CN113504542B - 距离测量系统及计算被测物反射率的方法、装置、设备 - Google Patents

距离测量系统及计算被测物反射率的方法、装置、设备 Download PDF

Info

Publication number
CN113504542B
CN113504542B CN202110769034.7A CN202110769034A CN113504542B CN 113504542 B CN113504542 B CN 113504542B CN 202110769034 A CN202110769034 A CN 202110769034A CN 113504542 B CN113504542 B CN 113504542B
Authority
CN
China
Prior art keywords
photons
signal
calculating
ambient
reflectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110769034.7A
Other languages
English (en)
Other versions
CN113504542A (zh
Inventor
马宣
王兆民
武万多
黄源浩
肖振中
李威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbbec Inc
Original Assignee
Orbbec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbbec Inc filed Critical Orbbec Inc
Priority to CN202110769034.7A priority Critical patent/CN113504542B/zh
Publication of CN113504542A publication Critical patent/CN113504542A/zh
Application granted granted Critical
Publication of CN113504542B publication Critical patent/CN113504542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供一种距离测量系统及计算被测物反射率的方法、装置、设备,包括:发射器、采集器、以及处理电路;发射器经配置以朝向被测物发射信号光束;采集器包括像素单元以及读出电路,像素单元用于对被测物反射回的信号光束中的单个光子进行响应并输出光子信号,读出电路用于接收光子信号进行处理并输出直方图;处理电路与发射器以及采集器连接,用于接收直方图计算环境光子数均值以及信号光子数,并根据信号光子数计算被测物的反射率。本发明通过监测信号光子数来计算待测物体的反射率,提供了被测物体除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述被测物体。

Description

距离测量系统及计算被测物反射率的方法、装置、设备
技术领域
本发明属于光学技术领域,特别是涉及一种距离测量系统及计算被测物反射率的方法、装置、设备。
背景技术
ToF(Time-of-Flight,飞行时间)测距法是一种通过测量光脉冲在发射/接收装置和目标物体间的往返飞行时间来实现精确测距的技术。在ToF技术中直接对光飞行时间进行测量的技术被称为dToF(direct-TOF);对发射光信号进行周期性调制,通过对反射光信号相对于发射光信号的相位延迟进行测量,再由相位延迟对飞行时间进行计算的测量技术被成为iToF(Indirect-TOF)技术。按照调制解调类型方式的不同可以分为连续波(Continuous Wave,CW)调制解调方式和脉冲调制(Pulse Modulated,PM)调制解调方式。
在进行距离测量时,时间飞行测量系统只能提供光飞行的时间,进而计算出距离,根据发射角度来将距离还原为3D点云数据。3D点云数据只能还原待测物体的三维信息,无法获取到待测物体其他维度的信息。
发明内容
为克服现有技术中存在的问题,本发明实施例提供了一种距离测量系统及计算被测物反射率的方法、装置、设备及测距系统。
为达到上述目的,本发明实施例的技术方案是这样实现的:
一种距离测量系统,包括:发射器、采集器、以及处理电路;
所述发射器,经配置以朝向被测物发射信号光束;
所述采集器,包括像素单元以及读出电路,所述像素单元包括多个像素,所述像素用于对所述被测物反射回的光束中的单个光子进行响应并输出光子信号;所述读出电路用于接收所述光子信号进行处理并输出直方图;
所述处理电路,与所述发射器以及所述采集器连接,用于接收所述直方图计算环境光子数均值以及信号光子数,并根据所述信号光子数计算所述被测物的反射率;其中,所述信号光子数为采集器采集的所述被测物反射回的信号光束中光子的数量。
本发明实施例另一技术方案为:
一种计算被测物反射率的方法,包括:
计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量;
根据所述信号光子数计算所述被测物的反射率。
进一步地,在所述根据所述信号光子数计算被测物的反射率之后,还包括:
根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
根据所述环境光子数和所述反射率计算环境光辐照度。
进一步地,所述根据所述信号光子数计算被测物的反射率,包括:
获取单帧测量中发射脉冲的次数、光照入射角度、所述被测物的测量距离、以及光源发射信号光束的峰值功率;
根据所述信号光子数、所述单帧测量中发射脉冲的次数、所述光照入射角度、所述被测物的测量距离、所述光源发射信号光束的峰值功率以及预先存储的反射率计算规则计算所述被测物的反射率。
进一步地,预先存储的反射率计算规则为:
Figure BDA0003152997130000031
其中,Re为被测物体的反射率;Cns为信号光子数;TCSPC为单帧测量中发射脉冲的次数;θ为光照入射角度;L为所述被测物的测量距离;Pt为光源发射信号光束的峰值功率;k1为第一预设系数。
进一步地,所述根据所述环境光子数和所述反射率计算环境光辐照度,包括:
根据所述环境光子数、所述信号光子数、所述采集器的透镜焦距、光照入射角度、所述反射率以及预先存储的环境光辐照度计算规则,计算得到所述环境光辐照度。
进一步的,预先存储的环境光辐照度计算规则为:
Figure BDA0003152997130000032
其中,Cns为信号光子数;Cnn为环境光子数;θ为光照入射角度;L为测量距离;f表示采集器的透镜焦距;k2是第二预设系数,k3是第三预设系数。
本发明实施例另一技术方案为:
一种计算被测物反射率的装置,包括:
第一计算单元,计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
第二计算单元,根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量
第三计算单元,用于根据所述信号光子数计算所述被测物的反射率。
进一步地,还包括:
第四计算单元,用于根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
第五计算单元,用于根据所述环境光子数和所述反射率计算环境光辐照度。
本发明实施例又一技术方案为:
一种计算被测物反射率的设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现前述任一实施例技术方案所述的计算被测物反射率的方法。
相对于现有技术,本发明实施例通过监测信号光子数来计算待测物体的反射率,提供了待测物体除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述待测物体。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明一个示例性实施例示出距离测量系统的示意图;
图2为本发明一个示例性实施例示出的计算被测物反射率的方法的流程示意图;
图3为本发明一个示例性实施例示出的计算被测物反射率的方法中步骤S104~S105的流程示意图;
图4为本发明一个示例性实施例示出的计算被测物反射率的装置的结构示意图;
图5是本发明一个示例性实施例提供的计算被测物反射率的设备的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
请参阅图1,图1为本发明一个示例性实施例示出距离测量系统的示意图,测距系统包括:发射器、采集器、以及处理电路;
发射器11,经配置以朝向被测物发射信号光束;
采集器12,包括像素单元以及读出电路,所述像素单元包括多个像素,所述像素用于对所述被测物反射回的光束中的单个光子进行响应并输出光子信号;所述读出电路用于接收所述光子信号进行处理并输出直方图;
处理电路13,与所述发射器以及所述采集器连接,用于接收所述直方图获取信号光子数,并根据所述信号光子数计算被测物的反射率;其中,所述信号光子数为采集器采集所述被测物反射回的信号光束中光子的数量。
具体的,发射器11用于向被测物20发射信号光束30,经被测物反射回的反射光信号40被采集器接收;其中,发射器11和采集器12可以设置在基板上,具体的,可以设置在同一个基板上,也可以设置在不同的基板上。
采集器12包括像素单元121、过滤单元123和接收光学元件122;其中,接收光学元件122用于将经待测物体反射回的斑点光束成像到像素单元121上;过滤单元123用于抑制不同于光源波长的其余波段的背景光噪声;所述像素单元121可以是电荷耦合元件(CCD)、互补金属氧化物半导体(CMOS)、雪崩二极管(AD)、单光子雪崩二极管(SPAD)等组成的像素阵列,阵列大小代表着深度相机的分辨率,比如320x240等。一般地,与像素单元121连接的还包括信号放大器、时数转换器(TDC)、数模转换器(ADC)等器件中的一种或多种组成的读出电路(图中未示出)。这些电路即可以与像素单元121整合在一起,作为采集器12的一部分,也可以作为处理电路的一部分。
在一个可选的实施例中,像素单元121包括至少一个像素,所述像素为单光子探测器,例如SPAD,每个像素对被测物反射的信号光束中的单个光子进行响应并输出指示所接收光子在每个SPAD处相应到达时间的光子信号,读出电路接收光子信号并进行信号处理,统计采集光子的数量形成连续的时间bin,这些时间bin连在一起形成统计直方图,以用于重现反射光束的时间序列。
处理电路13接收直方图并进行处理计算出信号光束从发射到接收的飞行时间,比如利用峰值匹配和滤波检测方法识别出脉冲峰值位置,峰值位置处对应的时间即为信号光束从发射到接收的飞行时间。在一些实施例中,读出电路也可以作为处理电路13的一部分。处理电路13可以是独立的专用电路,比如包含CPU、存储器、总线等组成的专用SOC芯片、FPGA芯片、ASIC芯片等等,也可以包含通用处理电路。
后面将对计算被测物反射率的方法实施例进行详细描述,处理电路将根据所述方法来计算被测物的反射率以及环境光辐照度。
请参阅图2,图2为本发明一个示例性实施例示出的计算被测物反射率的方法的流程示意图,所述方法由计算被测物反射率的设备(以下简称设备)执行,包括如下步骤:
S101:计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量。
需要说明的是,本实施例中,距离测量系统为DTOF测距系统。DTOF测距系统的采集器包括像素单元和读出电路,像素单元包括多个像素,所述像素为单光子探测器,例如SPAD,每个像素对反射光束中的单个光子进行响应并输出电信号,所述电信号为指示所接收光子在每个SPAD处相应到达时间的光子信号,读出电路包括TDC电路和直方图电路,其中,TDC电路用于接收和计算光子的飞行时间信息,并将飞行时间信息转化为时间码;时间码输入直方图电路中用于寻址对应的时间bin(记为采集器采样的单位时间),并使得对应的时间bin内的光子计数值增加,一帧测量结束后根据所有时间bin内的光子计数值绘制出统计直方图,统计直方图内包括连续的时间间隔(时间bin)直方图的横坐标表示飞行时间,纵坐标表示光子计数值。处理电路根据直方图电路输出的直方图计算信号光子数。
在测距过程中,当采集器被触发开始采集光子时,由于环境光信号影响,导致直方图中存在大量的环境光子,呈现均匀的分布特点分布在全部的时间bin内。因此,在计算信号光子数前,需要先确定直方图内环境光子数均值,即每个时间bin内的所采集的环境光子的数量。具体的,在直方图内选择远离脉冲位置的n个时间间隔,计算n个时间间隔内的光子计数值的平均值记为环境光子数均值,n为任意整数。
S102:根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量。
具体的,根据脉冲峰值位置以及脉冲宽度从直方图中截取脉冲区域计算信号光子数。一般地,直方图内时间间隔的大小为十几到几十皮秒,发射器发射一个脉冲光束的光子信号在直方图中对应分布在多个连续的时间间隔内,根据脉冲光束的脉宽大小以及直方图中时间间隔的大小,则可以确定一个脉冲的光子信号在直方图中对应分布的一个区间内的多个连续时间间隔内,计算该区域内的光子计数值总数减去该区间内的环境光子数即可确定信号光子数。例如该区间内包括m个时间间隔,则信号光子数
Figure BDA0003152997130000081
Cnm为该区间内的光子计数值总数,
Figure BDA0003152997130000082
为环境光子数均值。在一些其他实施例中,也可以采用其他方法计算信号光子数,在本发明中不做具体限制。
S103:根据所述信号光子数计算被测物的反射率。
设备根据信号光子数计算被测物的反射率。其中,设备中预先存储有反射率计算规则,即,信号光子数与反射率之间的对应关系,根据信号光子数与反射率之间的对应关系计算被测物的反射率。
其中,信号光子数和反射率之间的对应关系通过推导得到。采集器采集信号光子数除了受到被测物反射率的影响还会受到单帧测量中发射脉冲的次数、光照入射角度、被测物的测量距离、光源发射信号光束的峰值功率等因素的影响,因此,标定其他因素固定时信号光子数与反射率的对应关系,即推导出反射率的计算规则。
设备在计算反射率时,先获取已知的单帧测量中发射脉冲的次数、光照入射角度、被测物的测量距离、光源发射信号光束的峰值功率等信息,根据确定的参数以及预先存储的反射率计算规则计算被测物的反射率。
在一个可选的实施例中,预先存储的反射率计算规则可以为:
Figure BDA0003152997130000091
其中,Cns为信号光子数;TCSPC为先验的单帧测量中发射脉冲的次数;θ为光照入射角度;L为被测物的测量距离;Pt为光源发射信号光束的峰值功率;Re为被测物体的反射率;k1为第一预设系数,是根据系统的设计确定的常数,针对不同的系统设计,常数k1将发生变化。
可以理解是,信号光子数和反射率之间的对应关系并不限于上述关系式,上述关系式不对信号光子数和反射率之间的对应关系进行限制。
为了在进行距离测量时,同时获取环境信息,本实施例中还可以通过获取环境光子数,来计算环境光辐照度。在步骤S103之后,还可以包括步骤S104~S105,如图3所示,步骤S104~S105具体如下:
S104:所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量。
需要说明的是,所述环境光子数为采集器在采集被测物的反射的信号光子数的同时采集的环境光子数,即一个脉冲在直方图中对应分布的一个区间内所包括的环境光子数,结合步骤S102所述,其中的
Figure BDA0003152997130000092
即为环境光子数。
S104:根据所述环境光子数和所述反射率计算环境光辐照度。
设备根据环境光子数和反射率,以及设备中预先存储有环境光辐照度的计算规则,计算环境光辐照度。
具体的,设备可以根据环境光子数、信号光子数、采集器的透镜焦距、光照入射角度、反射率以及预先存储的环境光辐照度计算规则,计算得到环境光辐照度。
在一个可选的实施例中,预先存储的环境光辐照度计算规则为:
Figure BDA0003152997130000101
其中,Cns为信号光子数;Cnn为环境光子数;θ为光照入射角度;L为测量距离;f表示采集器的透镜焦距;k2是第二预设系数,k3是第三预设系数,第二预设系数和第三预设系数是根据系统的设计确定的常数,不同的系统设计这一常数将发生变化。
本申请实施例通过监测信号光子数来计算待测物体的反射率,提供了待测物体除3D点云数据外的第四维信息,即反射率,实现了4D测量,提供更为全面的信息来表述被测物体。
请参见图4,图4为本发明一个示例性实施例示出的计算被测物反射率的装置的结构示意图。包括的各单元用于执行图2和图3对应的实施例中的各步骤,具体请参阅图2和图3各自对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。参见图4,计算被测物反射率的装置4包括:
第一计算单元410,计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
第二计算单元420,根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量。
第三计算单元430,根据所述信号光子数计算所述被测物的反射率。
进一步的,第三计算单元还用于获取单帧测量中发射脉冲的次数、光照入射角度、所述被测物的测量距离、以及光源发射信号光束的峰值功率;
根据所述信号光子数、所述单帧测量中发射脉冲的次数、所述光照入射角度、所述被测物的测量距离、所述光源发射信号光束的峰值功率以及预先存储的反射率计算规则计算所述被测物的反射率。
进一步的,预先存储的反射率计算规则为:
Figure BDA0003152997130000111
其中,Re为被测物体的反射率;Cns为信号光子数;TCSPC为单帧测量中发射脉冲的次数;θ为光照入射角度;L为所述被测物的测量距离;Pt为光源发射信号光束的峰值功率;k1为第一预设系数。进一步的,还包括:
第四计算单元,用于根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
第五计算单元,用于根据所述环境光子数和所述反射率计算环境光辐照度。
请参见图5,图5是本发明一个示例性实施例提供的计算被测物反射率的设备的示意图。如图5所示,该实施例的计算被测物反射率的设备5包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如反射率的确定程序。所述处理器50执行所述计算机程序52时实现上述各个计算被测物反射率的方法实施例中的步骤,例如图2所示的步骤S101至S102。或者,所述处理器50执行所述计算机程序52时实现上述各装置实施例中各模块/单元的功能,例如图4所示单元410至420的功能。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在所述计算被测物反射率的设备5中的执行过程。例如,所述计算机程序52可以被分割成第一计算单元、二计算单元和第三计算单元,各单元功能如下:
第一计算单元,计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
第二计算单元,根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量。
第三计算单元,根据所述信号光子数计算所述被测物的反射率。
所述计算被测物反射率的设备5可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是计算被测物反射率的设备5的示例,并不构成对计算被测物反射率的设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述计算被测物反射率的设备5还可以包括输入输出设备、网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是所述计算被测物反射率的设备5的内部存储单元,例如计算被测物反射率的设备5的硬盘或内存。所述存储器51也可以是所述计算被测物反射率的设备5的外部存储设备,例如所述计算被测物反射率的设备5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所计算被测物反射率的设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及所述计算被测物反射率的设备所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (13)

1.一种距离测量系统,其特征在于,包括:发射器、采集器、以及处理电路;
所述发射器,经配置以朝向被测物发射信号光束;
所述采集器,包括像素单元以及读出电路,所述像素单元包括多个像素,所述像素用于对所述被测物反射回的信号光束中的单个光子进行响应并输出光子信号;所述读出电路用于接收所述光子信号进行处理并输出直方图;
所述处理电路,与所述发射器以及所述采集器连接,用于接收所述直方图计算环境光子数均值以及信号光子数,并根据所述信号光子数计算所述被测物的反射率;其中,所述信号光子数为采集器采集的所述被测物反射回的信号光束中光子的数量;
所述根据所述信号光子数计算所述被测物的反射率,包括:
获取单帧测量中发射脉冲的次数、光照入射角度、所述被测物的测量距离、以及光源发射信号光束的峰值功率;
根据所述信号光子数、所述单帧测量中发射脉冲的次数、所述光照入射角度、所述被测物的测量距离、所述光源发射信号光束的峰值功率以及预先存储的反射率计算规则计算所述被测物的反射率;
预先存储的反射率计算规则为:
Figure FDA0003838078510000011
其中,Re为被测物体的反射率;Cns为信号光子数;TCSPC为单帧测量中发射脉冲的次数;θ为光照入射角度;L为所述被测物的测量距离;Pt为光源发射信号光束的峰值功率;k1为第一预设系数。
2.根据权利要求1所述的距离测量系统,其特征在于,在所述根据所述信号光子数计算所述被测物的反射率之后,还包括:
根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
根据所述环境光子数和所述反射率计算环境光辐照度。
3.根据权利要求2所述的距离测量系统,其特征在于,所述根据所述环境光子数和所述反射率计算环境光辐照度,包括:
根据所述环境光子数、所述信号光子数、所述采集器的透镜焦距、光照入射角度、所述反射率以及预先存储的环境光辐照度计算规则,计算得到所述环境光辐照度。
4.根据权利要求3所述的距离测量系统,其特征在于,预先存储的环境光辐照度计算规则为:
Figure FDA0003838078510000021
其中,Cns为信号光子数;Cnn为环境光子数;θ为光照入射角度;L为测量距离;f表示采集器的透镜焦距;k2是第二预设系数,k3是第三预设系数。
5.一种计算被测物反射率的方法,其特征在于,包括:
计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量;
根据所述信号光子数计算所述被测物的反射率;
所述根据所述信号光子数计算所述被测物的反射率,包括:
获取单帧测量中发射脉冲的次数、光照入射角度、所述被测物的测量距离、以及光源发射信号光束的峰值功率;
根据所述信号光子数、所述单帧测量中发射脉冲的次数、所述光照入射角度、所述被测物的测量距离、所述光源发射信号光束的峰值功率以及预先存储的反射率计算规则计算所述被测物的反射率;
预先存储的反射率计算规则为:
Figure FDA0003838078510000031
其中,Re为被测物体的反射率;Cns为信号光子数;TCSPC为单帧测量中发射脉冲的次数;θ为光照入射角度;L为所述被测物的测量距离;Pt为光源发射信号光束的峰值功率;k1为第一预设系数。
6.根据权利要求5所述的计算被测物反射率的方法,其特征在于,在所述根据所述信号光子数计算所述被测物的反射率之后,还包括:
根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
根据所述环境光子数和所述反射率计算环境光辐照度。
7.根据权利要求6所述的计算被测物反射率的方法,其特征在于,所述根据所述环境光子数和所述反射率计算环境光辐照度,包括:
根据所述环境光子数、所述信号光子数、所述采集器的透镜焦距、光照入射角度、所述反射率以及预先存储的环境光辐照度计算规则,计算得到所述环境光辐照度。
8.根据权利要求7所述的计算被测物反射率的方法,其特征在于,预先存储的环境光辐照度计算规则为:
Figure FDA0003838078510000041
其中,Cns为信号光子数;Cnn为环境光子数;θ为光照入射角度;L为测量距离;f表示采集器的透镜焦距;k2是第二预设系数,k3是第三预设系数。
9.一种计算被测物反射率的装置,其特征在于,包括:
第一计算单元,计算环境光子数均值;所述环境光子均值数为采集器在单位时间内采集环境光束中光子的数量;
第二计算单元,根据所述环境光子数均值计算信号光子数,所述信号光子数为采集器采集被测物反射的信号光束中光子的数量
第三计算单元,用于根据所述信号光子数计算所述被测物的反射率;
所述第三计算单元,具体用于:
获取单帧测量中发射脉冲的次数、光照入射角度、所述被测物的测量距离、以及光源发射信号光束的峰值功率;
根据所述信号光子数、所述单帧测量中发射脉冲的次数、所述光照入射角度、所述被测物的测量距离、所述光源发射信号光束的峰值功率以及预先存储的反射率计算规则计算所述被测物的反射率;
预先存储的反射率计算规则为:
Figure FDA0003838078510000051
其中,Re为被测物体的反射率;Cns为信号光子数;TCSPC为单帧测量中发射脉冲的次数;θ为光照入射角度;L为所述被测物的测量距离;Pt为光源发射信号光束的峰值功率;k1为第一预设系数。
10.根据权利要求9所述的计算被测物反射率的装置,其特征在于,还包括:
第四计算单元,用于根据所述环境光子数均值计算环境光子数,所述环境光子数为采集器采集被测物反射的信号光束中光子时同步采集的环境光子的数量;
第五计算单元,用于根据所述环境光子数和所述反射率计算环境光辐照度。
11.根据权利要求10所述的计算被测物反射率的装置,其特征在于,所述第五计算单元,具体用于:
根据所述环境光子数、所述信号光子数、所述采集器的透镜焦距、光照入射角度、所述反射率以及预先存储的环境光辐照度计算规则,计算得到所述环境光辐照度。
12.根据权利要求11所述的计算被测物反射率的装置,其特征在于,预先存储的环境光辐照度计算规则为:
Figure FDA0003838078510000052
其中,Cns为信号光子数;Cnn为环境光子数;θ为光照入射角度;L为测量距离;f表示采集器的透镜焦距;k2是第二预设系数,k3是第三预设系数。
13.一种计算被测物反射率的设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求5至8任一项所述的计算被测物反射率的方法。
CN202110769034.7A 2021-07-07 2021-07-07 距离测量系统及计算被测物反射率的方法、装置、设备 Active CN113504542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110769034.7A CN113504542B (zh) 2021-07-07 2021-07-07 距离测量系统及计算被测物反射率的方法、装置、设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110769034.7A CN113504542B (zh) 2021-07-07 2021-07-07 距离测量系统及计算被测物反射率的方法、装置、设备

Publications (2)

Publication Number Publication Date
CN113504542A CN113504542A (zh) 2021-10-15
CN113504542B true CN113504542B (zh) 2022-10-25

Family

ID=78011471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110769034.7A Active CN113504542B (zh) 2021-07-07 2021-07-07 距离测量系统及计算被测物反射率的方法、装置、设备

Country Status (1)

Country Link
CN (1) CN113504542B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406654B (zh) * 2021-07-07 2022-10-25 奥比中光科技集团股份有限公司 一种itof测距系统及计算被测物反射率的方法
CN117008088A (zh) * 2022-04-29 2023-11-07 深圳市速腾聚创科技有限公司 激光雷达设备及其测距调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964672A (zh) * 2015-06-29 2015-10-07 济南大学 一种基于线结构光的远距离障碍感知传感器
CN111812661A (zh) * 2020-06-22 2020-10-23 深圳奥锐达科技有限公司 一种距离测量方法及系统
CN112130159A (zh) * 2019-06-25 2020-12-25 发那科株式会社 测距装置以及外部光照度测定方法
WO2021095382A1 (ja) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964672A (zh) * 2015-06-29 2015-10-07 济南大学 一种基于线结构光的远距离障碍感知传感器
CN112130159A (zh) * 2019-06-25 2020-12-25 发那科株式会社 测距装置以及外部光照度测定方法
WO2021095382A1 (ja) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置
CN111812661A (zh) * 2020-06-22 2020-10-23 深圳奥锐达科技有限公司 一种距离测量方法及系统

Also Published As

Publication number Publication date
CN113504542A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN110596721B (zh) 双重共享tdc电路的飞行时间距离测量系统及测量方法
CN113504542B (zh) 距离测量系统及计算被测物反射率的方法、装置、设备
CN111830530B (zh) 一种距离测量方法、系统及计算机可读存储介质
CN110596722A (zh) 直方图可调的飞行时间距离测量系统及测量方法
CN110187355B (zh) 一种距离测量方法及深度相机
CN110221272B (zh) 时间飞行深度相机及抗干扰的距离测量方法
CN112255636A (zh) 一种距离测量方法、系统及设备
CN112114324A (zh) 一种距离测量方法、装置、终端设备及存储介质
CN111766596A (zh) 一种距离测量方法、系统及计算机可读存储介质
CN111965658B (zh) 一种距离测量系统、方法及计算机可读存储介质
US20210181316A1 (en) Time-of-flight-based distance measurement system and method
US20220187430A1 (en) Time of flight calculation with inter-bin delta estimation
WO2022241942A1 (zh) 一种深度相机及深度计算方法
WO2022188884A1 (zh) 一种距离测量方法、系统及装置
US8805075B2 (en) Method and apparatus for identifying a vibrometry spectrum in imaging applications
CN111965659B (zh) 一种距离测量系统、方法及计算机可读存储介质
CN113406654B (zh) 一种itof测距系统及计算被测物反射率的方法
WO2021179583A1 (zh) 探测方法及探测设备
Shin et al. Parametric Poisson process imaging
CN111796296A (zh) 一种距离测量方法、系统及计算机可读存储介质
WO2023279620A1 (zh) 一种itof测距系统及其相对精度的确定方法、装置、设备
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
WO2022222290A1 (zh) 一种消除屏下杂散光的方法、装置、屏下系统和存储介质
CN115657056A (zh) 一种距离测量系统及其相对精度的确定方法、装置、设备
US20230019246A1 (en) Time-of-flight imaging circuitry, time-of-flight imaging system, and time-of-flight imaging method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant