CN109084724A - 一种基于双目视觉的深度学习障碍物测距方法 - Google Patents

一种基于双目视觉的深度学习障碍物测距方法 Download PDF

Info

Publication number
CN109084724A
CN109084724A CN201810737200.3A CN201810737200A CN109084724A CN 109084724 A CN109084724 A CN 109084724A CN 201810737200 A CN201810737200 A CN 201810737200A CN 109084724 A CN109084724 A CN 109084724A
Authority
CN
China
Prior art keywords
camera
target
binocular
coordinate
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810737200.3A
Other languages
English (en)
Inventor
胡绍林
张嘉旭
史浩强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810737200.3A priority Critical patent/CN109084724A/zh
Publication of CN109084724A publication Critical patent/CN109084724A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于双目视觉的深度学习障碍物测距方法,首先对双目相机进行标定,得到相机模型参数和第一相机与第二相机之间的几何位置关系,接着使用基于深度学习的faster‑RCNN网络确定检测目标所在区域,在已知目标在图像上的坐标和双目相机间的相对位置就能确定目标在空间中的三维坐标和距离。利用该方法可以实现车辆倒车过程中车身后方视觉盲区的障碍物检测与距离测量,只需在车身安装双目相机模型,通过深度学习目标检测算法和相机模型检测出环境中障碍物与车辆的距离,该方法快速、有效、安装简便,能够满足车辆盲区实时检测的需求,对驾驶人起到预警作用,保障驾驶人生命及财产安全。

Description

一种基于双目视觉的深度学习障碍物测距方法
技术领域
本发明属于立体视觉测距方法技术领域,具体涉及一种基于双目视觉的 深度学习障碍物测距方法。
背景技术
随着人们生活水平的提高,全国汽车保有数量不断增高,截止2017年 底全国机动车数量已达3.1亿。汽车数量的增多不仅使生活更加便利,同时 也伴随着安全隐患,仅2016一年就发生了道路交通事故864.3万起。由于通 常在倒车过程中驾驶员只能通过后视镜、倒车雷达等技术判断车辆后方环境 情况,不可避免的有功能单一或存在盲区的问题,给交通参与者产生巨大不 便。汽车事故中有很大部分是由于行驶视野不良造成的。随着人们对汽车安 全性、智能化要求的增长,需要一个能够识别、检测障碍物的预警系统保障 车辆及驾驶人的安全。
目前家用轿车上主流的安全预警系统中,激光、雷达、超声波等主动式 测量技术的应用较为普遍,但是这些技术存在着成本昂贵、安装复杂、受环 境影响因素较大等缺点。而且主动测量方法仅能简单的测量车辆与周围环境 的距离,不足以实现对车辆周围环境的直观判断。相比于主动检测方法,本 专利使用的视觉信息测量具有安装简单、成本低、视野开阔等优势,在测量 距离的同时也能够得到目标的内容。同时,为实现智能视觉交通预警系统, 需要一种能够在复杂交通环境下实时运行的目标检测算法,但是传统的算法 基于手工设计的图像特征,不仅依赖于特征设计者的先验知识,而且模型算 法性能无法满足应用需求。
综上所述,在对目标进行距离测量时,存在如下问题:(1)面对复杂场景 无法找到障碍物目标;(2)主动测量成本高、安装复杂、需要主动发出能量; (3)传统检测方法识别障碍目标速度慢、精度低。
发明内容
本发明的目的是提供一种基于双目视觉的深度学习障碍物测距方法,解 决了现有测距方法中面对复杂场景无法找到障碍物目标,检测速度慢的问题。
本发明所采用的技术方案是,一种基于双目视觉的深度学习障碍物测距 方法,
步骤1:搭建包含双目相机的双目视觉数据采集系统,所述双目相机包 包括第一相机和第二相机,所述第一相机和第二相机相对固定在相机支撑架 上;
步骤2:基于针孔相机原理建立双目相机投影模型,随后对双目相机进 行标定,分别求出投影模型内双目相机的内参数矩阵、第一相机与第二相机 的相对几何关系;
步骤3:使用双目相机投影模型中的两个摄像头采集视场中的图像信息, 并对包含障碍物的图像制作标签,将所有标签以2:8的比例分割成测试集和 训练集;
步骤4:搭建基于tensorflow网络的深度学习目标检测模型,检测模型 中包含特征提取、候选区域生成和多任务输出层三部分;
步骤5:初始化tensorflow网络参数,利用步骤3获得的训练集采用梯 度下降算法不断调整优化网络权重参数,直到网络能够准确检测障碍物目标;
步骤6:利用步骤5调整好的网络检测步骤3获得的测试集图片,由网 络输出分别输出第一相机和第二相机的障碍物目标形心坐标x1(u1,v1)、x2 (ur,vr);
步骤7:将步骤6中两个摄像头的两个二维形心坐标分别代入步骤2得 到的双目视觉数据采集系统模型,从而求出障碍物目标在空间中的三维坐标, 并通过距离计算公式求出障碍物距离,实现目标的识别与测距。
本发明的特点还在于,
步骤2具体为,
使用棋盘格标定板标定,计算出双目相机的内参数和两个相机间的相对 位置,即可确定双目相机投影模型,建立图像上投影点到三维世界坐标之间 的关系,标时使用张正友标定法,首先制作标定平板并将其固定在木板上, 再移动标定板,获取不同角度位置的至少3组照片,检测出照片中所有角点, 通过求解线性方程组,求得双目相机的内参数与两个相机之间的相对位置;
在双目相机投影模型下,三维空间点与二维投影点坐标间的映射关系如 公式(5)所示,齐次坐标形式如公式(6)所示。
m=PM (5)
0T是0向量,m是空间点M在成像平面上投影的的坐标,P是内参数矩 阵,其中,f表示焦距,即图像平面和照相机中心间的距离, dx、dy分别代表x、y轴上的归一化焦距,其中dx、dy是单个像素的物理尺 寸,光轴和图像平面的交点c为图像坐标原点,其中c=[cx,cy],它们组成 的维数为3×3矩阵K称为相机的内参数矩阵,R是照相机方向的旋转矩阵, t是相机光心位置的三维平移向量,R和t共同组成的4×4的矩阵为第一相 机和第二相机的镜头间相对几何关系。
步骤4中目标检测模型由特征提取、候选区域生成,目标位置输出三部 分组成,其中特征提取利用卷积层与池化层交替组合而成的VGG卷积神经 网络进行,将输入图像组合成更抽象的特征图,随后将特征图输入RPN区 域建议网络提取目标的候选区域;再利用ROI池化层将目标候选区域池化到 同一个固定的尺度连接全连接层,最后使用softmax回归算法对目标进行分 类,并使用多任务损失函数得到目标边界框,网络的输出是一个包含目标类 别和位置信息的5维向量,
步骤5具体为,
输入图像经过了特征提取与候选区域选择后,将大小不同的候选区域连 接到ROI池化层,将这些候选区域的特征图转化为固定的尺寸大小,最后将 固定大小的卷积特征图连接到全连接层,模型使用的多任务损失函数如公式 (1)所示,
其中,
其中,
式(1)中,Pi是目标预测概率,如果区域内包含目标pi*为1,否则为0; ti是预测的边界框坐标,是边界框真实值;Ncls和Nreg分别是分类项和回归 项的归一化参数,λ是平衡权重,Lcls是分类的交叉熵损失,Lreg是回归损失, 其中R是鲁棒损失函数;
在训练过程中,随着多任务损失函数迭代次数的增加,初始的学习率逐 渐衰减,目标检测模型首先将训练集图片大小统一,再使用RMSProp算法 迭代N次,直到多任务损失函数达到最小,使得不同远近、角度的障碍物都 能够被检测识别。
步骤7具体为,
第一相机和第二相机投影矩阵公式(7)、(8):
P1=K1(I|0) (7)
P2=K2(R|t) (8)
其中,K1为第一相机的内参数矩阵,K2为第二相机的内参数矩阵,P1为第一相机投影矩阵、P2为第二相机投影矩阵、I为单位矩阵矩,
根据摄像机的投影模型公式(5)我们可以得到三维点M与二维投影点 关系如下:
目标障碍物三维点M的在第一相机投影点为x1、三维点M的在第二相 机投影点的为x2
测距时,通过双目相机模型和深度学习方法结合得到目标在第一相机坐 标系下的三维坐标(XL,YL,ZL),接下来计算障碍物目标与双目相机装置之间 的距离,因此,根据公式(7)、(8)得到第二相机齐次坐标(XR,YR,ZR,1)T在世 界坐标系下的位置关系,
由计算出来的第一相机坐标(XL,YL,ZL)和第二相机齐次坐标 (XR,YR,ZR,1)T,由余弦定理(11),可以求出第一相机和障碍物连线v1、第一 相机与第二相机之间连线v2两条线段之间夹角θ,得到障碍物目标与双目相 机光心之间连线的距离D如公式(12)所示
D=sinθ·v1 (12)
本发明的有益效果是,本发明的一种基于双目视觉的深度学习障碍物测 距方法针对主动测量方法成本高、安装复杂、需要主动发出能量,非接触测 量方法对目标测距时目的性不强等缺点。提供了一种智能检测汽车盲区障碍 物种距离的方法,只需在车身安装双目相机获取数据,就可以通过深度学习 目标检测算法和双目相机投影模型检测出环境中障碍物与车辆的距离。该方 法快速、有效、安装简便,能够满足车辆盲区实时检测的需求,对驾驶人起 到预警作用,预防交通事故的发生,保障驾驶人生命及财产安全。
附图说明
图1是本发明的一种基于双目视觉的深度学习障碍物测距方法系统流程 图;
图2是本发明的目标检测模型结构图;
图3是本发明的双目视觉模型图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的一种基于双目视觉的深度学习障碍物测距方法,如图1所示,
步骤1:搭建包含双目相机的双目视觉数据采集系统,所述双目相机包 包括第一相机和第二相机,所述第一相机和第二相机相对固定在相机支撑架 上;
步骤2:基于针孔相机原理建立双目相机投影模型,随后对双目相机进 行标定,分别求出投影模型内双目相机的内参数矩阵、第一相机与第二相机 的相对几何关系;
使用棋盘格标定板标定,计算出双目相机的内参数和两个相机间的相对 位置,即可确定双目相机投影模型,建立图像上投影点到三维世界坐标之间 的关系,标时使用张正友标定法,首先制作标定平板并将其固定在木板上, 再移动标定板,获取不同角度位置的至少3组照片,检测出照片中所有角点, 通过求解线性方程组,求得双目相机的内参数与两个相机之间的相对位置;
在双目相机投影模型下,三维空间点与二维投影点坐标间的映射关系如 公式(5)所示,齐次坐标形式如公式(6)所示。
m=PM (5)
0T是0向量,m是空间点M在成像平面上投影的的坐标,P是内参数矩 阵,其中,f表示焦距,即图像平面和相机中心间的距离, dx、dy分别代表x、y轴上的归一化焦距,其中dx、dy是单个像素的物理尺 寸,光轴和图像平面的交点c为图像坐标原点,其中c=[cx,cy],它们组成 的维数为3×3矩阵K为相机的内参数矩阵,用来描述照相机的投影性质,R 是描述照相机方向的旋转矩阵,t是描述相机中心位置的三维平移向量,R 和t共同组成的4×4的矩阵为第一相机和第二相机的镜头间相对几何关系。
步骤3:使用双目相机投影模型中的两个摄像头采集视场中的图像信息, 并对包含障碍物的图像制作标签,将所有标签以2:8的比例分割成测试集和 训练集;
步骤4:搭建基于tensorflow网络的深度学习目标检测模型,检测模型 中包含特征提取、候选区域生成和多任务输出层三部分;
如图2所示,目标检测模型由特征提取、候选区域生成,目标位置输出 三部分组成,其中特征提取利用卷积层与池化层交替组合而成的VGG卷积 神经网络进行,将输入图像组合成更抽象的特征图,随后将特征图输入RPN 区域建议网络提取目标的候选区域;再利用ROI池化层将目标候选区域池化 到同一个固定的尺度连接全连接层,最后使用softmax回归算法对目标进行 分类,并使用多任务损失函数得到目标边界框,网络的输出是一个包含目标 类别和位置信息的5维向量,
这种方法不仅降低了实现的复杂性,并且面对不同种类,不同光照、遮 挡条件的图像数据有着很强的拓展性;
步骤5:初始化tensorflow网络参数,利用步骤3获得的训练集采用梯 度下降算法不断调整优化网络权重参数,直到网络能够准确检测障碍物目标;
输入图像经过了特征提取与候选区域选择后,将大小不同的候选区域连 接到ROI池化层,将这些候选区域的特征图转化为固定的尺寸大小,最后将 固定大小的卷积特征图连接到全连接层,模型使用的多任务损失函数如公式 (1)所示,
其中,
其中,
式(1)中,Pi是目标预测概率,如果区域内包含目标pi*为1,否则为0; ti是预测的边界框坐标,是边界框真实值;Ncls和Nreg分别是分类项和回归 项的归一化参数,λ是平衡权重,Lcls是分类的交叉熵损失,Lreg是回归损失, 其中R是鲁棒损失函数;
在训练过程中,随着多任务损失函数迭代次数的增加,初始的学习率逐 渐衰减,目标检测模型首先将训练集图片大小统一,再使用RMSProp算法 迭代N次,直到多任务损失函数达到最小,使得不同远近、角度的障碍物都 能够被检测识别。
步骤6:利用步骤5调整好的网络检测步骤3获得的测试集图片,由网 络输出分别输出第一相机和第二相机的障碍物目标形心坐标x1(u1,v1)、x2 (ur,vr);
步骤7:将步骤6中两个摄像头的两个二维形心坐标分别代入步骤2得 到的双目视觉数据采集系统模型,从而求出障碍物目标在空间中的三维坐标, 并通过距离计算公式求出障碍物距离,实现目标的识别与测距。
双目相机在成像过程中只能获得二维图像,失去了深度信息,因此,要 实现视觉距离测量我们可以模仿人眼采用不同位置的两台摄像机采集图像, 再利用像点位置与三维空间点之间的投影关系计算目标空间位置。本文实验 中,两台相机位置如图3所示,两个相机间光轴无需平行但视野范围重叠, 其中OL、OR分别是两个相机的光心,空间点M在两个相机成像平面上的投 影分别是x1与x2,ZL与ZR分别是两个相机的光轴,
在分析双目几何关系时,两个相机间的相对位置关系用单应性矩阵表示。 由于两个相机间只做刚体变换,即只通过单应性矩阵变换了坐标系,所以两 个相机间的几何结构可以由旋转矩阵R和平移矩阵T表示,为了计算方便, 将坐标轴及坐标原点与第一个相机坐标系对齐,即空间坐标系原点为第一相 机光心OL,坐标Z轴与光轴ZL重合且与图像平面垂直,XL、YL轴分别平行 于图像x轴、y轴,由此可得第一相机和第二相机投影矩阵公式(7)、(8):
P1=K1(I|0) (7)
P2=K2(R|t) (8)
其中,K1为第一相机的内参数矩阵,K2为第二相机的内参数矩阵,P1为第一相机投影矩阵、P2为第二相机投影矩阵、I为单位矩阵矩,
根据摄像机的投影模型公式(5)我们可以得到三维点M与二维投影点 关系如下:
目标障碍物三维点M的在第一相机投影点为x1、三维点M的在第二相 机投影点的为x2
测距时,通过深度学习第一相机和第二相机检测到的图像对应坐标分别 为x1(ul,vl)、x2(ur,vr),投影矩阵P1、P2中的内外参数可以通过双目相机 立体标定获得,空间点M就能通过式(9)计算得到坐标,由于图像噪声、 照相机参数误差和其他系统误差,空间坐标M(xL,yL,zL)可能没有精确解, 所以通过最小二乘SVD算法来得到三维点的估计值。
通过双目相机模型和深度学习方法结合得到目标在第一相机坐标系下 的三维坐标(XL,YL,ZL),接下来计算障碍物目标与双目相机装置之间的距离, 因此,可以根据公式(7)(8)得到第二相机齐次坐标(XR,YR,ZR,1)T在世界坐标 系下的位置关系,
由计算出来的第一相机坐标(XL,YL,ZL)和第二相机齐次坐标 (XR,YR,ZR,1)T,由余弦定理(11),可以求出第一相机和障碍物连线v1、第一 相机与第二相机之间连线v2两条线段之间夹角θ,得到障碍物目标与双目相 机光心之间连线的距离D如公式(12)所示
D=sinθ·v1 (12)
下面结合具体实施例对本发明做出详细解释,
对相机进行标定的主要任务是求解摄像机的内外参数矩阵,准确的标定 出摄像机的参数对测距精度有着很重要的影响,调整好相机的位置与角度, 对标定板分别从不同角度拍摄28张图片,利用软件Matlab标定工具箱 stereoCameraCalibrator,对标定板提取角点,获取角点后,采用张正友标定 法,求解两个相机内外参数如表1所示,再通过同一时刻对标定板拍摄图像 计算双目相机间的结构关系,即旋转矩阵R和平移向量t结果如表2所示。
表1双目立体视觉系统内参数标定结果
表2双目立体视觉系统外参数标定结果
两个相机对空间障碍物目标摄像,同一时刻目标特征点M在左右相机 成像平面上的投影分别为x1(ul,vl)、x2(ur,vr)。利用深度学习检测算法检测 到x1、x2坐标后可以代入公式(9)进行三维坐标计算,得到目标在左相机坐 标系下的三维坐标(XL,YL,ZL)。因此,可以根据公式(7)(8)得到第二相机光 心齐次坐标(XR,YR,ZR,1)T在坐标系下的位置关系。
由计算出来的第一相机坐标(XL,YL,ZL)和第二相机齐次坐标 (XR,YR,ZR,1)T,由余弦定理(11),可以求出第一相机和障碍物连线v1、第一 相机与第二相机之间连线v2两条线段之间夹角θ,得到障碍物目标与双目相 机光心之间连线的距离D如公式(12)所示
D=sinθ·v1 (12)
为验证本文提出的测距方法,进行实物测量实验,双目相机对不同距离 和角度的障碍物进行拍摄,得到的图像数据输入已经训练好的目标检测网络 中该模型能够自动分辨障碍物种类与坐标位置,以第一相机和第二相机视觉 图像中同一个物体形心为匹配点xl、xr,将匹配点xl、xr与之前的双目标定 得到的相机投影矩阵P1、P2代入公式(9),就能求得障碍物在空间中的三维 坐标M,利用距离计算公式(11)(12)即可求得障碍物距离车辆的距离。
在距离双目相机为5米-7.5米的4组不同的距离对移动障碍物进行测距 实验,如表3所示。
表3距离检测数据
根据表3的距离检测结果可以看出,此方法测出的障碍物距离与实际距 离误差控制在0-5%内,检测结果精准,且不会放过视场内任何一个障碍物 信息,具有良好的工业应用前景。
本发明的深度学习视觉目标检测技术具有拓展性,也适用于其他子类的 识别,只要参与训练的数据运行在搭建的深度学习模型中进行学习,学习到 该类对象的特征后就能实现该类对象的子类识别任务。当需要识别新的子类 时,对新子类进行学习,并在网络输出的softmax分类器上扩展分类的数据 即可。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发 明精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发 明的保护范围之内。

Claims (5)

1.一种基于双目视觉的深度学习障碍物测距方法,其特征在于,具体操作步骤如下,
步骤1:搭建包含双目相机的双目视觉数据采集系统,所述双目相机包包括第一相机和第二相机,所述第一相机和第二相机相对固定在相机支撑架上;
步骤2:基于针孔相机原理建立双目相机投影模型,随后对双目相机进行标定,分别求出投影模型内双目相机的内参数矩阵、第一相机与第二相机的相对几何关系;
步骤7:将步骤6中两个摄像头的两个二维形心坐标分别代入步骤2得到的双目视觉数据采集系统模型,从而求出障碍物目标在空间中的三维坐标,并通过距离计算公式求出障碍物距离,实现目标的识别与测距。
2.根据权利要求1所述的一种基于双目视觉的深度学习障碍物测距方法,其特征在于,步骤2具体为,
使用棋盘格标定板标定,计算出双目相机的内参数和两个相机间的相对位置,即可确定双目相机投影模型,建立图像上投影点到三维世界坐标之间的关系,标时使用张正友标定法,首先制作标定平板并将其固定在木板上,再移动标定板,获取不同角度位置的至少3组照片,检测出照片中所有角点,通过求解线性方程组,求得双目相机的内参数与两个相机之间的相对位置;
在双目相机投影模型下,三维空间点与二维投影点坐标间的映射关系如公式(5)所示,齐次坐标形式如公式(6)所示,
m=PM (5)
0T是0向量,m是空间点M在成像平面上投影的的坐标,P是内参数矩阵,其中,f表示焦距,即图像平面和相机中心间的距离,dx、dy分别代表x、y轴上的归一化焦距,其中dx、dy是单个像素的物理尺寸,光轴和图像平面的交点c为图像坐标原点,其中c=[cx,cy],它们组成的维数为3×3矩阵K称为相机的内参数矩阵,R是照相机方向的旋转矩阵,t是相机中心位置的三维平移向量,R和t共同组成的4×4的矩阵为第一相机和第二相机的镜头间相对几何关系。
3.根据权利要求2所述的一种基于双目视觉的深度学习障碍物测距方法,其特征在于,步骤4中目标检测模型由特征提取、候选区域生成,目标位置输出三部分组成,其中特征提取利用卷积层与池化层交替组合而成的VGG卷积神经网络进行,将输入图像组合成更抽象的特征图,随后将特征图输入RPN区域建议网络提取目标的候选区域;再利用ROI池化层将目标候选区域池化到同一个固定的尺度连接全连接层,最后使用softmax回归算法对目标进行分类,并使用多任务损失函数得到目标边界框,网络的输出是一个包含目标类别和位置信息的5维向量。
4.根据权利要求3所述的一种基于双目视觉的深度学习障碍物测距方法,其特征在于,步骤5具体为,
输入图像经过了特征提取与候选区域选择后,将大小不同的候选区域连接到ROI池化层,将这些候选区域的特征图转化为固定的尺寸大小,最后将固定大小的卷积特征图连接到全连接层,模型使用的多任务损失函数如公式(1)所示,
其中,
其中,
式(1)中,Pi是目标预测概率,如果区域内包含目标pi*为1,否则为0;ti是预测的边界框坐标,是边界框真实值;Ncls和Nreg分别是分类项和回归项的归一化参数,λ是平衡权重,Lcls是分类的交叉熵损失,Lreg是回归损失,其中R是鲁棒损失函数;
在训练过程中,随着多任务损失函数迭代次数的增加,初始的学习率逐渐衰减,目标检测模型首先将训练集图片大小统一,再使用RMSProp算法迭代N次,直到多任务损失函数达到最小,使得不同远近、角度的障碍物都能够被检测识别。
5.根据权利要求1所述的一种基于双目视觉的深度学习障碍物测距方法,其特征在于,步骤7具体为,
第一相机和第二相机投影矩阵公式(7)、(8):
P1=K1(I|0) (7)
P2=K2(R|t) (8)
其中,K1为第一相机的内参数矩阵,K2为第二相机的内参数矩阵,P1为第一相机投影矩阵、P2为第二相机投影矩阵、I为单位矩阵矩,
根据摄像机的投影模型公式(5)我们可以得到三维点M与二维投影点关系如下:
目标障碍物三维点M的在第一相机投影点为x1、三维点M的在第二相机投影点的为x2
测距时,通过双目相机模型和深度学习方法结合得到目标在第一相机坐标系下的三维坐标(XL,YL,ZL),接下来计算障碍物目标与双目相机装置之间的距离,因此,根据公式(7)、(8)得到第二相机齐次坐标(XR,YR,ZR,1)T在世界坐标系下的位置关系,
由计算出来的第一相机坐标(XL,YL,ZL)和第二相机齐次坐标(XR,YR,ZR,1)T,由余弦定理(11),可以求出第一相机和障碍物连线v1、第一相机与第二相机之间连线v2两条线段之间夹角θ,得到障碍物目标与双目相机光心之间连线的距离D如公式(12)所示
CN201810737200.3A 2018-07-06 2018-07-06 一种基于双目视觉的深度学习障碍物测距方法 Pending CN109084724A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810737200.3A CN109084724A (zh) 2018-07-06 2018-07-06 一种基于双目视觉的深度学习障碍物测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810737200.3A CN109084724A (zh) 2018-07-06 2018-07-06 一种基于双目视觉的深度学习障碍物测距方法

Publications (1)

Publication Number Publication Date
CN109084724A true CN109084724A (zh) 2018-12-25

Family

ID=64837051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810737200.3A Pending CN109084724A (zh) 2018-07-06 2018-07-06 一种基于双目视觉的深度学习障碍物测距方法

Country Status (1)

Country Link
CN (1) CN109084724A (zh)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887002A (zh) * 2019-02-01 2019-06-14 广州视源电子科技股份有限公司 图像特征点的匹配方法、装置、计算机设备和存储介质
CN110136186A (zh) * 2019-05-10 2019-08-16 安徽工程大学 一种用于移动机器人目标测距的检测目标匹配方法
CN110322519A (zh) * 2019-07-18 2019-10-11 天津大学 一种用于激光雷达与相机联合标定的标定装置及标定方法
CN110336991A (zh) * 2019-06-28 2019-10-15 深圳数位传媒科技有限公司 一种基于双目相机的环境提示方法及装置
CN110472508A (zh) * 2019-07-15 2019-11-19 天津大学 基于深度学习和双目视觉的车道线测距方法
CN110503683A (zh) * 2019-08-29 2019-11-26 的卢技术有限公司 一种基于单目测距的狭窄车位倒车入库引导方法和系统
CN110543824A (zh) * 2019-08-01 2019-12-06 江苏濠汉信息技术有限公司 基于双目视觉的施工安全判断方法
CN110580723A (zh) * 2019-07-05 2019-12-17 成都智明达电子股份有限公司 一种利用深度学习和计算机视觉进行精准定位的方法
CN110717404A (zh) * 2019-09-17 2020-01-21 禾多科技(北京)有限公司 单目相机障碍物感知方法
CN110765922A (zh) * 2019-10-18 2020-02-07 华南理工大学 一种agv用双目视觉物体检测障碍物系统
CN111028288A (zh) * 2019-10-23 2020-04-17 淮安奇幻科技有限公司 一种基于深度学习技术的双目标定系统
CN111148218A (zh) * 2019-12-20 2020-05-12 联想(北京)有限公司 一种信息处理方法、设备及计算机可读存储介质
CN111239684A (zh) * 2020-01-17 2020-06-05 中航华东光电(上海)有限公司 一种基于YoloV3深度学习的双目快速距离测量方法
CN111273701A (zh) * 2020-02-28 2020-06-12 佛山科学技术学院 一种云台视觉控制系统以及控制方法
CN111336984A (zh) * 2020-03-20 2020-06-26 北京百度网讯科技有限公司 障碍物测距方法、装置、设备和介质
CN111383272A (zh) * 2020-02-24 2020-07-07 江苏大学 一种双目视觉水果分拣并联机器人视觉盲区末端位姿检测方法
CN111402326A (zh) * 2020-03-13 2020-07-10 北京百度网讯科技有限公司 障碍物的检测方法、装置、无人车及存储介质
CN111563446A (zh) * 2020-04-30 2020-08-21 郑州轻工业大学 一种基于数字孪生的人-机交互安全预警与控制方法
CN111797684A (zh) * 2020-05-25 2020-10-20 维森视觉丹阳有限公司 一种运动车辆双目视觉测距方法
CN112231915A (zh) * 2020-10-17 2021-01-15 中国计量大学 基于投影测距的物理规划算法
CN112529960A (zh) * 2020-12-17 2021-03-19 珠海格力智能装备有限公司 目标对象的定位方法、装置、处理器和电子装置
CN112798020A (zh) * 2020-12-31 2021-05-14 中汽研(天津)汽车工程研究院有限公司 一种用于评估智能汽车定位精度的系统及方法
CN113191329A (zh) * 2021-05-26 2021-07-30 超级视线科技有限公司 一种基于单目视觉图片的车辆泊位匹配方法及系统
CN113205704A (zh) * 2021-03-19 2021-08-03 深圳市点创科技有限公司 一种用于大型车辆的盲区检测方法、装置及存储介质
CN113255906A (zh) * 2021-04-28 2021-08-13 中国第一汽车股份有限公司 一种自动驾驶中回归障碍物3d角度信息方法、装置、终端及存储介质
CN113312979A (zh) * 2021-04-30 2021-08-27 阿波罗智联(北京)科技有限公司 图像处理方法、装置、电子设备、路侧设备及云控平台
CN113327297A (zh) * 2021-06-30 2021-08-31 湖南科技大学 基于深度学习的深海海底障碍物测量系统与识别方法
CN113848931A (zh) * 2021-10-09 2021-12-28 上海联适导航技术股份有限公司 农机自动驾驶障碍物识别方法、系统、设备和存储介质
CN113870354A (zh) * 2021-08-19 2021-12-31 中国电力科学研究院有限公司 一种基于深度学习的变压器油箱的测量方法及系统
CN113907663A (zh) * 2021-09-22 2022-01-11 追觅创新科技(苏州)有限公司 障碍物地图构建方法、清洁机器人及存储介质
CN114018212A (zh) * 2021-08-03 2022-02-08 广东省国土资源测绘院 一种面向球型摄像机单目测距的俯仰角校正方法及系统
WO2022083402A1 (zh) * 2020-10-22 2022-04-28 腾讯科技(深圳)有限公司 障碍物检测方法、装置、计算机设备和存储介质
CN114608522A (zh) * 2022-03-21 2022-06-10 沈阳理工大学 一种基于视觉的障碍物识别与测距方法
CN114742885A (zh) * 2022-06-13 2022-07-12 山东省科学院海洋仪器仪表研究所 一种双目视觉系统中的目标一致性判定方法
CN114754732A (zh) * 2022-03-11 2022-07-15 江苏电力信息技术有限公司 一种基于多目视觉的距离测量方法
CN116452878A (zh) * 2023-04-20 2023-07-18 广东工业大学 一种基于深度学习算法与双目视觉的考勤方法及系统

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139327A (en) * 1990-09-10 1992-08-18 Mitsubishi Denki Kabushiki Kaisha Vehicle following apparatus with a distance measuring function
US5586063A (en) * 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
WO1997000455A1 (de) * 1995-06-16 1997-01-03 Jurca Optoelektronik Gmbh Verfahren und vorrichtung zur bestimmung des abstands zwischen einer basis und einer spiegelnden oberfläche
US20030169918A1 (en) * 2002-03-06 2003-09-11 Fuji Jukogyo Kabushiki Kaisha Stereoscopic image characteristics examination system
DE10326425A1 (de) * 2003-06-10 2005-01-13 Bayerische Motoren Werke Ag Vorrichtung zur räumlichen Bilderfassung
CN101251379A (zh) * 2008-02-19 2008-08-27 哈尔滨工程大学 一种面向水下运载器的实时双目视觉导引方法
CN101294801A (zh) * 2007-07-13 2008-10-29 东南大学 基于双目视觉的车距测量方法
US20090046924A1 (en) * 2007-06-28 2009-02-19 Noboru Morimitsu Stereo-image processing apparatus
CN101401443A (zh) * 2006-03-09 2009-04-01 (株)赛丽康 用于获得三维图像的cmos立体照相机
CN101929844A (zh) * 2009-06-25 2010-12-29 (株)赛丽康 具有双立体相机的测距设备
CN102589516A (zh) * 2012-03-01 2012-07-18 长安大学 一种基于双目线扫描摄像机的动态距离测量系统
CN102713509A (zh) * 2010-09-14 2012-10-03 株式会社理光 立体摄影装置、校正方法和程序
CN103226014A (zh) * 2012-01-30 2013-07-31 株式会社日立制作所 距离测量装置
CN106952274A (zh) * 2017-03-14 2017-07-14 西安电子科技大学 基于立体视觉的行人检测与测距方法
CN107093195A (zh) * 2017-03-10 2017-08-25 西北工业大学 一种激光测距与双目相机结合的标记点定位方法
CN107972662A (zh) * 2017-10-16 2018-05-01 华南理工大学 一种基于深度学习的车辆前向碰撞预警方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139327A (en) * 1990-09-10 1992-08-18 Mitsubishi Denki Kabushiki Kaisha Vehicle following apparatus with a distance measuring function
US5586063A (en) * 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
WO1997000455A1 (de) * 1995-06-16 1997-01-03 Jurca Optoelektronik Gmbh Verfahren und vorrichtung zur bestimmung des abstands zwischen einer basis und einer spiegelnden oberfläche
US20030169918A1 (en) * 2002-03-06 2003-09-11 Fuji Jukogyo Kabushiki Kaisha Stereoscopic image characteristics examination system
DE10326425A1 (de) * 2003-06-10 2005-01-13 Bayerische Motoren Werke Ag Vorrichtung zur räumlichen Bilderfassung
CN101401443A (zh) * 2006-03-09 2009-04-01 (株)赛丽康 用于获得三维图像的cmos立体照相机
US20090046924A1 (en) * 2007-06-28 2009-02-19 Noboru Morimitsu Stereo-image processing apparatus
CN101294801A (zh) * 2007-07-13 2008-10-29 东南大学 基于双目视觉的车距测量方法
CN101251379A (zh) * 2008-02-19 2008-08-27 哈尔滨工程大学 一种面向水下运载器的实时双目视觉导引方法
CN101929844A (zh) * 2009-06-25 2010-12-29 (株)赛丽康 具有双立体相机的测距设备
CN102713509A (zh) * 2010-09-14 2012-10-03 株式会社理光 立体摄影装置、校正方法和程序
CN103226014A (zh) * 2012-01-30 2013-07-31 株式会社日立制作所 距离测量装置
CN102589516A (zh) * 2012-03-01 2012-07-18 长安大学 一种基于双目线扫描摄像机的动态距离测量系统
CN107093195A (zh) * 2017-03-10 2017-08-25 西北工业大学 一种激光测距与双目相机结合的标记点定位方法
CN106952274A (zh) * 2017-03-14 2017-07-14 西安电子科技大学 基于立体视觉的行人检测与测距方法
CN107972662A (zh) * 2017-10-16 2018-05-01 华南理工大学 一种基于深度学习的车辆前向碰撞预警方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
《中国公路学报》编辑部: ""中国汽车工程学术研究综述 2017"", 《中国公路学报》 *
BASTIAN LEIBE 等: "《Computer Vision-ECCV 2016》", 31 October 2016 *
BHARATH HARIHARAN 等: ""Hypercolumns for Object Segmentation and Fine-grained Localization"", 《IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 *
JIAXU ZHANG 等: ""Deep Learning based Object Distance Measurement Method for Binocular Stereo Vision Blind Area"", 《(IJACSA) INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS》 *
PEDRO F. FELZENSZWALB等: ""Object Detection with Discriminatively Trained Part Based Models"", 《IEEE TRANS PATTERN ANAL MACH INTELL》 *
ZHENGYOU ZHANG: "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations", 《COMPUTER VISION》 *
丁永军: ""无人机视觉辅助着陆中的关键技术研究"", 《中国优秀硕士学位论文全文数据库》 *
刘哲: ""融合深度信息的在线半监督学习目标跟踪检测方法研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
吴赛飞: ""基于视觉信息引导的舰载无人机精确着舰技术研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
崔书华等: ""多测速系统测速差分计算及误差分析"", 《飞行力学》 *
胡仁东: ""基于计算机视觉的高精度测量方法研究及应用"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887002A (zh) * 2019-02-01 2019-06-14 广州视源电子科技股份有限公司 图像特征点的匹配方法、装置、计算机设备和存储介质
CN110136186A (zh) * 2019-05-10 2019-08-16 安徽工程大学 一种用于移动机器人目标测距的检测目标匹配方法
CN110136186B (zh) * 2019-05-10 2022-09-16 安徽工程大学 一种用于移动机器人目标测距的检测目标匹配方法
CN110336991A (zh) * 2019-06-28 2019-10-15 深圳数位传媒科技有限公司 一种基于双目相机的环境提示方法及装置
CN110336991B (zh) * 2019-06-28 2021-07-13 深圳数位传媒科技有限公司 一种基于双目相机的环境提示方法及装置
CN110580723A (zh) * 2019-07-05 2019-12-17 成都智明达电子股份有限公司 一种利用深度学习和计算机视觉进行精准定位的方法
CN110580723B (zh) * 2019-07-05 2022-08-19 成都智明达电子股份有限公司 一种利用深度学习和计算机视觉进行精准定位的方法
CN110472508A (zh) * 2019-07-15 2019-11-19 天津大学 基于深度学习和双目视觉的车道线测距方法
CN110472508B (zh) * 2019-07-15 2023-04-28 天津大学 基于深度学习和双目视觉的车道线测距方法
CN110322519A (zh) * 2019-07-18 2019-10-11 天津大学 一种用于激光雷达与相机联合标定的标定装置及标定方法
CN110322519B (zh) * 2019-07-18 2023-03-31 天津大学 一种用于激光雷达与相机联合标定的标定装置及标定方法
CN110543824A (zh) * 2019-08-01 2019-12-06 江苏濠汉信息技术有限公司 基于双目视觉的施工安全判断方法
CN110503683A (zh) * 2019-08-29 2019-11-26 的卢技术有限公司 一种基于单目测距的狭窄车位倒车入库引导方法和系统
CN110717404A (zh) * 2019-09-17 2020-01-21 禾多科技(北京)有限公司 单目相机障碍物感知方法
CN110717404B (zh) * 2019-09-17 2021-07-23 禾多科技(北京)有限公司 单目相机障碍物感知方法
CN110765922A (zh) * 2019-10-18 2020-02-07 华南理工大学 一种agv用双目视觉物体检测障碍物系统
CN110765922B (zh) * 2019-10-18 2023-05-02 华南理工大学 一种agv用双目视觉物体检测障碍物系统
CN111028288A (zh) * 2019-10-23 2020-04-17 淮安奇幻科技有限公司 一种基于深度学习技术的双目标定系统
CN111028288B (zh) * 2019-10-23 2023-12-26 深圳市聚业自动化技术有限公司 一种基于深度学习技术的双目标定系统
CN111148218A (zh) * 2019-12-20 2020-05-12 联想(北京)有限公司 一种信息处理方法、设备及计算机可读存储介质
CN111239684A (zh) * 2020-01-17 2020-06-05 中航华东光电(上海)有限公司 一种基于YoloV3深度学习的双目快速距离测量方法
CN111383272A (zh) * 2020-02-24 2020-07-07 江苏大学 一种双目视觉水果分拣并联机器人视觉盲区末端位姿检测方法
CN111273701A (zh) * 2020-02-28 2020-06-12 佛山科学技术学院 一种云台视觉控制系统以及控制方法
CN111273701B (zh) * 2020-02-28 2023-10-31 佛山科学技术学院 一种云台视觉控制系统以及控制方法
CN111402326A (zh) * 2020-03-13 2020-07-10 北京百度网讯科技有限公司 障碍物的检测方法、装置、无人车及存储介质
CN111402326B (zh) * 2020-03-13 2023-08-25 北京百度网讯科技有限公司 障碍物的检测方法、装置、无人车及存储介质
CN111336984A (zh) * 2020-03-20 2020-06-26 北京百度网讯科技有限公司 障碍物测距方法、装置、设备和介质
CN111563446A (zh) * 2020-04-30 2020-08-21 郑州轻工业大学 一种基于数字孪生的人-机交互安全预警与控制方法
CN111797684A (zh) * 2020-05-25 2020-10-20 维森视觉丹阳有限公司 一种运动车辆双目视觉测距方法
CN111797684B (zh) * 2020-05-25 2024-04-09 维森视觉丹阳有限公司 一种运动车辆双目视觉测距方法
CN112231915A (zh) * 2020-10-17 2021-01-15 中国计量大学 基于投影测距的物理规划算法
CN112231915B (zh) * 2020-10-17 2024-01-30 中国计量大学 基于投影测距的物理规划方法
WO2022083402A1 (zh) * 2020-10-22 2022-04-28 腾讯科技(深圳)有限公司 障碍物检测方法、装置、计算机设备和存储介质
CN112529960A (zh) * 2020-12-17 2021-03-19 珠海格力智能装备有限公司 目标对象的定位方法、装置、处理器和电子装置
CN112798020A (zh) * 2020-12-31 2021-05-14 中汽研(天津)汽车工程研究院有限公司 一种用于评估智能汽车定位精度的系统及方法
CN113205704A (zh) * 2021-03-19 2021-08-03 深圳市点创科技有限公司 一种用于大型车辆的盲区检测方法、装置及存储介质
CN113255906A (zh) * 2021-04-28 2021-08-13 中国第一汽车股份有限公司 一种自动驾驶中回归障碍物3d角度信息方法、装置、终端及存储介质
CN113312979B (zh) * 2021-04-30 2024-04-16 阿波罗智联(北京)科技有限公司 图像处理方法、装置、电子设备、路侧设备及云控平台
CN113312979A (zh) * 2021-04-30 2021-08-27 阿波罗智联(北京)科技有限公司 图像处理方法、装置、电子设备、路侧设备及云控平台
CN113191329A (zh) * 2021-05-26 2021-07-30 超级视线科技有限公司 一种基于单目视觉图片的车辆泊位匹配方法及系统
CN113327297B (zh) * 2021-06-30 2022-06-17 湖南科技大学 基于深度学习的深海海底障碍物测量系统与识别方法
CN113327297A (zh) * 2021-06-30 2021-08-31 湖南科技大学 基于深度学习的深海海底障碍物测量系统与识别方法
CN114018212A (zh) * 2021-08-03 2022-02-08 广东省国土资源测绘院 一种面向球型摄像机单目测距的俯仰角校正方法及系统
CN113870354B (zh) * 2021-08-19 2024-03-08 中国电力科学研究院有限公司 一种基于深度学习的变压器油箱的测量方法及系统
CN113870354A (zh) * 2021-08-19 2021-12-31 中国电力科学研究院有限公司 一种基于深度学习的变压器油箱的测量方法及系统
CN113907663A (zh) * 2021-09-22 2022-01-11 追觅创新科技(苏州)有限公司 障碍物地图构建方法、清洁机器人及存储介质
WO2023056789A1 (zh) * 2021-10-09 2023-04-13 上海联适导航技术股份有限公司 农机自动驾驶障碍物识别方法、系统、设备和存储介质
CN113848931A (zh) * 2021-10-09 2021-12-28 上海联适导航技术股份有限公司 农机自动驾驶障碍物识别方法、系统、设备和存储介质
CN114754732B (zh) * 2022-03-11 2023-09-05 江苏电力信息技术有限公司 一种基于多目视觉的距离测量方法
CN114754732A (zh) * 2022-03-11 2022-07-15 江苏电力信息技术有限公司 一种基于多目视觉的距离测量方法
CN114608522B (zh) * 2022-03-21 2023-09-26 沈阳理工大学 一种基于视觉的障碍物识别与测距方法
CN114608522A (zh) * 2022-03-21 2022-06-10 沈阳理工大学 一种基于视觉的障碍物识别与测距方法
CN114742885A (zh) * 2022-06-13 2022-07-12 山东省科学院海洋仪器仪表研究所 一种双目视觉系统中的目标一致性判定方法
CN116452878A (zh) * 2023-04-20 2023-07-18 广东工业大学 一种基于深度学习算法与双目视觉的考勤方法及系统
CN116452878B (zh) * 2023-04-20 2024-02-02 广东工业大学 一种基于深度学习算法与双目视觉的考勤方法及系统

Similar Documents

Publication Publication Date Title
CN109084724A (zh) 一种基于双目视觉的深度学习障碍物测距方法
US11922643B2 (en) Vehicle speed intelligent measurement method based on binocular stereo vision system
WO2021004312A1 (zh) 一种基于双目立体视觉系统的车辆智能测轨迹方法
CN104299244B (zh) 基于单目相机的障碍物检测方法及装置
CN109472831A (zh) 面向压路机施工过程的障碍物识别测距系统及方法
KR102420476B1 (ko) 차량의 위치 추정 장치, 차량의 위치 추정 방법, 및 이러한 방법을 수행하도록 프로그램된 컴퓨터 프로그램을 저장하는 컴퓨터 판독가능한 기록매체
CN103559791B (zh) 一种融合雷达和ccd摄像机信号的车辆检测方法
CN101839692B (zh) 单相机测量物体三维位置与姿态的方法
JP5588812B2 (ja) 画像処理装置及びそれを用いた撮像装置
CN108596058A (zh) 基于计算机视觉的行车障碍物测距方法
CN103971406B (zh) 基于线结构光的水下目标三维重建方法
CN110378202B (zh) 一种基于鱼眼镜头的全方位行人碰撞预警方法
CN109490890A (zh) 一种面向智能车的毫米波雷达与单目相机信息融合方法
US20050270286A1 (en) Method and apparatus for classifying an object
WO2015061387A1 (en) Enhanced stereo imaging-based metrology
CN108638999A (zh) 一种基于360度环视输入的防碰撞预警系统及方法
CN109583267A (zh) 车辆用目标检测方法、车辆用目标检测装置和车辆
CN103487034A (zh) 一种基于立式标靶的车载单目摄像头测距测高方法
CN107796373B (zh) 一种基于车道平面几何模型驱动的前方车辆单目视觉的测距方法
CN109764858A (zh) 一种基于单目相机的摄影测量方法及系统
CN104751119A (zh) 基于信息融合的行人快速检测跟踪方法
CN103499337A (zh) 一种基于立式标靶的车载单目摄像头测距测高装置
Gorodnichev et al. On automated safety distance monitoring methods by stereo cameras
Zhang et al. Deep learning based object distance measurement method for binocular stereo vision blind area
CN109308714A (zh) 基于分类惩罚的摄像头和激光雷达信息配准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181225

RJ01 Rejection of invention patent application after publication