WO2023279621A1 - 一种itof测距系统及计算被测物反射率的方法 - Google Patents

一种itof测距系统及计算被测物反射率的方法 Download PDF

Info

Publication number
WO2023279621A1
WO2023279621A1 PCT/CN2021/130121 CN2021130121W WO2023279621A1 WO 2023279621 A1 WO2023279621 A1 WO 2023279621A1 CN 2021130121 W CN2021130121 W CN 2021130121W WO 2023279621 A1 WO2023279621 A1 WO 2023279621A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured object
reflectivity
light
calculating
signal data
Prior art date
Application number
PCT/CN2021/130121
Other languages
English (en)
French (fr)
Inventor
马宣
王兆民
武万多
李威
黄源浩
肖振中
王飞
Original Assignee
奥比中光科技集团股份有限公司
深圳奥芯微视科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥比中光科技集团股份有限公司, 深圳奥芯微视科技有限公司 filed Critical 奥比中光科技集团股份有限公司
Publication of WO2023279621A1 publication Critical patent/WO2023279621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • a device for calculating the reflectivity of a measured object comprising:
  • a first acquisition unit configured to acquire the amount of charge corresponding to the light signal reflected by the measured object, and determine the sampling signal data according to the amount of charge
  • a first calculation unit configured to calculate the reflectivity of the object under test according to the sampled signal data.
  • the device for calculating the reflectivity of the measured object also includes:
  • a second acquisition unit configured to determine ambient light data according to the amount of charge
  • a second calculating unit configured to calculate ambient light irradiance according to the ambient light data and the reflectance.
  • a device for calculating the reflectivity of a measured object including a memory, a processor, and a computer program stored in the memory and operable on the processor; wherein, when the processor executes the computer program, a A method for calculating the reflectivity of the measured object, the method for calculating the reflectivity of the measured object comprises:
  • FIG. 2 is a schematic flow chart of a method for calculating the reflectivity of a measured object shown in an exemplary embodiment of the present application;
  • Fig. 3 is a schematic flow chart of steps S103 to S104 in the method for calculating the reflectivity of the measured object shown in an exemplary embodiment of the present application;
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present application, first information may also be called second information, and similarly, second information may also be called first information.
  • the processing circuit 13 is connected with the emitter and the collector, and is used to obtain the amount of charge corresponding to the light signal reflected by the measured object, so as to determine the sampling signal data according to the charge amount, and calculate according to the sampling signal data The reflectivity of the measured object.
  • the collector 12 includes an image sensor 121, a filter unit 123 and a receiving optical element 122; wherein the receiving optical element 122 is used to image the speckle beam reflected by the measured object onto the image sensor 121; the filter unit 123 is used to suppress different The background light noise of the remaining bands of the wavelength of the light source; the image sensor 121 can be an image sensor array composed of a charge-coupled device (CCD), a complementary metal-oxide semiconductor (CMOS), etc., and the size of the array represents the resolution of the depth camera, such as 320x240 etc.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • each pixel includes at least one tap, which is used to store and read or discharge the electrical signal generated by the incident photon under the control of the corresponding electrode, calculated according to the amount of charge accumulated by the tap within the integration time Ambient light data and sampled signal data.
  • each pixel includes three taps, and the taps are sequentially switched in a certain order within a single frame period to collect corresponding light signals, and one of the taps is used to collect ambient light signals.
  • the processing circuit 13 can be an independent dedicated circuit, such as a dedicated SOC chip, FPGA chip, ASIC chip, etc. comprising a CPU, a memory, a bus, etc., or a general processing circuit, such as when the TOF distance measurement system is integrated into a mobile phone In smart terminals such as TVs, computers, etc., the processing circuit of the terminal may serve as at least a part of the processing circuit 13 .
  • the processing circuit 13 is used to provide the modulation signal (emission signal) required when the light source emits laser light, and the light source emits a pulsed beam to the object under the control of the modulation signal; in addition, the processing circuit 13 also The demodulation signal (acquisition signal) of the taps in each pixel of the image sensor 121 is provided, and the taps are controlled by the demodulation signals to collect the charge generated by the light signal reflected back by the object under test.
  • the embodiment of the method for calculating the reflectance of the measured object will be described in detail later, and the processing circuit 13 will calculate the reflectance of the measured object and the ambient light irradiance according to the method.
  • FIG. 2 is a schematic flow diagram of a method for calculating the reflectivity of a measured object shown in an exemplary embodiment of the present application.
  • the method is executed by a device for calculating the reflectivity of a measured object (hereinafter referred to as the device), including the following step:
  • S101 Acquiring the amount of charge corresponding to the light signal reflected by the object under test, and determining sampled signal data according to the amount of charge.
  • the distance measurement system is an ITOF distance measurement system
  • the collector of the ITOF distance measurement system includes an image sensor
  • the image sensor includes a plurality of pixels
  • each pixel includes at least one tap for storing and
  • the electrical signal generated by the incident photon is read or discharged, and the sampled signal data is calculated according to the amount of charge accumulated by the tap during the integration time.
  • the sinusoidal waveform of the reflected signal collected by the collector can also be fitted according to the output charges of the multiple taps, and the device can fit the charge to obtain The sine wave fitting curve corresponding to the optical signal, and the sampling signal data is determined according to the sine wave fitting curve.
  • the amplitude of the sine wave fitting curve is The sampled signal data is expressed as
  • S102 Calculate the reflectivity of the object under test according to the sampled signal data.
  • the device calculates the reflectivity of the measured object based on the sampled signal data.
  • the reflectivity calculation rule is pre-stored in the device, that is, the corresponding relationship between the sampled signal data and the reflectivity, and the reflectivity of the measured object is calculated according to the corresponding relationship between the sampled signal data and the reflectivity.
  • the corresponding relationship between the sampled signal data and the reflectivity can be derived according to the relational expression between the sampled signal data and the reflectivity.
  • the sampled signal data collected by the collector is also affected by factors such as the number of tap exposures, the incident angle of light, the measurement distance of the measured object, and the peak power of the signal beam emitted by the light source. Therefore, calibration of other When the factors are fixed, the corresponding relationship between the sampling signal data and the reflectivity is to derive the calculation rule of the reflectivity.
  • the device can obtain information such as the number of tap exposures, the incident angle of light, the measurement distance of the measured object, the peak power of the signal beam emitted by the light source, and calculate the measured value according to the pre-stored reflectance calculation rules.
  • the reflectivity of the measured object can be obtained by the device.
  • the pre-stored reflectance calculation rule may be:
  • Re is the reflectivity of the measured object
  • C s is the sampling signal data
  • N is the number of exposures required by the tap in the integration time of single frame measurement
  • is the incident angle of light
  • L is the measurement distance of the measured object
  • P t is the peak power of the signal beam emitted by the light source
  • k 1 is the first preset coefficient, which is a constant determined according to the design of the system. For different system designs, the constant k 1 will change.
  • the ambient light irradiance may also be calculated by acquiring ambient light data.
  • steps S103-S104 may also be included, as shown in Figure 3, steps S103-S104 are specifically as follows:
  • S103 Determine ambient light data according to the charge amount.
  • the collector of the ITOF ranging system includes a plurality of pixels, each pixel includes at least one tap, and the ambient light data is calculated according to the electric charge corresponding to the electrical signal accumulated by the tap within the integration time.
  • each pixel includes 3 taps, collects the optical signal and outputs the charge amount A 1-3 within the integration time, and two of the taps are used to collect the reflected optical signal, then use these two
  • the charge amounts A 1 and A 2 collected by the tap represent the collected sampling signal data, and the other tap A 3 is used to collect the ambient light signal, and the collected charge amount A 3 is used to represent the ambient light data.
  • the sinusoidal waveform of the reflected signal collected by the collector can also be fitted according to the output charges of the multiple taps, and the device can fit the charge to obtain The sine wave fitting curve corresponding to the light signal; determine the ambient light data according to the sine wave fitting curve.
  • the DC amount of the sine wave fitting curve is Then the ambient light data is expressed as
  • S104 Calculate ambient light irradiance according to the ambient light data and the reflectance.
  • the device calculates the ambient light irradiance according to the ambient light data and reflectance and the calculation rules of the ambient light irradiance pre-stored in the device.
  • the device can calculate the ambient light irradiance according to the ambient light data, sampled signal data, lens focal length of the collector, light incident angle, reflectivity, and calculation rules for ambient light irradiance pre-stored in the device.
  • the calculation rule for the pre-stored ambient light irradiance is:
  • C s is the sampling signal data
  • C n is the ambient light data
  • is the light incident angle
  • L is the measurement distance of the measured object
  • f is the lens focal length of the collector
  • k 2 is the second preset coefficient
  • k 3 is the third preset coefficient
  • the second preset coefficient and the third preset coefficient are constants determined according to the design of the system, and this constant will change with different system designs.
  • the first acquisition unit 410 is configured to acquire the amount of charge corresponding to the light signal reflected by the measured object, and determine the sampling signal data according to the amount of charge;
  • the device 4 for calculating the reflectivity of the measured object also includes:
  • a second calculating unit configured to calculate ambient light irradiance according to the ambient light data and the reflectance.
  • the second calculation unit is specifically used for:
  • the ambient light irradiance is calculated according to the ambient light data, the sampling signal data, the lens focal length of the collector, the incident light angle, the reflectivity, and the pre-stored ambient light irradiance calculation rule.
  • FIG. 5 is a schematic diagram of a device for calculating reflectance of an object under test provided by an exemplary embodiment of the present application.
  • the device 5 for calculating the reflectivity of the measured object in this embodiment includes: a processor 50, a memory 51, and a computer program 52 stored in the memory 51 and operable on the processor 50, For example, the determination procedure of reflectivity.
  • the processor 50 executes the computer program 52
  • the steps in the above-mentioned embodiments of the method for calculating the reflectivity of the object under test are implemented, such as steps S101 to S102 shown in FIG. 2 .
  • the processor 50 executes the computer program 52, it realizes the functions of the modules/units in the above-mentioned device embodiments, such as the functions of the units 410 to 420 shown in FIG. 4 .
  • the computer program 52 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 51 and executed by the processor 50 to complete this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program 52 in the device 5 for calculating the reflectivity of the measured object .
  • the computer program 52 can be divided into a first acquisition module and a first calculation module, and the functions of each module are as follows:
  • the first acquisition module is configured to acquire the amount of charge corresponding to the light signal reflected by the measured object, and determine the sampling signal data according to the amount of charge;
  • the first calculation module is used to calculate the reflectivity of the measured object according to the sampled signal data.
  • the device 5 for calculating the reflectivity of the measured object may include, but not limited to, a processor 50 and a memory 51 .
  • a processor 50 and a memory 51 .
  • Fig. 5 is only an example of the device 5 for calculating the reflectance of the measured object, and does not constitute a limitation to the device 5 for calculating the reflectance of the measured object, and may include more or less than shown in the figure.
  • Components, or a combination of some components, or different components, for example, the device 5 for calculating the reflectivity of the measured object may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 50 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 51 may be an internal storage unit of the device 5 for calculating the reflectance of the measured object, for example, a hard disk or a memory of the device 5 for calculating the reflectance of the measured object.
  • the memory 51 can also be an external storage device of the device 5 for calculating the reflectivity of the measured object, such as a plug-in hard disk equipped on the device 5 for calculating the reflectivity of the measured object, a smart memory card (Smart Media Card) , SMC), Secure Digital (Secure Digital, SD) card, Flash Card (Flash Card), etc.
  • the memory 51 may also include both an internal storage unit of the device 5 for calculating the reflectance of the measured object and an external storage device.
  • the memory 51 is used to store the computer program and other programs and data required by the device for calculating the reflectivity of the measured object.
  • the memory 51 can also be used to temporarily store data that has been output or will be output.
  • the disclosed apparatus/terminal device and method may be implemented in other ways.
  • the device/terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction.
  • computer-readable media Excludes electrical carrier signals and telecommunication signals.
  • the present application is not limited to the above-mentioned embodiments. If the various modifications or deformations of the application do not depart from the spirit and scope of the application, if these modifications and deformations belong to the claims and equivalent technical scope of the application, then the application also It is intended that such modifications and variations are included.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种ITOF测距系统(10)及计算被测物(20)反射率的方法,方法包括:发射器(11)、采集器(12)、以及处理电路(13);其中,发射器(11)经配置以发射信号光束(30);采集器(12)经配置以采集被测物(20)反射回的光信号(40);处理电路(13)与发射器(11)以及采集器(12)连接,用于获取被测物(20)反射的光信号(40)对应的电荷量,以根据电荷量确定采样信号数据(S101),并根据采样信号数据计算被测物(20)的反射率(S102)。实施例通过电荷量确定采样信号数据,通过采样信号数据来计算被测物(20)的反射率,提供了被测物(20)除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述被测物(20)。

Description

一种ITOF测距系统及计算被测物反射率的方法
本申请要求于2021年7月7日提交中国专利局,申请号为202110768213.9,发明名称为“一种ITOF测距系统及计算被测物反射率的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于光学技术领域,特别是涉及一种ITOF测距系统及计算被测物反射率的方法。
背景技术
ToF(Time-of-Flight,飞行时间)测距法是一种通过测量光脉冲在发射/接收装置和目标物体间的往返飞行时间来实现精确测距的技术。在ToF技术中直接对光飞行时间进行测量的技术被称为dToF(direct-TOF);对发射光信号进行周期性调制,通过对反射光信号相对于发射光信号的相位延迟进行测量,再由相位延迟对飞行时间进行计算的测量技术被成为iToF(Indirect-TOF)技术。按照调制解调类型方式的不同可以分为连续波(Continuous Wave,CW)调制解调方式和脉冲调制(Pulse Modulated,PM)调制解调方式。
在进行距离测量时,时间飞行测量系统只能提供光飞行的时间,进而计算出距离,根据发射角度来将距离还原为3D点云数据。3D点云数据只能还原被测物的三维信息,无法获取到被测物其他维度的信息。
发明内容
为克服现有技术中存在的问题,本申请实施例提供了一种ITOF测距系统及计算被测物反射率的方法。
为达到上述目的,本申请实施例的技术方案是这样实现的:
一种ITOF测距系统,包括:发射器、采集器、以及处理电路;其中,
所述发射器,经配置以朝向被测物发射信号光束;
所述采集器,经配置以采集所述被测物反射回的光信号;
所述处理电路,与所述发射器以及所述采集器连接,用于获取所述被测物反射的光信号对应的电荷量,以根据所述电荷量确定采样信号数据,并根据所述采样信号数据计算被测物的反射率。
本申请实施例另一技术方案为:
一种计算被测物反射率的方法,包括:
获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
根据所述采样信号数据计算被测物的反射率。
进一步地,所述根据所述采样信号数据计算被测物的反射率,包括:
获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规则,计算被测物的反射率。
进一步地,所述预存储的反射率计算规则为:
Figure PCTCN2021130121-appb-000001
其中,Re为被测物体的反射率;C s为采样信号数据;N为抽头在单帧测量的积分时间内所需要的曝光次数;θ为光照入射角度;L为测量距离;P t为激 光器的峰值功率;k 1为第一预设系数。
进一步地,在所述根据所述采样信号数据计算被测物的反射率之后,还包括:
根据所述电荷量确定环境光数据;
根据所述环境光数据和所述反射率计算环境光辐照度。
进一步地,所述根据所述环境光数据和所述反射率计算环境光辐照度,包括:
根据所述环境光数据、所述采样信号数据、采集器的透镜焦距、光照入射角度、所述反射率以及预存储的环境光辐照度计算规则,计算得到环境光辐照度。
本申请实施例另一技术方案为:
一种计算被测物反射率的装置,包括:
第一获取单元,用于获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
第一计算单元,用于根据所述采样信号数据计算被测物的反射率。
进一步地,所述计算被测物反射率的装置,还包括:
第二获取单元,用于根据所述电荷量确定环境光数据;
第二计算单元,用于根据所述环境光数据和所述反射率计算环境光辐照度。
进一步地,所述第一计算单元,具体用于:
获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规 则,计算被测物的反射率。
本申请实施例又一技术方案为:
一种计算被测物反射率的设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现一种计算被测物反射率的方法,所述计算被测物反射率的方法包括:
获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
根据所述采样信号数据计算被测物的反射率。
相对于现有技术,本申请实施例通过电荷量确定采样信号数据,通过采样信号数据来计算被测物的反射率,提供了被测物除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述被测物。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
为了更好地理解和实施,下面结合附图详细说明本申请。
附图说明
图1为本申请一个示例性实施例示出ITOF测距系统的示意图;
图2为本申请一个示例性实施例示出的计算被测物反射率的方法的流程示意图;
图3为本申请一个示例性实施例示出的计算被测物反射率的方法中步骤S103~S104的流程示意图;
图4为本申请一个示例性实施例示出的计算被测物反射率的装置的结构示意图;
图5是本申请一个示例性实施例提供的计算被测物反射率的设备的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
请参阅图1,图1为本申请一个示例性实施例示出测距系统的示意图,测距系统包括:发射器、采集器、以及处理电路;其中,
发射器11,经配置以朝向被测物发射信号光束;
采集器12,经配置以采集被测物反射回的光信号;
处理电路13,与所述发射器以及所述采集器连接,用于获取被测物反射的光信号对应的电荷量,以根据所述电荷量确定采样信号数据,并根据所述采样信号数据计算被测物的反射率。
具体的,发射器11用于向被测物20发射信号光束30,经被测物反射回的光信号40被采集器接收;其中,发射器11和采集器12可以设置在基板上,具体的,可以设置在同一个基板上,也可以设置在不同的基板上。
采集器12包括图像传感器121、过滤单元123和接收光学元件122;其中,接收光学元件122用于将经被测物反射回的斑点光束成像到图像传感器121上;过滤单元123用于抑制不同于光源波长的其余波段的背景光噪声;所述图像传感器121可以是电荷耦合元件(CCD)、互补金属氧化物半导体(CMOS)等组成的图像传感器阵列,阵列大小代表着深度相机的分辨率,比如320x240等。
一般地,图像传感器121包括至少一个像素,每个像素包含至少一个抽头(tap,用于在相应电极的控制下存储并读取或者排出由入射光子产生的电荷信号),比如包括2个抽头,在单个帧周期(或单次曝光时间内)内以一定的次序依次切换抽头以采集相应的光信号,以接收光信号并转换成电信号,读取电荷信号数据。
在一个可选的实施例中,每个像素包括至少一个抽头,用于在相应电极的控制下存储并读取或者排出由入射光子产生的电信号,根据抽头在积分时间内积累的电荷量计算环境光数据和采样信号数据。
在一个可选的实施例中,每个像素包括三个抽头,在单个帧周期内以一定次序依次切换抽头采集相应的光信号,并且其中一个抽头用于采集环境光信号。
处理电路13可以是独立的专用电路,比如包含CPU、存储器、总线等组成的专用SOC芯片、FPGA芯片、ASIC芯片等等,也可以包含通用处理电路,比如当TOF距离测量系统被集成到如手机、电视、电脑等智能终端中去,终端的处理电路可以作为该处理电路13的至少一部分。
在一个可选的实施例中,处理电路13用于提供光源发射激光时所需的调制 信号(发射信号),光源在调制信号的控制下向被测物发射脉冲光束;此外,处理电路13还提供图像传感器121各像素中抽头的解调信号(采集信号),抽头在解调信号的控制下采集包含被测物反射回的光信号所产生的电荷量。
后面将对计算被测物反射率的方法实施例进行详细描述,处理电路13将根据所述方法来计算被测物的反射率以及环境光辐照度。
请参阅图2,图2为本申请一个示例性实施例示出的计算被测物反射率的方法的流程示意图,所述方法由计算被测物反射率的设备(以下简称设备)执行,包括如下步骤:
S101:获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据。
在本实施中,距离测量系统为ITOF测距系统,ITOF测距系统的采集器包括图像传感器,图像传感器包括多个像素,每个像素包括至少一个抽头,用于在相应电极的控制下存储并读取或者排出由入射光子产生的电信号,根据抽头在积分时间内积累的电荷量以计算采样信号数据。
设备根据电荷量确定采样信号数据。在一个可选的实施例中,每个像素包括3个抽头,在积分时间内采集光信号并输出电荷量A 1-3,其中两个抽头用于采集反射的光信号,则用这两个抽头采集的电荷量A 1、A 2表征采集到的采样信号数据。
在一个可选的实施例中,每个像素包括多个抽头时,还可以根据多个抽头的输出电荷量拟合出采集器采集的反射信号的正弦波形,设备对电荷量进行拟合,得到光信号对应的正弦波拟合曲线,根据正弦波拟合曲线确定采样信号数据。举例来说,拟合出的正弦曲线为:y=a+b*cost+c*sint,根据拟合出的曲线即可确定振幅和直流量,其中,振幅用于表征采样信号数据。
在一个可选的实施例中,正弦波拟合曲线的振幅为
Figure PCTCN2021130121-appb-000002
采样信号数 据表示为
Figure PCTCN2021130121-appb-000003
S102:根据所述采样信号数据计算被测物的反射率。
设备根据采样信号数据计算被测物的反射率。其中,设备中预先存储有反射率计算规则,即,采样信号数据与反射率之间的对应关系,根据采样信号数据与反射率之间的对应关系计算被测物的反射率。
其中,采样信号数据和反射率之间的对应关系可以根据采样信号数据与反射率的关系式推导得到。采集器采集采样信号数据除了受到被测物反射率的影响外还会受到抽头曝光次数、光照入射角度、被测物的测量距离、光源发射信号光束的峰值功率等因素的影响,因此,标定其他因素固定时采样信号数据与反射率的对应关系,即推导出反射率的计算规则。在采用ITOF测距系统进行测距时,设备可以获取抽头曝光次数、光照入射角度、被测物的测量距离、光源发射信号光束的峰值功率等信息,以及根据预存储的反射率计算规则计算被测物的反射率。
在一个可选的实施例中,预先存储的反射率计算规则可以为:
Figure PCTCN2021130121-appb-000004
其中,Re为被测物体的反射率;C s为采样信号数据;N为抽头在单帧测量的积分时间内所需要的曝光次数;θ为光照入射角度;L为被测物的测量距离;P t为光源发射信号光束的峰值功率;k 1为第一预设系数,是根据系统的设计确定的常数,对于不同的系统设计,常数k 1将发生变化。
可以理解是,采样信号数据和反射率之间的对应关系并不限于上述关系式,上述关系式不对采样信号数据和反射率之间的对应关系进行限制。
为了在进行距离测量时,同时获取环境信息,本实施例中还可以通过获取环境光数据,来计算环境光辐照度。在步骤S102之后,还可以包括步骤 S103~S104,如图3所示,步骤S103~S104具体如下:
S103:根据所述电荷量确定环境光数据。
ITOF测距系统的采集器包括多个像素,每个像素包括至少一个抽头,根据抽头在积分时间内积累的电信号对应的电荷量计算环境光数据。
在一个可选的实施例中,每个像素包括3个抽头,在积分时间内采集光信号并输出电荷量A 1-3,其中两个抽头用于采集反射的光信号,则用这两个抽头采集的电荷量A 1、A 2表征采集到的采样信号数据,另一个抽头A 3用于采集环境光信号,则用这个抽头输出采集的电荷量A 3表征环境光数据。
在一个可选的实施例中,每个像素包括多个抽头时,还可以根据多个抽头的输出电荷量拟合出采集器采集的反射信号的正弦波形,设备对电荷量进行拟合,得到光信号对应的正弦波拟合曲线;根据正弦波拟合曲线确定环境光数据。举例来说,拟合出的正弦曲线为:y=a+b*cost+c*sint,根据拟合出的曲线即可确定振幅和直流量,其中,直流量用于表征环境光数据。
在一个可选的实施例中,正弦波拟合曲线的直流量为
Figure PCTCN2021130121-appb-000005
则环境光数据表示为
Figure PCTCN2021130121-appb-000006
S104:根据所述环境光数据和所述反射率计算环境光辐照度。
设备根据环境光数据和反射率以及设备中预先存储环境光辐照度的计算规则计算环境光辐照度。
具体的,设备可以根据环境光数据、采样信号数据、采集器的透镜焦距、光照入射角度、反射率以及设备中预先存储环境光辐照度的计算规则,计算得到环境光辐照度。具体来说,预先存储的环境光辐照度的计算规则为:
Figure PCTCN2021130121-appb-000007
其中,C s为采样信号数据;C n为环境光数据;θ为光照入射角度;L为 被测物的测量距离;f表示采集器的透镜焦距;k 2是第二预设系数,k 3是第三预设系数,第二预设系数和第三预设系数是根据系统的设计确定的常数,不同的系统设计这一常数将发生变化。
本申请实施例通过电荷量确定采样信号数据,通过采样信号数据来计算被测物的反射率,提供了被测物除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述被测物。
请参见图4,图4为本申请一个示例性实施例示出的计算被测物反射率的装置的结构示意图。包括的各单元用于执行图2和图3对应的实施例中的各步骤,具体请参阅图2和图3各自对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。参见图4,计算被测物反射率的装置4包括:
第一获取单元410,用于获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
第一计算单元420,用于根据所述采样信号数据计算被测物的反射率。
进一步地,所述计算被测物反射率的装置4,还包括:
第二获取单元,用于根据所述电荷量确定环境光数据;
第二计算单元,用于根据所述环境光数据和所述反射率计算环境光辐照度。
进一步地,所述第一计算单元420,具体用于:
获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规则,计算被测物的反射率。
进一步地,所述第二计算单元,具体用于:
根据所述环境光数据、所述采样信号数据、采集器的透镜焦距、光照入射角度、所述反射率以及预存储的环境光辐照度计算规则,计算得到环境光辐照度。
请参见图5,图5是本申请一个示例性实施例提供的计算被测物反射率的设备的示意图。如图5所示,该实施例的计算被测物反射率的设备5包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如反射率的确定程序。所述处理器50执行所述计算机程序52时实现上述各个计算被测物反射率的方法实施例中的步骤,例如图2所示的步骤S101至S102。或者,所述处理器50执行所述计算机程序52时实现上述各装置实施例中各模块/单元的功能,例如图4所示单元410至420的功能。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在所述计算被测物反射率的设备5中的执行过程。例如,所述计算机程序52可以被分割成第一获取模块、第一计算模块,各模块功能如下:
第一获取模块,用于获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
第一计算模块,用于根据所述采样信号数据计算被测物的反射率。
所述计算被测物反射率的设备5可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是计算被测物反射率的设备5的示例,并不构成对计算被测物反射率的设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述计算被测物反射率的设 备5还可以包括输入输出设备、网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是所述计算被测物反射率的设备5的内部存储单元,例如计算被测物反射率的设备5的硬盘或内存。所述存储器51也可以是所述计算被测物反射率的设备5的外部存储设备,例如所述计算被测物反射率的设备5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所计算被测物反射率的设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及所述计算被测物反射率的设备所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模 块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。本申请并不局限于上述实施方式,如果对本申请的各种改动或变形不脱离本申请的精神和范围,倘若这些改动和变形属于本申请的权利要求和等同技术范围之内,则本申请也意图包含这些改动和变形。

Claims (14)

  1. 一种ITOF测距系统,其特征在于,包括:发射器、采集器、以及处理电路;其中,
    所述发射器,经配置以朝向被测物发射信号光束;
    所述采集器,经配置以采集所述被测物反射回的光信号;
    所述处理电路,与所述发射器以及所述采集器连接,用于获取所述被测物反射回的光信号对应的电荷量,以根据所述电荷量确定采样信号数据,并根据所述采样信号数据计算被测物的反射率。
  2. 一种计算被测物反射率的方法,其特征在于,包括:
    获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
    根据所述采样信号数据计算被测物的反射率。
  3. 根据权利要求2所述的计算被测物反射率的方法,其特征在于,所述根据所述采样信号数据计算被测物的反射率,包括:
    获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
    根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规则,计算被测物的反射率。
  4. 根据权利要求3所述的计算被测物反射率的方法,其特征在于,所述预存储的反射率计算规则为:
    Figure PCTCN2021130121-appb-100001
    其中,Re为被测物体的反射率;C s为采样信号数据;N为抽头在单帧测量 的积分时间内所需要的曝光次数;θ为光照入射角度;L为所述被测物的测量距离;P t为激光器的峰值功率;k 1为第一预设系数。
  5. 根据权利要求2所述的计算被测物反射率的方法,其特征在于,在所述根据所述采样信号数据计算被测物的反射率之后,还包括:
    根据所述电荷量确定环境光数据;
    根据所述环境光数据和所述反射率计算环境光辐照度。
  6. 根据权利要求5所述的计算被测物反射率的方法,其特征在于,所述根据所述环境光数据和所述反射率计算环境光辐照度,包括:
    根据所述环境光数据、所述采样信号数据、采集器的透镜焦距、光照入射角度、所述反射率以及预存储的环境光辐照度计算规则,计算得到环境光辐照度。
  7. 一种计算被测物反射率的装置,其特征在于,包括:
    第一获取单元,用于获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
    第一计算单元,用于根据所述采样信号数据计算被测物的反射率。
  8. 根据权利要求7所述的计算被测物反射率的装置,其特征在于,还包括:
    第二获取单元,用于根据所述电荷量确定环境光数据;
    第二计算单元,用于根据所述环境光数据和所述反射率计算环境光辐照。
  9. 根据权利要求7所述的计算被测物反射率的装置,其特征在于,所述第一计算单元,具体用于:
    获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
    根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测 量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规则,计算被测物的反射率。
  10. 一种计算被测物反射率的设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现一种计算被测物反射率的方法,所述计算被测物反射率的方法包括:
    获取被测物反射的光信号对应的电荷量,并且根据所述电荷量确定采样信号数据;
    根据所述采样信号数据计算被测物的反射率。
  11. 根据权利要求10所述的计算被测物反射率的设备,其特征在于,所述根据所述采样信号数据计算被测物的反射率,包括:
    获取抽头曝光次数、光照入射角度、所述被测物的测量距离、以及光源发射光信号的峰值功率;
    根据所述采样信号数据、所述抽头曝光次数、所述光照入射角度、所述测量被测物的距离、所述光源发射光信号的峰值功率以及预存储的反射率计算规则,计算被测物的反射率。
  12. 根据权利要求11所述的计算被测物反射率的设备,其特征在于,所述预存储的反射率计算规则为:
    Figure PCTCN2021130121-appb-100002
    其中,Re为被测物体的反射率;C s为采样信号数据;N为抽头在单帧测量的积分时间内所需要的曝光次数;θ为光照入射角度;L为所述被测物的测量距离;P t为激光器的峰值功率;k 1为第一预设系数。
  13. 根据权利要求10所述的计算被测物反射率的设备,其特征在于,在所 述根据所述采样信号数据计算被测物的反射率之后,还包括:
    根据所述电荷量确定环境光数据;
    根据所述环境光数据和所述反射率计算环境光辐照度。
  14. 根据权利要求13所述的计算被测物反射率的设备,其特征在于,所述根据所述环境光数据和所述反射率计算环境光辐照度,包括:
    根据所述环境光数据、所述采样信号数据、采集器的透镜焦距、光照入射角度、所述反射率以及预存储的环境光辐照度计算规则,计算得到环境光辐照度。
PCT/CN2021/130121 2021-07-07 2021-11-11 一种itof测距系统及计算被测物反射率的方法 WO2023279621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110768213.9A CN113406654B (zh) 2021-07-07 2021-07-07 一种itof测距系统及计算被测物反射率的方法
CN202110768213.9 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023279621A1 true WO2023279621A1 (zh) 2023-01-12

Family

ID=77685374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130121 WO2023279621A1 (zh) 2021-07-07 2021-11-11 一种itof测距系统及计算被测物反射率的方法

Country Status (2)

Country Link
CN (1) CN113406654B (zh)
WO (1) WO2023279621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406654B (zh) * 2021-07-07 2022-10-25 奥比中光科技集团股份有限公司 一种itof测距系统及计算被测物反射率的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031007A1 (en) * 2015-07-27 2017-02-02 Stmicroelectronics (Research & Development) Limited Determining reflectance of a target using a time of flight ranging system
CN106707290A (zh) * 2017-03-08 2017-05-24 深圳市芯盛传感科技有限公司 一种光学测距模组
CN111352120A (zh) * 2020-03-25 2020-06-30 炬佑智能科技(苏州)有限公司 飞行时间测距系统及其测距方法
CN112130159A (zh) * 2019-06-25 2020-12-25 发那科株式会社 测距装置以及外部光照度测定方法
WO2021095382A1 (ja) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置
CN113179653A (zh) * 2019-11-25 2021-07-27 深圳市大疆创新科技有限公司 反射率的测量方法、装置、可移动平台和计算机可读介质
CN113406654A (zh) * 2021-07-07 2021-09-17 奥比中光科技集团股份有限公司 一种itof测距系统及计算被测物反射率的方法
CN113504542A (zh) * 2021-07-07 2021-10-15 奥比中光科技集团股份有限公司 距离测量系统及计算被测物反射率的方法、装置、设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964672B (zh) * 2015-06-29 2017-05-31 济南大学 一种基于线结构光的远距离障碍感知传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031007A1 (en) * 2015-07-27 2017-02-02 Stmicroelectronics (Research & Development) Limited Determining reflectance of a target using a time of flight ranging system
CN106707290A (zh) * 2017-03-08 2017-05-24 深圳市芯盛传感科技有限公司 一种光学测距模组
CN112130159A (zh) * 2019-06-25 2020-12-25 发那科株式会社 测距装置以及外部光照度测定方法
WO2021095382A1 (ja) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置
CN113179653A (zh) * 2019-11-25 2021-07-27 深圳市大疆创新科技有限公司 反射率的测量方法、装置、可移动平台和计算机可读介质
CN111352120A (zh) * 2020-03-25 2020-06-30 炬佑智能科技(苏州)有限公司 飞行时间测距系统及其测距方法
CN113406654A (zh) * 2021-07-07 2021-09-17 奥比中光科技集团股份有限公司 一种itof测距系统及计算被测物反射率的方法
CN113504542A (zh) * 2021-07-07 2021-10-15 奥比中光科技集团股份有限公司 距离测量系统及计算被测物反射率的方法、装置、设备

Also Published As

Publication number Publication date
CN113406654A (zh) 2021-09-17
CN113406654B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2021008209A1 (zh) 深度测量装置及距离测量方法
US11604255B2 (en) Personal LADAR sensor
CN110187355B (zh) 一种距离测量方法及深度相机
WO2021051477A1 (zh) 一种直方图可调的飞行时间距离测量系统及测量方法
WO2021051481A1 (zh) 一种动态直方图绘制飞行时间距离测量方法及测量系统
CN111538024B (zh) 一种滤波ToF深度测量方法及装置
CN105246395A (zh) 综合固定模式噪声消除
CN113533256B (zh) 一种光谱反射率的确定方法、装置及设备
CN110441786B (zh) Tof测距方法及设备
WO2023155353A1 (zh) 深度图像的获取方法、装置、深度系统、终端和存储介质
WO2023279621A1 (zh) 一种itof测距系统及计算被测物反射率的方法
US20240020883A1 (en) Method, apparatus, and device for determining spectral reflection
CN113504542B (zh) 距离测量系统及计算被测物反射率的方法、装置、设备
CN110322411A (zh) 深度图像的优化方法、终端及存储介质
WO2022188884A1 (zh) 一种距离测量方法、系统及装置
CN114509740B (zh) 飞行时间偏移的修正方法、ToF装置、电子设备及存储介质
WO2022241942A1 (zh) 一种深度相机及深度计算方法
WO2023279620A1 (zh) 一种itof测距系统及其相对精度的确定方法、装置、设备
CN112255637B (zh) 距离测量系统及方法
WO2022000147A1 (zh) 深度图像处理方法及设备
WO2022222290A1 (zh) 一种消除屏下杂散光的方法、装置、屏下系统和存储介质
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
CN113298778B (zh) 一种基于飞行时间的深度计算方法、系统及存储介质
CN112367476B (zh) Tof相机的曝光时间确定方法、装置及终端设备
WO2023279619A1 (zh) 一种itof测距系统及屏蔽模糊距离值的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE