connection
  • the vacant unit 203A and the photosensitive pixel unit 202d is connected through diagonals
  • the vacant unit 203B is connected to the photosensitive pixel unit 202a and the photosensitive pixel unit 202c through surface-to-surface. Therefore, the light beams carrying biological information located above the vacant unit 203A and 203B need to be inclined accordingly.
  • the direction and angle of the light channel 101 achieves the result of being received by at least one photosensitive pixel unit 202 around it, and the setting of a plurality of vacant units 203 in discrete distribution avoids the formation of large gaps due to the contact of multiple vacant units 203.
  • the area of the light beams carrying biological information cannot be accepted, resulting in the loss of information of the light beams carrying biological information above the multiple connected vacant units 203 when receiving, which is conducive to improving the accuracy of biological information identification results.
  • FIGS. 3 to 5 all show the situation of two or three vacant units 203. It can be seen from FIGS. In this way, each vacant unit 203 is adjacent to as many photosensitive pixel units 202 as possible, and the light beam carrying biological information above the vacant unit 203 can be received by a plurality of photosensitive pixel units 202 adjacent to it, so that the optical The sensor 200 receives more light beams carrying biological information to obtain more biological information.
  • FIG. 3 shows two vacant units 203 and four photosensitive pixel units 202.
  • the light beam carrying biological information located above the vacant unit 203A passes through the inclined optical channel After 102 is incident, it will always be received by some or all of the photosensitive pixel unit 202a, photosensitive pixel unit 202b, photosensitive pixel unit 202c, and photosensitive pixel unit 202d around the vacant unit 203A. beams are missed.
  • the light beam carrying biological information located above the vacant unit 203B will always be received by one or all of the photosensitive pixel units 202a and 202c around the vacant unit 203B after being incident through the inclined optical channel 102 .
  • the empty unit 203A and the empty unit 203B shown in FIG. can be received by some or all of the photosensitive pixel units 202 adjacent thereto, avoiding omission of light beams carrying biological information.
  • the shape of the dummy unit 203 may be the same as that of the photosensitive pixel unit 202 ; and/or, the area of the dummy unit 203 may be the same as that of the photosensitive pixel unit 202 .
  • vacant units 203 and photosensitive pixel units 202 can be arranged in a distributed manner.
  • the vacant units 203 and photosensitive pixel units 202 can be set to the same shape, as shown in the present invention.
  • both the vacant unit 203 and the photosensitive pixel unit 202 can be presented as a square, and for another example, the vacant unit 203 and the photosensitive pixel unit 202 can also be set to have the same area.
  • FIG. 7 Please refer to FIG. 7 .
  • the optical channel 101 can still make the light beam carrying biological information above the blank unit 203 incident into other photosensitive pixel units 202 .
  • FIG. 7 only shows an example where the areas of the dummy unit 203 and the photosensitive pixel unit 202 are the same, and it is not the only limitation or the only support for the same area of the dummy unit 203 and the photosensitive pixel unit 202 of the present application. plan. Also included in an optional embodiment, the vacant unit 203 and the photosensitive pixel unit 202 have the same shape and the same area, for example, any one of FIG. 1 , FIG. 3 to FIG. Same example with equal area.
  • the number of vacant units 203 may be smaller than the number of photosensitive pixel units 202 .
  • the number of vacant units 203 is greater than the number of photosensitive pixel units 202, then for photosensitive pixel unit 202, it needs to receive more than one vacant unit 203 after receiving the light carrying biological information above itself.
  • the number of vacant units 203 should be smaller than the number of photosensitive pixel units 202 , so as to ensure that the light beams carrying biological information above each vacant unit 203 can be received by photosensitive pixel units 202 .
  • a plurality of photosensitive pixel units 202 and at least one vacant unit 203 can form a photosensitive pixel unit group 201; at least a part of photosensitive pixel units 202 in a photosensitive pixel unit group 201
  • the corresponding optical channel 101 may be an inclined optical channel 102 .
  • a plurality of photosensitive pixel units 202 and at least one dummy unit 203 may form a photosensitive pixel unit group 201 , and the optical sensor 200 may be divided into a plurality of such photosensitive pixel unit groups 201 .
  • the two vacant units 203A, 203B connected by dots in FIG. 8 and the seven photosensitive pixel units 202 around them form a 3*3 photosensitive pixel unit group 201.
  • the light-sensing area of the optical sensor 200 is composed of a plurality of 3*3 photosensitive pixel unit groups 201 as shown in FIG. 8 arranged according to a rule.
  • the photosensitive pixel unit 202 and the vacant unit 203 in the photosensitive pixel unit group 201 are arranged in the number and manner shown in FIG.
  • the photosensitive pixel units 202 and vacant units 203 in the photosensitive pixel unit group 201 are arranged in the number and manner shown in FIG. are vacant units 203A, 203B, and 203C, and the others are six photosensitive pixel units 202.
  • the arrangement form, that is, FIG. 10 includes nine photosensitive pixel unit groups 201 shown in FIG. 11 .
  • composition forms of the vacant unit 203 and the photosensitive pixel unit 202 as shown in FIG. 13 can also be formed, which will not be repeated here.
  • the number of vacant units 203 and photosensitive pixel units 202 in each photosensitive pixel unit group 201 on the optical sensor 200, and the number of photosensitive pixel unit groups 201 in each photosensitive pixel unit group 201 may be the same.
  • a photosensitive pixel unit group 201 at least part of the photosensitive pixel unit 202 corresponding to the optical channel 101 can be an oblique optical channel 102.
  • the light-sensitive pixel unit 202j and the light-sensitive pixel unit 202k are cut along the B-B direction to obtain FIG. 12 , as shown in FIG.
  • the light beam carrying biological information enters the corresponding photosensitive pixel unit 202j, and the vacant unit 203C and photosensitive pixel unit 202k located on both sides of the photosensitive pixel unit 202j respectively correspond to the inclined light channel 102, so that the same time
  • the optical channel 101 in a photosensitive pixel unit group 201 is relatively concentrated and compact, and the light loss during the transmission of the light beam carrying biological information by the optical channel 101 is reduced as much as possible.
  • the role and function of the optical channel 101 have been described in the foregoing Detailed description will not be repeated here.
  • the optical channel 101 corresponding to at least one photosensitive pixel unit 202 in the photosensitive pixel unit group 201 that is symmetrical to the center of the empty unit 203 may be an inclined optical channel 102 .
  • the photosensitive pixel unit 202k is center-symmetrical to the vacant unit 203C. It can be seen intuitively in FIG. 12 that the optical channel 101 corresponding to the photosensitive pixel unit 202k is the inclined optical channel 102 . Of course, it should be understood that in views in other viewing angle directions, it should also be seen that the optical channel 101 corresponding to the photosensitive pixel unit 202e that is symmetrical to the center of the empty unit 203C should also be an oblique optical channel, as shown in FIG.
  • the photosensitive pixel unit group 201 shown includes only two dummy units 203, it also includes a photosensitive pixel unit 202j symmetrical to the center of the dummy unit 203A, and the light channel 101 corresponding to the photosensitive pixel unit 202j is also an oblique light channel.
  • the symmetry with the center of the dummy unit 203 mentioned here includes the symmetry with respect to the geometric center of the entire photosensitive pixel unit group 201 , and also includes the symmetry of each center line in the photosensitive pixel unit group 201 .
  • the center of the photosensitive pixel unit group 201 is defined as the vacant unit 203, then the center should refer to the geometric center of the entire photosensitive pixel unit group 201, and the array form of the photosensitive pixel unit group 201
  • the vacant unit 203 can be arranged in the geometric center, for example, the photosensitive pixel unit group 201 can be arranged as a combination of odd rows and odd columns.
  • the center of the photosensitive pixel unit group 201 may be a vacant unit 203 .
  • FIG. 15 it is a 3*3 photosensitive pixel unit group 201.
  • the photosensitive pixel unit group 201 there is a vacant unit 203 located in the center of the photosensitive pixel unit group 201.
  • the vacant unit 203 is the center and is symmetrical to each other.
  • FIG. 15 In the cross-sectional view of the photosensitive pixel unit 202g and the photosensitive pixel unit 202h shown in FIG.
  • the center of the photosensitive pixel unit group 201 is a vacant unit 203, the difference is that the photosensitive pixel unit 202 can be all around the vacant unit 203 located in the center in Figure 15;
  • the photosensitive pixel unit group 201 in FIG. 11 may include not only the vacant unit 203A located in the center, but also a vacant unit 203B located in the upper right corner; the photosensitive pixel unit group 201 in FIG. Vacant unit 203B in the upper right corner and vacant unit 203C in the lower left corner.
  • the light channels 101 corresponding to at least two photosensitive pixel units 202 that are symmetrical with the empty unit 203 as the center may intersect above the center.
  • the light-sensitive pixel unit 202g and the light-sensitive pixel unit 202h symmetrical to the center of the empty unit 203, in the D-D cross-sectional direction shown in FIG. 16 .
  • the inclined light channels 102 respectively corresponding to the photosensitive pixel unit 202g and the photosensitive pixel unit 202h may intersect above the center.
  • the light beam carrying biological information above the vacant unit 203 can enter the photosensitive pixel unit 202h adjacent to the vacant unit 203 through the inclined optical channel 102, so that the light beam is received by the photosensitive pixel unit 202h adjacent to the vacant unit 203. take over.
  • the vacant unit 203 in the photosensitive pixel unit group 201 may include two, respectively a vacant unit 203A and a vacant unit 203B, and a photosensitive pixel may be arranged between the vacant unit 203A and the vacant unit 203B.
  • the unit 202f and the light-sensitive pixel unit 202h are connected so that the vacant unit 203A and the vacant unit 203B are connected at a connection point.
  • the photosensitive pixel unit group 201 includes a vacant unit 203A and a vacant unit 203B, and only connection points are connected between the vacant unit 203A and the vacant unit 203B, and a photosensitive pixel unit is arranged between the vacant unit 203A and the vacant unit 203B 202f and the photosensitive pixel unit 202h, that is, the photosensitive pixel unit 202 adjacent to each vacant unit 203 through the side, and the vacant unit 203A has four photosensitive pixel units 202 adjacent to the through side, which are respectively photosensitive pixel units
  • the unit 202f, the photosensitive pixel unit 202g, the photosensitive pixel unit 202j, and the photosensitive pixel unit 202h also have three photosensitive pixel units 202 connected diagonally, which are respectively the photosensitive pixel unit 202e, the photosensitive pixel unit 202i, and the photosensitive pixel unit 202k;
  • the unit 203B has two photosensitive pixel units 202 adjacent to it through the side, which are respectively
  • the photosensitive pixel unit group 201 may include three vacant units 203A, 203B, and 203C, and the vacant units 203A, 203B, and 203C may only be connected by connection points.
  • a photosensitive pixel unit can be arranged between the vacant unit 203A, the vacant unit 203B, and the vacant unit 203C, and each vacant unit 203 can be adjacent to the photosensitive pixel unit 202 through the side, and the vacant unit 203A can have four through
  • the photosensitive pixel units 202 adjacent to the side are respectively photosensitive pixel unit 202f, photosensitive pixel unit 202g, photosensitive pixel unit 202j, and photosensitive pixel unit 202h.
  • the pixel unit 202e, the photosensitive pixel unit 202k; the vacant unit 203B can have two photosensitive pixel units 202 adjacent to the side passing through it, which are respectively the photosensitive pixel unit 202f and the photosensitive pixel unit 202h; the vacant unit 203C can have two photosensitive pixel units 202 passing through the side surface
  • the adjacent photosensitive pixel units 202 are respectively a photosensitive pixel unit 202g and a photosensitive pixel unit 202j.
  • a plurality of vacant units 203 in a photosensitive pixel unit group 201 can be separated by a plurality of photosensitive pixel units 202, so that a plurality of vacant units 203 are discretely distributed between a plurality of photosensitive pixel units 202, and any vacant unit
  • the light beam carrying biological information above 203 can be received by its adjacent photosensitive pixel unit 202, effectively avoiding the loss of the light beam carrying biological information during transmission.
  • the light beam carrying biological information above the vacant unit 203 may enter at least one photosensitive pixel unit 202 adjacent to the vacant unit 203 through the inclined optical channel 102 .
  • the inclined optical channel 102 may correspond to the photosensitive pixel unit 202 , and the light beam carrying biological information above the vacant unit 203 is received by at least one photosensitive pixel unit 202 adjacent to the vacant unit 203 after being incident through the inclined optical channel 102 .
  • the vacant unit 203 can be located in the center, and the two photosensitive pixel units 202 adjacent to the vacant unit 203 are respectively a photosensitive pixel unit 202g and a photosensitive pixel unit 202h.
  • the light beam of information can be received by the photosensitive pixel unit 202 h adjacent to the vacant unit 203 through the inclined optical channel 102 .
  • the photosensitive pixel units 202 having the same spacing as the vacant units 203 may include a plurality of photosensitive pixels having the same spacing as the vacant units 203
  • the included angles ⁇ of the optical channels 101 corresponding to the units 202 may all be the same.
  • the photosensitive pixel unit 202g and the photosensitive pixel unit 202h are at the same distance from the vacant unit 203, and the light channels 101 respectively corresponding to the photosensitive pixel unit 202g and the photosensitive pixel unit 202h are oblique light Channel 102, as shown in FIG. 16 , the included angle ⁇ 3 of the inclined optical channel 102 corresponding to the photosensitive pixel unit 202g is equal to the included angle ⁇ ′ 3 of the inclined optical channel 102 corresponding to the photosensitive pixel unit 202h.
  • the transmission direction of the light beam carrying biological information in the photosensitive pixel unit group 201 in the optical channel 101 can also be referred to FIG. direction
  • the line beam can start from the direction close to the reader in the viewing direction, and the arrow penetrates in the direction shown toward the paper, that is, the light beam of a photosensitive pixel unit 202 is obliquely emitted toward the center, when the inclination angle is sufficient
  • the light beam carrying biological information above the photosensitive pixel unit 202g is inclined to the opposite side, can pass above the empty unit 203 and be received by the photosensitive pixel unit 202h.
  • FIG. 17 there are at least two light-shielding layers on the top of the optical sensor 200, and a light-transmitting hole may be provided on the light-shielding layer of each layer and the pixel unit of the optical sensor 200.
  • the line connecting the two light-shielding layers corresponding to the light-transmitting holes of the same pixel unit forms at least a part of the light channel 101 , and the inclination of the light-channel 101 is realized by the positional deviation of the two light-shielding layers corresponding to the light-transmitting holes of the same pixel unit.
  • the arrow direction may refer to the transmission direction of the light beam carrying biological information in the optical channel 101 .
  • the light beams carrying biological information corresponding to the empty units 203 in the photosensitive pixel unit group 201 are transmitted to the photosensitive pixel units 202 adjacent to the empty units 203, and the corresponding light beams carrying biological information on the empty units 203 shown in FIG.
  • the photosensitive pixel unit 202h adjacent to its right side transmits, and the spatial transmission direction can refer to the optical path shown in FIG.
  • this transmission mode forms the optical path transmission diagram shown in Figure 19; in addition, the corresponding optical channel 101 on the vacant unit 203 can also be inclined to the other six photosensitive pixel units 202 around it, when When there are multiple inclined light channels 102 with different light directions on the empty unit 203 , one or more of the plurality of photosensitive pixel units 202 respectively receive the light beams carrying biological information transmitted above the empty unit 203 .
  • a plurality of photosensitive pixel units 202 and vacant units 203 constituting the photosensitive pixel unit group 201 can be arranged and combined in the form of M*N, where M is an integer greater than or equal to 1, and N is an integer greater than or equal to 2.
  • a photosensitive pixel unit 202 and three vacant units 203 can form a photosensitive pixel unit group 201 , and the photosensitive pixel unit group 201 is presented in another 3*3 arrangement and combination.
  • N is an integer greater than or equal to 2
  • M is an integer greater than or equal to 1, that is, in the row and column arrangement of M and N, there are at least two pixel units arranged in one direction, that is to say, M and N cannot be 1 at the same time
  • the photosensitive pixel unit group 201 in the embodiment of the present application does not include the form of 1*1, that is, does not include the photosensitive pixel unit group 201 with only one pixel unit.
  • N and M may be equal values, such as 3*3 in the above example, of course, N and M may also be unequal.
  • N and M may also be unequal.
  • FIGS. 3 to 5 As shown in FIG. 3, it can be regarded as a photosensitive pixel unit group 201. 2*3 combined form; referring to Figure 7 again, Figure 7 can be regarded as a photosensitive pixel unit group 201, in which the vacant unit 203 and photosensitive pixel unit 202 are presented in a 1*3 combined form; in addition, the photosensitive pixel unit group 201 can also be presented in different combinations such as 2*5, 8*10, etc., and this application will not list them one by one.
  • the number of vacant units 203 is less than the number of photosensitive pixel units 202.
  • the vacant units in one photosensitive pixel unit group 201 The number of units 203 should generally not be more than the number of photosensitive pixel unit groups 201 .
  • the combined form of the units 202 is presented; as another example, for a 2*3 photosensitive pixel unit group 201, as shown in Figure 5, there are six pixel units inside, and at most three of the pixel units are used as vacant units 203.
  • the above description is based on the number of pixel units that make up the photosensitive pixel unit group 201, and the number of vacant units 203 and photosensitive pixel units 202 in the photosensitive pixel unit group 201. In an implementation manner of the embodiment of the present application, it can also be obtained from To understand and define the dimension of the area of the photosensitive pixel unit group 201 , the total area of the plurality of photosensitive pixel units 202 in the photosensitive pixel unit group 201 may be greater than or equal to the total area of the dummy unit 203 .
  • the total area of all photosensitive pixel units 202 is greater than or equal to the total area of all vacant units 203, so as to ensure that the light beams carrying biological information above the vacant units 203 are received by the photosensitive pixel units 202 in the group as much as possible , reducing losses in beam transmission. It can also be understood that for the optical sensor 200 formed by a plurality of photosensitive pixel unit groups 201 , the total area of all photosensitive pixel units 202 may also be greater than or equal to the total area of all vacant units 203 .
  • the number of vacant cells 203 in a photosensitive pixel unit group 201 cannot be greater than half of the total number of cells in the photosensitive pixel unit group 201, and the total area of all vacant cells 203 in the photosensitive pixel unit group 201 cannot be greater than all photosensitive pixel units Half of the total area of 202 is also based on the purpose of avoiding the loss of the light beam carrying biological information above the vacant unit 203 .
  • a vacant unit 203 is arranged between the plurality of photosensitive pixel units 202 of the optical sensor 200.
  • the vacant unit 203 does not need to receive the light beam above it, and the light beam above it can be used by other photosensitive pixels.
  • the unit 202 receives, therefore, the position where the vacant unit 203 is located can be used to set other corresponding structures to realize other functions on the optical sensor 200, when other structures for realizing functions are set on the vacant unit 203, it can be understood that the original On the optical sensor 200, it is necessary to open an additional area for setting the structure, which can be removed, so that the structure of the entire optical sensor 200 is compact.
  • the space saved due to the removal of other areas on the optical sensor 200 can be It is used to expand the photosensitive area, that is, to provide a larger area for arranging photosensitive pixel units 202. Without increasing the size of the optical sensor 200, the area of the photosensitive area of the optical sensor 200 is effectively expanded, and the cost of the module is reduced.
  • the utilization rate of the structural size of the biometric information identification module is maximized as much as possible, which saves more internal space for the electronic equipment adopting the biometric information identification module of the embodiment of the present application.
  • the vacant unit 203 may include a first reserved area for arranging circuit signal lines, and collect electrical signals through the circuit signal lines arranged in the first reserved area, so that Firstly, it is no longer necessary to arrange wiring areas outside the original photosensitive area on the optical sensor 200 , which saves the structural size of the optical sensor 200 .
  • the vacant unit 203 may further include a second reserved area for setting circuit components, that is, circuit components are arranged in the vacant unit 203 to realize corresponding functions of the circuit components.
  • the circuit signal lines and circuit components Arrange the circuit signal lines and circuit components in the vacant unit 203. Since the vacant units 203 on the optical sensor 200 are usually distributed discretely in the biometric information identification module of the embodiment of the present application, the circuit signal lines are arranged in the vacant unit 203. and/or circuit components, in order to facilitate the electrical connection between the circuit signal lines and circuit components in each vacant unit 203, in an implementation of the embodiment of the present application, multiple discrete vacant units can be connected through via holes The circuit signal lines and/or circuit elements in 203 are electrically connected by other conductive layers.
  • an insulating layer and a conductive layer may be provided in sequence on the back side of the optical sensor 200, a via hole is provided to penetrate the optical sensor 200 and the insulating layer to communicate with the conductive layer, and the two vacant units 203 spaced apart from each other may be connected to The conductive layer is connected. In this way, the electrical connection between the circuit signal line and the circuit elements can be communicated between the two vacant units 203 spaced apart from each other through the via hole to realize the circuit connection.
  • the electronic device may include a display screen 300 , and a biometric information identification module according to any one of the foregoing is arranged under the display screen 300 .
  • the electronic device may be a common terminal device, such as a handheld display device such as a mobile phone or a tablet computer, or a household liquid crystal display appliance such as a TV, a desktop computer, an air conditioner, or a refrigerator.
  • the biological information identification module can be configured to identify the light beam carrying biological information.
  • the light beam carrying biological information can be palm prints, palm veins, joint lines, iris, human face wait.
  • the biometric information may be a fingerprint from a human finger.
  • the fingerprint recognition on a handheld display device that is more common in real life is taken as an example for illustration.
  • a biometric information identification area 301 may be provided on the display screen 300, the biometric information identification area 41 may be a fingerprint identification area, and the biometric information identification area 301 may correspond to the photosensitive area of the optical sensor 200, wherein, from the vacant The light beams of the biological information recognition area 301 above the unit 203 can be received by the corresponding photosensitive pixel unit 202 .
  • the user can place the carrier with individual biological characteristics such as fingers and palms on the biometric information identification area 301 of the display screen 300.
  • the light beam irradiated on the fingerprint path and reflected can The texture feature of the irradiated finger position is carried as fingerprint information, and the light beam carrying the fingerprint information passes through the optical channel 101 of the optical path guide layer 100 in the biometric information identification module, and then enters the optical sensor 200, and is received by the photosensitive pixel unit 202 of the optical sensor 200 , used to identify user information.
  • the light beam carrying biological information in a larger area can be incident on the optical sensor 200, so that the electronic device receives more light signals reflected from fingerprints to obtain More fingerprint information, so that the pixel collection range of the optical sensor 200 can be effectively increased without increasing the area of the biometric information identification area 301 of the display screen 300, the recognition accuracy of biometric information can be improved, and at the same time, the electronic equipment can be reduced.
  • the manufacturing cost is reduced, the volume of the module is reduced, and more internal space is saved for electronic equipment.
  • the biological information identification module can also be applied to other feasible scenarios.
  • the biological information module can be placed under a transparent protective glass plate or a protective film layer, so that the light beam carrying biological information passes through the protective glass plate and enters the biological information identification module to be recognized by the biological information identification module. . This process has been described in any one of the foregoing embodiments, and will not be repeated here.
  • the application discloses a biological information identification module and electronic equipment, which relate to the technical field of electronic devices.
  • the biometric information identification module includes an optical path guiding layer and an optical sensor; the optical path guiding layer includes a plurality of optical channels, and the optical sensor includes a plurality of photosensitive pixel units and at least one vacant unit arranged between the plurality of photosensitive pixel units; above the vacant unit
  • the light beam carrying biological information is received by at least one photosensitive pixel unit through the optical channel.
  • the electronic device includes a display screen and a biological information identification module arranged under the display screen. The biological information identification module and electronic equipment can receive the light beams carrying biological information in a larger area without increasing the overall volume of the module.
  • biometric information identification module and electronic equipment of the present application are reproducible and can be applied in various industrial applications.
  • biometric information identification module and electronic equipment of the present application can be applied to the field of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供一种生物信息识别模组及电子设备,涉及电子器件技术领域。该生物信息识别模组包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元以及设置在多个感光像素单元之间的至少一个空置单元;空置单元上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。该电子设备包括显示屏以及设置在显示屏下方的生物信息识别模组。该生物信息识别模组及电子设备能够在不增加模组整体体积的情况下,接收更大区域范围内的携带生物信息的光束。

Description

一种生物信息识别模组及电子设备
相关申请的交叉引用
本申请要求于2021年8月23日提交中国国家知识产权局的申请号为202110970567.1、名称为“一种生物信息识别模组及电子设备”的中国专利申请的优先权,并且要求于2021年8月23日提交中国国家知识产权局的申请号为202121992540.4、名称为“一种生物信息识别模组及电子设备”的中国专利申请的优先权,这两个专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子器件技术领域,具体涉及一种生物信息识别模组及电子设备。
背景技术
随着终端电子设备智能化的高度发展,人体生物信息识别在电子设备中的应用越来越深入和广泛,从以前的通过生物信息识别解锁以唤醒电子设备,已逐步发展到各种软件程序的身份识别、身份认证等。并且,随着生物信息识别在电子设备中应用范围越来越广泛,生物信息识别的准确性以及电子设备、特别是显示类的电子设备对于指纹信息的识别能力和识别速度都相应随之提高。
在相关领域的生物信息识别技术中,应用于手机、平板电脑一类的电子设备上的生物信息识别中,指纹识别为生物信息识别的一种,其识别的方式主要为光学指纹识别,是通过显示面板的光源照射指纹并反射,通过光学检测器件接收、记录或分析携带有特定生物信息的指纹反射光,从而达到对指纹进行记录或者对特定指纹进行识别的功能。而今,随着手机、平板电脑一类手持移动终端为主导的电子设备的小型化需求,对于设置于电子设备内部的指纹识别模组的薄型化、小型化的要求也越来越高。
通常,手机、平板电脑一类的电子设备主要通过应用于显示屏下的指纹识别模组以接收、记录或分析携带有特定生物信息的指纹反射光实现对特定指纹的识别,由于电子设备的小型化要求,实现指纹识别的光学检测器件的体积也要不断缩小,为了保证对于生物信息识别的准确性,在显示屏上对于生物信息的采集面积至少应当保证在一个较小的面积范围内,但是指纹识别模组的结构却难以进一步缩小,这就极大的影响了电子设备的小型化需求。
发明内容
本申请实施例提供了一种生物信息识别模组及电子设备,能够减小生物信息识别模组的结构尺寸,使得模组结构小型化。
本申请实施例提供了一种生物信息识别模组,生物信息识别模组可以包括光路引导层以及光学传感器;光路引导层可以包括多个光通道,光学传感器可以包括多个感光像素单元以及设置在多个感光像素单元之间的至少一个空置单元;空置单元上方的携带生物信息的光束可以经光通道被至少一个感光像素单元接收。
可选地,光通道可以包括倾斜光通道,倾斜光通道与垂直于光学传感器的表面的直线之间具有夹角;空置单元上方的携带生物信息的光束经倾斜光通道被感光像素单元接收。
可选地,光学传感器可以包括多个空置单元,多个空置单元离散分布在多个感光像素单元中。
可选地,空置单元的形状可以与感光像素单元的形状相同;和/或,空置单元的面积可以与感光像素单元的面积相同。
可选地,空置单元的数量可以小于感光像素单元的数量。
可选地,多个感光像素单元以及至少一个空置单元可以组成感光像素单元组;感光像素单元组中至少部分感光像素单元对应的光通道可以为倾斜光通道。
可选地,光学传感器上的每个感光像素单元组中的空置单元和感光像素单元的数量可以相同,以及每个感光像素单元组中的空置单元和感光像素单元的排布规律可以相同。
可选地,在感光像素单元组内的、与空置单元中心对称的至少一个感光像素单元所对应的光通道可以为倾斜光通道。
可选地,感光像素单元组的中心可以为空置单元。
可选地,以空置单元为中心对称的至少两个感光像素单元所对应的光通道可以在中心的上方相交。
可选地,感光像素单元组中的空置单元可以包括有多个,在两个空置单元之间设置有感光像素单元。
可选地,空置单元上方的光束可以通过倾斜光通道入射与空置单元邻接的至少一个感光像素单元。
可选地,在感光像素单元组内,与该空置单元的间距相等的多个感光像素单元对应的光通道的夹角角度可以相同。
可选地,组成感光像素单元组的多个感光像素单元和空置单元可以以M*N的形式排列组合,其中,M为大于等于1的整数,N为大于等于2的整数。
可选地,感光像素单元组中的多个感光像素单元的总面积可以大于等于空置单元的总面积。
可选地,空置单元可以包括用于排设电路信号线的第一预留区。
可选地,空置单元还可以包括用于设置电路元件的第二预留区。
可选地,光学传感器背侧还可以依次设置有绝缘层和导电层,穿透光学传感器和绝缘层与导电层连通设置有过孔,相互间隔的两个空置单元通过过孔与导电层连通。
本申请实施例的另一方面,提供一种电子设备,电子设备可以包括显示屏,以及设置在显示屏下方的如前述任意一项的生物信息识别模组。
可选地,在显示屏上可以设置有生物信息识别区,来自空置单元上方的生物信息识别区的光束通过光通道由对应的感光像素单元接收。
本申请的有益效果至少可以包括:
本申请提供的生物信息识别模组,包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元以及设置在多个感光像素单元之间的至少一个空置单元;空置单元上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。在使用生物信息识别模组时,携带生物信息的光束可以通过多个光通道传输至光学传感器,从而被光学传感器的感光像素单元接收并识别;同时,位于空置单元上方的携带生物信息的光束可以经光通道被至少一个感光像素单元接收,其正常传输也不会受到影响。本申请通过将空置单元设置于多个感光像素单元之间,且使得空置单元上方的携带生物信息的光束经光通道后,被至少一个感光像素单元接收,使得除空置单元之外的感光像素单元能够完全接收显示屏生物信息采集面积范围内的携带生物信息的光束,提高了感光像素单元的光信号接收能力,从而使得生物信息识别模组能够接收到更多的携带生物信息的光束的光信号,进而获得更多的生物信息,从而有利于生物信息识别的精准性;另外,在不必增加显示屏的生物信息采集面积的情况下,本申请还可以提高光学传感器的感光区域面积的有效利用率,减小光学传感器的感光区域面积,从而缩小光学传感器的体积,进而为采用本申请提供的生物信息识别模组的电子设备节省出更多的内部空间,同时可以降低生 物信息识别模组的成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请实施例提供的一种生物信息识别模组的结构示意图之一;
图2是图1中的A-A剖视图;
图3是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之一;
图4是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之二;
图5是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之三;
图6是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之四;
图7是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之五;
图8是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之六;
图9是图8中感光像素单元组的结构示意图;
图10是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之七;
图11是图10中感光像素单元组的结构示意图;
图12是图11中的B-B剖视图;
图13是本申请实施例提供的一种生物信息识别模组中光学传感器的结构示意图之八;
图14是图13中的C-C剖视图;
图15是图13中感光像素单元组的结构示意图;
图16是图15中的D-D剖视图;
图17是图15的另一种实施方式的结构示意图之一;
图18是图15的另一种实施方式的结构示意图之二;
图19是图18中的D’-D’剖视图;
图20是本申请实施例提供的一种电子设备的结构示意图。
图标:100-光路引导层;101-光通道;102-倾斜光通道;θ、θ 1、θ 2、θ’ 1、θ’ 2、θ 3、θ’ 3-夹角;200-光学传感器;201-感光像素单元组;202、202a、202b、202c、202d、202e、202f、202g、202h、202i、202j、202k-感光像素单元;203、203A、203B、203C-空置单元;300-显示屏;301-生物信息识别区。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
生物识别技术已广泛地应用到各种终端设备或电子装置上。生物特征识别技术包括但不限于指纹识别、掌纹识别、静脉识别、虹膜识别、人脸识别、活体识别、防伪识别等技术。其中,指纹识别通常包括光学指纹识别、电容式指纹识别和超声波指纹识别。随着全面屏技术的兴起,可以将指纹识别模组设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹识别;或者,也可以将光学指纹识别模组的部分或者全部集成至电子设备的显示屏内部,从而形成屏内(In-display)光学指纹识别。所述显示屏可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示屏或液晶显示屏(LiquidCrystal Display,LCD)等。指纹识别方法通常包括指纹图像的获取、预处理、特征提取、特征匹配等步骤。上述步骤中的部分或者全部可以通过传统计算机视觉(Computer Vision,CV)算法实现,也可以通过基于人工智能(Artificial Intelligence,AI)的深度学习算法实现。指纹识别技术可以应用在智能手机、平板电脑、游戏设备等便携式或移动终端,以及智能门锁、汽车、银行自动柜员机等其他电子设备,以用于指纹解锁、指纹支付、指纹考勤、身份认证等。
应用于显示屏下的生物信息识别模组,通常需要通过接收、记录或分析携带有特定生物信息的反射光来实现对特定生物信息所属的个体的确认和识别,对于设置于生物信息识别模组上的显示屏来说,其自身首先需要实现所需的显示功能,因此,能够划分出来用于进行屏下生物信息识别的采集面积非常有限,而对于生物信息的提取,又要求需要有足够的携带生物信息的光束作为基础才能够得出准确的识别信息,在此基础上,模组能够获得的携带有生物信息的光束越多,其识别准确性、抗干扰能力、对于造假的识别能力等才能够相应的得到提高。因此,如何在此有限的生物信息采集面积内充分的获取携带有特定生物信息的反射光束,并对这些反射光束进行处理,以从反射光束中获得尽可能多的特定的生物信息,从而有效地提高对于生物特征信息所属人进行确认和识别的准确性,是生物信息识别模组在具体应用中亟待解决和提高的重要问题。
当然,生物信息识别模组也未必需要必须集成于显示装置的显示屏下,在其他可行的应用场景中,生物信息模组可以作为单独的用于生物信息识别的模组存在。例如,可以在生物信息模组上设置透明的保护玻璃板或保护膜层,从而使得携带有生物信息的光束透过保护玻璃板入射至生物信息识别模组,进而被生物信息识别模组识别。
基于此,本申请实施例提供了一种生物信息识别模组,该生物识别模组可以为指纹识别模组,为了便于理解,下文将主要以现实生活中较为常见的指纹识别为例进行示例说明。具体请参照图1和图2,生物信息识别模组可以包括光路引导层100以及光学传感器200;光路引导层100可以包括多个光通道101,光学传感器200可以包括多个感光像素单元202以及设置在多个感光像素单元202之间的至少一个空置单元203;空置单元203上方的携带生物信息的光束可以经光通道101被至少一个感光像素单元202接收。
图2为本申请实施例提供的生物信息识别模组的结构示意图之一,如图2所示,沿携带生物信息的光束的传输方向可以依次设有光路引导层100和光学传感器200,光路引导层100可以包括多个光通道101,每个光通道101均能使携带生物信息的光束通过,携带生物信息的光束经上方的光路引导层100的光通道101入射至下方的光学传感器200上,被光学传感器200上的至少一个感光像素单元202接收。其中,光通道101是配置成用于将其上的携带生物信息的光束传输至对应的感光像素单元202,本申请实施例中对于光通道101的形状尺寸等均不做具体限定,只要能使得携带生物信息的光束尽可能多的通过该光通道101顺利被光学传感器200接收即可,例如,光通道101的纵截面可为四边形、梯形等,光通道101的横截面可以为圆形、正方形等。
如图1所示,光学传感器200可以包括多个感光像素单元202,还可以包括至少一个空置单元203,空置单元203指的是,在光学传感器200的该位置处不设置接收光信号的感光像素单元202,使得该位置空置得到的单元,空置单元203可以位于多个感光像素单元202之间,其中,每一个感光像素单元202均可接收经光通道101的携带生物信息的光束,空置单元203上方的携带生物信息的光束能够经光通道101后被多个感光像素单元202中的至少一个感光像素单元202接收,从而在设置有空置单元203的情形下,仍旧能够保证对入射的携带生物信息的光束高效的接收。
示例地,如图1所示,光学传感器200可以包括有一个空置单元203,以及二十四个感光像素单元202,一个空置单元203及其周围的二十四个感光像素单元202可以形成5*5的阵列结构。当空置单元203对应上方的携带生物信息的光束经过如图2中所示的位于空置单元203对应上方的光通道101后,既能够被空置单元203邻侧的感光像素单元202接收,以进行生物信息的识别。在光学传感器200上用于接收携带生物信息的光束的感光像素单元202可以有多个(二十四个),当多个感光像素单元202之间设置有多个空置单元203,或者,一个空置单元203对应上方的光束仅通过其邻侧的一个感光像素单元202不能够被完全接收时,还可以通过由多个感光像素单元202对应接收一个空置单元203上方的携带生物信息的光束,从而保证能够接收到更多的携带生物信息的光束,以此获取更多的生物信息,避免遗漏携带生物信息的光束,提高生物信息识别的精准性。
需要说明的是,在实际应用中,光学传感器200上通常划分有上万级数量的像素单元,用于设置感光像素单元202或者空置单元203,本申请中的附图无法将如此大量的单元组成进行完整的展现,因此,此处以及以下的附图中均是以较少的数量示例性的展示和说明,本领域技术人员应当知晓,实际应用的光学传感器200上可以本申请中示例性的展示和说明为局部范例,通过重复排列形成实际的光学传感器200的像素单元的实际排列设置。
此外,由图1和图2可看出,在本实施例中,光通道101和感光像素单元202可以为一对一的对应关系,空置单元203上方的携带生物信息的光束可以经对应的光通道101后,被该空置单元203邻接的一个感光像素单元202接收,但此非必然,光通道101和光学传感器200上像素单元的对应关系还可以为多对一或其他的对应方式,只要是根据对应关系能够使得尽可能多的携带生物信息的光束被光学传感器200上的感光像素单元202接收即可。
当然,图1只是本申请实施例的一种可选的实施方式,光学传感器200中的感光像素单元202和空置单元203分别的设置数量以及二者之间的组合形式并不仅限于上述图1的实施方式。空置单元203和感光像素单元202的数量和排布有多种组合方式,但至少存在一个空置单元203。
示例的,光学传感器200还可为图3或图4所示,图3和图4中示出了两个空置单元203和四个感光像素单元202以形成2*3的矩形阵列的组合形式。而且,图3和图4中,两个空置单元203的分布形式也不同,图3中两个空置单元203对角之间的点衔接的形式排布设置,如图4所示,两个空置单元203通过一个感光像素单元202完全间隔开于两侧。又例如,图5中示出了三个空置单元203和三个感光像素单元202形成的2*3的矩形阵列的组合形式,图6中示出了三个空置单元203和一个感光像素单元202形成的2*2的方形阵列的组合形式。并且,由图1、图6可看出,图1、图6均示出了空置单元203和感光像素单元202形成的横排和竖列数量相等的方形阵列的排布方式,图3~图5均示出了空置单元203和感光像素单元202形成的横排和竖列数量不相等的矩形阵列的排布方式。当然,空置单元203和感光像素单元202的数量还可以包括其他的排布形式,以及,空置单元203 和感光像素单元202还可以设置为除附图中的正方形以外的其他形状等,此处不再赘述,本领域技术人员可以根据实际情况进行具体设置和排布方式设计。
本申请提供的生物信息识别模组,包括光路引导层100以及光学传感器200;光路引导层100包括多个光通道101,光学传感器200包括多个感光像素单元202以及设置在多个感光像素单元202之间的至少一个空置单元203;空置单元203上方的携带生物信息的光束经光通道101被至少一个感光像素单元202接收。在使用生物信息识别模组时,携带生物信息的光束可以通过多个光通道101传输至光学传感器200,从而被光学传感器200的感光像素单元202接收并识别;同时,位于空置单元203上方的携带生物信息的光束可以经光通道101被至少一个感光像素单元202接收,其正常传输也不会受到影响。本申请通过将空置单元203设置于多个感光像素单元202之间,且使得空置单元203上方的携带生物信息的光束经光通道101后,被至少一个感光像素单元202接收,使得除空置单元203之外的感光像素单元202能够完全接收显示屏生物信息采集面积范围内的携带生物信息的光束,提高了感光像素单元202的光信号接收能力,从而使得生物信息识别模组能够接收到更多的携带生物信息的光束的光信号,进而获得更多的生物信息,从而有利于生物信息识别的精准性;另外,在不必增加显示屏的生物信息采集面积的情况下,本申请还可以提高光学传感器200的感光区域面积的有效利用率,减小光学传感器200的感光区域面积,从而缩小光学传感器200的体积,进而为采用本申请提供的生物信息识别模组的电子设备节省出更多的内部空间,同时可以降低生物信息识别模组的成本。
请参照图2,在本申请实施例的一种可选的实施方式中,光通道101可以包括倾斜光通道102,倾斜光通道102与垂直于光学传感器200的表面的直线之间可以具有夹角θ;空置单元203上方的携带生物信息的光束可以经倾斜光通道102被感光像素单元202接收。
光学传感器200的多个感光像素单元202可以共同形成光学传感器200的感光区域,由于光通道101中包括倾斜光通道102,通过倾斜光通道102对携带生物信息的光束的导向传输,能够在光学传感器200的感光区域面积不变的情况下,将来自于感光像素单元202的上方之外的携带生物信息的光束通过倾斜光通道102导向传输至至少一个感光像素单元202上,从而在减少感光像素单元202的设置数量(缩小感光区域面积)的情况下仍然能够使得携带生物信息的光束由光学传感器200全面有效地接收,提高光学传感器200的感光区域面积的有效利用率,减小光学传感器200的感光区域面积,从而缩小光学传感器200的体积。
需要说明的是,光学传感器200的感光接收面也可以根据需要设置为多种不同的面型,包括但不限于平面、凸起的弧面、凹陷的弧面、斜面等,本申请实施例中均以平面这种常规的光学传感器200的面型形式为例进行说明。其中,感光接收面可以由光学传感器200的多个感光像素单元202和空置单元203的表面共同组成。
示例地,如图2所示,倾斜光通道102与垂直于光学传感器200表面的直线之间可以具有夹角θ,夹角θ在0°至60°之间,根据具体的设置情况,可将夹角θ设置为0°、2°、5°、10°、15°、35°、40°、53°、60°等,此处不再一一例举。在本申请实施例的一种可选的实施方式中,多个倾斜光通道102中,倾斜光通道102的夹角θ的角度可以从中心的倾斜光通道102向远离中心的倾斜光通道102的方向呈角度递增的形式设置,也就是θ 1<θ 2,θ’ 1<θ’ 2,并且,以中心的倾斜光通道102为中心,两侧的倾斜光通道102可以对称设置,对称的两个倾斜光通道102的夹角θ的角度可以相等,也就是图2中的θ 1=θ’ 1,θ 2=θ’ 2
图1和图2中已经说明光学传感器200包括一个空置单元203的示例,在本申请实施例的一种可选的实施方式中,如图8所示,光学传感器200可以包括多个空置单元203, 多个空置单元203可以离散分布在多个感光像素单元202中。
需要说明的是,当空置单元203的数量为多个时,多个空置单元203之间离散分布可以包括:如图13中所示的一种情形,任意两个空置单元203之间均由多个感光像素单元202完全隔离而绝对不相接;或者,如图8所示的另一种情形,当空置单元203和感光像素单元202均为正方形时,两个空置单元203之间仅有角部存在理论上的连接关系,形成的相对不相接。上述的两种情形均为本申请实施例中所限定的多个空置单元203之间离散分布。多个空置单元203之间需通过感光像素单元202隔开。多个空置单元203之间不相接指的是多个空置单元203不形成面和面的相接,这样是为了避免相互连接的空置单元203形成较大的不接收携带生物信息的光束的面积,使得其周边的感光像素单元202无法完全准确的将对应空置单元203的携带生物信息的光束接收,导致携带生物信息的光束的丢失。
以图3所示为示例,空置单元203A周围可以设置有四个感光像素单元202,分别为感光像素单元202a、感光像素单元202b、感光像素单元202c、感光像素单元202d,空置单元203B周围可以设置有两个感光像素单元202,分别为感光像素单元202a、感光像素单元202c,空置单元203A、空置单元203B之间可以仅通过对角点形成衔接,对角点形成的衔接在前述内容中已经进行了论述,其不属于多个空置单元203相接的范畴,而空置单元203A与感光像素单元202a、感光像素单元202b、感光像素单元202c均通过面和面相接,空置单元203A与感光像素单元202d通过对角形成衔接,空置单元203B与感光像素单元202a、感光像素单元202c均通过面和面相接,因此,位于空置单元203A、空置单元203B上方的携带生物信息的光束,需要设置相应倾斜方向和角度的光通道101,达到被其周围的至少一个感光像素单元202接收的结果,多个空置单元203离散分布的设置,避免了因多个空置单元203面和面相接形成较大的不能接受携带生物信息的光束的面积,而造成多个连接的空置单元203上方的部分携带生物信息的光束在接收时发生信息丢失的情况,因此,有利于提高生物信息识别结果的准确性。
示例地,图3~图5均示出了两个或三个空置单元203的情况,由图3~图5可看出,这些空置单元203均离散分布在多个感光像素单元202之间,这样一来,使得每个空置单元203尽可能邻接数量较多的感光像素单元202,那么空置单元203上方的携带生物信息的光束能够通过与之邻接的多个感光像素单元202接收,从而使光学传感器200接收到更多的携带生物信息的光束,获得更多的生物信息。
仍旧以图3为例说明,图3中示出了两个空置单元203和四个感光像素单元202,对于空置单元203A来说,位于该空置单元203A上方的携带生物信息的光束通过倾斜光通道102入射后,总会被该空置单元203A周围的感光像素单元202a、感光像素单元202b、感光像素单元202c、感光像素单元202d中的部分或全部接收,不使该空置单元203A上方的携带生物信息的光束被遗漏。同理,位于空置单元203B上方的携带生物信息的光束通过倾斜光通道102入射后,总会被该空置单元203B周围的感光像素单元202a、感光像素单元202c中的一个或全部接收。那么,对于图3示出的空置单元203A、空置单元203B来说,由于这两个空置单元203离散分布在多个感光像素单元202之间,只要是位于空置单元203上方的携带生物信息的光束,都能被与之邻接的部分、或全部的感光像素单元202接收,避免了携带生物信息的光束的遗漏。
在本申请实施例的一种可选的实施方式中,空置单元203的形状可以与感光像素单元202的形状相同;和/或,空置单元203的面积可以与感光像素单元202的面积相同。
在光学传感器200的感光区域可以分布设置空置单元203和感光像素单元202,为了对感光区域进行充分的利用和紧凑的设计,可以将空置单元203和感光像素单元202设置为 相同的形状,如本申请方案的各个附图中所示的,可以将空置单元203和感光像素单元202均呈现为正方形,又例如,还可以将空置单元203和感光像素单元202的设置为面积相同,为便于理解,请参照图7所示,图7包括了一个空置单元203和两个感光像素单元202,其中空置单元203可以设置为椭圆形,而感光像素单元202则可以设置为具有与椭圆形匹配相接的弧形的异形图形,椭圆形的空置单元203的面积和异形图形的感光像素单元202的面积可以设置为相等。这样一来,即使感光像素单元202和空置单元203的形状不同,仍然能够通过光通道101的设置使得空置单元203上方的携带生物信息的光束入射其他感光像素单元202中。
应理解,图7只是示出了空置单元203和感光像素单元202的面积相同的一种示例的情形,并非是对本申请空置单元203和感光像素单元202的面积相同的唯一限制或者唯一可以支持的方案。还包括的一种可选的实施方式中,空置单元203和感光像素单元202的形状相同并且面积相等,例如图1、图3~图6任意一个,均属于空置单元203和感光像素单元202形状相同且面积相等的示例。
在本申请实施例的一种可选的实施方式中,由于感光像素单元202的作用是在接收自身上方的携带生物信息的光束的同时,还要接收空置单元203上方的携带生物信息的光束,因此,在光学传感器200中,空置单元203的数量可以小于感光像素单元202的数量。
试想可知,如果空置单元203的数量大于感光像素单元202的数量,那么对于感光像素单元202来说,其接收自身上方的携带生物信息的光术后,还需要接收不止一个空置单元203上方的携带生物信息的光束,当光束的接收需求超过了感光像素单元202的最大可接收能力,就可能会导致有一部分空置单元203上方的携带生物信息的光束无法被感光像素单元202接收,从而直接的造成这部分携带生物信息的光束的丢失。因此,空置单元203的数量要小于感光像素单元202的数量,以保证每个空置单元203上方的携带生物信息的光束都能被感光像素单元202接收。
在本申请实施例的一种可选的实施方式中,多个感光像素单元202以及至少一个空置单元203可以组成一个感光像素单元组201;一个感光像素单元组201中的至少一部分感光像素单元202对应的光通道101可以为倾斜光通道102。
多个感光像素单元202和至少一个空置单元203可以形成一个感光像素单元组201,光学传感器200上可以划分有多个这样的感光像素单元组201。例如,如图8所示,图8中通过点衔接的两个空置单元203A、203B和其周围的七个感光像素单元202即组成了一个3*3的感光像素单元组201,请再结合图9,可看到,由多个图8中这样的3*3的感光像素单元组201按照规律排列后即组成了光学传感器200的感光区域。
示例的,感光像素单元组201中的感光像素单元202和空置单元203以图9所示的数量和方式排列设置,多个感光像素单元组201即组成如图8所示的状态;又例如,感光像素单元组201中的感光像素单元202和空置单元203以图11中所示的数量和方式排列设置,即在3*3的感光像素单元组201中,位于对角线上的三个分别为空置单元203A、203B、203C,其他为六个感光像素单元202,如图10所示,多个如图11所示的感光像素单元组即可形成的一个图10的感光像素单元组201的设置形式,即,图10中包括了九个图11所示的感光像素单元组201。
又例如,还可以形成如图13所示的其他的空置单元203和感光像素单元202的组成形式,此处不再赘述。
在本申请实施例的一种可选的实施方式中,光学传感器200上的每个感光像素单元组201中的空置单元203和感光像素单元202的数量,以及每个感光像素单元组201中的空 置单元203和感光像素单元202的排布规律均可以相同。
以图11为例,在一个感光像素单元组201中,至少部分感光像素单元202对应的光通道101可以为倾斜光通道102,图11示出的感光像素单元组201中,以空置单元203C、感光像素单元202j和感光像素单元202k的B-B方向剖切得到图12,如图12所示,位于中心的感光像素单元202j所对应的光通道101可以为竖直的光通道101,经过该光通道101的携带生物信息的光束入射对应的感光像素单元202j,而位于感光像素单元202j两侧的空置单元203C和感光像素单元202k所分别对应的均为倾斜光通道102,这样一来,能够使得同一个感光像素单元组201中的光通道101较为聚集和紧凑,尽可能减少光通道101对于携带生物信息的光束的传输过程中的光损失,对于光通道101的作用和功能在前述内容中已有详细说明,此处不再赘述。
在本申请实施例的一种可选的实施方式中,在感光像素单元组201内的、与空置单元203中心对称的至少一个感光像素单元202所对应的光通道101可以为倾斜光通道102。
如图11和12所示,与空置单元203C中心对称的感光像素单元202k,在图12中可以直观的看到,感光像素单元202k所对应的光通道101即为倾斜光通道102。当然,应理解,在其他的视角方向的视图中,也应当可以看到,与空置单元203C中心对称的感光像素单元202e所对应的光通道101也应当为倾斜光通道,若为如图9所示的仅包含两个空置单元203的感光像素单元组201,那么,还包括与空置单元203A中心对称的感光像素单元202j,与感光像素单元202j对应的光通道101也为倾斜光通道。
需要说明的是,此处所述的与空置单元203的中心对称,包括相对于整个感光像素单元组201的几何中心的对称,也包括感光像素单元组201内的各条中心线的对称。当然,在下述的说明中,若限定感光像素单元组201的中心为空置单元203,则该中心应当指代的是整个感光像素单元组201的几何中心,以及,感光像素单元组201的阵列形式应当具有使得几何中心可以设置空置单元203的条件,例如,感光像素单元组201可以设置为奇数行与奇数列的组合。
在本申请实施例的一种可选的实施方式中,感光像素单元组201的中心可以为空置单元203。
如图15所示为一个3*3的感光像素单元组201,在感光像素单元组201中,有一个空置单元203且位于感光像素单元组201的中心,以该空置单元203为中心,相互对称的感光像素单元202g、感光像素单元202h在如图16所示的D-D方向的剖视图中,分别与感光像素单元202g和感光像素单元202h相对应的光通道101均可以为倾斜光通道102。
如图9、图11或者图15所示,感光像素单元组201的中心均为空置单元203,不同之处在于,图15位于中心的空置单元203周围均可以为感光像素单元202;图9中的感光像素单元组201除了包括位于中心的空置单元203A外,还可以包括位于右上角的空置单元203B;图11中的感光像素单元组201除了包括位于中心的空置单元203A外,还可以包括位于右上角的空置单元203B和位于左下角的空置单元203C。
请结合图16所示,以空置单元203为中心对称的至少两个感光像素单元202所对应的光通道101可以在中心的上方相交。
以图15中的一个感光像素单元组201为例,感光像素单元组201中,以空置单元203为中心对称的感光像素单元202g和感光像素单元202h,在图16所示的D-D剖视方向,感光像素单元202g和感光像素单元202h所分别对应的倾斜光通道102可以在中心的上方相交。
仍然以图16为例,空置单元203上方的携带生物信息的光束可以通过倾斜光通道102 入射与空置单元203邻接的感光像素单元202h,以使该光束被与空置单元203邻接的感光像素单元202h接收。
又例如,如图9所示,感光像素单元组201中的空置单元203可以包括有两个,分别为空置单元203A和空置单元203B,在空置单元203A和空置单元203B之间可以设置有感光像素单元202f和感光像素单元202h,以使得空置单元203A和空置单元203B之间为连接点衔接。
请参照图9,感光像素单元组201中包括空置单元203A、空置单元203B,空置单元203A和空置单元203B之间仅为连接点衔接,在空置单元203A和空置单元203B之间设置有感光像素单元202f和感光像素单元202h,即,与每个空置单元203通过侧面相邻接的均为感光像素单元202,空置单元203A具有四个与通过侧面相邻接的感光像素单元202,分别为感光像素单元202f、感光像素单元202g、感光像素单元202j、感光像素单元202h,还具有三个与其对角衔接的感光像素单元202,分别为感光像素单元202e、感光像素单元202i、感光像素单元202k;空置单元203B具有两个与其通过侧面相邻接的感光像素单元202,分别为感光像素单元202f、感光像素单元202h。
再示例,请再参照图11,感光像素单元组201中可以包括三个空置单元203A、空置单元203B、空置单元203C,空置单元203A、空置单元203B、空置单元203C之间可以仅为连接点衔接,空置单元203A、空置单元203B、空置单元203C之间可以设置有感光像素单元,与每个空置单元203通过侧面相邻接的均可以为感光像素单元202,空置单元203A可以具有四个与其通过侧面相邻接的感光像素单元202,分别为感光像素单元202f、感光像素单元202g、感光像素单元202j、感光像素单元202h,还可以具有两个与其对角衔接的感光像素单元202,分别为感光像素单元202e、感光像素单元202k;空置单元203B可以具有两个与其通过侧面相邻接的感光像素单元202,分别为感光像素单元202f、感光像素单元202h;空置单元203C可以具有两个与其通过侧面相邻接的感光像素单元202,分别为感光像素单元202g、感光像素单元202j。这样一来,一个感光像素单元组201中的多个空置单元203可以通过多个感光像素单元202分隔,以使多个空置单元203离散分布在多个感光像素单元202之间,任一个空置单元203上方的携带生物信息的光束都能被其邻接的感光像素单元202接收,有效地避免了携带生物信息的光束传输过程中的丢失。
在本申请实施例的一种实施方式中,如图14所示,空置单元203上方的携带生物信息的光束可以通过倾斜光通道102入射与空置单元203邻接的至少一个感光像素单元202。
倾斜光通道102可以与感光像素单元202对应,空置单元203上方的携带生物信息的光束通过倾斜光通道102入射后,被与空置单元203邻接的至少一个感光像素单元202接收。
示例地,还可参照图16所示,空置单元203可以位于中心,与该空置单元203邻接的两个感光像素单元202分别为感光像素单元202g、感光像素单元202h,空置单元203上方的携带生物信息的光束可以通过倾斜光通道102被与空置单元203邻接的感光像素单元202h接收。
在本申请实施例的一种实施方式中,在感光像素单元组201内,与空置单元203的间距相等的感光像素单元202可以包括有多个,这多个与空置单元203间距相等的感光像素单元202所对应的光通道101的夹角θ的角度均可以相同。
如图16所示,以空置单元203为中心,感光像素单元202g和感光像素单元202h与该空置单元203的间距相等,感光像素单元202g和感光像素单元202h分别对应的光通道101均为倾斜光通道102,在图16中示出,感光像素单元202g对应的倾斜光通道102的夹角θ 3, 与感光像素单元202h对应的倾斜光通道102的夹角θ’ 3的角度相等。
需要说明的是,感光像素单元组201内的携带生物信息的光束在光通道101内的传输方向还可参见图17,图17中示出的带有箭头的虚线表示光束经过光通道101的传输方向,线束可以由视图方向的靠近读者的方向起始,箭头沿所示的方向向朝向纸面的方向穿入,即一个感光像素单元202的光束朝向中心的方向倾斜出射,当该倾斜角度足够大,感光像素单元202g上方的携带生物信息的光束向对侧倾斜,能够经过空置单元203的上方并由感光像素单元202h接收。
其中,为了便于描述和理解,在图17中,在光学传感器200的上方示例有至少两层遮光层,在每一层的遮光层与光学传感器200的像素单元上均可以设置有透光孔,两层遮光层对应于同一个像素单元的透光孔的连线形成光通道101的至少一部分,通过两层遮光层对应于同一个像素单元的透光孔的位置偏差实现光通道101的倾斜。在图17中的直径较大的圆孔可以指代远离光学传感器200的遮光层上对应的透光孔,直径较小的圆孔可以指代靠近光学传感器200的遮光层上对应的透光孔,箭头方向即可以指代携带生物信息的光束在光通道101内的传输方向。
感光像素单元组201内的空置单元203上对应的携带生物信息的光束向与之空置单元203邻接的感光像素单元202中传输,图17示出的空置单元203上对应的携带生物信息的光束向其右侧邻接的感光像素单元202h传输,空间的传输方向可参照图16中示出的光路示意;空置单元203上对应的携带生物信息的光束也可以向其左侧的感光像素单元202g传输,如图18所示,这种传输方式,则形成如图19所示的光路传输示意;此外,空置单元203上对应的光通道101还可以向其周围的其他六个感光像素单元202倾斜,当空置单元203上具有多个道光方向不同的倾斜光通道102时,由多个感光像素单元202中的一个或多个分别接收空置单元203上方传输的携带生物信息的光束。
在本申请实施例的一种实施方式中,组成感光像素单元组201的多个感光像素单元202和空置单元203可以以M*N的形式排列组合,其中,M为大于等于1的整数,N为大于等于2的整数。
示例地,图9中示出的七个感光像素单元202和两个空置单元203可以形成一个感光像素单元组201,该感光像素单元组201以3*3的排列组合呈现;图11中的六个感光像素单元202和三个空置单元203可以形成一个感光像素单元组201,该感光像素单元组201以另一种3*3的排列组合呈现。
其中,N为大于等于2的整数,M为大于等于1的整数,即在M和N的行列排布中,至少有一个方向的像素单元排布有两个单元格,也就是说,M和N不能同时为1,本申请实施例的感光像素单元组201不包含1*1的形式,即,不包含仅有一个像素单元的感光像素单元组201。
N和M可以为相等的数值,如上述举例的3*3,当然,N和M也可以不相等。N和M不相等时,请参照图3~图5,如图3所示,可视为一个感光像素单元组201,在这个感光像素单元组201中,空置单元203和感光像素单元202是以2*3的组合形式呈现;再参照图7,图7可视为一个感光像素单元组201,其中空置单元203和感光像素单元202是以1*3的组合形式呈现;此外,感光像素单元组201还可以2*5、8*10等不同组合形式呈现,本申请也不再一一列举。
需要说明的是,在前述说明中已经详细限定,在光学传感器200上,空置单元203的数量小于感光像素单元202的数量,对于感光像素单元组201来说,一个感光像素单元组201中的空置单元203的数量通常也不应多于感光像素单元组201的数量。例如,对于一 个3*3的感光像素单元组201来说,其内部的像素单元共有九个,最多将其中四个像素单元作为空置单元203,例如可以位四个空置单元203和五个感光像素单元202的组合形式呈现;又例如,对于一个2*3的感光像素单元组201来说,如图5所示,其内部的像素单元共有六个,则最多将其中三个像素单元作为空置单元203。
上述从组成感光像素单元组201的像素单元的数量,以及感光像素单元组201中的空置单元203和感光像素单元202的数量进行说明,在本申请实施例的一种实施方式中,还可以从感光像素单元组201的面积的维度来理解和限定,感光像素单元组201中的多个感光像素单元202的总面积可以大于等于空置单元203的总面积。
一个感光像素单元组201中,所有感光像素单元202的总面积大于等于所有空置单元203的总面积,这样能够尽可能保证空置单元203上方的携带生物信息的光束都由组内感光像素单元202接收,减少光束传输中的丢失。也可以理解,对于由多个感光像素单元组201形成的光学传感器200来说,所有感光像素单元202的总面积也可以大于等于所有空置单元203的总面积。
和一个感光像素单元组201中的空置单元203的数量不能大于感光像素单元组201单元格总数量的一半对应地,感光像素单元组201中的所有空置单元203的总面积不能大于所有感光像素单元202的总面积的一半,其目的也同样是基于避免空置单元203上方的携带生物信息的光束被丢失。
在本申请实施例的生物信息识别模组中,光学传感器200的多个感光像素单元202之间设置有空置单元203,空置单元203不必接收其上方的光束,其上方的光束可由其他的感光像素单元202接收,因此,空置单元203所在的位置处即可以用于设置其他相应的结构以实现光学传感器200上的其他功能,当空置单元203上设置了其他实现功能的结构,那么可以理解,原先在光学传感器200上需要另外开设用于设置该结构的区域即可去除,从而使得整个光学传感器200的结构紧凑,从另一个角度说,由于去除光学传感器200上的其他区域而节省出的空间可以用来扩大感光区域,即提供更大用于排布感光像素单元202的区域,在不增加光学传感器200尺寸的情况下,有效扩大了光学传感器200的感光区域面积,降低模组的成本,使得生物信息识别模组的结构尺寸利用率尽可能的最大化,为采用本申请实施例的生物信息识别模组的电子设备节省出更多的内部空间。
在本申请实施例的一种实施方式中,空置单元203可以包括用于排设电路信号线的第一预留区,通过第一预留区排设的电路信号线进行电信号的收集,这样一来,在光学传感器200上不再需要在原先的感光区域以外设置走线区域,节省了光学传感器200的结构尺寸。
在本申请实施例的一种实施方式中,空置单元203还可以包括用于设置电路元件的第二预留区,即在空置单元203内排设电路元件,以实现电路元件相应的功能。
将电路信号线、电路元件排设在空置单元203内,由于本申请实施例的生物信息识别模组中,光学传感器200上的空置单元203通常为离散分布,在空置单元203排设电路信号线和/或电路元件后,为了方便各空置单元203内的电路信号线、电路元件之间的电连接,在本申请实施例的一种实施方式中,可以通过过孔将离散的多个空置单元203内的电路信号线和/或电路元件由其他导电层进行电连接。
示例地,在光学传感器200背侧还可以依次设置有绝缘层和导电层,穿透光学传感器200和绝缘层与导电层连通设置有过孔,相互间隔的两个空置单元203可以通过过孔与导电层连通。这样一来,电路信号线、电路元件之间的电连接,就可通过过孔在相互间隔的两个空置单元203之间连通,实现电路连接。
本申请实施例的另一方面提供一种电子设备,请参照图20,电子设备可以包括显示屏300,以及设置在显示屏300下方的如前述任意一项的生物信息识别模组。
电子设备可为常见的终端设备,例如手机、平板电脑等手持显示设备,或者电视机、台式电脑、空调、冰箱等家用液晶显示类电器。另外,该生物信息识别模组可以配置成用于对携带生物信息的光束进行识别,示例地,该携带生物信息的光束可以是来自人体手掌的掌纹、掌静脉、关节纹路、虹膜、人脸等。作为示例而非限制,生物信息可以为来自人体手指的指纹。为了便于理解,以现实生活中较为常见的手持显示设备上的指纹识别为例进行示例说明。
如图20所示,在显示屏300上可以设置有生物信息识别区301,生物信息识别区41可以为指纹识别区,生物信息识别区301可以与光学传感器200的感光区域对应,其中,来自空置单元203上方的生物信息识别区301的光束可以由对应的感光像素单元202接收。
具体操作时,用户可以将手指、手掌等具备个体生物特征的载体贴合放置于显示屏300的生物信息识别区301,以屏下指纹识别为例,照射在手指纹路上并反射的光束能够将照射的手指位置的纹路特征作为指纹信息进行携带,携带有指纹信息的光束经过生物信息识别模组中光路引导层100的光通道101后入射光学传感器200,被光学传感器200的感光像素单元202接收,用于识别用户信息。本申请通过空置单元203上方的携带生物信息的光束,可以使得更大区域范围内的携带生物信息的光束入射到光学传感器200,使得电子设备接收到更多的来自指纹反射的光信号,以获取更多的指纹信息,这样便可以在不增加显示屏300的生物信息识别区301面积的前提下,能够有效增加光学传感器200的像素采集范围,提高生物信息识别的识别精度,同时能够降低电子设备的制造成本,减少模组的体积,为电子设备节省出更多的内部空间。
除将生物信息识别模组集成于显示屏300下,还可将生物信息识别模组应用于其他可行的场景中。例如,可将生物信息模组设置于透明的保护玻璃板或保护膜层下,以使携带有生物信息的光束透过保护玻璃板入射至生物信息识别模组,以被生物信息识别模组识别。该过程在前述的任意一项实施例已有说明,此处不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请公开了一种生物信息识别模组及电子设备,涉及电子器件技术领域。该生物信息识别模组包括光路引导层以及光学传感器;光路引导层包括多个光通道,光学传感器包括多个感光像素单元以及设置在多个感光像素单元之间的至少一个空置单元;空置单元上方的携带生物信息的光束经光通道被至少一个感光像素单元接收。该电子设备包括显示屏以及设置在显示屏下方的生物信息识别模组。该生物信息识别模组及电子设备能够在不增加模组整体体积的情况下,接收更大区域范围内的携带生物信息的光束。
此外,可以理解的是,本申请的生物信息识别模组及电子设备是可以重现的,并且可以应用在多种工业应用中。例如,本申请的生物信息识别模组及电子设备可以应用于电子器件领域。

Claims (20)

  1. 一种生物信息识别模组,其中,所述生物信息识别模组包括光路引导层以及光学传感器;所述光路引导层包括多个光通道,所述光学传感器包括多个感光像素单元以及设置在多个所述感光像素单元之间的至少一个空置单元;所述空置单元上方的携带生物信息的光束经所述光通道被所述感光像素单元接收。
  2. 根据权利要求1所述的生物信息识别模组,其中,所述光通道包括倾斜光通道,所述倾斜光通道与垂直于所述光学传感器的表面的直线之间具有夹角;所述空置单元上方的携带生物信息的光束经所述倾斜光通道被所述感光像素单元接收。
  3. 根据权利要求1所述的生物信息识别模组,其中,所述光学传感器包括多个所述空置单元,多个所述空置单元离散分布在多个所述感光像素单元中。
  4. 根据权利要求1至3中的任一项所述的生物信息识别模组,其中,所述空置单元的形状与所述感光像素单元的形状相同;和/或,所述空置单元的面积与所述感光像素单元的面积相同。
  5. 根据权利要求1至4中的任一项所述的生物信息识别模组,其中,所述空置单元的数量小于所述感光像素单元的数量。
  6. 根据权利要求2所述的生物信息识别模组,其中,多个所述感光像素单元以及至少一个所述空置单元组成感光像素单元组;所述感光像素单元组中至少部分所述感光像素单元对应的所述光通道为所述倾斜光通道。
  7. 根据权利要求6所述的生物信息识别模组,其中,所述光学传感器上的每个感光像素单元组中的所述空置单元和所述感光像素单元的数量相同,以及每个感光像素单元组中的所述空置单元和所述感光像素单元的排布规律相同。
  8. 根据权利要求6或7所述的生物信息识别模组,其中,在所述感光像素单元组内的、与所述空置单元中心对称的至少一个所述感光像素单元所对应的所述光通道为所述倾斜光通道。
  9. 根据权利要求6或7所述的生物信息识别模组,其中,所述感光像素单元组的中心为所述空置单元。
  10. 根据权利要求9所述的生物信息识别模组,其中,以所述空置单元为中心对称的至少两个所述感光像素单元所对应的光通道在所述中心的上方相交。
  11. 根据权利要求6或7所述的生物信息识别模组,其中,所述感光像素单元组中的空置单元包括有多个,在两个所述空置单元之间设置有所述感光像素单元。
  12. 根据权利要求6至11中的任一项所述的生物信息识别模组,其中,所述空置单元 上方的光束通过所述倾斜光通道入射与所述空置单元邻接的至少一个感光像素单元。
  13. 根据权利要求6至12中的任一项所述的生物信息识别模组,其中,在所述感光像素单元组内,与所述空置单元的间距相等的多个所述感光像素单元对应的光通道的夹角角度相同。
  14. 根据权利要求6至13中的任一项所述的生物信息识别模组,其中,组成所述感光像素单元组的多个所述感光像素单元和所述空置单元以M*N的形式排列组合,其中,M为大于等于1的整数,N为大于等于2的整数。
  15. 根据权利要求6至14中的任一项所述的生物信息识别模组,其中,所述感光像素单元组中的多个所述感光像素单元的总面积大于等于所述空置单元的总面积。
  16. 根据权利要求1至15中的任一项所述的生物信息识别模组,其中,所述空置单元包括用于排设电路信号线的第一预留区。
  17. 根据权利要求16所述的生物信息识别模组,其中,所述空置单元还包括用于设置电路元件的第二预留区。
  18. 根据权利要求17所述的生物信息识别模组,其中,所述光学传感器背侧还依次设置有绝缘层和导电层,穿透所述光学传感器和所述绝缘层与所述导电层连通设置有过孔,相互间隔的两个所述空置单元通过所述过孔与所述导电层连通。
  19. 一种电子设备,其中,所述电子设备包括显示屏,以及设置在所述显示屏下方的根据权利要求1至18中的任一项所述的生物信息识别模组。
  20. 根据权利要求19所述的电子设备,其中,在所述显示屏上设置有生物信息识别区,来自所述空置单元上方的所述生物信息识别区的光束通过光通道由对应的感光像素单元接收。
PCT/CN2022/114273 2021-08-23 2022-08-23 一种生物信息识别模组及电子设备 WO2023025152A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121992540.4U CN216161103U (zh) 2021-08-23 2021-08-23 一种生物信息识别模组及电子设备
CN202110970567.1A CN113780104A (zh) 2021-08-23 2021-08-23 一种生物信息识别模组及电子设备
CN202121992540.4 2021-08-23
CN202110970567.1 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023025152A1 true WO2023025152A1 (zh) 2023-03-02

Family

ID=85322515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114273 WO2023025152A1 (zh) 2021-08-23 2022-08-23 一种生物信息识别模组及电子设备

Country Status (1)

Country Link
WO (1) WO2023025152A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108511A (zh) * 2019-07-12 2020-05-05 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN211742124U (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备
WO2021082680A1 (zh) * 2019-11-01 2021-05-06 上海菲戈恩微电子科技有限公司 图像采集光学结构及鉴别真假生物特征的方法和电子设备
CN216161103U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 一种生物信息识别模组及电子设备
CN216161104U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 生物信息识别模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108511A (zh) * 2019-07-12 2020-05-05 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
WO2021082680A1 (zh) * 2019-11-01 2021-05-06 上海菲戈恩微电子科技有限公司 图像采集光学结构及鉴别真假生物特征的方法和电子设备
CN211742124U (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备
CN216161103U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 一种生物信息识别模组及电子设备
CN216161104U (zh) * 2021-08-23 2022-04-01 北京极豪科技有限公司 生物信息识别模组及电子设备

Similar Documents

Publication Publication Date Title
CN109521605B (zh) 背光模组和显示装置
US11003886B2 (en) Display apparatus including a fingerprint identification device
CN107644215B (zh) 一种光学指纹组件及移动终端
EP3706036A1 (en) Fingerprint recognition apparatus and electronic device
CN106997252A (zh) 触控面板及触控显示装置
US20200379602A1 (en) Display panel and display device
WO2020118699A1 (zh) 指纹识别装置和电子设备
CN111108511B (zh) 指纹检测装置和电子设备
CN216161103U (zh) 一种生物信息识别模组及电子设备
US20190042035A1 (en) Display apparatus for reducing moire and method of driving the same
US10810398B2 (en) Display panel for fingerprint recognition and display device
CN216161104U (zh) 生物信息识别模组及电子设备
CN211319247U (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2019148798A1 (en) Pattern identification device and display apparatus
KR20210057702A (ko) 광학 지문 장치 및 전자 기기
CN113780103B (zh) 生物信息识别模组及电子设备
WO2023246640A1 (zh) 电子设备
KR20210138184A (ko) 지문 센서, 및 그를 포함한 표시 장치
US11068692B2 (en) Image capturing device under screen and electronic equipment
WO2023280269A1 (zh) 生物信息识别模组及电子设备
WO2021007953A1 (zh) 指纹检测装置和电子设备
CN111860172A (zh) 指纹识别组件、电子设备及指纹识别方法
WO2023025152A1 (zh) 一种生物信息识别模组及电子设备
WO2021082680A1 (zh) 图像采集光学结构及鉴别真假生物特征的方法和电子设备
WO2021008088A1 (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE