WO2023279729A1 - 一种分液器、空调器及控制方法 - Google Patents

一种分液器、空调器及控制方法 Download PDF

Info

Publication number
WO2023279729A1
WO2023279729A1 PCT/CN2022/077055 CN2022077055W WO2023279729A1 WO 2023279729 A1 WO2023279729 A1 WO 2023279729A1 CN 2022077055 W CN2022077055 W CN 2022077055W WO 2023279729 A1 WO2023279729 A1 WO 2023279729A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
compressor
agitator
air conditioner
liquid separator
Prior art date
Application number
PCT/CN2022/077055
Other languages
English (en)
French (fr)
Inventor
宋龙
吕福俊
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023279729A1 publication Critical patent/WO2023279729A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a liquid separator, an air conditioner and a control method.
  • the evaporator and the radiator respectively have multiple pipelines.
  • the refrigerant needs to be divided by a liquid separator.
  • the invention provides a liquid separator, an air conditioner and a control method, which are used to solve the problem that the liquid distribution uniformity of the liquid separator in the prior art is poor, which easily leads to the amount of refrigerant circulating in each pipeline in the evaporator and radiator. Inhomogeneity leads to the deterioration of the cooling or heating effect of the air conditioner and increases the energy consumption of the air conditioner, and realizes a liquid separator, an air conditioner and a control method for uniform liquid separation.
  • the invention provides a liquid dispenser, which includes a housing, the housing has a liquid inlet and at least one liquid outlet, a liquid separation chamber is provided between the liquid inlet and the liquid outlet, and a stirrer .
  • the driving mechanism includes a rotor and a stator coil
  • the agitator is coaxially connected with the rotor
  • both the agitator and the rotor are located in the liquid separation chamber, and the agitator and the rotor are coaxially connected.
  • the stator coil is looped on the outside of the housing, the stator coil is used to drive the rotor to rotate when energized, and the rotor is used to drive the agitator to rotate in the liquid separation chamber;
  • the control module is used to control the current direction and voltage value of the stator coil.
  • the present invention also provides an air conditioner, including the liquid separator as described in any one of the above
  • the present invention also provides a method for controlling the air conditioner as described above, including the following steps:
  • the number of liquid distribution channels of the liquid distributor is based on the relationship between at least one of the compressor operating frequency, the compressor operating current value, the compressor discharge temperature value, and the compressor discharge pressure value.
  • the number of liquid separation channels is to calculate the operating speed of the agitator in the liquid separator, and control the agitator to rotate at the operating speed.
  • the calculation formula for calculating the operating speed of the agitator according to the number of liquid separation channels and the operating frequency of the compressor includes:
  • S is the running speed of the agitator
  • H is the running frequency of the compressor
  • N is the number of liquid separators.
  • the calculation formula for calculating the operating speed of the agitator according to the number of liquid separation channels and the operating current value of the compressor includes:
  • S is the operating speed of the agitator
  • a 1 is the first coefficient value
  • I is the operating current value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the calculation formula for calculating the operating speed of the agitator according to the number of liquid separation channels and the discharge temperature value of the compressor includes:
  • S is the running speed of the agitator
  • a 2 is the second coefficient value
  • T is the discharge temperature value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the calculation formula for calculating the operating speed of the agitator according to the number of liquid separation channels and the exhaust pressure value of the compressor includes:
  • S is the running speed of the agitator
  • a 3 is the third coefficient value
  • P is the exhaust pressure value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the air conditioner includes an indoor heat exchanger, the indoor heat exchanger has a plurality of first branches, the liquid separator includes a first liquid separator, and the first liquid separator
  • the number of liquid outlets of a liquid distributor is the same as the number of the first branches, and the liquid ports of a plurality of the first branches match one-to-one with the plurality of liquid outlets of the first liquid distributor connect;
  • the first liquid distributor distributes liquid evenly, if yes, the driving mechanism in the first liquid distributor does not rotate; if not, then obtain the compressor operating frequency, compressor operating current value, At least one of the compressor discharge temperature value and the compressor discharge pressure value and the number of liquid distribution channels of the first liquid separator, according to the compressor operating frequency, the compressor operating current value, the compressor At least one of the discharge temperature value and the compressor discharge pressure value is related to the number of liquid distribution channels of the first liquid separator, the first operating speed of the agitator in the first liquid separator is calculated, and the The agitator in the first liquid separator rotates at the first operating speed.
  • the air conditioner includes an outdoor heat exchanger, the outdoor heat exchanger has a plurality of second branches, the liquid separator includes a second liquid separator, and the first liquid separator
  • the number of liquid outlets of the second liquid distributor is the same as the number of the second branches, and the liquid ports of the plurality of second branches match one-to-one with the plurality of liquid outlets of the second liquid distributor connect;
  • the second liquid dispenser distributes liquid evenly, if yes, the driving mechanism in the second liquid dispenser does not rotate; if not, then obtain the operating frequency of the compressor and the operating current value of the compressor , at least one of the compressor discharge temperature value and compressor discharge pressure value and the number of liquid distribution channels of the second liquid distributor, according to the operating frequency of the compressor, the operating current value of the compressor, the compression At least one of the exhaust temperature value of the compressor and the exhaust pressure value of the compressor and the number of liquid distribution channels of the second liquid separator, calculate the second operating speed of the agitator in the second liquid separator, and control The agitator in the second liquid separator rotates at the second operating speed.
  • the method for judging whether the first liquid separator is evenly distributed includes:
  • the method for judging whether the second liquid separator distributes liquid evenly includes:
  • the heating mode obtain the second refrigerant outlet temperature of each of the second branches, calculate the second difference between the highest temperature and the lowest temperature among all the second refrigerant outlet temperatures, and determine the second difference Whether it is greater than the second preset temperature value, if yes, the liquid distribution of the second liquid distributor is uneven; if not, the liquid distribution of the second liquid distributor is uniform.
  • control method of the air conditioner further includes: in the heating mode, controlling the rotation direction of the agitator in the first liquid separator to be in the same direction as the agitator in the first liquid separator.
  • the direction of rotation is reversed in cooling mode.
  • control method of the air conditioner further includes: in the cooling mode, controlling the rotation direction of the agitator in the second liquid separator to The direction of rotation is reversed in heat mode.
  • the agitator is arranged in the liquid separator, and the agitator rotates in the liquid separation chamber of the liquid separator, so that the refrigerant in the liquid separator is mixed evenly, and ensures
  • the amount of refrigerant discharged from each liquid outlet is the same, and the refrigerant is evenly distributed to each pipeline in the heat exchanger.
  • the amount of refrigerant in each heat exchange coil in the heat exchanger is the same, which improves the cooling or cooling of the air conditioner Thermal effect: the heat exchange amount of the refrigerant in each pipeline of the heat exchange coil is the same, and there is no temperature difference between the high and low temperature of the refrigerant entering the compressor. Air conditioner energy consumption.
  • the flow rate of the refrigerant and the operating load of the compressor are matched through the parameters of the air conditioner, and the operating speed of the agitator is accurately controlled according to the flow rate of the refrigerant and the operating load of the compressor, so that the agitator can achieve the best stirring effect.
  • Fig. 1 is one of the schematic diagrams of the overall structure of the liquid dispenser provided by the present invention.
  • Fig. 2 is a schematic diagram of the internal structure of the liquid separator provided by the present invention.
  • Fig. 3 is the second schematic diagram of the overall structure of the liquid dispenser provided by the present invention.
  • Fig. 4 is a schematic structural view of the stirring wheel provided by the present invention.
  • Fig. 5 is the schematic diagram of the outdoor heat exchanger of the air conditioner provided by the present invention.
  • Fig. 6 is an enlarged view at I place among Fig. 5 of the present invention.
  • Fig. 7 is a schematic diagram of an indoor heat exchanger of an air conditioner provided by the present invention.
  • Figure 8 is an enlarged view of II in Figure 7 of the present invention.
  • Fig. 9 is a schematic flow chart of the control method provided by the present invention.
  • liquid separation chamber 131: first liquid separation chamber; 132: second liquid separation chamber;
  • connection should be interpreted in a broad sense, for example, it may be a direct connection or an indirect connection through an intermediary.
  • the liquid dispenser described in this embodiment includes a housing 1, the housing 1 has a liquid inlet 11 and at least one liquid outlet 12, and the liquid inlet 11 and the liquid outlet 12 There is a liquid separation chamber 13 between them; the liquid dispenser also includes an agitator 2 and a drive mechanism 3, the agitator 2 is located in the liquid separation chamber 13, the drive mechanism 3 is used to drive the agitator 2 to rotate, and the control module is used to control the rotation of the drive mechanism 3 .
  • the driving mechanism 3 includes a rotor 32 and a stator coil 31, the agitator 2 and the rotor 32 are coaxially connected, the agitator 2 and the rotor 32 are both located in the liquid separation chamber 13, the stator coil 31 is looped on the outside of the housing 1, and the stator The coil 31 is used to drive the rotor 32 to rotate when energized, and the rotor 32 is used to drive the stirrer 2 to rotate in the liquid separation chamber 13 .
  • the stator coil 31 includes an outer shell and an inner coil, and the inner wire is wound on the outside of the casing 1 and arranged in the outer shell.
  • the stator coil 31 When the stator coil 31 is energized, the stator coil 31 generates a magnetic field according to the continuous circular flow of the current, and the internal magnetic rotor 32 rotates under the action of the magnetic force of the magnetic field, and then the energization of the external stator coil 31 drives the rotation of the internal rotor 32 of the liquid distributor. Realize the rotation and stirring of the stirrer in the separator.
  • an agitator is provided in the liquid separator, and the agitator is driven to rotate in the liquid separation chamber of the liquid separator through a driving mechanism, so that the refrigerant in the liquid separator is mixed evenly, and the liquid discharged from each liquid outlet is ensured.
  • the amount of refrigerant is the same, the refrigerant is evenly distributed to each pipeline in the heat exchanger, and the amount of refrigerant in each heat exchange coil in the heat exchanger is the same, which improves the cooling or heating effect of the air conditioner; the heat exchange coil
  • the heat exchange amount of the refrigerant in each pipeline is the same, and there is no temperature difference between the high and low temperature of the refrigerant entering the compressor.
  • the coil temperature is used to control the operating state of the air conditioner, the temperature value is more accurate, which reduces the energy consumption of the air conditioner.
  • the housing 1 is made of red copper which is the same material as the refrigerant pipe, wherein the refrigerant pipe includes a liquid pipe and a gas pipe.
  • the upper part of the housing 1 is a liquid inlet 11.
  • the liquid separator is fixed and sealed with the refrigerant pipe at one end of the liquid inlet 11; at least one liquid outlet 12 is provided below the housing 1.
  • the housing 1 is a hollow structure, and the housing 1 has a liquid separation chamber 13, and the agitator 2 rotates in the liquid separation chamber 13 to mix the refrigerant flowing into the liquid separation chamber 13, and the mixed liquid
  • the refrigerant is evenly distributed to each liquid outlet 12 to ensure that each liquid outlet 12 discharges the same amount of refrigerant, and the refrigerant is evenly distributed to each pipeline in the heat exchanger.
  • the liquid separation chamber 13 includes a first liquid separation chamber 131, a second liquid separation chamber 132 and a third liquid separation chamber 133, the liquid inlet 11, the first liquid separation chamber 131, the second liquid separation chamber
  • the liquid chamber 132, the third liquid distributing chamber 133 communicate with the liquid outlet 12 in sequence
  • the second liquid distributing chamber 132 is in the shape of a truncated cone whose diameter increases from the first liquid distributing chamber 131 to the third liquid distributing chamber 133.
  • Both the liquid separation chamber 131 and the third liquid separation chamber 133 are cylindrical.
  • the housing 1 has a multi-section structure, wherein the housing 1 is connected to the refrigerant pipe of the heat exchanger at one end of the liquid inlet 11 , and the first liquid separation chamber 131 is cylindrical.
  • the second liquid separation cavity 132 is in the shape of a truncated cone, and the lower diameter of the second liquid separation cavity 132 is larger than the upper diameter.
  • the third liquid separation chamber 133 is a cylindrical structure, and the diameter of the third liquid separation chamber 133 is greater than the diameter of the first liquid separation chamber 131, and the volume of the third liquid separation chamber 133 is greater than the volume of the first liquid separation chamber 131, so that The flow rate of the refrigerant flowing into the third liquid distribution chamber 133 from the first liquid separation chamber 131 is reduced, which is conducive to the buffering of the refrigerant in the third liquid distribution chamber 133, and prevents the refrigerant flow rate from being too fast and causing the refrigerant to enter the distribution of each liquid outlet 12 uneven.
  • the agitator 2 in this embodiment rotates in the third liquid separation chamber 133 , and the refrigerant stagnates in the third liquid separation chamber 133 for a long time, which facilitates the flow of the refrigerant in the third liquid separation chamber 133 .
  • the agitator 2 described in this embodiment can have various forms, such as paddle type, screw type and disc type.
  • the paddle-type and screw-type stirring blades are arranged at the circumferential edge of the stirring shaft, and the present embodiment takes the disc stirrer 2 as an example.
  • the stirrer 2 includes a disc-shaped stirring wheel 21, the stirring wheel 21 is provided with a plurality of through holes 211, the stirring wheel 21 is suitable for rotating in the liquid separation chamber 13, and the plurality of through holes 211 are arranged in a circular equidistant manner along the rotation axis of the stirring wheel 21 .
  • the stirring wheel 21 is disc-shaped, and the stirring wheel 21 is provided with a plurality of through holes 211, and the plurality of through holes 211 are arranged in a circular equidistant manner along the central rotation axis of the stirring wheel 21, and each through hole 211 has the same shape. .
  • each through-hole 211 along the central rotation axis of the stirring wheel 21 can overlap with other through-holes 211 , so as to ensure the same stirring force on the flow through each through-hole 211 when the stirring wheel 21 rotates.
  • the number of through holes 211 described in this embodiment is twice the number of liquid outlets 12 .
  • four liquid outlets 12 correspond to eight through holes 211 .
  • Either two liquid outlets 12 correspond to four through holes 211
  • three liquid outlets 12 correspond to six through holes 211 .
  • the number of through holes 211 increases exponentially, so that the stirring degree of the stirring wheel 21 increases with the increase in the number of liquid outlets 12, so that after the stirring wheel 21 stirs, the The refrigerant in the liquid container can be better distributed to each liquid outlet 12 .
  • the ratio of the total area of the through holes 211 to the total area of the stirring wheel 21 is in the range of 38% to 42%, preferably 40%.
  • the ratio of the area occupied by the through hole 211 on the stirring wheel 21 reaches the above-mentioned preferred ratio, so as to improve the mixing degree of the stirring wheel 21 for the refrigerant in the liquid separator.
  • the stirring wheel 21 also includes a blade 212, the blade 212 is located in the through hole 211, and the blade 212 moves from the side close to the liquid inlet 11 to the side close to the liquid outlet 12. Inclined, that is, the blade 212 is inclined downward from the through hole 211 .
  • a C-shaped cutting line is first cut on the stirring wheel 21, and then the plate body inside the cutting line is bent downward at a certain angle.
  • the preferred shape and structure of the through hole 211 and the vane 212 in this embodiment are formed.
  • the through holes 211 and the blades 212 in this embodiment are distributed symmetrically along the axis of rotation of the stirring wheel 21.
  • the blades 212 of the stirring wheel 21 can drive the refrigerant along the The hour hand (as viewed from above in Figure 2) rotates.
  • the present invention does not limit the blades 212 to only drive the refrigerant to rotate clockwise, and the blades 212 can also be inclined downward one by one in the counterclockwise direction, thereby driving the refrigerant to rotate counterclockwise.
  • the structure of the through hole 211 and the blade 212 of the stirring wheel 21 that can drive the refrigerant in the liquid separation chamber 12 to rotate falls within the protection scope of the present invention for the stirring wheel 21 .
  • the blades 212 of the stirring wheel 21 described in this embodiment are distributed obliquely.
  • the refrigerant flows from the liquid inlet 11 to the liquid outlet 12, the refrigerant can push the inclined blades 212, and the flow of the refrigerant drives The stirring wheel 21 rotates, and then the rotation of the stirring wheel 21 stirs the refrigerant, realizing the self-driving of the stirrer 2 in the liquid separator.
  • a gap 14 is provided between the circumferential outer wall of the stirring wheel 21 and the inner wall of the housing 1, so that the stirring wheel 21 will not scratch the inner wall of the housing 1 during rotation, preventing stirring The wheel 21 and the casing 1 are rubbed against each other to be damaged, and the scraps produced by the friction are prevented from entering into the compressor along with the refrigerant.
  • the pitch of the gap 14 is within the range of 0.08 mm to 0.12 mm, preferably 0.1 mm, to ensure that the gap 14 will not affect the stirring and mixing of the stirring wheel 21, and can prevent the stirring wheel 21 from colliding with the stirring wheel 21 during rotation. Friction occurs on the inner wall of the casing 1 .
  • the stirrer 2 includes a disc-shaped bottom plate 22 on which a plurality of liquid outlets 12 are arranged, and the bottom plate 22 is fixed in the third liquid separation chamber 133 .
  • the shape of the bottom plate 22 is the same as that of the stirring wheel 21 , which is also disc-shaped, and the disc-shaped bottom plate 22 is horizontally fixed in the third liquid separation chamber 133 .
  • the bottom plate 22 is provided with a plurality of liquid outlets 12.
  • the size and shape of the liquid outlets 12 are the same as the size and shape of the liquid pipe, so that the refrigerant discharged from the liquid outlet 12 can smoothly enter the liquid pipe without Flow shock or flow obstruction will occur.
  • this embodiment also provides an air conditioner, including the liquid separator according to any one of the above.
  • the air conditioner includes an indoor heat exchanger 4 and an outdoor heat exchanger 6:
  • the indoor heat exchanger 4 has a plurality of first branches 41, and the liquid separator includes a first liquid separator 5.
  • the number of liquid outlets of the first liquid distributor 5 is the same as the number of the first branch 41, and the liquid ports of the first branch 41 are one-to-one with the multiple liquid outlets of the first liquid distributor 5 Matching connection;
  • the outdoor heat exchanger 6 has a plurality of second branches 61
  • the liquid distributor includes a second liquid distributor 7, and the number of liquid outlets of the second liquid distributor 7 is the same as the number of the second branch 61 , the liquid ports of the plurality of second branches 61 are connected one-to-one with the plurality of liquid outlets of the second liquid distributor 7 .
  • an agitator is arranged in the liquid separator, and the agitator rotates in the liquid separation cavity of the liquid separator, so that the refrigerant in the liquid separator can be mixed evenly, and each liquid outlet can be discharged
  • the amount of refrigerant is the same, the refrigerant is evenly distributed to each pipe in the heat exchanger, and the amount of refrigerant in each heat exchange coil in the heat exchanger is the same, which improves the cooling or heating effect of the air conditioner; the heat exchange plate
  • the heat exchange amount of the refrigerant in each pipe of the tube is the same, and there is no temperature difference between the high and low temperature of the refrigerant entering the compressor.
  • this embodiment also provides a control method for the air conditioner, as shown in FIG. 9 , including the following steps:
  • Step S1 Determine whether the dispenser distributes liquid evenly. If yes, the driving mechanism does not rotate. After waiting for a preset period of time, judge again whether the liquid dispenser distributes liquid evenly, forming a periodic judgment until the result of the judgment is that the liquid dispenser is unevenly distributed. And go to step S2; if not, go to step S2;
  • Step S2 Obtain at least one of compressor operating frequency H, compressor operating current value I, compressor discharge temperature value T, and compressor discharge pressure value P and the number of liquid distribution channels N of the liquid distributor. At least one of the compressor operating frequency H, the compressor operating current value I, the compressor discharge temperature value T and the compressor discharge pressure value P and the number of liquid separation channels N, calculate the The operating speed S of the agitator in the separator;
  • Step S3 controlling the agitator to rotate at the operating speed.
  • this embodiment first judges whether the liquid dispenser is evenly distributed. When it is judged that the liquid is distributed uniformly, the liquid dispenser does not turn on the drive mechanism, and the agitator in the liquid dispenser does not rotate or rotates following the flow of the refrigerant. The liquid dispenser does not input electric energy to prevent waste of energy input.
  • the driving mechanism of the liquid separator is controlled to open, and the number of liquid distribution channels of the liquid separator is obtained, that is, the number of liquid outlets of the liquid separator; at the same time, the operating frequency of the compressor, At least one of compressor operating current value, compressor discharge temperature value and compressor discharge pressure value, according to at least one of compressor operating frequency, compressor operating current value, compressor discharge temperature value and compressor discharge pressure value
  • One and the number of liquid separation channels to calculate the running speed of the agitator; after calculating the running speed of the agitator, control the agitator to rotate at the said running speed.
  • the agitator is turned on when the liquid separator is not uniform, and the flow rate of the refrigerant is matched with the operating load of the compressor through the parameters of the air conditioner. Operate the load to accurately control the running speed of the agitator, so that the agitator can achieve the best mixing effect.
  • the agitator is controlled to rotate at the calculated operating speed by controlling the voltage value of the stator coil, so as to better control the The refrigerant in the liquid separator is stirred and mixed.
  • the calculation formula for the operating speed includes:
  • S is the running speed of the agitator
  • H is the running frequency of the compressor
  • N is the number of liquid separators.
  • the number of liquid separation channels of the liquid separator is 4, that is, the liquid separator has 4 liquid outlets; when the operating frequency of the compressor is 50 Hz, the operating speed of the agitator is 200 rpm.
  • the calculation formula for the operating speed includes:
  • S is the operating speed of the agitator
  • a 1 is the first coefficient value
  • I is the operating current value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the first coefficient value A1 depends on different types of compressors, and its specific value is different; according to different types of air conditioners, it can be tested according to the test before leaving the factory.
  • the correlation between the minimum rotation speed of the agitator and the operating current of different compressors is used to determine the specific value of the first coefficient value, and the first coefficient value can be a fixed value or a variable value.
  • the calculation formula for the operating speed includes:
  • S is the running speed of the agitator
  • a 2 is the second coefficient value
  • T is the discharge temperature value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the second coefficient value A2 depends on different types of compressors, and its specific value is different; according to different types of air conditioners, the separator can be measured according to the test before leaving the factory. Under the premise of liquid uniformity, the correlation between the minimum speed of the agitator in the separator and the exhaust temperature of different compressors is used to determine the specific value of the second coefficient value.
  • the second coefficient value can be a fixed value or a variable value. .
  • the calculation formula for the operating speed includes:
  • S is the running speed of the agitator
  • a 3 is the third coefficient value
  • P is the exhaust pressure value of the compressor
  • N is the number of liquid distribution channels of the liquid separator.
  • the third coefficient value A3 depends on different types of compressors, and its specific value is different; according to different types of air conditioners, the separator can be measured according to the test before leaving the factory. Under the premise of liquid uniformity, the correlation between the minimum speed of the agitator in the separator and the exhaust pressure of different compressors is used to determine the specific value of the third coefficient value.
  • the third coefficient value can be a fixed value or a variable value. .
  • the compressor operating frequency H when the compressor operating frequency H, the compressor operating current value I, the compressor discharge temperature value T and the compressor discharge pressure value P are used to calculate the For the operating speed of the agitator, the operating speeds corresponding to the multiple parameters can be calculated respectively according to the above-mentioned multiple formulas, and the average value can be taken as the final operating speed of the agitator.
  • the air conditioner includes an indoor heat exchanger
  • the indoor heat exchanger 4 has a plurality of first branches 41
  • the liquid separator includes a first liquid separator 5
  • the first The number of liquid outlets of the liquid distributor 5 is the same as the number of the first branches 41
  • the liquid ports of the plurality of first branches 41 are connected one-to-one with the plurality of liquid outlets of the first liquid distributor 5 .
  • the air conditioner When the air conditioner is equipped with the first liquid separator 5 and the air conditioner is running in cooling mode, it is judged whether the first liquid separator distributes liquid evenly, if yes, the driving mechanism in the first liquid separator does not rotate; At least one of the operation frequency, compressor operation current value, compressor discharge temperature value and compressor discharge pressure value and the number of liquid distribution channels of the first liquid distributor, according to the compressor operation frequency, compressor operation current value, compression At least one of the exhaust temperature value of the compressor and the exhaust pressure value of the compressor and the number of liquid distribution channels of the first liquid separator, calculate the first operating speed of the agitator in the first liquid separator, and control the first liquid separator in the first liquid separator.
  • the stirrer rotates at a first operating speed.
  • Whether the stirrer in the first liquid divider 5 is stirred or not is controlled by whether the first liquid divider 5 distributes the liquid evenly, and when the stirrer needs to be rotated, the rotating speed of the stirrer is calculated by the above parameters, so as to control the stirrer in the first divider 5.
  • the refrigerant in the liquid container 5 is mixed.
  • the method for judging whether the first liquid dispenser distributes liquid evenly includes:
  • the first preset temperature value is in the range of 1.5°C to 2.5°C, preferably 2°C.
  • the temperature difference is greater than 2°C, which indicates that the uneven liquid separation of the liquid separator leads to different amounts of refrigerant in different first branches, resulting in different
  • the discharge temperature of the first branch refrigerant is different, and the agitator in the liquid separator needs to be rotated to improve the uniformity of the refrigerant in the first liquid separator.
  • the rotation direction of the agitator in the first liquid separator is controlled to be opposite to that of the agitator in the first liquid separator in the cooling mode.
  • the flow direction in the two modes is opposite, and the stirring direction of the agitator is opposite in the two modes of cooling mode and heating mode, so as to ensure that the refrigerant flowing in the two directions will not be hindered by the agitation of the agitator, and improve the compatibility between the cooling mode and the heating mode.
  • Mode The refrigerant circulates smoothly in both modes.
  • the air conditioner includes an outdoor heat exchanger
  • the outdoor heat exchanger 6 has a plurality of second branches 61
  • the liquid separator includes a second liquid separator 7, and the second liquid separator
  • the number of liquid outlets of 7 is the same as the number of the second branches 61, and the liquid ports of the plurality of second branches 61 are connected one-to-one with the plurality of liquid outlets of the second liquid distributor 7.
  • the air conditioner When the air conditioner is equipped with the second liquid separator 7 and the air conditioner is running in the heating mode, it is judged whether the second liquid separator distributes liquid evenly. If yes, the driving mechanism in the second liquid separator does not rotate; At least one of the operating frequency of the compressor, the operating current value of the compressor, the discharge temperature value of the compressor and the discharge pressure value of the compressor and the number of liquid distribution channels of the second liquid distributor, according to the operating frequency of the compressor, the operating current value of the compressor, At least one of the compressor discharge temperature value and compressor discharge pressure value and the number of liquid distribution channels of the second liquid separator, calculate the second operating speed of the agitator in the second liquid separator, and control the second liquid separator The middle agitator turns at the second operating speed.
  • the method of whether the second liquid dispenser distributes liquid evenly includes:
  • the heating mode obtain the second refrigerant outlet temperature of each second branch, calculate the second difference between the highest temperature and the lowest temperature among all the second refrigerant outlet temperatures, and determine whether the second difference is greater than the second preset Temperature value, if yes, the second liquid dispenser distributes liquid unevenly; if not, then the second liquid dispenser distributes liquid evenly.
  • the second preset temperature value is in the range of 1.5°C to 2.5°C, preferably 2°C.
  • the rotation direction of the agitator in the second liquid separator is controlled to be opposite to the rotation direction of the agitator in the second liquid separator in the heating mode.
  • the flow direction in the two modes is opposite, and the stirring direction of the agitator is opposite in the two modes of cooling mode and heating mode, so as to ensure that the refrigerant flowing in the two directions will not be hindered by the agitation of the agitator, and improve the compatibility between the cooling mode and the heating mode.
  • Mode The refrigerant circulates smoothly in both modes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种分液器、空调器及控制方法,分液器包括壳体(1),壳体(1)具有进液口(11)与至少一个出液口(12),进液口(11)与出液口(12)之间具有分液腔(13),还包括搅拌器(2)、驱动机构(3)与控制模块,搅拌器(2)位于分液腔(13)内,驱动机构(3)用于带动搅拌器(2)转动,控制模块用于控制驱动机构(3)转动。过在分液器内设置搅拌器(2),搅拌器(2)在分液器的分液腔(3)内转动,以使分液器中的冷媒混合均匀,并确保每个出液口(12)排出的冷媒量相同,换热器中每个换热盘管的冷媒量相同;并通过空调器参数来匹配冷媒的流动速度与压缩机的运行负荷,依据冷媒流速与压缩机运行负荷来准确控制搅拌器的运行速度。

Description

一种分液器、空调器及控制方法
相关申请的交叉引用
本申请要求于2021年07月09日提交的申请号为202110778736.1,名称为“一种分液器、空调器及控制方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本发明涉及空调器设备技术领域,尤其涉及一种分液器、空调器及控制方法。
背景技术
现有空调为了提高换热效率,将蒸发器与散热器分别具有多个管路,为了将冷媒均匀的分散到每一个管路中,需要通过分液器将冷媒进行分流。
现有的分液器多采用一个进液孔匹配多个出液孔的结构方式进行分液,流经分液器的冷媒在分液器内根据压力差来自行穿过多个出液孔。该种分液器分液均匀性较差,容易导致蒸发器与散热器中的每个管路内流通的冷媒量不均匀,导致空调器的制冷或制热效果变差,并使得空调器的能耗增大。
发明内容
本发明提供一种分液器、空调器及控制方法,用以解决现有技术中分液器分液均匀性较差,容易导致蒸发器与散热器中的每个管路内流通的冷媒量不均匀,导致空调器的制冷或制热效果变差,并使得空调器的能耗增大的缺陷,实现一种分液均匀的分液器、空调器及控制方法。
本发明提供一种分液器,包括壳体,所述壳体具有进液口与至少一个出液口,所述进液口与所述出液口之间具有分液腔,还包括搅拌器、驱动机构与控制模块,所述搅拌器位于所述分液腔内,所述驱动机构用于带动所述搅拌器转动,所述控制模块用于控制所述驱动机构转动。
根据本发明提供的分液器,所述驱动机构包括转子与定子线圈,所述 搅拌器与所述转子同轴连接,所述搅拌器与所述转子均位于所述分液腔内,所述定子线圈环套在所述壳体外侧,所述定子线圈用于在通电时驱动所述转子转动,所述转子用于带动所述搅拌器在所述分液腔内转动;
所述控制模块用于控制所述定子线圈的通电电流方向与通电电压值。
本发明还提供一种空调器,包括如上述任一项所述的分液器
本发明还提供一种如上述所述的空调器的控制方法,包括如下步骤:
判断分液器是否分液均匀,若是,则驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述分液路数,计算所述分液器中搅拌器的运行转速,并控制所述搅拌器以所述运行转速转动。
根据本发明提供的空调器的控制方法,根据所述分液路数与所述压缩机运行频率计算所述搅拌器的运行转速的计算公式包括:
S=H×N;
其中,S为搅拌器运行转速,H为压缩机运行频率,N为分液器分液路数。
根据本发明提供的空调器的控制方法,根据所述分液路数与所述压缩机运行电流值计算所述搅拌器的运行转速的计算公式包括:
S=A 1×I×N;
其中,S为搅拌器运行转速,A 1为第一系数值,I为压缩机运行电流值,N为分液器分液路数。
根据本发明提供的空调器的控制方法,根据所述分液路数与所述压缩机排气温度值计算所述搅拌器的运行转速的计算公式包括:
S=A 2×T×N;
其中,S为搅拌器运行转速,A 2为第二系数值,T为压缩机排气温度值,N为分液器分液路数。
根据本发明提供的空调器的控制方法,根据所述分液路数与所述压缩机排气压力值计算所述搅拌器的运行转速的计算公式包括:
S=A 3×P×N;
其中,S为搅拌器运行转速,A 3为第三系数值,P为压缩机排气压力值,N为分液器分液路数。
根据本发明提供的空调器的控制方法,所述空调器包括室内换热器,所述室内换热器具有多个第一支路,所述分液器包括第一分液器,所述第一分液器的出液口数量与所述第一支路的数量相同,多个所述第一支路的液口端与所述第一分液器的多个出液口一对一匹配连接;
在制冷模式下,判断所述第一分液器是否分液均匀,若是,则所述第一分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述第一分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述第一分液器的分液路数,计算所述第一分液器中搅拌器的第一运行转速,并控制所述第一分液器中搅拌器以所述第一运行转速转动。
根据本发明提供的空调器的控制方法,所述空调器包括室外换热器,所述室外换热器具有多个第二支路,所述分液器包括第二分液器,所述第二分液器的出液口数量与所述第二支路的数量相同,多个所述第二支路的液口端与所述第二分液器的多个出液口一对一匹配连接;
在制热模式下,判断所述第二分液器是否分液均匀,若是,则所述第二分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述第二分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述第二分液器的分液路数,计算所述第二分液器中搅拌器的第二运行转速,并控制所述第二分液器中搅拌器以所述第二运行转速转动。
根据本发明提供的空调器的控制方法,判断所述第一分液器是否分液均匀的方法包括:
在制冷模式下,获取每个所述第一支路的第一冷媒出口温度,计算所有所述第一冷媒出口温度中最高温度与最低温度的第一差值,判断所述第一差值是否大于第一预设温度值,若是,则所述第一分液器分液不均匀;若否,则所述第一分液器分液均匀。
根据本发明提供的空调器的控制方法,判断所述第二分液器是否分液均匀的方法包括:
在制热模式下,获取每个所述第二支路的第二冷媒出口温度,计算所有所述第二冷媒出口温度中最高温度与最低温度的第二差值,判断所述第二差值是否大于第二预设温度值,若是,则所述第二分液器分液不均匀;若否,则所述第二分液器分液均匀。
根据本发明提供的空调器的控制方法,所述控制方法还包括:在制热模式时,控制所述第一分液器中搅拌器的转动方向与所述第一分液器中搅拌器在制冷模式时的转动方向相反。
根据本发明提供的空调器的控制方法,所述控制方法还包括:在制冷模式时,控制所述第二分液器中搅拌器的转动方向与所述第二分液器中搅拌器在制热模式时的转动方向相反。
本发明提供的分液器、空调器及控制方法,通过在分液器内设置搅拌器,搅拌器在分液器的分液腔内转动,以使分液器中的冷媒混合均匀,并且确保每个出液口排出的冷媒量相同,冷媒均匀的分配到换热器中的每一个管路中,换热器中每个换热盘管的冷媒量相同,提高了空调器的制冷或制热效果;换热盘管的每个管路内冷媒的热交换量相同,进入到压缩机的冷媒不存在高低温度差,以盘管温度控制空调器运行状态时温度数值更加的准确,降低了空调器的能耗。并且,通过空调器参数来匹配冷媒的流动速度与压缩机的运行负荷,依据冷媒流速与压缩机运行负荷来准确控制搅拌器的运行速度,以使搅拌器达到最佳的搅拌效果。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本发明提供的分液器整体结构示意图之一;
图2是本发明提供的分液器内部结构示意图;
图3是本发明提供的分液器整体结构示意图之二;
图4是本发明提供的搅拌轮结构示意图;
图5是本发明提供的空调器室外换热器示意图;
图6是本发明图5中I处放大图;
图7是本发明提供的空调器室内换热器示意图;
图8是本发明图7中II处放大图;
图9是本发明提供的控制方法流程示意图。
附图标记:
1:壳体;           11:进液口;       12:出液口;
13:分液腔;        131:第一分液腔;  132:第二分液腔;
133:第三分液腔;   14:间隙;
2:搅拌器;         21:搅拌轮;       211:第一通孔;
212:第一叶片;     22:固定盘;
3:驱动机构;       31:定子线圈;     32:转子;
33:转轴;
4:室外换热器;     41:第一支路;
5:第一分液器;
6:室内换热器;     61:第二支路;
7:第二分液器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例所述的描述中,需要说明的是,除非另有明确的规定和限定,术语“第一”与“第二”等是为了清楚说明产品部件进行的编号,不代表任何实质性区别。“上”“下”“内”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
需要说明的是,本发明中的描述“在…范围内”,包含两端端值。如“在10至20范围内”,包含范围两端的端值10与20。
需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在发明实施例中的具体含义。
下面结合图1至图8描述本发明的分液器及空调器。
如图1至图3所示,本实施例所述的分液器,包括壳体1,壳体1具有进液口11与至少一个出液口12,进液口11与出液口12之间具有分液腔13;分液器还包括搅拌器2与驱动机构3,搅拌器2位于分液腔13内,驱动机构3用于带动搅拌器2转动,控制模块用于控制驱动机构3转动。
具体地,驱动机构3包括转子32与定子线圈31,搅拌器2与转子32同轴连接,搅拌器2与转子32均位于分液腔13内,定子线圈31环套在壳体1外侧,定子线圈31用于在通电时驱动转子32转动,转子32用于带动搅拌器2在分液腔13内转动。
具体地,所述定子线圈31包括外壳与内部线圈,内部线缠绕在壳体1的外侧并且设置在外壳中。当定子线圈31通电时,定子线圈31依据电流的不断环形流动而产生磁场,内部磁性转子32在磁场磁力的作用下转动,进而实现外部定子线圈31的通电带动分液器内部转子32的转动,实现搅拌器在分液器内的转动搅拌。
本实施例通过在分液器内设置搅拌器,通过驱动机构带动搅拌器在分液器的分液腔内转动,以使分液器中的冷媒混合均匀,并且确保每个出液口排出的冷媒量相同,冷媒均匀的分配到换热器中的每一个管路中,换热器中每个换热盘管的冷媒量相同,提高了空调器的制冷或制热效果;换热盘管的每个管路内冷媒的热交换量相同,进入到压缩机的冷媒不存在高低温度差,以盘管温度控制空调器运行状态时温度数值更加的准确,降低了空调器的能耗。
具体地,壳体1由与冷媒管材质相同的紫铜形成,其中冷媒管包括液管与气管。壳体1的上方为进液口11,较好地,分液器在进液口11一端与冷媒管固定密封连接;壳体1的下方设置有至少一个出液口12,本实施 例以两个出液口12为例,每个出液口12分别与一个换热器管路接口固定密封连接。
较好地,壳体1为中空结构,壳体1内具有分液腔13,搅拌器2在分液腔13内转动,以将流入分液腔13内的冷媒进行混匀,混匀后的冷媒均匀的分配到每个出液口12处,以确保每一个出液口12排出的冷媒量相同,冷媒均匀的分配到换热器中的每一个管路中。
具体地,结合图2所示,分液腔13包括第一分液腔131、第二分液腔132与第三分液腔133,进液口11、第一分液腔131、第二分液腔132、第三分液腔133与出液口12依次连通,第二分液腔132由第一分液腔131至第三分液腔133的方向呈直径增大的圆台状,第一分液腔131与第三分液腔133均呈圆柱状。
壳体1呈多段结构,其中,壳体1在进液口11一端与换热器的冷媒管连接,第一分液腔131呈圆柱状。
第二分液腔132呈圆台状,并且第二分液腔132的下方直径大于上方直径。
第三分液腔133呈圆柱形结构,且第三分液腔133的直径大于第一分液腔131的直径,第三分液腔133的体积大于第一分液腔131的体积,以使得从第一分液腔131流入第三分液腔133的冷媒流速降低,有利于冷媒在第三分液腔133中进行缓冲,防止冷媒流速过快而使冷媒进入到各个出液口12的分配不均匀。
较好地,本实施例所述的搅拌器2在第三分液腔133内转动,冷媒在第三分液腔133内停滞时间长,便于对第三分液腔133内的冷媒进行分流。
具体地,本实施例所述的搅拌器2可以有多种方式,如桨式、螺杆式与圆盘式。
其中,桨式与螺杆式的搅拌叶片设置在其搅拌轴的周向边缘处,本实施例以圆盘式搅拌器2为例。
结合图2与图4所示,搅拌器2包括圆盘状的搅拌轮21,搅拌轮21上设有多个通孔211,搅拌轮21适于在分液腔13内转动,多个通孔211沿搅拌轮21的转轴呈环形等距排列。
具体地,搅拌轮21呈圆盘状,搅拌轮21上设有多个通孔211,多个 通孔211沿搅拌轮21的中心转轴呈环形等距排列,且每个通孔211的形状相同。
较好地,每个通孔211沿搅拌轮21的中心转轴偏移能够与其他通孔211相重合,以确保搅拌轮21转动时对流经每个通孔211的搅拌力相同。
较好地,本实施例所述的通孔211数量为出液口12数量的两倍。如图3与图4所示,四个出液口12对应八个通孔211。或者两个出液口12对应四个通孔211,或者三个出液口12对应六个通孔211。本实施例随着出液口12数量的增多,通孔211的数量成倍增长,使得搅拌轮21的搅拌程度随出液口12数量的增大而增大,使得搅拌轮21搅拌后,分液器内的冷媒能够较好地分配到每个出液口12中。
具体地,不论通孔211的数量有多少,通孔211的总体面积占搅拌轮21整体面积的比例在38%至42%范围内,优选为40%。通孔211在搅拌轮21上所占面积的比例达到所述优选比例,提高搅拌轮21对分液器内冷媒的搅拌混匀程度。
具体地,结合图4所示,所述搅拌轮21还包括叶片212,所述叶片212位于所述通孔211内,并且叶片212由靠近进液口11一侧向靠近出液口12一侧倾斜,即叶片212由通孔211处向下倾斜。
较好地,本实施例所述的通孔211与叶片212在成型时,先在搅拌轮21上切割出C型切割线,再将切割线内的板体向下弯折一定角度,即可形成本实施例优选的通孔211与叶片212的形状与结构组成。
较好地,本实施例所述的通孔211与叶片212均沿所述搅拌轮21的转动轴线呈中心对称式分布,当搅拌轮21转动时,搅拌轮21的叶片212能够带动冷媒沿顺时针(如图2中俯视角度)转动。
需要说明的是,本发明并不限定叶片212仅沿顺时针方向带动冷媒转动,叶片212也可沿逆时针方向逐个向下倾斜,进而带动冷媒沿逆时针转动。凡事能带动分液腔12内冷媒转动的搅拌轮21,其通孔211与叶片212的结构形式均落入本发明对搅拌轮21所限定的保护范围内。
较好地,本实施例所述的搅拌轮21,其叶片212呈倾斜分布,在冷媒由入液口11向出液口12方向流通时,冷媒能够推动倾斜状的叶片212,冷媒的流动带动搅拌轮21转动,进而搅拌轮21的转动对冷媒进行搅拌, 实现了分液器内搅拌器2的自驱动。
较好地,结合图2所示,搅拌轮21的周向外壁与壳体1的内壁之间设有间隙14,搅拌轮21在转动的过程中不会剐蹭到壳体1的内壁,防止搅拌轮21与壳体1发生相互摩擦而被损坏,并且防止摩擦出的碎削跟随冷媒进入到压缩机中。
具体地,所述间隙14的间距在0.08毫米至0.12毫米范围内,优选为0.1毫米,确保间隙14不会对搅拌轮21的搅拌混匀产生影响,并且能够防止搅拌轮21在转动过程中与壳体1内壁发生摩擦。
较好地,搅拌器2包括圆盘状的底板22,底板22上设置多个所述出液口12,底板22固定在第三分液腔133内。
底板22的形状与搅拌轮21的形状相同,同样为圆盘状,且圆盘状的底板22水平固定在第三分液腔133内。底板22上设置有多个出液口12,较好地,出液口12的尺寸形状与液管的尺寸形状相同,便于出液口12分排出的冷媒能够顺利的进入到液管中,不会产生流动冲击或流动阻碍。
具体地,在上述实施例的基础上,本实施例还提供一种空调器,包括如上述任一项的分液器。
具体地,结合图5至图8所示,空调器包括室内换热器4与室外换热器6:室内换热器4具有多个第一支路41,分液器包括第一分液器5,第一分液器5的出液口数量与第一支路41的数量相同,多个第一支路41的液口端与第一分液器5的多个出液口一对一匹配连接;以及,室外换热器6具有多个第二支路61,分液器包括第二分液器7,第二分液器7的出液口数量与第二支路61的数量相同,多个第二支路61的液口端与第二分液器7的多个出液口一对一匹配连接。
本发明所述的空调器,通过在分液器内设置搅拌器,搅拌器在分液器的分液腔内转动,以使分液器中的冷媒混合均匀,并且确保每个出液口排出的冷媒量相同,冷媒均匀的分配到换热器中的每一个管路中,换热器中每个换热盘管的冷媒量相同,提高了空调器的制冷或制热效果;换热盘管的每个管路内冷媒的热交换量相同,进入到压缩机的冷媒不存在高低温度差,以盘管温度控制空调器运行状态时温度数值更加的准确,降低了空调器的能耗。
较好地,在上述空调器的基础上,本实施例还提供一种空调器的控制方法,结合图9所示,包括如下步骤:
步骤S1、判断分液器是否分液均匀,若是,则驱动机构不转动,等待预设时长后再次判断分液器是否分液均匀,形成周期判断,直至判断结果为分液器分液不均匀并进入步骤S2;若否,则进入步骤S2;
步骤S2、获取压缩机运行频率H、压缩机运行电流值I、压缩机排气温度值T和压缩机排气压力值P中至少一个与所述分液器的分液路数N,根据所述压缩机运行频率H、所述压缩机运行电流值I、所述压缩机排气温度值T和所述压缩机排气压力值P中至少一个与所述分液路数N,计算所述分液器中搅拌器的运行转速S;
步骤S3、控制所述搅拌器以所述运行转速转动。
具体地,本实施例先判断分液器是否分配均匀,在判断出分液均匀时,分液器不开启驱动机构,分液器内搅拌器不转动或者跟随冷媒的流动而转动,对于分配均匀的分液器不输入电能,防止能量输入的浪费。当判断结果为分液器分液不均匀时,控制分液器的驱动机构开启,并获取分液器的分液路数,即分液器出液口的数量;同时获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个,根据压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与分液路数来计算搅拌器的运行转速;在计算出搅拌器的运行转速后,控制搅拌器以所述运行转速转动。
本实施例通过判断分液器是否分液均匀,在分液器分液不均时开启搅拌器,并且通过空调器参数来匹配冷媒的流动速度与压缩机的运行负荷,依据冷媒流速与压缩机运行负荷来准确控制搅拌器的运行速度,以使搅拌器达到最佳的搅拌效果。
具体地,当采用定子线圈与转子组合的驱动机构时,在计算出搅拌器的运行转速后,通过控制定子线圈的电压值,来控制搅拌器以计算出的运行转速旋转,以更好地对分液器内的冷媒进行搅拌混匀。
具体地,当根据分液器的分液路数与压缩机运行频率计算搅拌器的运行转速时,运行转速的计算公式包括:
S=H×N;
其中,S为搅拌器运行转速,H为压缩机运行频率,N为分液器分液路数。
例如,当分液器的分液路数为4即,即分液器具有4个出液口;压缩机的运行频率为50Hz时,搅拌器的运行转速为200转/分钟。
具体地,当根据分液器的分液路数与压缩机运行电流值计算搅拌器的运行转速时,运行转速的计算公式包括:
S=A 1×I×N;
其中,S为搅拌器运行转速,A 1为第一系数值,I为压缩机运行电流值,N为分液器分液路数。
具体地,第一系数值A 1依据不同的压缩机类型,其具体数值不同;可依据不同型号的空调器,在出厂前依据试验来测得分液器在分液均匀前提下,分液器内搅拌器的最低转速与不同压缩机运行电流的相关关系,来确定第一系数值的具体数值,第一系数值可以为定值,也可以为变值。
具体地,当根据分液器的分液路数与压缩机排气温度值计算搅拌器的运行转速时,运行转速的计算公式包括:
S=A 2×T×N;
其中,S为搅拌器运行转速,A 2为第二系数值,T为压缩机排气温度值,N为分液器分液路数。
具体地,与第一系数值A 1相同,第二系数值A 2依据不同的压缩机类型,其具体数值不同;可依据不同型号的空调器,在出厂前依据试验来测得分液器在分液均匀前提下,分液器内搅拌器的最低转速与不同压缩机排气温度值的相关关系,来确定第二系数值的具体数值,第二系数值可以为定值,也可以为变值。
具体地,当根据分液器的分液路数与压缩机排气压力值计算搅拌器的运行转速时,运行转速的计算公式包括:
S=A 3×P×N;
其中,S为搅拌器运行转速,A 3为第三系数值,P为压缩机排气压力值,N为分液器分液路数。
具体地,与第一系数值A 1相同,第三系数值A 3依据不同的压缩机类型,其具体数值不同;可依据不同型号的空调器,在出厂前依据试验来测 得分液器在分液均匀前提下,分液器内搅拌器的最低转速与不同压缩机排气压力值的相关关系,来确定第三系数值的具体数值,第三系数值可以为定值,也可以为变值。
具体地,当根据所述压缩机运行频率H、所述压缩机运行电流值I、所述压缩机排气温度值T和所述压缩机排气压力值P中多个参数计算分液器中搅拌器的运行转速时,可依据上述多个公式分别计算多个参数对应的运行转速,并取平均值作为最终的搅拌器运行转速。
进一步地,当如图5与图6所示,空调器包括室内换热器,所述室内换热器4具有多个第一支路41,分液器包括第一分液器5,第一分液器5的出液口数量与第一支路41的数量相同,多个第一支路41的液口端与第一分液器5的多个出液口一对一匹配连接。
当空调器设置第一分液器5,空调以制冷模式运行时,判断第一分液器是否分液均匀,若是,则第一分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与第一分液器的分液路数,根据压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与第一分液器的分液路数,计算第一分液器中搅拌器的第一运行转速,并控制第一分液器中搅拌器以第一运行转速转动。
通过对第一分液器5是否分液均匀,来控制第一分液器5内搅拌器是否搅拌,并在需要搅拌器转动时,通过上述参数来计算搅拌器的转速,以对第一分液器5内的冷媒进行混匀。
具体地,判断所述第一分液器是否分液均匀的方法包括:
在制冷模式下,获取每个所述第一支路的第一冷媒出口温度,计算所有所述第一冷媒出口温度中最高温度与最低温度的第一差值,判断所述第一差值是否大于第一预设温度值,若是,则所述第一分液器分液不均匀;若否,则所述第一分液器分液均匀。
具体地,第一预设温度值在1.5℃至2.5℃范围内,优选为2℃。
如第一支路中存在两个冷媒排出口的温度差值为3℃,此时温度差值大于2℃,表明分液器分液不均导致不同的第一支路冷媒量不同,导致不同的第一支路冷媒排出温度不同,需要分液器内搅拌器转动,以提高第一 分液器内冷媒的均匀程度。
具体地,当空调器以制热模式运行时,控制第一分液器中搅拌器的转动方向与第一分液器中搅拌器在制冷模式时的转动方向相反,冷媒在制冷模式与制热模式两种模式下流动方向相反,搅拌器在制冷模式与制热模式两种模式下搅拌方向相反,确保两种方向流动的冷媒不会因搅拌器的搅拌而发生阻碍,提高制冷模式与制热模式两种模式下冷媒顺利流通。
进一步地,结合图7与图8所示,空调器包括室外换热器,室外换热器6具有多个第二支路61,分液器包括第二分液器7,第二分液器7的出液口数量与第二支路61的数量相同,多个第二支路61的液口端与第二分液器7的多个出液口一对一匹配连接。
当空调器设置第二分液器7,空调以制热模式运行时,判断第二分液器是否分液均匀,若是,则第二分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与第二分液器的分液路数,根据压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与第二分液器的分液路数,计算第二分液器中搅拌器的第二运行转速,并控制第二分液器中搅拌器以第二运行转速转动。
具体地,第二分液器是否分液均匀的方法包括:
在制热模式下,获取每个第二支路的第二冷媒出口温度,计算所有第二冷媒出口温度中最高温度与最低温度的第二差值,判断第二差值是否大于第二预设温度值,若是,则第二分液器分液不均匀;若否,则第二分液器分液均匀。
具体地,第二预设温度值在1.5℃至2.5℃范围内,优选为2℃。
如第二支路中存在两个冷媒排出口的温度差值为2.5℃,此时温度差值大于2℃,表明第二分液器分液不均导致不同的第二支路冷媒量不同,导致不同的第二支路冷媒排出温度不同,需要第二分液器内搅拌器转动,以提高第二分液器内冷媒的均匀程度。
具体地,当空调器以制冷模式运行时,控制第二分液器中搅拌器的转动方向与第二分液器中搅拌器在制热模式时的转动方向相反,冷媒在制冷模式与制热模式两种模式下流动方向相反,搅拌器在制冷模式与制热模式 两种模式下搅拌方向相反,确保两种方向流动的冷媒不会因搅拌器的搅拌而发生阻碍,提高制冷模式与制热模式两种模式下冷媒顺利流通。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (14)

  1. 一种分液器,包括壳体,所述壳体具有进液口与至少一个出液口,所述进液口与所述出液口之间具有分液腔,其特征在于,还包括搅拌器、驱动机构与控制模块,所述搅拌器位于所述分液腔内,所述驱动机构用于带动所述搅拌器转动,所述控制模块用于控制所述驱动机构转动。
  2. 根据权利要求1所述的分液器,其特征在于,所述驱动机构包括转子与定子线圈,所述搅拌器与所述转子同轴连接,所述搅拌器与所述转子均位于所述分液腔内,所述定子线圈环套在所述壳体外侧,所述定子线圈用于在通电时驱动所述转子转动,所述转子用于带动所述搅拌器在所述分液腔内转动;
    所述控制模块用于控制所述定子线圈的通电电流方向与通电电压值。
  3. 一种空调器,其特征在于,包括如上述权利要求1或2所述的分液器。
  4. 一种如上述权利要求3所述的空调器的控制方法,其特征在于,包括如下步骤:
    判断分液器是否分液均匀,若是,则驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述分液路数,计算所述分液器中搅拌器的运行转速,并控制所述搅拌器以所述运行转速转动。
  5. 根据权利要求4所述的空调器的控制方法,其特征在于,根据所述分液路数与所述压缩机运行频率计算所述搅拌器的运行转速的计算公式包括:
    S=H×N;
    其中,S为搅拌器运行转速,H为压缩机运行频率,N为分液器分液路数。
  6. 根据权利要求4所述的空调器的控制方法,其特征在于,根据所述分液路数与所述压缩机运行电流值计算所述搅拌器的运行转速的计算公式包括:
    S=A 1×I×N;
    其中,S为搅拌器运行转速,A 1为第一系数值,I为压缩机运行电流值,N为分液器分液路数。
  7. 根据权利要求4所述的空调器的控制方法,其特征在于,根据所述分液路数与所述压缩机排气温度值计算所述搅拌器的运行转速的计算公式包括:
    S=A 2×T×N;
    其中,S为搅拌器运行转速,A 2为第二系数值,T为压缩机排气温度值,N为分液器分液路数。
  8. 根据权利要求4所述的空调器的控制方法,其特征在于,根据所述分液路数与所述压缩机排气压力值计算所述搅拌器的运行转速的计算公式包括:
    S=A 3×P×N;
    其中,S为搅拌器运行转速,A 3为第三系数值,P为压缩机排气压力值,N为分液器分液路数。
  9. 根据权利要求4所述的空调器的控制方法,其特征在于,所述空调器包括室内换热器,所述室内换热器具有多个第一支路,所述分液器包括第一分液器,所述第一分液器的出液口数量与所述第一支路的数量相同,多个所述第一支路的液口端与所述第一分液器的多个出液口一对一匹配连接;
    在制冷模式下,判断所述第一分液器是否分液均匀,若是,则所述第一分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述第一分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述第一分液器的分液路数,计算所述第一分液器中搅拌器的第一运行转速,并控制所述第一分液器中搅拌器以所述第一运行转速转动。
  10. 根据权利要求4所述的空调器的控制方法,其特征在于,所述空调器包括室外换热器,所述室外换热器具有多个第二支路,所述分液器包括第二分液器,所述第二分液器的出液口数量与所述第二支路的数量相同, 多个所述第二支路的液口端与所述第二分液器的多个出液口一对一匹配连接;
    在制热模式下,判断所述第二分液器是否分液均匀,若是,则所述第二分液器中驱动机构不转动;若否,则获取压缩机运行频率、压缩机运行电流值、压缩机排气温度值和压缩机排气压力值中至少一个与所述第二分液器的分液路数,根据所述压缩机运行频率、所述压缩机运行电流值、所述压缩机排气温度值和所述压缩机排气压力值中至少一个与所述第二分液器的分液路数,计算所述第二分液器中搅拌器的第二运行转速,并控制所述第二分液器中搅拌器以所述第二运行转速转动。
  11. 根据权利要求9所述的空调器的控制方法,其特征在于,判断所述第一分液器是否分液均匀的方法包括:
    在制冷模式下,获取每个所述第一支路的第一冷媒出口温度,计算所有所述第一冷媒出口温度中最高温度与最低温度的第一差值,判断所述第一差值是否大于第一预设温度值,若是,则所述第一分液器分液不均匀;若否,则所述第一分液器分液均匀。
  12. 根据权利要求10所述的空调器的控制方法,其特征在于,判断所述第二分液器是否分液均匀的方法包括:
    在制热模式下,获取每个所述第二支路的第二冷媒出口温度,计算所有所述第二冷媒出口温度中最高温度与最低温度的第二差值,判断所述第二差值是否大于第二预设温度值,若是,则所述第二分液器分液不均匀;若否,则所述第二分液器分液均匀。
  13. 根据权利要求9所述的空调器的控制方法,其特征在于,所述控制方法还包括:在制热模式时,控制所述第一分液器中搅拌器的转动方向与所述第一分液器中搅拌器在制冷模式时的转动方向相反。
  14. 根据权利要求10所述的空调器的控制方法,其特征在于,所述控制方法还包括:在制冷模式时,控制所述第二分液器中搅拌器的转动方向与所述第二分液器中搅拌器在制热模式时的转动方向相反。
PCT/CN2022/077055 2021-07-09 2022-02-21 一种分液器、空调器及控制方法 WO2023279729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110778736.1A CN113531960B (zh) 2021-07-09 2021-07-09 一种分液器、空调器及控制方法
CN202110778736.1 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023279729A1 true WO2023279729A1 (zh) 2023-01-12

Family

ID=78127289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077055 WO2023279729A1 (zh) 2021-07-09 2022-02-21 一种分液器、空调器及控制方法

Country Status (2)

Country Link
CN (1) CN113531960B (zh)
WO (1) WO2023279729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118168074A (zh) * 2024-05-16 2024-06-11 湖南大学 一种空调器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113531960B (zh) * 2021-07-09 2023-02-17 青岛海尔空调器有限总公司 一种分液器、空调器及控制方法
CN115479414A (zh) * 2022-09-27 2022-12-16 中南大学 一种均匀分流的流体分配装置
CN116518551B (zh) * 2023-05-05 2023-10-27 广州名能节能科技有限公司 一种整体式热泵热水器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196110A (zh) * 2015-10-22 2015-12-30 中核(天津)机械有限公司 一种自动加注补液装置
CN106474813A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 一种过滤分液器
CN208727204U (zh) * 2018-08-31 2019-04-12 山东科信生物化学有限公司 生产草铵膦微乳剂的乳化设备
CN210089199U (zh) * 2019-06-27 2020-02-18 北京中冷高科制冷设备有限公司 一种制冷系统用分液器
CN211012005U (zh) * 2019-05-28 2020-07-14 盾安汽车热管理科技有限公司 分液器及具有该分液器的制冷系统
CN213032506U (zh) * 2020-09-03 2021-04-23 眉山市彭山区明羽鼎盛建材有限公司 一种保水剂材料生产混合装置
CN113531960A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 一种分液器、空调器及控制方法
CN215597832U (zh) * 2021-07-09 2022-01-21 青岛海尔空调器有限总公司 一种分液器及空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298817A (ja) * 2003-04-01 2004-10-28 Takashi Doi 水質浄化システムと気液混合装置
JP5371363B2 (ja) * 2008-10-20 2013-12-18 東芝キヤリア株式会社 空気調和機
CN202700440U (zh) * 2012-05-31 2013-01-30 深圳拓邦股份有限公司 一种搅拌器
CN213119619U (zh) * 2020-08-18 2021-05-04 浙江中广电器股份有限公司 一种适配多种输入输出的空调分配器
CN114383343A (zh) * 2020-09-10 2022-04-22 唐正杰 一种制冷剂分流设备及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106474813A (zh) * 2015-08-31 2017-03-08 中国石油化工股份有限公司 一种过滤分液器
CN105196110A (zh) * 2015-10-22 2015-12-30 中核(天津)机械有限公司 一种自动加注补液装置
CN208727204U (zh) * 2018-08-31 2019-04-12 山东科信生物化学有限公司 生产草铵膦微乳剂的乳化设备
CN211012005U (zh) * 2019-05-28 2020-07-14 盾安汽车热管理科技有限公司 分液器及具有该分液器的制冷系统
CN210089199U (zh) * 2019-06-27 2020-02-18 北京中冷高科制冷设备有限公司 一种制冷系统用分液器
CN213032506U (zh) * 2020-09-03 2021-04-23 眉山市彭山区明羽鼎盛建材有限公司 一种保水剂材料生产混合装置
CN113531960A (zh) * 2021-07-09 2021-10-22 青岛海尔空调器有限总公司 一种分液器、空调器及控制方法
CN215597832U (zh) * 2021-07-09 2022-01-21 青岛海尔空调器有限总公司 一种分液器及空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118168074A (zh) * 2024-05-16 2024-06-11 湖南大学 一种空调器

Also Published As

Publication number Publication date
CN113531960B (zh) 2023-02-17
CN113531960A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2023279729A1 (zh) 一种分液器、空调器及控制方法
US6505480B2 (en) Air-conditioner, outdoor unit and refrigeration unit
US9587867B2 (en) Chiller system and control method thereof
TW200923303A (en) Multichannel heat exchanger
KR101780167B1 (ko) 히트 펌프 시스템의 배관 경로 상에 설치하는 유체 교반에 의한 액화 촉진 장치
RU2756611C1 (ru) Блок с множеством соединений, конечная распределительная система и способ управления ей и распределитель
JP2007292374A (ja) 熱源変流量制御装置および方法
CN207195139U (zh) 压缩机及具有其的空调器
CN112856583A (zh) 新风空调一体机和新风空调一体机控制方法
CN215597832U (zh) 一种分液器及空调器
CN110138144A (zh) 一种电动汽车用永磁同步电机冷却系统及其控制方法
CN219368058U (zh) 分流装置、换热器和空调
US4255060A (en) Homogenizing device
KR20060128172A (ko) 실링팬을 구비한 천장형 공기조화기
WO2023050827A1 (zh) 用于空调器的控制方法及空调器
CN116358195A (zh) 一种换热设备中制冷剂的混合方法
CN206640444U (zh) 一种电机及电动汽车
CN101749895B (zh) 一种电动节流分配机构
CN101440976A (zh) 蓄能增焓热泵供热系统
CN210425305U (zh) 一种空调器的换热风机及空调器
CN217383957U (zh) 一种分配器及换热设备
CN110813126A (zh) 电池浆料的分散装置及其温控方法
JP2001065713A (ja) 空調機用冷媒流量制御弁
CN116241949A (zh) 换气空调
CN212370160U (zh) 一种应用于防腐蚀助剂的恒温式反应釜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE