WO2023279477A1 - 一种扭矩无级变量调节的偏心轮组件及星型液压泵 - Google Patents

一种扭矩无级变量调节的偏心轮组件及星型液压泵 Download PDF

Info

Publication number
WO2023279477A1
WO2023279477A1 PCT/CN2021/112514 CN2021112514W WO2023279477A1 WO 2023279477 A1 WO2023279477 A1 WO 2023279477A1 CN 2021112514 W CN2021112514 W CN 2021112514W WO 2023279477 A1 WO2023279477 A1 WO 2023279477A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric wheel
oil chamber
crankshaft
plunger
oil
Prior art date
Application number
PCT/CN2021/112514
Other languages
English (en)
French (fr)
Inventor
翁颇颖
Original Assignee
翁颇颖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翁颇颖 filed Critical 翁颇颖
Publication of WO2023279477A1 publication Critical patent/WO2023279477A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/07Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft

Definitions

  • the invention belongs to the technical field of hydraulic pumps, in particular to a star-shaped hydraulic pump and an eccentric wheel assembly whose torque can be steplessly adjusted.
  • Existing hydraulic pumps usually use a swash plate to adjust the plunger or an eccentric wheel assembly to drive the plunger to realize hydraulic transmission.
  • the displacement deviation between the plunger and the swash plate of the existing swash plate hydraulic pump is easy to cause wear, and the wear is more serious under strong load conditions.
  • Existing conventional star hydraulic pumps usually use plunger pumps, which are large in size and have large operating vibrations. They do not have the function of adjusting output. They can only achieve variable output through external speed change, and cannot realize independent stepless speed change adjustment.
  • the present invention provides an eccentric wheel assembly and a star hydraulic pump with stepless torque variable adjustment, which can realize stepless variable torque adjustment, and has the advantages of small size and simple structure.
  • an eccentric shaft assembly with stepless torque variable adjustment which is characterized in that it includes a crankshaft, an eccentric wheel and a passive adjustment plunger,
  • the crankshaft is provided with at least one first oil chamber for accommodating the passive adjustment plunger, one end of the first oil chamber is open, and the other end is connected to an oil circuit;
  • the passive adjustment plunger is sealed in the first oil chamber and can move in the first oil chamber;
  • the eccentric wheel is provided with a mounting hole through which the eccentric wheel is sleeved on the periphery of the first oil chamber.
  • One side of the eccentric wheel’s mounting hole is opposite to the passive adjustment plunger, and the other side is provided with a return valve between the crankshaft and the crankshaft. bit spring;
  • the eccentric wheel When the passive adjustment plunger is located in the first oil chamber as a whole, the eccentric wheel is in the original state, and the eccentric wheel and the crankshaft are arranged concentrically at this time; when the passive adjustment plunger is squeezed by the hydraulic oil and moves to expose the first oil chamber, The eccentric wheel shifts sideways and is in the state of torque adjustment, at this moment, the eccentric wheel and the crankshaft are eccentric shafts.
  • crankshaft is axially provided with two groups of first oil chambers and matched passive adjustment plungers.
  • the present invention also provides a stepless variable moment variable star hydraulic pump of the eccentric wheel assembly, which includes a housing frame and a crankshaft with both ends arranged on the housing frame, as well as an eccentric wheel, a passive adjustment plunger, a focus ring, and a cylinder , the rocker arm and several sets of connecting rods,
  • the crankshaft is provided with at least one first oil chamber arranged transversely along the axial direction, the first end of the first oil chamber is open, and the other end is provided with an oil passage;
  • the passive adjustment plunger is arranged in the first oil chamber and can move in the first oil chamber;
  • the outer edge of the eccentric wheel is provided with an annular groove, and the center of the eccentric wheel is provided with a mounting hole, and the eccentric wheel is sleeved on the periphery of the first oil chamber through the mounting hole.
  • the passive adjustment plunger is opposite, and a return spring is provided between the other inner side and the crankshaft;
  • the focusing ring is nested in the annular groove of the outer edge of the eccentric wheel, and a needle bearing is arranged between the focusing ring and the annular groove of the eccentric wheel;
  • the several groups of connecting rods are uniformly arranged on the outside of the concentration ring, and the rocker arm is also connected to the outside of the concentration ring; one end of the connecting rod is hinged to the outside of the concentration ring, and the other end is hinged with a piston and forms a joint with the corresponding cylinder. Hydraulic pump; one end of the rocker arm is fixedly connected to the outside of the concentration ring, and the other end is hinged with a piston that can reciprocate in the cylinder liner;
  • the eccentric wheel When the passive adjustment plunger is located in the first oil chamber as a whole, the eccentric wheel is in the original state, and the eccentric wheel and the crankshaft are arranged concentrically at this time; when the passive adjustment plunger is squeezed by the hydraulic oil and moves to expose the first oil chamber, The eccentric wheel shifts sideways and is in the state of torque adjustment, at this moment, the eccentric wheel and the crankshaft are eccentric shafts.
  • the whole process can be controlled by the input of external hydraulic oil, which can be increased, decreased or maintained at any time to achieve the purpose of stepless adjustment; by controlling the speed of external hydraulic oil input to control the time of the entire adjustment process, the acceleration time can be controlled.
  • the shape of the hydraulic oil cavity on the crankshaft is square, and the mounting hole of the eccentric wheel is a square shape matching the shape of the hydraulic oil cavity.
  • crankshaft is axially provided with two groups of first oil chambers and matching passive adjustment plungers, and the openings of the two groups of first oil chambers are opposite to each other.
  • the two ends of the crankshaft are respectively provided with a second oil chamber and an active plunger
  • the second oil chamber communicates with the first oil chamber through an oil passage
  • the active plunger and the second oil chamber are connected by Threaded sealing connection, by screwing in/out the active plunger, the position of the passive plunger in the first oil chamber can be adjusted and controlled, thereby realizing stepless torque adjustment.
  • a motor is provided at the tail end of the active plunger.
  • the oil passage is arranged in the crankshaft, one end of the oil passage is connected to the first oil chamber, and the other end is provided with a rotary input hydraulic oil device.
  • a motor is provided in the first oil chamber, and the output shaft of the motor is connected to the passive adjustment plunger, and the passive adjustment plunger can be driven to move in the first oil chamber through the output shaft of the motor.
  • the shape of the hydraulic oil cavity on the crankshaft is square, and the mounting hole of the eccentric wheel is a square shape matching the shape of the hydraulic oil cavity.
  • the eccentric wheel includes a main body of the eccentric wheel and a side cover plate
  • the main body of the eccentric wheel is a sleeve with a square mounting hole in the center, and one side of the sleeve is provided with an outwardly arranged annular baffle plate
  • the side cover plate is fixed on the other side of the eccentric wheel main body and forms an annular groove with the annular baffle plate of the eccentric wheel main body.
  • the passive adjustment plunger on the crankshaft used in the present invention is driven by force, causing the eccentric wheel to move sideways, thereby adjusting the eccentricity of the crankshaft to realize stepless variable adjustment of torque, and finally realizing variable output Hydraulic oil.
  • the eccentric wheel assembly and its star-shaped hydraulic pump of the present invention have the characteristics of high pressure, durability, stepless variable torque and output hydraulic oil. It can be used as a variable speed drive for various industrial and construction machinery as a continuously variable transmission.
  • Fig. 1 is the structural representation of eccentric shaft assembly described in the present invention
  • Fig. 2 is the sectional structure schematic diagram of crankshaft described in the present invention.
  • Fig. 3 is the structural representation of crankshaft described in the present invention.
  • Fig. 4 is a schematic cross-sectional structural view of the eccentric shaft assembly of the present invention.
  • Fig. 5 is the structural representation of eccentric wheel of the present invention.
  • Fig. 6 is a schematic cross-sectional structure diagram of the eccentric wheel of the present invention.
  • Fig. 7 is a structural schematic diagram of a stepless variable moment variable star hydraulic pump according to the present invention.
  • Fig. 8 is a cross-sectional top view structural diagram of the stepless variable torque variable star hydraulic pump of the present invention.
  • Fig. 9 is a schematic cross-sectional structure diagram of the stepless variable torque variable star hydraulic pump according to Embodiment 1 of the present invention.
  • Fig. 10 is a schematic cross-sectional structure diagram of a stepless variable torque variable star hydraulic pump according to Embodiment 2 of the present invention.
  • Fig. 11 is a schematic cross-sectional structure diagram of a stepless variable moment variable star hydraulic pump according to Embodiment 3 of the present invention.
  • Fig. 12 is a schematic diagram of the connection structure of the rocker arm, the connecting rod and the concentration ring according to the present invention.
  • the eccentric shaft assembly for stepless torque variable adjustment mainly includes a crankshaft, an eccentric wheel, a passive adjustment plunger and a return spring, wherein:
  • the middle part of the crankshaft is axially symmetrically provided with two first oil cavities with a square shape, and the two first oil cavities are arranged perpendicular to the axis of the crankshaft, and the two first oil cavities are blind holes with openings Ends facing away from each other can balance the running center of gravity and reduce running vibration.
  • a sealed passive adjustment plunger is arranged in each first oil chamber, and the passive adjustment plunger can move therein. In order to improve the sealing effect, the passive adjustment plunger is provided with a sealing ring.
  • the eccentric wheel is provided with a mounting hole matching the shape of the first oil chamber, and an inner side of the mounting hole is provided with a groove, and the return spring is fixed in the groove.
  • the two sets of eccentric wheels are placed on the periphery of their respective first oil chambers, the return spring is located between the inner side of the eccentric wheel and the crankshaft, and the other inner side of the eccentric wheel is aimed at the passive adjustment plunger.
  • the passive adjusting plunger is located in the first oil chamber as a whole, the eccentric wheel is in the original position, and at this moment, the eccentric wheel is just at the concentric axis position with the crankshaft.
  • the passive adjustment plunger When the passive adjustment plunger gradually moves out of the first oil chamber under the action of hydraulic oil, it drives the eccentric wheel to move sideways so that the eccentric wheel and the crankshaft form an eccentric shaft.
  • the moving position of the passive adjustment plunger can be adjusted arbitrarily by adjusting the pressure in the hydraulic oil chamber, thereby realizing the stepless adjustment of the torque of the eccentric wheel.
  • the outer edge of the first oil chamber on the crankshaft is chamfered, so as to facilitate the installation of the eccentric wheel.
  • the eccentric wheel assembly with stepless torque variable adjustment of the present invention is used as a core assembly and can be used as a continuously variable transmission when applied to a star hydraulic pump.
  • the specific structure is as follows:
  • the eccentric wheel assembly also includes a housing frame, a centering ring, a rocker arm connecting rod and a cylinder, etc. Both ends of the crankshaft in the eccentric wheel assembly are erected on the housing frame, and sealed and fixed by bearings, sealing rings and cover plates.
  • An annular groove is set on the outer peripheral surface of the eccentric wheel, the concentrating ring is nested in the annular groove on the outer peripheral surface of the eccentric wheel, and a needle bearing is arranged between the two, and then the concentrating ring is connected to the eccentric wheel through the side plate of the eccentric wheel .
  • the centralized ring is provided with several connecting ears for connecting the rocker link.
  • the crankshaft is provided with two sets of concentrated rings in the axial direction, and each set of concentrated rings is connected with multiple sets of rocker arms and connecting rods, where:
  • One end of the connecting rod is hinged to the outer side of the concentrating ring and is flexibly connected with the concentrating ring, and can swing accordingly.
  • the other end is connected to a piston and forms a hydraulic pump with the corresponding cylinder.
  • the connection end of the connecting rod and the piston is used to eliminate the non-longitudinal force of the connecting rod;
  • rocker arm is fixedly connected to the outer side of the focus ring, and is used to control the direction of the focus ring to avoid instability of the focus ring.
  • the fixed part of the rocker arm and the centralized ring can be designed as a whole.
  • a separate design is adopted, and the connection is fixed with a square iron pin.
  • the other end of the rocker arm is connected to the piston in a hinged manner to fix the other end of the rocker arm, thereby ensuring that the rocker arm can only move longitudinally.
  • hydraulic oil can be discharged or sucked in.
  • the eccentric wheel When the passive adjustment plunger is located in the first oil chamber as a whole, the eccentric wheel is in the original state, and the eccentric wheel and the crankshaft are arranged concentrically at this time; when the passive adjustment plunger is squeezed by the hydraulic oil and moves to expose the first oil chamber, The eccentric wheel moves sideways, and there is a certain eccentric distance between them, and they are in the state of torque adjustment. At this time, the eccentric wheel and the crankshaft are eccentric shafts. The crankshaft is driven by setting the sprocket, and then drives the eccentric wheel to rotate.
  • the first oil chamber is connected to the external oil pump through an oil passage communicated with it.
  • Oil chamber, the other end is provided with a rotary input hydraulic oil device.
  • the two ends of the crankshaft are respectively provided with a second oil chamber and an active plunger
  • the second oil chamber communicates with the first oil chamber through an oil passage
  • the active plunger communicates with the first oil chamber.
  • the two oil chambers are threaded and sealed.
  • the tail end of the active plunger is equipped with a servo motor, which moves in the second oil chamber through the driving connection with the output shaft of the servo motor, and the movement distance of the active plunger is precisely controlled by the servo motor, thereby accurately performing stepless Torque adjustment.
  • a conductive ring is designed around the motor, and the electric energy is transmitted to the rotating servo motor through the conductive ring
  • a motor is installed in the first oil chamber, and the output shaft of the motor is driven and connected to the passive adjustment plunger, so as to accurately control the moving position of the passive adjustment plunger in the first oil chamber.
  • the wires of the motor are arranged in the oil circuit and connected with the conductive ring provided on the outer wall of the crankshaft, so as to realize the connection with the external power supply.
  • the whole machine controls the eccentricity of two eccentric wheels through the control system at the same time to realize power cutoff, the output of high torque and low flow can be adjusted, the output of low torque and high flow can be adjusted, and the time from low flow to high flow can be adjusted. Adjustment, to achieve the purpose of stepless speed regulation. With the stepless speed regulation, the acceleration process and state of the motion machinery can be perfectly controlled.
  • the whole machine can use any variable-speed or constant-speed power source as the drive source to drive the sprocket to rotate, or it can be combined into the most economical and reliable power unit by selecting the best power source.
  • the system needs to be connected with an external control system, a hydraulic oil conduction valve, a regulating valve, a hydraulic oil storage tank, a hydraulic oil cooling mechanism, a clutch locking mechanism, and a hydraulic motor.
  • the machine is connected to the engine, and an inertia wheel is properly configured after precise calculation, the size and thickness of the tire, and the power of the hydraulic motor are configured.
  • the external control system detects the starting action, and start to adjust the eccentric wheel of the star hydraulic pump.
  • the eccentric wheel eccentric distance is not large, and the hydraulic oil with high torque and low flow rate is output.
  • Hydraulic oil The hydraulic motor is driven through the external conduction valve and control valve, and the hydraulic motor is driven to rotate at a low speed.
  • the hydraulic motor drives the wheel to rotate at a low speed, and the car starts to accelerate. As the eccentricity of the eccentric wheel increases, more and more hydraulic oil is output.
  • the speed of the hydraulic motor is getting faster and faster, and the speed of the wheels is also getting faster and faster, until the eccentricity of the eccentric wheel reaches the maximum, the output of hydraulic oil reaches the maximum, the speed of the hydraulic motor reaches the fastest, and the speed of the wheels also reaches the fastest, and the acceleration process is completed. . Cut off the power output of the hydraulic motor and control the eccentricity of the eccentric wheel to become smaller until zero, control the lock-up clutch to lock, let the engine power pass through the transmission mechanism directly to the wheels, and the vehicle moves forward at the maximum speed.
  • the process of the eccentricity of the entire eccentric wheel from zero to the maximum is the process of car acceleration.
  • the time of the acceleration process of the car from zero to the maximum speed can be controlled.
  • this hydraulic pump provides a new way to achieve objects that require strong acceleration.
  • the present invention simultaneously controls the eccentricity of two eccentric wheels through the control system to realize power cut-off, adjustable high-torque and low-flow output, low-torque and high-flow output, and adjustable time from low flow to high flow.
  • the purpose of stepless speed regulation With the stepless speed regulation, the acceleration process and state of the motion machinery can be perfectly controlled. The whole machine can use any variable speed or constant speed power source, and people can combine the most economical and reliable power unit by selecting the best power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种扭矩无级变量调节的偏心轮组件及星型液压泵,包括曲轴、偏心轮(16)和被动调节柱塞(14),曲轴设有至少一个用于容纳被动调节柱塞(14)的第一油腔(9),第一油腔(9)一端开口,另一端连接有油路(10);被动调节柱塞(14)密封的设在第一油腔(9)内,并能在第一油腔(9)内移动;偏心轮(16)设有安装孔,偏心轮(16)通过安装孔套在第一油腔(9)的外围,偏心轮(16)的安装孔一侧将被动调节柱塞(14)包裹,另一侧与曲轴之间设有回位弹簧(11);当被动调节柱塞(14)受液压油挤压移动露出第一油腔(9)时,此时偏心轮(16)与曲轴为偏心轴。曲轴上被动调节柱塞(14)在受力驱动作用下,使偏心轮(16)发生侧移从而调节曲轴的偏心距实现扭矩的无级变量调节,最终实现变量输出液压油。

Description

一种扭矩无级变量调节的偏心轮组件及星型液压泵 技术领域
本发明属于液压泵技术领域,尤其涉及扭矩可无级调节的星型液压泵及偏心轮组件。
背景技术
现有液压泵通常采用斜盘调节柱塞或偏心轮组件带动柱塞实现液压输送。但现有的斜盘液压泵的柱塞与斜盘间存在位移偏差容易导致磨损,在强负荷工况下磨损更严重。现有常规星型液压泵通常采用柱塞泵,体积较大,且运转振动大,不具备调节输出功能,仅能外部变速实现变量输出,无法实现自主无级变速调节。
发明内容
发明目的:为了解决现有技术的缺陷,本发明提供了一种扭矩无级变量调节的偏心轮组件及星型液压泵,能实现扭矩的无级变量调节,具有体积小、结构简单的优点。
技术方案:为了解决上述技术问题,本发明采用以下技术方案:一种扭矩无级变量调节的偏心轴组件,其特征在于:包括曲轴、偏心轮和被动调节柱塞,
所述曲轴设有至少一个用于容纳所述被动调节柱塞的第一油腔,所述第一油腔一端开口,另一端连接有油路;
所述被动调节柱塞密封的设在第一油腔内,并能在第一油腔内移动;
所述偏心轮设有安装孔,所偏心轮通过安装孔套在第一油腔的外围,所述偏心轮的安装孔一侧与被动调节柱塞相对,另一侧与曲轴之间设有回位弹簧;
当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位状态,此时偏心轮与曲轴为同心轴设置;当被动调节柱塞受液压油挤压移动露出第一油腔时,偏心轮发生侧移并处于扭矩调节状态,此时偏心轮与曲轴为偏心轴。
作为优选,所述曲轴沿轴向设有两组第一油腔和相适配的被动调节柱塞。
本发明还提供了一种上述偏心轮组件的无级变量变矩星型液压泵,包括外壳架和两端设在外壳架上的曲轴,以及偏心轮、被动调节柱塞、集中环、缸筒,摇臂和若干组连杆,
所述曲轴沿轴向设有至少一个横向设置的第一油腔,所述第一油腔第一端开口,另一端设有油路;
所述被动调节柱塞设在第一油腔内,并能在第一油腔内移动;
所述偏心轮的外端缘设有环形凹槽,且偏心轮的中心设有安装孔,所述偏心轮通过安装孔套在第一油腔的外围,所述偏心轮的安装孔一内侧与被动调节柱塞相对,另一内侧与曲轴之间设有回位弹簧;
所述集中环嵌套在偏心轮的外端缘的环形凹槽内,且集中环与偏心轮环形凹槽之间设有滚针轴承;
所述若干组连杆成组均匀的设在集中环的外侧,所述摇臂也与集中环外侧连接;所述连杆一端与集中环外侧铰接,另一端铰接有活塞并与对应缸筒形成液压泵;所述摇臂一端与集中环外侧固接,另一端铰接有活塞并能在缸套内往复运动;
当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位状态,此时偏心轮与曲轴为同心轴设置;当被动调节柱塞受液压油挤压移动露出第一油腔时,偏心轮发生侧移并处于扭矩调节状态,此时偏心轮与曲轴为偏心轴。整个过程可以通过外部液压油的输入油量来控制,随时增加、减少或保持,达到无级调节的目的;通过控制外部液压油的输入的快慢控制整个调节过程的时间,实现加速时间可控。
作为优选方案,所述曲轴上的液压油腔的外形为方形,所述偏心轮的安装孔为与液压油腔外形相适配的方形。
作为优选方案,所述曲轴沿轴向设有两组第一油腔和相适配的被动调节柱塞,且两组第一油腔开口背对开设。
作为优选方案,所述曲轴的两端分别设有第二油腔和主动柱塞,所述第二油腔通过油路与第一油腔连通,所述主动柱塞与第二油腔间为螺纹密封连接,通过旋入/旋出主动柱塞,从而可以调节控制被动柱塞在第一油腔内的位置,从而实现无级扭矩调节。
作为优选方案,所述主动柱塞尾端设有电机。
作为优选方案,所述油路设在曲轴内,油路一端与第一油腔连接,另一端设有旋转输入液压油装置。
作为优选方案,所述第一油腔内设有电机,所述电机输出轴与被动调节柱塞连接,通过电机输出轴能驱动被动调节柱塞在第一油腔内移动。
作为优选方案,所述曲轴上的液压油腔的外形为方形,所述偏心轮的安装孔为与液压油腔外形相适配的方形。
作为优选方案,所述偏心轮包括偏心轮主体和侧盖板,所述偏心轮主体为中心设有 方形安装孔的套筒,所述套筒的一侧设有向外设置的环形档板,所述侧盖板固定在偏心轮主体的另一侧并与偏心轮主体的环形挡板形成环形凹槽。需要在偏心轮外圈安装滚针轴承时,可以将侧盖板从偏心轮上拆卸,然后将轴承套入偏心轮主体的套筒外圈,最后再将侧盖板固定在偏心轮主体的另一侧。
有益效果:相对于现有技术,本发明利用的曲轴上被动调节柱塞在受力驱动作用下,使偏心轮发生侧移从而调节曲轴的偏心距实现扭矩的无级变量调节,最终实现变量输出液压油。本发明的偏心轮组件及其星型液压泵,具有高压、耐用、可无级变量变扭矩输出液压油的特点。可以作为无级变速器应用于各种工业和工程机械的变速驱动器。
具体实施方式
图1为本发明所述偏心轴组件的结构示意图;
图2为本发明所述曲轴的剖面结构示意图;
图3为本发明所述曲轴的结构示意图;
图4为本发明所述偏心轴组件的剖面结构示意图;
图5为本发明所述偏心轮的结构示意图;
图6为本发明所述偏心轮的剖面结构示意图;
图7为本发明所述无级变量变矩星型液压泵的结构示意图;
图8为本发明所述无级变量变矩星型液压泵的剖面俯视结构图;
图9为本发明实施例1所述无级变量变矩星型液压泵的剖面结构示意图;
图10为本发明实施例2所述无级变量变矩星型液压泵的剖面结构示意图;
图11为本发明实施例3所述无级变量变矩星型液压泵的剖面结构示意图;
图12为本发明所述摇臂和连杆与集中环的连接结构示意图。
其中,主轴1、链轮2、盖板3、密封圈4、轴承5、外壳6、电机7、主动柱塞8、第一油腔9、油路10、回位弹簧11、第二油腔12、压紧垫片13、被动调节柱塞14、偏心轮侧板15、偏心轮16、偏心轮主体16-1、侧盖板16-2、滚针轴承17、集中环18、摆臂19、活塞20、柱销20-1、方形铁销20-2连杆21、柱塞22、进出油口23、调节油口24、连接器外壳25、花键26、导电环27。
具体实施方式
下面结合附图和具体实施例对本发明作出进一步说明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明 的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1和4所示,本发明所述扭矩无级变量调节的偏心轴组件,主要包括曲轴、偏心轮、被动调节柱塞和回位弹簧,其中:
所述曲轴的中部沿轴向对称的设置有外形为方形的两个第一油腔,两个第一油腔垂直于曲轴轴心线设置,且两个第一油腔为盲孔,其开口端背对设置,从而可以平衡运行重心,降低运行振动。每个第一油腔内均设置有密封的被动调节柱塞,被动调节柱塞能在其中移动。为了提高密封效果,被动调节柱塞设置密封圈。
所述偏心轮设有与第一油腔外形相匹配的安装孔,安装孔的一内侧设有凹槽,回位弹簧固定在该凹槽内。安装时,将两组偏心轮套在各自的第一油腔外围,回位弹簧位于偏心轮内侧与曲轴之间,偏心轮的另一内侧针对被动调节柱塞。当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位,此时偏心轮正好与曲轴处于同心轴位置。当被动调节柱塞受液压油作用下逐渐移出第一油腔时,带动偏心轮发生侧移从而使偏心轮与曲轴形成偏心轴。本申请中,可以通过调节液压油腔压力任意调节被动调节柱塞的移动位置,从而实现偏心轮的扭矩无级调节。作为最优选,曲轴上第一油腔的外缘经过倒角处理,从而方便偏心轮的安装。
本发明的扭矩无级变量可调节的偏心轮组件作为核心组件,应用在星型液压泵可作为无级变速器。具体结构如下:
除了上述偏心轮组件外,还包括外壳架、集中环、摇臂连杆和缸筒等。偏心轮组件中的曲轴两端架设在外壳架上,且通过轴承、密封圈和盖板密封固定。偏心轮的外周面上设置环形凹槽,将集中环嵌套在偏心轮的外周面的环形凹槽内,且两者间设置滚针轴承,然后通过偏心轮侧板将集中环与偏心轮连接。所述集中环设有若干个连接耳,用于连接摇臂连杆。如图8所示,曲轴沿轴向设有两组集中环,每组集中环连接有多组摇臂和连杆,其中:
连杆一端与集中环外侧铰接跟随集中环活动连接,可以随之摆动,另一端连接有活塞并与对应缸筒形成液压泵,连杆与活塞的连接端用于消除连杆的非纵向力;
所述摇臂一端与集中环外侧固接,用于控制集中环的方向避免集中环失稳。本申请中,摇臂与集中环的固定死的,可以设计为一体,为了生产组装方便,采用分体设计,并在连接处用方形铁销固定。摇臂的另一端通过铰接方式连接活塞,用于固定摇臂的另一端,从而保证摇臂只能纵向位移。通过连杆、活塞与缸筒配合,从而能实现将液压油 排出或吸入。
当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位状态,此时偏心轮与曲轴为同心轴设置;当被动调节柱塞受液压油挤压移动露出第一油腔时,偏心轮发生侧移,两者之间具有一定偏心距,处于扭矩调节状态,此时偏心轮与曲轴为偏心轴。曲轴通过设置链轮带动,进而带动偏心轮转动。
实施例1
本实施例在上述结构基础上,所述第一油腔内通过设置与之连通的油路与外界的油泵连接,该油路可以为设在曲轴内的油路,油路的一端连接第一油腔,另一端设有旋转输入液压油装置。
实施例2
本实施例在上述结构基础上,所述曲轴的两端分别设有第二油腔和主动柱塞,所述第二油腔通过油路与第一油腔连通,所述主动柱塞与第二油腔间为螺纹密封连接,通过旋入/旋出主动柱塞,从而可以调节控制被动柱塞在第一油腔内的位置,从而实现无级扭矩调节。
进一步的,主动柱塞的尾端设有伺服电机,通过与伺服电机的输出轴驱动连接实现在第二油腔内的移动,通过伺服电机精准控制主动柱塞的移动距离,从而精准进行无级扭矩调节。(电机外围设计有导电环,电能通过导电环将外部电能输送到旋转的伺服电机上)
实施例3
本实施例在上述结构基础上,在第一油腔内设置电机,通过电机输出轴与被动调节柱塞驱动连接,从而精准控制被动调节柱塞在第一油腔内的移动位置。电机的导线通过布设在油路内,并通过与曲轴外壁设置的导电环连接,从而实现与外界供电连接。
本发明中,整个机械通过控制系统同时控制2个偏心轮的偏心距,实现动力的切断,高力矩低流量输出可调、低力矩高流量输出可调,低流量到高流量的过程的时间可调,实现了无级调速的目的。有了无级调速就可以实现完美控制运动机械的加速过程与状态。整个机械可以用任何变速或者恒速动力源作为驱动源带动链轮转动,也可以通过选择最佳动力源来组合成最经济,最可靠的动力机组。
将本发明应用于汽车上,本系统需要连接外部控制系统,液压油导通阀门、调节阀门,液压油储存箱、液压油冷却机构,离合器锁止机构,液压马达。本机械连接发动机, 经过精密计算适当配置一个惯性轮,轮胎大小厚度,配置液压马达的功率。
启动发动机,准备起步动作,踩下油门,外部控制系统检测到起步动作,开始调节此星型液压泵的偏心轮,初始,偏心轮偏心距离不大,输出高力矩低流量的液压油,液压油通过外部导通阀门、控制阀门来到液压马达,驱动液压马达低速旋转,液压马达驱动车轮低速旋转,汽车开始加速,随着偏心轮的偏心距越来越大,输出的液压油越来越多,液压马达转速也越来越快,车轮转速也越来越快,直到偏心轮偏心率达到最大,液压油输出量达到最大,液压马达转速达到最快,车轮转速也达到最快,加速过程完成。切断液压马达的动力输出并控制偏心轮的偏心距变小直至零,控制锁止离合器锁止,让发动机动力直通传动机构直达车轮,车辆以最大速度前进。
整个偏心轮的偏心距从零到最大的过程就是汽车加速的过程,通过控制偏心轮偏心距从零到最大的时间,实现控制了汽车从零到最大速度加速过程的时间,只要发动机动力允许,我们可以1秒来完成加速甚至更短,所以这个液压泵给需要强加速的物体提供了一种新的实现方式。
本发明通过控制系统同时控制2个偏心轮的偏心距,实现动力的切断,高力矩低流量输出可调、低力矩高流量输出可调,低流量到高流量的过程的时间可调,实现了无级调速的目的。有了无级调速就可以实现完美控制运动机械的加速过程与状态。整个机械可以用任何变速或者恒速动力源,人们可以通过选择最佳动力源来组合成最经济,最可靠的动力机组。

Claims (11)

  1. 一种扭矩无级变量调节的偏心轴组件,其特征在于:包括曲轴、偏心轮和被动调节柱塞,
    所述曲轴设有至少一个用于容纳所述被动调节柱塞的第一油腔,所述第一油腔一端开口,另一端连接有油路;
    所述被动调节柱塞密封的设在第一油腔内,并能在第一油腔内移动;
    所述偏心轮设有安装孔,所偏心轮通过安装孔套在第一油腔的外围,所述偏心轮的安装孔一侧与被动调节柱塞相对,另一侧与曲轴之间设有回位弹簧;
    当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位状态,此时偏心轮与曲轴为同心轴设置;当被动调节柱塞受液压油挤压移动露出第一油腔时,偏心轮发生侧移并处于扭矩调节状态,此时偏心轮与曲轴为偏心轴。
  2. 根据权利要求1所述扭矩无级变量调节的偏心轴组件,其特征在于:所述曲轴沿轴向设有两组第一油腔和相适配的被动调节柱塞。
  3. 一种基于权利要求1或2所述偏心轮组件的无级变量变矩星型液压泵,其特征在于:包括外壳架和两端设在外壳架上的曲轴,以及偏心轮、被动调节柱塞、集中环、缸筒,摇臂和若干组连杆,
    所述曲轴沿轴向设有至少一个横向设置的第一油腔,所述第一油腔第一端开口,另一端设有油路;
    所述被动调节柱塞设在第一油腔内,并能在第一油腔内移动;
    所述偏心轮的外端缘设有环形凹槽,且偏心轮的中心设有安装孔,所述偏心轮通过安装孔套在第一油腔的外围,所述偏心轮的安装孔一内侧与被动调节柱塞相对,另一内侧与曲轴之间设有回位弹簧;
    所述集中环嵌套在偏心轮的外端缘的环形凹槽内,且集中环与偏心轮环形凹槽之间设有滚针轴承;
    所述若干组连杆成组均匀的设在集中环的外侧,所述摇臂也与集中环外侧连接;所述连杆一端与集中环外侧铰接,另一端铰接有活塞并与对应缸筒形成液压泵;所述摇臂一端与集中环外侧固接,另一端铰接有活塞并能在缸套内往复运动;
    当被动调节柱塞整体位于第一油腔内时,偏心轮处于原位状态,此时偏心轮与曲轴为同心轴设置;当被动调节柱塞受液压油挤压移动露出第一油腔时,偏心轮发生侧移并处于扭矩调节状态,此时偏心轮与曲轴为偏心轴。
  4. 根据权利要求4所述无级变量变矩星型液压泵,其特征在于:所述曲轴上的液压油腔的外形为方形,所述偏心轮的安装孔为与液压油腔外形相适配的方形。
  5. 根据权利要求4所述无级变量变矩星型液压泵,其特征在于:所述曲轴沿轴向设有两组第一油腔和相适配的被动调节柱塞,且两组第一油腔开口背对开设。
  6. 根据权利要求4所述扭矩无级变量调节的偏心轴组件,其特征在于:所述曲轴的两端分别设有第二油腔和主动柱塞,所述第二油腔通过油路与第一油腔连通,所述主动柱塞与第二油腔间为螺纹密封连接,通过旋入/旋出主动柱塞,从而可以调节控制被动柱塞在第一油腔内的位置,从而实现无级扭矩调节。
  7. 根据权利要求6所述扭矩无级变量调节的偏心轴组件,其特征在于:所述主动柱塞尾端设有电机。
  8. 根据权利要求4所述扭矩无级变量调节的偏心轴组件,其特征在于:所述油路设在曲轴内,油路一端与第一油腔连接,另一端设有旋转输入液压油装置。
  9. 根据权利要求4所述扭矩无级变量调节的偏心轴组件,其特征在于:所述第一油腔内设有电机,所述电机输出轴与被动调节柱塞连接,通过电机输出轴能驱动被动调节柱塞在第一油腔内移动。
  10. 根据权利要求4所述扭矩无级变量调节的偏心轴组件,其特征在于:所述曲轴上的液压油腔的外形为方形,所述偏心轮的安装孔为与液压油腔外形相适配的方形。
  11. 根据权利要求1所述扭矩无级变量调节的偏心轴组件,其特征在于:所述偏心轮包括偏心轮主体和侧盖板,所述偏心轮主体为中心设有方形安装孔的套筒,所述套筒的一侧设有向外设置的环形档板,所述侧盖板固定在偏心轮主体的另一侧并与偏心轮主体的环形挡板形成环形凹槽。
PCT/CN2021/112514 2021-07-06 2021-08-13 一种扭矩无级变量调节的偏心轮组件及星型液压泵 WO2023279477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110763519.5 2021-07-06
CN202110763519.5A CN113339220B (zh) 2021-07-06 2021-07-06 一种扭矩无级变量调节的偏心轮组件及星型液压泵

Publications (1)

Publication Number Publication Date
WO2023279477A1 true WO2023279477A1 (zh) 2023-01-12

Family

ID=77482714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112514 WO2023279477A1 (zh) 2021-07-06 2021-08-13 一种扭矩无级变量调节的偏心轮组件及星型液压泵

Country Status (2)

Country Link
CN (1) CN113339220B (zh)
WO (1) WO2023279477A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056357A (en) * 1958-12-01 1962-10-02 Gen Motors Corp Radial ball piston pump
CN1644936A (zh) * 2005-01-20 2005-07-27 上海交通大学 曲轴连杆式低速大扭矩液压马达无级变量机构
CN201416520Y (zh) * 2009-06-19 2010-03-03 欧阳波 一种星形排列柱塞式无级变量泵
DE602006012742D1 (de) * 2006-04-20 2010-04-15 Sai Societa Apparecchiature Idrauliche Spa Hydraulikmotor mit radialen zylindern und stufenlos verstellbarer verdrängung
US7811064B2 (en) * 2005-08-18 2010-10-12 Serva Corporation Variable displacement reciprocating pump
CH709427A2 (de) * 2014-03-27 2015-09-30 Peter Aebi Stufenloser hydraulischer Antrieb.
CN111120286A (zh) * 2020-01-04 2020-05-08 长安大学 一种偏心连杆式径向变量柱塞泵
CN214998160U (zh) * 2021-07-06 2021-12-03 翁颇颖 一种扭矩无级变量调节的偏心轮组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404175A (en) * 1942-06-25 1946-07-16 Vickers Armstrongs Ltd Hydraulic pump of the radial cylinder type
FR945332A (fr) * 1947-04-01 1949-05-02 Pompe hydraulique à volume variable
US2836120A (en) * 1954-09-14 1958-05-27 Navarro Miguel Variable capacity pump
GB1385702A (en) * 1971-01-29 1975-02-26 Chamberlain Ind Ltd Hydraulic motors and the like
JPS55146284A (en) * 1979-04-27 1980-11-14 Kayaba Ind Co Ltd Radial piston motor
US4474104A (en) * 1983-04-11 1984-10-02 Double A Products Co. Control system for variable displacement pumps and motors
NL8500402A (nl) * 1985-02-13 1986-09-01 Schelde Nl Aandrijving van verbruikers aan boord van een schip.
EP0342751B1 (en) * 1988-05-19 1993-03-31 Bruno Giamello Radial piston hydraulic motor of variable cylinder capacity
JPH02218872A (ja) * 1989-02-21 1990-08-31 Taiyo Ltd ラジアルピストンポンプ
JPH02283867A (ja) * 1989-04-21 1990-11-21 Honda Motor Co Ltd 可変ストローク・クランク機構

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056357A (en) * 1958-12-01 1962-10-02 Gen Motors Corp Radial ball piston pump
CN1644936A (zh) * 2005-01-20 2005-07-27 上海交通大学 曲轴连杆式低速大扭矩液压马达无级变量机构
US7811064B2 (en) * 2005-08-18 2010-10-12 Serva Corporation Variable displacement reciprocating pump
DE602006012742D1 (de) * 2006-04-20 2010-04-15 Sai Societa Apparecchiature Idrauliche Spa Hydraulikmotor mit radialen zylindern und stufenlos verstellbarer verdrängung
CN201416520Y (zh) * 2009-06-19 2010-03-03 欧阳波 一种星形排列柱塞式无级变量泵
CH709427A2 (de) * 2014-03-27 2015-09-30 Peter Aebi Stufenloser hydraulischer Antrieb.
CN111120286A (zh) * 2020-01-04 2020-05-08 长安大学 一种偏心连杆式径向变量柱塞泵
CN214998160U (zh) * 2021-07-06 2021-12-03 翁颇颖 一种扭矩无级变量调节的偏心轮组件

Also Published As

Publication number Publication date
CN113339220A (zh) 2021-09-03
CN113339220B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US9506399B2 (en) Electric supercharging device
EP0118039A1 (en) Positive displacement machine with discharge volume-control
CN1138893A (zh) 带有简化传动比控制器的静液压传动装置
CN107461370A (zh) 一种电液集成斜盘柱塞式液压变压器
JPS58162780A (ja) 可変容量型斜板圧縮機
WO2022134593A1 (zh) 隔膜增压泵泵头的传动组件、隔膜增压泵的泵头、隔膜增压泵
WO2023279477A1 (zh) 一种扭矩无级变量调节的偏心轮组件及星型液压泵
CN106762196B (zh) 一种液压马达驱动式可变压缩比活塞
CN108167151A (zh) 一种对称通轴式定量轴向柱塞泵及其控制方法
WO2020253471A1 (zh) 往复运动式无密封环活塞液压制动装置
CN105570399A (zh) 一种基于ww型行星轮系的压力无级变速器
CN214998160U (zh) 一种扭矩无级变量调节的偏心轮组件
MXPA96004415A (es) Controlador de relacion mejorado para transmisionhidrostatica continuamente variable.
CN102168734B (zh) 一种连接空气弹簧与附加气室的通流面积可调控制阀
CN105587481A (zh) 一种高速变量轴向柱塞泵
CN114483513A (zh) 一种单柱塞伺服变量泵
CN204900170U (zh) 一种斜盘通轴变量柱塞泵
JPS58162781A (ja) 可変容量型斜板圧縮機の斜板傾斜角度制御装置
CN210686275U (zh) 柱塞泵组
CN105570400A (zh) 一种基于nw型行星轮系的压力无级变速器
CN112696342B (zh) 隔膜增压泵的泵头的工作方法
WO2023160129A1 (zh) 一种零转向液压驱动桥
JPS58162782A (ja) 可変容量型斜板圧縮機
CN104482159A (zh) 一种静液压变矩器
CN108506453A (zh) 静液压变速变矩器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE