WO2023279665A1 - 一种抗菌润滑涂层及其制备方法和应用 - Google Patents

一种抗菌润滑涂层及其制备方法和应用 Download PDF

Info

Publication number
WO2023279665A1
WO2023279665A1 PCT/CN2021/138087 CN2021138087W WO2023279665A1 WO 2023279665 A1 WO2023279665 A1 WO 2023279665A1 CN 2021138087 W CN2021138087 W CN 2021138087W WO 2023279665 A1 WO2023279665 A1 WO 2023279665A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
ferroelectric material
lubricating coating
base layer
lubricating
Prior art date
Application number
PCT/CN2021/138087
Other languages
English (en)
French (fr)
Inventor
杜学敏
刘美金
王芳
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023279665A1 publication Critical patent/WO2023279665A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/10Inorganic materials
    • A61L29/106Inorganic materials other than carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/216Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/10Materials or treatment for tissue regeneration for reconstruction of tendons or ligaments

Definitions

  • the application relates to the field of antibacterial lubricating coatings, in particular to an antibacterial lubricating coating and its preparation method and application.
  • the application provides an antibacterial lubricating coating, which can not only reduce the friction coefficient of the surface of medical devices and improve the lubricating performance, but also has good antibacterial effect and biocompatibility. It is applied in In medical devices, it can make medical devices have long-lasting lubricating effect and stable antibacterial performance.
  • the first aspect of the present application provides an antibacterial lubricating coating
  • the antibacterial lubricating coating includes a ferroelectric material base layer and a lubricating layer arranged on the surface of the ferroelectric material base layer, the ferroelectric material base layer includes iron electrical material.
  • the polarized ferroelectric material base layer can generate charges on the surface of the antibacterial lubricating coating, thereby inhibiting bacteria from adhering to the coating surface, and the ferroelectric material base layer can also generate transient charges under the stimulation of light or heat. Then generate active oxygen to kill bacteria on the surface of the coating; the lubricating layer has low interfacial tension, which can reduce the adhesion of cells and bacteria, thereby inhibiting bacterial growth, and the lubricating layer can also improve the biocompatibility of the coating and reduce the Stimulation of medical devices to the human body.
  • the ferroelectric material includes one or more of ferroelectric polymers and inorganic ferroelectric materials.
  • the ferroelectric polymer includes polyvinylidene fluoride and its copolymers, polytetrafluoroethylene, nylon with an odd number of carbon atoms, polyacrylonitrile, polyimide, polyvinylidene dicyanide, poly One or more of urea, polyphenylcyano ether, polyvinyl chloride, polyvinyl acetate or polypropylene.
  • the polyvinylidene fluoride copolymer includes polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-tetrafluoroethylene copolymer, polyvinylidene fluoride-trifluoroethylene-trifluoroethylene copolymer And polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene copolymer.
  • the inorganic ferroelectric material includes one or more of bismuth layered perovskite ferroelectrics, tungsten bronze ferroelectrics and perovskite organic metal halide ferroelectrics.
  • the inorganic ferroelectric material includes lead titanate, barium titanate, potassium niobate, lithium niobate, lithium tantalate, bismuth titanate, bismuth ferrite, potassium dihydrogen phosphate, ammonium triglyceride and rothene One or more of the salts.
  • the base layer of the ferroelectric material further includes a photothermal material.
  • the photothermal material includes one or more of gold nanomaterials, palladium nanomaterials, carbon nanotubes, graphene, carbon black, black phosphorus, copper sulfide, indocyanine green, polyaniline and strontium ruthenate Various.
  • the gold nanomaterials include one or more of gold nanorods, gold nanoshells, gold nanocages and hollow gold nanospheres
  • the palladium nanomaterials include palladium nanosheets, palladium@silver and palladium@ One or more of silicon dioxide.
  • the mass ratio of the ferroelectric material to the photothermal material is greater than or equal to 2.33.
  • the thickness of the ferroelectric material base layer is 100nm-1mm.
  • the lubricating layer includes vegetable oil, ethylene glycol, perfluoropolyether, mineral oil, glycerol, paraffin, polyurethane, acrylic polyurethane, fluorine oil, vegetable seed oil, n-decanol, motor lubricating oil, kerosene , oleic acid, methyl oleate, ethyl oleate, ferrofluid, thermotropic liquid crystal, ionic liquid, iodoacetic acid, mannitol, eicosapentaenoic acid, alginate, alginic acid, mucopolysaccharide, hyaluronic acid , collagen, elastin, allantoin, glucuronic acid, glycolic acid, collagen, mushroom liquid, emodin and silicone oil.
  • vegetable oil ethylene glycol, perfluoropolyether, mineral oil, glycerol, paraffin, polyurethane, acrylic polyurethane, fluorine oil, vegetable seed oil
  • the lubricating layer has a thickness of 1 nm-100 ⁇ m.
  • the static contact angle of the lubricating layer to water is 50°-110°.
  • the dynamic contact angle of the lubricating layer to water is 0°-10°.
  • the antibacterial lubricating coating has a thickness of 101 nm-1100 ⁇ m.
  • the second aspect of the application provides a method for preparing an antibacterial lubricating coating, comprising:
  • the coating includes any one of spray coating, dip coating, drop coating, spin coating or printing.
  • the solvent includes dimethyl sulfoxide, N,N-dimethylformamide acetone, trimethyl phosphate, N,N-dimethylformamide, N,N-dimethylacetamide, One or more of propylene glycol, N-methylpyrrolidone, tetrahydrofuran, tetramethylurea, hexamethylphosphoric acid amide and hexafluoroisopropanol.
  • the mass concentration of the ferroelectric material in the mixed solution is 1%-50%.
  • the polarization treatment includes one or more of external force, electricity, magnetism or radiation.
  • the third aspect of the present application provides a medical device, which includes a medical device body and an antibacterial lubricating coating provided on the surface of the medical device body.
  • the medical device includes one or more of instruments, equipment, utensils or materials directly used in the human body.
  • the medical device are set in the body of the subject or enter the body of the subject during application.
  • the medical devices include medical devices for detection and medical devices for treatment.
  • the medical devices include contact lenses, catheters for implantation, stents, artificial joints, orthopedic fixation pins, catheters, intravaginal or digestive tract devices (stomach tube, sigmoidoscope, colonoscope, gastroscope), Endotracheal tubes, bronchoscopes, dentures, orthodontic appliances, intrauterine devices, burn tissue dressings, oral dressings, therapeutic devices, laparoscopy, arthroscopy, dental filling materials, artificial muscle keys, artificial larynx, and periosteum Any of the lower implants.
  • the medical device is made of gold, silver, platinum, palladium, aluminum, copper, steel, tantalum, magnesium, nickel, chromium, iron, nickel-titanium alloy, cobalt-chromium alloy, high-nitrogen nickel-free stainless steel, cobalt-chromium Molybdenum alloy, gallium arsenide, titanium, hydroxyapatite, tricalcium phosphate, polylactic acid, carbon fiber, polyglycolic acid, polylactic acid-glycolic acid copolymer, poly ⁇ -(caprolactone), polyanhydride, polyorthoacid ester, polyvinyl alcohol, polyethylene glycol, polyurethane, polyacrylic acid, poly-N-isopropylacrylamide, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), polytetrafluoroethylene Vinyl fluoride, polycarbonate, polyurethane, nitrocellulose, polystyrene, polyethylene, polyethylene terephthalate, polyd
  • the sterilization method of the medical device includes applying one or more of external force or thermal stimulation to the medical device;
  • the external force includes one or more of pressure, tension, bending force and ultrasonic ;
  • the thermal stimulus includes one or more of heating and light.
  • the medical device provided by the third aspect of the present application has good structural stability and biocompatibility, and the antibacterial lubricating coating on its surface improves the lubricating performance of the medical device, reduces the damage to human tissue when the medical device is implanted, and greatly It reduces the risk of wound infection during the use of medical devices and has high safety.
  • the application provides an antibacterial lubricating coating
  • the antibacterial lubricating coating can not only reduce the friction coefficient of the surface of the medical device and improve the lubricating performance, but also has good antibacterial effect and biocompatibility, and its application in the medical device can make Medical devices have long-lasting lubricating effect and stable antibacterial performance.
  • Fig. 1 is a schematic structural view of an antibacterial lubricating coating provided by an embodiment of the present application
  • FIG. 2 is a scanning electron microscope image of the ferroelectric material base layer provided in Example 1 of the present application.
  • the antibacterial properties of medical devices are of great significance.
  • the antibacterial ability of existing medical devices is still lower.
  • the surface lubrication performance of existing medical devices is poor, which is easy to cause damage to human tissue.
  • the application provides an antibacterial lubricating coating, which has strong antibacterial properties and good lubricity and biocompatibility, and is applied in medical Device surfaces can greatly improve the safety of medical devices.
  • FIG. 1 is a schematic structural diagram of an antibacterial lubricating coating provided by an embodiment of the present application, wherein the antibacterial lubricating coating includes a ferroelectric material base layer 10 and a lubricating layer 20 disposed on the surface of the ferroelectric material base layer 10 .
  • the base layer of the ferroelectric material includes a ferroelectric material, and after the ferroelectric material is polarized, the dipoles in the material are arranged in an orderly manner, and charges are generated on the surface of the antibacterial lubricating coating, thereby inhibiting bacterial adhesion and making the The coating has good antibacterial effect.
  • the way of polarizing the ferroelectric material base layer includes one or more of external force, electricity, magnetism or radiation.
  • the piezoelectric coefficient d 33 of the base layer of the ferroelectric material is greater than or equal to 10 pC/N.
  • the piezoelectric coefficient d 33 of the base layer of the ferroelectric material may be, but not limited to, 10pC/N, 15pC/N, 20pC/N, 25pC/N, 30pC/N or 50pC/N.
  • the piezoelectric coefficient of the base layer of the ferroelectric material after the polarization treatment is higher than that without the polarization treatment under the same conditions.
  • the ferroelectric material includes one or more of ferroelectric polymers and inorganic ferroelectric materials.
  • the ferroelectric polymer includes polyvinylidene fluoride and its copolymers, polytetrafluoroethylene, nylon with an odd number of carbon atoms, polyacrylonitrile, polyimide, polyvinylidene dicyanide, poly One or more of urea, polyphenylcyano ether, polyvinyl chloride, polyvinyl acetate, polypropylene or ferroelectric liquid crystal.
  • polyvinylidene fluoride and its copolymers include polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-tetrafluoroethylene copolymer, polyvinylidene fluoride-trifluoroethylene-trifluorochloro One or more of ethylene copolymers and polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene copolymers.
  • the ferroelectric material includes nylon with an odd number of carbon atoms.
  • the inorganic ferroelectric material includes one or more of bismuth layered perovskite ferroelectrics, tungsten bronze ferroelectrics and perovskite organic metal halide ferroelectrics.
  • the inorganic ferroelectric material includes lead titanate, barium titanate, potassium niobate, lithium niobate, lithium tantalate, bismuth titanate, bismuth ferrite, potassium dihydrogen phosphate, ammonium triglyceride and One or more of Roche salt.
  • the particle size of the inorganic ferroelectric material is 1 nm-100 ⁇ m.
  • the particle size of the inorganic ferroelectric material can be, but not limited to, 1 nm, 10 nm, 50 nm, 100 nm, 500 nm, 1 ⁇ m, 10 ⁇ m or 100 ⁇ m.
  • the base layer of the ferroelectric material further includes a photothermal material. Adding photothermal materials in the base layer of ferroelectric materials can make the antibacterial lubricating coating generate electrical signals under light, thereby achieving the effect of sterilization.
  • the photothermal conversion rate of the photothermal material is 1%-90%.
  • the photothermal material includes one or more of gold nanomaterials, palladium nanomaterials, carbon nanotubes, graphene, carbon black, black phosphorus, copper sulfide, indocyanine green, polyaniline and strontium ruthenate Various.
  • the gold nanomaterial includes one or more of gold nanorods, gold nanoshells, gold nanocages and hollow gold nanospheres.
  • palladium nanomaterials include one or more of palladium nanosheets, palladium@silver and palladium@silica, wherein palladium@silver means silver-coated palladium core-shell nanomaterials, palladium@ Silica refers to silica-coated palladium core-shell nanomaterials.
  • the base layer of the ferroelectric material includes a photothermal material
  • the mass ratio of the ferroelectric material to the photothermal material is 100:0-70:30 (100:0 is not included).
  • the mass ratio of the ferroelectric material to the photothermal material may be, but not limited to, 100:1, 95:5, 90:10, 80:20, 75:25 or 70:30. Within the above mass ratio range, the photothermal material can achieve a good cooperation with the ferroelectric material, ensuring that the light can be effectively converted into an electrical signal, thereby achieving a stable and good bactericidal effect.
  • the thickness of the base layer of the ferroelectric material is 100 nm-1 mm. In some embodiments of the present application, the thickness of the base layer of the ferroelectric material is 100 nm-100 ⁇ m. Specifically, the thickness of the base layer of the ferroelectric material may be, but not limited to, 100 nm, 300 nm, 500 nm, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m or 1 mm.
  • the lubricating layer has a good synergistic effect with the base layer of the ferroelectric material, so that the antibacterial lubricating coating has good antibacterial properties.
  • the lubricating layer can reduce the adhesion of water molecules and biomolecules on the antibacterial lubricating coating , so as to inhibit the growth of bacteria on the surface of the coating, so that the coating has good antibacterial properties, and the polarized ferroelectric material can generate charges on the surface of the antibacterial lubricating coating to reduce the adhesion of bacteria on the surface of the antibacterial lubricating coating. Electrical materials can also generate transient charges under external stimuli, further generating active oxygen to kill bacteria.
  • the lubricating layer can also improve the biocompatibility and lubricating performance of the antibacterial lubricating coating, so that the coating can effectively improve the safety of medical devices.
  • the lubricating layer includes vegetable oil, ethylene glycol, mineral oil, glycerin, perfluoropolyether, paraffin, polyurethane, acrylic polyurethane, fluorine oil, vegetable seed oil, n-decyl alcohol, motor lubricating oil, kerosene , oleic acid, methyl oleate, ethyl oleate, ferrofluid, thermotropic liquid crystal, ionic liquid, iodoacetic acid, mannitol, eicosapentaenoic acid, alginate, alginic acid, mucopolysaccharide, hyaluronic acid , collagen, elastin, allantoin, glucuronic acid, glycolic acid, collagen, mushroom liquid, emodin and silicone oil.
  • the thickness of the lubricating layer is 1 nm-100 ⁇ m.
  • the thickness of the lubricating layer may be, but not limited to, 1 nm, 5 nm, 10 nm, 100 nm, 500 nm, 1 ⁇ m, 10 ⁇ m, 20 ⁇ m or 50 ⁇ m.
  • the static contact angle of the antibacterial lubricating coating to water is 50°-110°
  • the static contact angle of the antibacterial lubricating coating to water can be, but not limited to, 50°, 60°, 70°, 80° , 90°, 100° or 110°
  • the dynamic contact angle of the antibacterial lubricating coating to water is 0°-10°.
  • the dynamic contact angle of the antibacterial lubricating coating to water may be, but not limited to, 0°, 3°, 5°, 7° or 10°. The larger the dynamic contact angle of the antibacterial lubricating coating to water, the less likely the coating is to be attached by bacteria.
  • the thickness of the antibacterial lubricating coating is 101 nm-1100 ⁇ m.
  • the thickness of the antibacterial lubricating coating can be, but not limited to, 101nm, 200nm, 300nm, 500nm, 800nm, 1000nm or 1100nm.
  • the present application also provides a medical device, the surface of which is provided with the antibacterial lubricating coating of the present application.
  • medical devices include instruments, equipment, appliances, and materials that are directly used on the human body, and some or all of the components of the medical device are set in the body of the subject or enter the body of the subject during application.
  • medical devices include contact lenses, catheters for implantation, stents, artificial joints, orthopedic fixation pins, catheters, intravaginal or digestive tract devices (stomach tube, sigmoidoscope, colonoscope, gastroscope) , endotracheal tubes, bronchoscopes, dentures, orthodontic appliances, intrauterine contraceptives, burn tissue dressings, oral dressings, therapeutic equipment, laparoscopy, arthroscopy, dental filling materials, artificial muscle bonds, artificial larynx, and One or more of the subperiosteal implants.
  • intravaginal or digestive tract devices stomach tube, sigmoidoscope, colonoscope, gastroscope
  • endotracheal tubes bronchoscopes
  • dentures orthodontic appliances
  • intrauterine contraceptives burn tissue dressings, oral dressings, therapeutic equipment, laparoscopy, arthroscopy, dental filling materials, artificial muscle bonds, artificial larynx, and One or more of the subperiosteal implants.
  • medical devices are made of gold, silver, platinum, palladium, aluminum, copper, steel, tantalum, magnesium, nickel, chromium, iron, nickel-titanium alloy, cobalt-chromium alloy, high-nitrogen nickel-free stainless steel, cobalt Chromium molybdenum alloy, gallium arsenide, titanium, hydroxyapatite, tricalcium phosphate, polylactic acid, carbon fiber, polyglycolic acid, polylactic acid-glycolic acid copolymer, poly ⁇ -(caprolactone), polyanhydride, polyatomic acid ester, polyvinyl alcohol, polyethylene glycol, polyurethane, polyacrylic acid, poly-N-isopropylacrylamide, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), poly Tetrafluoroethylene, polycarbonate, polyurethane, nitrocellulose, polystyrene, polyethylene, polyethylene terephthalate, polydimethylsi
  • the method for sterilizing a medical device includes applying one or more of external force or thermal stimulation to the medical device, wherein the external force includes one or more of pressure, tension, bending force and ultrasonic
  • the thermal stimulus includes one or more of heating and light.
  • the surface of the medical device will generate charges, thereby inhibiting the adhesion of bacteria and simultaneously generating active oxygen to kill bacteria on the surface of the device.
  • the open circuit voltage of the antibacterial lubricating coating is 1mV-500V
  • the short circuit current of the antibacterial lubricating coating is 1nA-100mA/cm 2 . Under the above open circuit voltage and short circuit current, bacteria can be effectively killed.
  • the external force applied to the medical device includes one or more of pressure, tension and bending force.
  • the external force value is 1Pa-1000kPa; when the antibacterial When the lubricating coating includes inorganic ferroelectric materials, the external force value is 1Pa-1000Mpa.
  • the external force applied to the medical device is ultrasonic waves, the frequency of the ultrasonic waves is 20 kHz-200 MHz, and the power density of the ultrasonic waves is 1 W/cm 2 -1 kW/cm 2 .
  • the medical device is sterilized by heating, wherein the heating temperature is 20°C-40°C.
  • medical devices are sterilized by light treatment, wherein the wavelength of light is 100nm-4000nm, and the power density of light is 1mW/cm 2 -5000mW/cm 2 .
  • the antibacterial lubricating coating provided by the application can effectively reduce the friction between the medical device and human tissue, improve the biocompatibility of the medical device and reduce the adhesion of bacteria on the surface of the medical device; and the antibacterial lubricating coating can withstand external force or heat Under stimulation, active oxygen can be generated to kill bacteria on the surface of medical devices and achieve stable bactericidal performance.
  • the application also provides a preparation method of antibacterial lubricating coating, comprising:
  • Step 100 providing a substrate, mixing the ferroelectric material with a solvent, and coating the mixed solution on the surface of the substrate to obtain a substrate with a base layer of the ferroelectric material;
  • Step 200 performing polarization treatment on the substrate with the base layer of ferroelectric material
  • Step 300 Wetting the lubricant into the surface of the base layer of the ferroelectric material to form a lubricating layer to obtain an antibacterial lubricating coating.
  • the ferroelectric material includes one or more of ferroelectric polymers and inorganic ferroelectric materials.
  • the solvent includes dimethyl sulfoxide, N,N-dimethylformamide acetone, trimethyl phosphate, N,N-dimethylformamide, N,N-dimethylacetamide, One or more of propylene glycol, N-methylpyrrolidone, tetrahydrofuran, tetramethylurea, hexamethylphosphoric acid amide and hexafluoroisopropanol, the use of the above solvents is beneficial to the formation of a uniform ferroelectric layer.
  • the mass concentration of the ferroelectric material in the mixed solution is 1%-50%.
  • the mass concentration of the ferroelectric material may be, but not limited to, 1%, 5%, 10%, 20%, 30%, 40% or 50%.
  • coating the mixed solution on the surface of the substrate may be one or more of spray coating, dip coating, drop coating, spin coating or printing.
  • the way of polarizing the substrate with the ferroelectric material base layer includes one or more of external force, electricity, magnetism or irradiation.
  • high voltage corona is used to achieve polarization.
  • coating or soaking may be used to infiltrate the surface of the base layer of the ferroelectric material with the lubricant.
  • a lubricating layer is formed on the surface of the ferroelectric material base layer by spraying, and an antibacterial lubricating coating is obtained.
  • a lubricating layer is formed on the surface of the base layer of the ferroelectric material by soaking, and an antibacterial lubricating coating is obtained.
  • the substrate provided is the body of the medical device, and an antibacterial lubricating coating is formed on the surface of the body of the medical device through the above preparation method, so as to obtain a medical device with good antibacterial properties.
  • the preparation method of the antibacterial lubricating coating provided by the application is simple to operate, the process is controllable, and is suitable for industrial production.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • Polyvinylidene fluoride was dissolved in dimethyl sulfoxide to obtain a polyvinylidene fluoride solution with a mass percentage of 10%, and 5 mL of polyvinylidene fluoride solution was coated on the laparoscopic surface made of zirconia by drop coating. Dry at 80° C. for 12 hours to obtain a laparoscope coated with polyvinylidene fluoride.
  • the laparoscope was corona-polarized by 26kV high voltage. After polarization, the piezoelectric coefficient d 33 of the laparoscope coated with polyvinylidene fluoride was 18pC/N, and the surface potential was 60V.
  • the polarized laparoscope with polyvinylidene fluoride coating is soaked in silicone oil to perfuse with silicone oil, and the laparoscope with antibacterial lubricating coating is obtained after perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene copolymer
  • N,N-dimethylformamide N,N-dimethylformamide
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene copolymer
  • N,N-dimethylformamide N,N-dimethylformamide
  • the gastroscope was corona-polarized by 26kV high voltage. After polarization, the piezoelectric coefficient d 33 of the gastroscope with PVDF-TrFE coating was 30pC/N, and the surface potential was 60V.
  • the polarized gastroscope with PVDF-TrFE coating is soaked in molten paraffin for paraffin perfusion, and the gastroscope with antibacterial lubricating coating is obtained after perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • Polyvinyl acetate was dissolved in N,N-dimethylformamide to obtain a polyvinyl acetate solution with a mass percentage of 10%, and 5 mL of polyvinyl acetate solution was coated on the surface of a gastroscope made of polylactic acid by spin coating. Dry at 80°C for 12h.
  • the gastroscope was corona-polarized by 26kV high voltage, and the piezoelectric coefficient d 33 of the gastroscope with polyvinyl acetate coating was 26pC/N after polarization.
  • the gastroscope with polyvinyl acetate coating is perfused with alginic acid, and the gastroscope with antibacterial lubricating coating is obtained after perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • the barium titanate in the mixed solution The mass percentage is 1%, and the mass percentage of PVDF-TrFE is 10%.
  • Mineral oil is added dropwise to the artificial muscle bond with the base layer of the ferroelectric material to perfuse the mineral oil. After the perfusion, the artificial muscle bond with the antibacterial lubricating coating is obtained, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • the catheter is corona-polarized by 26kV high voltage, and the piezoelectric coefficient d 33 of the catheter with a ferroelectric material base layer is 24pC/N after polarization.
  • the vegetable oil perfusion is carried out on the urinary catheter with the base layer of the ferroelectric material, and the urinary catheter with the antibacterial lubricating coating is obtained after the perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • the colonoscope is corona-polarized by 26kV high voltage, and the piezoelectric coefficient d 33 of the colonoscope with a ferroelectric material base layer after polarization is 24pC/N.
  • the colonoscope with the base layer of the ferroelectric material is perfused with allantoin, and the colonoscope with the antibacterial lubricating coating is obtained after the perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • the mass percentage of lithium tantalate in the mixed solution is 1%, and the mass percentage of polyacrylonitrile is 10% %.
  • the colonoscope is corona-polarized by 26kV high voltage, and the piezoelectric coefficient d 33 of the colonoscope with a ferroelectric material base layer after polarization is 23pC/N.
  • the colonoscope with the base layer of the ferroelectric material is perfused with emodin, and the colonoscope with the antibacterial lubricating coating is obtained after perfusion, that is, the antibacterial lubricating coating is obtained.
  • An antibacterial lubricating coating and a preparation method thereof comprising:
  • the colonoscope is corona-polarized by 26kV high voltage, and the piezoelectric coefficient d 33 of the colonoscope with a ferroelectric material base layer after polarization is 25pC/N.
  • the colonoscope with the base layer of the ferroelectric material is perfused with glucuronic acid, and the colonoscope with the antibacterial lubricating coating is obtained after perfusion, that is, the antibacterial lubricating coating is obtained.
  • the present application also provides effect examples.
  • Table 1 The wettability table of the antibacterial lubricating coating of embodiment 1-9
  • the antibacterial lubricating coating of the present application has poor wettability to water, so it can effectively reduce the adhesion of water molecules and biomolecules to the antibacterial lubricating coating, thereby inhibiting the growth of bacteria on the coating surface and making the coating Has good antibacterial properties.
  • E.coli Escherichia coli
  • TLB tryptone soybean broth medium
  • McFarland turbidimetric method Place the samples with a size of 10 ⁇ 10 mm in a 12-well plate, add 1 mL of the bacterial TSB suspension obtained above, and incubate in a 37° C. incubator for 48 h.
  • control group 1 is an unpolarized medical device with a ferroelectric material base, named sample 1;
  • sample 2 The polarized medical device with a ferroelectric material base layer and a lubricating layer is named sample 2;
  • control group 3 is a polarized medical device with a ferroelectric material base layer, named sample 3;
  • the experimental group for antibacterial performance testing is a sample with Medical devices with antibacterial lubricating coating, named sample 4.
  • sample 1 of embodiment 1 is an unpolarized laparoscope with a polyvinylidene fluoride coating
  • sample 2 is an unpolarized laparoscope with a polyvinylidene fluoride coating and a silicone oil lubricating layer
  • sample 3 is a polarized laparoscope with polyvinylidene fluoride coating
  • sample 4 is a laparoscope with an antibacterial lubricating coating.
  • Table 2 is the antibacterial rate result table of Examples 1-9 antibacterial lubricating coating and its control group.
  • test group sample 1 sample 2 sample 3 Sample 4
  • Example 1 1% 35% 45% 80%
  • Example 2 2% 30% 55% 85%
  • Example 3 2% 32% 57% 83%
  • Example 4 4% 35% 60% 89%
  • Example 5 1% 40% 50% 90%
  • Example 6 1%
  • Example 7 2%
  • Example 8 1%
  • Example 9 2% 33% 49% 91%
  • the antibacterial lubricating coating of the present application has good antibacterial performance, and compared with the unpolarized sample, the antibacterial rate of the antibacterial lubricating coating is greatly improved after polarization. Applying the antibacterial lubricating coating of the present application to medical devices can effectively improve the safety of the medical devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本申请提供了一种抗菌润滑涂层,该抗菌润滑涂层包括铁电材料基层和设置在铁电材料基层一侧表面的润滑层,铁电材料基层包括铁电材料。该抗菌润滑涂层不仅可以降低医疗器械表面的摩擦系数提高润滑性能,并且具有良好的抗菌效果和生物相容性,将其应用在医疗器械中可以使医疗器械具有持久的润滑效果和稳定的抗菌性能。本申请还提供了该抗菌润滑涂层的制备方法和一种医疗器械。

Description

一种抗菌润滑涂层及其制备方法和应用 技术领域
本申请涉及抗菌润滑涂层领域,具体涉及一种抗菌润滑涂层及其制备方法和应用。
背景技术
医疗器械在植入人体时一方面会与人体组织产生摩擦造成疼痛并且增加血管壁破损的风险,另一方面,细菌易粘附在医疗器械表面并增殖形成生物膜,导致患者伤口感染、增加治疗难度。因此,有必要对现有的医疗器械进行改进,提高医疗器械的抗菌性能和润滑性能,使医疗器械能够具有持久的润滑效果和稳定的抗菌性能。
技术问题
医疗器械在植入人体时一方面会与人体组织产生摩擦造成疼痛并且增加血管壁破损的风险,另一方面,细菌易粘附在医疗器械表面并增殖形成生物膜,导致患者伤口感染、增加治疗难度。
技术解决方案
为解决上述问题,本申请提供了一种抗菌润滑涂层,该抗菌润滑涂层不仅可以降低医疗器械表面的摩擦系数提高润滑性能,并且具有良好的抗菌效果和生物相容性,将其应用在医疗器械中可以使医疗器械具有持久的润滑效果和稳定的抗菌性能。
具体地,本申请第一方面提供了一种抗菌润滑涂层,所述抗菌润滑涂层包括铁电材料基层和设置在所述铁电材料基层表面的润滑层,所述铁电材料基层包括铁电材料。
本申请中,铁电材料基层经极化后能够在抗菌润滑涂层表面产生电荷,从而抑制细菌黏附在涂层表面,并且铁电材料基层在光或热的刺激下还能产生瞬态电荷,进而生成活性氧来杀灭涂层表面的细菌;润滑层具有低的界面张力,可以减少细胞和细菌的粘附,从而抑制细菌生长,并且润滑层还可以提高涂层的生物相容性,降低医疗器械对人体的刺激。
可选的,所述铁电材料包括铁电聚合物和无机铁电材料中的一种或多种。
可选的,所述铁电聚合物包括聚偏氟乙烯及其共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯或聚丙烯中的一种或多种。
可选的,所述聚偏氟乙烯共聚物包括聚偏氟乙烯-三氟乙烯共聚物、聚偏氟乙烯-四氟乙烯共聚物、聚偏氟乙烯-三氟乙烯-三氟氯乙烯共聚物和聚偏氟乙烯-三氟乙烯-氯氟乙烯共聚物。
可选的,所述无机铁电材料包括铋层状钙钛矿结构铁电体、钨青铜型铁电体和钙钛矿型有机金属卤化物铁电体中的一种或多种。
可选的,所述无机铁电材料包括钛酸铅、钛酸钡、铌酸钾、铌酸锂、钽酸锂、钛酸铋、铁酸铋、磷酸二氢钾、硫酸三甘酸氨和罗息盐中的一种或多种。
可选的,所述铁电材料基层还包括光热材料。
可选的,所述光热材料包括金纳米材料、钯纳米材料、碳纳米管、石墨烯、炭黑、黑磷、硫化铜、吲哚菁绿、聚苯胺和钌酸锶中的一种或多种。
可选的,所述金纳米材料包括金纳米棒、金纳米壳、金纳米笼和空心金纳米球中的一种或多种,所述钯纳米材料包括钯纳米片、钯@银和钯@二氧化硅中的一种或多种。
可选的,所述铁电材料与所述光热材料的质量比大于或等于2.33。
可选的,所述铁电材料基层的厚度为100nm-1mm。
可选的,所述润滑层包括植物油、乙二醇、全氟聚醚、矿物油、丙三醇、石蜡、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素和硅油中的一种或多种。
可选的,所述润滑层的厚度为1nm-100μm。
可选的,所述润滑层对水的静态接触角为50°-110°。
可选的,所述润滑层对水的动态接触角为0°-10°。
可选的,所述抗菌润滑涂层的厚度为101nm-1100μm。
本申请第二方面提供了一种抗菌润滑涂层的制备方法,包括:
提供基体,将铁电材料与溶剂混合后得到混合液,将所述混合液涂覆在所述基体表面,得到具有铁电材料基层的基体;
对所述具有铁电材料基层的基体进行极化处理;
将润滑剂浸润所述铁电材料基层表面形成润滑层,得到所述抗菌润滑涂层。
可选的,所述涂覆包括喷涂、浸涂、滴涂、旋涂或打印中的任意一种。
可选的,所述溶剂包括二甲基亚砜、N,N-二甲基甲酰胺丙酮、磷酸三甲酯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙二醇、N-甲基吡咯烷酮、四氢呋喃、四甲基脲、六甲基磷酸酰胺和六氟异丙醇中一种或多种。
可选的,混合液中铁电材料的质量浓度为1%-50%。
可选的,所述极化处理包括外加力、电、磁或辐照中的一种或多种。
本申请第三方面提供了一种医疗器械,所述医疗器械包括医疗器械本体和设置在所述医疗器械本体表面的抗菌润滑涂层。
可选的,所述医疗器械包括直接用于人体的仪器、设备、器具或材料中的一种或多种。
可选的,所述医疗器械中的部分或全部部件设置在受试者体内或在应用时进入受试者体内。所述医疗器械包括检测用医疗器械和治疗用医疗器械。
可选的,所述医疗器械包括接触镜、植入用导管、支架、人造关节、骨科用固定钉、导尿管、阴道内或消化道器械(胃管、乙状结肠镜、结肠镜、胃镜)、气管内管、支气管镜、义齿、畸齿矫正器、宫内避孕器、烧伤组织敷料、口腔敷料、治疗器械、腹腔镜、关节内窥镜、齿科充填材料、人工肌键、人工喉以及骨膜下植入物中的任意一种。
可选的,所述医疗器械是由金、银、铂、钯、铝、铜、钢、钽、镁、镍、铬、铁、镍钛合金、钴铬合金、高氮无镍不锈钢、钴铬钼合金、砷化镓、钛、羟基磷灰石、磷酸三钙、聚乳酸、碳纤维、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚ε-(己内酯)、聚酸酐、聚原酸酯、聚乙烯醇、聚乙二醇、聚氨酯、聚丙烯酸、聚N-异丙基丙烯酰胺、聚(环氧乙烷)-聚(环氧丙烷)-聚(环氧乙烷)、聚四氟乙烯、聚碳酸酯、聚氨酯、硝化纤维、聚苯乙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚丙烯腈-丁二烯-苯乙烯、聚醚醚酮、氧化硅、氧化钛、氧化铝、氧化锆、氧化铌、有机硅、硅橡胶以及玻璃中的至少一种材料制备而成。
可选的,所述医疗器械的杀菌方法包括对所述医疗器械施加外力或热刺激中的一种或多种;所述外力包括压力、拉力、挠曲力和超声波中的一种或多种;所述热刺激包括加热和光照中的一种或多种。
本申请第三方面提供的医疗器械具有良好的结构稳定性和生物相容性,其表面的抗菌润滑涂层提高了医疗器械的润滑性能,减少医疗器械植入时对人体组织的损伤,并且大大降低了医疗器械使用过程中伤口感染的风险,具有较高的安全性。
有益效果
本申请提供了一种抗菌润滑涂层,该抗菌润滑涂层不仅可以降低医疗器械表面的摩擦系数提高润滑性能,并且具有良好的抗菌效果和生物相容性,将其应用在医疗器械中可以使医疗器械具有持久的润滑效果和稳定的抗菌性能。
附图说明
图1为本申请一实施方式提供的抗菌润滑涂层的结构示意图;
图2为本申请实施例1提供的铁电材料基层的扫描电镜图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在医疗器械的使用过程中,细菌容易由器械入口处侵入,并通过范德华力吸附在医疗器械外壁上,随后引起感染,因此医疗器械的抗菌性有着重要意义,然而现有的医疗器械抗菌能力仍较低。除此之外,现有的医疗器械表面润滑性能较差,易造成人体组织损伤。为获得具有良好抗菌性能和润滑性能的医疗器械,本申请提供了一种抗菌润滑涂层,该涂层具有较强的抗菌性能并且具有良好的润滑性和生物相容性,将其应用在医疗器械表面可以大大提高医疗器械的安全性。
请参阅图1,图1为本申请一实施方式提供的抗菌润滑涂层的结构示意图,其中,抗菌润滑涂层包括铁电材料基层10和设置在铁电材料基层10表面的润滑层20。本申请实施方式中,铁电材料基层包括铁电材料,铁电材料经极化后材料中的偶极子发生有序排列,并在抗菌润滑涂层表面产生电荷,从而抑制细菌粘附,使涂层具有良好的抗菌效果。本申请实施方式中,对铁电材料基层进行极化处理的方式包括外加力、电、磁或辐照中的一种或多种。本申请实施方式中,铁电材料基层的压电系数d 33大于等于10pC/N。铁电材料基层的压电系数d 33具体可以但不限于为10pC/N、15pC/N、20pC/N、25pC/N、30pC/N或50pC/N。本申请中,铁电材料基层的压电系数越大,则抗菌润滑涂层的抗菌性能越好,越有利于实现稳定的杀菌性能。本申请实施方式中,铁电材料基层经过极化处理后的压电系数高于相同条件下未经过极化处理的压电系数。
本申请实施方式中,铁电材料包括铁电聚合物和无机铁电材料中的一种或多种。本申请实施方式中,铁电聚合物包括聚偏氟乙烯及其共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯、聚丙烯或铁电液晶中的一种或多种。本申请一些实施方式中,聚偏氟乙烯及其共聚物包括聚偏氟乙烯-三氟乙烯共聚物、聚偏氟乙烯-四氟乙烯共聚物、聚偏氟乙烯-三氟乙烯-三氟氯乙烯共聚物和聚偏氟乙烯-三氟乙烯-氯氟乙烯共聚物中的一种或多种。本申请一些实施例中,铁电材料包括碳原子数为奇数的尼龙。
本申请实施方式中,无机铁电材料包括铋层状钙钛矿结构铁电体、钨青铜型铁电体和钙钛矿型有机金属卤化物铁电体中的一种或多种。本申请一些实施例中,无机铁电材料包括钛酸铅、钛酸钡、铌酸钾、铌酸锂、钽酸锂、钛酸铋、铁酸铋、磷酸二氢钾、硫酸三甘酸氨和罗息盐中的一种或多种。本申请实施方式中,无机铁电材料的粒径为1nm-100µm。无机铁电材料的粒径具体可以但不限于为1nm、10nm、50nm、100nm、500nm、1µm、10µm或100µm。
本申请一些实施方式中,铁电材料基层还包括光热材料。在铁电材料基层中添加光热材料可以使抗菌润滑涂层在光照下产生电信号,从而实现杀菌的效果。本申请实施方式中,光热材料的光热转换率为1%-90%。本申请实施方式中,光热材料包括金纳米材料、钯纳米材料、碳纳米管、石墨烯、炭黑、黑磷、硫化铜、吲哚菁绿、聚苯胺和钌酸锶中的一种或多种。本申请一些实施方式中,金纳米材料包括金纳米棒、金纳米壳、金纳米笼和空心金纳米球中的一种或多种。本申请一些实施方式中,钯纳米材料包括钯纳米片、钯@银和钯@二氧化硅中的一种或多种,其中,钯@银表示银包覆钯的核壳纳米材料,钯@二氧化硅表示二氧化硅包覆钯的核壳纳米材料。本申请中,当铁电材料基层包括光热材料时,铁电材料与光热材料的质量比为100:0-70:30(不包括100:0)。铁电材料与光热材料的质量比具体可以但不限于为100:1、95:5、90:10、80:20、75:25或70:30。在上述质量比范围内,光热材料可以与铁电材料实现良好的配合作用,保证光照能够有效地转化为电信号,从而实现稳定和良好的杀菌效果。
本申请实施方式中,铁电材料基层的厚度为100nm-1mm。本申请一些实施方式中,铁电材料基层的厚度为100nm-100µm。铁电材料基层的厚度具体可以但不限于为100nm、300nm、500nm、1µm、10µm、100µm或1mm。
本申请研究发现,润滑层与铁电材料基层具有良好的协同效应,从而使抗菌润滑涂层具有良好的抗菌性能,具体地,润滑层可以减少水分子和生物分子在抗菌润滑涂层的附着量,从而抑制涂层表面细菌的滋生,使涂层具有良好的抗菌性能,同时极化后的铁电材料可在抗菌润滑涂层表面产生电荷减少细菌在抗菌润滑涂层表面的黏附,此外,铁电材料在外界刺激下还可产生瞬态电荷,进一步产生活性氧杀灭细菌。并且润滑层还能够提高抗菌润滑涂层的生物相容性和润滑性能,使涂层可以有效地提高医疗器械的安全性。
本申请实施方式中,润滑层包括植物油、乙二醇、矿物油、丙三醇、全氟聚醚、石蜡、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素和硅油中的一种或多种。上述材料与铁电材料基层具有良好的亲和力,可以形成稳定的抗菌润滑涂层。本申请实施方式中,润滑层的厚度为1nm-100µm。润滑层的厚度具体可以但不限于为1nm、5nm、10nm、100nm、500nm、1µm、10µm、20µm或50µm。
本申请实施方式中,抗菌润滑涂层对水的静态接触角为50°-110°,抗菌润滑涂层对水的静态接触角具体可以但不限于为50°、60°、70°、80°、90°、100°或110°。本申请实施方式中,抗菌润滑涂层对水的动态接触角为0°-10°。抗菌润滑涂层对水的动态接触角具体可以但不限于为0°、3°、5°、7°或10°。抗菌润滑涂层对水的动态接触角越大表示涂层越不易被细菌附着。本申请实施方式中,抗菌润滑涂层的厚度为101nm-1100μm。抗菌润滑涂层的厚度具体可以但不限于为101nm、200nm、300nm、500nm、800nm、1000nm或1100nm。
本申请还提供了一种医疗器械,该医疗器械表面设有本申请的抗菌润滑涂层。本申请实施方式中,医疗器械包括直接用于人体的仪器、设备、器具及材料,并且医疗器械中的一部分或全部部件设置在受试者体内或者应用时进入受试者体内。本申请一些实施例中,医疗器械包括接触镜、植入用导管、支架、人造关节、骨科用固定钉、导尿管、阴道内或消化道器械(胃管、乙状结肠镜、结肠镜、胃镜)、气管内管、支气管镜、义齿、畸齿矫正器、宫内避孕器、烧伤组织敷料、口腔敷料、治疗器械、腹腔镜、关节内窥镜、齿科充填材料、人工肌键、人工喉以及骨膜下植入物中的一种或多种。
本申请一些实施例中,医疗器械是由金、银、铂、钯、铝、铜、钢、钽、镁、镍、铬、铁、镍钛合金、钴铬合金、高氮无镍不锈钢、钴铬钼合金、砷化镓、钛、羟基磷灰石、磷酸三钙、聚乳酸、碳纤维、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚ε-(己内酯)、聚酸酐、聚原酸酯、聚乙烯醇、聚乙二醇、聚氨酯、聚丙烯酸、聚N-异丙基丙烯酰胺、聚(环氧乙烷)-聚(环氧丙烷)-聚(环氧乙烷)、聚四氟乙烯、聚碳酸酯、聚氨酯、硝化纤维、聚苯乙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷、聚丙烯腈-丁二烯-苯乙烯、聚醚醚酮、氧化硅、氧化钛、氧化铝、氧化锆、氧化铌、有机硅、硅橡胶以及玻璃中的至少一种材料制备而成。
本申请一些实施例中,对医疗器械进行杀菌的方法包括对医疗器械施加外力或热刺激中的一种或多种,其中,外力包括压力、拉力、挠曲力和超声波中的一种或多种,热刺激包括加热和光照中的一种或多种。本申请中,对医疗器械施加外力或热刺激后医疗器械表面会产生电荷,从而抑制细菌的粘附并同时产生活性氧杀灭器械表面的细菌。本申请实施方式中,对医疗器械施加外力或热刺激后,抗菌润滑涂层的开路电压为1mV-500V,抗菌润滑涂层的短路电流为1nA-100mA/cm 2。在上述开路电压和短路电流下,可以有效地杀灭细菌。
本申请一些实施例中,对医疗器械施加的外力包括压力、拉力和挠曲力中的一种或多种,当抗菌润滑涂层包括铁电聚合物时,外力值为1Pa-1000kPa;当抗菌润滑涂层包括无机铁电材料时,外力值为1Pa-1000Mpa。本申请一些实施例中,对医疗器械施加的外力为超声波,超声波的频率为20kHz-200MHz,超声波的功率密度为1W/cm 2-1kW/cm 2。本申请一些实施例中,对医疗器械进行加热实现杀菌,其中,加热温度为20℃-40℃。本申请一些实施例中,对医疗器械进行光照处理实现杀菌,其中,光的波长为100nm-4000nm,光的功率密度为1mW/cm 2-5000mW/cm 2
本申请提供的抗菌润滑涂层可以有效地降低医疗器械和人体组织之间的摩擦,提高医疗器械的生物相容性并降低细菌在医疗器械表面的黏附;并且该抗菌润滑涂层在外力或热刺激下可以产生活性氧从而杀灭医疗器械表面的细菌,实现稳定的杀菌性能。
本申请还提供了一种抗菌润滑涂层的制备方法,包括:
步骤100:提供基体,将铁电材料与溶剂混合后,将混合液涂覆在基体表面,得到具有铁电材料基层的基体;
步骤200:对具有铁电材料基层的基体进行极化处理;
步骤300:将润滑剂浸润铁电材料基层表面形成润滑层,得到抗菌润滑涂层。
本申请步骤100中,铁电材料包括铁电聚合物和无机铁电材料中的一种或多种。本申请实施方式中,溶剂包括二甲基亚砜、N,N-二甲基甲酰胺丙酮、磷酸三甲酯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙二醇、N-甲基吡咯烷酮、四氢呋喃、四甲基脲、六甲基磷酸酰胺和六氟异丙醇中一种或多种,采用上述溶剂有利于形成均匀的铁电层。本申请实施方式中,混合液中铁电材料的质量浓度为1%-50%。铁电材料的质量浓度具体可以但不限于为1%、5%、10%、20%、30%、40%或50%。本申请实施方式中,将混合液涂覆在基体表面可以是喷涂、浸涂、滴涂、旋涂或打印中的一种或多种。
本申请步骤200中,对具有铁电材料基层的基体进行极化处理的方式包括外加力、电、磁或辐照中的一种或多种。本申请一些实施例中,采用高压电晕的方法实现极化。
本申请步骤300中,将润滑剂浸润铁电材料基层表面可以采用涂覆或浸泡的方法。本申请一些实施例中,采用喷涂的方法在铁电材料基层表面形成润滑层,并得到抗菌润滑涂层。本申请一些实施例中,采用浸泡的方法在铁电材料基层表面形成润滑层,并得到抗菌润滑涂层。本申请一些实施方式中,润滑剂浸润铁电材料基层表面时,部分润滑剂会渗入铁电材料基层,从而在铁电材料基层中形成渗层的结构,该结构有利于提高抗菌润滑涂层的润滑性能,使润滑效果更加持久。本申请一些实施例中,提供的基体为医疗器械本体,通过上述制备方法在医疗器械本体表面形成抗菌润滑涂层,从而得到具有良好抗菌性能的医疗器械。
本申请提供的抗菌润滑涂层的制备方法操作简单、工艺可控、适用于工业化生产。
下面分多个实施例对本申请实施方式进行进一步的说明。
实施例1
一种抗菌润滑涂层及其制备方法,包括:
将聚偏氟乙烯溶于二甲基亚砜中得到质量百分数为10%的聚偏氟乙烯溶液,取5mL聚偏氟乙烯溶液通过滴涂的方法涂覆在材质为氧化锆的腹腔镜表面,在80℃下烘干12h,得到具有聚偏氟乙烯涂层的腹腔镜。采用26kV高压对腹腔镜进行电晕极化,极化后具有聚偏氟乙烯涂层的腹腔镜压电系数d 33为18pC/N,表面电势为60V。将极化后的具有聚偏氟乙烯涂层的腹腔镜浸泡在硅油中进行硅油灌注,灌注后得到具有抗菌润滑涂层的腹腔镜,即得到抗菌润滑涂层。
实施例2
一种抗菌润滑涂层及其制备方法,包括:
将聚偏氟乙烯-三氟乙烯共聚物(PVDF-TrFE)溶于N,N-二甲基甲酰胺中得到质量百分数为10%的PVDF-TrFE溶液,取5mLPVDF-TrFE溶液通过喷涂的方法涂覆在材质为聚醚醚酮的胃镜表面,在80℃下烘干12h。采用26kV高压对胃镜进行电晕极化,极化后具有PVDF-TrFE涂层的胃镜压电系数d 33为30pC/N,表面电势为60V。将极化后具有PVDF-TrFE涂层的胃镜浸泡在熔融石蜡中进行石蜡灌注,灌注后得到具有抗菌润滑涂层的胃镜,即得到抗菌润滑涂层。
实施例3
一种抗菌润滑涂层及其制备方法,包括:
将聚酰亚胺溶于N,N-二甲基甲酰胺中得到质量百分数为10%的聚酰亚胺溶液,取5mL聚酰亚胺溶液通过浸涂的方法涂覆在材质为聚醚醚酮的胃镜表面,在80℃下烘干12h。采用26kV高压对胃镜进行电晕极化,极化后具有聚酰亚胺涂层的胃镜压电系数d 33为27pC/N。对具有聚酰亚胺涂层的胃镜进行甘露醇灌注,灌注后得到具有抗菌润滑涂层的胃镜,即得到抗菌润滑涂层。
实施例4
一种抗菌润滑涂层及其制备方法,包括:
将聚醋酸乙烯溶于N,N-二甲基甲酰胺中得到质量百分数为10%的聚醋酸乙烯溶液,取5mL聚醋酸乙烯溶液通过旋涂的方法涂覆在材质为聚乳酸的胃镜表面,在80℃下烘干12h。采用26kV高压对胃镜进行电晕极化,极化后具有聚醋酸乙烯涂层的胃镜压电系数d 33为26pC/N。对具有聚醋酸乙烯涂层的胃镜进行海藻酸灌注,灌注后得到具有抗菌润滑涂层的胃镜,即得到抗菌润滑涂层。
实施例5
一种抗菌润滑涂层及其制备方法,包括:
将粒径为100nm的钛酸钡颗粒分散在超声分散在二甲基亚砜中,并加入聚偏氟乙烯-三氟乙烯(PVDF-TrFE)共聚物得到混合溶液,混合溶液中钛酸钡的质量百分数为1%,PVDF-TrFE的质量百分数为10%。取5mL混合溶液通过旋涂的方法涂覆在材质为钛的人工肌键表面,在80℃下烘干12h。采用26kV高压对人工肌键进行电晕极化,极化后具有铁电材料基层的人工肌键压电系数d 33为24pC/N。向具有铁电材料基层的人工肌键滴加矿物油进行矿物油灌注,灌注后得到具有抗菌润滑涂层的人工肌键,即得到抗菌润滑涂层。
实施例6
一种抗菌润滑涂层及其制备方法,包括:
将粒径为100nm的钛酸钡颗粒超声分散在二甲基亚砜中,并加入聚偏氟乙烯-三氟乙烯(PVDF-TrFE)共聚物得到混合溶液,混合溶液中钛酸钡的质量百分数为1%,PVDF-TrFE的质量百分数为10%。取5mL混合溶液通过喷涂的方法涂覆在材质为聚醚醚酮的导尿管表面,在80℃下烘干12h。采用26kV高压对导尿管进行电晕极化,极化后具有铁电材料基层的导尿管压电系数d 33为24pC/N。对具有铁电材料基层的导尿管进行植物油灌注,灌注后得到具有抗菌润滑涂层的导尿管,即得到抗菌润滑涂层。
实施例7
一种抗菌润滑涂层及其制备方法,包括:
将粒径为100nm的钛酸钡颗粒超声分散在二甲基亚砜中,并加入聚偏氟乙烯-三氟乙烯(PVDF-TrFE)共聚物得到混合溶液,混合溶液中钛酸钡的质量百分数为1%,PVDF-TrFE的质量百分数为10%。取5mL混合溶液通过滴涂的方法涂覆在材质为氧化锆的结肠镜表面,在80℃下烘干12h。采用26kV高压对结肠镜进行电晕极化,极化后具有铁电材料基层的结肠镜压电系数d 33为24pC/N。对具有铁电材料基层的结肠镜进行尿囊素灌注,灌注后得到具有抗菌润滑涂层的结肠镜,即得到抗菌润滑涂层。
实施例8
一种抗菌润滑涂层及其制备方法,包括:
将粒径为100nm的钽酸锂颗粒超声分散在二甲基亚砜中,并加入聚丙烯腈得到混合溶液,混合溶液中钽酸锂的质量百分数为1%,聚丙烯腈的质量百分数为10%。取5mL混合溶液通过滴涂的方法涂覆在材质为聚乳酸的结肠镜表面,在80℃下烘干12h。采用26kV高压对结肠镜进行电晕极化,极化后具有铁电材料基层的结肠镜压电系数d 33为23pC/N。对具有铁电材料基层的结肠镜进行大黄素灌注,灌注后得到具有抗菌润滑涂层的结肠镜,即得到抗菌润滑涂层。
实施例9
一种抗菌润滑涂层及其制备方法,包括:
将粒径为150nm的磷酸二氢钾颗粒超声分散在二甲基亚砜中,并加入聚脲得到混合溶液,混合溶液中磷酸二氢钾的质量百分数为1%,聚脲的质量百分数为10%。取5mL混合溶液通过滴涂的方法涂覆在材质为磷酸三钙的结肠镜表面,在80℃下烘干12h。采用26kV高压对结肠镜进行电晕极化,极化后具有铁电材料基层的结肠镜压电系数d 33为25pC/N。对具有铁电材料基层的结肠镜进行葡萄糖醛酸灌注,灌注后得到具有抗菌润滑涂层的结肠镜,即得到抗菌润滑涂层。
效果实施例
为验证本申请制得抗菌润滑涂层的性能,本申请还提供了效果实施例。
1)采用扫描电镜对实施例1中具有聚偏氟乙烯涂层的腹腔镜(极化处理前)进行形貌表征,请参阅图2,图2为本申请实施例1提供的铁电材料基层的扫描电镜图。由图2可以看出聚偏氟乙烯在腹腔镜表面形成均匀的铁电材料基层。
2)对实施例1-9的抗菌润滑涂层的浸润性能进行测试,测试结果请参阅表1。
表1 实施例1-9的抗菌润滑涂层的浸润性能表
实验组 水的静态接触角 水的动态接触角
实施例1 90°
实施例2 109°
实施例3 110°
实施例4 103°
实施例5 85°
实施例6 95°
实施例7 97°
实施例8 96°
实施例9 98°
由表1可以看出,本申请的抗菌润滑涂层对水的浸润性差,因此能够有效减少水分子和生物分子在抗菌润滑涂层的附着量,从而抑制涂层表面细菌的滋生,使涂层具有良好的抗菌性能。
3)对实施例1-9的抗菌润滑涂层的抗菌性能进行测试,测试过程具体如下:将大肠杆菌(E.coli)接种于含有10mL胰蛋白胨大豆肉汤培养基(TSB)的三角烧瓶中,在恒温摇床中培养12h(37℃振荡速率200r/min),采用麦氏比浊法分别稀释成1×10 6CFU/mL的细菌悬浮液。将10×10mm大小的样品置于12孔板中,分别加入1mL上述得到的细菌TSB悬浮液,在37℃培养箱培养48h。孵化后取出样品用0.9%NaCl溶液温和的清洗涂层表面,转移至新的12孔培养板中,然后加入1mL TSB培养基和适量的SYTO 9/PI染液,培养15min。
将样品放置于10mL0.9%NaCl溶液中超声清洗10min(200W,40kHz),促使粘附在样品表面的细菌分散于NaCl溶液中,然后取其100μL用于涂板法观察细菌生长状况,实验结果均重复至少3次,取平均值后得到各个样品的抑菌率。
本申请中,每组实施例的抗菌性能测试均设有对照组,具体的,对照组1为未经极化的具有铁电材料基层的医疗器械,命名为样品1;对照组2为未经极化的具有铁电材料基层和润滑层的医疗器械,命名为样品2;对照组3为极化后的具有铁电材料基层的医疗器械,命名为样品3;抗菌性能测试的实验组为具有抗菌润滑涂层的医疗器械,命名为样品4。以实施例1为例,实施例1的样品1为未经极化的具有聚偏氟乙烯涂层的腹腔镜,样品2为未经极化的具有聚偏氟乙烯涂层和硅油润滑层的腹腔镜,样品3为极化后的具有聚偏氟乙烯涂层的腹腔镜,样品4为具有抗菌润滑涂层的腹腔镜。具体测试结果请参阅表2,表2为实施例1-9抗菌润滑涂层及其对照组的抑菌率结果表。
表2 实施例1-9抗菌润滑涂层及其对照组的抑菌率结果表
实验组 样品1 样品2 样品3 样品4
实施例1 1% 35% 45% 80%
实施例2 2% 30% 55% 85%
实施例3 2% 32% 57% 83%
实施例4 4% 35% 60% 89%
实施例5 1% 40% 50% 90%
实施例6 1% 50% 45% 95%
实施例7 2% 45% 40% 95%
实施例8 1% 40% 45% 90%
实施例9 2% 33% 49% 91%
通过表2可以看出,本申请的抗菌润滑涂层具有良好的抗菌性能,并且相比于未经极化的样品,抗菌润滑涂层经极化后抑菌率大大提高。将本申请的抗菌润滑涂层应用在医疗器械中可以有效提高医疗器械的安全性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种抗菌润滑涂层,其特征在于,所述抗菌润滑涂层包括铁电材料基层和设置在所述铁电材料基层一侧表面的润滑层,所述铁电材料基层包括铁电材料。
  2. 如权利要求1所述的抗菌润滑涂层,其特征在于,所述铁电材料包括铁电聚合物和无机铁电材料中的一种或多种。
  3. 如权利要求2所述的抗菌润滑涂层,其特征在于,所述铁电聚合物包括聚偏氟乙烯及其共聚物、聚四氟乙烯、碳原子数为奇数的尼龙、聚丙烯腈、聚酰亚胺、聚亚乙烯基二氰、聚脲、聚苯基氰基醚、聚氯乙烯、聚醋酸乙烯或聚丙烯中的一种或多种。
  4. 如权利要求2所述的抗菌润滑涂层,其特征在于,所述无机铁电材料包括铋层状钙钛矿结构铁电体、钨青铜型铁电体和钙钛矿型有机金属卤化物铁电体中的一种或多种。
  5. 如权利要求1-4任一项所述的抗菌润滑涂层,其特征在于,所述铁电材料基层还包括光热材料;所述铁电材料与所述光热材料的质量比大于或等于2.33。
  6. 如权利要求1-5任一项所述的抗菌润滑涂层,其特征在于,所述铁电材料基层的厚度为100nm-1mm。
  7. 如权利要求1-6任一项所述的抗菌润滑涂层,其特征在于,所述润滑层包括植物油、乙二醇、全氟聚醚、矿物油、丙三醇、石蜡、聚氨酯、丙烯酸聚氨酯、氟油、蔬菜籽油、正癸醇、电动机润滑油、煤油、油酸、油酸甲酯、油酸乙酯、铁磁流体、热致液晶、离子液体、碘乙酸、甘露醇、二十碳五烯酸、褐藻胶、海藻酸、粘多糖、透明质酸、胶原蛋白、弹力蛋白、尿囊素、葡萄糖醛酸、甘醇酸、骨胶原、蘑菇液、大黄素和硅油中的一种或多种。
  8. 如权利要求1-7任一项所述的抗菌润滑涂层,其特征在于,所述润滑层对水的静态接触角为50°-110°;所述润滑层对水的动态接触角为0°-10°。
  9. 一种抗菌润滑涂层的制备方法,其特征在于,包括:
    提供基体,将铁电材料与溶剂混合后得到混合液,将所述混合液涂覆在所述基体表面,得到具有铁电材料基层的基体;
    对所述具有铁电材料基层的基体进行极化处理;
    将润滑剂浸润所述铁电材料基层表面形成润滑层,得到所述抗菌润滑涂层。
  10. 一种医疗器械,其特征在于,所述医疗器械包括医疗器械本体和设置在所述医疗器械本体表面的如权利要求1-9任一项所述的抗菌润滑涂层。
PCT/CN2021/138087 2021-07-08 2021-12-14 一种抗菌润滑涂层及其制备方法和应用 WO2023279665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110773408.2 2021-07-08
CN202110773408.2A CN113616859A (zh) 2021-07-08 2021-07-08 一种抗菌润滑涂层及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023279665A1 true WO2023279665A1 (zh) 2023-01-12

Family

ID=78379309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138087 WO2023279665A1 (zh) 2021-07-08 2021-12-14 一种抗菌润滑涂层及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113616859A (zh)
WO (1) WO2023279665A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113616859A (zh) * 2021-07-08 2021-11-09 深圳先进技术研究院 一种抗菌润滑涂层及其制备方法和应用
CN113499485A (zh) * 2021-07-08 2021-10-15 深圳先进技术研究院 一种医疗器械表面用的润滑涂层及其制备方法
CN115636666B (zh) * 2022-12-23 2023-03-21 北京大学口腔医学院 温变抗菌组合物及制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247647A (zh) * 2011-08-10 2011-11-23 山东峰源医用材料有限公司 一次性使用抑菌超滑医用留置导管
CN203379468U (zh) * 2013-07-13 2014-01-08 南京辉思医学科技有限公司 无痛超滑抗菌导尿管
CN112718028A (zh) * 2020-12-24 2021-04-30 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
CN113499485A (zh) * 2021-07-08 2021-10-15 深圳先进技术研究院 一种医疗器械表面用的润滑涂层及其制备方法
CN113616859A (zh) * 2021-07-08 2021-11-09 深圳先进技术研究院 一种抗菌润滑涂层及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201073488Y (zh) * 2007-09-30 2008-06-18 徐建文 抗菌润滑气管导管
EP2177238B1 (en) * 2008-10-14 2016-11-09 Dentsply IH AB Medical device with controllably releasable antibacterial agent
CN112472877B (zh) * 2020-12-18 2022-03-08 南京鼓楼医院 用于医疗导管的润滑油灌注的超滑多孔表面的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247647A (zh) * 2011-08-10 2011-11-23 山东峰源医用材料有限公司 一次性使用抑菌超滑医用留置导管
CN203379468U (zh) * 2013-07-13 2014-01-08 南京辉思医学科技有限公司 无痛超滑抗菌导尿管
CN112718028A (zh) * 2020-12-24 2021-04-30 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
CN113499485A (zh) * 2021-07-08 2021-10-15 深圳先进技术研究院 一种医疗器械表面用的润滑涂层及其制备方法
CN113616859A (zh) * 2021-07-08 2021-11-09 深圳先进技术研究院 一种抗菌润滑涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN113616859A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023279665A1 (zh) 一种抗菌润滑涂层及其制备方法和应用
Chen et al. Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators
Cha et al. Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications
Tandon et al. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair
Zhang et al. Flexible Antiswelling Photothermal‐Therapy MXene Hydrogel‐Based Epidermal Sensor for Intelligent Human–Machine Interfacing
WO2023279664A1 (zh) 一种医疗器械表面用的润滑涂层及其制备方法
US6277392B1 (en) Tissue injectable composition
WO2019192116A1 (zh) 具有细胞外基质电学拓扑特征的带电复合膜及其制备方法
US20210361786A1 (en) Material with supercapacitance modified surface and preparation method and application thereof
CN113621144B (zh) 磁电响应仿生水凝胶及可调细胞电学微环境磁电响应仿生水凝胶及其制备方法
Sengupta et al. A comparative assessment of poly (vinylidene fluoride)/conducting polymer electrospun nanofiber membranes for biomedical applications
Zhao et al. Super-lubricating hybrid elastomer with rapid photothermal sterilization and strong anti-cell adhesion
CN114220910A (zh) 一种用于生物体的超声驱动柔性压电器件及其制备与应用
Alatoom et al. Development and characterization of novel composite and flexible electrode based on titanium dioxide
Wang et al. Effects of electroactive materials on nerve cell behaviors and applications in peripheral nerve repair
Xu et al. Piezoelectric biomaterials for neural tissue engineering
Chen et al. Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration
Chen et al. High-performance sono-piezoelectric nanocomposites enhanced by interfacial coupling effects for implantable nanogenerators and actuators
KR101939822B1 (ko) 신경전극의 제조방법
Al-Othman et al. Novel flexible implantable electrodes based on conductive polymers and Titanium dioxide
Heise et al. Bioactive glass containing coatings by electrophoretic deposition: development and applications
EP3648805B1 (en) Functionalized-piezoelectric-coatings-driven biomicroelectromechanical systems (biomems) for enhanced metallic implants performers
Wei et al. Daily sonic toothbrush triggered biocompatible BaTiO3/chitosan multiporous coating with enhanced piezocatalysis for intraoral antibacterial activity
CN107362390B (zh) 一种基于原子层沉积的氧化锆/聚乳酸-羟基乙酸共聚物抗腐蚀杂化涂层的制备方法
Kao et al. Ultrasound-driven triboelectric and piezoelectric nanogenerators in biomedical application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949150

Country of ref document: EP

Kind code of ref document: A1