WO2020133479A1 - 光学指纹识别模组及电子设备 - Google Patents

光学指纹识别模组及电子设备 Download PDF

Info

Publication number
WO2020133479A1
WO2020133479A1 PCT/CN2018/125788 CN2018125788W WO2020133479A1 WO 2020133479 A1 WO2020133479 A1 WO 2020133479A1 CN 2018125788 W CN2018125788 W CN 2018125788W WO 2020133479 A1 WO2020133479 A1 WO 2020133479A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
hole
prism
fingerprint identification
light
Prior art date
Application number
PCT/CN2018/125788
Other languages
English (en)
French (fr)
Inventor
谢浩
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880003185.8A priority Critical patent/CN109791613A/zh
Priority to PCT/CN2018/125788 priority patent/WO2020133479A1/zh
Publication of WO2020133479A1 publication Critical patent/WO2020133479A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present application relates to biological identification technology, and in particular to an optical fingerprint identification module and electronic equipment under an LCD screen.
  • biometrics modules such as optical fingerprint recognition modules, iris recognition modules or face recognition modules
  • the sensor in the biometric module receives the light reflected by the organism and forms a skin feature image, compares the skin feature image with the stored image, and completes the functions of fingerprint recognition and living body detection.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint recognition module when the optical fingerprint recognition module is set in the LCD display screen, the optical fingerprint recognition module is located under the LCD display screen.
  • the LCD display screen includes a liquid crystal display panel and a backlight module.
  • the backlight module is used for the liquid crystal display panel Provide a light source, the optical fingerprint recognition module is located on the side of the backlight module facing away from the liquid crystal display panel, that is, the backlight module is located between the optical fingerprint recognition module and the liquid crystal display panel, wherein the backlight module includes a prism film, and the prism film has Prism structure, the prism structure is used to gather the light from the central viewing angle and increase the display brightness of the frontal angle.
  • the working process of the optical fingerprint recognition module is: the light reflected by the finger is transmitted to the prism structure and is refracted at the side of the prism structure It is received by the sensor of the optical fingerprint recognition module to form a fingerprint image, and the fingerprint image is compared with the stored fingerprint image to complete the fingerprint recognition.
  • the backlight module in the LCD display has a prism structure
  • the light reflected by the finger after passing through the prism structure is likely to cause a reduction in the effective field of view of the optical fingerprint recognition module and distortion of the generated fingerprint image, which is not conducive to fingerprints Identify.
  • the present application provides an optical fingerprint recognition module and electronic equipment, which increases the imaging field of view, improves the quality of fingerprint imaging, improves the accuracy of fingerprint recognition, and solves the problem of effective visual recognition of the existing optical fingerprint recognition module under the LCD screen
  • the field is reduced and the generated fingerprint image is distorted.
  • the present application provides an optical fingerprint recognition module, which is used for fingerprint recognition under a backlight module of an LCD screen.
  • the optical fingerprint recognition module includes:
  • one of the optical element and the optical hole is in an inclined state, and the angle of inclination of the optical element or the optical hole and the prism of the prism structure Match.
  • the optical element is horizontally disposed above the optical sensor element, and the optical hole is an inclined hole that matches the angle of the prism of the prism structure.
  • the optical hole on the optical element is a vertical hole, and the optical element is disposed obliquely above the optical sensor element, so that the optical element The vertical holes are inclined.
  • the optical sensor element is inclined, and the optical sensor element is parallel to the optical element.
  • the angle between the optical hole and the vertical direction is between 10° and 50°.
  • the optical element is made of an opaque material.
  • the optical hole on the optical element is a vertical hole
  • the optical element is horizontally disposed above the optical sensor element
  • the inner wall of the optical hole may be Totally refracting the refracted light at a preset angle, so that the partially refracted light is reflected by the inner wall of the optical hole and enters the sensing area of the optical sensing element.
  • the optical element is made of optical fiber, so that the inner wall of the optical hole can totally reflect the refracted light at a preset angle.
  • the area where the optical hole is formed on the optical element is greater than or equal to the sensing area of the optical sensing element.
  • the optical element is located above the optical sensor element, and there is a gap between the optical element and the optical sensor element.
  • the present application also provides an electronic device, at least comprising: a liquid crystal display panel, a backlight module, and any one of the optical fingerprint recognition modules described above, wherein the backlight module is located between the liquid crystal display panel and the optical fingerprint Identify between modules.
  • the backlight module includes a prism film, and the prism film has a prism structure, and the prism structure or the prism film has a surface through which vertical light reflected by a finger can vertically pass through the prism film.
  • an interval is provided between two adjacent prism structures on the prism film, and the interval is used to vertically transmit vertical light reflected by a finger through the prism film.
  • the prism structure includes a side surface and a top surface connected to the side surface, and the top surface is used to vertically transmit vertical light reflected by a finger through the prism film.
  • the top surface is a flat surface, or the top surface is a circular arc surface convex outward.
  • the electronic device has a fingerprint scanning area corresponding to the optical fingerprint identification module, and the fingerprint scanning area is located in the display area of the display screen of the electronic device or in the The non-display area of the electronic device.
  • the optical fingerprint identification module and electronic equipment provided by the present application include an optical sensor element and an optical element located above the optical sensor element through the optical fingerprint identification module, and the optical element is provided with a plurality of mutually parallel The optical hole, so that the light reflected by the finger is refracted by the prism structure of the backlight module, and part of the refracted light at a specific angle passes through the optical hole and enters the sensing area of the optical sensor element to form a fingerprint image.
  • the multiple parallel optical holes on the component can be used to select the refracted light at a specific angle, so that the fingerprint image formed by the optical fingerprint recognition module is a complete fingerprint image, avoiding the shadow area without light imaging, thus The problem of dark bars in the center of the fingerprint image is prevented.
  • the optical element is provided with a plurality of mutually parallel optical holes.
  • the optical holes realize the selection of refracted light at a specific angle after the prism structure is refracted.
  • the optical sensor element forms a complete fingerprint image according to the light selected by the optical hole.
  • 1A is a schematic structural view of an existing optical fingerprint recognition module when it is set in an LCD display screen
  • FIG. 1B is a schematic diagram of dark bars formed in fingerprint imaging on the optical fingerprint recognition module in FIG. 1A;
  • FIG. 1C is a schematic diagram of the reflected light and the structure of the prism film and prism in the center area of the fingerprint in FIG. 1A;
  • FIG. 1D is another structural schematic diagram of the existing optical fingerprint recognition module when it is set in the LCD display screen
  • FIG. 1E is a schematic diagram of dark bars formed in fingerprint imaging on the optical fingerprint recognition module in FIG. 1D;
  • FIG. 1F is a schematic diagram of the reflected light in the center area of the fingerprint in FIG. 1D and the structure of two prism films and prisms;
  • Example 2A is a schematic diagram of an optical fingerprint recognition module provided under Example 1 of the present application when it is set under an LCD display screen;
  • FIG. 2B is a schematic top structural view of the optical element and prism junction of the optical fingerprint identification module in FIG. 2A;
  • 2C is a schematic diagram of light refraction between the optical element and the prism structure in the optical fingerprint identification module provided in Example 1 of the present application;
  • 2D is another schematic structural diagram of an optical fingerprint recognition module provided under Example 1 of the present application when it is disposed under an LCD display screen;
  • FIG. 2E is a schematic diagram between the optical element and the prism structure of the optical fingerprint identification module in FIG. 2D;
  • Example 3 is a schematic diagram of an optical fingerprint recognition module provided under Example 2 of the present application when it is set under an LCD display screen;
  • Embodiment 4 is a schematic diagram of an optical fingerprint recognition module provided under Embodiment 3 of the present application when it is set under an LCD display screen;
  • FIG. 5A is a schematic structural diagram of an electronic device according to Embodiment 4 of the present application.
  • 5B is a schematic structural diagram of an optical fingerprint recognition module, a liquid crystal display panel, and a backlight module in an electronic device provided in Example 4 of this application;
  • 6A is a schematic structural diagram of a prism structure and a prism film of a backlight module in an electronic device provided in Example 4 of the present application;
  • 6B is another schematic structural diagram of a prism structure and a prism film of a backlight module in an electronic device provided in Embodiment 4 of the present application;
  • 6C is another schematic structural diagram of a prism structure and a prism film of a backlight module in an electronic device provided in Embodiment 4 of the present application.
  • the existing optical fingerprint recognition module 30 includes an optical sensor 31, a lens 32 with a diaphragm 33, and an LCD display screen includes a liquid crystal display panel 20 and a backlight module 10.
  • the backlight The module 10 includes at least one prism film.
  • the prism film is provided with a prism structure.
  • the backlight module 10 includes a prism film 11.
  • the prism film 11 has a prism structure 12.
  • the refracted light 102 When reflected from the fingerprint interface of the finger 40
  • the refracted light 102 enters the aperture 33 of the lens 32 after being refracted on the side of the prism structure 12, and reaches the optical sensor 31 to participate in imaging, but the small angle of the central area of the fingerprint reflects the light (see FIG. 1C
  • the vertically reflected light 101a) shown in the figure will be refracted on different sides of the prism and refracted by the side with the same tilt direction.
  • the refracted light 102 diverges outward in a parallel manner so that this part of the light cannot enter the diaphragm 33 of the lens 32
  • a dark bar 311 ie, the shaded part in FIG.
  • the prism angle of the prism structure 12 increases The wider the dark stripe of the large fingerprint imaging center, the study also found that when the backlight module 10 includes two prism films, as shown in FIGS. 1D-1F, when the prism film 11 and the prism film 13 are respectively, the prism film 13 is provided There is a prism structure 14, and the prism structure 12 is orthogonal to the prism structure 14. At this time, two dark bars 311 (as shown in FIG. 1E) are formed in the center of the fingerprint image detected by the optical sensor 31, which causes loss of field of view and fingerprint The distortion of the image is more serious.
  • the present invention provides an optical fingerprint recognition module 30.
  • the following provides a description of the embodiments provided in the present application in conjunction with multiple examples. The examples are as follows:
  • the optical fingerprint recognition module 30 provided by the following embodiments of the present application can be applied to any electronic device with an optical under-screen fingerprint recognition function such as a smart phone, a notebook computer, a wearable device, a home appliance, and an access control system.
  • the under-screen optical fingerprint recognition of the LCD can be realized in a local area preset in the LCD.
  • FIG. 2A is a schematic diagram of an optical fingerprint recognition module provided under Example 1 of the present application when it is installed under an LCD display screen
  • FIG. 2B is a schematic top view of the optical element and prism junction of the optical fingerprint recognition module in FIG. 2A
  • FIG. 2C is A schematic diagram of light refraction between the optical element and the prism structure in the optical fingerprint identification module provided in Example 1 of the present application
  • FIG. 2D is another example of the optical fingerprint identification module provided in Example 1 of the present application when it is installed under an LCD display screen.
  • FIG. 2E is a schematic diagram between the optical element and the prism structure of the optical fingerprint identification module in FIG. 2D.
  • the optical fingerprint recognition module 30 is provided under the LCD display, where the LCD display includes a liquid crystal display panel 20 and a backlight module 10, wherein the backlight module 10 in FIG. 2A includes a A prism film, that is, a prism film 11, a prism structure 12 is disposed on the prism film 11, an optical fingerprint recognition module 30 is specifically located under the backlight module 10, and the optical fingerprint recognition module 30 may include: an optical sensor element 302 and a The optical element 301 above the sensing element 302, and a plurality of parallel optical holes 3011 are formed on the optical element 301, the optical holes 3011 can realize the selection of light at a specific angle, so that the light 101 reflected by the finger 40 is in the backlight module 10 After being refracted by the prism structure 12, part of the refracted light 102 at a specific angle passes through the optical hole 3011 and enters the sensing area of the optical sensing element 302, and the optical sensing element 302 forms a fingerprint image according to the received light.
  • the optical hole 3011 specifically refracts the prism structure 12 A specific angle of refracted light 102 is selected to form a fingerprint image.
  • the optical sensor 3 receives light entering from the diaphragm 33 of the lens 32 to form a fingerprint image, a part of the fingerprint image is formed by the prism structure 12 The reflected light incident on the side of the same direction (for example, the left side) is refracted and enters the aperture 33 of the lens 32 to form the sensing area of the optical sensor 31.
  • Another part of the fingerprint image is formed by the side of the prism structure 12 in the other direction ( (For example, the right side)
  • the incident reflected light enters the diaphragm 33 of the lens 32 after being refracted and reaches the sensing area of the optical sensor 31, and the central area of the fingerprint cannot enter the diaphragm 33 of the lens 32 after being reflected by the prism structure 12
  • the dark bar 311 is formed, which reduces the effective field of view and the fingerprint image is distorted.
  • the light 101 reflected by the finger 40 enters the two sides of the prism structure 12 to form two kinds of refracted light 102.
  • the optical element 301 The multiple optical holes 3011 select one of the refracted rays 102 at a specific angle to pass through (as shown in FIG. 3), the remaining rays cannot pass through the optical holes 3011 to participate in imaging, and the refracted rays 102 enter the optical sensor element 302 for transmission
  • the sensing area directly forms a complete fingerprint image, that is, through the optical hole 3011 of the optical element 301, the refracted light 102 at a specific angle after the prism structure 12 is folded is selected, so that the fingerprint image is directly formed by the reflected light incident on one side of the prism structure 12 In this way, the reflected light in the center area of the fingerprint also participates in imaging, which avoids the shadow area 103 of the non-light imaging, thereby avoiding the center of the fingerprint image when the fingerprint image is formed by the two refracted rays 102 refracted by the two sides of the prism structure 12 There is a dark bar 311 problem.
  • the specific angle specifically refers to a certain angle, excluding multiple different angles, that is, in this embodiment, the optical hole 3011 is a unified
  • the angle of the refracted light 102 is selected, not the selection of the refracted light 102 at different angles as shown in FIG. 1A in the prior art.
  • the optical hole 3011 is provided on the optical element 301, and the optical hole 3011 realizes the selection of the refracted light 102 at a specific angle after the prism structure 12 is refracted, so that the optical sensor element 302 is selected according to the optical hole 3011.
  • the light forms a complete fingerprint image.
  • the imaging field of view is increased, the quality of fingerprint imaging is improved, and the fingerprint recognition accuracy of the optical fingerprint recognition module 30 is higher.
  • FIG. 2B the positional relationship between the prism structure 12 and the optical element 301 is shown in FIG. 2B.
  • the extending direction of the prism structure 12 (as shown by the arrow in FIG. 2B) and the extending direction of the long side of the optical element 301 (such as The dotted lines in FIG. 2B are perpendicular to each other.
  • the optical element 301 when the optical element 301 is disposed on the optical sensor element 302, there is a gap between the optical element 301 and the optical sensor element 302, that is, the optical element 301 is located above the optical sensor element 302.
  • the optical element 301 may be erected above the optical sensing element 302 through a support, or the optical element 301 may be adhered to the optical sensing element 302 by optical glue, and then the optical element 301 and the optical sensing element 302 may be carried out by optical glue interval.
  • the sensing area of the optical sensing element 302 is often consistent with the fingerprint area of the finger 40.
  • the optical element 301 is provided on the optical sensing element 302, specifically, The area where the optical hole 3011 is opened in the optical element 301 is greater than or equal to the sensing area of the optical sensing element 302, that is, the area for opening the optical hole 3011 on the optical element 301 is larger than the area of the sensing area of the optical sensing element 302, so It can be ensured that the light passing through the optical hole 3011 enters the sensing area of the optical sensing element 302 to form a completed fingerprint image.
  • the optical sensor element 302 is specifically an optical sensor, and the optical sensor may specifically include a filter and an optical sensor, or, in this embodiment, the optical sensor 31 is specifically an optical sensor.
  • the light 101 reflected by the finger 40 can be specifically reflected by the light emitted from the backlight in the backlight module 10 onto the finger 40 for reflection, or in this embodiment, a light-emitting device can also be provided separately.
  • the light-emitting device is used to provide light for fingerprint detection.
  • the light emitted by the light-emitting device is reflected by the finger 40 pressed on the display screen, and then enters the optical sensor element 302 through the liquid crystal display panel 20, the backlight module 10, and the optical element 301 in sequence
  • the light-emitting device may specifically be an infrared light source.
  • the infrared light source can prevent visible light from the display screen from interfering with fingerprint detection. Ensure the accuracy of fingerprint detection.
  • the infrared light source is invisible and will not affect the display of the display screen, that is, the display effect of the display screen can be ensured while the accuracy of fingerprint detection is ensured.
  • the infrared light source may be, for example, an infrared LED light source, an infrared vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL for short), an infrared laser diode (Laser Diode), or the like.
  • the optical fingerprint identification module 30 provided in this embodiment includes an optical sensor element 302 and an optical element 301 located above the optical sensor element 302, and the optical element 301 defines a plurality of parallel optical holes 3011. After the light 101 reflected by the finger 40 is refracted by the prism structure 12 of the backlight module 10, a part of the refracted light 102 at a specific angle passes through the optical hole 3011 and enters the sensing area of the optical sensor element 302 to form a fingerprint image.
  • the multiple parallel optical holes 3011 can realize the selection of the refracted light 102 at a specific angle, so that the fingerprint image formed by the optical fingerprint recognition module 30 is a complete fingerprint image, avoiding the shadow area of the non-light imaging, thus The problem of dark bars in the center of the fingerprint image is prevented.
  • the optical element 301 is provided with a plurality of mutually parallel optical holes 3011.
  • the optical holes 3011 realize the refraction of the prism structure 12 at a specific angle after refraction
  • the selection of the light 102 enables the optical sensor element 302 to form a complete fingerprint image according to the light selected by the optical hole 3011.
  • the imaging field of view is increased and the quality of fingerprint imaging is improved, so that the optical fingerprint recognition mode
  • the fingerprint recognition accuracy of group 30 is higher, which solves the problems of reducing the effective field of view and generating distortion of the generated fingerprint image when the optical fingerprint recognition module 30 under the LCD screen generates the fingerprint image.
  • the light 101 reflected by the finger 40 is refracted by the prism structure 12, and the refracted light 102 all exits at a certain angle of inclination.
  • one of the optical element 301 and the optical hole 3011 is in an inclined state, and the inclination angle of the optical element 301 or the optical hole 3011 and the prism angle of the prism structure 12 Matching, the optical element 301 or the optical hole 3011 in such an inclined state can realize the selection of the refracted light 102 at a specific inclination angle.
  • the optical hole 3011 is the refracted light 102 after refracting the prism structure 12
  • the selection is made, and the refraction angle of the refracted light 102 is related to the prism included angle ⁇ of the prism structure 12, so in this embodiment, in order to select the refracted light 102 after the prism structure 12 is refracted, in this embodiment, the optical element The tilt angle of 301 or the optical hole 3011 should match the prism angle ⁇ of the prism structure 12, so as to ensure that the refracted light 102 at a specific angle can pass through the optical hole 3011 after the reflected light is refracted on the side of the prism structure 12.
  • the optical element 301 may be arranged in an inclined shape, so that the optical hole 3011 is inclined, or the optical hole 3011 may be directly arranged as an inclined hole.
  • the optical element 301 is horizontally disposed above the optical sensor element 302, and the optical hole 3011 is an inclined hole matching the angle ⁇ of the prism of the prism structure 12, that is, in this embodiment,
  • the optical hole 3011 is set as an inclined hole, that is, the inside of the optical element 301 is an optical hole 3011 with a uniform tilt and fixed angle, and a plurality of optical holes 3011 can realize the selection of light at a specific angle.
  • the angle ⁇ between the optical hole 3011 and the vertical direction matches the prism angle ⁇ of the prism structure 12, so that the light 101 reflected by the finger 40 is refracted at a specific angle after being refracted on the side of the prism structure 12 102 can smoothly pass through the inclined optical hole 3011.
  • the angle ⁇ between the optical hole 3011 and the vertical direction may be between 10°-50°, for example, in this embodiment
  • the angle ⁇ between the optical hole 3011 and the vertical direction may be 30° or 25°, etc.
  • the angle ⁇ between the optical hole 3011 and the vertical direction may be between 10°-40°, where the angle ⁇ of the prism of the prism structure 12 is generally 90°, according to the principle of refraction, as shown in FIG.
  • the exit angle of vertically incident light after passing through the backlight module 10 is 26°, so the angle ⁇ between the optical hole 3011 and the vertical direction may be 26°, that is, in this embodiment, the backlight module 10 includes a single When the prism film 11 is stretched, the angle ⁇ between the optical hole 3011 and the vertical direction is preferably 26°, and when the backlight module 10 includes the prism film 11 and the prism film 13, and the prism structure 12 and the prism structure 14 are orthogonal At this time, at this time, the angle ⁇ between the optical hole 3011 and the vertical direction may be between 20°-50°, and when the prism included angle ⁇ of the prism structure 12 and the prism structure 14 are both 90°, this When the normal incident light is refracted by the prism film structure of the two films, the exit angle is 36.7°. Therefore, in this embodiment, when the backlight module 10 includes two prism films, the optical hole 3011 and the vertical The angle ⁇ between the directions is preferably 36.7°.
  • the backlight module 10 includes the prism structure 12 and the prism structure 14, at this time, as shown in FIG. 2E, the prism structure 12 and the prism structure 14 are perpendicular to each other, and the extending direction of the prism structure 14 (as shown in FIG.
  • the angle ⁇ between the prism structure 14 in 2E) and the extension direction of the long side of the optical element 301 is 30° to 60°.
  • ⁇ It can be 45°.
  • the optical element 301 is made of an opaque material, so that the optical element 301 Light in areas other than the optical hole 3011 is impenetrable.
  • the opaque material may specifically be an absorption type material that can absorb light, so that the light is projected onto the optical element 301 when the area of the optical hole 3011 is not opened. 301 absorbs and cannot penetrate from the optical element 301 into the sensing area of the optical sensing element 302.
  • FIG. 3 is a schematic diagram of an optical fingerprint recognition module provided under Embodiment 2 of the present application when it is set under an LCD display screen.
  • the optical hole 3011 on the optical element 301 is a vertical hole, that is, when the optical hole 3011 is opened on the optical element 301, the optical hole 3011 It is a straight hole perpendicular to the horizontal direction, but in order to ensure that the optical hole 3011 selects the refracted light 102 at a specific angle, in this embodiment, the optical element 301 is tilted, so that the vertical optical hole 3011 on the optical element 301 and the optical The elements 301 are tilted together at a certain angle. At this time, the angle ⁇ between the inclined optical hole 3011 and the vertical direction matches the angle ⁇ of the prism of the prism structure 12.
  • a plurality of vertical optical holes 3011 can be tilted together, which is convenient to set up and can emit at a specific angle to the prism structure 12 The choice of light.
  • the interval between the optical element 301 and the optical sensor element 302 gradually increases from one end to the other end, so that the optical sensor
  • special consideration needs to be given to the position between the optical element 301 and the optical sensing element 302.
  • the element 301 is arranged with the optical sensing element 302. Specifically, as shown in FIG.
  • the optical sensing element 302 is also arranged in an inclined shape, wherein the inclination angle of the optical element 301 and the optical sensing element 302 is the same, so that the optical The sensing element 302 is parallel to the optical element 301, and the sensing area of the optical sensing element 302 is directly opposite to the optical hole 3011.
  • the light passing through the optical hole 3011 is directly projected onto the sensing area of the optical sensing element 302, which is not easy to appear
  • the light passing through the optical hole 3011 is projected onto the non-sensing area of the optical sensing element 302 due to the different distance from the optical sensing element 302.
  • the angle ⁇ between the optical hole 3011 and the vertical direction is between 10°-50°, that is, the optical element 301 is inclined It is necessary to ensure that the angle ⁇ between the optical hole 3011 and the vertical direction is between 10°-50°, wherein, in this embodiment, the angle ⁇ between the optical hole 3011 and the vertical direction may be 26° or 36.7 ° Wait.
  • FIG. 4 is a schematic diagram of an optical fingerprint recognition module provided under Embodiment 3 of the present application when it is set under an LCD display screen.
  • the optical hole 3011 on the optical element 301 is a vertical hole, that is, the optical hole 3011 is a straight hole in the optical element 301, and the optical element 301 is arranged horizontally above the optical sensor element 302.
  • the inner wall of the optical hole 3011 is configured to totally reflect the refracted light 102 at a preset angle.
  • the inner wall of the optical hole 3011 has the characteristics of total reflection of the refracted light 102 at a specific angle, so that the incident light can be selectively selected, and only light that meets the conditions of total reflection can reach the optical sensor through the optical element 301
  • the sensing area of the element 302 forms a fingerprint image.
  • the inner wall of the optical hole 3011 is provided with a total reflection characteristic, so that the light emitted from the prism film 11 is selected, so as to avoid the shadow area without light imaging, improve the imaging quality of the fingerprint, and help to increase the imaging field of view .
  • the total reflection angle of the optical hole 3011 matches the prism included angle ⁇ of the prism structure 12, so that the refracted light 102 at a specific angle refracted by the prism structure 12 can enter the optical transmission through the total reflection of the optical hole 3011
  • the optical element 301 is specifically made of optical fiber. Since the optical fiber material has the performance of total reflection, when the optical hole 3011 is opened on the optical element 301, the optical hole 3011
  • the inner wall of can achieve total reflection characteristics, that is, in this embodiment, the material of the optical element 301 is different from that of the first and second embodiments. It should be noted that in this embodiment, the material of the optical element 301 includes but Not limited to optical fibers, other materials that can be totally reflected can also be used.
  • FIG. 5A is a schematic structural diagram of an electronic device provided in Example 4 of the present application
  • FIG. 5B is a schematic structural diagram of an optical fingerprint recognition module, a liquid crystal display panel, and a backlight module in the electronic device provided in Example 4 of the present application
  • FIG. 6A is a diagram
  • FIG. 6B is another structural schematic diagram of the prism structure and prism film of the backlight module in the electronic device provided in the fourth embodiment of the present application
  • 6C is another schematic structural diagram of a prism structure and a prism film of a backlight module in an electronic device provided in Embodiment 4 of the present application.
  • This embodiment provides an electronic device 100, and the electronic device 100 is specifically any electronic device 100 having an LCD display screen, such as a smart phone, a notebook computer, a wearable device, a home appliance, and an access control system.
  • the electronic device 100 includes at least: a liquid crystal display panel 20, a backlight module 10 and the optical fingerprint identification module 30 of any of the above embodiments, wherein the backlight module 10 is located on the liquid crystal display panel 20 and the optical fingerprint identification module Between groups 30, wherein, in this embodiment, the structure of the optical fingerprint recognition module 30 is specifically referred to the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the backlight module 10 includes a single prism film 11, or the backlight module 10 includes two prism films, namely a prism film 11 and a prism film 13, and the prism film 11 is provided with a prism structure 12,
  • the prism film 13 is provided with a prism structure 14, and the prism structure 12 is orthogonal to the prism structure 14, wherein, in this embodiment, only one prism film 11 and prism structure 12, two prism films and two are shown in FIG. 5B
  • the backlight module 10 further includes other structures such as a light guide plate and a backlight.
  • the electronic device 100 provided in this embodiment includes the above-mentioned optical fingerprint recognition module 30 to realize the selection of the refracted light 102 at a specific angle after the prism structure 12 is refracted, so that the optical sensor element 302 selects the light according to the optical hole 3011 Compared with the prior art, a complete fingerprint image is formed, which increases the imaging field of view and improves the quality of fingerprint imaging, so that the fingerprint recognition accuracy of the optical fingerprint recognition module 30 is higher. Therefore, the electronic device provided in this embodiment 100. High-precision fingerprint recognition is realized, which solves the problems that the effective field of view is reduced and the generated fingerprint image is distorted when the optical fingerprint recognition module 30 under the LCD screen generates a fingerprint image.
  • the vertically reflected light 101a reflected by the finger 40 cannot enter the prism structure 12 vertically on the side of the prism structure 12, so when the structure of the optical fingerprint recognition module 30 As shown in FIG. 4, the optical element 301 needs to be made of optical fiber, so that the inner wall of the optical hole 3011 has the characteristics of total reflection, and the refracted light 102 at a specific angle, but when the fiber material is selected, the cost is higher, so in order to achieve
  • the optical element 301 is not made of optical fiber, and the optical fingerprint recognition module 30 shown in FIG. 4 is still used for the purpose of selecting light.
  • the prism structure 12 is changed.
  • the prism structure 12 or The prism film 11 has a surface for the vertical light reflected by the finger 40 to vertically penetrate the prism film 11, that is, in this embodiment, the prism structure 12 or the prism film 11 can realize the vertical reflection of light 101a in the prism structure 12 or the prism film 11 for the purpose of vertical incidence, so that the vertical light emitted from the prism film 11 can pass through the vertical optical hole 3011 into the sensing area, so in this embodiment, by changing the prism film 11 or the prism structure 12, Therefore, the optical fingerprint recognition module 30 can achieve the purpose of increasing the imaging field of view and improving the fingerprint imaging quality under the premise that the optical element 301 is not made of optical fiber and the optical element 301 and the optical hole 3011 are not tilted.
  • an interval is provided between two adjacent prism structures 12 on the prism film 11, and the interval is used to vertically transmit the vertical light reflected by the finger 40 through the prism film 11, that is, this embodiment
  • a part of the flat area 111 is reserved to realize the vertical transmission of vertically incident light, so that the vertical light can be perpendicularly incident from the part of the flat area 111 reserved between the prism array.
  • the optical fingerprint recognition module 30 The optical element 301 and the optical hole 3011 do not need to be inclined, and the optical hole 3011 of the optical element 301 does not need to have the characteristics of total reflection. Therefore, in this embodiment, the optical element 301 can be made of an opaque material, and the optical element 301 The optical sensor element 302 is horizontally arranged, and the optical hole 3011 is a straight hole.
  • the prism structure 12 includes a side surface 121 and a top surface 122 connected to the side surface 121, and the top surface 122 is used to vertically transmit the vertical light reflected by the finger 40 through the prism
  • the vertically reflected light 101a reflected by the finger 40 can be vertically incident at the top surface 122, and the vertically reflected light 101a passes through the prism film 11 from the vertical
  • the straight optical hole 3011 penetrates into the sensing area of the optical sensing element 302 to perform fingerprint imaging.
  • the top surface 122 is a plane, so that the vertically reflected light 101a reflected by the finger 40 is perpendicularly incident at the plane of the prism structure 12, or, as shown in FIG. 6C, the top surface 122 On the arc surface protruding outward, the vertically reflected light 101a reflected by the finger 40 is perpendicularly incident on the arc-shaped top surface 122 of the prism structure 12.
  • the electronic device 100 has a fingerprint scanning area 120 corresponding to the optical fingerprint recognition module 30.
  • the user's finger 40 can be placed in the fingerprint scanning area 120 by the optical fingerprint recognition module 30 to identify.
  • the fingerprint scanning area 120 may be located on the display area of the display screen 110 of the electronic device 100 (as shown in FIG. 5A).
  • the fingerprint scanning area 120 may be set at the bottom of the display screen 110, so that the user can Perform fingerprint input directly on the display area of the display screen 110; alternatively, the fingerprint scanning area 120 may also be located on the non-display area of the electronic device, for example, the fingerprint scanning area 120 may be located on the front or back of the housing of the electronic device 100, or electronic When the device 100 is a mobile phone, the fingerprint scanning area 120 is located on the Home button.
  • the fingerprint scanning area 120 may be an independent button area.
  • the shape of the fingerprint scanning area 120 includes but is not limited to a circle, a square, an ellipse, or an irregular figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供一种光学指纹识别模组及电子设备,该光学指纹识别模组包括:光学传感元件(302)和光学元件(301),且光学元件(301)上开设多个相互平行的光学孔(3011),以使经手指反射的光线在背光模组(10)的棱镜结构折射后部分折射光线穿过光学孔(3011)进入光学传感元件(302)的传感区域,本申请增大了成像视场,提高了指纹成像的质量,使得指纹识别精度更高。

Description

光学指纹识别模组及电子设备 技术领域
本申请涉及生物识别技术,尤其涉及一种LCD屏下的光学指纹识别模组及电子设备。
背景技术
随着生物识别技术的发展,越来越多的终端上配备了生物识别模组(例如光学指纹识别模组、虹膜识别模组或人脸识别模组),其中,生物识别模组的具体工作原理为:生物识别模组中的感应器接收经生物体反射后的光线并形成皮肤特征图像,将皮肤特征图像和存储的图像进行对比,完成指纹识别、活体检测等功能,生物识别模组在终端中应用时,往往设置在有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示屏或者LCD显示屏之下。
目前,光学指纹识别模组在LCD显示屏中设置时,光学指纹识别模组位于LCD显示屏下,具体的,LCD显示屏包括液晶显示面板和背光模组,背光模组用于为液晶显示面板提供光源,光学指纹识别模组位于背光模组背离液晶显示面板的一侧,即背光模组位于光学指纹识别模组和液晶显示面板之间,其中,背光模组包括棱镜膜,棱镜膜上具有棱镜结构,该棱镜结构用于收拢中心视角的光线,增加正视角度的显示亮度,光学指纹识别模组的工作过程为:经手指反射后的光线传递至棱镜结构,在棱镜结构的侧面处经过折射并被光学指纹识别模组的感应器接收,形成指纹图像,指纹图像与存储的指纹图像进行对比完成指纹识别。
然而,由于LCD显示屏中的背光模组具有棱镜结构,经手指反射后的光线经过棱镜结构后易造成光学指纹识别模组的有效视场减少以及所生成的指纹图像出现畸变,从而不利于指纹识别。
发明内容
本申请提供一种光学指纹识别模组及电子设备,增大了成像视场,提高 了指纹成像质量,提高了指纹识别的准确度,解决了现有LCD屏下光学指纹识别模组的有效视场减少以及所生成的指纹图像出现畸变的问题。
本申请提供一种光学指纹识别模组,用于设置在LCD屏的背光模组下进行指纹识别,其中,光学指纹识别模组包括:
光学传感元件和位于所述光学传感元件之上的光学元件,且所述光学元件上开设多个相互平行的光学孔,以使经手指反射的光线在所述背光模组的棱镜结构折射后部分折射光线穿过所述光学孔进入所述光学传感元件的传感区域。
本申请的具体实施方式中,具体的,所述光学元件和所述光学孔中的其中一个呈倾斜状态,且所述光学元件或者所述光学孔的倾斜角度与所述棱镜结构的棱镜夹角相匹配。
本申请的具体实施方式中,具体的,所述光学元件水平设置在所述光学传感元件之上,所述光学孔为与所述棱镜结构的棱镜夹角相匹配的倾斜孔。
本申请的具体实施方式中,具体的,所述光学元件上的所述光学孔为竖直孔,且所述光学元件在所述光学传感元件之上倾斜设置,以使所述光学元件上的所述竖直孔呈倾斜状。
本申请的具体实施方式中,具体的,所述光学传感元件呈倾斜状,且所述光学传感元件与所述光学元件平行。
本申请的具体实施方式中,具体的,所述光学孔或所述光学元件倾斜时,所述光学孔与竖直方向之间的夹角介于10°-50°。
本申请的具体实施方式中,具体的,所述光学元件采用不透光的材料制成。
本申请的具体实施方式中,具体的,所述光学元件上的所述光学孔为竖直孔,所述光学元件水平设在所述光学传感元件之上,且所述光学孔的内壁可对预设角度的折射光线进行全反射,以使所述部分折射光线经所述光学孔的内壁反射后进入所述光学传感元件的传感区域。
本申请的具体实施方式中,具体的,所述光学元件采用光纤制成,以使所述光学孔的内壁可对预设角度的折射光线全反射。
本申请的具体实施方式中,具体的,所述光学元件上开设所述光学孔的区域大于或等于所述光学传感元件的传感区域。
本申请的具体实施方式中,具体的,所述光学元件位于所述光学传感元件之上,且所述光学元件与所述光学传感元件之间具有间隔。
本申请还提供一种电子设备,至少包括:液晶显示面板、背光模组和上述任一所述的光学指纹识别模组,其中,所述背光模组位于所述液晶显示面板和所述光学指纹识别模组之间。
所述背光模组包括棱镜膜,所述棱镜膜上具有棱镜结构,且所述棱镜结构或者所述棱镜膜上具有可供经手指反射后的垂直光线垂直透过所述棱镜膜的表面。
本申请的具体实施方式中,具体的,所述棱镜膜上相邻两个所述棱镜结构之间设置间隔,所述间隔用于将经手指反射后的垂直光线垂直透过所述棱镜膜。
本申请的具体实施方式中,具体的,所述棱镜结构包括侧面和与所述侧面相连的顶面,且所述顶面用于将经手指反射后的垂直光线垂直透过所述棱镜膜。
本申请的具体实施方式中,具体的,所述顶面为平面,或者,所述顶面向外凸起的圆弧面。
本申请的具体实施方式中,具体的,所述电子设备具有与所述光学指纹识别模组对应的指纹扫描区域,所述指纹扫描区域位于所述电子设备的显示屏幕的显示区域或者位于所述电子设备的非显示区域。
本申请提供的光学指纹识别模组及电子设备,通过光学指纹识别模组包括光学传感元件和位于所述光学传感元件之上的光学元件,且所述光学元件上开设多个相互平行的光学孔,这样经手指反射的光线在所述背光模组的棱镜结构折射后部分特定角度的折射光线穿过所述光学孔进入所述光学传感元件的传感区域,形成指纹图像,由于光学元件上开设的多个相互平行的光学孔可以实现对特定角度的折射光线进行选择,这样使得光学指纹识别模组形成的指纹图像为完整的指纹图像,避开了无光线成像的阴影区域,从而防止了指纹图像的中心出现暗条的问题,因此,本实施例中,通过光学元件上设置多个相互平行的光学孔,光学孔实现了对棱镜结构折射后的特定角度的折射光线的选择,使得光学传感元件根据光学孔选择的光线形成完整的指纹图像,与现有技术相比,增大了成像视场,提高了指纹成像的质量,使得光学 指纹识别模组的指纹识别精度更高,解决了LCD屏下光学指纹识别模组生成指纹图像时有效视场减少以及所生成的指纹图像出现畸变的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为现有光学指纹识别模组在LCD显示屏中设置时的结构示意图;
图1B为图1A中光学指纹识别模组上指纹成像中形成的暗条的示意图;
图1C为图1A中指纹中心区域的反射光线与棱镜膜和棱镜结构的示意图;
图1D为现有光学指纹识别模组在LCD显示屏中设置时的又一结构示意图;
图1E为图1D中光学指纹识别模组上指纹成像中形成的暗条的示意图;
图1F为图1D中指纹中心区域的反射光线与两个棱镜膜和棱镜结构的示意图;
图2A为本申请实施例一提供的光学指纹识别模组在LCD显示屏下设置时的示意图;
图2B为图2A中光学指纹识别模组的光学元件与棱镜结的俯视结构示意图;
图2C为本申请实施例一提供的光学指纹识别模组中光学元件与棱镜结构之间光线折射的示意图;
图2D为本申请实施例一提供的光学指纹识别模组在LCD显示屏下设置时的又一结构示意图;
图2E为图2D中光学指纹识别模组的光学元件与棱镜结构之间的示意图;
图3为本申请实施例二提供的光学指纹识别模组在LCD显示屏下设置时的示意图;
图4为本申请实施例三提供的光学指纹识别模组在LCD显示屏下设置时的示意图;
图5A为本申请实施例四提供的电子设备的结构示意图;
图5B为本申请实施例四提供的电子设备中光学指纹识别模组与液晶显示面板和背光模组的结构示意图;
图6A为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的结构示意图;
图6B为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的又一结构示意图;
图6C为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的再一结构示意图。
附图标记说明:
10-背光模组;        11、13-棱镜膜;       111-平整区域;  12、14-棱镜结构;
121-侧面;           122-顶面;            101-光线;
101a-垂直反射光线;  102-折射光线;        103-阴影区域;
20-液晶显示面板;    30-光学指纹识别模组; 301-光学元件;
3011-光学孔;        302-光学传感元件;    40-手指。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
正如背景技术所述,现有技术中,LCD显示屏下设置光学指纹识别模组30时存在有效视场减少以及所生成的指纹图像出现畸变的问题,经发明人研究发现,出现这种问题的原因在于:如图1A-1C所示,现有的光学指纹识别模组30包括光学感应器31、带有光阑33的透镜32,LCD显示屏包括液晶显示面板20和背光模组10,背光模组10包括至少一张棱镜膜,棱镜膜上设有棱镜结构,其中图1A中,背光模组10包括一张棱镜膜11,棱镜膜11上具有棱镜结构12,当从手指40指纹界面反射的光线101传递至棱镜结构12时,在棱镜结构12的侧面发生折射后折射光线102进入透镜32的光阑33到达光学感应器31参与成像,但是指纹中心区域的小角度反射光线(如图1C 中所示的垂直反射光线101a)会在棱镜的不同侧面发生折射且倾斜方向相同的侧面折射后的折射光线102以相互平行的方式向外发散,这样该部分光线无法进入透镜32的光阑33,最终导致光学感应器31所检测的指纹图像中心会形成一个暗条311(即图1B中阴影部分),导致严重的视场损失以及指纹图像的畸变,而且,棱镜结构12的棱镜夹角越大指纹成像中心暗条的越宽,研究还发现,当背光模组10包括两张棱镜膜时,如图1D-1F所示,分别为棱镜膜11和棱镜膜13时,棱镜膜13上设有棱镜结构14,且棱镜结构12与棱镜结构14正交,此时,光学感应器31所检测的指纹图像中心会形成两条暗条311(如图1E所示),使得视场损失以及指纹图像的畸变更加严重。
基于以上原因,本发明提供了一种光学指纹识别模组30,如下结合多个实例对本申请实施例提供的进行说明,示例如下:
本申请下述各实施例提供的光学指纹识别模组30可应用于智能手机、笔记本电脑、可穿戴设备、家电设备以及门禁系统等任一具有LCD的屏下光学指纹识别功能的电子设备中。LCD的屏下光学指纹识别可以在LCD中预设的局部区域实现。
实施例一
图2A为本申请实施例一提供的光学指纹识别模组在LCD显示屏下设置时的示意图,图2B为图2A中光学指纹识别模组的光学元件与棱镜结的俯视结构示意图,图2C为本申请实施例一提供的光学指纹识别模组中光学元件与棱镜结构之间光线折射的示意图,图2D为本申请实施例一提供的光学指纹识别模组在LCD显示屏下设置时的又一结构示意图,图2E为图2D中光学指纹识别模组的光学元件与棱镜结构之间的示意图。
参见图2A-2C所示,光学指纹识别模组30设在LCD显示屏下,其中,LCD显示屏包括液晶显示面板20和背光模组10,其中,图2A中的背光模组10包括一张棱镜膜,即棱镜膜11,棱镜膜11上设置棱镜结构12,光学指纹识别模组30具体位于背光模组10之下,该光学指纹识别模组30可包括:光学传感元件302和位于光学传感元件302之上的光学元件301,且光学元件301上开设多个相互平行的光学孔3011,光学孔3011可实现对特定角度光线选择,这样经手指40反射的光线101在背光模组10的棱镜结构12折射后部分特定角度的折射光线102穿过光学孔3011进入光学传感元件302的传感区域,光学传感元件302 根据接收到的光线形成指纹图像。
其中,本实施例中,手指40反射后的光线101从棱镜结构12的两个侧面入射后,根据入射侧面不同会形成两种折射光线102,而光学孔3011具体将棱镜结构12折射后的其中一种特定角度的折射光线102进行选择,最终形成指纹图像,而现有技术中,光学感应器3接收从透镜32的光阑33进入的光线形成指纹图像时,其中一部分指纹图像由棱镜结构12的同方向的侧面(例如左侧面)入射的反射光线经折射后进入透镜32的光阑33到达光学感应器31的感应区形成,另一部分指纹图像由棱镜结构12的另一方向的侧面(例如右侧面)入射的反射光线经折射后进入透镜32的光阑33到达光学感应器31的感应区形成,而指纹中心区域由于反射光线经棱镜结构12折射后无法进入透镜32的光阑33而形成暗条311,造成有效视场减少且指纹图像发生畸变,而本实施例中,经手指40反射的光线101从棱镜结构12的两个侧面入射形成两种折射光线102时,光学元件301的多个光学孔3011选择其中一种特定角度的折射光线102穿过(如图3所示),其余光线无法从光学孔3011中穿过参与成像,折射光线102进入光学传感元件302的传感区域直接形成完整的指纹图像,即通过光学元件301的光学孔3011对棱镜结构12折线后的特定角度的折射光线102进行选择,使得指纹图像由棱镜结构12其中一个侧面入射的反射光线直接形成,这样指纹中心区域的反射光线也参与成像,这样避开了无光线成像的阴影区域103,从而避免了指纹图像由棱镜结构12两个侧面折射后的两种折射光线102形成时指纹图像的中心出现暗条311的问题。其中,本实施例,光学孔3011对特定角度的折射光线102进行选择时,特定角度具体指某一个角度,不包括多种不同的角度,即本实施例中,光学孔3011对统一的一种角度的折射光线102进行选择,并非现有技术中如图1A中所示的不同角度的折射光线102进行选择。
所以,本实施例中,通过光学元件301上设置光学孔3011,光学孔3011实现了对棱镜结构12折射后的特定角度的折射光线102的选择,使得光学传感元件302根据光学孔3011选择的光线形成完整的指纹图像,与现有技术相比,增大了成像视场,提高了指纹成像的质量,使得光学指纹识别模组30的指纹识别精度更高。
其中,本实施例中,棱镜结构12与光学元件301之间的位置关系如图2B所示,棱镜结构12的延伸方向(如图2B中的箭头方向)与光学元件301长边延 伸方向(如图2B中的虚线方向)相互垂直。
其中,本实施例中,光学元件301在光学传感元件302上设置时,光学元件301与光学传感元件302之间具有间隔,即光学元件301位于光学传感元件302的上方,设置时,可以将光学元件301通过支撑架设在光学传感元件302的上方,或者光学元件301通过光学胶粘在光学传感元件302上,此时光学元件301与光学传感元件302之间通过光学胶进行间隔。
其中,光学传感元件302的传感区域往往与手指40的指纹区域相一致,为了保证指纹显示的完整性,本实施例中,光学元件301在光学传感元件302上设置时,具体的,光学元件301上开设光学孔3011的区域大于或等于光学传感元件302的传感区域,即光学元件301上用于开设光学孔3011的面积大于光学传感元件302的传感区域的面积,这样可以确保光学孔3011穿过的光线进入光学传感元件302的传感区域形成完成的指纹图像。
其中,本实施例中,光学传感元件302具体为光学感应器,光学感应器具体可以包括滤光片和光学传感器,或者,本实施例中,光学感应器31具体为光学传感器。
其中,本实施例中,经手指40反射的光线101具体可以通过背光模组10中的背光源发出的光线投射到手指40上进行反射,或者本实施例中,还可以单独设置发光装置,该发光装置用于提供指纹检测的光线,发光装置发出的光线经过按压在显示屏上的手指40的反射后,依次经过液晶显示面板20、背光模组10和光学元件301入射至光学传感元件302,以在光学传感元件302的传感区域生成用于指纹识别的指纹图像数据,其中,发光装置具体可以为红外光源,采用该红外光源作为指纹光源可避免显示屏的可见光对指纹检测干扰,保证指纹检测的准确度。并且,红外光源不可见,不会对显示屏的显示造成影响,即在保证指纹检测准确度的情况下,还可保证显示屏的显示效果。该红外光源例如可以为红外LED光源、红外的垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,简称VCSEL)、红外的激光二极管(Laser Diode)等。
本实施例提供的光学指纹识别模组30,通过包括光学传感元件302和位于光学传感元件302之上的光学元件301,且光学元件301上开设多个相互平行的光学孔3011,这样经手指40反射的光线101在背光模组10的棱镜结构12折射后 部分特定角度的折射光线102穿过光学孔3011进入光学传感元件302的传感区域,形成指纹图像,由于光学元件301上开设的多个相互平行的光学孔3011可以实现对特定角度的折射光线102进行选择,这样使得光学指纹识别模组30形成的指纹图像为完整的指纹图像,避开了无光线成像的阴影区域,从而防止了指纹图像的中心出现暗条的问题,因此,本实施例中,通过光学元件301上设置多个相互平行的光学孔3011,光学孔3011实现了对棱镜结构12折射后的特定角度的折射光线102的选择,使得光学传感元件302根据光学孔3011选择的光线形成完整的指纹图像,与现有技术相比,增大了成像视场,提高了指纹成像的质量,使得光学指纹识别模组30的指纹识别精度更高,解决了LCD屏下光学指纹识别模组30生成指纹图像时有效视场减少以及所生成的指纹图像出现畸变的问题。
其中,本实施例中,由于棱镜结构12的结构限定,使得经手指40反射后的光线101经棱镜结构12折射后,折射光线102均以一定倾斜角度向外出射,所以本实施例中,为了实现对特定角度的折射光线102进行选择,本实施例中,光学元件301和光学孔3011中的其中一个呈倾斜状态,且光学元件301或者光学孔3011的倾斜角度与棱镜结构12的棱镜夹角相匹配,这样呈倾斜状态的光学元件301或光学孔3011可以实现对特定倾斜角度的折射光线102进行选择,其中,本实施例中,由于光学孔3011是对棱镜结构12折射后的折射光线102进行选择,而折射光线102的折射角度与棱镜结构12的棱镜夹角θ相关,所以,本实施例中,为了实现对棱镜结构12折射后的折射光线102进行选择,本实施例中,光学元件301或光学孔3011倾斜的角度要与棱镜结构12的棱镜夹角θ相匹配,这样确保了反射光线在棱镜结构12的侧面折射后特定角度的折射光线102能穿过光学孔3011,其中,本实施例中,可以将光学元件301设置为倾斜状,这样使得光学孔3011呈倾斜,或者可以直接将光学孔3011设置为倾斜孔。
本实施例中,如图2A所示,光学元件301水平设置在光学传感元件302之上,光学孔3011为与棱镜结构12的棱镜夹角θ相匹配的倾斜孔,即本实施例中,光学孔3011在光学元件301上设置时,将光学孔3011设置为倾斜孔,即光学元件301的内部为统一倾斜固定角度的光学孔3011,多个光学孔3011可实现对特定角度光线的选择,其中,光学孔3011与竖直方向之间的夹角β与棱镜结构12的棱镜夹角θ相匹配,这样经手指40反射后的光线101在棱镜结构12的侧面折 射后,特定角度的折射光线102可以顺利通过倾斜的光学孔3011。
其中,本实施例中,光学孔3011在光学元件301中倾斜设置时,具体的,光学孔3011与竖直方向之间的夹角β可以介于10°-50°,例如,本实施例中,光学孔3011与竖直方向之间的夹角β可以为30°或者25°等,其中,本实施例中,当背光模组10中包括单张棱镜膜11时(如图2A所示),此时,光学孔3011与竖直方向之间的夹角β可以介于10°-40°,其中,棱镜结构12的棱镜夹角θ一般为90°,根据折射原理,如图2C所示,垂直入射光线经过背光模组10后的出射角为26°,所以,光学孔3011与竖直方向之间的夹角β可以为26°,即本实施例中,背光模组10中包括单张棱镜膜11时,光学孔3011与竖直方向之间的夹角β优选为26°,而当背光模组10中包括棱镜膜11和棱镜膜13,且棱镜结构12和棱镜结构14正交,这时,此时,光学孔3011与竖直方向之间的夹角β可以介于20°-50°,且当棱镜结构12和棱镜结构14的棱镜夹角θ均为90°时,此时,垂直入射光线经过两张膜的棱镜膜结构折射后的出射角为36.7°,所以,本实施例中,当背光模组10包括两张棱镜膜时,此时,光学孔3011与竖直方向之间的夹角β优选为36.7°。
其中,本实施例中,当背光模组10包括棱镜结构12和棱镜结构14时,此时,如图2E所示,棱镜结构12和棱镜结构14相互垂直,棱镜结构14的延伸方向(如图2E中棱镜结构14上的箭头所示)与光学元件301的长边延伸方向(如图2E中的虚线所示)之间的夹角φ为30°~60°,例如本实施例中,φ可以为45°。
其中,为了确保光学元件301中只有光学孔3011可供光线穿过进入光学传感元件302的传感区域,本实施例中,光学元件301采用不透光的材料制成,这样光学元件301上除光学孔3011之外的区域光线无法透过,其中,不透光的材料具体可以为对光线可吸收的吸收型材料,这样光线投射到光学元件301上未开设光学孔3011区域时被光学元件301吸收,无法从光学元件301透过进入光学传感元件302的传感区域。
实施例二
图3为本申请实施例二提供的光学指纹识别模组在LCD显示屏下设置时的示意图。
本实施例与上述实施例的区别为:本实施例中,参见图3所示,光学元件301上的光学孔3011为竖直孔,即光学孔3011在光学元件301上开设时,光学孔3011为与水平方向垂直的直孔,但是为了保证光学孔3011对特定角度的折射光线102进行选择,本实施例中,将光学元件301倾斜设置,这样光学元件301上的竖直光学孔3011与光学元件301一同倾斜特定角度,此时,呈倾斜状的光学孔3011与竖直方向之间的夹角β与棱镜结构12的棱镜夹角θ相匹配。
其中,本实施例中,通过将光学元件301倾斜设置时,只要将光学元件301倾斜设置便可以保证多个竖直的光学孔3011一同倾斜,设置方便且可实现对棱镜结构12特定角度的出射光线的选择。
其中,本实施例中,当光学元件301倾斜设置,而光学传感元件302水平设置时,光学元件301与光学传感元件302之间的间隔从一端到另一端逐渐增大,这样光学传感元件302上的传感区域为了保证光学孔3011穿过的光线均进入传感区域,往往需对光学元件301与光学传感元件302之间的位置进行特殊考虑,本实施例中,为了方便光学元件301与光学传感元件302进行设置,具体的,如图3所示,将光学传感元件302也设置为倾斜状,其中,光学元件301与光学传感元件302的倾斜角度相同,这样光学传感元件302与光学元件301平行,光学传感元件302的传感区域与光学孔3011正对设置,从光学孔3011穿出的光线直接投射到光学传感元件302的传感区域,不易出现光学孔3011穿出的光线由于与光学传感元件302之间的距离不同而出现光线投射到光学传感元件302的非传感区域上。
其中,本实施例中,竖直的光学孔3011与光学元件301一同倾斜特定角度设置后,光学孔3011与竖直方向之间的夹角β介于10°-50°,即光学元件301倾斜时需保证光学孔3011与竖直方向之间的夹角β介于10°-50°,其中,本实施例中,光学孔3011与竖直方向之间的夹角β可以为26°或者36.7°等。
实施例三
图4为本申请实施例三提供的光学指纹识别模组在LCD显示屏下设置时的示意图。
本实施例与上述实施例的区别为:本实施例中,参见图4所示,光学元件301上的光学孔3011为竖直孔,即光学孔3011在光学元件301中为直孔,光学 元件301水平设在光学传感元件302之上,为了实现对特定角度的折射光线102进行选择,本实施例中,光学孔3011的内壁被设置成可对预设角度的折射光线102进行全反射,即本实施例中,光学孔3011的内壁对特定角度的折射光线102具备全反射的特性,这样可以针对性的选择入射光线,只有符合全反射条件的光线才能透过光学元件301到达光学传感元件302的传感区域,形成指纹图像。
本实施例中,通过将光学孔3011的内壁具备全反射特性,这样实现对棱镜膜11出射光线的选择,从而避开无光线成像的阴影区域,提高指纹成像质量,有利于增大成像视场。
其中,本实施例中,光学孔3011的全反射角与棱镜结构12的棱镜夹角θ相匹配,这样棱镜结构12折射后的特定角度的折射光线102可通过光学孔3011的全反射进入光学传感元件302的传感区域。
其中,为了实现光学孔3011内壁全反射的特性,本实施例中,光学元件301具体采用光纤制成,由于光纤材料具有全反射的性能,所以光学元件301上开设光学孔3011时,光学孔3011的内壁可实现全反射特性,即本实施例中,光学元件301选用的材料与上实施例一和实施例二的材料不同,需要说明的是,本实施例中,光学元件301的材料包括但不限于光纤,还可以采用其他可进行全反射的材料。
实施例四
图5A为本申请实施例四提供的电子设备的结构示意图,图5B为本申请实施例四提供的电子设备中光学指纹识别模组与液晶显示面板和背光模组的结构示意图,图6A为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的结构示意图,图6B为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的又一结构示意图,图6C为本申请实施例四提供的电子设备中背光模组的棱镜结构与棱镜膜的再一结构示意图。
本实施例提供一种电子设备100,该电子设备100具体为智能手机、笔记本电脑、可穿戴设备、家电设备以及门禁系统等任一具有LCD显示屏的电子设备100,其中,本实施例中,如图5A-5B所示,至少包括:液晶显示面板20、背光模组10和上述任一实施例的光学指纹识别模组30,其中,背光模组10位 于液晶显示面板20和光学指纹识别模组30之间,其中,本实施例中,光学指纹识别模组30的结构具体参考上述实施例,本实施例中不再赘述。
其中,本实施例中,背光模组10包括单张棱镜膜11,或者,背光模组10包括两张棱镜膜,分别为棱镜膜11和棱镜膜13,棱镜膜11上设有棱镜结构12,棱镜膜13上设有棱镜结构14,棱镜结构12与棱镜结构14正交,其中,本实施例中,图5B中只示出一张棱镜膜11和棱镜结构12,两张棱镜膜和两个棱镜结构的结构可以参考图2D和图2E所示,其中,背光模组10还包括导光板和背光源等其他结构,背光模组10的其他结构可以参考现有技术,本实施例中不再赘述。
本实施例提供的电子设备100,通过包括上述光学指纹识别模组30,实现了对棱镜结构12折射后的特定角度的折射光线102的选择,使得光学传感元件302根据光学孔3011选择的光线形成完整的指纹图像,与现有技术相比,增大了成像视场,提高了指纹成像的质量,使得光学指纹识别模组30的指纹识别精度更高,因此,本实施例提供的电子设备100,实现了高精度的指纹识别,解决了LCD屏下光学指纹识别模组30生成指纹图像时有效视场减少以及所生成的指纹图像出现畸变的问题。
其中,现有技术中,由于棱镜结构12的结构限定,使得经手指40反射的垂直反射光线101a在棱镜结构12的侧面无法垂直进入棱镜结构12中,所以,当光学指纹识别模组30的结构如图4所示时,需将光学元件301采用光纤制成,这样光学孔3011的内壁具备全反射的特性,对特定角度的折射光线102但是选用光纤材料时,成本较高,所以为了实现在光学元件301不采用光纤制成,且仍然选用如图4所示的光学指纹识别模组30对光线进行选择的目的,本实施例中,将棱镜结构12进行改变,具体的,棱镜结构12或者棱镜膜11上具有可供经手指40反射后的垂直光线垂直透过棱镜膜11的表面,即本实施例中,棱镜结构12或棱镜膜11可以实现垂直反射光线101a在棱镜结构12或棱镜膜11上垂直入射的目的,这样从棱镜膜11出射的垂直光线可以从竖直的光学孔3011穿过进入传感区域,所以,本实施例中,通过对棱镜膜11或棱镜结构12的改变,使得光学指纹识别模组30在光学元件301不采用光纤制成且光学元件301和光学孔3011均未进行倾斜设置的前提下仍实现了增大成像视场以及提高指纹成像质量的目的。
本实施例中,如图6A所示,棱镜膜11上相邻两个棱镜结构12之间设置间隔,间隔用于将经手指40反射后的垂直光线垂直透过棱镜膜11,即本实施例中,在棱镜阵列间预留部分平整区域111实现垂直入射光线的垂直透过,这样垂直光线便可以从棱镜阵列间预留部分的平整区域111垂直入射,此时,光学指纹识别模组30中的光学元件301和光学孔3011不用倾斜设置,同时光学元件301的光学孔3011不需要具备全反射的特性,所以,本实施例中,光学元件301可以采用不透光材料制成,光学元件301水平设在光学传感元件302上,光学孔3011为直孔。
或者,本实施例中,如图6B-6C所示,棱镜结构12包括侧面121和与侧面121相连的顶面122,且顶面122用于将经手指40反射后的垂直光线垂直透过棱镜膜11,即本实施例中,棱镜结构12包括侧面121和顶面122,经手指40反射后的垂直反射光线101a在顶面122处可以实现垂直入射,垂直反射光线101a经过棱镜膜11从竖直的光学孔3011穿处进入光学传感元件302的传感区域进行指纹成像。
其中,本实施例中,如图6B所示,顶面122为平面,这样经手指40反射的垂直反射光线101a在棱镜结构12的平面处垂直入射,或者,如图6C所示,顶面122向外凸起的圆弧面,经手指40反射的垂直反射光线101a在棱镜结构12的弧形顶面122处垂直入射。
其中,本实施例中,如图5A所示,电子设备100具有与光学指纹识别模组30对应的指纹扫描区域120,使用时,用户手指40可以放置在指纹扫描区域120被光学指纹识别模组30进行识别。
其中,本实施例中指纹扫描区域120可以位于电子设备100的显示屏幕110的显示区域上(如图5A所示),例如,指纹扫描区域120可以设置在显示屏幕110的底端,这样用户可以直接在显示屏幕110的显示区域进行指纹输入;或者,指纹扫描区域120还可以位于电子装置的非显示区域上,例如,指纹扫描区域120可以位于电子设备100的壳体正面或背面上,或者电子设备100为手机时,指纹扫描区域120位于Home键上,本实施例中,指纹扫描区域120可以为独立的按钮区域。
其中,本实施例中,指纹扫描区域120的形状包括但不限于圆形、方形、椭圆形或者不规则图形。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种光学指纹识别模组,用于设置在LCD屏的背光模组(10)下进行指纹识别,其特征在于,包括:
    光学传感元件(302)和位于所述光学传感元件(302)之上的光学元件(301),且所述光学元件(301)上开设多个相互平行的光学孔(3011),以使经手指反射的光线在所述背光模组(10)的棱镜结构折射后部分折射光线穿过所述光学孔(3011)进入所述光学传感元件(302)的传感区域。
  2. 根据权利要求1所述的光学指纹识别模组,其特征在于,所述光学元件(301)和所述光学孔(3011)中的其中一个呈倾斜状态,且所述光学元件(301)或者所述光学孔(3011)的倾斜角度与所述棱镜结构的棱镜夹角相匹配。
  3. 根据权利要求2所述的光学指纹识别模组,其特征在于,所述光学元件(301)水平设置在所述光学传感元件(302)之上,所述光学孔(3011)为与所述棱镜结构的棱镜夹角相匹配的倾斜孔。
  4. 根据权利要求2所述的光学指纹识别模组,其特征在于,所述光学元件(301)上的所述光学孔(3011)为竖直孔,且所述光学元件(301)在所述光学传感元件(302)之上倾斜设置,以使所述光学元件(301)上的所述竖直孔呈倾斜状。
  5. 根据权利要求4所述的光学指纹识别模组,其特征在于,所述光学传感元件(302)呈倾斜状,且所述光学传感元件(302)与所述光学元件(301)平行。
  6. 根据权利要求2-5任一所述的光学指纹识别模组,其特征在于,所述光学孔(3011)或所述光学元件(301)倾斜设置时,所述光学孔(3011)与竖直方向之间的夹角介于10°-50°。
  7. 根据权利要求1-6任一所述的光学指纹识别模组,其特征在于,所述光学元件(301)采用不透光的材料制成。
  8. 根据权利要求1所述的光学指纹识别模组,其特征在于,所述光学元件(301)上的所述光学孔(3011)为竖直孔,所述光学元件(301)水平设在所述光学传感元件(302)之上,且所述光学孔(3011)的内壁被设置成可对预设角度的折线光线进行全反射,以使所述部分折线光线经所述光学孔 (3011)的内壁反射后进入所述光学传感元件(302)的传感区域。
  9. 根据权利要求8所述的光学指纹识别模组,其特征在于,所述光学元件(301)采用光纤制成,以使所述光学孔(3011)的内壁可对预设角度的折线光线全反射。
  10. 根据权利要求1-9任一所述的光学指纹识别模组,其特征在于,所述光学元件(301)上开设所述光学孔(3011)的区域大于或等于所述光学传感元件(302)的传感区域。
  11. 根据权利要求1-9任一所述的光学指纹识别模组,其特征在于,所述光学元件(301)位于所述光学传感元件(302)之上,且所述光学元件(301)与所述光学传感元件(302)之间具有间隔。
  12. 一种电子设备,其特征在于,所述电子设置至少包括:液晶显示面板(20)、背光模组(10)和上述权利要求1-11任一项所述的光学指纹识别模组(30),其中,所述背光模组(10)位于所述液晶显示面板(20)和所述光学指纹识别模组(30)之间。
  13. 根据权利要求12所述的电子设备,其特征在于,所述背光模组(10)包括棱镜膜(11),所述棱镜膜(11)上具有棱镜结构(12),且所述棱镜结构(12)或者所述棱镜膜(11)上具有可供经手指反射后的垂直光线垂直透过所述棱镜膜(11)的表面。
  14. 根据权利要求13所述的电子设备,其特征在于,所述棱镜膜(11)上相邻两个所述棱镜结构(12)之间设置间隔,所述间隔用于将经手指反射后的垂直光线垂直透过所述棱镜膜(11)。
  15. 根据权利要求13所述的电子设备,其特征在于,所述棱镜结构(12)包括侧面(121)和与所述侧面(121)相连的顶面(122),且所述顶面(122)用于将经手指反射后的垂直光线垂直透过所述棱镜膜(11)。
  16. 根据权利要求15所述的电子设备,其特征在于,所述顶面(122)为平面,或者,所述顶面(122)向外凸起的圆弧面。
  17. 根据权利要求12-16任一所述的电子设备,其特征在于,所述电子设备具有与所述光学指纹识别模组(30)对应的指纹扫描区域(120),所述指纹扫描区域(120)位于所述电子设备的显示屏幕(110)的显示区域或者位于所述电子设备的非显示区域。
PCT/CN2018/125788 2018-12-29 2018-12-29 光学指纹识别模组及电子设备 WO2020133479A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880003185.8A CN109791613A (zh) 2018-12-29 2018-12-29 光学指纹识别模组及电子设备
PCT/CN2018/125788 WO2020133479A1 (zh) 2018-12-29 2018-12-29 光学指纹识别模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125788 WO2020133479A1 (zh) 2018-12-29 2018-12-29 光学指纹识别模组及电子设备

Publications (1)

Publication Number Publication Date
WO2020133479A1 true WO2020133479A1 (zh) 2020-07-02

Family

ID=66500798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125788 WO2020133479A1 (zh) 2018-12-29 2018-12-29 光学指纹识别模组及电子设备

Country Status (2)

Country Link
CN (1) CN109791613A (zh)
WO (1) WO2020133479A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175592B (zh) * 2019-05-31 2021-02-02 上海天马微电子有限公司 一种显示面板及其驱动方法以及显示装置
CN113239856B (zh) 2019-07-12 2023-08-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111108509B (zh) * 2019-08-08 2023-09-08 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111095287B (zh) * 2019-08-08 2023-09-12 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
CN110441946B (zh) * 2019-08-16 2022-06-28 京东方科技集团股份有限公司 一种显示面板及其驱动方法和显示装置
CN112399040B (zh) * 2019-08-16 2023-07-14 印象认知(北京)科技有限公司 一种分视场成像模组及终端设备
CN211319247U (zh) * 2019-09-20 2020-08-21 深圳市汇顶科技股份有限公司 指纹识别装置、背光模组、液晶显示屏和电子设备
CN111007680A (zh) * 2019-11-25 2020-04-14 华为技术有限公司 液晶显示装置
CN111144385B (zh) * 2020-01-21 2023-06-20 上海思立微电子科技有限公司 指纹成像单元和电子设备
CN116209944A (zh) 2020-07-23 2023-06-02 3M创新有限公司 具有光学传感器模块的电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726443A (en) * 1996-01-18 1998-03-10 Chapman Glenn H Vision system and proximity detector
CN108241839A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
CN207851852U (zh) * 2018-01-23 2018-09-11 金佶科技股份有限公司 电子装置及其取像模组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209486694U (zh) * 2018-12-29 2019-10-11 深圳市汇顶科技股份有限公司 光学指纹识别模组及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726443A (en) * 1996-01-18 1998-03-10 Chapman Glenn H Vision system and proximity detector
CN108241839A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
CN207851852U (zh) * 2018-01-23 2018-09-11 金佶科技股份有限公司 电子装置及其取像模组

Also Published As

Publication number Publication date
CN109791613A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020133479A1 (zh) 光学指纹识别模组及电子设备
EP3819898B1 (en) Display screen and terminal
WO2020037991A1 (zh) 屏下光学指纹识别系统及电子装置
WO2020077498A1 (zh) 发光装置、生物特征检测装置和电子设备
CN110263773B (zh) 显示模组、显示装置及光栅膜材层的制作方法
WO2020035021A1 (zh) Lcd指纹识别系统、屏下光学指纹识别装置和电子装置
CN209486694U (zh) 光学指纹识别模组及电子设备
WO2021103888A1 (zh) 液晶显示装置
US11960161B2 (en) Display panel and display device
US20120162138A1 (en) Display apparatus
CN212160687U (zh) 一种生物特征检测装置
CN110955083B (zh) 显示装置
CN111444842A (zh) 一种显示组件和电子设备
CN213210659U (zh) 背光模组、液晶显示装置、屏下生物特征检测系统和电子设备
CN213182771U (zh) 屏下生物特征检测系统和电子设备
CN213210660U (zh) 背光模组、被动式发光的显示装置、屏下生物特征检测系统和电子设备
CN212061207U (zh) 指纹识别用光学膜
CN211653351U (zh) 背光模组、显示装置以及电子设备
CN111458934A (zh) 背光模组、被动式发光的显示装置、屏下生物特征检测系统和电子设备
WO2021147020A1 (zh) 指纹识别装置和电子设备
CN209803506U (zh) 一种背光模组、显示模组及电子设备
CN210402375U (zh) 背光模组、显示器、生物特征检测模组及电子装置
CN210573817U (zh) 生物特征检测模组和背光模组及电子装置
CN209803512U (zh) 一种背光模组、显示模组及电子设备
KR102204164B1 (ko) 지문인식용 광학필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944146

Country of ref document: EP

Kind code of ref document: A1