WO2023279602A1 - 一种硼钢的热处理方法、高强韧硼钢及其应用 - Google Patents

一种硼钢的热处理方法、高强韧硼钢及其应用 Download PDF

Info

Publication number
WO2023279602A1
WO2023279602A1 PCT/CN2021/128406 CN2021128406W WO2023279602A1 WO 2023279602 A1 WO2023279602 A1 WO 2023279602A1 CN 2021128406 W CN2021128406 W CN 2021128406W WO 2023279602 A1 WO2023279602 A1 WO 2023279602A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron steel
period
heat treatment
treatment method
temperature
Prior art date
Application number
PCT/CN2021/128406
Other languages
English (en)
French (fr)
Inventor
鞠玉琳
程晓农
袁志钟
郭顺
罗锐
曹甫洋
黄豪
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/908,264 priority Critical patent/US20240084432A1/en
Publication of WO2023279602A1 publication Critical patent/WO2023279602A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention belongs to the technical field of metal heat treatment, and in particular relates to a heat treatment method for boron steel, high-strength and tough boron steel and applications thereof.
  • Agriculture is my country's basic industry and a pillar industry. Its productivity and competitiveness are directly related to the stability and durability of the country's economic development. The promotion and development of agricultural mechanization and automation have greatly enhanced the productivity and competitiveness of agriculture, and promoted the sustainable, rapid and healthy development of the agricultural economy.
  • Agricultural machinery knives such as plow points, plow shovels, rotary tillage blades, etc., are key components of agricultural machinery and an important process link to ensure the safe and excellent operation of agricultural machinery during its service life.
  • High-speed plows are the most widely used tillage tools in the world. With the improvement of agricultural machinery power and farming speed, higher requirements are put forward for the performance and life of high-speed plow plow point materials.
  • the material of high-speed plow points in my country is mainly boron steel.
  • the heat treatment process is austenitization at 910°C for 10 minutes, then water cooling and quenching, and finally low-temperature tempering at 200°C for 2 hours.
  • the boron steel After heat treatment, the boron steel The hardness is 47-52HRC, and there will be two major problems in the microstructure: (1) After the boron steel is water-cooled and quenched, the grain size of the lath martensite and the size of the lath are large, as shown in Figure 1; (2) If the water-cooled quenching process If the cooling time and temperature are not properly controlled, a complex phase structure of ferrite and lath martensite will appear, as shown in Figure 2; these two microstructures will reduce the hardness and wear resistance of boron steel, and directly lead to plow point Material life is greatly reduced.
  • the object of the present invention is to provide a heat treatment method for boron steel, high-strength and tough boron steel and applications thereof. After the boron steel is treated by the heat treatment method provided by the invention, both the hardness and the wear resistance are improved.
  • the invention provides a heat treatment method for boron steel, comprising the following steps:
  • step (2) Austenitize the carburized boron steel obtained in step (1) to obtain austenitized boron steel; the austenitized temperature is 885-895°C, and the austenitized time is 25-35 minutes;
  • the austenitic boron steel obtained in the step (2) is sequentially oil-quenched and tempered; the temperature of the oil-quenching is 55-65° C., and the time of the oil-quenching is 29-31 min.
  • the chemical composition of boron steel in the step (1) includes C 0.30 ⁇ 0.36wt%, Mn 1.20 ⁇ 1.50wt%, Si ⁇ 0.40wt%, B 0.0008 ⁇ 0.005wt%, Cr 0.30 ⁇ 0.60wt%, P ⁇ 0.025wt%, S ⁇ 0.015wt%, Al ⁇ 0.015wt%, Ti 0.020 ⁇ 0.050wt%, and the balance of iron.
  • the surface carburization in the step (1) includes a soaking period, a strong infiltration period and a diffusion period.
  • the temperature of the soaking period is 915-925° C.
  • the time of the soaking period is 25-35 minutes
  • the carbon potential in the soaking period is 0.9-1.1 wt%.
  • the temperature of the soaking period is 920° C.
  • the time of the soaking period is 30 minutes
  • the carbon potential in the soaking period is 1.0 wt%.
  • the temperature of the intensified period is 915-925° C.
  • the time of the intensified period is 595-605 minutes
  • the carbon potential in the intensified period is 1.05-1.25 wt%.
  • the temperature of the intensified period is 920°C
  • the time of the intensified period is 600min
  • the carbon potential in the intensified period is 1.15wt%.
  • the temperature of the diffusion period is 915-925° C.
  • the time of the diffusion period is 345-355 minutes
  • the carbon potential in the diffusion period is 0.95-1.15 wt%.
  • the temperature of the diffusion period is 920°C
  • the time of the diffusion period is 350min
  • the carbon potential in the diffusion period is 1.05wt%.
  • the thickness of the carburized layer in the step (1) carburized boron steel is 1-2 mm.
  • the austenitizing temperature in the step (2) is 888-892° C.
  • the austenitizing time is 28-32 minutes.
  • the austenitizing temperature is 890° C.
  • the austenitizing time is 30 minutes.
  • the temperature of oil quenching in the step (3) is 58-62° C., and the time of oil quenching is 30 minutes.
  • the tempering temperature in the step (3) is 160-170° C.
  • the tempering holding time is 115-125 minutes.
  • the tempering temperature is 165° C.
  • the tempering holding time is 118-122 minutes.
  • the present invention also provides the high strength and toughness prepared by the heat treatment method described in the above technical solution.
  • the present invention also provides the application of the high-strength and toughness boron steel described in the above technical solution in the plow point of a high-speed plow.
  • the invention provides a heat treatment method for boron steel, comprising the following steps: carburizing the surface layer of boron steel to obtain carburized boron steel; austenitizing the carburized boron steel to obtain austenitized boron steel
  • the austenitizing temperature is 885-895°C, and the austenitizing time is 25-35min; the austenitized boron steel is sequentially oil-quenched and tempered; the oil-quenched temperature is 55 ⁇ 65°C, the oil quenching time is 29 ⁇ 31min.
  • the invention improves and optimizes the heat treatment of the boron steel.
  • the surface carburization of the boron steel is carried out, and the surface hardness of the boron steel is improved through carburization, thereby improving the wear resistance, and then austenitization and oil quenching are carried out in sequence.
  • tempering treatment by adjusting the process parameters of austenitization and oil quenching, it can ensure that the carburizing boron steel will not appear quenching cracking and deformation, thereby further improving the hardness and wear resistance of boron steel.
  • Experimental results show that the average hardness of the carburized layer of the boron steel after the heat treatment method provided by the invention is 58.3-59HRC, and the hardness of the core part is 51-53HRC.
