CN104964672B - 一种基于线结构光的远距离障碍感知传感器 - Google Patents

一种基于线结构光的远距离障碍感知传感器 Download PDF

Info

Publication number
CN104964672B
CN104964672B CN201510369293.5A CN201510369293A CN104964672B CN 104964672 B CN104964672 B CN 104964672B CN 201510369293 A CN201510369293 A CN 201510369293A CN 104964672 B CN104964672 B CN 104964672B
Authority
CN
China
Prior art keywords
laser
striation
line
light
structured light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510369293.5A
Other languages
English (en)
Other versions
CN104964672A (zh
Inventor
邵海燕
杨玉娥
张辉
马玉真
宋方臻
韩青
孙选
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201510369293.5A priority Critical patent/CN104964672B/zh
Publication of CN104964672A publication Critical patent/CN104964672A/zh
Application granted granted Critical
Publication of CN104964672B publication Critical patent/CN104964672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures

Abstract

本发明公开了一种基于线结构光的远距离障碍感知传感器,包括:激光发射器,用于在计算机的控制下发射线结构光到被测目标区域;激光测距仪,用于测量到激光发射系统发射的线结构光条的距离;CCD成像系统,用于捕获被测目标区域的部分散射光并传送至计算机;计算机,通过测量收到激光脉冲的幅度获得探测对象的反射激光的强度,通过激光测距仪获得探测对象的距离,再通过图像处理系统对得到的线结构光图像进行处理,得到目标信息。本发明为了满足越野条件下无人车对障碍物的检测识别,采用新型线结构光视觉传感器,对车辆前方最远可到百米的水障碍、凹凸障碍物进行全天时检测识别。

Description

一种基于线结构光的远距离障碍感知传感器
技术领域
本发明涉及一种基于线结构光的远距离障碍感知传感器。
背景技术
结构光视觉测量方法是由光学三角法测量原理发展而来,是目前工业领域内广泛应用的一种视觉测量方法。结构光视觉传感器主要由激光投射器和摄像机等组成,激光根据需要经由光学透镜投射成一定形式的结构光射向被测物,摄像机用于拍摄被测物表面形成的光条图像,再利用光学三角法获得物体表面三维信息。当前结构光法主要集中在三维实体的重建、物体表面轮廓的测量、焊缝跟踪检测和机器人的近距离视觉导航的研究中(探测半径0.64毫米)。以上结构光视觉检测应用多用于白天、近距离检测,这和传感器的结构、功率、检测精度等都有直接的关系。另外线结构光用于路面车辙检研究较多,此研究一般采用直射式三角法,而且测量距离一般不超过10米。当前用于路面远距离检测的应用研究并不多见。和前几种研究不同的是,用线结构光传感器进行路面障碍检测的要求有距离性、准确性、快速性和模糊性。对无人车来说,对路面障碍的理解要准确,对于障碍物的精度要求不是很高。同时,因为无人车运动速度的要求,使其必须对一定距离处的环境快速做出正确的判断。行进过程中,无人车只要知道其前进道路上是否有障碍和障碍的情况即可,也就是哪里可通行。相比于现有面阵相机图像处理和车载激光雷达的云数据处理,具有障碍特征明显、处理速度快的优点。
相比于现有面阵相机图像处理和车载激光雷达的云数据处理,线结构光检测方法具有障碍特征明显、处理速度快的优点。
但是现有的线结构光传感器系统测试距离较近,仅是几厘米或几米之内,在测试距离、测试速度等各个方面不能满足现有的无人车对其前进道路上是否有障碍和障碍的情况的快速判断需求,因此,亟需一种基于线结构光的远距离障碍感知传感器。
发明内容
为解决现有技术存在的不足,本发明公开了一种基于线结构光的远距离障碍感知传感器,能够实现对车辆前方最远可到百米的水障碍、凹凸障碍物进行全天时的检测识别。
为实现上述目的,本发明的具体方案如下:
一种基于线结构光的远距离障碍感知传感器,包括:激光发射器,用于在计算机的控制下发射线结构光到被测目标区域;
激光测距仪,用于测量激光发射器到发射的线结构光条的距离;
CCD成像系统,用于捕获被测目标区域包含线结构光光条的图像并传送至计算机;
计算机,通过测量收到激光脉冲的幅度获得探测对象的反射激光的强度,通过激光测距仪获得探测对象的距离,再通过图像处理系统对得到的线结构光光条的图像进行处理,得到目标信息,计算机实时与激光发射器、激光测距仪及CCD成像系统通信继而实现对远距离障碍的全天时检测。
所述激光发射器包括激光器及与之按一定角度配合安装的偏摆镜,计算机对激光器的倾角控制具体为对激光光源、偏摆镜和激光测距仪的云台倾角控制,三者倾角保持一致性。
所述图像处理系统包括:图像探测器、信号处理器、图像处理器依次相连,图像处理器将处理后的图像输出至计算机,图像探测器的倾角控制主要是计算机对CCD的云台倾角控制。CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件,可以称为CCD图像传感器,也叫图像控制器。
所述激光器功率选择和能探测的最大距离Rmax之间的关系,主要考虑大气分子对激光的吸收和悬浮微粒散射引起激光强度衰减,将激光光束在被测物体表面的反射看作郎伯反射,根据激光光束在大气中的传输特性,可以由以下公式推算:
式中,P0为激光器功率,Pmin为摄像机实现探测所需要的最小功率,As为光束在识别物体表面的光束截面积,Ac为摄像机在物体表面的接收面积,Ad为Ac所对应的摄像机靶面处的面积,θs为物体表面发现与光束光轴的夹角激光束的入射角,θd为光轴与被测物体表面法线之间的夹角,ρ为识别物体的表面反射率,λ为激光器波长(μm);λ0为指定波长,取值0.61或0.55μm;RV为波长λ0处得气象学距离,也称作可视距离(km);q为经验常数,取值与气象学距离RV有关。
q的经验取值如下:
由以上,探测距离的远近,跟激光器的功率峰值、发射光束截面积、探测器的响应功率等有关。
所述激光器与偏摆镜配合产生线结构光的时候,偏摆镜和激光器需要对准、光条位置确定和追踪,线结构光条的调整过程如下:首先,在传感器设备未通电的情况下,将激光器和偏摆镜云台调水平,确保激光器出光口和偏摆镜的镜面中心对齐;其次,检查供电电源和控制信号大小,确保激光器功率调到所需大小,通电;第三,通过相机镜头找寻车前线结构光条;第四,观察光条位置,根据云台上的三个方向倾角传感器返回的值微调云台倾角,直至光条投向车前指定位置。
根据云台上的三个方向倾角传感器返回的值微调云台倾角,直至光条投向车前指定位置具体的调整规律如下:偏摆镜云台俯仰角θ可以调整光条的远近;水平转角α可以调整光条的左右位置,顺时针调α光条向右移动,连续调整α直至光条位于车前路面正中;如果光条倾斜,不垂直于行车方向,则需要调整偏摆镜云台的倾斜转角β。
CCD成像系统通过分色棱镜实现多光谱,将从同一个镜头入射的同轴光分别投射至2片CCD传感器上,使得2片CCD上的图像可以获得完全一致的视角,从而实现可见光和近红外光谱的分离。
两个CCD和计算机之间分别通过图像处理器、帧存储器、以太网卡及GigE网口相连,GigE网口与计算机通信。
图像处理器对线结构光图像的处理包括对图像进行滤波处理和对光条中心线的提取两部分;首先采用基于排序的自适应极值中值的滤波方法对图像中的椒盐噪声进行快速有效的滤除,同时考虑对光条边缘细节信息的保护;然后通过基于Hessian矩阵求取光条法线方向的方法,把光条中心亚像素坐标提取出来。
计算机对目标信息进行判断时:当遇到凹坑或者凸起的障碍时,光条在障碍边沿处会发生变形;对于凹坑,结构光光线在坑边沿处出现折弯现象,坑内部分的光投射到前方坑内壁上,坑内的光条在坑外地面的前方,折线沿着坑边沿方向弯曲,对于凸起的障碍,和凹坑光线变化相反,光线在凸起边沿处折弯。
计算机对目标信息进行判断时:当遇到水坑的时候,计算机对连续帧的多幅图像进行处理,根据线结构光光条遇水的变化特性可以对水坑形状进行扫描提取,在线结构光二值灰度化图像中,水、地交界处光条灰度值会发生突变,将连续多帧图像中的突变点记录、存储并连接起来,就可以绘制出水体的外围轮廓图,并计算出水体的长度和宽度。
本发明的有益效果:
1、本发明为了满足越野条件下无人车对障碍物的检测识别,采用新型线结构光视觉传感器,对车辆前方最远可到百米的水障碍、凹凸障碍物进行全天时检测识别。
2、本发明创建了一种基于线结构光远距离水障碍、凹凸障碍感知的新型传感器,理论分析和试验验证了传感器的可行性,具有测试距离远、全天时、感测快、识别准、成本低等特点,图像处理算法可以实现实时处理。
3、本发明针对水障碍物,提出了一种根据线结构光条灰度值突变特征进行水障碍检测识别的“黑洞”算法,通过连续扫描可以提取水障碍轮廓,实验表明能够实现水障碍物的快速识别。
附图说明
图1线结构光视觉测量系统原理图;
图2视觉成像传感器原理及构成;
图3结构光光条调整原理;
图4 CCD与计算机之间信息传输过程;
图5线结构光光条处理过程框图;
图6在不同类型障碍上线结构光光条模拟,(a)凹坑(b)平坦路面(c)凸起土堆(d)水坑;
图7线结构光光条遇到水坑时光条扫描过程。
具体实施方式:
下面结合附图对本发明进行详细说明:
线结构光视觉测量系统原理图如图1所示。图1主要包括激光发射器、CCD成像系统和被测对象。其中,激光发射器由激光光源和偏摆镜组成。相比于普通白光光源,激光光源具有高亮度、方向性好等优点。而相比于常见激光线光源,由点激光加偏摆镜生成的线结构光具有生成激光器功率低的特点。偏摆镜在控制电压的作用下实现偏摆振动,点激光器光源投射到镜面上产生结构光面。结构光光面与被测对象相交生成线结构光光条,根据光条变化规律,可以判断出障碍类型和尺寸。CCD成像系统将CCD采集到的数字图像经图像采集卡传送到计算机。激光测距仪和激光发射器的倾角相对应,确保投射出的光条与激光测距仪测试点的高度和距离相同,即测距仪测得的是光条所在的准确位置。摄像机坐标系(OcXcYcZc)为传感器坐标系,(OrXr YrZr)为参考坐标系。线结构光光条投射于车体前方一定距离的路面上,进行障碍的检测。图1中所示的被测对象属于凹坑障碍。
本申请设计的线结构光视觉传感器系统主要由激光器、发射光学系统、接收光学系统、探测器、图像处理系统、控制系统等组成。其基本结构如下。其中,激光器及发射光学系统发射线结构光到被测目标区域,被测目标区域的一部分散射光被CCD接收光学系统捕获。通过测量收到激光脉冲的幅度获得探测对象的反射激光的强度,通过测量发射激光脉冲和收到激光脉冲的时间获得测量目标的距离。再通过图像处理系统对得到的线结构光图像进行处理,得到目标信息。其中倾角控制包括激光发射器和激光测距仪的云台倾角控制,二者倾角应该保持一致性;图像探测器的倾角控制主要是CCD的云台倾角控制。
激光器波长:激光器波长的选择考虑到军民两用,中心波长定为808nm,属于近红外光。出光功率峰值2000mW。激光安全等级属于III B。
所述激光器功率选择和能探测的最大距离Rmax之间的关系,主要考虑大气分子对激光的吸收和悬浮微粒散射引起激光强度衰减,将激光光束在被测物体表面的反射看作郎伯反射,根据激光光束在大气中的传输特性,可以由以下公式推算:
式中,激光器功率为P0,摄像机实现探测所需要的最小功率为Pmin,光束在识别物体表面的光束截面积为As,摄像机在物体表面的接收面积为Ac,Ac所对应的摄像机靶面处的面积为Ad,物体表面发现与光束光轴的夹角激光束的入射角为θs,光轴与被测物体表面法线之间的夹角为θd,识别物体的表面反射率为ρ,λ——激光器波长(μm);λ0——指定波长,取值0.61或0.55μm;RV——波长λ0处得气象学距离,也称作可视距离(km);q——经验常数,取值与气象学距离RV有关。
q的经验取值如下:
由以上,探测距离的远近,跟激光器的功率峰值、发射光束截面积、探测器的响应功率等有关。
结构光光条调整:在用点激光器和偏摆镜配合产生线结构光的时候,偏摆镜和激光器对准、光条位置确定和追踪是关键之一。实验中,光条调整过程如下:首先,在设备未通电的情况下,将激光器和偏摆镜云台调水平,确保激光器出光口和镜面中心对齐;其次,检查供电电源和控制信号大小,确保激光器功率调到很低(通电后根据环境光调整功率),实验人员带上防护镜,通电;第三,通过相机镜头找寻车前光条;第四,观察光条位置,根据三个方向倾角传感器返回的值微调云台倾角,直至光条投向车前指定位置。角度调整如图3,调整规律如下:偏摆镜云台俯仰角θ可以调整光条的远近;水平转角α可以调整光条的左右位置,顺时针调α光条向右移动,反之则相反,连续调整α直至光条位于车前路面正中;如果光条倾斜,不垂直于行车方向,则需要调整偏摆镜云台的倾斜转角β。
双CCD和计算机之间的通信:通过分色棱镜实现多光谱,将从同一个镜头入射的同轴光分别投射至2片CCD传感器上,使得2片CCD上的图像可以获得完全一致的视角,从而实现可见光和近红外光谱的分离。为了获得最佳光学性能,需要使用专用透镜,以便保证色差最小,同时保证可见光和近红外光在焦点上。
两个CCD和计算机之间通过两个RJ-45(GigE)千兆以太网接口进行连接。彩色CCD的输出和黑白近红外CCD的输出各连一个网口。如图4所示。
GigE Vision是由自动化图像协会AIA(Automated Imaging Association)发起指定的一种基于千兆以太网的图像传输的标准。该标准可以让相机硬件和软件实现无缝连接,让不同厂商的软硬件之间实现互相操作。具有传输距离长(无中继时100米)、传输效率高并可向上升级到万兆网、通信控制方便、软硬件互换性强、可靠性高等优点,是未来数字图像领域的主要接口标准,现下被越来越多的商家采用。
线结构光光条图像处理:线结构光图像的处理包括对图像进行滤波处理和对光条中心线的提取两部分(图5)。系统首先采用基于排序的自适应极值中值(RAEM)的滤波方法对图像中的椒盐噪声进行快速有效的滤除,同时考虑对光条边缘细节信息的保护;然后通过基于Hessian矩阵求取光条法线方向的方法,把光条中心亚像素坐标提取出来。
障碍判断:无人车行进过程中,线结构光光条投射到车前地面上,示意图如图6所示。当遇到凹坑或者凸起的障碍(非透明)时,光条在障碍边沿处会发生变形。对于凹坑,从图6(a)看到,结构光光线在坑边沿处出现折弯现象,坑内部分的光投射到前方坑内壁上,坑内的光条在坑外地面的前方,折线沿着坑边沿方向弯曲。对于凸起的障碍,和凹坑光线变化相反,光线在凸起边沿处折弯,如图6(c)所示。
尤其路面上有水坑的时候,也意味着此处地势比水平路面低,可以看作是凹坑里面有水。水可以视作镜面,在入射角远大于45度时(当远距离(百米)线结构光测试的时候,入射角远大于此角度。),几乎全部的光会被反射,CCD相机接收不到,因而出现光条“消失”的现象,原理如图6(d)所示。
水障碍轮廓的提取:对连续帧的多幅图像进行处理,根据线结构光光条遇水的变化特性可以对水坑形状进行扫描提取。图7是线结构光光条遇到水坑时二维光条扫描过程示意。在线结构光二值灰度化图像中,水、地交界处光条灰度值会发生突变。将连续多帧图像中的突变点记录、存储并连接起来,就可以绘制出水体的外围轮廓图,并计算出水体的长度和宽度。称根据线结构光条灰度值突变特征进行水障碍检测识别的算法为“黑洞”算法。
本申请提出的线结构光传感器用于远距离的水障碍检测。由于线结构光和地面之间的夹角比较小,激光光线遇到水体的时候,大部分光线被反射,极少发生折射;所以此处不考虑水深检测,而只是进行车体前方路面水障碍轮廓的提取。根据轮廓图得到水体的长度和宽度,再根据行车能力判断是否避障。
本文传感器仅用于小水体检测(例如水洼),而不适用于大水体(例如池塘和湖泊)。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (8)

1.一种基于线结构光的远距离障碍感知传感器,其特征是,包括:激光发射器,用于在计算机的控制下发射线结构光到被测目标区域;
激光测距仪,用于测量激光发射器到发射的线结构光条的距离;
CCD成像系统,用于捕获被测目标区域包含线结构光光条的图像并传送至计算机;
计算机,通过测量收到激光脉冲的幅度获得探测对象的反射激光的强度,通过激光测距仪获得探测对象的距离,再通过图像处理系统对得到的线结构光光条的图像进行处理,得到目标信息,计算机实时与激光发射器、激光测距仪及CCD成像系统通信继而实现对远距离障碍的全天时检测;
所述激光发射器包括激光器及与之按一定角度配合安装的偏摆镜,计算机对激光器的倾角控制具体为对激光光源、偏摆镜和激光测距仪的云台倾角控制,三者倾角保持一致性;
激光器与偏摆镜配合产生线结构光的时候,偏摆镜和激光器需要对准、光条位置确定和追踪,线结构光条的调整过程如下:首先,在传感器设备未通电的情况下,将激光器和偏摆镜云台调水平,确保激光器出光口和偏摆镜的镜面中心对齐;其次,检查供电电源和控制信号大小,确保激光器功率调到所需大小,通电;第三,通过相机镜头找寻车前线结构光条;第四,观察光条位置,根据云台上的三个方向倾角传感器返回的值微调云台倾角,直至光条投向车前指定位置。
2.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,所述图像处理系统包括:图像探测器、信号处理器、图像处理器依次相连,图像处理器将处理后的图像输出至计算机,图像探测器的倾角控制主要是计算机对CCD的云台倾角控制。
3.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,所述激光器功率选择和能探测的最大距离Rmax之间的关系,主要考虑大气分子对激光的吸收和悬浮微粒散射引起激光强度衰减,将激光光束在被测物体表面的反射看作郎伯反射,根据激光光束在大气中的传输特性,可以由以下公式推算:
式中,P0为激光器功率,Pmin为摄像机实现探测所需要的最小功率,As为光束在识别物体表面的光束截面积,Ac为摄像机在物体表面的接收面积,Ad为Ac所对应的摄像机靶面处的面积,θs为物体表面发现与光束光轴的夹角激光束的入射角,θd为光轴与被测物体表面法线之间的夹角,ρ为识别物体的表面反射率,λ为激光器波长;λ0为指定波长,取值0.61或0.55μm;RV为波长λ0处得气象学距离,也称作可视距离;q为经验常数,取值与气象学距离RV有关。
4.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,根据云台上的三个方向倾角传感器返回的值微调云台倾角,直至光条投向车前指定位置具体的调整规律如下:偏摆镜云台俯仰角θ可以调整光条的远近;水平转角α可以调整光条的左右位置,顺时针调α光条向右移动,连续调整α直至光条位于车前路面正中;如果光条倾斜,不垂直于行车方向,则需要调整偏摆镜云台的倾斜转角β。
5.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,CCD接收光学系统通过分色棱镜实现多光谱,将从同一个镜头入射的同轴光分别投射至2片CCD传感器上,使得2片CCD上的图像可以获得完全一致的视角,从而实现可见光和近红外光谱的分离。
6.如权利要求5所述的一种基于线结构光的远距离障碍感知传感器,其特征是,两个CCD和计算机之间分别通过图像处理器、帧存储器、以太网卡及GigE网口相连,GigE网口与计算机通信。
7.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,图像处理器对线结构光图像的处理包括对图像进行滤波处理和对光条中心线的提取两部分;首先采用基于排序的自适应极值中值的滤波方法对图像中的椒盐噪声进行快速有效的滤除,同时考虑对光条边缘细节信息的保护;然后通过基于Hessian矩阵求取光条法线方向的方法,把光条中心亚像素坐标提取出来。
8.如权利要求1所述的一种基于线结构光的远距离障碍感知传感器,其特征是,计算机对目标信息进行判断时:当遇到凹坑或者凸起的障碍时,光条在障碍边沿处会发生变形;对于凹坑,结构光光线在坑边沿处出现折弯现象,坑内部分的光投射到前方坑内壁上,坑内的光条在坑外地面的前方,折线沿着坑边沿方向弯曲,对于凸起的障碍,和凹坑光线变化相反,光线在凸起边沿处折弯;
计算机对目标信息进行判断时利用“黑洞”算法对水障碍轮廓的提取,具体为:当遇到水坑的时候,计算机对连续帧的多幅图像进行处理,根据线结构光光条遇水的变化特性可以对水坑形状进行扫描提取,在线结构光二值灰度化图像中,水、地交界处光条灰度值会发生突变,将连续多帧图像中的突变点记录、存储并连接起来,就可以绘制出水体的外围轮廓图,并计算出水体的长度和宽度。
CN201510369293.5A 2015-06-29 2015-06-29 一种基于线结构光的远距离障碍感知传感器 Active CN104964672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510369293.5A CN104964672B (zh) 2015-06-29 2015-06-29 一种基于线结构光的远距离障碍感知传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510369293.5A CN104964672B (zh) 2015-06-29 2015-06-29 一种基于线结构光的远距离障碍感知传感器

Publications (2)

Publication Number Publication Date
CN104964672A CN104964672A (zh) 2015-10-07
CN104964672B true CN104964672B (zh) 2017-05-31

Family

ID=54218728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510369293.5A Active CN104964672B (zh) 2015-06-29 2015-06-29 一种基于线结构光的远距离障碍感知传感器

Country Status (1)

Country Link
CN (1) CN104964672B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008399A (zh) * 2016-10-28 2018-05-08 江苏徕兹测控科技有限公司 一种手持激光测距装置及其方法
CN106842220A (zh) * 2017-02-16 2017-06-13 国网安徽省电力公司凤台县供电公司 一种基于模糊智能的电力设备可视线性参数测量装置
CN108663687B (zh) * 2017-03-27 2024-03-29 苏州优函信息科技有限公司 基于线光源以及面阵相机的光面成像激光雷达及探测方法
CN107835361B (zh) * 2017-10-27 2020-02-11 Oppo广东移动通信有限公司 基于结构光的成像方法、装置和移动终端
CN109839628A (zh) * 2017-11-29 2019-06-04 杭州萤石软件有限公司 一种障碍物确定方法及移动机器人
CN108226943B (zh) * 2017-12-25 2020-02-14 北京空间机电研究所 一种星载激光测距仪激光指向记录装置
US11009882B2 (en) * 2018-01-12 2021-05-18 Pixart Imaging Inc. Method, system for obstacle detection and a sensor subsystem
CN108536142B (zh) * 2018-03-18 2020-06-12 上海交通大学 基于数字光栅投影的工业机器人防撞预警系统及方法
CN109291922B (zh) * 2018-09-30 2020-08-07 东风汽车集团有限公司 一种自动识别小型障碍物并制动的驾驶辅助系统及控制方法
CN110716212B (zh) * 2019-11-14 2021-07-27 吉林大学 一种路面障碍物检测方法及系统
CN110833498A (zh) * 2019-11-27 2020-02-25 广东工业大学 一种导盲杖及其导盲方法
CN111796301A (zh) * 2020-07-13 2020-10-20 厦门理工学院 一种障碍物探测器、方法、存储介质及移动机器
CN112729246B (zh) * 2020-12-08 2022-12-16 广东省科学院智能制造研究所 一种基于双目结构光的黑色表面物体深度图像测量方法
CN113406654B (zh) * 2021-07-07 2022-10-25 奥比中光科技集团股份有限公司 一种itof测距系统及计算被测物反射率的方法
CN113504542B (zh) * 2021-07-07 2022-10-25 奥比中光科技集团股份有限公司 距离测量系统及计算被测物反射率的方法、装置、设备
CN114838763B (zh) * 2022-04-20 2023-11-17 青岛虚拟现实研究院有限公司 障碍物检测的方法及vr眼镜和存储介质
CN115468533B (zh) * 2022-11-10 2023-02-28 南京英田光学工程股份有限公司 一种激光通信地面站快速定向装置和定向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782659A (zh) * 2004-12-02 2006-06-07 中国科学院自动化研究所 一种基于激光结构光的焊缝跟踪视觉传感器
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN103727927A (zh) * 2013-12-19 2014-04-16 大连理工大学 基于结构光的高速运动物体位姿视觉测量方法
CN104132643A (zh) * 2013-08-27 2014-11-05 赵大宇 地形与环境安全识别系统
CN204421902U (zh) * 2014-12-10 2015-06-24 青岛理工大学 普通及特殊环境的人工智能机器视觉识别装置
CN204881619U (zh) * 2015-06-29 2015-12-16 济南大学 一种基于线结构光的远距离障碍感知传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922234B2 (en) * 2002-01-23 2005-07-26 Quantapoint, Inc. Method and apparatus for generating structural data from laser reflectance images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782659A (zh) * 2004-12-02 2006-06-07 中国科学院自动化研究所 一种基于激光结构光的焊缝跟踪视觉传感器
CN102721469A (zh) * 2012-06-14 2012-10-10 中国科学院自动化研究所 双相机的多光谱成像系统和方法
CN104132643A (zh) * 2013-08-27 2014-11-05 赵大宇 地形与环境安全识别系统
CN103727927A (zh) * 2013-12-19 2014-04-16 大连理工大学 基于结构光的高速运动物体位姿视觉测量方法
CN204421902U (zh) * 2014-12-10 2015-06-24 青岛理工大学 普通及特殊环境的人工智能机器视觉识别装置
CN204881619U (zh) * 2015-06-29 2015-12-16 济南大学 一种基于线结构光的远距离障碍感知传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
用于远距离检测的线结构光传感器特性分析;邵海燕;《激光杂志》;20150228;第75-77页 *
目标反射特性对激光测距的影响;张雷洪;《中国激光》;20080731;第35卷(第7期);第1001-1004页 *

Also Published As

Publication number Publication date
CN104964672A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
CN104964672B (zh) 一种基于线结构光的远距离障碍感知传感器
CN204881619U (zh) 一种基于线结构光的远距离障碍感知传感器
CN101900528B (zh) 自动跟踪方法和测量装置
CN103453836B (zh) 基于机器视觉及激光光幕车辆外轮廓尺寸测量系统与方法
CN103971406B (zh) 基于线结构光的水下目标三维重建方法
CN104899855A (zh) 三维障碍物检测方法和装置
CN106595519B (zh) 一种基于激光mems投影的柔性三维轮廓测量方法及装置
CN109084724A (zh) 一种基于双目视觉的深度学习障碍物测距方法
CN102635056B (zh) 一种沥青路面构造深度的测量方法
CN108444390A (zh) 一种无人驾驶汽车障碍物识别方法及装置
JPH0431200A (ja) 航空機ドッキングガイダンス装置
CN206019594U (zh) 一种拖挂车轮廓及轴距自动测量系统
CN102216803A (zh) 测量六个自由度的装置和方法
JP3727400B2 (ja) 横断者の検出装置
CN103424112A (zh) 一种基于激光平面辅助的运动载体视觉导航方法
CN107102004A (zh) 一种隧道检测装置
CN202630925U (zh) 车辆外廓尺寸智能测量系统
CN109444916A (zh) 一种无人驾驶可行驶区域确定装置及方法
CN105652280A (zh) 一种激光雷达三角测距法
CN109212377A (zh) 一种高压线路障碍物识别方法、装置、巡检机器人
CN110243293A (zh) 基于结构光和机器视觉的管片错台快速检测装置与方法
CN110750153A (zh) 一种无人驾驶车辆的动态虚拟化装置
CN110136186A (zh) 一种用于移动机器人目标测距的检测目标匹配方法
CN112902958A (zh) 一种基于激光视觉信息避障导航的移动机器人
WO2021168854A1 (zh) 可行驶区域检测的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant