WO2023276379A1 - Resin composition, varnish, laminated plate, printed wiring board, and molded product - Google Patents

Resin composition, varnish, laminated plate, printed wiring board, and molded product Download PDF

Info

Publication number
WO2023276379A1
WO2023276379A1 PCT/JP2022/015425 JP2022015425W WO2023276379A1 WO 2023276379 A1 WO2023276379 A1 WO 2023276379A1 JP 2022015425 W JP2022015425 W JP 2022015425W WO 2023276379 A1 WO2023276379 A1 WO 2023276379A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
resin
parts
composition according
Prior art date
Application number
PCT/JP2022/015425
Other languages
French (fr)
Japanese (ja)
Inventor
達也 川崎
侑花 仲澤
健 加藤
珠奈 松田
Original Assignee
株式会社プリンテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プリンテック filed Critical 株式会社プリンテック
Priority to KR1020237040786A priority Critical patent/KR20240026127A/en
Priority to JP2023531448A priority patent/JPWO2023276379A1/ja
Priority to CN202280042315.5A priority patent/CN117500880A/en
Priority to TW111116145A priority patent/TW202319481A/en
Publication of WO2023276379A1 publication Critical patent/WO2023276379A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • C08L45/02Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers of coumarone-indene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention is a resin having low dielectric properties (low dielectric constant, low dielectric loss tangent), which is used as laminates, printed wiring boards, adhesives, sealants, paints, molded articles, etc. in electronic and electrical parts. Regarding the composition.
  • thermosetting resins such as epoxy resins, polyimide resins, unsaturated polyester resins, and phenolic resins have been used as heat-resistant resins in the field of electronic materials. These thermosetting resins are used properly according to their uses and characteristics. Among these resins, polyimide resins are particularly excellent in heat resistance and moisture-heat resistance (heat resistance after moisture absorption), and are therefore widely used in applications requiring high heat resistance. Modified polyimide resins are also used, which are improved in performance by combining polyimide resins with other resins such as epoxy resins.
  • Patent Document 1 describes a resin composition obtained by melting a component containing a polymaleimide compound.
  • an object of the present invention is to provide a resin composition containing a bismaleimide compound with further improved low dielectric properties.
  • Another object of the present invention is to provide a resin composition containing a bismaleimide compound that has good solubility and curability in low boiling point solvents and is easy to handle.
  • the resin composition of the present invention is a resin composition obtained by melting a resin mixture containing (A) a bismaleimide compound, wherein the (A) bismaleimide compound is a fat represented by formula (1)
  • a resin composition comprising a group bismaleimide compound and an aromatic bismaleimide compound represented by formula (2).
  • R 1 is an alkylene group having 6 to 12 carbon atoms.
  • R 2 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring
  • X 1 is each independently an oxygen atom or a single bond
  • R 3 and R 4 each have 1 carbon atom.
  • a and b are integers of 0 or more and 3 or less.
  • the resin composition By containing the aliphatic bismaleimide compound and the aromatic bismaleimide compound in the resin composition, it is possible to improve the heat resistance of the cured product while maintaining low dielectric properties. Therefore, it is possible to provide a resin composition having excellent low dielectric properties (low dielectric constant, low dielectric loss tangent) while maintaining heat resistance, which generally has a trade-off relationship with low dielectric properties.
  • the resin composition of the present embodiment contains (A) 30 to 65 parts by mass of a bismaleimide compound, (B) 5 to 25 parts by mass of a cumarone resin, and (C) an amine compound 1 in 100 parts by mass of the resin component of the resin mixture. It is a resin composition obtained by melting a resin mixture containing up to 30 parts by mass.
  • the components (A) to (C) and other components that the resin composition may contain are described below.
  • the numerical range "A to B" means "above A and below B”.
  • a mixture before melt-mixing each component is called a "resin mixture”
  • a mixture after cooling after melt-mixing is called a "resin composition”.
  • the bismaleimide compound is a compound having two maleimide groups and contains an aliphatic bismaleimide compound represented by the formula (1) shown in the section of Means for Solving the Problems.
  • R 1 is preferably an alkylene group having 7 to 11 carbon atoms, and R 1 is preferably an alkylene group having 9 carbon atoms, from the viewpoint of obtaining a cured product with low dielectric properties. more preferred.
  • an aliphatic bismaleimide compound having a melting point of 120° C. or less is preferable.
  • aliphatic bismaleimide compounds examples include 1,6-bismaleimide(2,2,4-trimethyl)hexane, hexamethylenediaminebismaleimide, N,N'-1,2-ethylenebismaleimide, N, N'-1,3-propylenebismaleimide, N,N'-1,4-tetramethylenebismaleimide and the like.
  • examples of commercially available aliphatic bismaleimide compounds include BMI-TMH (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd.).
  • the bismaleimide compound further contains an aromatic bismaleimide compound represented by formula (2) shown in the section of Means for Solving the Problems.
  • An aromatic bismaleimide compound having a melting point of 130° C. or higher is more preferable.
  • aromatic bismaleimide compound represented by formula (2) examples include 4,4′-diphenylmethanebismaleimide, bisphenol A diphenyletherbismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′- diphenylmethane bismaleimide and the like.
  • aromatic bismaleimide compounds include BMI-1000, BMI-4000, BMI-5000, and BMI-5100 (all product names, manufactured by Daiwa Kasei Kogyo Co., Ltd.).
  • R 2 in formula (2) is preferably a group represented by formula (3) from the viewpoint of heat resistance of the cured product.
  • aromatic bismaleimide compounds include bisphenol A diphenyl ether bismaleimide.
  • the mass ratio of the content of the aliphatic bismaleimide compound to the content of the aromatic bismaleimide compound is preferably 3.0:7.0 to 7.0:3.0, more preferably 4.0:6.0 to 6.0:4.0, 4.5:5.5 to 5.5:4.5 are more preferred.
  • the content of the bismaleimide compound in 100 parts by mass of the resin component of the resin mixture is 30 to 65 parts by mass.
  • the content of the bismaleimide compound in 100 parts by mass of the resin component is more preferably 40 to 62 parts by mass, more preferably 50 to 60 parts by mass, from the viewpoint of achieving both high heat resistance and low dielectric properties of the cured product.
  • Two or more kinds of bismaleimide compounds are used in combination.
  • Components (B) to (I) and other components described below can be used singly or in combination of two or more.
  • Coumaron resin is a copolymer resin composed mainly of coumarone, indene and styrene.
  • Commercially available products include G-90, V-120, L-5, L-20, H-100 (all product names, manufactured by Nichinori Kagaku Co., Ltd.).
  • a coumarone resin having a softening point of 100° C. or less is preferable from the viewpoint of low dielectric properties of the cured product. From the same point of view, the weight average molecular weight is preferably 850 or less, more preferably 800 or less.
  • a coumarone resin that is beaded (solid) at ambient temperature is preferred over one that is liquid at ambient temperature.
  • the content of the coumarone resin in 100 parts by mass of the resin component of the resin mixture is preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass, more preferably 13 to 18 parts by mass, from the viewpoint of high heat resistance and low dielectric properties of the cured product. Parts by mass are more preferred.
  • the content of the coumarone resin is more preferably 15 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the bismaleimide compound (A). More preferred. From the viewpoint of obtaining a cured product with good heat resistance, the content of the coumarone resin is more preferably 50 parts by mass or less, even more preferably 40 parts by mass or less with respect to 100 parts by mass of the bismaleimide compound.
  • the aliphatic bismaleimide compound represented by Formula (1) has a problem that once dissolved, it does not solidify and becomes liquid.
  • the resin composition of the present embodiment contains 1 to 30 parts by mass of an amine compound in 100 parts by mass of the resin component in addition to the aliphatic bismaleimide compound.
  • the content of the amine compound is preferably 2 to 15 parts by mass, more preferably 3 to 8 parts by mass, from the viewpoints of curability of the resin composition and low dielectric properties and heat resistance of the cured product.
  • Examples of the amine compound include aromatic amines such as bisaniline and 1,3-bis(3-aminophenoxy)benzene, and bisaniline is preferable from the viewpoint of making a resin composition with good handling properties as a prepreg.
  • Commercially available products include Bisaniline M and Bisaniline-P (manufactured by Mitsui Chemicals Fine Co., Ltd.); ODA, BODA, BAPP, HFBAPP, BAPB, TPE-M and TPE-Q (both manufactured by Seika Co., Ltd.); Kayabond C -200S (manufactured by Nippon Kayaku Co., Ltd.), BAN (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • Bisaniline is more preferably an aromatic amine represented by formula (4).
  • R 5 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring, and each X 1 is independently an oxygen atom or a single bond.
  • Bisanilines represented by formula (4) include 4,4′-[dimethylmethylenebis(4,1-phenyleneoxy)]bisaniline and 4,4′-[biphenyl-4,4′-diylbis(oxy)].
  • Bisaniline represented by formula (4) includes commercially available products such as Bisaniline M and Bisaniline-P (manufactured by Mitsui Chemicals Fine Co., Ltd.); BODA, BAPP and BAPB (manufactured by Seika Co., Ltd.).
  • (D) Benzoxazine compound may have at least one or more benzoxazine rings in the molecule, but dihydrobenzoxazine compounds represented by the following general formula (5) or (6) A pd-type dihydrobenzoxazine represented by the following general formula (6) is preferred, and more preferred.
  • R 6 and R 7 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 3 carbon atoms.
  • the content of the benzoxazine compound in 100 parts by mass of the resin component of the resin mixture is 5 to 20 parts by mass from the viewpoint of the high heat resistance and low dielectric properties of the cured product and the solubility of the resin composition in low boiling point solvents. is preferred, 10 to 20 parts by weight is more preferred, and 15 to 20 parts by weight is even more preferred.
  • the content of the benzoxazine compound is more preferably 15 parts by mass or more, more preferably 20 parts by mass with respect to 100 parts by mass of the bismaleimide compound. The above is more preferable. From the viewpoint of obtaining a cured product with good heat resistance, the content of the benzoxazine compound is more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less with respect to 100 parts by mass of the bismaleimide compound.
  • Bisphenol A-type cyanate ester is a bisphenol A-type cyanate ester (triazine) that forms a triazine ring and cures. Curability of the resin mixture is improved by containing the bisphenol A type cyanate ester.
  • Bisphenol A-type cyanate esters include monomers and (homo)polymers (polymers), and bisphenol A-type cyanate ester monomers are preferred from the viewpoint of obtaining cured products with excellent low dielectric properties.
  • the content of the bisphenol A-type cyanate ester in 100 parts by mass of the resin component of the resin mixture is preferably 0.1 to 3 parts by mass. 0.5 to 2 parts by weight is more preferred, and 0.7 to 1.3 parts by weight is even more preferred.
  • Epoxy resin The resin composition may contain an epoxy resin, if necessary, for the purpose of complementing various properties such as flame retardancy.
  • the inclusion of the epoxy resin may improve the interlaminar adhesion and insulating properties of a laminate obtained by stacking prepregs, which are sheets impregnated with a resin composition, on a base material and performing pressurization and heat treatment.
  • the epoxy resin may be a compound having an epoxy group, but from the viewpoint of achieving both heat resistance and low dielectric properties of the cured product, a biphenyl aralkyl type epoxy resin, an epoxy resin containing a naphthalene ring, and having three epoxy groups. Compounds and the like are preferred.
  • the epoxy resin containing a naphthalene ring an ⁇ -naphthol type epoxy resin is preferable.
  • Examples of commercially available epoxy resins containing naphthalene rings include ESN-475V (product name, ⁇ -naphthol type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) in which each naphthalene ring has two epoxy groups.
  • VG3101L product name, manufactured by Printec Co., Ltd.
  • Epoxy resins other than the above include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin. , triphenylol-type epoxy resins, dicyclopentadiene-type epoxy resins, and the like.
  • the heat resistance of the cured product is improved by suppressing the content of the bisphenol A type epoxy resin in the resin component of the resin mixture. Therefore, from the viewpoint of improving the heat resistance of the cured product, it is preferable that the resin mixture does not contain a bisphenol A type epoxy resin.
  • “not containing a bisphenol A type epoxy resin” means substantially not containing it, that is, not containing an amount of a bisphenol A type epoxy resin that affects the properties of the resin mixture.
  • the content of the bisphenol A type epoxy resin in 100 parts by mass of the resin component of the resin mixture is 1 part by mass or less, depending on the case, 0.3 parts by mass or less or 0.1 part by mass or less, a resin with low dielectric properties It has no effect on the properties of the mixture.
  • the content of the epoxy resin in 100 parts by mass of the resin component of the resin mixture is preferably 1 to 12 parts by mass, more preferably 2 to 10 parts by mass, and 3 to 8 parts by mass, from the viewpoint of high heat resistance and low dielectric properties of the cured product. Parts by mass are more preferred.
  • the resin composition of the present embodiment is a resin composition obtained by melting a resin mixture containing (A) a bismaleimide compound, wherein (A) the bismaleimide compound is and an aliphatic bismaleimide compound represented by formula (1) and an aromatic bismaleimide compound represented by formula (2).
  • the resin composition can improve the heat resistance of the cured product while maintaining the low dielectric properties of the cured product.
  • the bismaleimide compound description of items common to the first embodiment will be omitted, and different items will be described below.
  • the resin composition is such that the mass ratio of the content of the two types of bismaleimide compounds in the resin mixture is 25:55 as the aliphatic bismaleimide compound:aromatic bismaleimide compound. 45:35 is preferable, and 27:53 to 47:38 is more preferable.
  • the resin composition contains triallyl isocyanurate in the resin mixture from the viewpoint of increasing the solubility in low boiling point solvents.
  • the content of triallyl isocyanurate in 100 parts by mass of the resin component of the resin mixture is preferably 16 to 26 parts by mass, more preferably 18 to 24 parts by mass.
  • the resin composition can be prepared as a 60% by mass methyl ethyl ketone solution and has high solubility in a low boiling point solvent.
  • Commercial products of triallyl isocyanurate include TAIC (trademark, manufactured by Mitsubishi Chemical Corporation).
  • the resin composition preferably further contains an amine compound and a carboxylic acid dianhydride from the viewpoint of making the state in the B-stage a solid rather than a viscous solid so that it is easy to handle.
  • (C) Amine Compound The same amine compound as in the first embodiment can be used as the amine compound.
  • the content of the amine compound in 100 parts by mass of the resin component of the resin mixture is is preferably 8 to 20 parts by mass, more preferably 10 to 18 parts by mass, even more preferably 12 to 16 parts by mass.
  • (I) Carboxylic acid dianhydride examples include BPADA, 6FDA, SFDA, BzDA: Enehyde (trademark, manufactured by ENEOS), TAHQ (see Examples for abbreviations), and the like. From the viewpoint of making a resin composition that becomes solid in the B stage and has high solubility in a low boiling point solvent, when the resin mixture contains triallyl isocyanurate, carboxylic acid dianhydride in 100 parts by mass of the resin component of the resin mixture The content is preferably 10 to 35 parts by mass, more preferably 15 to 30 parts by mass, even more preferably 20 to 27 parts by mass.
  • a curing accelerator may be added. Timing for adding the curing accelerator includes, for example, when the resin composition is dissolved in a solvent to form a varnish, when the varnish is prepregized, or when a substrate or laminate is produced. The following description is common to the resin compositions of the first and second embodiments.
  • Curing accelerators include, for example, imidazoles such as dicumyl peroxide, 4,4'-diaminodiphenylmethane, 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-heptylimidazole; triethanolamine, triethylenediamine, Amines such as N-methylmorpholine; Organic phosphines such as triphenylphosphine and tritolylphosphine; Tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triethylammonium tetraphenylborate; ,4,0) undecene-7 and its derivatives; organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, tin oleate, manganese naphthenate, cobalt naphthenate and cobalt octylate.
  • the curing accelerator is blended in the varnish or prepreg at a content that gives the desired gelling time.
  • the curing accelerator is used in the range of 0.01 to 5 parts by mass with respect to the total 100 parts by mass of the resin components contained in the resin composition.
  • the resin composition and the resin mixture before melt mixing may contain components other than the above (A) to (I).
  • organic or inorganic fillers can be used to cure the resin composition to obtain a substrate for molding.
  • fillers include oxides such as silica, diatomaceous earth, alumina, zinc chloride, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide, magnesium hydroxide, hydroxide Hydroxides such as aluminum and basic magnesium carbonate; carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite and hydrotalcite; sulfates such as calcium sulfate, barium sulfate and gypsum fiber; calcium silicate (wollastonite, xonotlite), talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silicates such as silic
  • the shape of the filler is preferably spherical or scaly. If necessary, use a silane coupling agent with two or more different reactive groups in the molecule (one reactive group that chemically reacts with inorganic materials, the other that chemically reacts with organic materials). You may
  • the content is preferably 5.0 to 250 parts by mass with respect to 100 parts by mass of the resin component of the resin mixture.
  • a flame retardant can be added to the resin composition as needed.
  • Flame retardants include organic flame retardants such as bromine compounds such as brominated epoxy resins and phosphorus compounds such as condensed phosphoric acid esters, and inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide, tin compounds and antimony compounds. .
  • the flame retardant is a content that realizes sufficient flame retardancy (for example, passing the V-0 condition in UL94 standard) without impairing the heat resistance and moist heat resistance of the cured product obtained by curing the resin composition.
  • an organic flame retardant for example, 1 to 20 parts by mass with respect to a total of 100 parts by mass of the resin components including the organic flame retardant in the resin composition. It is used in an amount of 10 to 300 parts by mass.
  • additives When using the resin composition, other additives can be added depending on the application.
  • examples of other additives include various silicone oils, thermoplastic resins, synthetic rubbers such as NBR, and leveling agents.
  • Other additives are used, for example, in a content of 0.0001 to 5 parts by mass in a total of 100 parts by mass of the other additives and the resin component in the resin composition.
  • the resin composition of the present invention is produced by a melt-mixing process in which a resin mixture is heated and mixed in a molten state.
  • Usual mixing means can be used for the melt-mixing step.
  • a mixing means a kneader, a twin-screw kneader, or the like is preferable.
  • the temperature during melt-mixing may be the temperature at which the resin mixture melts or higher and 400°C or lower, preferably 130 to 230°C, more preferably 150 to 210°C, and even more preferably 170 to 190°C.
  • the melt-mixing step is preferably carried out under conditions such that the weight average molecular weight of the resin composition obtained by heating the resin mixture is 1,000 to 2,500, more preferably 1,200 to 1,800.
  • the time for the melt-mixing step is, for example, about 0.1 to 10 minutes, and it is preferable to set conditions such as temperature in the melt-mixing step so as to be about 0.5 to 4 minutes.
  • the resin composition of the present invention is obtained by cooling by natural cooling or forced cooling.
  • the cooling method can be appropriately selected from known methods. For example, a method of natural cooling in an environment of 0 to 40° C. or a method of forced cooling using a refrigerant can be employed. Further, after melting and mixing, it may be placed in an environment of 30 to 300° C. in a constant temperature device and then cooled. After cooling, the resulting resin composition can be used in subsequent steps as a solid resin composition.
  • the aliphatic bismaleimide compound, the aromatic bismaleimide compound, and other components in the resin mixture react with each other, so that at least part of the bismaleimide compound is modified.
  • a resin composition having high heat resistance, low dielectric properties, good solubility in low boiling point solvents, and good curability can be produced.
  • the resin composition produced by the melt-mixing process has a component with a molecular weight of 4,500 to 4,800.
  • the ratio of the component having a molecular weight of 4500 to 4800 in 100% by mass of the resin composition is preferably 10 to 20% by mass, more preferably 12 to 18% by mass.
  • the proportion of components with a molecular weight of 4500-4800 can be determined by gel permeation chromatography (GPC) measurement.
  • the resin composition varnish according to the present invention is obtained by dissolving the resin composition obtained by the above-described production method in a solvent having a boiling point of 120° C. or less and a dielectric constant of 10 to 30.
  • solvents having a boiling point of 120° C. or less and a dielectric constant of 10 to 30 include ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ether solvents such as propylene glycol monomethyl ether, ethanol, 1-propanol and 2-propanol. , and alcohol solvents such as 1-butanol.
  • a ketone solvent is preferably used in consideration of operability and the like. Solvents other than those exemplified above may be contained.
  • the content of the resin composition in 100 parts by mass of the varnish is usually 40 to 80 parts by mass, preferably 50 to 70 parts by mass.
  • the varnish can be obtained by dissolving the resin composition in a solvent at normal temperature (room temperature) or under heating. When dissolving under heating, the conditions for dissolving are, for example, a temperature of about 50 to 200° C. and a time of about 0.1 to 24 hours, depending on the boiling point of the solvent.
  • a prepreg is produced by coating or impregnating a base material with the above varnish and then drying it to remove the solvent.
  • known substrates used in conventional prepregs such as glass nonwoven fabric, glass cloth, carbon fiber cloth, organic fiber cloth, and paper, can be used.
  • the prepreg After coating or impregnating the base material with the varnish, the prepreg is manufactured through a drying process, but the coating method, impregnation method, and drying method are not particularly limited, and conventionally known methods can be adopted.
  • the drying conditions are appropriately determined according to the boiling point of the solvent used, but too high a temperature is not preferable. It is desirable to dry so that the solvent remaining in 100 parts by mass of the prepreg is 3 parts by mass or less.
  • a filler other than the resin composition described above may be added to the varnish when producing the prepreg.
  • fillers include silica particles, alumina particles, and polyphenylene ether resins.
  • the amount of the filler used in preparing the prepreg is 10 to 100 parts per 100 parts by mass of the resin component of the resin composition. Parts by weight are preferred, 10 to 50 parts by weight are more preferred, and 20 to 40 parts by weight are even more preferred.
  • silica particles and alumina particle fillers examples include the ADMAFINE series (product name, manufactured by Admatechs Co., Ltd.), and commercially available polyphenylene ether resins SA90, SA120, and SA9000 (product names, all manufactured by SABIC Japan LLC. ) and the like.
  • the resin composition of the present invention is suitable for printed wiring boards, and the present invention can be implemented as a molded product obtained by curing the resin composition.
  • molded articles include cured products obtained by curing only the resin composition, composite materials combined with other raw materials, laminates, and the like.
  • the composite material and laminate can be obtained by heating and curing one sheet of prepreg under pressure using a hot press or the like, or by laminating a plurality of prepregs and heating and integrating them under pressure.
  • the heating and pressurizing conditions for producing the composite material are not particularly limited, but the heating temperature is 100 to 300° C., preferably 150 to 250° C., more preferably 200 to 250° C., and the pressure is 10 to 100 kg/ cm 2 , preferably 20 to 40 kg/cm, and heating/pressing time is 10 to 300 minutes, preferably 30 to 180 minutes.
  • Copper, aluminum, iron, stainless steel, etc. can be used as the metal foil or metal plate.
  • a laminate using copper as a metal foil is a copper clad laminate (CCL).
  • the conditions for heat curing are preferably the same as the conditions for producing the composite material.
  • the present invention can also be implemented as adhesives, sealants and paints containing the resin composition described above.
  • Test method [Solvent solubility (MEK solubility)] 60 parts by mass of a measurement sample (resin composition) and 40 parts by mass of methyl ethyl ketone (solvent) are mixed under conditions of 50° C. or less, and the dissolved state after applying ultrasonic vibration for a predetermined time is measured using the following criteria. It was evaluated visually. ⁇ : Brown transparent liquid at the time of applying ultrasonic vibration for 100 minutes, with no undissolved residue, separation, or turbidity. x: Undissolved, separated or turbid after applying ultrasonic vibration for 100 minutes.
  • Glass transition point (Tg)] [Thermal expansion coefficient: CTE (ppm/°C)]
  • CTE thermal expansion coefficient
  • Measurement mode heat flux type (TMA) Measuring equipment: Thermo plus TMA8310 manufactured by Rigaku Sample dimensions: length (vertical) 19 mm x width (horizontal) 5 mm x thickness 0.1 mm Atmosphere: N2 Measurement temperature: 30 to 350°C Temperature rising rate: 10°C/min. Measurement mode: Tensile
  • Raw material (A) Polymaleimide compound BMI-TMH (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., 1,6-bismaleimide-(2,2,4-trimethyl)hexane, melting point 73 to 110°C) ⁇ BMI-4000 (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., bisphenol A diphenyl ether bismaleimide, melting point 134 to 163 ° C.) ⁇ BMI-2300 (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., polyphenylmethane polymaleimide, melting point 70 to 145 ° C.)
  • the glass cloth 2116 was impregnated with a filler (SC2500-SXJ) added and dispersed in a proportion of 100 parts by mass with respect to 100 parts by mass of the resin component in the resin composition in the varnish. (1 Ply) prepreg was produced. In other Examples 43 to 67 and Comparative Examples 5 to 7, prepregs were produced by impregnating the glass cloth 2116 in a single layer without adding polyphenylene ether to the varnish.
  • a filler SC2500-SXJ
  • the prepreg of each example and comparative example was cured under press conditions: 180 ° C. x 30 kg/cm 2 x 1 hour, main curing conditions: 230 ° C. x 2 hours.
  • Tables 1 to 8 show the results of measuring dielectric constant (Dk) and dielectric loss tangent (Df). Examples 48 and 49 were not used for measurement because the resin had large scratches when the prepreg was manufactured.
  • the amine compound is preferably one or more selected from the group consisting of APB-N, BAN, and BAPP, and (I) carboxylic Acid dianhydride is preferably one or more selected from the group consisting of BPDA, 6FDA and SFDA.
  • a cured product with low dielectric properties is produced from a prepreg using a resin composition obtained by melting a resin mixture containing components (A) to (C) in 100 parts by mass of the resin component of the resin mixture. could be manufactured.
  • a resin composition having good handleability as a prepreg was obtained.
  • a resin composition obtained by melting a resin mixture containing (A) BMI-TMH and BMI-4000 as polymaleimide compounds and (C) BAPP as an amine compound has heat resistance (Tg (DSC)). and low dielectric properties (Df (after 24 hours)) were good.
  • a cured product with a low CTE was obtained by setting the mass ratio of the contents of BMI-TMH and BMI-4000 to 3.0:7.0 to 7.0:3.0.
  • G-90 By setting the content of G-90 to 12 parts by mass or less in 100 parts by mass of the resin mixture, it was possible to increase the heat resistance (Tg) of the cured product.
  • a cured product having excellent heat resistance was obtained regardless of the triazine content. Since the resin mixture contained triazine, the viscosity (hardness) of the resin mixture was increased and the handleability was improved.
  • the triazine content in 100 parts by mass of the resin mixture is preferably 2.0 parts by mass or less, and more preferably 1.0 parts by mass or less. Cured products with excellent heat resistance and low dielectric properties were obtained regardless of the epoxy content.
  • Example 67 in which SC2500-SXJ was dispersed as a filler, could achieve the best low dielectric properties. This is presumed to be due to the fact that dense molecular bonding was obtained as a result of the filler inhibiting and eliminating the molecular bonding due to aggregation.
  • FIG. 1 shows the results of GPC of the resin composition with a synthesis time of 2.5 minutes.
  • Table 9 shows the effect of synthesis time on the properties of the resin composition.
  • Synthesis conditions Resin temperature 170°C ⁇ 10°C [gel time] Measurement of curing time on a hot plate at 171°C [peak area]
  • GPC gel permeation chromatography
  • the weight average molecular weight of the resin composition was determined by GPC measurement. Solvent solubility was evaluated using the following criteria. 60 parts by mass of a measurement sample (resin composition) and 40 parts by mass of methyl ethyl ketone (solvent) are mixed under conditions of 50° C. or less, and the dissolved state after applying ultrasonic vibration for a predetermined time is measured using the following criteria. It was evaluated visually. [MEK solubility (168 hours)] An MEK solution of the resin was prepared by the method of solvent solubility (MEK solubility) described above, and the state of the measurement sample after standing for a predetermined time was visually evaluated using the following criteria. ⁇ : No precipitation of resin after standing at room temperature for 168 hours. x: Precipitation of resin after standing for 168 hours at room temperature.
  • a resin composition with good MEK solubility was obtained by setting the ratio of the component having a molecular weight of 4500 to 4800 corresponding to the peak marked with 1 in the graph of FIG. 1 to 10 to 20% of the total. By setting the weight average molecular weight to 1100 to 2500, a resin composition having good MEK solubility was obtained.
  • the resin composition of the present invention has good solubility in solvents, low dielectric properties (low dielectric constant and low dielectric loss tangent), and high heat resistance. It can be used as a raw material for adhesives, sealants, paints, moldings, laminates and printed wiring boards that are excellent in heat resistance and low dielectric properties and suitable for various electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a resin composition obtained by melting a resin mixture containing a bismaleimide compound (A), the composition forming a cured object to be used in electronic and electrical components as a laminated plate, printed wiring board, adhesive, sealant, coating material, molded product, or the like having high heat resistance and low dielectric properties (a low dielectric constant and low dielectric tangent). The bismaleimide compound (A) comprises an aliphatic bismaleimide compound represented by formula (1) and an aromatic bismaleimide compound represented by formula (2). (In formula (1), R1 is a C6-12 alkylene group.) (In formula (2), R2 is a C6-30 hydrocarbon group having an aromatic ring, each X1 is independently an oxygen atom or a single bond, R3 and R4 are C1-6 hydrocarbon groups, and a and b are each an integer of 0-3.)

Description

樹脂組成物、ワニス、積層板、プリント配線基板および成形品Resin compositions, varnishes, laminates, printed wiring boards and molded products
 本発明は、電子・電気部品において、積層板、プリント配線基板、接着剤、封止剤、塗料および成形品などとして用いられる、低誘電特性(低比誘電率、低誘電正接)を備えた樹脂組成物に関する。 The present invention is a resin having low dielectric properties (low dielectric constant, low dielectric loss tangent), which is used as laminates, printed wiring boards, adhesives, sealants, paints, molded articles, etc. in electronic and electrical parts. Regarding the composition.
 従来、電子材料分野における耐熱樹脂として、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、フェノール樹脂などの熱硬化性樹脂が用いられている。これら熱硬化性樹脂は、その用途や特性によって使い分けられている。この中でも特にポリイミド樹脂は、耐熱性および耐湿熱性(吸湿後の耐熱性)に優れていることから、高い耐熱性を要する用途に広く使用されている。また、エポキシ樹脂などの他の樹脂とポリイミド樹脂との組み合わせによって性能が改良された変性ポリイミド樹脂も使用されている。  Conventionally, thermosetting resins such as epoxy resins, polyimide resins, unsaturated polyester resins, and phenolic resins have been used as heat-resistant resins in the field of electronic materials. These thermosetting resins are used properly according to their uses and characteristics. Among these resins, polyimide resins are particularly excellent in heat resistance and moisture-heat resistance (heat resistance after moisture absorption), and are therefore widely used in applications requiring high heat resistance. Modified polyimide resins are also used, which are improved in performance by combining polyimide resins with other resins such as epoxy resins.
 半導体基板分野では、基板上へ半導体チップを直接実装する実装方法が普及してきている。このため、半導体に使用される材料には、実装工程における高温処理などに耐えられる高い耐熱性が要求される。エポキシ樹脂は半導体材料として汎用的に使用されており、耐熱性向上の要求に対応するための検討がなされ、耐熱性に優れた樹脂が提案されている。例えば、特許文献1には、ポリマレイミド化合物を含む成分を溶融して得られた樹脂組成物が記載されている。 In the field of semiconductor substrates, mounting methods that directly mount semiconductor chips onto substrates are becoming more popular. For this reason, materials used for semiconductors are required to have high heat resistance to withstand high-temperature treatments in the mounting process. Epoxy resins are widely used as semiconductor materials, and studies have been made to meet the demand for improved heat resistance, and resins with excellent heat resistance have been proposed. For example, Patent Document 1 describes a resin composition obtained by melting a component containing a polymaleimide compound.
国際公開WO2020/161926号International publication WO2020/161926
 近年、各種電子機器の高性能化、大容量化、高速化に伴い、電気信号のさらなる高周波数化が進んできている。電気信号の高周波数化は、通信の高速化・大容量化に有利である一方、誘電損失の増大により信号が減衰して信頼性が低下するおそれがある。このため、次世代通信向けの高周波数対応の基板用に適した樹脂組成物の特性として、低誘電特性のさらなる向上が求められている。
 そこで、本発明は、低誘電特性をさらに向上させた、ビスマレイミド化合物を含有する樹脂組成物を提供することを目的としている。また、低沸点溶剤に対する溶解性および硬化性が良く、取り扱い性に優れたビスマレイミド化合物を含有する樹脂組成物を提供することを目的としている。
2. Description of the Related Art In recent years, along with the improvement in performance, capacity, and speed of various electronic devices, the frequency of electrical signals is becoming higher. Increasing the frequency of electrical signals is advantageous for increasing the speed and capacity of communication, but there is a risk that signals will be attenuated due to increased dielectric loss and reliability will decrease. Therefore, there is a demand for further improvement in low dielectric properties as properties of resin compositions suitable for substrates compatible with high frequencies for next-generation communications.
Accordingly, an object of the present invention is to provide a resin composition containing a bismaleimide compound with further improved low dielectric properties. Another object of the present invention is to provide a resin composition containing a bismaleimide compound that has good solubility and curability in low boiling point solvents and is easy to handle.
 本発明の樹脂組成物は、(A)ビスマレイミド化合物を含む樹脂混合物を溶融して得られた樹脂組成物であって、前記(A)ビスマレイミド化合物が、式(1)により表される脂肪族ビスマレイミド化合物と、式(2)により表される芳香族ビスマレイミド化合物と、を含むことを特徴とする、樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式(1)において、R1は炭素数6~12のアルキレン基である。)
Figure JPOXMLDOC01-appb-C000006
(式(2)において、R2は芳香環を有する炭素数6以上30以下の炭化水素基であり、X1はそれぞれ独立に酸素原子または単結合であり、R3およびR4は炭素数1以上6以下の炭化水素基であり、aおよびbは0以上3以下の整数である。)
The resin composition of the present invention is a resin composition obtained by melting a resin mixture containing (A) a bismaleimide compound, wherein the (A) bismaleimide compound is a fat represented by formula (1) A resin composition comprising a group bismaleimide compound and an aromatic bismaleimide compound represented by formula (2).
Figure JPOXMLDOC01-appb-C000005
(In Formula (1), R 1 is an alkylene group having 6 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000006
(In Formula (2), R 2 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring, X 1 is each independently an oxygen atom or a single bond, and R 3 and R 4 each have 1 carbon atom. is a hydrocarbon group of 6 or less, and a and b are integers of 0 or more and 3 or less.)
 樹脂組成物が脂肪族ビスマレイミド化合物および芳香族ビスマレイミド化合物を含有することにより、低誘電特性を維持しつつ、硬化物の耐熱性を向上させることができる。このため、一般に低誘電特性とトレードオフの関係にある耐熱性を維持しながら、優れた低誘電特性(低比誘電率、低誘電正接)を備えた樹脂組成物を提供することができる。 By containing the aliphatic bismaleimide compound and the aromatic bismaleimide compound in the resin composition, it is possible to improve the heat resistance of the cured product while maintaining low dielectric properties. Therefore, it is possible to provide a resin composition having excellent low dielectric properties (low dielectric constant, low dielectric loss tangent) while maintaining heat resistance, which generally has a trade-off relationship with low dielectric properties.
合成時間を2.5分間とした実施例67の樹脂組成物についてGPC測定結果を示すグラフGraph showing GPC measurement results for the resin composition of Example 67 with a synthesis time of 2.5 minutes
<第1の実施形態>
(樹脂組成物)
 本実施形態の樹脂組成物は、樹脂混合物の樹脂成分100質量部中に、(A)ビスマレイミド化合物30~65質量部、(B)クマロン樹脂5~25質量部、および(C)アミン化合物1~30質量部を含有する樹脂混合物を溶融して得られた樹脂組成物である。以下、(A)~(C)の各成分および樹脂組成物が含有してもよい他の成分について説明する。本発明において、数値範囲「A~B」は「A以上B以下」を意義する。各成分を溶融混合する以前のものを「樹脂混合物」といい、溶融混合した後に冷却したものを「樹脂組成物」という。
<First Embodiment>
(resin composition)
The resin composition of the present embodiment contains (A) 30 to 65 parts by mass of a bismaleimide compound, (B) 5 to 25 parts by mass of a cumarone resin, and (C) an amine compound 1 in 100 parts by mass of the resin component of the resin mixture. It is a resin composition obtained by melting a resin mixture containing up to 30 parts by mass. The components (A) to (C) and other components that the resin composition may contain are described below. In the present invention, the numerical range "A to B" means "above A and below B". A mixture before melt-mixing each component is called a "resin mixture", and a mixture after cooling after melt-mixing is called a "resin composition".
(A)ビスマレイミド化合物
 ビスマレイミド化合物は、マレイミド基を二つ有する化合物であり、課題を解決するための手段の項に示した式(1)により表される脂肪族ビスマレイミド化合物を含有している。脂肪族ビスマレイミド化合物を用いることにより、樹脂組成物の硬化物の低誘電特性が向上する。また、熱プレスにより硬化させた絶乾状態の後における吸水率が少ない硬化物となる。このため、製造してから時間が経過した後において、硬化物は製造直後の低誘電特性を安定的に維持することができる。
(A) Bismaleimide compound The bismaleimide compound is a compound having two maleimide groups and contains an aliphatic bismaleimide compound represented by the formula (1) shown in the section of Means for Solving the Problems. there is By using the aliphatic bismaleimide compound, the low dielectric properties of the cured product of the resin composition are improved. In addition, a cured product having a low water absorption rate after being cured by hot pressing in an absolutely dry state is obtained. For this reason, the cured product can stably maintain the low dielectric properties immediately after production even after a long period of time has passed since the production.
 低誘電特性を備えた硬化物とする観点から、脂肪族ビスマレイミド化合物は、R1が炭素数7~11のアルキレン基であることが好ましく、R1が炭素数9のアルキレン基であることがより好ましい。また、融点が120℃以下である脂肪族ビスマレイミド化合物が好ましい。このような脂肪族ビスマレイミド化合物として、例えば、1,6-ビスマレイミド(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N’-1,2-エチレンビスマレイミド、N,N’-1,3-プロピレンビスマレイミド、N,N’-1,4-テトラメチレンビスマレイミドなどが挙げられる。市販の脂肪族ビスマレイミド化合物としては、たとえば、BMI-TMH(製品名、大和化成工業(株)製)などが挙げられる。 In the aliphatic bismaleimide compound, R 1 is preferably an alkylene group having 7 to 11 carbon atoms, and R 1 is preferably an alkylene group having 9 carbon atoms, from the viewpoint of obtaining a cured product with low dielectric properties. more preferred. Moreover, an aliphatic bismaleimide compound having a melting point of 120° C. or less is preferable. Examples of such aliphatic bismaleimide compounds include 1,6-bismaleimide(2,2,4-trimethyl)hexane, hexamethylenediaminebismaleimide, N,N'-1,2-ethylenebismaleimide, N, N'-1,3-propylenebismaleimide, N,N'-1,4-tetramethylenebismaleimide and the like. Examples of commercially available aliphatic bismaleimide compounds include BMI-TMH (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd.).
 ビスマレイミド化合物はさらに、課題を解決するための手段の項に示した式(2)により表される芳香族ビスマレイミド化合物を含有する。融点が130℃以上である芳香族ビスマレイミド化合物がさらに好ましい。樹脂組成物が脂肪族ビスマレイミド化合物および芳香族ビスマレイミド化合物を含有することにより、低誘電特性を維持しつつ、硬化物の耐熱性を向上させることができる。また、溶剤溶解性および硬化性が良好になるため、プリプレグ化の際に適切なBステージ状態とすることが容易な取り扱い性に優れた樹脂組成物となる。 The bismaleimide compound further contains an aromatic bismaleimide compound represented by formula (2) shown in the section of Means for Solving the Problems. An aromatic bismaleimide compound having a melting point of 130° C. or higher is more preferable. By containing the aliphatic bismaleimide compound and the aromatic bismaleimide compound in the resin composition, it is possible to improve the heat resistance of the cured product while maintaining low dielectric properties. In addition, since solvent solubility and curability are improved, the resin composition can be easily brought into an appropriate B-stage state during prepreg formation and has excellent handleability.
 式(2)により表される芳香族ビスマレイミド化合物としては、4,4’-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドなどが挙げられる。市販の芳香族ビスマレイミド化合物としては、BMI-1000、BMI-4000、BMI-5000、BMI-5100(いずれも製品名、大和化成工業(株)製)などが挙げられる。 Examples of the aromatic bismaleimide compound represented by formula (2) include 4,4′-diphenylmethanebismaleimide, bisphenol A diphenyletherbismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′- diphenylmethane bismaleimide and the like. Commercially available aromatic bismaleimide compounds include BMI-1000, BMI-4000, BMI-5000, and BMI-5100 (all product names, manufactured by Daiwa Kasei Kogyo Co., Ltd.).
 式(2)により表される芳香族ビスマレイミド化合物は、硬化物の耐熱性の観点から、式(2)におけるR2が式(3)で表される基であることが好ましい。このような芳香族ビスマレイミド化合物として、ビスフェノールAジフェニルエーテルビスマレイミドが挙げられる。
Figure JPOXMLDOC01-appb-C000007
In the aromatic bismaleimide compound represented by formula (2), R 2 in formula (2) is preferably a group represented by formula (3) from the viewpoint of heat resistance of the cured product. Examples of such aromatic bismaleimide compounds include bisphenol A diphenyl ether bismaleimide.
Figure JPOXMLDOC01-appb-C000007
 硬化物の低誘電特性および耐熱性を向上させるとともに低沸点溶剤に対する溶解性を良好にする観点から、脂肪族ビスマレイミド化合物の含有量と、芳香族ビスマレイミド化合物の含有量との質量比は、脂肪族ビスマレイミド化合物:芳香族ビスマレイミド化合物として、3.0:7.0~7.0:3.0が好ましく、4.0:6.0~6.0:4.0がより好ましく、4.5:5.5~5.5:4.5がさらに好ましい。 From the viewpoint of improving the low dielectric properties and heat resistance of the cured product and improving the solubility in low boiling point solvents, the mass ratio of the content of the aliphatic bismaleimide compound to the content of the aromatic bismaleimide compound is The aliphatic bismaleimide compound: aromatic bismaleimide compound is preferably 3.0:7.0 to 7.0:3.0, more preferably 4.0:6.0 to 6.0:4.0, 4.5:5.5 to 5.5:4.5 are more preferred.
 樹脂混合物の樹脂成分100質量部中におけるビスマレイミド化合物の含有量は30~65質量部である。樹脂成分100質量部中のビスマレイミド化合物の含有量は、硬化物の高耐熱性と低誘電特性とを両立する観点から、40~62質量部がより好ましく、50~60質量部がさらに好ましい。ビスマレイミド化合物は二種以上を組み合わせて用いる。後述する成分(B)~(I)および他の成分は、単独または二種以上で使用可能である。 The content of the bismaleimide compound in 100 parts by mass of the resin component of the resin mixture is 30 to 65 parts by mass. The content of the bismaleimide compound in 100 parts by mass of the resin component is more preferably 40 to 62 parts by mass, more preferably 50 to 60 parts by mass, from the viewpoint of achieving both high heat resistance and low dielectric properties of the cured product. Two or more kinds of bismaleimide compounds are used in combination. Components (B) to (I) and other components described below can be used singly or in combination of two or more.
(B)クマロン樹脂
 クマロン樹脂は、クマロン、インデンおよびスチレンを主成分とする共重合樹脂である。市販品としては、G-90、V-120、L-5、L-20、H-100(いずれも製品名、日塗化学(株)製)などが挙げられる。硬化物の低誘電特性の観点から、軟化点が100℃以下であるクマロン樹脂が好ましい。また、同様の観点から、重量平均分子量が850以下のものが好ましく、800以下のものがより好ましい。常温でビーズ状(固体)のクマロン樹脂が、常温で液体のものよりも好ましい。
(B) Coumaron resin Coumaron resin is a copolymer resin composed mainly of coumarone, indene and styrene. Commercially available products include G-90, V-120, L-5, L-20, H-100 (all product names, manufactured by Nichinori Kagaku Co., Ltd.). A coumarone resin having a softening point of 100° C. or less is preferable from the viewpoint of low dielectric properties of the cured product. From the same point of view, the weight average molecular weight is preferably 850 or less, more preferably 800 or less. A coumarone resin that is beaded (solid) at ambient temperature is preferred over one that is liquid at ambient temperature.
 樹脂混合物の樹脂成分100質量部におけるクマロン樹脂の含有量は、硬化物の高耐熱性および低誘電特性の観点から、5~25質量部が好ましく、10~20質量部がより好ましく、13~18質量部がさらに好ましい。 The content of the coumarone resin in 100 parts by mass of the resin component of the resin mixture is preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass, more preferably 13 to 18 parts by mass, from the viewpoint of high heat resistance and low dielectric properties of the cured product. Parts by mass are more preferred.
 低沸点溶剤への溶解性および溶解した状態の安定性の観点から、クマロン樹脂の含有量は、(A)ビスマレイミド化合物100質量部に対して15質量部以上がより好ましく、20質量部以上がさらに好ましい。耐熱性の良好な硬化物を得る観点から、クマロン樹脂の含有量は、ビスマレイミド化合物100質量部に対して50質量部以下がより好ましく、40質量部以下がさらに好ましい。 From the viewpoint of solubility in low-boiling solvents and stability in a dissolved state, the content of the coumarone resin is more preferably 15 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the bismaleimide compound (A). More preferred. From the viewpoint of obtaining a cured product with good heat resistance, the content of the coumarone resin is more preferably 50 parts by mass or less, even more preferably 40 parts by mass or less with respect to 100 parts by mass of the bismaleimide compound.
(C)アミン化合物
 式(1)により表される脂肪族ビスマレイミド化合物には、一度溶解すると固化せず液状になってしまうという問題がある。取り扱いに関するこの問題を解決するために、本実施形態の樹脂組成物は、脂肪族ビスマレイミド化合物に加えて、樹脂成分100質量部中にアミン化合物1~30質量部を含有している。アミン化合物の含有量は、樹脂組成物の硬化性ならびに、硬化物の低誘電特性および耐熱性の観点から、2~15質量部が好ましく、3~8質量部がより好ましい。
(C) Amine compound The aliphatic bismaleimide compound represented by Formula (1) has a problem that once dissolved, it does not solidify and becomes liquid. In order to solve this handling problem, the resin composition of the present embodiment contains 1 to 30 parts by mass of an amine compound in 100 parts by mass of the resin component in addition to the aliphatic bismaleimide compound. The content of the amine compound is preferably 2 to 15 parts by mass, more preferably 3 to 8 parts by mass, from the viewpoints of curability of the resin composition and low dielectric properties and heat resistance of the cured product.
 アミン化合物としては、ビスアニリン、1,3-ビス(3-アミノフェノキシ)ベンゼン等の芳香族アミン類が挙げられ、プリプレグとしての取り扱い性が良好な樹脂組成物とする観点から、ビスアニリンが好ましい。市販品としては、ビスアニリンMおよびビスアニリン-P(三井化学ファイン(株)製);ODA、BODA、BAPP、HFBAPP、BAPB、TPE-MおよびTPE-Q(いずれもセイカ(株)製);カヤボンドC-200S(日本化薬(株)製)、BAN(日本化薬(株)製)などが挙げられる。 Examples of the amine compound include aromatic amines such as bisaniline and 1,3-bis(3-aminophenoxy)benzene, and bisaniline is preferable from the viewpoint of making a resin composition with good handling properties as a prepreg. Commercially available products include Bisaniline M and Bisaniline-P (manufactured by Mitsui Chemicals Fine Co., Ltd.); ODA, BODA, BAPP, HFBAPP, BAPB, TPE-M and TPE-Q (both manufactured by Seika Co., Ltd.); Kayabond C -200S (manufactured by Nippon Kayaku Co., Ltd.), BAN (manufactured by Nippon Kayaku Co., Ltd.), and the like.
 ビスアニリンは、式(4)により表される芳香族アミン類がより好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(4)において、R5は芳香環を有する炭素数6以上30以下の炭化水素基であり、X1はそれぞれ独立に酸素原子または単結合である。)
Bisaniline is more preferably an aromatic amine represented by formula (4).
Figure JPOXMLDOC01-appb-C000008
(In Formula (4), R 5 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring, and each X 1 is independently an oxygen atom or a single bond.)
 式(4)により表されるビスアニリンとしては、4,4’-[ジメチルメチレンビス(4,1-フェニレンオキシ)]ビスアニリン、4,4’-[ビフェニル-4,4’-ジイルビス(オキシ)]ビスアニリン、ビスアニリン-M、ビスアニリン-Pなどが挙げられる。式(4)により表されるビスアニリンには、市販品としては、ビスアニリンMおよびビスアニリン-P(三井化学ファイン(株)製);BODA、BAPPおよびBAPB(セイカ(株)製)等が挙げられる。 Bisanilines represented by formula (4) include 4,4′-[dimethylmethylenebis(4,1-phenyleneoxy)]bisaniline and 4,4′-[biphenyl-4,4′-diylbis(oxy)]. bisaniline, bisaniline-M, bisaniline-P and the like. Bisaniline represented by formula (4) includes commercially available products such as Bisaniline M and Bisaniline-P (manufactured by Mitsui Chemicals Fine Co., Ltd.); BODA, BAPP and BAPB (manufactured by Seika Co., Ltd.).
(D)ベンゾオキサジン化合物
 ベンゾオキサジン化合物は、分子中に少なくとも一つ以上のベンゾオキサジン環を有するものであればよいが、下記一般式(5)または(6)で表されるジヒドロベンゾオキサジン化合物が好ましく、下記一般式(6)で表されるp-d型ジヒドロベンゾオキサジンがより好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式(5)および式(6)中、R6、R7は水素原子、炭素数1~3の置換もしくは無置換の炭化水素基を表す。)
(D) Benzoxazine compound The benzoxazine compound may have at least one or more benzoxazine rings in the molecule, but dihydrobenzoxazine compounds represented by the following general formula (5) or (6) A pd-type dihydrobenzoxazine represented by the following general formula (6) is preferred, and more preferred.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In formulas (5) and (6), R 6 and R 7 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 3 carbon atoms.)
 樹脂混合物の樹脂成分100質量部中におけるベンゾオキサジン化合物の含有量は、硬化物の高耐熱性および低誘電特性ならびに、樹脂組成物の低沸点溶剤への溶解性の観点から、5~20質量部が好ましく、10~20質量部がより好ましく、15~20質量部がさらに好ましい。 The content of the benzoxazine compound in 100 parts by mass of the resin component of the resin mixture is 5 to 20 parts by mass from the viewpoint of the high heat resistance and low dielectric properties of the cured product and the solubility of the resin composition in low boiling point solvents. is preferred, 10 to 20 parts by weight is more preferred, and 15 to 20 parts by weight is even more preferred.
 低沸点溶剤への溶解性および低沸点溶剤に溶解した状態の安定性の観点から、ベンゾオキサジン化合物の含有量は、ビスマレイミド化合物100質量部に対して15質量部以上がより好ましく、20質量部以上がさらに好ましい。耐熱性の良好な硬化物を得る観点から、ベンゾオキサジン化合物の含有量は、ビスマレイミド化合物100質量部に対して50質量部以下がより好ましく、40質量部以下がさらに好ましい。 From the viewpoint of solubility in a low boiling point solvent and stability in a state of being dissolved in a low boiling point solvent, the content of the benzoxazine compound is more preferably 15 parts by mass or more, more preferably 20 parts by mass with respect to 100 parts by mass of the bismaleimide compound. The above is more preferable. From the viewpoint of obtaining a cured product with good heat resistance, the content of the benzoxazine compound is more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less with respect to 100 parts by mass of the bismaleimide compound.
(E)ビスフェノールA型シアネートエステル
 ビスフェノールA型シアネートエステルは、トリアジン環を形成して硬化するビスフェノールA型シアネートエステル(トリアジン)である。樹脂混合物は、ビスフェノールA型シアネートエステルの含有により硬化性が向上する。ビスフェノールA型シアネートエステルには、モノマーと(ホモ)ポリマー(高分子)とがあるが、低誘電特性に優れた硬化物を得る観点から、ビスフェノールA型シアネートエステルのモノマーが好ましい。
(E) Bisphenol A-type cyanate ester A bisphenol A-type cyanate ester is a bisphenol A-type cyanate ester (triazine) that forms a triazine ring and cures. Curability of the resin mixture is improved by containing the bisphenol A type cyanate ester. Bisphenol A-type cyanate esters include monomers and (homo)polymers (polymers), and bisphenol A-type cyanate ester monomers are preferred from the viewpoint of obtaining cured products with excellent low dielectric properties.
 硬化物の低誘電特性およびプリプレグの段階における成分の析出を防止する観点から、樹脂混合物の樹脂成分100質量部におけるビスフェノールA型シアネートエステルの含有量は、0.1~3質量部が好ましく、0.5~2質量部がより好ましく、0.7~1.3質量部がさらに好ましい。 From the viewpoint of low dielectric properties of the cured product and prevention of component precipitation at the prepreg stage, the content of the bisphenol A-type cyanate ester in 100 parts by mass of the resin component of the resin mixture is preferably 0.1 to 3 parts by mass. 0.5 to 2 parts by weight is more preferred, and 0.7 to 1.3 parts by weight is even more preferred.
(F)エポキシ樹脂
 樹脂組成物は、例えば難燃性などの各種特性を補完することを目的として、必要に応じてエポキシ樹脂を含有してもよい。エポキシ樹脂の含有によって、基材に樹脂組成物を含浸させたシートであるプリプレグを重ねて加圧加熱処理して得られる積層板の層間密着力や絶縁性が向上する場合がある。
(F) Epoxy resin The resin composition may contain an epoxy resin, if necessary, for the purpose of complementing various properties such as flame retardancy. The inclusion of the epoxy resin may improve the interlaminar adhesion and insulating properties of a laminate obtained by stacking prepregs, which are sheets impregnated with a resin composition, on a base material and performing pressurization and heat treatment.
 エポキシ樹脂は、エポキシ基を有する化合物であればよいが、硬化物の耐熱性と低誘電特性とを両立する観点から、ビフェニルアラルキル型エポキシ樹脂、ナフタレン環を含むエポキシ樹脂、エポキシ基を三つ有する化合物などが好ましい。ナフタレン環を含むエポキシ樹脂としては、α-ナフトール型エポキシ樹脂が好ましい。市販のナフタレン環を含むエポキシ樹脂としては、各ナフタレン環がエポキシ基を二つ有するESN-475V(製品名、新日鉄住金化学(株)製、α-ナフトール型エポキシ樹脂)が挙げられる。また、市販の高耐熱3官能エポキシ樹脂として、VG3101L(製品名、(株)プリンテック製)が挙げられる。 The epoxy resin may be a compound having an epoxy group, but from the viewpoint of achieving both heat resistance and low dielectric properties of the cured product, a biphenyl aralkyl type epoxy resin, an epoxy resin containing a naphthalene ring, and having three epoxy groups. Compounds and the like are preferred. As the epoxy resin containing a naphthalene ring, an α-naphthol type epoxy resin is preferable. Examples of commercially available epoxy resins containing naphthalene rings include ESN-475V (product name, α-naphthol type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) in which each naphthalene ring has two epoxy groups. Moreover, VG3101L (product name, manufactured by Printec Co., Ltd.) can be mentioned as a commercially available high heat-resistant trifunctional epoxy resin.
 上記以外のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、トリフェニロール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などが挙げられる。 Epoxy resins other than the above include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin. , triphenylol-type epoxy resins, dicyclopentadiene-type epoxy resins, and the like.
 ただし、樹脂混合物の樹脂成分中のビスフェノールA型エポキシ樹脂の含有量を抑えることにより硬化物の耐熱性が向上する。このため、硬化物の耐熱性を良好にする観点から、樹脂混合物はビスフェノールA型エポキシ樹脂を含有しないことが好ましい。ここで、ビスフェノールA型エポキシ樹脂を含有しないとは、実質的に含有しないこと、すなわち樹脂混合物がその性質に影響を及ぼす量のビスフェノールA型エポキシ樹脂を含有しないことをいう。例えば、樹脂混合物の樹脂成分100質量部におけるビスフェノールA型エポキシ樹脂の含有量を1質量部以下、場合により0.3質量部以下または0.1質量部以下とすれば、低誘電特性等の樹脂混合物の性質に対して影響を及ぼさない。 However, the heat resistance of the cured product is improved by suppressing the content of the bisphenol A type epoxy resin in the resin component of the resin mixture. Therefore, from the viewpoint of improving the heat resistance of the cured product, it is preferable that the resin mixture does not contain a bisphenol A type epoxy resin. Here, "not containing a bisphenol A type epoxy resin" means substantially not containing it, that is, not containing an amount of a bisphenol A type epoxy resin that affects the properties of the resin mixture. For example, if the content of the bisphenol A type epoxy resin in 100 parts by mass of the resin component of the resin mixture is 1 part by mass or less, depending on the case, 0.3 parts by mass or less or 0.1 part by mass or less, a resin with low dielectric properties It has no effect on the properties of the mixture.
 樹脂混合物の樹脂成分100質量部におけるエポキシ樹脂の含有量は、硬化物の高耐熱性および低誘電特性の観点から、1~12質量部が好ましく、2~10質量部がより好ましく、3~8質量部がさらに好ましい。 The content of the epoxy resin in 100 parts by mass of the resin component of the resin mixture is preferably 1 to 12 parts by mass, more preferably 2 to 10 parts by mass, and 3 to 8 parts by mass, from the viewpoint of high heat resistance and low dielectric properties of the cured product. Parts by mass are more preferred.
<第2の実施形態>
(樹脂組成物)
 本実施形態の樹脂組成物は、(A)ビスマレイミド化合物を含む樹脂混合物を溶融して得られた樹脂組成物であって、(A)ビスマレイミド化合物が、課題を解決するための手段の項に示す、式(1)により表される脂肪族ビスマレイミド化合物と、式(2)により表される芳香族ビスマレイミド化合物と、を含む。樹脂組成物は、樹脂組成物が脂肪族ビスマレイミド化合物および芳香族ビスマレイミド化合物を含有することで、硬化物の低誘電特性を維持しつつ、硬化物の耐熱性を向上させることができる。ビスマレイミド化合物について、第1の実施形態と共通の事項は説明を省略し、異なる事項について以下に説明する。
<Second embodiment>
(resin composition)
The resin composition of the present embodiment is a resin composition obtained by melting a resin mixture containing (A) a bismaleimide compound, wherein (A) the bismaleimide compound is and an aliphatic bismaleimide compound represented by formula (1) and an aromatic bismaleimide compound represented by formula (2). By containing the aliphatic bismaleimide compound and the aromatic bismaleimide compound, the resin composition can improve the heat resistance of the cured product while maintaining the low dielectric properties of the cured product. With respect to the bismaleimide compound, description of items common to the first embodiment will be omitted, and different items will be described below.
 樹脂組成物は、硬化物の耐熱性を高くする観点から、樹脂混合物における上記二種類のビスマレイミド化合物の含有量の質量比が、脂肪族ビスマレイミド化合物:芳香族ビスマレイミド化合物として、25:55~45:35であることが好ましく、27:53~47:38であることがより好ましい。 From the viewpoint of increasing the heat resistance of the cured product, the resin composition is such that the mass ratio of the content of the two types of bismaleimide compounds in the resin mixture is 25:55 as the aliphatic bismaleimide compound:aromatic bismaleimide compound. 45:35 is preferable, and 27:53 to 47:38 is more preferable.
(H)トリアリルイソシアヌレート
 樹脂組成物は、低沸点溶剤に対する溶解性を高くする観点から、樹脂混合物中にトリアリルイソシアヌレートを含有している。樹脂混合物の樹脂成分100質量部中のトリアリルイソシアヌレートの含有量は、16~26質量部が好ましく、18~24質量部がより好ましい。トリアリルイソシアヌレートを含有することにより、60質量%のメチルエチルケトン溶液を調整可能な、低沸点溶剤に対する溶解性が高い樹脂組成物となる。トリアリルイソシアヌレートの市販品としては、TAIC(商標、三菱ケミカル(株)製)などが挙げられる。
(H) Triallyl isocyanurate The resin composition contains triallyl isocyanurate in the resin mixture from the viewpoint of increasing the solubility in low boiling point solvents. The content of triallyl isocyanurate in 100 parts by mass of the resin component of the resin mixture is preferably 16 to 26 parts by mass, more preferably 18 to 24 parts by mass. By containing triallyl isocyanurate, the resin composition can be prepared as a 60% by mass methyl ethyl ketone solution and has high solubility in a low boiling point solvent. Commercial products of triallyl isocyanurate include TAIC (trademark, manufactured by Mitsubishi Chemical Corporation).
 樹脂組成物は、Bステージにおける状態を粘性固体形状ではなく固体として取り扱い性をよくする観点から、アミン化合物およびカルボン酸二無水物をさらに含有することが好ましい。 The resin composition preferably further contains an amine compound and a carboxylic acid dianhydride from the viewpoint of making the state in the B-stage a solid rather than a viscous solid so that it is easy to handle.
(C)アミン化合物
 アミン化合物としては、第1の実施形態と同じものが挙げられる。Bステージにおいて固体となる、低沸点溶媒に対する溶解性が高い樹脂組成物とする観点から、樹脂混合物がトリアリルイソシアヌレートを含有する場合、樹脂混合物の樹脂成分100質量部中のアミン化合物の含有量は、8~20質量部が好ましく、10~18質量部がより好ましく、12~16質量部がさらに好ましい。
(C) Amine Compound The same amine compound as in the first embodiment can be used as the amine compound. When the resin mixture contains triallyl isocyanurate, the content of the amine compound in 100 parts by mass of the resin component of the resin mixture is is preferably 8 to 20 parts by mass, more preferably 10 to 18 parts by mass, even more preferably 12 to 16 parts by mass.
(I)カルボン酸二無水物
 テトラカルボン酸二無水物は、BPADA、6FDA、SFDA、BzDA:エネハイド(商標、ENEOS製)、TAHQ(略号は実施例参照)などが挙げられる。Bステージにおいて固体となり、低沸点溶媒に対する溶解性が高い樹脂組成物とする観点から、樹脂混合物がトリアリルイソシアヌレートを含有する場合、樹脂混合物の樹脂成分100質量部中のカルボン酸二無水物の含有量は、10~35質量部が好ましく、15~30質量部がより好ましく、20~27質量部がさらに好ましい。
(I) Carboxylic acid dianhydride Examples of tetracarboxylic acid dianhydride include BPADA, 6FDA, SFDA, BzDA: Enehyde (trademark, manufactured by ENEOS), TAHQ (see Examples for abbreviations), and the like. From the viewpoint of making a resin composition that becomes solid in the B stage and has high solubility in a low boiling point solvent, when the resin mixture contains triallyl isocyanurate, carboxylic acid dianhydride in 100 parts by mass of the resin component of the resin mixture The content is preferably 10 to 35 parts by mass, more preferably 15 to 30 parts by mass, even more preferably 20 to 27 parts by mass.
(G)硬化促進剤
 第1および第2の実施形態として説明した本発明の樹脂組成物を用いる際に、硬化促進剤を添加してもよい。硬化促進剤を添加するタイミングとしては、樹脂組成物を溶剤に溶解してワニスとした際、ワニスをプリプレグ化する際、または基材、積層板を製造する際などが挙げられる。以下の説明は、第1および第2の実施形態の樹脂組成物に共通する。
(G) Curing Accelerator When using the resin composition of the present invention described as the first and second embodiments, a curing accelerator may be added. Timing for adding the curing accelerator includes, for example, when the resin composition is dissolved in a solvent to form a varnish, when the varnish is prepregized, or when a substrate or laminate is produced. The following description is common to the resin compositions of the first and second embodiments.
 硬化促進剤としては、例えば、ジクミルペルオキシド、4,4’-ジアミノジフェニルメタン、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ヘプチルイミダゾールなどのイミダゾール類;トリエタノールアミン、トリエチレンジアミン、N-メチルモルホリンなどのアミン類;トリフェニルホスフィン、トリトリルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリエチルアンモニウムテトラフェニルボレートなどのテトラフェニルボロン塩類;1,8-ジアザービシクロ(5,4,0)ウンデセン-7およびその誘導体;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オレイン酸錫、ナフテン酸マンガン、ナフテン酸コバルト、オクチル酸コバルトなどの有機金属塩などが挙げられる。必要に応じて有機過酸化物やアゾ化合物などを併用することもできる。 Curing accelerators include, for example, imidazoles such as dicumyl peroxide, 4,4'-diaminodiphenylmethane, 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-heptylimidazole; triethanolamine, triethylenediamine, Amines such as N-methylmorpholine; Organic phosphines such as triphenylphosphine and tritolylphosphine; Tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triethylammonium tetraphenylborate; ,4,0) undecene-7 and its derivatives; organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, tin oleate, manganese naphthenate, cobalt naphthenate and cobalt octylate. An organic peroxide, an azo compound, or the like can be used in combination as necessary.
 硬化促進剤は、ワニスまたはプリプレグにおいて、所望するゲル化時間が得られる含有量で配合される。例えば、硬化促進剤は、樹脂組成物に含有される樹脂成分の合計100質量部に対して、0.01~5質量部の範囲で用いられる。 The curing accelerator is blended in the varnish or prepreg at a content that gives the desired gelling time. For example, the curing accelerator is used in the range of 0.01 to 5 parts by mass with respect to the total 100 parts by mass of the resin components contained in the resin composition.
 樹脂組成物および溶融混合前の樹脂混合物は、上記(A)~(I)以外の成分を含有してもよい。例えば、樹脂組成物を硬化させて成形品とする基材を得るため、有機または無機の充填剤を用いることができる。充填剤の例として、シリカ、珪藻土、アルミナ、塩化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化スズ、酸化アンチモン、フェライト類などの酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウムなどの水酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイトなどの炭酸塩;硫酸カルシウム、硫酸バリウム、石膏繊維などの硫酸塩;ケイ酸カルシウム(ウォラストナイト、ゾノトライト)、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルンなどのケイ酸塩;窒化アルミ、窒化ホウ素、窒化珪素などの窒化物;カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末などの炭素類;その他各種金属粉、チタン酸カリウム、チタン酸ジルコン酸鉛、アルミボレート、硫化モリブデン、炭化珪素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、セラミック粉などを挙げることができる。 The resin composition and the resin mixture before melt mixing may contain components other than the above (A) to (I). For example, organic or inorganic fillers can be used to cure the resin composition to obtain a substrate for molding. Examples of fillers include oxides such as silica, diatomaceous earth, alumina, zinc chloride, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide, magnesium hydroxide, hydroxide Hydroxides such as aluminum and basic magnesium carbonate; carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite and hydrotalcite; sulfates such as calcium sulfate, barium sulfate and gypsum fiber; calcium silicate (wollastonite, xonotlite), talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silicates such as silica-based balun; aluminum nitride, boron nitride, nitride Nitrides such as silicon; Carbons such as carbon black, graphite, carbon fiber, carbon balloons, and charcoal powder; Other metal powders, potassium titanate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber , zinc borate, various magnetic powders, slag fibers, and ceramic powders.
 充填剤の形状としては球形または燐片状が好ましい。また必要に応じて分子中に二個以上の異なる反応基(一つは無機材料と化学反応する反応基で、もう一つは有機材料と化学反応する反応基)をもつシランカップリング剤を併用してもよい。 The shape of the filler is preferably spherical or scaly. If necessary, use a silane coupling agent with two or more different reactive groups in the molecule (one reactive group that chemically reacts with inorganic materials, the other that chemically reacts with organic materials). You may
 有機または無機の充填剤を用いる場合、その含有量は、樹脂混合物の樹脂成分100質量部に対して5.0~250質量部が好ましい。 When using an organic or inorganic filler, the content is preferably 5.0 to 250 parts by mass with respect to 100 parts by mass of the resin component of the resin mixture.
 樹脂組成物には、必要に応じて難燃剤を添加することができる。難燃剤としてはブロム化エポキシ樹脂のようなブロム化合物および縮合燐酸エステルのようなリン化合物などの有機難燃剤、水酸化アルミニウム、水酸化マグネシウム、スズ化合物およびアンチモン化合物などの無機難燃剤などが挙げられる。 A flame retardant can be added to the resin composition as needed. Flame retardants include organic flame retardants such as bromine compounds such as brominated epoxy resins and phosphorus compounds such as condensed phosphoric acid esters, and inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide, tin compounds and antimony compounds. .
 また、難燃剤は、樹脂組成物を硬化した硬化物の耐熱性、耐湿熱性を損なわずに十分な難燃性(例えばUL94規格におけるV-0条件合格)を実現する含有量であることが望ましい。有機難燃剤の場合、例えば、樹脂組成物中における有機難燃剤を含めた樹脂成分の合計100質量部に対して1~20質量部で、無機難燃剤の場合、樹脂成分の合計100質量部に対して10~300質量部で用いられる。 In addition, the flame retardant is a content that realizes sufficient flame retardancy (for example, passing the V-0 condition in UL94 standard) without impairing the heat resistance and moist heat resistance of the cured product obtained by curing the resin composition. . In the case of an organic flame retardant, for example, 1 to 20 parts by mass with respect to a total of 100 parts by mass of the resin components including the organic flame retardant in the resin composition. It is used in an amount of 10 to 300 parts by mass.
 樹脂組成物を用いるにあたって、用途に応じて他の添加剤を加えることができる。他の添加剤の例としては、各種シリコーンオイル、熱可塑性樹脂、NBRなどの合成ゴム類、レベリング剤が挙げられる。他の添加剤は、例えば、樹脂組成物中における他の添加剤と樹脂成分との合計100質量部中の上記他添加剤の含有量が0.0001~5質量部で用いられる。 When using the resin composition, other additives can be added depending on the application. Examples of other additives include various silicone oils, thermoplastic resins, synthetic rubbers such as NBR, and leveling agents. Other additives are used, for example, in a content of 0.0001 to 5 parts by mass in a total of 100 parts by mass of the other additives and the resin component in the resin composition.
(溶融混合工程)
 本発明の樹脂組成物は、樹脂混合物を加熱して、溶融状態で混合する溶融混合工程によって製造される。溶融混合工程には、通常の混合手段を用いることができる。混合手段としては、ニーダー、2軸混練機などが好ましい。溶融混合時の温度は樹脂混合物が溶融する温度以上400℃以下とすればよいが、130~230℃が好ましく、150~210℃がより好ましく、170~190℃がさらに好ましい。
(Melting and mixing step)
The resin composition of the present invention is produced by a melt-mixing process in which a resin mixture is heated and mixed in a molten state. Usual mixing means can be used for the melt-mixing step. As a mixing means, a kneader, a twin-screw kneader, or the like is preferable. The temperature during melt-mixing may be the temperature at which the resin mixture melts or higher and 400°C or lower, preferably 130 to 230°C, more preferably 150 to 210°C, and even more preferably 170 to 190°C.
 溶融混合工程は、樹脂混合物を加熱して得られる樹脂組成物の重量平均分子量が1000~2500となる条件で行うことが好ましく、1200~1800となる条件で行うことがより好ましい。溶融混合工程の時間は、例えば0.1~10分間程度であるが、0.5~4分間程度となるように、溶融混合工程における温度などの条件を設定することが好ましい。 The melt-mixing step is preferably carried out under conditions such that the weight average molecular weight of the resin composition obtained by heating the resin mixture is 1,000 to 2,500, more preferably 1,200 to 1,800. The time for the melt-mixing step is, for example, about 0.1 to 10 minutes, and it is preferable to set conditions such as temperature in the melt-mixing step so as to be about 0.5 to 4 minutes.
 溶融混合工程の後、自然冷却もしくは強制冷却によって冷却して本発明の樹脂組成物を得る。冷却方法としては公知の方法から適宜選択して行うことができる。例えば、0~40℃の環境下で自然冷却する方法や、冷媒を用いて強制冷却する方法を採用することができる。また、溶融混合後恒温装置内で30~300℃の環境下に置いてから冷却する方法を採用してもよい。冷却後、得られた樹脂組成物を固体状の樹脂組成物として後の工程に使用することができる。 After the melt mixing step, the resin composition of the present invention is obtained by cooling by natural cooling or forced cooling. The cooling method can be appropriately selected from known methods. For example, a method of natural cooling in an environment of 0 to 40° C. or a method of forced cooling using a refrigerant can be employed. Further, after melting and mixing, it may be placed in an environment of 30 to 300° C. in a constant temperature device and then cooled. After cooling, the resulting resin composition can be used in subsequent steps as a solid resin composition.
 溶融混合工程において、脂肪族ビスマレイミド化合物と、芳香族ビスマレイミド化合物と、樹脂混合物中の他の成分とが反応することにより、ビスマレイミド化合物の少なくとも一部が変性する。これにより、高耐熱性、低誘電特性、低沸点溶剤に対する溶解性および硬化性が良好な樹脂組成物を製造することができる。 In the melt-mixing step, the aliphatic bismaleimide compound, the aromatic bismaleimide compound, and other components in the resin mixture react with each other, so that at least part of the bismaleimide compound is modified. As a result, a resin composition having high heat resistance, low dielectric properties, good solubility in low boiling point solvents, and good curability can be produced.
 低沸点溶剤への溶解性を良好にする観点から、溶融混合工程によって製造された樹脂組成物が、分子量4500~4800の成分を有していることが好ましい。樹脂組成物100質量%における分子量4500~4800の成分の割合が10~20質量%であることが好ましく、12~18質量%であることがより好ましい。分子量4500~4800の成分の割合は、ゲル浸透クロマトグラフィー(GPC)測定により求めることができる。 From the viewpoint of improving the solubility in low-boiling solvents, it is preferable that the resin composition produced by the melt-mixing process has a component with a molecular weight of 4,500 to 4,800. The ratio of the component having a molecular weight of 4500 to 4800 in 100% by mass of the resin composition is preferably 10 to 20% by mass, more preferably 12 to 18% by mass. The proportion of components with a molecular weight of 4500-4800 can be determined by gel permeation chromatography (GPC) measurement.
(ワニス)
 本発明に係る樹脂組成物のワニスは、上述した製造方法によって得られた樹脂組成物を、沸点が120℃以下かつ比誘電率が10~30の溶剤に溶解させたものである。
 沸点が120℃以下かつ比誘電率が10~30の溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤、エタノール、1-プロパノール、2-プロパノール、1-ブタノールなどのアルコール系溶剤などが挙げられる。操作性などを考慮すると、例示した溶剤のうちケトン系溶剤が好ましく用いられる。上に例示したもの以外の溶剤を含有していてもよい。
(varnish)
The resin composition varnish according to the present invention is obtained by dissolving the resin composition obtained by the above-described production method in a solvent having a boiling point of 120° C. or less and a dielectric constant of 10 to 30.
Examples of solvents having a boiling point of 120° C. or less and a dielectric constant of 10 to 30 include ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ether solvents such as propylene glycol monomethyl ether, ethanol, 1-propanol and 2-propanol. , and alcohol solvents such as 1-butanol. Among the exemplified solvents, a ketone solvent is preferably used in consideration of operability and the like. Solvents other than those exemplified above may be contained.
 ワニス100質量部中の樹脂組成物の含有量は、通常40~80質量部であり、好ましくは50~70質量部である。ワニスは、樹脂組成物を常温(室温)または加熱下で溶剤に溶解させて得ることができる。加熱下で溶解させる場合、溶剤の沸点にもよるが、溶解させる際の条件は、例えば、温度50~200℃程度で0.1~24時間程度である。 The content of the resin composition in 100 parts by mass of the varnish is usually 40 to 80 parts by mass, preferably 50 to 70 parts by mass. The varnish can be obtained by dissolving the resin composition in a solvent at normal temperature (room temperature) or under heating. When dissolving under heating, the conditions for dissolving are, for example, a temperature of about 50 to 200° C. and a time of about 0.1 to 24 hours, depending on the boiling point of the solvent.
 プリプレグは、上記ワニスを基材に塗布または含浸し、次いで乾燥させて溶剤を除去して製造する。基材としてはガラス不織布、ガラスクロス、炭素繊維布、有機繊維布、紙などの従来プリプレグに用いられる公知の基材を使用することができる。 A prepreg is produced by coating or impregnating a base material with the above varnish and then drying it to remove the solvent. As the substrate, known substrates used in conventional prepregs, such as glass nonwoven fabric, glass cloth, carbon fiber cloth, organic fiber cloth, and paper, can be used.
 上記ワニスを上記基材に塗布または含浸した後、乾燥工程を経てプリプレグを製造するが、塗布方法、含浸方法、乾燥方法は特に限定するものではなく、従来公知の方法を採用することができる。乾燥条件については、使用する溶剤の沸点により適宜決められるが、あまり高温は好ましくない。プリプレグ100質量部中に残存する溶剤が3質量部以下となるように乾燥させることが望ましい。 After coating or impregnating the base material with the varnish, the prepreg is manufactured through a drying process, but the coating method, impregnation method, and drying method are not particularly limited, and conventionally known methods can be adopted. The drying conditions are appropriately determined according to the boiling point of the solvent used, but too high a temperature is not preferable. It is desirable to dry so that the solvent remaining in 100 parts by mass of the prepreg is 3 parts by mass or less.
 プリプレグを製造する際、上述した樹脂組成物以外のフィラーをワニスに添加してもよい。フィラーとしては、シリカ粒子、アルミナ粒子、ポリフェニレンエーテル樹脂などが挙げられる。硬化物の高耐熱性、低比誘電率および低誘電正接を付与する観点から、プリプレグを調製する際に用いるフィラーの添加量は、樹脂組成物の樹脂成分100質量部に対して、10~100質量部が好ましく、10~50質量部がより好ましく、20~40質量部がさらに好ましい。市販のシリカ粒子、アルミナ粒子フィラーとしてアドマファインシリーズ(製品名、(株)アドマテックス製)などが挙げられ、市販のポリフェニレンエーテル樹脂としてSA90、SA120、SA9000(製品名、いずれもSABICジャパン合同会社製)などが挙げられる。 A filler other than the resin composition described above may be added to the varnish when producing the prepreg. Examples of fillers include silica particles, alumina particles, and polyphenylene ether resins. From the viewpoint of imparting high heat resistance, low dielectric constant and low dielectric loss tangent to the cured product, the amount of the filler used in preparing the prepreg is 10 to 100 parts per 100 parts by mass of the resin component of the resin composition. Parts by weight are preferred, 10 to 50 parts by weight are more preferred, and 20 to 40 parts by weight are even more preferred. Examples of commercially available silica particles and alumina particle fillers include the ADMAFINE series (product name, manufactured by Admatechs Co., Ltd.), and commercially available polyphenylene ether resins SA90, SA120, and SA9000 (product names, all manufactured by SABIC Japan LLC. ) and the like.
 本発明の樹脂組成物はプリント配線基板用に好適であり、また樹脂組成物を硬化させてなる成形品として本発明を実施することができる。成形品としては、樹脂組成物のみを硬化させてなる硬化物や、他の原料と複合した複合材、積層体などが挙げられる。 The resin composition of the present invention is suitable for printed wiring boards, and the present invention can be implemented as a molded product obtained by curing the resin composition. Examples of molded articles include cured products obtained by curing only the resin composition, composite materials combined with other raw materials, laminates, and the like.
 複合材および積層体は、プリプレグ1枚を熱プレスなどで加圧下に加熱し硬化させるか、プリプレグ複数枚を積層して加圧下に加熱して一体化させることによって得られる。複合材を製造する時の加熱加圧条件は特に限定されるものではないが、加熱温度として100~300℃、好ましくは150~250℃、より好ましくは200~250℃、圧力として10~100kg/cm2、好ましくは20~40kg/cm、加熱加圧時間として10~300分間、好ましくは30~180分間を挙げることができる。 The composite material and laminate can be obtained by heating and curing one sheet of prepreg under pressure using a hot press or the like, or by laminating a plurality of prepregs and heating and integrating them under pressure. The heating and pressurizing conditions for producing the composite material are not particularly limited, but the heating temperature is 100 to 300° C., preferably 150 to 250° C., more preferably 200 to 250° C., and the pressure is 10 to 100 kg/ cm 2 , preferably 20 to 40 kg/cm, and heating/pressing time is 10 to 300 minutes, preferably 30 to 180 minutes.
 積層体の片面または両面に、金属箔または金属板を積層一体化させて多層プリント配線板用などに使用可能な積層体としてもよい。積層体は、1枚のプリプレグの片面もしくは両面に金属箔もしくは金属板を積層して、または複数枚積層されたプリプレグの最外層となる片面または両面に金属箔または金属板を積層して、熱プレスによりプリプレグを加熱硬化させて一体化させ製造する。 A laminate that can be used for a multilayer printed wiring board may be obtained by laminating and integrating a metal foil or a metal plate on one or both sides of the laminate. Laminates are produced by laminating a metal foil or metal plate on one or both sides of a single prepreg, or by laminating a metal foil or metal plate on one or both sides of a plurality of laminated prepregs, which is the outermost layer, and then heating. The prepreg is heat-cured by pressing to be integrated.
 金属箔または金属板としては、銅、アルミニウム、鉄、ステンレスなどが使用できる。例えば、金属箔として銅を用いた積層板が銅張積層板(Copper Clad Laminate、CCL)である。加熱硬化させる際の条件は、複合材を製造する際の条件と同様の条件が好ましい。また、内層コア材を用いて多層プリント配線板用積層板としてもよい。
 本発明は、上述した樹脂組成物を含有する接着剤、封止剤および塗料として実施することもできる。
Copper, aluminum, iron, stainless steel, etc. can be used as the metal foil or metal plate. For example, a laminate using copper as a metal foil is a copper clad laminate (CCL). The conditions for heat curing are preferably the same as the conditions for producing the composite material. Moreover, it is good also as a laminated board for multilayer printed wiring boards using an inner layer core material.
The present invention can also be implemented as adhesives, sealants and paints containing the resin composition described above.
 以下、実施例を示して本発明を説明するが、これらの実施例により本発明が限定されるものではない。実施例および比較例において用いた試験方法および原料は以下のとおりである。 The present invention will be described below with reference to examples, but the present invention is not limited by these examples. Test methods and raw materials used in Examples and Comparative Examples are as follows.
1.試験方法
〔溶剤溶解性(MEK溶解性)〕
 測定試料(樹脂組成物)60質量部とメチルエチルケトン(溶剤)40質量部とを50℃以下の条件下で混合し、所定時間、超音波振動を加えた後における溶解状態を以下の基準を用いて目視により評価した。
  〇:100分間超音波振動を加えた時点で褐色透明の液体であり、溶け残り、分離、濁りが無い。
  ×:100分間超音波振動を加えた時点で溶け残り、分離または濁りがある。
1. Test method [Solvent solubility (MEK solubility)]
60 parts by mass of a measurement sample (resin composition) and 40 parts by mass of methyl ethyl ketone (solvent) are mixed under conditions of 50° C. or less, and the dissolved state after applying ultrasonic vibration for a predetermined time is measured using the following criteria. It was evaluated visually.
◯: Brown transparent liquid at the time of applying ultrasonic vibration for 100 minutes, with no undissolved residue, separation, or turbidity.
x: Undissolved, separated or turbid after applying ultrasonic vibration for 100 minutes.
〔ガラス転移点(Tg)〕
〔熱腺膨張率:CTE(ppm/℃)〕
 樹脂組成物を硬化させた硬化物を所定の大きさにカット(切り出)して、ガラス転移点測定のサンプルとした。以下の条件にて、DSC(示差走査熱量計)およびTMA(Thermomechanical Analysis、熱機械分析)法を用いて、サンプルのガラス転移点(温度、℃)および熱腺膨張率(CTE)を測定した。
(DSC)
 測定機器    :リガク社製 Thermo plus EVO2 DSC8231
 サンプル重量  :5mg
 雰囲気     :N2
 測定温度    :30~350℃
 昇温速度    :10℃/min.
 測定モ-ド   :熱流束型
(TMA)
 測定機器    :リガク社製 Thermo plus TMA8310
 サンプル寸法  :長さ(縦)19mm×幅(横)5mm×厚さ0.1mm
 雰囲気     :N2
 測定温度    :30~350℃
 昇温速度    :10℃/min.
 測定モ-ド   :引張
[Glass transition point (Tg)]
[Thermal expansion coefficient: CTE (ppm/°C)]
A cured product obtained by curing the resin composition was cut (cut out) into a predetermined size and used as a sample for measuring the glass transition point. The glass transition point (temperature, °C) and thermal expansion coefficient (CTE) of the samples were measured using DSC (differential scanning calorimeter) and TMA (thermomechanical analysis) methods under the following conditions.
(DSC)
Measuring instrument: Thermo plus EVO2 DSC8231 manufactured by Rigaku
Sample weight: 5mg
Atmosphere: N2
Measurement temperature: 30 to 350°C
Temperature rising rate: 10°C/min.
Measurement mode: heat flux type (TMA)
Measuring equipment: Thermo plus TMA8310 manufactured by Rigaku
Sample dimensions: length (vertical) 19 mm x width (horizontal) 5 mm x thickness 0.1 mm
Atmosphere: N2
Measurement temperature: 30 to 350°C
Temperature rising rate: 10°C/min.
Measurement mode: Tensile
〔比誘電率(Dk)、誘電正接(Df)〕
 製造直後および製造後24時間経過時点において、空洞共振器法により、1GHz条件または10GHz条件で測定した。空洞共振器法による測定は、1GHz条件と10GHz条件とで、略同様の結果となった。比誘電率(Dk)および誘電正接(Df)の測定試料として、硬化物および1枚のプリプレグ(2116E-glass、樹脂含侵率40±10%、厚み0.1±20%)の両面に、金属箔として銅を用いた銅張積層板(CCL)を製造した。プリプレグを加熱硬化させて一体化させる際の熱プレスの条件は、加熱温度230℃、圧力20kg/cm2、加熱加圧時間120分間とした。
[Dielectric constant (Dk), dielectric loss tangent (Df)]
Immediately after production and 24 hours after production, measurement was performed under 1 GHz or 10 GHz conditions by the cavity resonator method. The measurement by the cavity resonator method gave substantially the same results under the 1 GHz condition and the 10 GHz condition. As samples for measuring relative dielectric constant (Dk) and dielectric loss tangent (Df), A copper clad laminate (CCL) was manufactured using copper as the metal foil. The conditions of the hot press for heating and curing the prepreg for integration were a heating temperature of 230° C., a pressure of 20 kg/cm 2 , and a heating and pressurizing time of 120 minutes.
 実施例1~42および比較例1~4は、硬化物として比誘電率(Dk)および誘電正接(Df)を測定した。
 実施例43~67および比較例5~7は、CCLから銅箔を除去し、金型を用いてx:y:z=80mm×20mm×0.1mmに切り出し、切り出した部材の端部をサンドペーパー等を用いてバリを除去し平滑にしたものを測定対象物とした。切り出した部材の長手方向をxとし、短手方向をyとし、厚み方向をzとした。x方向に20mmの間隔をあけて、y及びz方向の寸法を三か所で測定し、その平均値を算出し、小数点以下3桁までの値をyおよびz方向における測定対象物の寸法とした。
For Examples 1 to 42 and Comparative Examples 1 to 4, relative permittivity (Dk) and dielectric loss tangent (Df) were measured as cured products.
In Examples 43-67 and Comparative Examples 5-7, the copper foil was removed from the CCL, cut into x: y: z = 80 mm × 20 mm × 0.1 mm using a mold, and the ends of the cut out members were sanded. An object to be measured was made smooth by removing burrs using paper or the like. The longitudinal direction of the cut member was x, the lateral direction was y, and the thickness direction was z. Measure the dimensions in the y and z directions at three locations with an interval of 20 mm in the x direction, calculate the average value, and use the values to three decimal places as the dimensions of the object to be measured in the y and z directions. did.
[吸水率]
 実施例66、67および比較例6の硬化物を幅(縦)60mm×長さ(横)60mm×高さ1.2mmにし、四辺を整面したものを用いて、85℃、湿度85%の条件下において、48時間保存する前後において重量を測定し、高温高湿度条件下における吸水率(%)を評価した。
[Water absorption]
The cured products of Examples 66, 67 and Comparative Example 6 were 60 mm in width (vertical) × 60 mm in length (horizontal) × 1.2 mm in height, and the four sides were smoothed. Under the conditions, the weight was measured before and after storage for 48 hours, and the water absorption rate (%) under high temperature and high humidity conditions was evaluated.
[Bステージの状態(固化)]
 樹脂組成物を150-200℃になるように加熱し、その状態で3~5分間の撹拌をした後、室温条件下で十分に冷却した状態における、樹脂の状態を以下の基準により評価した。
  〇:樹脂が粉体または固形物となり、容易に回収できる。
  ×:樹脂が粘性固体形状となり、回収が困難である。
[State of B stage (solidification)]
The resin composition was heated to 150 to 200° C., stirred for 3 to 5 minutes in that state, and then sufficiently cooled under room temperature conditions, and the state of the resin was evaluated according to the following criteria.
◯: The resin becomes powder or solid and can be easily recovered.
x: The resin becomes a viscous solid and is difficult to recover.
2.原料
(A)ポリマレイミド化合物
・BMI-TMH(製品名、大和化成工業(株)製、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、融点73~110℃)
・BMI-4000(製品名、大和化成工業(株)製、ビスフェノールAジフェニルエーテルビスマレイミド、融点134~163℃)
・BMI-2300(製品名、大和化成工業(株)製、ポリフェニルメタンポリマレイミド、融点70~145℃)
2. Raw material (A) Polymaleimide compound BMI-TMH (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., 1,6-bismaleimide-(2,2,4-trimethyl)hexane, melting point 73 to 110°C)
・ BMI-4000 (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., bisphenol A diphenyl ether bismaleimide, melting point 134 to 163 ° C.)
・BMI-2300 (product name, manufactured by Daiwa Kasei Kogyo Co., Ltd., polyphenylmethane polymaleimide, melting point 70 to 145 ° C.)
(B)クマロン樹脂
・G-90(製品名、日塗化学(株)製、常温で固体、軟化点90℃、重量平均分子量770)
(C)アミン化合物
・BAPP(製品名、セイカ(株)製、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン)
・ビスアニリンM(三井化学ファイン(株)製)
・カヤボンド C-200S(製品名、日本化薬(株)製、4,4’-メチレンビス(2,6-ジメチルアミン))
・ODA(製品名、セイカ(株)製、4,4’-ジアミノジフェニルエーテル)
・BAPB(製品名、セイカ(株)製、4,4’-ビス(4-アミノフェノキシ)ビフェニル)
・APB-N(1,3-ビス(3-アミノフェノキシ)ベンゼン)
・BAN(製品名、日本化薬(株)製)
(B) coumarone resin G-90 (product name, manufactured by Nikko Chemical Co., Ltd., solid at room temperature, softening point 90°C, weight average molecular weight 770)
(C) Amine compound BAPP (product name, manufactured by Seika Co., Ltd., 2,2-bis[4-(4-aminophenoxy)phenyl]propane)
・ Bisaniline M (manufactured by Mitsui Chemicals Fine Co., Ltd.)
・ Kayabond C-200S (product name, manufactured by Nippon Kayaku Co., Ltd., 4,4'-methylenebis (2,6-dimethylamine))
・ ODA (product name, manufactured by Seika Co., Ltd., 4,4′-diaminodiphenyl ether)
・BAPB (product name, manufactured by Seika Co., Ltd., 4,4′-bis(4-aminophenoxy)biphenyl)
・APB-N (1,3-bis(3-aminophenoxy)benzene)
・BAN (product name, manufactured by Nippon Kayaku Co., Ltd.)
(D)ベンゾオキサジン化合物
・BZO:(P-d型)ベンゾオキサジン(四国化成(株)製)
(D) benzoxazine compound BZO: (Pd type) benzoxazine (manufactured by Shikoku Kasei Co., Ltd.)
(E)ビスフェノールA型シアネートエステル
・トリアジン(製品名、三菱ガス化学(株)製、CAS No.1156-51-0、ビスフェノールA型シアネートエステルのモノマー、2,2-ビス(4-シアナトフェニル)プロパン)
(F)エポキシ樹脂
・ESN-475V(製品名、新日鉄住金化学(株)製、α-ナフトールアラルキル型エポキシ樹脂)
(E) Bisphenol A type cyanate ester/triazine (product name, manufactured by Mitsubishi Gas Chemical Co., Ltd., CAS No. 1156-51-0, bisphenol A type cyanate ester monomer, 2,2-bis(4-cyanatophenyl )propane)
(F) Epoxy resin ESN-475V (product name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., α-naphthol aralkyl epoxy resin)
(H)トリアリルイソシアヌレート
・タイク(製品名、三菱ケミカル(株)製、CAS No.1025-15-6)
(H) triallyl isocyanurate Tyke (product name, manufactured by Mitsubishi Chemical Corporation, CAS No. 1025-15-6)
(I)テトラカルボン酸二無水物
・BPADA:4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸二無水物
・6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタルテトラカルボン酸二無水物
・SFDA:スピロ[フルオレン-9,9’-キサンテン]-2’,3’,6’,7’-テトラカルボン酸二無水物
・6FBPADA:5,5’-(((パーフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレン))ビス(オキシ))ビス(イソベンゾフラン-1,3-ジオン)
・BzDA:エネハイド(商標、ENEOS製)
・TAHQ:ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレン(CAS No.2770-49-2)
(I) Tetracarboxylic dianhydride BPADA: 4,4'-(4,4'-isopropylidenediphenoxy) diphthalic dianhydride 6FDA: 4,4'-(hexafluoroisopropylidene) diphthaltetra Carboxylic dianhydride SFDA: Spiro[fluorene-9,9'-xanthene]-2',3',6',7'-tetracarboxylic dianhydride 6FBPADA: 5,5'-(((Per Fluoropropane-2,2-diyl)bis(4,1-phenylene))bis(oxy))bis(isobenzofuran-1,3-dione)
・BzDA: Enehyde (trademark, manufactured by ENEOS)
・TAHQ: Bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid) 1,4-phenylene (CAS No. 2770-49-2)
(他の成分:フィラー)
・SC2500-SXJ:(製品名、(株)アドマテックス製、シリカ粒子)
(other ingredients: filler)
・ SC2500-SXJ: (product name, manufactured by Admatechs Co., Ltd., silica particles)
(実施例、比較例)
 2軸混合(混練)機を用いて、表1~8に示す割合(質量部)の樹脂混合物を溶融混合(溶融混練)して樹脂組成物を製造した。溶融混合工程は2軸混混合機の樹脂組成物の出口における樹脂組成物温度が170℃±10℃となる条件で行った。
(Example, Comparative Example)
Using a twin-screw mixer (kneader), a resin composition was produced by melt-mixing (melt-kneading) resin mixtures in proportions (parts by mass) shown in Tables 1 to 8. The melt-mixing process was carried out under the condition that the temperature of the resin composition at the exit of the twin-screw mixer was 170°C ± 10°C.
 上記のようにして製造した樹脂混組成物45質量部と、溶剤55質量部とを常温条件下で混合し、樹脂組成物のワニスを製造した。実施例1~22および比較例1~4では溶剤としてテトラヒドロフランを用い、実施例23~67および比較例5~7では溶剤としてメチルエチルケトンを用いた。 45 parts by mass of the mixed resin composition produced as described above and 55 parts by mass of a solvent were mixed under normal temperature conditions to produce a varnish of the resin composition. Tetrahydrofuran was used as the solvent in Examples 1-22 and Comparative Examples 1-4, and methyl ethyl ketone was used as the solvent in Examples 23-67 and Comparative Examples 5-7.
 実施例65および67は、ワニス中の樹脂組成物における樹脂成分100質量部に対して100質量部の割合でフィラー(SC2500-SXJ)を添加し分散したものを、ガラスクロス2116に一層で含浸させて(1Ply)プリプレグを製造した。他の実施例43~67および比較例5~7は、ワニスにポリフェニレンエーテルを添加せずに、そのままガラスクロス2116に一層で含浸させてプリプレグを製造した。 In Examples 65 and 67, the glass cloth 2116 was impregnated with a filler (SC2500-SXJ) added and dispersed in a proportion of 100 parts by mass with respect to 100 parts by mass of the resin component in the resin composition in the varnish. (1 Ply) prepreg was produced. In other Examples 43 to 67 and Comparative Examples 5 to 7, prepregs were produced by impregnating the glass cloth 2116 in a single layer without adding polyphenylene ether to the varnish.
 各実施例および比較例のプリプレグを、プレス条件;180℃×30kg/cm2×1時間、本硬化条件;230℃×2時間として硬化させた各硬化物について、ガラス転移点(Tg)、比誘電率(Dk)、および誘電正接(Df)を測定した結果を表1~8に示す。実施例48および49は、プリプレグを製造した時点において樹脂のカスレが大きかったため、測定対象としなかった。 The prepreg of each example and comparative example was cured under press conditions: 180 ° C. x 30 kg/cm 2 x 1 hour, main curing conditions: 230 ° C. x 2 hours. Tables 1 to 8 show the results of measuring dielectric constant (Dk) and dielectric loss tangent (Df). Examples 48 and 49 were not used for measurement because the resin had large scratches when the prepreg was manufactured.
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、(A)ビスマレイミド化合物として、式(1)の脂肪族ビスマレイミド化合物および式(2)の芳香族ビスマレイミド化合物の二つを含む樹脂混合物を溶融することで、これらの一つを用いた場合よりも、硬化物のTgが向上した。Tgの向上は、上記二種類のビスマレイミド化合物を用いることで、分子密度が増大し、強固且つ高密度な分子構造を備えた硬化物となったためであると推定される。
Figure JPOXMLDOC01-appb-T000011
As shown in Table 1, as (A) bismaleimide compounds, by melting a resin mixture containing two of an aliphatic bismaleimide compound of formula (1) and an aromatic bismaleimide compound of formula (2), these The Tg of the cured product was improved as compared with the case of using one of It is presumed that the improvement in Tg is due to the fact that the use of the two types of bismaleimide compounds increases the molecular density, resulting in a cured product with a strong and high-density molecular structure.
Figure JPOXMLDOC01-appb-T000012
 表1に示す二種類のビスマレイミド化合物を用いた樹脂組成物の硬化物は、耐熱性および低誘電特性に優れたものとなる。しかし、NMP(N-メチル-2-ピロリドン)等の高沸点溶剤には溶解するが、メチルエチルケトンなどの低沸点溶剤への溶解性が低い。
 表2に示すように、樹脂混合物が樹脂成分100質量部中に、(H)トリアリルイソシアヌレートを16~23質量部含有することにより、耐熱性および低誘電特性に優れるという硬化物の特長を維持しつつ、低沸点溶剤に溶解する樹脂組成物とすることができた。
Figure JPOXMLDOC01-appb-T000012
Cured products of resin compositions using the two types of bismaleimide compounds shown in Table 1 are excellent in heat resistance and low dielectric properties. However, although it dissolves in high boiling point solvents such as NMP (N-methyl-2-pyrrolidone), it has low solubility in low boiling point solvents such as methyl ethyl ketone.
As shown in Table 2, when the resin mixture contains 16 to 23 parts by mass of (H) triallyl isocyanurate in 100 parts by mass of the resin component, the cured product has excellent heat resistance and low dielectric properties. It was possible to obtain a resin composition that is soluble in a low-boiling-point solvent while maintaining the
Figure JPOXMLDOC01-appb-T000013
 表2および表3に示す結果から、(H)トリアリルイソシアヌレートを配合して、低沸点溶剤への溶解性が高い樹脂組成物とするためには、二種類のビスマレイミド化合物の比率を所定の範囲内とする必要があることが分かった。すなわち、樹脂混合物中における質量比を、脂肪族ビスマレイミド化合物の含有量:芳香族ビスマレイミド化合物の含有量を25:55~45:35とすることで、低沸点溶剤への溶解性の高い樹脂組成物が得られた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000013
From the results shown in Tables 2 and 3, in order to blend (H) triallyl isocyanurate and obtain a resin composition having high solubility in a low boiling point solvent, a predetermined ratio of the two types of bismaleimide compounds found to be within the range of That is, by setting the mass ratio in the resin mixture to 25:55 to 45:35 for the content of the aliphatic bismaleimide compound: the content of the aromatic bismaleimide compound, a resin with high solubility in a low boiling point solvent A composition was obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表2および表3に示すように、樹脂混合物中の二種類のビスマレイミド化合物の質量比を所定の範囲とし、(H)トリアリルイソシアヌレートを配合することで、低沸点溶剤への溶解性の高い樹脂組成物が得られた。しかし、当該樹脂組成物はBステージにおいて粘性固体形状となり、取り扱い性が悪いものであった。
 表4および表5に示すように、樹脂混合物の樹脂成分100質量部中に8~20質量部の(C)アミン化合物および15~30質量部の(I)カルボン酸二無水物を配合することにより、Bステージにおいて固体となる、取り扱い性に優れた樹脂組成物となることが分かった。なお、低沸点溶剤への溶解性の高い樹脂組成物とする観点から、(C)アミン化合物は、APB-N、BAN、およびBAPPからなる群から選ばれる一または複数が好ましく、(I)カルボン酸二無水物は、BPDA、6FDAおよびSFDAからなる群から選ばれる一または複数が好ましい。
Figure JPOXMLDOC01-appb-T000015
As shown in Tables 2 and 3, by setting the mass ratio of the two types of bismaleimide compounds in the resin mixture to a predetermined range and blending (H) triallyl isocyanurate, solubility in low boiling point solvents A high resin composition was obtained. However, the resin composition was in a viscous solid form at the B stage and had poor handleability.
As shown in Tables 4 and 5, 8 to 20 parts by mass of (C) amine compound and 15 to 30 parts by mass of (I) carboxylic acid dianhydride are blended in 100 parts by mass of the resin component of the resin mixture. It was found that the resin composition becomes solid in the B stage and has excellent handleability. From the viewpoint of obtaining a resin composition highly soluble in a low boiling point solvent, (C) the amine compound is preferably one or more selected from the group consisting of APB-N, BAN, and BAPP, and (I) carboxylic Acid dianhydride is preferably one or more selected from the group consisting of BPDA, 6FDA and SFDA.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表6に示す結果から、以下のことがいえる。
 樹脂混合物の樹脂成分100質量部中に、(A)~(C)の成分を含有する樹脂混合物を溶融して得られた樹脂組成物を用いたプリプレグにより、低誘電特性を備えた硬化物を製造することができた。
 (C)アミン化合物として式(4)により表されるビスアニリンを用いることにより、プリプレグとしての取り扱い性が良好な樹脂組成物が得られた。
 (A)ポリマレイミド化合物としてBMI-TMHおよびBMI-4000を含有し、(C)アミン化合物としてBAPPを含有する樹脂混合物を溶融して得られた樹脂組成物は、耐熱性(Tg(DSC))および低誘電特性(Df(24時間後))が良好であった。
From the results shown in Table 6, the following can be said.
A cured product with low dielectric properties is produced from a prepreg using a resin composition obtained by melting a resin mixture containing components (A) to (C) in 100 parts by mass of the resin component of the resin mixture. could be manufactured.
By using the bisaniline represented by the formula (4) as the (C) amine compound, a resin composition having good handleability as a prepreg was obtained.
A resin composition obtained by melting a resin mixture containing (A) BMI-TMH and BMI-4000 as polymaleimide compounds and (C) BAPP as an amine compound has heat resistance (Tg (DSC)). and low dielectric properties (Df (after 24 hours)) were good.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表7および表8に示す結果から、以下のことがいえる。
 BMI-TMHとBMI-4000との含有量の質量比を、3.0:7.0~7.0:3.0とすることにより、CTEの低い硬化物が得られた。
 樹脂混合物100質量部中におけるG-90の含有量を12質量部以下とすることにより、硬化物の耐熱性(Tg)を高くすることができた。
 トリアジンの含有量にかかわらず耐熱性に優れる硬化物が得られた。樹脂混合物がトリアジンを含有することで樹脂混合物の粘度(硬さ)が増し取り扱い性が向上した。
 低誘電特性に優れる硬化物とする観点から、樹脂混合物100質量部中におけるトリアジンの含有量は、2.0質量部以下が好ましく、1.0質量部以下がより好ましいといえる。
 エポキシの含有量に関わらず、耐熱性および低誘電特性に優れた硬化物が得られた。
 フィラーとしてSC2500-SXJを分散させた実施例67により、最も優れた低誘電特性を実現することができた。これは、凝集による分子結合がフィラーにより阻害されて解消された結果として、高密な分子結合が得られたことによるものと推測できる。
 ビスマレイミドとして、BMI-TMHとBMI-4000とを用いることにより、BMI-2300を用いた比較例5よりも吸水率が小さい硬化物が得られた。本発明の樹脂組成物を硬化させた硬化物は、熱プレスにより硬化させた後における吸水率が小さいため、製造直後における優れた低誘電特性を製造後において安定的に維持することができる。
From the results shown in Tables 7 and 8, the following can be said.
A cured product with a low CTE was obtained by setting the mass ratio of the contents of BMI-TMH and BMI-4000 to 3.0:7.0 to 7.0:3.0.
By setting the content of G-90 to 12 parts by mass or less in 100 parts by mass of the resin mixture, it was possible to increase the heat resistance (Tg) of the cured product.
A cured product having excellent heat resistance was obtained regardless of the triazine content. Since the resin mixture contained triazine, the viscosity (hardness) of the resin mixture was increased and the handleability was improved.
From the viewpoint of obtaining a cured product with excellent low dielectric properties, the triazine content in 100 parts by mass of the resin mixture is preferably 2.0 parts by mass or less, and more preferably 1.0 parts by mass or less.
Cured products with excellent heat resistance and low dielectric properties were obtained regardless of the epoxy content.
Example 67, in which SC2500-SXJ was dispersed as a filler, could achieve the best low dielectric properties. This is presumed to be due to the fact that dense molecular bonding was obtained as a result of the filler inhibiting and eliminating the molecular bonding due to aggregation.
By using BMI-TMH and BMI-4000 as bismaleimides, a cured product having a lower water absorption than Comparative Example 5 using BMI-2300 was obtained. Since the cured product obtained by curing the resin composition of the present invention has a low water absorption after curing by hot pressing, it is possible to stably maintain excellent low dielectric properties immediately after production.
[製造条件の検討]
 実施例67の樹脂組成物について、溶剤溶解性の観点から最適な製造条件を検討した。
 図1に合成時間を2.5分間とした樹脂組成物のGPCの結果を示す。
 表9に合成時間が樹脂組成物の特性に及ぼす影響を示す。
[合成条件]
 樹脂温度170℃±10℃
[ゲルタイム]
 171℃熱板における硬化時間を測定
[ピーク面積]
 GPC(ゲル浸透クロマトグラフィー)測定により、分子量4500~4800の成分の検出の有無および、検出された場合、全ピーク面積における分子量4500~4800の成分のピーク面積の割合(%)を求めた。
[重量平均分子量]
 GPC測定により、樹脂組成物の重量平均分子量を求めた。
 溶剤溶解性は、以下の基準を用いて評価した。
 測定試料(樹脂組成物)60質量部とメチルエチルケトン(溶剤)40質量部とを50℃以下の条件下で混合し、所定時間、超音波振動を加えた後における溶解状態を以下の基準を用いて目視により評価した。
〔MEK溶解性(168時間)〕
 上述した溶剤溶解性(MEK溶解性)の方法で樹脂のMEK溶液を調製し、所定時間放置した後における測定試料の状態を、以下の基準を用いて目視により評価した。
  〇:室温条件下で168時間放置した時点において樹脂の析出なし。
  ×:室温条件下で168時間放置した時点において樹脂の析出あり。
[Examination of manufacturing conditions]
For the resin composition of Example 67, optimal production conditions were examined from the viewpoint of solvent solubility.
FIG. 1 shows the results of GPC of the resin composition with a synthesis time of 2.5 minutes.
Table 9 shows the effect of synthesis time on the properties of the resin composition.
[Synthesis conditions]
Resin temperature 170℃±10℃
[gel time]
Measurement of curing time on a hot plate at 171°C [peak area]
By GPC (gel permeation chromatography) measurement, the presence or absence of detection of a component with a molecular weight of 4500 to 4800 and, if detected, the ratio (%) of the peak area of the component with a molecular weight of 4500 to 4800 in the total peak area was determined.
[Weight average molecular weight]
The weight average molecular weight of the resin composition was determined by GPC measurement.
Solvent solubility was evaluated using the following criteria.
60 parts by mass of a measurement sample (resin composition) and 40 parts by mass of methyl ethyl ketone (solvent) are mixed under conditions of 50° C. or less, and the dissolved state after applying ultrasonic vibration for a predetermined time is measured using the following criteria. It was evaluated visually.
[MEK solubility (168 hours)]
An MEK solution of the resin was prepared by the method of solvent solubility (MEK solubility) described above, and the state of the measurement sample after standing for a predetermined time was visually evaluated using the following criteria.
◯: No precipitation of resin after standing at room temperature for 168 hours.
x: Precipitation of resin after standing for 168 hours at room temperature.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表9に示す結果から、以下のことがいえる。
 合成時間すなわち樹脂混合物を溶融混合する時間を長くすることにより、反応が進行し、ゲルタイムが短くなった。
 合成時間の違いにより、長時間放置した場合のMEK溶解性に差が生じた。合成時間を2.5分間以上とすることでMEK溶解性が良好な樹脂組成物が得られた。
 合成時間の違いにより、GPC測定による分子量4500~4800の成分のピーク面積および重量平均分子量に差が生じたことから、これらは、MEK溶解性が良好な樹脂組成物を製造するための合成時間の指標となるといえる。
 図1のグラフにおける1を付したピークに対応する分子量4500~4800の成分の割合を全体の10~20%とすることで、MEK溶解性の良好な樹脂組成物が得られた。
 重量平均分子量を1100~2500とすることで、MEK溶解性が良好な樹脂組成物が得られた。
From the results shown in Table 9, the following can be said.
By lengthening the synthesis time, that is, the time for melt-mixing the resin mixture, the reaction progressed and the gel time was shortened.
The difference in synthesis time caused a difference in MEK solubility when left standing for a long time. A resin composition having good MEK solubility was obtained by setting the synthesis time to 2.5 minutes or longer.
Differences in synthesis time caused differences in the peak areas and weight average molecular weights of components with molecular weights of 4500 to 4800 measured by GPC. It can be said that it serves as an index.
A resin composition with good MEK solubility was obtained by setting the ratio of the component having a molecular weight of 4500 to 4800 corresponding to the peak marked with 1 in the graph of FIG. 1 to 10 to 20% of the total.
By setting the weight average molecular weight to 1100 to 2500, a resin composition having good MEK solubility was obtained.
[溶剤溶解性]
 合成時間を2.5分間とした実施例67の樹脂組成物(ピーク面積12.3%、Mw=1257)について、MEK以外の他の溶剤に対する溶解性を評価した。その結果、PGM(プロピレングリコールモノメチルエーテル)、PGM-Ac(プロピレングリコールモノメチルエーテルアセテート)、DMAc(ジメチルアセトアミド)、NMP(N-メチルピロリドン)、γ―ブチロラクトン、エチルアセテート、アセトン、トルエン、THF(テトラヒドロフラン)、シクロヘキサノン、DMF(ジメチルホルムアミド)、メトキシベンゼン(アニソール)、2-(2-ブトキシエトキシ)エタノール(知エチレングリコールモノエチルエーテル)および2-(2-エトキシエトキシ)エチルアセテート(エチルカルビトールアセテート)について、100分間超音波振動を加えた時点で褐色透明の液体であり、溶け残り、分離、濁りが無く、溶解性が良好であった。
[Solvent solubility]
The solubility in solvents other than MEK was evaluated for the resin composition of Example 67 (peak area: 12.3%, Mw = 1257) with a synthesis time of 2.5 minutes. As a result, PGM (propylene glycol monomethyl ether), PGM-Ac (propylene glycol monomethyl ether acetate), DMAc (dimethylacetamide), NMP (N-methylpyrrolidone), γ-butyrolactone, ethyl acetate, acetone, toluene, THF (tetrahydrofuran) ), cyclohexanone, DMF (dimethylformamide), methoxybenzene (anisole), 2-(2-butoxyethoxy)ethanol (ethylene glycol monoethyl ether) and 2-(2-ethoxyethoxy)ethyl acetate (ethyl carbitol acetate) When ultrasonic vibration was applied for 100 minutes, it was a brown transparent liquid with no undissolved residue, separation, or turbidity, and had good solubility.
 本発明の樹脂組成物は、溶剤に対する溶解性が良好であり、低誘電特性(低比誘電率、低誘電正接)、および高耐熱性を備えているため、高性能化、大容量化、高速化した各種電子機器に好適な、耐熱性および低誘電特性に優れた接着剤、封止剤、塗料、成形品、積層体およびプリント配線基板の原料として利用できる。 The resin composition of the present invention has good solubility in solvents, low dielectric properties (low dielectric constant and low dielectric loss tangent), and high heat resistance. It can be used as a raw material for adhesives, sealants, paints, moldings, laminates and printed wiring boards that are excellent in heat resistance and low dielectric properties and suitable for various electronic devices.

Claims (20)

  1.  (A)ビスマレイミド化合物を含む樹脂混合物を溶融して得られた樹脂組成物であって、
     前記(A)ビスマレイミド化合物が、
      式(1)により表される脂肪族ビスマレイミド化合物と、
      式(2)により表される芳香族ビスマレイミド化合物と、を含むことを特徴とする、
    樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R1は炭素数6~12のアルキレン基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R2は芳香環を有する炭素数6以上30以下の炭化水素基であり、X1はそれぞれ独立に酸素原子または単結合であり、R3およびR4は炭素数1以上6以下の炭化水素基であり、aおよびbはそれぞれ独立に0以上3以下の整数である。)
    (A) A resin composition obtained by melting a resin mixture containing a bismaleimide compound,
    The (A) bismaleimide compound is
    an aliphatic bismaleimide compound represented by formula (1);
    and an aromatic bismaleimide compound represented by formula (2),
    Resin composition.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 is an alkylene group having 6 to 12 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), R 2 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring, X 1 is each independently an oxygen atom or a single bond, and R 3 and R 4 each have 1 carbon atom. is a hydrocarbon group of 6 or less, and a and b are each independently an integer of 0 or more and 3 or less.)
  2.  前記式(1)における、R1が炭素数9のアルキレン基であり、
     前記式(2)における、R2が式(3)で表される基である、
    請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    In the formula (1), R 1 is an alkylene group having 9 carbon atoms,
    In the formula (2), R 2 is a group represented by the formula (3),
    The resin composition according to claim 1.
    Figure JPOXMLDOC01-appb-C000003
  3.  前記脂肪族ビスマレイミド化合物が、1,6-ビスマレイミド(2,2,4-トリメチル)ヘキサンであり、
     前記芳香族ビスマレイミド化合物が、ビスフェノールAジフェニルエーテルビスマレイミドである、
    請求項1に記載の樹脂組成物。
    the aliphatic bismaleimide compound is 1,6-bismaleimide(2,2,4-trimethyl)hexane,
    The aromatic bismaleimide compound is bisphenol A diphenyl ether bismaleimide,
    The resin composition according to claim 1.
  4.  前記樹脂混合物における、前記脂肪族ビスマレイミド化合物の含有量と、前記芳香族ビスマレイミド化合物の含有量との質量比、前記脂肪族ビスマレイミド化合物:前記芳香族ビスマレイミド化合物が25:55~45:35である、
    請求項3に記載の樹脂組成物。
    The mass ratio of the content of the aliphatic bismaleimide compound to the content of the aromatic bismaleimide compound in the resin mixture, the aliphatic bismaleimide compound: the aromatic bismaleimide compound being 25:55 to 45: is 35;
    The resin composition according to claim 3.
  5.  前記樹脂混合物は、(H)トリアリルイソシアヌレートをさらに含有しており、
     樹脂成分100質量部中における、前記(H)トリアリルイソシアヌレートの含有量が16~23質量部である、
    請求項4に記載の樹脂組成物。
    The resin mixture further contains (H) triallyl isocyanurate,
    The content of the (H) triallyl isocyanurate in 100 parts by mass of the resin component is 16 to 23 parts by mass.
    The resin composition according to claim 4.
  6.  前記樹脂混合物は、(C)アミン化合物および(I)カルボン酸二無水物を、さらに含有しており、
     樹脂成分100質量部中における、前記(C)アミン化合物の含有量が10~20質量部であり、
     樹脂成分100質量部中における、前記(I)カルボン酸二無水物の含有量が15~30質量部である、
    請求項5に記載の樹脂組成物。
    The resin mixture further contains (C) an amine compound and (I) a carboxylic acid dianhydride,
    The content of the (C) amine compound in 100 parts by mass of the resin component is 10 to 20 parts by mass,
    In 100 parts by mass of the resin component, the content of the (I) carboxylic acid dianhydride is 15 to 30 parts by mass.
    The resin composition according to claim 5.
  7.  前記樹脂混合物は、(B)クマロン樹脂および(C)アミン化合物を、さらに含有しており、
     前記樹脂混合物の樹脂成分100質量部中における、
      前記(A)ビスマレイミド化合物の含有量が30~65質量部であり、
      前記(B)クマロン樹脂の含有量が5~25質量部であり、
      前記(C)アミン化合物の含有量が1~30質量部である、
    請求項1に記載の樹脂組成物。
    The resin mixture further contains (B) a coumarone resin and (C) an amine compound,
    In 100 parts by mass of the resin component of the resin mixture,
    The content of the (A) bismaleimide compound is 30 to 65 parts by mass,
    The content of the (B) coumarone resin is 5 to 25 parts by mass,
    The content of the (C) amine compound is 1 to 30 parts by mass,
    The resin composition according to claim 1.
  8.  前記脂肪族ビスマレイミド化合物の含有量と、前記芳香族ビスマレイミド化合物の含有量との質量比、前記脂肪族ビスマレイミド化合物:前記芳香族ビスマレイミド化合物が3.0:7.0~7.0:3.0である、
    請求項7に記載の樹脂組成物。
    The mass ratio of the content of the aliphatic bismaleimide compound to the content of the aromatic bismaleimide compound, the aliphatic bismaleimide compound: the aromatic bismaleimide compound is 3.0:7.0 to 7.0. : is 3.0;
    The resin composition according to claim 7.
  9.  前記(C)アミン化合物が、ビスアニリンである、
    請求項7に記載の樹脂組成物。
    The (C) amine compound is bisaniline,
    The resin composition according to claim 7.
  10.  前記(C)アミン化合物が、式(4)により表されるビスアニリンである、
    請求項7に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)において、R5は芳香環を有する炭素数6以上30以下の炭化水素基であり、X1はそれぞれ独立に酸素原子または単結合である。)
    The (C) amine compound is a bisaniline represented by formula (4),
    The resin composition according to claim 7.
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (4), R 5 is a hydrocarbon group having 6 to 30 carbon atoms and having an aromatic ring, and each X 1 is independently an oxygen atom or a single bond.)
  11.  (C)アミン化合物が、ビスアニリンM、4,4’-[ジメチルメチレンビス(4,1-フェニレンオキシ)]ビスアニリンまたは(4,4’-[ビフェニル-4,4’-ジイルビス(オキシ)]ビスアニリン)である、
    請求項7に記載の樹脂組成物。
    (C) the amine compound is bisaniline M, 4,4′-[dimethylmethylenebis(4,1-phenyleneoxy)]bisaniline or (4,4′-[biphenyl-4,4′-diylbis(oxy)]bisaniline ) is
    The resin composition according to claim 7.
  12.  前記樹脂混合物が、さらに(D)ベンゾオキサジンを含有しており、
     前記樹脂混合物100質量部における、前記(D)ベンゾオキサジンの含有量が5~20質量部である、
    請求項7に記載の樹脂組成物。
    The resin mixture further contains (D) benzoxazine,
    The content of the (D) benzoxazine in 100 parts by mass of the resin mixture is 5 to 20 parts by mass.
    The resin composition according to claim 7.
  13.  前記樹脂混合物が、さらに(E)ビスフェノールA型シアネートエステルを含有しており、
     前記樹脂混合物100質量部における、(E)ビスフェノールA型シアネートエステルの含有量が0.5~2質量部である、
    請求項12に記載の樹脂組成物。
    The resin mixture further contains (E) a bisphenol A cyanate ester,
    The content of (E) bisphenol A-type cyanate ester in 100 parts by mass of the resin mixture is 0.5 to 2 parts by mass,
    The resin composition according to claim 12.
  14.  前記樹脂混合物が、さらに(F)エポキシを含有しており、
     前記樹脂混合物100質量部における、(F)前記エポキシの含有量が1~9質量部である、
    請求項13に記載の樹脂組成物。
    The resin mixture further contains (F) epoxy,
    In 100 parts by mass of the resin mixture, the content of (F) the epoxy is 1 to 9 parts by mass.
    The resin composition according to claim 13.
  15.  重量平均分子量が1000~2500であり、
     分子量4500~4800の成分を有しており、前記成分の割合が10~20%である、
    請求項7に記載の樹脂組成物。
    A weight average molecular weight of 1000 to 2500,
    It has a component with a molecular weight of 4500 to 4800, and the proportion of the component is 10 to 20%.
    The resin composition according to claim 7.
  16.  プリント配線基板用である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, which is for printed wiring boards.
  17.  請求項5に記載の樹脂組成物を、沸点が120℃以下かつ誘電率が10~30の溶剤に溶解させたワニス。 A varnish obtained by dissolving the resin composition according to claim 5 in a solvent having a boiling point of 120°C or less and a dielectric constant of 10 to 30.
  18.  請求項1に記載の樹脂組成物を用いて製造された積層板。 A laminate manufactured using the resin composition according to claim 1.
  19.  請求項1に記載の樹脂組成物を用いて製造されたプリント配線基板。 A printed wiring board manufactured using the resin composition according to claim 1.
  20.  請求項1に記載の樹脂組成物を硬化させてなる成形品。 A molded article obtained by curing the resin composition according to claim 1.
PCT/JP2022/015425 2021-06-29 2022-03-29 Resin composition, varnish, laminated plate, printed wiring board, and molded product WO2023276379A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237040786A KR20240026127A (en) 2021-06-29 2022-03-29 Resin compositions, varnishes, laminates, printed wiring boards and molded products
JP2023531448A JPWO2023276379A1 (en) 2021-06-29 2022-03-29
CN202280042315.5A CN117500880A (en) 2021-06-29 2022-03-29 Resin composition, varnish, laminated plate, printed wiring board and molded article
TW111116145A TW202319481A (en) 2021-06-29 2022-04-28 Resin composition, varnish, laminated plate, printed wiring board, and molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107813 2021-06-29
JP2021-107813 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276379A1 true WO2023276379A1 (en) 2023-01-05

Family

ID=84692654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015425 WO2023276379A1 (en) 2021-06-29 2022-03-29 Resin composition, varnish, laminated plate, printed wiring board, and molded product

Country Status (5)

Country Link
JP (1) JPWO2023276379A1 (en)
KR (1) KR20240026127A (en)
CN (1) CN117500880A (en)
TW (1) TW202319481A (en)
WO (1) WO2023276379A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105317A (en) * 2012-11-29 2014-06-09 Toho Tenax Co Ltd Resin composition, prepreg using resin composition, and method of manufacturing resin composition
JP2016196548A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
JP2016204639A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Resin composition, laminate and multilayer printed board
JP2017115164A (en) * 2017-03-30 2017-06-29 Jxtgエネルギー株式会社 Thermosetting resin composition and epoxy resin cured product
CN107227015A (en) * 2016-03-23 2017-10-03 联茂电子股份有限公司 Dielectric materials
JP2019157027A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for producing the same
JP2019157097A (en) * 2018-03-17 2019-09-19 帝人株式会社 Prepreg and fiber-reinforced composite material, and method for producing same
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2019240092A1 (en) * 2018-06-12 2019-12-19 日立化成株式会社 Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device
WO2020161926A1 (en) * 2019-02-05 2020-08-13 株式会社プリンテック Resin composition and method for producing same
CN112778701A (en) * 2020-12-30 2021-05-11 广东生益科技股份有限公司 Halogen-free flame-retardant resin composition and application thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105317A (en) * 2012-11-29 2014-06-09 Toho Tenax Co Ltd Resin composition, prepreg using resin composition, and method of manufacturing resin composition
JP2016196548A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
JP2016204639A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Resin composition, laminate and multilayer printed board
CN107227015A (en) * 2016-03-23 2017-10-03 联茂电子股份有限公司 Dielectric materials
JP2017115164A (en) * 2017-03-30 2017-06-29 Jxtgエネルギー株式会社 Thermosetting resin composition and epoxy resin cured product
JP2019157027A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for producing the same
JP2019157097A (en) * 2018-03-17 2019-09-19 帝人株式会社 Prepreg and fiber-reinforced composite material, and method for producing same
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2019240092A1 (en) * 2018-06-12 2019-12-19 日立化成株式会社 Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device
WO2020161926A1 (en) * 2019-02-05 2020-08-13 株式会社プリンテック Resin composition and method for producing same
CN112778701A (en) * 2020-12-30 2021-05-11 广东生益科技股份有限公司 Halogen-free flame-retardant resin composition and application thereof

Also Published As

Publication number Publication date
KR20240026127A (en) 2024-02-27
CN117500880A (en) 2024-02-02
JPWO2023276379A1 (en) 2023-01-05
TW202319481A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7450488B2 (en) Polyamic acid resin, polyimide resin, and resin compositions containing these
JP5499544B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
JP5381438B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
JP2021181531A (en) Thermosetting maleimide resin composition, adhesive using the same, substrate material, primer, coating material and semiconductor device
JP2017101152A (en) Modified polyimide resin composition and manufacturing method therefor, and prepreg and laminate using the same
JP6994174B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2022004583A1 (en) Isocyanate-modified polyimide resin, resin composition and cured product of same
JP6946578B2 (en) Resin composition and its manufacturing method
TWI798212B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2023276379A1 (en) Resin composition, varnish, laminated plate, printed wiring board, and molded product
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
JP2001019844A (en) Curable polyphenylene ether resin composition
JP7137576B2 (en) Method for producing resin composition
JP2000223805A (en) Laminate material for circuit
JP4976894B2 (en) Thermosetting resin composition and molded product obtained therefrom
JP7330648B2 (en) Thermosetting maleimide resin composition, and uncured resin film and cured resin film made of the resin composition
JP7061944B2 (en) Varnish and its manufacturing method
TWI844517B (en) Resin compositions, varnishes, adhesives, sealants, coatings and molded products
WO2023243676A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
JP2002371132A (en) Epoxy group-containing polyimide copolymer and cured product thereof
JP2022170140A (en) Fluororesin substrate laminate and method for manufacturing fluororesin substrate laminate
TW202330722A (en) Copper-clad laminate, polyimide resin and manufacturing method thereof
JP2000228114A (en) Thermosetting low-dielectric resin composition and prepreg using it and laminated board
JP2000204247A (en) Circuit laminating material
JP2002138199A (en) Resin composition for laminate, prepreg using the same and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531448

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042315.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832540

Country of ref document: EP

Kind code of ref document: A1