  • Fig. 1 is the microstructure diagram of the lath martensite obtained by water cooling and quenching of boron steel
  • Figure 2 is a diagram of the multi-phase structure of ferrite and lath martensite that occurs during the water-cooling and quenching process of boron steel due to improper cooling time and temperature control;
  • Fig. 3 is the microstructure diagram of the high-strength toughness boron steel surface layer prepared by embodiment 1;
  • Fig. 4 is the microstructure diagram of the high-strength and tough boron steel core prepared in embodiment 1;
  • Fig. 5 is the surface layer of the high-strength toughness boron steel prepared in embodiment 2 to the hardness curve of the core portion changing with depth;
  • Fig. 6 is the microstructure diagram of the high-strength and tough boron steel surface layer prepared in embodiment 2;
  • Fig. 7 is the microstructure diagram of the high-strength and tough internal distance surface 3-4mm prepared in Example 2;
  • Fig. 8 is the microstructure diagram of the high-strength and tough boron steel core prepared in Example 2;
  • Fig. 9 is the microstructure diagram of the high-strength toughness boron steel surface layer prepared in embodiment 3.
  • FIG. 10 is a microstructure diagram of the high-strength and toughness boron steel core prepared in Example 3.
  • the invention provides a heat treatment method for boron steel, comprising the following steps:
  • step (2) Austenitize the carburized boron steel obtained in step (1) to obtain austenitized boron steel; the austenitized temperature is 885-895°C, and the austenitized time is 25-35 minutes;
  • the austenitic boron steel obtained in the step (2) is sequentially oil-quenched and tempered; the temperature of the oil-quenching is 55-65° C., and the time of the oil-quenching is 29-31 min.
  • the heat treatment method provided by the invention is applicable to the forged boron steel without heat treatment.
  • the boron steel is preferably 33MnCrB5; the chemical composition of the 33MnCrB5 preferably includes C 0.30-0.36wt%, Mn 1.20-1.50wt%, Si ⁇ 0.40wt%, B 0.0008-0.005wt% by mass percentage %, Cr 0.30 ⁇ 0.60wt%, P ⁇ 0.025wt%, S ⁇ 0.015wt%, Al ⁇ 0.015wt%, Ti 0.020 ⁇ 0.050wt% and the balance of iron.
  • the boron steel is carburized on the surface to obtain the carburized boron steel.
  • the invention carries out surface carburizing on the boron steel, improves the surface hardness of the boron steel through carburizing, thereby improving the wear resistance.
  • the surface carburization preferably includes a soaking period, a strong infiltration period and a diffusion period.
  • the present invention sets three processes of soaking period, strong penetration period and diffusion period during surface carburizing, so that carbon atoms can diffuse from the atmosphere into the boron steel material more uniformly, thereby further improving the wear resistance of the boron steel.
  • the temperature of the soaking period is preferably 915-925°C, more preferably 920°C; the time of the soaking period is preferably 25-35min, more preferably 30min; the carbon in the soaking period Potential is preferably 0.9 to 1.1 wt%, more preferably 1.0 wt%.
  • the carburizing medium in the soaking period is decomposed into active carbon atoms adsorbed on the surface of the boron steel, so that the carbon content in the surface austenite increases, and the carbon in the surface structure of the boron steel will diffuse to the inner matrix.
  • the carbon potential is poor, and the surface layer is continuously supplemented by carbon atoms, which can promote the diffusion and homogenization of carbon atoms, thereby further improving the wear resistance.
  • the temperature of the strong infiltration period is preferably 915 to 925°C, more preferably 920°C; the time of the strong infiltration period is preferably 595 to 605min, more preferably 600min; the carbon in the strong infiltration period Potential is preferably 1.05 to 1.25 wt%, more preferably 1.15 wt%.
  • a high-carbon "carbon pool” can be established on the surface layer, and the carbon potential is set higher than the expected carbon content after completion, forming a steeper concentration gradient, so that there is sufficient carbon to boron steel during the diffusion period Internal diffusion forms a carburized layer with a certain concentration gradient, which enhances the surface hardness of the workpiece and improves wear resistance; by controlling the process conditions in the strong infiltration period, the wear resistance can be further improved.
  • the temperature of the diffusion period is preferably 915-925°C, more preferably 920°C; the time of the diffusion period is preferably 345-355min, more preferably 350min; the carbon potential of the diffusion period is preferably 0.95-1.15 wt%, more preferably 1.05 wt%.
  • the diffusion period in the present invention can fully diffuse carbon into the carbon steel to form a carburized layer; by controlling the process conditions of the diffusion period, the wear resistance can be further improved.
  • the thickness of the carburized layer in the carburized boron steel is preferably 1-2 mm, more preferably 1.5 mm.
  • the invention can further improve the wear resistance by controlling the thickness of the carburized layer.
  • the present invention austenitizes the carburized boron steel to obtain the austenitized boron steel.
  • the austenitizing temperature is 885-895°C, preferably 888-892°C, more preferably 890°C; the austenitizing time is 25-35min, preferably 28-32min , more preferably 30min.
  • the heating rate of the austenite there is no special limitation on the heating rate of the austenite, and the rate well known to those skilled in the art can be used.
  • the invention can ensure that the carburizing boron steel does not suffer from quenching cracking and deformation by controlling the process conditions of austenitization, and avoids the coarse grains of the matrix caused by excessive temperature.
  • the present invention sequentially performs oil quenching and tempering on the austenitic boron steel.
  • the invention adopts oil quenching to avoid the appearance of multi-phase structure of ferrite and lath martensite due to improper cooling time and temperature control in the water-cooling quenching process, thereby improving the strength of the austenitized boron steel.
  • the temperature of the oil quenching is 55-65°C, preferably 58-62°C, more preferably 60°C; the time of the oil quenching is 29-31 minutes, preferably 30 minutes.
  • the invention can ensure that the carburizing boron steel does not suffer from quenching cracking and deformation by controlling the process conditions of oil quenching.
  • the tempering temperature is preferably 160-170°C, more preferably 165°C; the tempering holding time is preferably 115-125min, more preferably 118-122min, and more preferably 120min.
  • the invention can eliminate residual stress by controlling tempering process conditions, thereby further improving hardness and wear resistance.
  • the invention improves and optimizes the heat treatment of the boron steel. Firstly, the surface carburization of the boron steel is carried out, and the surface hardness of the boron steel is improved through carburization, thereby improving the wear resistance, and then austenitization and oil quenching are carried out in sequence. And tempering treatment, by adjusting the process parameters of austenitization and oil quenching, it can ensure that the carburizing boron steel will not appear quenching cracking and deformation, thereby further improving the hardness and wear resistance of boron steel.
  • the present invention can make the surface layer of boron steel have high hardness and good wear resistance through surface carburizing, and the strength and toughness of the core are well matched to realize a "sandwich" structure with external hardness and internal toughness.
  • the manufacturing cost is low, and at the same time, it meets the user's needs and economic strength. .
  • the present invention also provides the high-strength and tough boron steel prepared by the heat treatment method described in the above technical solution.
  • the microstructure of the surface layer of the high-strength and tough boron steel preferably includes carbide particles and tempered martensite
  • the microstructure of the core of the high-strength and tough boron steel preferably includes tempered martensite.
  • the surface layer of the boron steel provided by the invention has high hardness, good wear resistance, good matching of strength and toughness of the core, and is a "sandwich" structure with outer hardness and inner toughness.
  • the present invention also provides the application of the high-strength and toughness boron steel described in the above technical solution in the plow point of a high-speed plow.
  • the heat treatment method of 33MnCrB5 consists of the following steps:
  • 33MnCrB5 after forging is carried out surface carburizing, and the thickness that obtains carburizing layer is the carburizing boron steel of 1.0mm;
  • the chemical composition of described 33MnCrB5 is calculated as C 0.33wt%, Mn 1.40wt%, Si 0.30 by mass percent wt%, B 0.0035wt%, Cr 0.45wt%, P 0.012wt%, S 0.010wt%, Al 0.015wt%, Ti 0.035wt% and balance iron;
  • the surface carburization consists of soaking period, intensive infiltration period and diffusion period; the temperature in the soaking period is 915°C, the time is 25min, and the carbon potential is 0.9wt%; the temperature in the intensive infiltration period is 915°C, and the time is 595min.
  • the carbon potential is 1.05wt%; the temperature of the diffusion period is 915°C, the time is 345min, and the carbon potential is 0.95wt%;
  • step (3) performing oil quenching and tempering successively on the austenitic boron steel obtained in the step (2);
  • the temperature of oil quenching is 55°C, and the time is 29 minutes; the temperature of tempering is 160°C, and the holding time is 115 minutes.
  • microstructure of the high-strength and tough boron steel prepared in Example 1 is shown in Figures 3 to 4, wherein Figure 3 is the microstructure of the surface layer of the high-strength and tough boron steel prepared in Example 1; Microstructure diagram of high strength and toughness boron steel core.
  • microstructure of the surface layer of high-strength and tough boron steel is tempered martensite and a small amount of retained austenite, and the microstructure of the core is tempered martensite without carburized layer.
  • the performance test of the boron steel prepared in Example 1 shows that when the thickness of the carburized layer is 1mm, the average hardness of the carburized layer is 58.5HRC, and the hardness of the core is 51-52HRC (obtained by testing different positions of the core of the boron steel).
  • the heat treatment method of 33MnCrB5 consists of the following steps:
  • 33MnCrB5 after forging is carried out surface carburizing, and the thickness that obtains carburized layer is the carburizing boron steel of 1.5mm;
  • the chemical composition of described 33MnCrB5 is calculated as C 0.33wt%, Mn 1.40wt%, Si 0.30 by mass percent wt%, B 0.0035wt%, Cr 0.45wt%, P 0.012wt%, S 0.010wt%, Al 0.015wt%, Ti 0.035wt% and balance iron;
  • the surface carburization consists of soaking period, strong infiltration period and diffusion period; the temperature of the soaking period is 920°C, the time is 30min, and the carbon potential is 1.0wt%; the temperature of the strong infiltration period is 920°C, and the time is 600min. The carbon potential is 1.15wt%; the temperature of the diffusion period is 920°C, the time is 350min, and the carbon potential is 1.05wt%;
  • the temperature of oil quenching is 60°C, and the time is 30min; the temperature of tempering is 165°C, and the holding time is 120min.
  • the hardness curve from the surface layer to the core of the high-strength and toughness boron steel prepared in Example 2 as a function of depth is shown in FIG. 5 . It can be seen from Figure 5 that when the thickness of the carburized layer is 1.5mm, the average hardness of the carburized layer is 59HRC, and the hardness of the core is 52-53HRC (obtained by testing different positions of the boron steel core).
  • FIG. 6 is the microstructure of the high-strength and tough boron steel prepared in Example 2
  • Figure 6 is the microstructure of the surface layer of the high-strength and tough boron steel prepared in Example 2
  • FIG. 8 is the microstructural diagram of the high-strength and tough boron steel core prepared in Example 2.
  • the microstructure of the surface layer of the high-strength and toughness boron steel is tempered martensite and a small amount of retained austenite, the amount of retained austenite is reduced compared with Example 1, and the microstructure of the core is For tempered martensite, no carburized layer exists.
  • the heat treatment method of 33MnCrB5 consists of the following steps:
  • 33MnCrB5 after forging is carried out surface carburizing, and the thickness that obtains carburizing layer is the carburizing boron steel of 2.0mm;
  • the chemical composition of described 33MnCrB5 is calculated as C 0.33wt%, Mn 1.40wt%, Si 0.30 by mass percent wt%, B 0.0035wt%, Cr 0.45wt%, P 0.012wt%, S 0.010wt%, Al 0.015wt%, Ti 0.035wt% and balance iron;
  • the surface carburization consists of soaking period, intensive infiltration period and diffusion period; the temperature in the soaking period is 925°C, the time is 35min, and the carbon potential is 1.1wt%; the temperature in the intensive infiltration period is 925°C, and the time is 605min.
  • the carbon potential is 1.25wt%; the temperature of the diffusion period is 925°C, the time is 355min, and the carbon potential is 1.15wt%;
  • step (3) performing oil quenching and tempering successively on the austenitic boron steel obtained in the step (2);
  • the temperature of oil quenching is 65°C, and the time is 31 minutes; the temperature of tempering is 170°C, and the holding time is 125 minutes.
  • FIG. 9 The microstructure of the high-strength and tough boron steel prepared in Example 3 is shown in Figures 9 to 10, wherein Figure 9 is the microstructure of the surface layer of the high-strength and tough boron steel prepared in Example 3; Microstructure diagram of high strength and toughness boron steel core.

Abstract

本发明提供了一种硼钢的热处理方法,包括以下步骤:将硼钢进行表层渗碳,得到渗碳硼钢;将所述渗碳硼钢进行奥氏体化,得到奥氏体化硼钢;所述奥氏体化的温度为885~895℃,奥氏体化的时间为25~35min;将所述奥氏体化硼钢依次进行油淬和回火;所述油淬的温度为55~65℃,油淬的时间为29~31min。本发明对硼钢的热处理进行了改善和优化,先对硼钢进行表面渗碳,通过渗碳提高了硼钢的表面硬度,从而提高了耐磨性能,再依次进行奥氏体化、油淬和回火处理,通过调整奥氏体化和油淬的工艺参数,能够保证渗碳硼钢不会出现淬火开裂和变形现象,从而进一步提高了硼钢的硬度和耐磨性能。

Description

一种硼钢的热处理方法、高强韧硼钢及其应用
本申请要求于2021年07月07日提交中国专利局、申请号为202110764926.8、发明名称为“一种硼钢的热处理方法、高强韧硼钢及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于金属热处理技术领域,具体涉及一种硼钢的热处理方法、高强韧硼钢及其应用。
背景技术
农业是我国的基础产业,也是支柱型产业,其生产力与竞争力直接关系国家经济发展的稳定性与持久性。农业机械化和自动化的推进与发展极大地提升了农业的生产力与竞争力,促进了农业经济持续、快速、健康发展。农机刀具,如犁尖、犁铲、旋耕刀片等,是农业机械的关键零部件,是确保农业机械在使用周期内安全、优异运行的重要工艺环节。
高速犁是世界上应用最为广泛的耕作工具。随着农机动力以及耕作速度的提升对高速犁犁尖材料的性能和寿命提出了更高的要求。目前,我国高速犁犁尖的材料主要为硼钢,其热处理工艺为在910℃条件下奥氏体化10min,然后水冷淬火,最后在200℃条件下进行低温回火2h,热处理后硼钢的硬度为47~52HRC,微观组织会出现两大问题:(1)硼钢水冷淬火后得到板条马氏体的晶粒和板条尺寸粗大,如图1所示;(2)若水冷淬火过程中冷却时间和温度控制不当,则会出现铁素体和板条马氏体复相结构,如图2所示;这两种微观组织会降低硼钢的硬度和耐磨性能,直接导致犁尖材料使用寿命大大缩减。
因此,有必要对硼钢的热处理工艺进行改进,以进一步提高硼钢的硬度和耐磨性能。
发明内容
本发明的目的在于提供一种硼钢的热处理方法、高强韧硼钢及其应用。硼钢在采用本发明提供的热处理方法处理后硬度和耐磨性能均提高。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种硼钢的热处理方法,包括以下步骤:
(1)将硼钢进行表层渗碳,得到渗碳硼钢;
(2)将所述步骤(1)得到的渗碳硼钢进行奥氏体化,得到奥氏体化硼钢;所述奥氏体化的温度为885~895℃,奥氏体化的时间为25~35min;
(3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火;所述油淬的温度为55~65℃,油淬的时间为29~31min。
优选地,所述步骤(1)中硼钢的化学成分按质量百分比计包括C 0.30~0.36wt%、Mn 1.20~1.50wt%、Si<0.40wt%、B 0.0008~0.005wt%、Cr 0.30~0.60wt%、P≤0.025wt%、S≤0.015wt%、Al≥0.015wt%、Ti 0.020~0.050wt%和余量的铁。
优选地,所述步骤(1)中表层渗碳包括均热期、强渗期和扩散期。
优选地,所述均热期的温度为915~925℃,均热期的时间为25~35min,均热期的碳势为0.9~1.1wt%。
优选地,所述均热期的温度为920℃,均热期的时间为30min,均热期的碳势为1.0wt%。
优选地,所述强渗期的温度为915~925℃,强渗期的时间为595~605min,强渗期的碳势为1.05~1.25wt%。
优选地,所述强渗期的温度为920℃,强渗期的时间为600min,强渗期的碳势为1.15wt%。
优选地,所述扩散期的温度为915~925℃,扩散期的时间为345~355min,扩散期的碳势为0.95~1.15wt%。
优选地,所述扩散期的温度为920℃,扩散期的时间为350min,扩散期的碳势为1.05wt%。
优选地,所述步骤(1)渗碳硼钢中渗碳层的厚度为1~2mm。
优选地,所述步骤(2)中奥氏体化的温度为888~892℃,奥氏体化的时间为28~32min。
优选地,所述奥氏体化的温度为890℃,奥氏体化的时间为30min。
优选地,所述步骤(3)中油淬的温度为58~62℃,油淬的时间为30min。
优选地,所述步骤(3)中回火的温度为160~170℃,回火的保温时间为115~125min。
优选地,所述回火的温度为165℃,回火的保温时间为118~122min。
本发明还提供了上述技术方案所述热处理方法制备得到的高强韧。
本发明还提供了上述技术方案所述高强韧硼钢在高速犁犁尖中的应用。
本发明提供了一种硼钢的热处理方法,包括以下步骤:将硼钢进行表层渗碳,得到渗碳硼钢;将所述渗碳硼钢进行奥氏体化,得到奥氏体化硼钢;所述奥氏体化的温度为885~895℃,奥氏体化的时间为25~35min;将所述奥氏体化硼钢依次进行油淬和回火;所述油淬的温度为55~65℃,油淬的时间为29~31min。本发明对硼钢的热处理进行了改善和优化,先对硼钢进行表面渗碳,通过渗碳提高了硼钢的表面硬度,从而提高了耐磨性能,再依次进行奥氏体化、油淬和回火处理,通过调整奥氏体化和油淬的工艺参数,能够保证渗碳硼钢不会出现淬火开裂和变形现象,从而进一步提高了硼钢的硬度和耐磨性能。实验结果表明,对硼钢采用本发明提供的热处理方法后硼钢的渗碳层平均硬度为58.3~59HRC,芯部硬度为51~53HRC。
附图说明
图1为硼钢水冷淬火得到的板条马氏体的微观组织结构图;
图2为硼钢水冷淬火过程中冷却时间和温度控制不当出现的铁素体和板条马氏体复相结构图;
图3为实施例1制备的高强韧硼钢表层的微观组织结构图;
图4为实施例1制备的高强韧硼钢芯部的微观组织结构图;
图5为实施例2制备的高强韧硼钢的表层至芯部随深度变化的硬度曲线;
图6为实施例2制备的高强韧硼钢表层的微观组织结构图;
图7为实施例2制备的高强韧内部距离表面3~4mm的微观组织结构图;
图8为实施例2制备的高强韧硼钢芯部的微观组织结构图;
图9为实施例3制备的高强韧硼钢表层的微观组织结构图;
图10为实施例3制备的高强韧硼钢芯部的微观组织结构图。
具体实施方式
本发明提供了一种硼钢的热处理方法,包括以下步骤:
(1)将硼钢进行表层渗碳,得到渗碳硼钢;
(2)将所述步骤(1)得到的渗碳硼钢进行奥氏体化,得到奥氏体化硼钢;所述奥氏体化的温度为885~895℃,奥氏体化的时间为25~35min;
(3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火;所述油淬的温度为55~65℃,油淬的时间为29~31min。
本发明提供的热处理方法适用于未进行热处理的锻后硼钢。本发明对所述硼钢的锻造操作没有特殊的限定,采用本领域技术人员熟知的锻造操作即可。在本发明中,所述硼钢优选为33MnCrB5;所述33MnCrB5的化学成分按质量百分比计优选包括C 0.30~0.36wt%、Mn 1.20~1.50wt%、Si<0.40wt%、B 0.0008~0.005wt%、Cr 0.30~0.60wt%、P≤0.025wt%、S≤0.015wt%、Al≥0.015wt%、Ti 0.020~0.050wt%和余量的铁。
本发明将硼钢进行表层渗碳,得到渗碳硼钢。本发明对硼钢进行表面渗碳,通过渗碳提高了硼钢的表面硬度,从而提高了耐磨性能。
在本发明中,所述表层渗碳优选包括均热期、强渗期和扩散期。本发明在表层渗碳时设置均热期、强渗期和扩散期三个过程能够使碳原子更加均匀从气氛中扩散到硼钢材料中,从而进一步提高硼钢的耐磨性能。
在本发明中,所述均热期的温度优选为915~925℃,更优选为920℃;所述均热期的时间优选为25~35min,更优选为30min;所述均热期的碳势优选为0.9~1.1wt%,更优选为1.0wt%。本发明中均热期渗碳介质分解为活性碳原子吸附到硼钢表面,使得表层奥氏体中碳含量增加,硼钢表层组织中的碳会向内层基体扩散,同时由于表层与外界存在碳势差,表层不断得到碳原子补充,能够促使碳原子的扩散和均匀化,从而进一步提高耐磨性能。
在本发明中,所述强渗期的温度优选为915~925℃,更优选为920℃;所述强渗期的时间优选为595~605min,更优选为600min;所述强渗期的碳势优选为1.05~1.25wt%,更优选为1.15wt%。本发明中强渗期能够使表层建立一个高碳分的“碳库”,设定碳势高于完工预期含碳量,形成更陡的 浓度梯度,从而使扩散期有充分的碳向硼钢内扩散,形成一定浓度梯度的渗碳层,增强工件表面硬度,提高耐磨性能;通过控制强渗期的工艺条件,能够进一步提高耐磨性能。
在本发明中,所述扩散期的温度优选为915~925℃,更优选为920℃;所述扩散期的时间优选为345~355min,更优选为350min;所述扩散期的碳势优选为0.95~1.15wt%,更优选为1.05wt%。本发明中扩散期能够使碳充分向碳钢的内部扩散,从而形成渗碳层;通过控制扩散期的工艺条件,能够进一步提高耐磨性能。
在本发明中,所述渗碳硼钢中渗碳层的厚度优选为1~2mm,更优选为1.5mm。本发明通过控制渗碳层的厚度能够进一步提高耐磨性能。
得到渗碳硼钢后,本发明将所述渗碳硼钢进行奥氏体化,得到奥氏体化硼钢。
在本发明中,所述奥氏体化的温度为885~895℃,优选为888~892℃,更优选为890℃;所述奥氏体化的时间为25~35min,优选为28~32min,更优选为30min。本发明对所述奥氏体加热的速率没有特殊的限定,采用本领域技术人员熟知的速率即可。本发明通过控制奥氏体化的工艺条件能够保证渗碳硼钢不会出现淬火开裂和变形现象,避免温度过高导致基体晶粒粗大。
得到奥氏体化硼钢后,本发明将所述奥氏体化硼钢依次进行油淬和回火。本发明采用油淬能够避免由于水冷淬火过程中冷却时间和温度控制不当铁素体和板条马氏体复相结构的出现,从而提高了奥氏体化硼钢的强度。
在本发明中,所述油淬的温度为55~65℃,优选为58~62℃,更优选为60℃;所述油淬的时间为29~31min,优选为30min。本发明通过控制油淬的工艺条件能够保证渗碳硼钢不会出现淬火开裂和变形现象。
在本发明中,所述回火的温度优选为160~170℃,更优选为165℃;所述回火的保温时间优选为115~125min,进一步优选为118~122min,更优选为120min。本发明通过控制回火的工艺条件能够消除残余应力,从而进一步提高硬度和耐磨性能。
本发明对硼钢的热处理进行了改善和优化,先对硼钢进行表面渗碳,通过渗碳提高了硼钢的表面硬度,从而提高了耐磨性能,再依次进行奥氏体化、油淬和回火处理,通过调整奥氏体化和油淬的工艺参数,能够保证渗碳硼钢不会出现淬火开裂和变形现象,从而进一步提高了硼钢的硬度和耐磨性能。
本发明通过表层渗碳能够使得硼钢表层硬度高,耐磨性好,芯部强韧性匹配好,实现外硬内韧的“三明治”结构,制造成本低廉,同时满足用户的使用需求和经济实力。
本发明还提供了上述技术方案所述热处理方法制备得到的高强韧硼钢。在本发明中,所述高强韧硼钢表层的微观组织结构优选包括碳化物颗粒和回火马氏体,所述高强韧硼钢芯部的微观组织结构优选包括回火马氏体。本发明提供的硼钢表层硬度高,耐磨性好,芯部强韧性匹配好,为外硬内韧的“三明治”结构。
本发明还提供了上述技术方案所述高强韧硼钢在高速犁犁尖中的应用。
本发明对所述高强韧硼钢在高速犁犁尖中的应用没有特殊的限定,采用本领域技术人员熟知的硼钢在高速犁犁尖中的应用操作即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
33MnCrB5的热处理方法,由以下步骤组成:
(1)将锻后33MnCrB5进行表层渗碳,得到渗碳层的厚度为1.0mm的渗碳硼钢;所述33MnCrB5的化学成分按质量百分比计为C 0.33wt%、Mn 1.40wt%、Si 0.30wt%、B 0.0035wt%、Cr 0.45wt%、P 0.012wt%、S 0.010wt%、Al 0.015wt%、Ti 0.035wt%和余量的铁;
其中,表层渗碳为均热期、强渗期和扩散期;均热期的温度为915℃,时间为25min,碳势为0.9wt%;强渗期的温度为915℃,时间为595min,碳势为1.05wt%;扩散期的温度为915℃,时间为345min,碳势为0.95wt%;
(2)将所述步骤(1)得到的渗碳硼钢在885℃进行奥氏体化25min,得到奥氏体化硼钢;
(3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火;
其中,油淬的温度为55℃,时间为29min;回火的温度为160℃,保温时间为115min。
实施例1制备的高强韧硼钢的微观组织结构如图3~4所示,其中,图3为实施例1制备的高强韧硼钢表层的微观组织结构图;图4为实施例1制备的高强韧硼钢芯部的微观组织结构图。
从图3~4可以看出,高强韧硼钢表层的微观组织结构为回火马氏体和少量残余奥氏体,芯部的微观组织结构为回火马氏体,无渗碳层存在。
对实施例1制备的硼钢进行性能测试,渗碳层厚度为1mm时渗碳层的平均硬度为58.5HRC,芯部硬度为51~52HRC(由测试硼钢芯部不同位置得到的)。
实施例2
33MnCrB5的热处理方法,由以下步骤组成:
(1)将锻后33MnCrB5进行表层渗碳,得到渗碳层的厚度为1.5mm的渗碳硼钢;所述33MnCrB5的化学成分按质量百分比计为C 0.33wt%、Mn 1.40wt%、Si 0.30wt%、B 0.0035wt%、Cr 0.45wt%、P 0.012wt%、S 0.010wt%、Al 0.015wt%、Ti 0.035wt%和余量的铁;
其中,表层渗碳为均热期、强渗期和扩散期;均热期的温度为920℃,时间为30min,碳势为1.0wt%;强渗期的温度为920℃,时间为600min,碳势为1.15wt%;扩散期的温度为920℃,时间为350min,碳势为1.05wt%;
(2)将所述步骤(1)得到的渗碳硼钢在890℃下进行奥氏体化30min,得到奥氏体化硼钢;
(3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火,制备得到高强韧硼钢;
其中,油淬的温度为60℃,时间为30min;回火的温度为165℃,保温时间为120min。
实施例2制备的高强韧硼钢的表层至芯部随深度变化的硬度曲线如图5所示。从图5可以看出,在渗碳层厚度为1.5mm时渗碳层的平均硬 度为59HRC,芯部硬度为52~53HRC(由测试硼钢芯部不同位置得到的)。
实施例2制备的高强韧硼钢的微观组织结构如图6~8所示,其中,图6为实施例2制备的高强韧硼钢表层的微观组织结构图;图7为实施例2制备的高强韧内部距离表面3~4mm的微观组织结构图;图8为实施例2制备的高强韧硼钢芯部的微观组织结构图。
从图6~8可以看出,高强韧硼钢表层的微观组织结构为回火马氏体和少量残余奥氏体,残余奥氏体量较实施例1有所减少,芯部的微观组织结构为回火马氏体,无渗碳层存在。
实施例3
33MnCrB5的热处理方法,由以下步骤组成:
(1)将锻后33MnCrB5进行表层渗碳,得到渗碳层的厚度为2.0mm的渗碳硼钢;所述33MnCrB5的化学成分按质量百分比计为C 0.33wt%、Mn 1.40wt%、Si 0.30wt%、B 0.0035wt%、Cr 0.45wt%、P 0.012wt%、S 0.010wt%、Al 0.015wt%、Ti 0.035wt%和余量的铁;
其中,表层渗碳为均热期、强渗期和扩散期;均热期的温度为925℃,时间为35min,碳势为1.1wt%;强渗期的温度为925℃,时间为605min,碳势为1.25wt%;扩散期的温度为925℃,时间为355min,碳势为1.15wt%;
(2)将所述步骤(1)得到的渗碳硼钢在895℃进行奥氏体化35min,得到奥氏体化硼钢;
(3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火;
其中,油淬的温度为65℃,时间为31min;回火的温度为170℃,保温时间为125min。
实施例3制备的高强韧硼钢的微观组织结构如图9~10所示,其中,图9为实施例3制备的高强韧硼钢表层的微观组织结构图;图10为实施例3制备的高强韧硼钢芯部的微观组织结构图。
从图9~10可以看出,高强韧硼钢表层的微观组织结构为回火马氏体和少量残余奥氏体,残余奥氏体量较实施例2有所增加,芯部的微观组织结构为回火马氏体,无渗碳层存在。
对实施例3制备的硼钢进行性能测试,在渗碳层厚度为2mm时渗碳层的平均硬度为58.3HRC,芯部硬度为51~52HRC(由测试硼钢芯部不 同位置得到的)。
从以上实施例可以看出,硼钢采用本发明提供的热处理方法后硬度和耐磨性能均提高。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种硼钢的热处理方法,包括以下步骤:
    (1)将硼钢进行表层渗碳,得到渗碳硼钢;
    (2)将所述步骤(1)得到的渗碳硼钢进行奥氏体化,得到奥氏体化硼钢;所述奥氏体化的温度为885~895℃,奥氏体化的时间为25~35min;
    (3)将所述步骤(2)得到的奥氏体化硼钢依次进行油淬和回火;所述油淬的温度为55~65℃,油淬的时间为29~31min。
  2. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(1)中硼钢的化学成分按质量百分比计包括C 0.30~0.36wt%、Mn 1.20~1.50wt%、Si<0.40wt%、B 0.0008~0.005wt%、Cr 0.30~0.60wt%、P≤0.025wt%、S≤0.015wt%、Al≥0.015wt%、Ti 0.020~0.050wt%和余量的铁。
  3. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(1)中表层渗碳包括均热期、强渗期和扩散期。
  4. 根据权利要求3所述的热处理方法,其特征在于,所述均热期的温度为915~925℃,均热期的时间为25~35min,均热期的碳势为0.9~1.1wt%。
  5. 根据权利要求4所述的热处理方法,其特征在于,所述均热期的温度为920℃,均热期的时间为30min,均热期的碳势为1.0wt%。
  6. 根据权利要求3所述的热处理方法,其特征在于,所述强渗期的温度为915~925℃,强渗期的时间为595~605min,强渗期的碳势为1.05~1.25wt%。
  7. 根据权利要求6所述的热处理方法,其特征在于,所述强渗期的温度为920℃,强渗期的时间为600min,强渗期的碳势为1.15wt%。
  8. 根据权利要求3所述的热处理方法,其特征在于,所述扩散期的温度为915~925℃,扩散期的时间为345~355min,扩散期的碳势为0.95~1.15wt%。
  9. 根据权利要求8所述的热处理方法,其特征在于,所述扩散期的温度为920℃,扩散期的时间为350min,扩散期的碳势为1.05wt%。
  10. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(1) 渗碳硼钢中渗碳层的厚度为1~2mm。
  11. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(2)中奥氏体化的温度为888~892℃,奥氏体化的时间为28~32min。
  12. 根据权利要求11所述的热处理方法,其特征在于,所述奥氏体化的温度为890℃,奥氏体化的时间为30min。
  13. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(3)中油淬的温度为58~62℃,油淬的时间为30min。
  14. 根据权利要求1所述的热处理方法,其特征在于,所述步骤(3)中回火的温度为160~170℃,回火的保温时间为115~125min。
  15. 根据权利要求14所述的热处理方法,其特征在于,所述回火的温度为165℃,回火的保温时间为118~122min。
  16. 一种权利要求1~15任意一项所述热处理方法制备得到的高强韧硼钢。
  17. 权利要求16所述高强韧硼钢在高速犁犁尖中的应用。
PCT/CN2021/128406 2021-07-07 2021-11-03 一种硼钢的热处理方法、高强韧硼钢及其应用 WO2023279602A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/908,264 US20240084432A1 (en) 2021-07-07 2021-11-03 Method for heat-treating boron steel, and boron steel with high strength and good toughness, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110764926.8 2021-07-07
CN202110764926.8A CN113529009A (zh) 2021-07-07 2021-07-07 一种硼钢的热处理方法、高强韧硼钢及其应用

Publications (1)

Publication Number Publication Date
WO2023279602A1 true WO2023279602A1 (zh) 2023-01-12

Family

ID=78097907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128406 WO2023279602A1 (zh) 2021-07-07 2021-11-03 一种硼钢的热处理方法、高强韧硼钢及其应用

Country Status (3)

Country Link
US (1) US20240084432A1 (zh)
CN (1) CN113529009A (zh)
WO (1) WO2023279602A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529009A (zh) * 2021-07-07 2021-10-22 江苏大学 一种硼钢的热处理方法、高强韧硼钢及其应用
CN114058801A (zh) * 2021-11-16 2022-02-18 江苏大学 一种细化硼钢晶粒的方法、高强韧硼钢及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1418310A (en) * 1972-01-03 1975-12-17 Uss Eng & Consult Method for the case carburizing of steel
CN101225499A (zh) * 2008-01-31 2008-07-23 上海交通大学 低合金超高强度复相钢及其热处理方法
CN105358720A (zh) * 2013-07-05 2016-02-24 蒂森克虏伯钢铁欧洲股份公司 耐磨的、至少部分未涂覆的钢制零件
CN110592477A (zh) * 2019-09-16 2019-12-20 中国科学院金属研究所 一种富Cr锰硼合金钢及其热处理方法
CN110592357A (zh) * 2019-09-16 2019-12-20 中国科学院金属研究所 一种铁基耐磨涂层犁铲尖的热处理方法
CN111534784A (zh) * 2020-05-21 2020-08-14 湖南特科能热处理有限公司 一种低碳合金钢的真空渗碳工艺
CN113529009A (zh) * 2021-07-07 2021-10-22 江苏大学 一种硼钢的热处理方法、高强韧硼钢及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141595A (zh) * 2016-08-11 2016-11-23 镇江市宝偃工程机械有限公司 截齿的钎焊与热处理一体化工艺方法
CN111020458A (zh) * 2019-12-13 2020-04-17 河南精诚汽车零部件有限公司 一种用于煤灰煤渣成型砖的低碳钢模具的热处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1418310A (en) * 1972-01-03 1975-12-17 Uss Eng & Consult Method for the case carburizing of steel
CN101225499A (zh) * 2008-01-31 2008-07-23 上海交通大学 低合金超高强度复相钢及其热处理方法
CN105358720A (zh) * 2013-07-05 2016-02-24 蒂森克虏伯钢铁欧洲股份公司 耐磨的、至少部分未涂覆的钢制零件
CN110592477A (zh) * 2019-09-16 2019-12-20 中国科学院金属研究所 一种富Cr锰硼合金钢及其热处理方法
CN110592357A (zh) * 2019-09-16 2019-12-20 中国科学院金属研究所 一种铁基耐磨涂层犁铲尖的热处理方法
CN111534784A (zh) * 2020-05-21 2020-08-14 湖南特科能热处理有限公司 一种低碳合金钢的真空渗碳工艺
CN113529009A (zh) * 2021-07-07 2021-10-22 江苏大学 一种硼钢的热处理方法、高强韧硼钢及其应用

Also Published As

Publication number Publication date
US20240084432A1 (en) 2024-03-14
CN113529009A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2023279602A1 (zh) 一种硼钢的热处理方法、高强韧硼钢及其应用
US20120160832A1 (en) Gear part and method of producing thereof
CN103352111B (zh) 三牙轮钻头牙爪的热处理方法
JPWO2006118243A1 (ja) 浸炭高周波焼入部品
CN105714236A (zh) 真空脉冲渗碳马氏体不锈钢的方法
WO2017120987A1 (zh) 用于制造轴承的钢材、对其进行热处理的方法和成型件
JP2004076125A (ja) 転動部材
CN105695679B (zh) 一种具有高韧性复相组织分布的钎具钢xgq25的等温淬火工艺
CN113862561A (zh) 一种长寿命高碳轴承钢管材及其制备方法和应用
CN1424425A (zh) 复合热处理方法
CN110205446A (zh) 一种g520马氏体沉淀硬化不锈钢热处理方法
JP3381738B2 (ja) 機械的強度に優れた機械構造部品の製造方法
JP2011219846A (ja) 機械構造部品の製造方法
JP3551573B2 (ja) 歯切り性に優れた浸炭歯車用鋼
CN110218855A (zh) 一种克服刀片热处理变形的方法
CN108866442A (zh) 超高碳钢的热处理方法及制品
JPH07157842A (ja) 軟窒化用鋼
CN107841681A (zh) 射孔枪管材料及其制备方法
JP3927420B2 (ja) 焼戻し軟化抵抗性に優れた肌焼鋼
JP4536327B2 (ja) 短時間での浸炭性に優れたNb含有肌焼鋼
CN112760465A (zh) 一种410不锈钢热处理方法
KR102145259B1 (ko) 탄소공구강 열처리 방법과 이를 이용한 탄소공구강
JP3907986B2 (ja) 冷間加工性と結晶粒度特性に優れた肌焼き鋼の製造方法
JPS61147815A (ja) 高硬化深度を有する圧延ロ−ルの製造方法
JP2004027305A (ja) 転動部品用肌焼き部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17908264

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE