WO2022188884A1 - 一种距离测量方法、系统及装置 - Google Patents

一种距离测量方法、系统及装置 Download PDF

Info

Publication number
WO2022188884A1
WO2022188884A1 PCT/CN2022/080518 CN2022080518W WO2022188884A1 WO 2022188884 A1 WO2022188884 A1 WO 2022188884A1 CN 2022080518 W CN2022080518 W CN 2022080518W WO 2022188884 A1 WO2022188884 A1 WO 2022188884A1
Authority
WO
WIPO (PCT)
Prior art keywords
histogram
time interval
target
time
interval
Prior art date
Application number
PCT/CN2022/080518
Other languages
English (en)
French (fr)
Inventor
梅小露
金宇
Original Assignee
奥诚信息科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥诚信息科技(上海)有限公司 filed Critical 奥诚信息科技(上海)有限公司
Publication of WO2022188884A1 publication Critical patent/WO2022188884A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals

Definitions

  • the present application belongs to the technical field of distance measurement, and in particular, relates to a distance measurement method, system and device.
  • the time of flight principle can be used to measure the distance of the target to obtain a depth image containing the depth value of the target, and the distance measurement system based on the time of flight principle has been widely used in consumer electronics, unmanned aerial vehicles, AR/VR and other fields.
  • a distance measurement system based on the time-of-flight principle usually includes an emitter and a collector. The emitter is used to emit a pulsed beam to illuminate the target field of view, and the collector is used to collect the reflected beam, and the time-of-flight of the beam from emission to reflection is calculated to calculate the distance of the object.
  • the time-to-digital converter is used to record the flight time of photons from emission to collection and generate photon signals, and use the photon signals to find the corresponding time interval in the histogram circuit, so that the photon count value in the time interval is added 1.
  • the histogram of the photon counts corresponding to the time signal can be obtained by statistics, the position of the pulse peak in the histogram can be determined, and the distance of the object can be calculated according to the flight time corresponding to the pulse peak position.
  • the size of the time interval in the histogram can affect the ranging resolution and accuracy of the distance measurement system.
  • the smaller the time interval the higher the resolution and accuracy.
  • the number of time intervals is set according to the maximum measurement distance of the system, if the time interval is set too small, the required number will increase, the storage capacity of the histogram will be increased, the design cost of the system will be increased, and the measurement distance may also be increased. An error occurred.
  • the embodiments of the present application provide a distance measurement method, system, and device, which can solve the problem that if the number of required time intervals increases, the storage capacity of the histogram will increase, the design cost of the system will increase, and errors may occur in the measurement distance. question.
  • an embodiment of the present application provides a distance measurement method, including:
  • the initial histogram includes a first number of first time intervals
  • the target histogram includes a second number of second time intervals; the second number is greater than the first number, and the second time interval is less than the first time interval;
  • the peak position of the target histogram is acquired, and the target flight time of the photon signal is calculated according to the peak position.
  • performing the resampling process on the initial histogram to obtain a target histogram including:
  • performing data reconstruction according to the second time interval, the second quantity and the initial histogram to obtain a target histogram including:
  • the preset filter includes a third number of sub-filters, and the third number is the ratio between the second sampling rate and the first sampling rate, and all the sub-filters of the sub-filters are The unit impulse response amplitude spectrum together is the same as the amplitude spectrum of the emitted light pulse corresponding to the photon signal.
  • the changing of the first time interval of the first number to the second time interval of the second number to obtain a first histogram includes:
  • the photon count value of the second time interval inserted into the extended interval is 0, or the photon count value of the second time interval inserted into the extended interval is the photon count of the first time interval in the extended interval. value or the photon count value of the last interval.
  • the calculating the target flight time of the photon signal according to the peak position includes:
  • the target flight time of the photon signal is calculated according to the sampling interval.
  • calculating the target flight time of the photon signal according to the sampling interval includes:
  • the target flight time of the photon signal is calculated according to the flight time, the photon number and a preset centroid calculation rule.
  • an embodiment of the present application provides a distance measurement device, including:
  • a first processing unit configured to obtain an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals;
  • a second processing unit configured to perform resampling processing on the initial histogram to obtain a target histogram;
  • the target histogram includes a second number of second time intervals; the second number is greater than the first number, the second time interval is less than the first time interval;
  • the third processing unit is configured to acquire the peak position of the target histogram, and calculate the target flight time of the photon signal according to the peak position.
  • the second processing unit is specifically used for:
  • the second processing unit is specifically used for:
  • the preset filter includes a third number of sub-filters, and the third number is the ratio between the second sampling rate and the first sampling rate, and all the sub-filters of the sub-filters are The unit impulse response amplitude spectrum together is the same as the amplitude spectrum of the emitted light pulse corresponding to the photon signal.
  • the second processing unit is specifically used for:
  • the photon count value of the second time interval inserted into the extended interval is 0, or the photon count value of the second time interval inserted into the extended interval is the photon count of the first time interval in the extended interval. value or the photon count value of the last interval.
  • the third processing unit is specifically used for:
  • the target flight time of the photon signal is calculated according to the sampling interval.
  • the third processing unit is specifically used for:
  • the target flight time of the photon signal is calculated according to the flight time, the photon number and a preset centroid calculation rule.
  • an embodiment of the present application provides a distance measurement system, including: a transmitter, a collector, and a distance measurement device;
  • the transmitter is used to transmit a pulsed beam to the target to be measured
  • the collector configured to collect photons in the pulsed beam reflected by the target to be measured, and generate a photon signal
  • the distance measurement device is configured to implement the distance measurement method according to the first aspect above, and calculate the target flight time of the photon signal.
  • an embodiment of the present application provides a distance measurement device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer program When implementing the distance measurement method described in the first aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the distance measurement according to the first aspect above is implemented method.
  • the distance measurement device obtains an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals; the initial histogram is resampled to obtain a target histogram; The target histogram includes a second number of second time intervals; the second number is greater than the first number, and the second time interval is less than the first time interval; obtain the peak position of the target histogram , and calculate the target flight time of the photon signal according to the peak position. Setting the time interval too small through resampling processing does not need to increase the storage capacity of the histogram, nor does it need to increase the design cost of the system, which saves system resources, reduces system costs, and reduces errors when measuring distances.
  • FIG. 1 is a schematic flowchart of a distance measurement method provided by the first embodiment of the present application.
  • FIG. 2 is a schematic diagram of an initial histogram in a distance measurement method provided by the first embodiment of the present application
  • FIG. 3 is a schematic diagram of a filter in a distance measurement method provided by the first embodiment of the present application.
  • FIG. 4 is a schematic diagram of a distance measurement system provided by the second embodiment of the present application.
  • FIG. 5 is a schematic diagram of a distance measurement device provided by a third embodiment of the present application.
  • FIG. 6 is a schematic diagram of a distance measurement device provided by a fourth embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 is a schematic flowchart of a distance measurement method provided by the first embodiment of the present application.
  • the executing subject of a distance measurement method is a distance measurement device.
  • the distance measurement method shown in Figure 1 may include:
  • S101 Acquire an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals.
  • the distance measuring device controls the transmitter to emit pulsed beams toward the target area, and part of the pulsed beams reflected by the target is incident on the collector.
  • the distance measuring device When the distance measuring device includes the TDC circuit and the histogram circuit, the distance measuring device receives the photon signal, and generates an initial histogram according to the photon signal, and the initial histogram includes a first number of first time intervals. Wherein, each time interval includes the count value of photons collected by the collector in this time period.
  • FIG. 2 is a schematic diagram of the initial histogram in the present application.
  • the initial histogram can be referred to as detection data and is used to represent the temporal distribution of photons collected by the collector during the detection period.
  • the initial histogram includes a first number of first time intervals 301, the size of the first time intervals being t1.
  • the number of time intervals is proportional to the flight time of the maximum detection range. If the flight time of the maximum detection range is t, the first number is t/t1.
  • the time interval is tens to hundreds of picoseconds in size.
  • the photon signals in the echo beam are correspondingly distributed in multiple consecutive time intervals in the histogram, and the time interval at the peak position is selected as the flight time of the pulse beam.
  • the middle amount of the time interval is selected as the time of the time interval. .
  • the size t1 of the first time interval is 100ps
  • the number of first time intervals in the initial histogram is 30, and the maximum detection range of the system is 3ns.
  • the distance measuring device does not include the TDC circuit and the histogram circuit
  • the distance measuring device may be a remote server, and the distance measuring device directly obtains the initial histogram corresponding to the photon signal.
  • S102 Perform resampling processing on the initial histogram to obtain a target histogram; the target histogram includes a second number of second time intervals; the second number is greater than the first number, the second time interval The interval is less than the first time interval.
  • the distance measuring device resamples the initial histogram to obtain a target histogram; the target histogram includes a second time interval of a second number; the second number is greater than the first number, and the second time interval is smaller than the first time interval. That is, the sampling rate of the target histogram is larger than that of the initial histogram.
  • the sampling time interval needs to be reduced, that is, a plurality of smaller second time intervals are extended on the basis of the first time interval , and it is necessary to reconstruct the data of the extended second time interval according to the position and data of the first time interval.
  • the resampling step includes two parts: expansion and reconstruction, and finally a target histogram is obtained.
  • the distance measuring device obtains the first sampling rate of the initial histogram and the second sampling rate of the target histogram, and calculates the ratio between the second sampling rate and the first sampling rate; calculates according to the ratio and the first time interval a second time interval, and a second amount is calculated based on the ratio and the first amount.
  • the sampling rate of the target histogram to be resampled is n times that of the initial histogram
  • the second number of corresponding second time intervals is n times the number of first time intervals.
  • n is 4
  • the size of the second time interval in the target histogram is 25ps
  • the number of second time intervals in the target histogram is 120.
  • the distance measuring device performs data reconstruction according to the second time interval, the second quantity and the initial histogram to obtain the target histogram.
  • the first histogram can be obtained in the following manner. Take two adjacent first time intervals as an extension interval; insert n-1 second time intervals in each extension interval, and adjust the size of the first time interval to the size of the second time interval, to obtain the first time interval. Histogram, n is the ratio.
  • the specific resampling process is to select two adjacent first time intervals as an extension interval, insert n-1 second time intervals between the two first time intervals in each extension interval, and simultaneously The first time interval is reduced to the size of the second time interval and the photon count values in these two time intervals remain unchanged, and finally in each expansion interval, the inserted n-1 second time intervals do not contain photon counts value, that is, the photon count value of the second time interval inserted into the extended interval is 0.
  • the time interval is inserted in the same manner as above, that is, two adjacent first time intervals are selected as an extension interval, and n-time interval is inserted between two first time intervals in each extension interval 1 second time interval, while reducing the two first time intervals to the size of the second time interval and keeping the photon count values in these two time intervals the same, and finally inserting n-1 in each expansion interval a second time interval.
  • the photon count value of the second time interval inserted into the extension interval is the photon count value of the first time interval or the photon count value of the last time interval in the extension interval.
  • calculate the weighted photon count value under a certain weight for the photon count value in the first and last time interval in each extended interval, and take the weighted photon count value as the n-1 second inserted in the extended interval The photon count value in the time interval, calculated as:
  • C i represents the second photon count value in the ith extended interval
  • C i1 represents the photon count value of the first time interval in the ith extended interval
  • C in represents the last time interval in the ith extended interval
  • the photon count value of ⁇ is the applied weight.
  • the filter can be a low-pass filter, which helps to improve the search for the peak position. accuracy.
  • the sub-unit impulse response amplitude spectrum of all the sub-filters is the same as the amplitude spectrum of the emitted light pulse corresponding to the photon signal.
  • the number of time intervals increases after the first histogram is obtained, and a polyphase filter can also be used for processing, and the preset filter includes a third number of sub-intervals. filter, and the third quantity is the ratio between the second sampling rate and the first sampling rate.
  • the coefficient of the filter is designed according to the characteristics of the transmitted pulse beam, so that the output signal component of the first histogram after passing through the filter is as strong as possible, the out-of-band noise of the signal is suppressed, and the influence of the noise is reduced, that is, the design of the filter
  • the magnitude spectrum of the unit impulse response is consistent with that of the emitted light pulse.
  • the impulse response function h(t) of the filter is:
  • s(t) is the pulse signal
  • the impulse response function h(t) of the filter is the image s(t 0 -t) of the pulse signal, but shifted in time by t 0
  • t 0 is the output signal-to-noise ratio biggest moment.
  • the number of time intervals in the expanded first histogram increases.
  • the filter is used to reconstruct the histogram to obtain a target histogram with a higher signal-to-noise ratio.
  • the second target histogram needs to be finally obtained.
  • the filter needs to perform convolution calculation with each time interval in turn to obtain a more accurate photon count value, which requires 120 convolution operations, which greatly increases the operation time.
  • a filter with a polyphase structure is designed, the unit impulse response amplitude spectrum of the designed filter is consistent with the amplitude spectrum of the emitted light pulse, the filter includes n sub-filters, n According to the expansion multiplier of the initial histogram set by the target histogram, the coefficients (impulse response function) of each sub-filter are h1, h2, h3, ..., hn respectively, that is, the sub-unit impulse response amplitude of each sub-filter The spectrum is only part of the unit impulse response magnitude spectrum of the polyphase structure filter.
  • FIG. 3 is a schematic diagram of a filter with a polyphase structure.
  • the first histogram is input into the filter of the polyphase structure.
  • the second time interval represented by x(2), x(6), x(10)...x(n-2) in the histogram is processed, and for the third subfilter, only x(10) in the first histogram is processed.
  • (3), x(7), x(11)... (8), x(12)...x(n) represents the second time interval for processing.
  • the four sub-filters perform convolution calculations synchronously, which greatly increases the operation speed.
  • the output time intervals after each sub-filter operation are directly arranged in order to reconstruct the target with a higher signal-to-noise ratio.
  • the histogram is used to calculate the flight time.
  • the inserted n-1 second time intervals contain photon count values
  • post-processing is also required, that is, a delay accumulating circuit needs to be connected after each sub-filter to compare the output
  • the signal y n (i) is processed by delay accumulation as a new output signal y' n (i), that is, the photon count value in each time interval needs to undergo a delay accumulation process to generate a new photon
  • the count value is taken as the photon count value in this time interval in the target histogram.
  • the calculation formula is:
  • y' 1 (i) y 1 (i)+y 2 (i-1)+y 3 (i-1)+...+y n (i-1)
  • y' 2 (i) y 1 (i)+y 2 (i)+y 3 (i-1)+...+y n (i-1)
  • y n '(i) represents the new photon count value after the delay accumulation processing
  • i represents the serial number of the time interval.
  • S103 Acquire the peak position of the target histogram, and calculate the target flight time of the photon signal according to the peak position.
  • the distance measuring device obtains the peak position of the target histogram, and can use the direct peak finding method to find the peak position in the target histogram, and calculate the target flight time of the photon signal according to the peak position.
  • the target flight time of the photon signal can be calculated according to the peak position in the following manner.
  • the distance measuring device takes the second time interval corresponding to the peak position as the center, and selects a fifth number of second time intervals from both sides respectively, Determine the sampling interval. That is, a fifth number of second time intervals may be selected from the left and right of the second time interval to form a sampling interval, and the value of the fifth number is determined according to the pulse duration of the pulse beam.
  • the number of time intervals the echo signal occupies in the target histogram can be calculated according to the pulse duration, and the number is calculated by dividing the pulse duration by the size of the second time interval.
  • the selection of the sampling interval is to select 10 second time intervals from the left and right to form the sampling interval with the second time interval of the peak position as the center, and calculate the target flight time according to the sampling interval.
  • the accuracy it can be considered to add a certain margin on the left and right sides, for example, 12 second time intervals are selected on the left and right sides to form a sampling interval.
  • the distance measuring device calculates the target flight time of the photon signal according to the sampling interval. Specifically, the distance measuring device obtains the time of flight and the number of photons corresponding to the time interval in the sampling interval; and calculates the target time of flight of the photon signal according to the time of flight, the number of photons and the preset centroid calculation rule.
  • t represents the target flight time
  • Tk represents the flight time corresponding to the kth time interval
  • Ck represents the number of photons contained in the kth time interval
  • k represents the sequence number of the time interval
  • j represents the time interval corresponding to the peak position
  • the sequence number, m represents the second time interval selected for the fifth number.
  • the number of m is 10.
  • the material of the protective cover is generally transparent glass.
  • the transmitter emits a pulse beam through the protective cover and projects to the target field of view, part of the pulse beam is reflected by the protective cover and then enters the collector.
  • One echo signal is formed in the initial histogram, and at this time, there are two echo signals in the initial histogram.
  • Another example is affected by rain and fog weather or sticky water on the surface of the system, etc., false echo signals will be generated before the real echo of the target, and there are also multiple echo signals. Or when there is glass in the collection target or the target behind the glass is collected, due to the reflectivity and transmittance of the glass itself, most of the emitted pulsed beam will pass through the glass and irradiate the target, but a part of the pulsed beam will still be irradiated by the glass. After reflection, the reflected beam is incident into the collector, and two echo signals are formed in the initial histogram.
  • the received waveform representing the reflected beam drawn by the target histogram can be processed to construct a fitting function.
  • the time interval corresponding to the abscissa corresponding to the extreme point is the peak position.
  • the slope minimum point in the fitting function is calculated, and the time interval corresponding to the abscissa of the minimum point is the peak position.
  • the fitting function is derived, and then zero-crossing detection is performed, that is, the intersection of the derivative function and the abscissa, to determine the peak position.
  • the distance measurement device obtains an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals; the initial histogram is resampled to obtain a target histogram; The target histogram includes a second number of second time intervals; the second number is greater than the first number, and the second time interval is less than the first time interval; obtain the peak position of the target histogram , and calculate the target flight time of the photon signal according to the peak position.
  • time interval is set too small by resampling, there is no need to increase the storage capacity of the histogram, and there is no need to increase the design cost of the system, which saves system resources, reduces the system cost, and also reduces errors when measuring distances.
  • a distance measurement system includes: a transmitter 11 , a collector 12 , and a distance measurement device 13 ; wherein, the transmitter 11 includes a light source 111 composed of one or more lasers for emitting a pulsed beam 30 to the target 20 , at least part of the pulsed beam is reflected by the target to form a reflected beam 40 back to the collector 12.
  • the collector 12 includes a pixel array 121 composed of a plurality of pixels for collecting the photons in the reflected beam 40 and outputting the photon signal.
  • the distance measuring device 13 is synchronized The trigger signal of the transmitter 11 and the collector 12 is used to calculate the flight time required by the photons in the beam from emission to reception.
  • the transmitter is used to transmit a pulsed beam to the target to be measured.
  • the transmitter 11 includes a light source 111, an emission optical element 112, a driver 113, and the like.
  • the light source 111 is a VCSEL array light source chip formed by growing multiple VCSEL light sources on a single semiconductor substrate.
  • the light source 111 can emit a pulse beam at a certain frequency (pulse) under the control of the distance measuring device 13, and the pulse beam is projected onto the target scene through the emission optical element 112 to form an illumination spot, wherein the frequency is set according to the measurement distance.
  • the collector is configured to collect photons in the pulsed periodic light beam reflected by the target to be measured, and generate a photon signal.
  • the collector 12 includes a pixel array 121, a filter unit 122, a receiving optical element 123, etc.
  • the receiving optical element 123 images the spot beam reflected by the target onto the pixel array 121.
  • the pixel array 121 includes a plurality of pixels for collecting photons, and the pixels can be It is one of the single-photon devices that collect photons such as APD, SPAD, SiPM, etc.
  • the photon collected by the pixel array 121 is regarded as a photon detection event and a photon signal is output.
  • the pixel array 121 comprises a plurality of SPADs that can respond to an incident single photon and output a photon signal indicative of the corresponding arrival time of the received photon at each SPAD.
  • a readout circuit (not shown in the figure) composed of one or more of a signal amplifier, a time-to-digital converter (TDC), a digital-to-analog converter (ADC) and other devices connected to the pixel array.
  • TDC time-to-digital converter
  • ADC digital-to-analog converter
  • These circuits can be integrated with the pixels as part of the collector or as part of the distance measuring device 13 .
  • the distance measurement device is used to implement the distance measurement method as described in the first embodiment, and obtain the target flight time of the photon.
  • the distance measuring device 13 is used to process and calculate the flight time of photons from emission to reception, and further calculate the distance information of the target.
  • the distance measurement device 13 includes a TDC circuit and a histogram circuit.
  • the TDC circuit receives the photon signal and is used to determine the time of flight of the photon from emission to acquisition, and generates a time code representing the time of flight information, and uses the time code to find the histogram The corresponding position in the graph circuit, and add "1" to the value stored at the corresponding position of the histogram circuit, and construct a histogram according to the position of the histogram circuit as a time bin. Then the distance measurement method as described in the first embodiment is implemented to obtain the target flight time of the photon.
  • the distance measuring device 13 does not include a TDC circuit and a histogram circuit, and the distance measuring device 13 may be a remote server.
  • the remote server obtains the initial histogram corresponding to the photon signal, and then implements the method as described in the first embodiment.
  • the distance measurement method to obtain the target flight time of the photon.
  • FIG. 5 is a schematic diagram of a distance measurement device provided by a third embodiment of the present application. The included units are used to execute the steps in the embodiment corresponding to FIG. 1 . For details, please refer to the relevant description in the embodiment corresponding to FIG. 1 . For convenience of explanation, only the parts related to this embodiment are shown. Referring to the figure, the distance measuring device includes:
  • a first processing unit 510 configured to obtain an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals;
  • the second processing unit 520 is configured to perform resampling processing on the initial histogram to obtain a target histogram;
  • the target histogram includes a second number of second time intervals; the second number is greater than the first number , the second time interval is less than the first time interval;
  • the third processing unit 530 is configured to acquire the peak position of the target histogram, and calculate the target flight time of the photon signal according to the peak position.
  • the second processing unit 520 is specifically used for:
  • the second processing unit 520 is specifically used for:
  • the preset filter includes a third number of sub-filters, and the third number is the ratio between the second sampling rate and the first sampling rate, and all the sub-filters of the sub-filters are The unit impulse response amplitude spectrum together is the same as the amplitude spectrum of the emitted light pulse corresponding to the photon signal.
  • the second processing unit 520 is specifically used for:
  • the photon count value of the second time interval inserted into the extended interval is 0, or the photon count value of the second time interval inserted into the extended interval is the photon count of the first time interval in the extended interval. value or the photon count value of the last interval.
  • the third processing unit 530 is specifically used for:
  • the target flight time of the photon signal is calculated according to the sampling interval.
  • the third processing unit 530 is specifically used for:
  • the target flight time of the photon signal is calculated according to the flight time, the photon number and a preset centroid calculation rule.
  • FIG. 6 is a schematic diagram of a distance measurement device provided by a fourth embodiment of the present application.
  • the distance measuring device 6 of this embodiment includes: a processor 60 , a memory 61 , and a computer program 62 stored in the memory 61 and executable on the processor 60 , such as a distance measuring program.
  • the processor 60 executes the computer program 62
  • the steps in each of the above-mentioned embodiments of the distance measurement method are implemented, for example, steps 101 to 103 shown in FIG. 1 .
  • the processor 60 executes the computer program 62
  • the functions of the modules/units in the foregoing apparatus embodiments for example, the functions of the modules 510 to 530 shown in FIG. 5 are implemented.
  • the computer program 62 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 61 and executed by the processor 60 to complete the this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 62 in the distance measuring device 6 .
  • the computer program 62 can be divided into a first processing unit, a second processing unit, and a third processing unit, and the specific functions of each unit are as follows:
  • a first processing unit configured to obtain an initial histogram corresponding to the photon signal; the initial histogram includes a first number of first time intervals;
  • a second processing unit configured to perform resampling processing on the initial histogram to obtain a target histogram;
  • the target histogram includes a second number of second time intervals; the second number is greater than the first number, the second time interval is less than the first time interval;
  • the third processing unit is configured to acquire the peak position of the target histogram, and calculate the target flight time of the photon signal according to the peak position.
  • the distance measuring device may include, but is not limited to, a processor 60 and a memory 61 .
  • FIG. 6 is only an example of the distance measuring device 6 , and does not constitute a limitation to the distance measuring device 6 , and may include more or less components than the one shown, or combine some components, or different components, for example, the distance measuring apparatus may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 60 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 61 may be an internal storage unit of the distance measuring device 6 , such as a hard disk or a memory of the distance measuring device 6 .
  • the memory 61 can also be an external storage device of the distance measuring device 6, such as a plug-in hard disk equipped on the distance measuring device 6, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the distance measuring device 6 may also include both an internal storage unit of the distance measuring device 6 and an external storage device.
  • the memory 61 is used to store the computer program and other programs and data required by the distance measuring device.
  • the memory 61 can also be used to temporarily store data that has been output or will be output.
  • An embodiment of the present application also provides a network device, the network device includes: at least one processor, a memory, and a computer program stored in the memory and executable on the at least one processor, the processor executing The computer program implements the steps in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in the foregoing method embodiments can be implemented when the mobile terminal executes the computer program product.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • the disclosed apparatus/network device and method may be implemented in other manners.
  • the apparatus/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Abstract

一种距离测量方法,包括:获取光子信号对应的初始直方图(S101);初始直方图中包括第一数量的第一时间间隔(301);对初始直方图进行重采样处理得到目标直方图(S102);目标直方图中包括第二数量的第二时间间隔;第二数量大于第一数量,第二时间间隔小于第一时间间隔(301);获取目标直方图的峰值位置,并根据峰值位置计算光子信号的目标飞行时间(S103)。若时间间隔设置的过小时,无需增加直方图的存储容量,也无需增加系统的设计成本,节约了系统资源,减少了系统成本,同时也避免了测量距离出现误差。

Description

一种距离测量方法、系统及装置
本申请要求于2021年3月8日提交中国专利局,申请号为202110249083.8,发明名称为“一种距离测量方法、系统及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于距离测量技术领域,尤其涉及一种距离测量方法、系统及装置。
背景技术
利用飞行时间原理(TOF,Time of Flight)可以对目标进行距离测量以获取包含目标的深度值的深度图像,而基于飞行时间原理的距离测量系统已被广泛应用于消费电子、无人架驶、AR/VR等领域。基于飞行时间原理的距离测量系统通常包括发射器和采集器,利用发射器发射脉冲光束照射目标视场并利用采集器采集反射光束,计算光束由发射到反射接收的飞行时间来计算物体的距离。其中,时间数字转换器(TDC)用于记录光子从发射到被采集的飞行时间并生成光子信号,利用该光子信号寻找直方图电路中相应的时间间隔,使得该时间间隔内的光子计数值加1,当进行大量重复脉冲探测后,可以统计得到时间信号对应的光子计数的直方图,确定直方图中的脉冲峰值位置,根据脉冲峰值位置处对应的飞行时间计算物体的距离。
其中,直方图中时间间隔的大小能够影响距离测量系统的测距分辨率以及精度,时间间隔越小则分辨率和精度都可以显著提高。但是,由于时间间隔的数量又根据系统的最大测量距离设定,若时间间隔设置的过小时则需要的数量增加,增加了直方图的存储容量,增加了系统的设计成本,也可能导致测量距离出现误差。
发明内容
本申请实施例提供了一种距离测量方法、系统及装置,可以解决若需要的时间间隔的数量增加,就会增加直方图的存储容量,增加系统的设计成本,也可能导致测量距离出现误差的问题。
第一方面,本申请实施例提供了一种距离测量方法,包括:
获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;
对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;
获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
进一步地,所述对所述初始直方图进行重采样处理得到目标直方图,包括:
获取所述初始直方图的第一采样率和所述目标直方图的第二采样率,并且计算所述第二采样率和所述第一采样率之间的比值;
根据所述比值和所述第一时间间隔计算第二时间间隔,并且根据所述比值和所述第一数量计算第二数量;
根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图。
进一步地,所述根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图,包括:
将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图;
将所述第一直方图输入预设滤波器进行卷积运算,得到目标直方图。
进一步地,所述预设滤波器包括第三数量的子滤波器,所述第三数量为所 述第二采样率和所述第一采样率之间的比值,全部所述子滤波器的子单位冲激响应幅度谱合起来与所述光子信号对应的发射光脉冲的幅度谱相同。
进一步地,所述将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图,包括:
以相邻的两个第一时间间隔为一个扩展区间;
在每个所述扩展区间内插入n-1个第二时间间隔,并将所述第一时间间隔的大小调整为第二时间间隔的大小,得到第一直方图,n为所述比值。
进一步地,插入所述扩展区间的第二时间间隔的光子计数值为0,或者,插入所述扩展区间的第二时间间隔的光子计数值为所述扩展区间中第一个时间间隔的光子计数值或最后一个时间间隔的光子计数值。
进一步地,所述根据所述峰值位置计算所述光子信号的目标飞行时间,包括:
以所述峰值位置对应的第二时间间隔为中心,向两侧分别选取第五数量的第二时间间隔,确定采样区间;
根据所述采样区间计算所述光子信号的目标飞行时间。
进一步地,所述根据所述采样区间计算所述光子信号的目标飞行时间,包括:
获取所述采样区间内的时间间隔对应的飞行时间和光子数;
根据所述飞行时间、所述光子数和预设质心计算规则计算所述光子信号的目标飞行时间。
第二方面,本申请实施例提供了一种距离测量装置,包括:
第一处理单元,用于获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;
第二处理单元,用于对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;
第三处理单元,用于获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
进一步地,所述第二处理单元,具体用于:
获取所述初始直方图的第一采样率和所述目标直方图的第二采样率,并且计算所述第二采样率和所述第一采样率之间的比值;
根据所述比值和所述第一时间间隔计算第二时间间隔,并且根据所述比值和所述第一数量计算第二数量;
根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图。
进一步地,所述第二处理单元,具体用于:
将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图;
将所述第一直方图输入预设滤波器进行卷积运算,得到目标直方图。
进一步地,所述预设滤波器包括第三数量的子滤波器,所述第三数量为所述第二采样率和所述第一采样率之间的比值,全部所述子滤波器的子单位冲激响应幅度谱合起来与所述光子信号对应的发射光脉冲的幅度谱相同。
进一步地,所述第二处理单元,具体用于:
以相邻的两个第一时间间隔为一个扩展区间;
在每个所述扩展区间内插入(n-1)个第二时间间隔,并将所述第一时间间隔的大小调整为第二时间间隔的大小,得到第一直方图,n为所述比值。
进一步地,插入所述扩展区间的第二时间间隔的光子计数值为0,或者,插入所述扩展区间的第二时间间隔的光子计数值为所述扩展区间中第一个时间间隔的光子计数值或最后一个时间间隔的光子计数值。
进一步地,所述第三处理单元,具体用于:
以所述峰值位置对应的第二时间间隔为中心,向两侧分别选取第五数量的第二时间间隔,确定采样区间;
根据所述采样区间计算所述光子信号的目标飞行时间。
进一步地,所述第三处理单元,具体用于:
获取所述采样区间内的时间间隔对应的飞行时间和光子数;
根据所述飞行时间、所述光子数和预设质心计算规则计算所述光子信号的目标飞行时间。
第三方面,本申请实施例提供了一种距离测量系统,包括:发射器,采集器,距离测量装置;
所述发射器,用于发射脉冲光束至待测目标;
所述采集器,用于采集所述待测目标反射的所述脉冲光束中的光子,并生成光子信号;
所述距离测量装置,用于实现如上述第一方面所述的距离测量方法,计算所述光子信号的目标飞行时间。
第四方面,本申请实施例提供了一种距离测量装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的距离测量方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的距离测量方法。
本申请实施例中,距离测量装置获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。通过重采样处理将时间间隔设置的过小时,无需增加直方图的存储容量,也无需增加系统的设计成本,节约了系统资源,减少了系统成本,同时也可以减小测量距离时产生的误差。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的一种距离测量方法的示意流程图;
图2是本申请第一实施例提供的一种距离测量方法中初始直方图的示意图;
图3是本申请第一实施例提供的一种距离测量方法中滤波器的示意图;
图4是本申请第二实施例提供的一种距离测量系统的示意图;
图5是本申请第三实施例提供的距离测量装置的示意图;
图6是本申请第四实施例提供的距离测量装置的示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以 依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
请参见图1,图1是本申请第一实施例提供的一种距离测量方法的示意流程图。本实施例中一种距离测量方法的执行主体为距离测量装置。如图1所示的距离测量方法可以包括:
S101:获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔。
距离测量装置控制发射器朝向目标区域发射脉冲光束,被目标反射的部分脉冲光束入射到采集器,采集器采集反射的脉冲光束中的光子并生成包含光子飞行时间的光子信号。
当距离测量装置中包括TDC电路以及直方图电路时,距离测量装置接收光子信号,并根据光子信号生成初始直方图,初始直方图包括第一数量的第一时间间隔。其中,每个时间间隔内包含在该时间段内采集器采集到光子的计数值。
如图2所示,图2是本申请中初始直方图的示意图。初始直方图可以被称为检测数据,用于表示在检测时段内采集器采集到光子的时间分布。初始直方 图包括第一数量的第一时间间隔301,第一时间间隔的大小为t1。时间间隔的数量与最大探测范围的飞行时间成比例关系,若最大探测范围的飞行时间为t,则第一数量为t/t1。
一般来说,时间间隔的大小为几十到几百皮秒。回波光束中的光子信号在直方图中对应分布在多个连续的时间间隔内,选取峰值位置处时间间隔的时间作为脉冲光束的飞行时间,一般选择时间间隔的中间量为该时间间隔的时间。举例来说,在本发明一个实施例中,假设第一时间间隔的大小t1为100ps,初始直方图中第一时间间隔的数量为30个,系统最大探测范围为3ns。
另一种实施方式中,距离测量装置中不包括TDC电路以及直方图电路,距离测量装置可以为远程服务器,距离测量装置直接获取光子信号对应的初始直方图。
S102:对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔。
距离测量装置对初始直方图进行重采样处理得到目标直方图;目标直方图中包括第二数量的第二时间间隔;第二数量大于第一数量,第二时间间隔小于第一时间间隔。也就是说,目标直方图的采样率大于初始直方图。
其中,距离测量装置对初始直方图进行重采样处理获得采样率更大的目标直方图,则需要减小采样时间间隔,即在第一时间间隔基础上扩展出多个更小的第二时间间隔,并且需要根据第一时间间隔的位置和数据对扩展出的第二时间间隔进行数据重建,重采样的步骤包括扩展和重建两部分,最后得到目标直方图。
具体来说,距离测量装置获取初始直方图的第一采样率和目标直方图的第二采样率,并且计算第二采样率和第一采样率之间的比值;根据比值和第一时间间隔计算第二时间间隔,并且根据比值和所述第一数量计算第二数量。举例来说,假设需要重采样的目标直方图的采样率为初始直方图的n倍,则第二时 间间隔的大小即设定为第一时间间隔的1/n,即t2=t1/n,对应的第二时间间隔的第二数量为第一时间间隔数量的n倍。在本发明一个实施例中,假设n为4,则目标直方图的第二时间间隔的大小为25ps,目标直方图中第二时间间隔的数量为120个。
然后,距离测量装置根据第二时间间隔、第二数量和初始直方图进行数据重建,得到目标直方图。
具体来说,将第一数量的第一时间间隔变更为第二数量的第二时间间隔,得到第一直方图;将第一直方图输入预设滤波器进行卷积运算,得到目标直方图。
在一个实施例中,可以通过以下方式得到第一直方图。以相邻的两个第一时间间隔为一个扩展区间;在每个扩展区间内插入n-1个第二时间间隔,并将第一时间间隔的大小调整为第二时间间隔的大小,得到第一直方图,n为比值。
具体的重采样过程为选择相邻的两个第一时间间隔为一个扩展区间,在每个扩展区间内的两个第一时间间隔之间插入n-1个第二时间间隔,同时将两个第一时间间隔缩小为第二时间间隔的大小并且这两个时间间隔内的光子计数值保持不变,最终在每个扩展区间内,插入的n-1个第二时间间隔内不包含光子计数值,即,插入扩展区间的第二时间间隔的光子计数值为0。
在一个实施例中,采用与上述相同的方式插入时间间隔,即选择相邻的两个第一时间间隔为一个扩展区间,在每个扩展区间内的两个第一时间间隔之间插入n-1个第二时间间隔,同时将两个第一时间间隔缩小为第二时间间隔的大小并且这两个时间间隔内的光子计数值保持不变,最终在每个扩展区间内插入的n-1个第二时间间隔。
进一步地,插入扩展区间的第二时间间隔的光子计数值为扩展区间中第一个时间间隔的光子计数值或最后一个时间间隔的光子计数值。或者,计算每个扩展区间内第一个和最后一个时间间隔内的光子计数值在一定的权重下的权重光子计数值,将权重光子计数值作为该扩展区间内插入的n-1个第二时间间隔内 的光子计数值,计算公式为:
C i=αC i1+(1-α)C in
其中,C i表示第i个扩展区间中的第二光子计数值,C i1表示第i个扩展区间内第一个时间间隔的光子计数值,C in表示第i个扩展区间内最后一个时间间隔的光子计数值,α为施加的权重。
扩展完成后还需要采用滤波重建的方法对这些时间间隔进行重建处理,将第一直方图输入预设滤波器进行卷积运算,恢复出这些时间间隔内的光子计数值,得到目标直方图。这样,一方面有效滤除噪声光子,另一方面也需要对光子计数值进行修正,以获得信噪比更高的目标直方图,滤波器可以是低通滤波器,有助于提升寻找峰值位置的准确性。
在数据重建的过程中,为了提升重建数据的准确性,全部子滤波器的子单位冲激响应幅度谱合起来与光子信号对应的发射光脉冲的幅度谱相同。
此外,在数据重建的过程中,为了提升数据重建的速度,获得了第一直方图后时间间隔数量增大,还可以采用多相滤波器进行处理,预设滤波器包括第三数量的子滤波器,第三数量为第二采样率和第一采样率之间的比值。
具体来说,根据发射脉冲光束的特性设计滤波器的系数,使得第一直方图经过滤波器后输出信号成分尽可能的强,抑制信号带外噪声,减少噪声的影响,即设计滤波器的单位冲激响应幅度谱与发射光脉冲的幅度谱一致。滤波器的冲激响应函数h(t)为:
Figure PCTCN2022080518-appb-000001
其中,s(t)为脉冲信号,滤波器的冲激响应函数h(t)是脉冲信号的镜像s(t 0-t),但在时间上平移了t 0,t 0是输出信噪比最大的时刻。
经过扩展后的第一直方图内的时间间隔数量增加,此时,利用滤波器对直方图进行重建处理获得信噪比更高的目标直方图,比如需要最后获得的目标直 方图中第二时间间隔的数量为120个时,滤波器需要依次与每个时间间隔进行卷积计算获得更准确地光子计数值,则需要进行120次的卷积运算,大大增加了运算的时间。因此在本发明的一个实施例中,设计一种具有多相结构的滤波器,设计滤波器的单位冲激响应幅度谱与发射光脉冲的幅度谱一致,该滤波器包括n个子滤波器,n根据目标直方图对初始直方图的扩展倍数设定,每个子滤波器的系数(冲激响应函数)分别为h1、h2、h3、…、hn,即每个子滤波器的子单位冲激响应幅度谱仅为多相结构滤波器的单位冲激响应幅度谱的一部分。
如图3所示,图3为一个多相结构的滤波器的示意图。在对目标直方图进行数据重建的过程中,将第一直方图输入到多相结构的滤波器中,多相结构滤波器中的每个子滤波器根据自身的系数只对第一直方图经串行移位后的输出的部分第二时间间隔进行处理。例如,用x(i)表示经过串行位移后输出的第二时间间隔,i表示输出的第二时间间隔的序号,i=1、2、3、…、n,对于第一个子滤波器,只对第一直方图中x(1)、x(5)、x(9)…x(n-3)表示的第二时间间隔进行处理,对于第二个子滤波器,只对第一直方图中x(2)、x(6)、x(10)…x(n-2)表示的第二时间间隔进行处理,对于第三个子滤波器,只对第一直方图中x(3)、x(7)、x(11)…x(n-1)表示的第二时间间隔进行处理,对于第四个子滤波器,只对第一直方图中x(4)、x(8)、x(12)…x(n)表示的第二时间间隔进行处理。四个子滤波器同步进行卷积计算,使得运算速度大大增加。
若在进行扩展过程中,插入的n-1个第二时间间隔内不包含光子计数值,则经过各个子滤波器运算后输出的时间间隔直接按照顺序依次排列重建出信噪比更高的目标直方图用于计算飞行时间。
若在进行扩展的过程中,插入的n-1个第二时间间隔内包含光子计数值,则还需要进行后处理,即每个子滤波器后还需要连接一个延时累加电路,用于对输出的信号y n(i)进行延时累加处理后作为一个新的输出信号y' n(i),即每个时间间隔内的光子计数值都需要经过一个延时累加处理后生成一个新的光子计数值作为目标直方图中该时间间隔内的光子计数值。具体的,计算公式为:
y' 1(i)=y 1(i)+y 2(i-1)+y 3(i-1)+...+y n(i-1)
y' 2(i)=y 1(i)+y 2(i)+y 3(i-1)+...+y n(i-1)
y' 3(i)=y 1(i)+y 2(i)+y 3(i)+...+y n(i-1)
...
y' n(i)=y 1(i)+y 2(i)+y 3(i)+...+y n(i)
其中,y n'(i)表示延时累加处理后新的光子计数值,i表示时间间隔的序号。
S103:获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
距离测量装置获取目标直方图的峰值位置,可采用直接寻峰法寻找目标直方图中的峰值位置,并根据峰值位置计算光子信号的目标飞行时间。
具体来说,根据峰值位置计算所述光子信号的目标飞行时间可以采用以下方式,距离测量装置以峰值位置对应的第二时间间隔为中心,向两侧分别选取第五数量的第二时间间隔,确定采样区间。即可以以该第二时间间隔为中心左右各选取第五数量的第二时间间隔形成采样区间,第五数量的数值大小根据脉冲光束的脉冲持续时间确定。在第一直方图中,根据脉冲持续时间可以计算出回波信号占据目标直方图中时间间隔的数量,该数量等于脉冲持续时间除以第二时间间隔的大小计算出。
在本发明的一个实施例中,假设脉冲持续时间为0.5ns,第二时间间隔的大小为25ps,则回波信号占据的第二时间间隔的数量为20个。则采样区间的选择即以峰值位置的第二时间间隔为中心左右各选取10个第二时间间隔形成采样区间,根据采样区间计算目标飞行时间。
优先地,为了计算的精确度,可以考虑在左右两侧各增加一定的余量,比如左右两侧各选取12个第二时间间隔形成采样区间。
确定采样区间后,距离测量装置根据采样区间计算光子信号的目标飞行时间。具体来说,距离测量装置获取采样区间内的时间间隔对应的飞行时间和光子数;根据飞行时间、所述光子数和预设质心计算规则计算光子信号的目标飞行时间。
预设质心计算规则具体的计算公式为:
Figure PCTCN2022080518-appb-000002
其中,t表示目标飞行时间,T k表示第k个时间间隔对应的飞行时间,C k表示第k个时间间隔内包含的光子数,k表示时间间隔的序号,j表示峰值位置对应的时间间隔的序号,m表示选择的第五数量的第二时间间隔。
在本发明一个实施例中,m的数量为10个。
可以理解的是,以上实施例仅做示意性说明,任何对直方图进行处理计算光子信号的目标飞行时间的方法均属于本发明的发明构思。
在一个实施例中,受到器件或环境的影响,在初始直方图中即存在至少一个回波信号,通过直接寻找峰值位置的方法无法检测出双峰以及多峰的位置。比如距离测量系统设置一个保护外罩时,保护外罩的材料一般为透明的玻璃,发射器发射脉冲光束穿过保护外罩投射到目标视场时,部分脉冲光束被保护外罩反射后进入采集器中,最终在初始直方图中形成一个回波信号,此时初始直方图中存在两个回波信号。
再比如受到雨雾天气等影响或者系统表面粘水等,在目标的真实回波前会产生误回波信号,也存在多个回波信号。或者当采集目标中有玻璃或者采集位于玻璃后面的目标时,由于玻璃本身具有反射率和透过率,大部分的发射脉冲光束会透过玻璃照射到目标上,但依然有一部分脉冲光束被玻璃反射后形成反射光束入射到采集器中,在初始直方图中形成两个回波信号。
则可以根据目标直方图绘制出的表征反射光束的接收波形,对接收波形进行处理构建拟合函数,设置横坐标表示时间,纵坐标表示光子计数值,对拟合函数进行处理计算函数的极值点,根据极值点对应的横坐标对应的时间间隔即为峰值位置。
在一个实施例中,计算拟合函数中斜率极小值点,该极小值点的横坐标对应的时间间隔即为峰值位置。在一个实施例中,对拟合函数进行求导,然后进 行过零点检测,即导函数与横坐标的交点,确定峰值位置。
本申请实施例中,距离测量装置获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。通过重采样处理将时间间隔设置的过小时,也无需增加直方图的存储容量,也无需增加系统的设计成本,节约了系统资源,减少了系统成本,同时也可以减少测量距离时产生的误差。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
请参见图4,图4是本申请第二实施例提供的一种距离测量系统的示意图。本实施例中一种距离测量系统包括:发射器11,采集器12,距离测量装置13;其中,发射器11包括由一个或多个激光器组成的光源111,用于向目标20发射脉冲光束30,至少部分脉冲光束经过目标反射形成反射光束40回到采集器12,采集器12包括由多个像素组成的像素阵列121用于采集反射光束40中的光子并输出光子信号,距离测量装置13同步发射器11与采集器12的触发信号以计算光束中的光子从发射到接收所需要的飞行时间。
所述发射器,用于发射脉冲光束至待测目标。发射器11包括光源111、发射光学元件112以及驱动器113等。在一个实施例中,光源111是在单块半导体基底上生成多个VCSEL光源以形成的VCSEL阵列光源芯片。其中,光源111可以在距离测量装置13的控制下以一定频率(脉冲)向外发射脉冲光束,脉冲光束经过发射光学元件112投射到目标场景上形成照明斑点,其中频率根据测量距离进行设定。
所述采集器,用于采集所述待测目标反射的所述脉冲周期光束中的光子, 并生成光子信号。采集器12包括像素阵列121、过滤单元122和接收光学元件123等,接收光学元件123将目标反射的斑点光束成像到像素阵列121上,像素阵列121包括多个采集光子的像素,所述像素可以是APD、SPAD、SiPM等采集光子的单光子器件中的一种,像素阵列121采集到光子的情况被视为光子检测事件发生并输出光子信号。
在一个实施例中,像素阵列121包括由多个SPAD组成,SPAD可以对入射的单个光子进行响应并输出指示所接收光子在每个SPAD处相应到达时间的光子信号。一般地,还包括有与像素阵列连接的信号放大器、时数转换器(TDC)、数模转换器(ADC)等器件中的一种或多种组成的读出电路(图中未示出)。这些电路即可以与像素整合在一起,作为采集器的一部分,也可以作为距离测量装置13的一部分。
所述距离测量装置,用于实现如第一实施例中所述的距离测量方法,得到所述光子的目标飞行时间。距离测量装置13用于处理计算出光子从发射到接收的飞行时间,并进一步计算出目标的距离信息。
在一个实施例中,距离测量装置13包括TDC电路以及直方图电路,TDC电路接收光子信号用于确定光子从发射到采集的飞行时间,并生成表征飞行时间信息的时间码,利用时间码寻找直方图电路中的对应位置,并使得直方图电路的对应位置处存储的数值加“1”,根据直方图电路的位置作为时间bin构造直方图。然后实现如第一实施例中所述的距离测量方法,得到光子的目标飞行时间。
在另一个实施例中,距离测量装置13不包括TDC电路以及直方图电路,距离测量装置13可以为远程服务器,远程服务器获取光子信号对应的初始直方图,然后实现如第一实施例中所述的距离测量方法,得到光子的目标飞行时间。
请参见图5,图5是本申请第三实施例提供的距离测量装置的示意图。包括的各单元用于执行图1对应的实施例中的各步骤。具体请参阅图1对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。参见图, 距离测量装置包括:
第一处理单元510,用于获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;
第二处理单元520,用于对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;
第三处理单元530,用于获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
进一步地,所述第二处理单元520,具体用于:
获取所述初始直方图的第一采样率和所述目标直方图的第二采样率,并且计算所述第二采样率和所述第一采样率之间的比值;
根据所述比值和所述第一时间间隔计算第二时间间隔,并且根据所述比值和所述第一数量计算第二数量;
根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图。
进一步地,所述第二处理单元520,具体用于:
将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图;
将所述第一直方图输入预设滤波器进行卷积运算,得到目标直方图。
进一步地,所述预设滤波器包括第三数量的子滤波器,所述第三数量为所述第二采样率和所述第一采样率之间的比值,全部所述子滤波器的子单位冲激响应幅度谱合起来与所述光子信号对应的发射光脉冲的幅度谱相同。
进一步地,所述第二处理单元520,具体用于:
以相邻的两个第一时间间隔为一个扩展区间;
在每个所述扩展区间内插入n-1个第二时间间隔,并将所述第一时间间隔的大小调整为第二时间间隔的大小,得到第一直方图,n为所述比值。
进一步地,插入所述扩展区间的第二时间间隔的光子计数值为0,或者,插入所述扩展区间的第二时间间隔的光子计数值为所述扩展区间中第一个时间间隔的光子计数值或最后一个时间间隔的光子计数值。
进一步地,所述第三处理单元530,具体用于:
以所述峰值位置对应的第二时间间隔为中心,向两侧分别选取第五数量的第二时间间隔,确定采样区间;
根据所述采样区间计算所述光子信号的目标飞行时间。
进一步地,所述第三处理单元530,具体用于:
获取所述采样区间内的时间间隔对应的飞行时间和光子数;
根据所述飞行时间、所述光子数和预设质心计算规则计算所述光子信号的目标飞行时间。
图6是本申请第四实施例提供的距离测量装置的示意图。如图6所示,该实施例的距离测量装置6包括:处理器60、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62,例如距离测量程序。所述处理器60执行所述计算机程序62时实现上述各个距离测量方法实施例中的步骤,例如图1所示的步骤101至103。或者,所述处理器60执行所述计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图5所示模块510至530的功能。
示例性的,所述计算机程序62可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器61中,并由所述处理器60执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序62在所述距离测量装置6中的执行过程。例如,所述计算机程序62可以被分割成第一处理单元、第二处理单元、第三处理单元,各单元具体功能如下:
第一处理单元,用于获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;
第二处理单元,用于对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;
第三处理单元,用于获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
所述距离测量装置可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是距离测量装置6的示例,并不构成对距离测量装置6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述距离测量装置还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述距离测量装置6的内部存储单元,例如距离测量装置6的硬盘或内存。所述存储器61也可以是所述距离测量装置6的外部存储设备,例如所述距离测量装置6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述距离测量装置6还可以既包括所述距离测量装置6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述距离测量装置所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见 方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种网络设备,该网络设备包括:至少一个处理器、存储器以及存储在所述存储器中并可在所述至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意各个方法实施例中的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括: 能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特 征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种距离测量方法,其特征在于,包括:
    获取光子信号对应的初始直方图;所述初始直方图中包括第一数量的第一时间间隔;
    对所述初始直方图进行重采样处理得到目标直方图;所述目标直方图中包括第二数量的第二时间间隔;所述第二数量大于所述第一数量,所述第二时间间隔小于所述第一时间间隔;
    获取所述目标直方图的峰值位置,并根据所述峰值位置计算所述光子信号的目标飞行时间。
  2. 如权利要求1所述的距离测量方法,其特征在于,所述对所述初始直方图进行重采样处理得到目标直方图,包括:
    获取所述初始直方图的第一采样率和所述目标直方图的第二采样率,并且计算所述第二采样率和所述第一采样率之间的比值;
    根据所述比值和所述第一时间间隔计算第二时间间隔,并且根据所述比值和所述第一数量计算第二数量;
    根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图。
  3. 如权利要求2所述的距离测量方法,其特征在于,所述根据所述第二时间间隔、所述第二数量和所述初始直方图进行数据重建,得到目标直方图,包括:
    将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图;
    将所述第一直方图输入预设滤波器进行卷积运算,得到目标直方图。
  4. 如权利要求3所述的距离测量方法,其特征在于,所述预设滤波器包括第三数量的子滤波器,所述第三数量为所述第二采样率和所述第一采样率之间 的比值,全部所述子滤波器的子单位冲激响应幅度谱合起来与所述光子信号对应的发射光脉冲的幅度谱相同。
  5. 如权利要求3所述的距离测量方法,其特征在于,所述将所述第一数量的第一时间间隔变更为所述第二数量的第二时间间隔,得到第一直方图,包括:
    以相邻的两个第一时间间隔为一个扩展区间;
    在每个所述扩展区间内插入n-1个第二时间间隔,并将所述第一时间间隔的大小调整为第二时间间隔的大小,得到第一直方图,n为所述比值。
  6. 如权利要求5所述的距离测量方法,其特征在于,插入所述扩展区间的第二时间间隔的光子计数值为0,或者,插入所述扩展区间的第二时间间隔的光子计数值为所述扩展区间中第一个时间间隔的光子计数值或最后一个时间间隔的光子计数值。
  7. 如权利要求1所述的距离测量方法,其特征在于,所述根据所述峰值位置计算所述光子信号的目标飞行时间,包括:
    以所述峰值位置对应的第二时间间隔为中心,向两侧分别选取第五数量的第二时间间隔,确定采样区间;
    根据所述采样区间计算所述光子信号的目标飞行时间。
  8. 如权利要求7所述的距离测量方法,其特征在于,所述根据所述采样区间计算所述光子信号的目标飞行时间,包括:
    获取所述采样区间内的时间间隔对应的飞行时间和光子数;
    根据所述飞行时间、所述光子数和预设质心计算规则计算所述光子信号的目标飞行时间。
  9. 一种距离测量系统,其特征在于,包括:发射器,采集器,距离测量装置;
    所述发射器,用于发射脉冲光束至待测目标;
    所述采集器,用于采集所述待测目标反射的所述脉冲光束中的光子,并生成光子信号;
    所述距离测量装置,用于实现如权利要求1-8中任一项所述的距离测量方法,计算所述光子信号的目标飞行时间。
  10. 一种距离测量装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至8任一项所述的方法。
PCT/CN2022/080518 2021-03-08 2022-03-13 一种距离测量方法、系统及装置 WO2022188884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110249083.8A CN113514842A (zh) 2021-03-08 2021-03-08 一种距离测量方法、系统及装置
CN202110249083.8 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022188884A1 true WO2022188884A1 (zh) 2022-09-15

Family

ID=78061177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080518 WO2022188884A1 (zh) 2021-03-08 2022-03-13 一种距离测量方法、系统及装置

Country Status (2)

Country Link
CN (1) CN113514842A (zh)
WO (1) WO2022188884A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514842A (zh) * 2021-03-08 2021-10-19 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及装置
CN114637021B (zh) * 2022-05-18 2022-08-02 四川吉埃智能科技有限公司 一种亚厘米级全波形激光雷达测距方法、装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596722A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 直方图可调的飞行时间距离测量系统及测量方法
CN110596725A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 基于插值的飞行时间测量方法及测量系统
CN110596723A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 动态直方图绘制飞行时间距离测量方法及测量系统
ES2746248A1 (es) * 2018-09-05 2020-03-05 Consejo Superior Investigacion Metodo y dispositivo de deteccion de pico del histograma comprimido de los valores de pixel en sensores de tiempo de vuelo de alta resolucion
CN111413706A (zh) * 2019-01-16 2020-07-14 爱贝欧汽车系统有限公司 用于光学测距的方法和装置
CN112255636A (zh) * 2020-09-04 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及设备
CN112255638A (zh) * 2020-09-24 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量系统及方法
CN112255635A (zh) * 2020-09-03 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及设备
CN113514842A (zh) * 2021-03-08 2021-10-19 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201622429D0 (en) * 2016-12-30 2017-02-15 Univ Court Of The Univ Of Edinburgh The Photon sensor apparatus
CN110596724B (zh) * 2019-09-19 2022-07-29 深圳奥锐达科技有限公司 动态直方图绘制飞行时间距离测量方法及测量系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2746248A1 (es) * 2018-09-05 2020-03-05 Consejo Superior Investigacion Metodo y dispositivo de deteccion de pico del histograma comprimido de los valores de pixel en sensores de tiempo de vuelo de alta resolucion
CN111413706A (zh) * 2019-01-16 2020-07-14 爱贝欧汽车系统有限公司 用于光学测距的方法和装置
CN110596722A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 直方图可调的飞行时间距离测量系统及测量方法
CN110596725A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 基于插值的飞行时间测量方法及测量系统
CN110596723A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 动态直方图绘制飞行时间距离测量方法及测量系统
CN112255635A (zh) * 2020-09-03 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及设备
CN112255636A (zh) * 2020-09-04 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及设备
CN112255638A (zh) * 2020-09-24 2021-01-22 奥诚信息科技(上海)有限公司 一种距离测量系统及方法
CN113514842A (zh) * 2021-03-08 2021-10-19 奥诚信息科技(上海)有限公司 一种距离测量方法、系统及装置

Also Published As

Publication number Publication date
CN113514842A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022188884A1 (zh) 一种距离测量方法、系统及装置
CN112255636A (zh) 一种距离测量方法、系统及设备
US11940324B2 (en) Systems and methods for efficient multi-return light detectors
EP2446301B1 (en) Pulsed light optical rangefinder
WO2022160610A1 (zh) 一种飞行时间测距方法、系统和设备
CN110187355B (zh) 一种距离测量方法及深度相机
CN112255638B (zh) 一种距离测量系统及方法
US20200225333A1 (en) Method and device for optical distance measurement
WO2022160611A1 (zh) 一种基于时间融合的距离测量方法、系统和设备
WO2022161481A1 (zh) 一种飞行时间测距方法、系统和设备
WO2021046768A1 (zh) 一种目标物的反射率计算方法、装置及相关设备
US20230341529A1 (en) Target detection method, lidar and storage medium
EP3987305B1 (en) Direct time-of-flight depth sensor architecture and method for operating of such a sensor
WO2022241942A1 (zh) 一种深度相机及深度计算方法
WO2022109826A1 (zh) 距离测量方法和装置、电子设备和存储介质
CN112255637B (zh) 距离测量系统及方法
CN112255635A (zh) 一种距离测量方法、系统及设备
US11353563B2 (en) Avalanche diode based object detection device
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
WO2021056348A1 (zh) 点云探测系统的信号处理方法和点云探测系统
CN113504542B (zh) 距离测量系统及计算被测物反射率的方法、装置、设备
WO2023279621A1 (zh) 一种itof测距系统及计算被测物反射率的方法
JP2022500641A (ja) 持続的な干渉環境における電磁信号を検出するためのシステム及び方法
CN115267744A (zh) 飞行时间距离测量方法及测量装置
CN114814881A (zh) 一种激光测距方法及激光测距芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766406

Country of ref document: EP

Kind code of ref document: A1