WO2023276230A1 - 濃度測定装置 - Google Patents

濃度測定装置 Download PDF

Info

Publication number
WO2023276230A1
WO2023276230A1 PCT/JP2022/004787 JP2022004787W WO2023276230A1 WO 2023276230 A1 WO2023276230 A1 WO 2023276230A1 JP 2022004787 W JP2022004787 W JP 2022004787W WO 2023276230 A1 WO2023276230 A1 WO 2023276230A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concentration
cylinder
fluid
tube
Prior art date
Application number
PCT/JP2022/004787
Other languages
English (en)
French (fr)
Inventor
秀弥 中鉢
哲朗 桑山
義明 加藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023531369A priority Critical patent/JPWO2023276230A1/ja
Priority to CN202280044485.7A priority patent/CN117546006A/zh
Publication of WO2023276230A1 publication Critical patent/WO2023276230A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present disclosure relates to a concentration measuring device.
  • a resin tube Conventionally, a resin tube, a light source that emits light toward the fluid in the resin tube, and a light receiving element that receives light through the resin tube are provided.
  • a concentration measuring device for measuring the concentration of is known (see, for example, Patent Document 1).
  • the concentration measuring device described in Patent Document 1 the light emitted from the light source and passed through the resin tube is emitted in a diffused state. That is, part of the light that has passed through the resin tube travels in a direction that does not reach the light receiving element and is not detected by the light receiving element. Therefore, in the concentration measuring apparatus described in Patent Document 1, it may not be possible to secure a sufficient amount of light detected by the light receiving element, resulting in a decrease in measurement accuracy.
  • the present disclosure relates to a concentration measuring device capable of improving measurement accuracy.
  • a light source that emits light
  • a first optical system that is provided on an optical path of light emitted from the light source and collects the light emitted from the light source, and the first optical system on the optical path.
  • a light-transmitting cylinder arranged at a position behind the focal position of the optical system 1 and parallelizing the light incident on the side surface with a fluid flowing inside; and a detection unit for detecting the light emitted from the concentration measuring device.
  • FIG. 1 is a diagram showing the configuration of a density adjustment device according to a first embodiment of the present disclosure
  • FIG. It is a figure which shows the structure of a measuring device main body.
  • FIG. 10 shows a tube holder;
  • FIG. 10 shows a tube holder;
  • It is a figure explaining the calculation method of a cell concentration.
  • It is a figure explaining the calculation method of a cell concentration.
  • It is a figure which shows the structure of a biological sample analyzer.
  • FIG. 5 is a diagram showing the configuration of a measuring device main body according to a second embodiment of the present disclosure;
  • FIG. 11 shows a sixth lens;
  • FIG. 10 is a diagram showing the configuration of a measuring device main body according to a third embodiment of the present disclosure;
  • FIG. 11 is a diagram showing the configuration of a measuring device main body according to a fourth embodiment of the present disclosure;
  • 3 is a hardware configuration diagram showing an example of a computer that implements the functions of the control device according to the embodiment
  • FIG. 1 is a diagram showing the configuration of a density adjustment device 1 according to the first embodiment of the present disclosure.
  • the concentration adjustment device 1 is a device that adjusts the concentration of fluid containing biological particles. Specifically, the concentration adjustment device 1 adjusts the concentration of the fluid to an appropriate concentration to be input to the biological sample analyzer 6100 (see FIG. 7).
  • the concentration adjustment device 1 and the biological sample analyzer 6100 may be directly connected by a tube, and the fluid whose concentration has been adjusted by the concentration adjustment device may be introduced into the biological sample analyzer 6100 through the tube.
  • the fluid whose concentration has been adjusted by the concentration adjustment device may be taken out from the concentration adjustment device and put into the biological sample analyzer 6100 .
  • the biological sample analyzer 6100 is an apparatus used for cell therapy, and its detailed configuration will be described later in "Configuration of biological sample analyzer".
  • the fluid is a cell suspension stained with an antibody dye (labeled with a labeling substance). That is, the concentration adjustment device 1 aseptically adjusts the cell concentration in the cell suspension to an appropriate cell concentration to be input to the biological sample analyzer 6100, which will be described later, without directly touching the cell suspension. As shown in FIG.
  • the concentration adjusting device 1 includes a cell suspension container 2, a hollow fiber module 3, a measuring device main body 4, a waste liquid container 5, a control device 6, pipes 71 to 75, and a pump. It has PO1 to PO3 and valves V1 to V3.
  • the cell suspension container 2 is a container that accommodates the cell suspension L1, as shown in FIG.
  • a pipe 71 is connected to the cell suspension container 2 . Then, under the control of the control device 6, the valve V1 arranged on the pipe 71 is opened and the pump PO1 is driven, whereby the cell suspension L1 is transferred to the cell suspension via the pipe 71. It is fed into container 2 .
  • pipes 72 and 74 are connected to the cell suspension container 2 .
  • the cell suspension container 2 is arranged on an annular flow path of the pipe 72 - the hollow fiber module 3 - the pipe 73 - the measuring device main body 4 - the pipe 74 - the cell suspension container 2 - the pipe 72 . Then, under the control of the control device 6, the valve V2 arranged on the pipe 73 and the valve V3 arranged on the pipe 74 are opened, and the pump PO2 arranged on the pipe 72 is driven.
  • the cell suspension L1 in the cell suspension container 2 flows along the annular channel.
  • the hollow fiber module 3 includes a hollow fiber membrane 31 and an outer cylinder 32 that accommodates the hollow fiber membrane 31, as shown in FIG. Although only one hollow fiber membrane 31 is shown in the outer cylinder 32 in FIG. 1 , a plurality of hollow fiber membranes 31 are actually housed in the outer cylinder 32 .
  • the hollow fiber membrane 31 is a straw-shaped membrane with a hollow interior, and has a large number of pores on its surface that are smaller than the cells in the cell suspension L1. The pores are pores that allow passage of unbound antibody dyes and the like and impermeability of cells.
  • a pipe 75 is connected to the hollow fiber module 3 . Then, under the control of the control device 6, the pump PO3 arranged on the pipe 75 is driven, so that the cell suspension L1 flows through the hollow fiber membranes 31 following the above-described annular flow path. Then, the cells in the cell suspension L1 remain inside the hollow fiber membrane 31, and the unbound antibody dye and the like in the cell suspension L1 are discharged outside the hollow fiber membrane 31. The unbound antibody dye or the like discharged outside the hollow fiber membrane 31 follows the pipe 75 and is discharged into the waste liquid container 5 .
  • the measurement device main body 4 is a device for measuring the cell concentration in the cell suspension L1 flowing along the annular flow path described above. A detailed configuration of the measuring device main body 4 will be described later in "Configuration of the measuring device main body”.
  • the waste liquid container 5 is, as shown in FIG.
  • the control device 6 includes a controller such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). Then, the control device 6 calculates the cell concentration in the cell suspension L1 based on the detection result of the measurement device main body 4, and controls the operations of the pumps PO1 to PO3 and the valves V1 to V3 as described above. , to adjust the cell concentration. That is, the control device 6 corresponds to the control section according to the present disclosure. Also, the measuring device main body 4 and the control device 6 correspond to the concentration measuring device 100 (FIG. 1) according to the present disclosure.
  • a controller such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the control device 6 calculates the cell concentration in the cell suspension L1 based on the detection result
  • FIG. 2 is a diagram showing the configuration of the measuring device main body 4.
  • the measurement device main body 4 includes a light source 41, a first lens 421, a second lens 422, a tube TB, a tube holder 43, a third lens 44, and a light shielding plate 45. , a fourth lens 46 , a fifth lens 47 , and a detector 48 .
  • the tube TB corresponds to the tubular body according to the present disclosure. That is, the tube TB is formed in a cylindrical shape and has optical transparency. As a material of the tube TB, a resin material such as PVC (polyvinyl chloride) can be exemplified.
  • the tube TB constitutes part of the above-described annular flow path. That is, the cell suspension L1 flows through the tube TB.
  • the light source 41 emits light toward the cell suspension L1 inside the tube TB. In the first embodiment, the light source 41 emits light in a wavelength band of 700 nm or longer.
  • the first lens 421 is arranged on the post-stage side of the light path of the light source 41 and parallelizes the light emitted from the light source 41 .
  • the second lens 422 is arranged on the rear stage side of the optical path from the first lens 421, and directs the parallel light passing through the first lens 421 to the position on the front stage side of the optical path from the tube TB. Concentrate.
  • the first and second lenses 421 and 422 described above correspond to the first optical system 42 (FIG. 2) according to the present disclosure.
  • FIG. 3 and 4 are diagrams showing the tube holder 43.
  • FIG. 3 is a perspective view of the tube holder 43 viewed from the upstream side of the optical path.
  • FIG. 4 is a perspective view of the tube holder 43 viewed from the rear stage of the optical path.
  • the tube holder 43 is arranged on the downstream side of the optical path from the first optical system 42 .
  • the tube holder 43 is a substantially rectangular plate in plan view, and is made of a light blocking material that blocks light.
  • the tube holder 43 holds the tube TB.
  • the tube holder 43 is arranged in such a manner that each plate surface is substantially perpendicular to the optical axis of the light emitted from the light source 41 .
  • a tube groove 431 extending linearly in the vertical direction in FIG. 3 or 4 is formed on the plate surface on the upstream side of the optical path. Further, the tube holder 43 is formed with a through hole 432 which is located substantially in the center of the plate surface, penetrates through each plate surface, and communicates with the tube groove portion 431 . Furthermore, in the tube holder 43, circular recesses 433 and 434 centering on the through hole 432 are formed on each plate surface. The tube TB is held by the tube holder 43 while being inserted into the tube groove 431 . Also, part of the light that has passed through the tube TB passes through the through hole 432 .
  • the tube TB parallelizes the light incident on the side while the cell suspension L1 is circulating inside.
  • the tube TB collimates the light that has passed through the first optical system 42 and is transmitted through the tube TB in the plane orthogonal to the longitudinal direction of the tube TB. function as an optical element (cylindrical lens). That is, the focal position of the tube TB (cylindrical lens) is set to the condensing position of the first optical system 42 (the focal position of the second lens 422).
  • the light shielding plate 45 is arranged on the downstream side of the optical path with respect to the tube holder 43 .
  • the light shielding plate 45 is a plate and is made of a light shielding material that blocks light.
  • the light shielding plate 45 is arranged in a posture in which each plate surface is substantially perpendicular to the optical axis of the light emitted from the light source 41 .
  • an opening 451 penetrating through each plate surface is formed at a substantially central position, as shown in FIG.
  • the third lens 44 is provided between the tube TB and the light shielding plate 45, as shown in FIG.
  • This third lens 44 corresponds to the third optical system according to the present disclosure. That is, the third lens 44 converges the parallel light that has passed through the tube TB onto the opening 451 .
  • the fourth lens 46 is arranged on the downstream side of the light path with respect to the light shielding plate 45 .
  • the fourth lens 46 collimates the light that is condensed by the third lens 44 and passed through the aperture 451 .
  • the fifth lens 47 is arranged on the downstream side of the optical path from the fourth lens 46 .
  • the fifth lens 47 converges the light collimated by the fifth lens 47 onto the detection surface of the detection section 48 .
  • the detector 48 detects light (light through the fifth lens 47) through the cell suspension L1 in the tube TB.
  • the detector 48 is composed of a photodiode and outputs a voltage corresponding to the amount of light received to the controller 6 . Then, the control device 6 calculates the cell concentration in the cell suspension L1 based on the voltage.
  • 5 and 6 are diagrams for explaining a method of calculating the cell concentration. It is known that the absorbance of the cell suspension L1 is proportional to the cell concentration according to the Lambert-Beer law. Also, as shown in FIG. 5, the absorbance can be calculated based on the following formula (1) by measuring the incident light amount P0 and the transmitted light amount P1.
  • the control device 6 sets the voltage detected by the detection unit 48 when the reference fluid L1 serving as a reference with a cell concentration of 0 (not containing cells) is put into the tube TB, and the voltage detected by the detection unit 48 is V0.
  • the absorbance is calculated based on the following equation (2), where V is the voltage detected by the detection unit 48 when the cell suspension L1, which is the object to be measured including cells, is placed in the tube TB and measured.
  • control device 6 calculates the absorbance calculated by the formula (2) with respect to the relational expression between the absorbance and the cell concentration of the cell suspension L1 (hereinafter referred to as the calibration curve (see formula (3) below)) By substituting , the cell concentration in the cell suspension L1 is calculated. Note that the calibration curve is calculated in advance, for example, as shown below.
  • step S1 Eight types of cell suspensions L1 with different cell concentrations (samples No. 0 to No. 0) including a cell suspension L1 with a cell concentration of 0 (sample No. 0) were prepared. 7) Prepare (step S1).
  • each tube TB prepared in step S2 (each tube TB containing eight kinds of cell suspension L1 (sample No. 0 to No. 7)) is installed in the measurement device main body 4, and the detection unit 48 to measure voltage values (step S3).
  • Each voltage value measured in the step S3 is as shown in Table 1.
  • each sample No. is obtained by substituting each voltage value measured in step S3 into the equation (2).
  • 0 to No. 7 is calculated (step S4).
  • Each absorbance calculated in the step S4 is as shown in Table 1.
  • sample no. 0 to No. As shown in FIG. 6, an approximate straight line (a dashed straight line in FIG. 6) is calculated from each cell concentration and each absorbance in 7, and the approximate straight line is used as a calibration curve.
  • the calibration curve is represented by the following formula (3).
  • a biological sample analyzer 6100 shown in FIG. 7 includes a light irradiation unit 6101 that irradiates light onto a biological sample S flowing through a flow path C, and a detection unit 6102 that detects light generated by irradiating the biological sample S with light. , and an information processing unit 6103 that processes information about the light detected by the detection unit.
  • Examples of the biological sample analyzer 6100 include flow cytometers and imaging cytometers.
  • the biological sample analyzer 6100 may include a sorting section 6104 that sorts out specific biological particles P in the biological sample.
  • a cell sorter can be given as an example of the biological sample analyzer 6100 including the sorting section.
  • the biological sample S may be a liquid sample containing biological particles.
  • the bioparticles are, for example, cells or non-cellular bioparticles.
  • the cells may be living cells, and more specific examples include blood cells such as red blood cells and white blood cells, and germ cells such as sperm and fertilized eggs.
  • the cells may be directly collected from a specimen such as whole blood, or may be cultured cells obtained after culturing.
  • Examples of the noncellular bioparticles include extracellular vesicles, particularly exosomes and microvesicles.
  • the bioparticles may be labeled with one or more labeling substances, such as (especially fluorochromes) and fluorochrome-labeled antibodies. Note that particles other than biological particles may be analyzed by the biological sample analyzer of the present disclosure, and beads or the like may be analyzed for calibration or the like.
  • the channel C is configured so that the biological sample S flows.
  • the channel C can be configured to form a flow in which the biological particles contained in the biological sample are arranged substantially in a line.
  • a channel structure including channel C may be designed to form a laminar flow.
  • the channel structure is designed to form a laminar flow in which the flow of the biological sample (sample flow) is surrounded by the flow of the sheath liquid.
  • the design of the flow channel structure may be appropriately selected by those skilled in the art, and known ones may be adopted.
  • the channel C may be formed in a flow channel structure such as a microchip (a chip having channels on the order of micrometers) or a flow cell.
  • the width of the channel C may be 1 mm or less, and particularly 10 ⁇ m or more and 1 mm or less.
  • the channel C and the channel structure including it may be made of a material such as plastic or glass.
  • the biological sample analyzer of the present disclosure is configured such that the biological sample flowing in the flow path C, particularly the biological particles in the biological sample, is irradiated with light from the light irradiation unit 6101 .
  • the biological sample analyzer of the present disclosure may be configured such that the light irradiation point (interrogation point) for the biological sample is in the channel structure in which the channel C is formed, or A point may be configured to lie outside the channel structure.
  • the former there is a configuration in which the light is applied to the channel C in the microchip or the flow cell. In the latter, the light may be applied to the bioparticles after exiting the flow path structure (especially the nozzle section thereof).
  • the light irradiation unit 6101 includes a light source unit that emits light and a light guide optical system that guides the light to the irradiation point.
  • the light source section includes one or more light sources.
  • the type of light source is, for example, a laser light source or an LED.
  • the wavelength of light emitted from each light source may be any wavelength of ultraviolet light, visible light, or infrared light.
  • the light guiding optics include optical components such as beam splitter groups, mirror groups or optical fibers. Also, the light guide optics may include a lens group for condensing light, for example an objective lens. There may be one or more irradiation points where the biological sample and the light intersect.
  • the light irradiation unit 6101 may be configured to condense light irradiated from one or different light sources to one irradiation point.
  • the detection unit 6102 includes at least one photodetector that detects light generated by irradiating the biological particles with light.
  • the light to be detected is, for example, fluorescence or scattered light (eg, any one or more of forward scattered light, backscattered light, and side scattered light).
  • Each photodetector includes one or more photodetectors, such as a photodetector array.
  • Each photodetector may include one or more PMTs (photomultiplier tubes) and/or photodiodes such as APDs and MPPCs as light receiving elements.
  • the photodetector includes, for example, a PMT array in which a plurality of PMTs are arranged in a one-dimensional direction.
  • the detection unit 6102 may include an imaging device such as a CCD or CMOS.
  • the detection unit 6102 can acquire images of biological particles (for example, bright-field images, dark-field images, fluorescence images, etc.) using the imaging device.
  • the detection unit 6102 includes a detection optical system that causes light of a predetermined detection wavelength to reach a corresponding photodetector.
  • the detection optical system includes a spectroscopic section such as a prism or a diffraction grating, or a wavelength separating section such as a dichroic mirror or an optical filter.
  • the detection optical system disperses, for example, the light generated by irradiating the bioparticle with light, and the dispersive light is detected by a plurality of photodetectors, the number of which is greater than the number of fluorescent dyes with which the bioparticle is labeled. Configured.
  • a flow cytometer including such a detection optical system is called a spectral flow cytometer.
  • the detection optical system separates light corresponding to the fluorescence wavelength range of a specific fluorescent dye from the light generated by light irradiation of the biological particles, for example, and causes the separated light to be detected by the corresponding photodetector. configured as follows.
  • the detection unit 6102 can include a signal processing unit that converts the electrical signal obtained by the photodetector into a digital signal.
  • the signal processing unit may include an A/D converter as a device that performs the conversion.
  • a digital signal obtained by conversion by the signal processing unit can be transmitted to the information processing unit 6103 .
  • the digital signal can be handled by the information processing section 6103 as data related to light (hereinafter also referred to as “optical data”).
  • the optical data may be optical data including fluorescence data, for example. More specifically, the light data may be light intensity data, and the light intensity may be light intensity data of light containing fluorescence (which may include feature amounts such as Area, Height, Width, etc.) good.
  • the information processing unit 6103 includes, for example, a processing unit that processes various data (for example, optical data) and a storage unit that stores various data.
  • the processing unit can perform fluorescence leakage correction (compensation processing) on the light intensity data.
  • the processing unit performs fluorescence separation processing on the optical data and acquires light intensity data corresponding to the fluorescent dye.
  • the fluorescence separation process may be performed, for example, according to the unmixing method described in JP-A-2011-232259.
  • the processing unit may acquire morphological information of the biological particles based on the image acquired by the imaging device.
  • the storage unit may be configured to store the acquired optical data.
  • the storage unit may further be configured to store spectral reference data used in the unmixing process.
  • the information processing unit 6103 can determine whether to sort the biological particles based on the optical data and/or the morphological information. Then, the information processing section 6103 can control the sorting section 6104 based on the result of the determination, and the sorting section 6104 can sort the bioparticles.
  • the information processing section 6103 may be configured to output various data (for example, optical data and images). For example, the information processing section 6103 can output various data (eg, two-dimensional plot, spectrum plot, etc.) generated based on the optical data. Further, the information processing section 6103 may be configured to be able to receive input of various data, for example, it receives gating processing on the plot by the user.
  • the information processing unit 6103 can include an output unit (such as a display) or an input unit (such as a keyboard) for executing the output or the input.
  • the information processing unit 6103 may be configured as a general-purpose computer, and may be configured as an information processing device including a CPU, RAM, and ROM, for example.
  • the information processing unit 6103 may be included in the housing in which the light irradiation unit 6101 and the detection unit 6102 are provided, or may be outside the housing.
  • Various processing or functions by the information processing unit 6103 may be implemented by a server computer or cloud connected via a network.
  • the sorting unit 6104 sorts the bioparticles according to the determination result by the information processing unit 6103 .
  • the sorting method may be a method of generating droplets containing bioparticles by vibration, applying an electric charge to the droplets to be sorted, and controlling the traveling direction of the droplets with electrodes.
  • the sorting method may be a method of sorting by controlling the advancing direction of the bioparticles in the channel structure.
  • the channel structure is provided with a control mechanism, for example, by pressure (jetting or suction) or electric charge.
  • a chip having a channel structure in which the channel C branches into a recovery channel and a waste liquid channel downstream thereof, and in which specific biological particles are recovered in the recovery channel. For example, a chip described in JP-A-2020-76736).
  • the first optical system 42 converges the light emitted from the light source 41 at a position on the front side of the optical path from the tube TB.
  • the tube TB is arranged at a position behind the focal position of the first optical system 42 .
  • the tube TB functions as an optical element (cylindrical lens) that parallelizes the light that has passed through the first optical system 42 and that has passed through the tube TB in a plane perpendicular to the longitudinal direction of the tube TB. do. Therefore, most of the light passing through the tube TB can be detected by the detector 48 . That is, it is possible to ensure a sufficient amount of light detected by the detection unit 48, and to improve the measurement accuracy of the cell concentration.
  • the detection unit 48 when the scattered holes scattered in the cell suspension L1 are detected in addition to the transmitted light transmitted through the tube TB (the cell suspension L1), the absorbance cannot be calculated correctly. .
  • the third lens 44 converges parallel light through the tube TB (cell suspension L1) onto the opening 451 of the light shielding plate 45 . Therefore, while the above-described transmitted light passes through the opening 451 , the above-described scattered light is blocked by the light shielding plate 45 . Therefore, the detection unit 48 can detect only the above-described transmitted light, and the absorbance can be calculated correctly.
  • the antibody dye in the cell suspension L1 is an antibody dye that emits fluorescence when excited by light in any of the wavelength bands around 405 nm, around 488 nm, around 561 nm, and around 638 nm (hereinafter referred to as excitation wavelength).
  • excitation wavelength any of the wavelength bands around 405 nm, around 488 nm, around 561 nm, and around 638 nm.
  • the concentration measuring device 4 if the light source 41 is configured to emit the light of the excitation wavelength described above, the antibody dye will fade, and the biological sample analyzer 6100 will be irradiated with the light of the excitation wavelength described above. It does not fluoresce even if
  • the concentration measuring apparatus 4 according to the first embodiment the light source 41 emits light in a wavelength band of 700 nm or longer. Therefore, the antibody dye does not fade while the concentration measuring device 4 is measuring the cell concentration in the cell suspension L1.
  • the red blood cells contained in the cell suspension L1 become a noise source, making it difficult to measure the absorbance correctly.
  • the absorption coefficients of deoxygenated hemoglobin and oxygenated hemoglobin in red blood cells are relatively low at wavelengths of 700 nm or more.
  • the light source 41 emits light in a wavelength band of 700 nm or longer. Therefore, it is possible to reduce the influence of the red blood cells contained in the cell suspension L1 on the absorbance and to measure the absorbance correctly.
  • the concentration measurement device 4 when measuring the optical characteristics of the cell suspension L1 through the tube TB, the optical characteristics must be accurately measured due to the individual differences of the tube TB (variation in the inner diameter and wall thickness of the tube TB). is difficult.
  • the voltage detected by the detection unit 48 when the reference fluid L1 serving as a reference with a cell concentration of 0 (not containing cells) is put into the tube TB and measured is V0
  • the voltage detected by the detection unit 48 when the cell suspension L1, which is the measurement target containing cells, is placed in the same tube TB and measured is V
  • the absorbance is calculated based on the formula (2). Calculate Therefore, it is possible to cancel individual differences in the tube TB and accurately measure the absorbance and cell concentration of the cell suspension L1, which is the object of measurement.
  • FIG. 8 is a diagram showing the configuration of a measuring device main body 4A according to the second embodiment of the present disclosure. As shown in FIG. 8, in a measuring device main body 4A according to the second embodiment, a sixth lens 49 is added to the measuring device main body 4 described in the first embodiment.
  • FIG. 9 is a diagram showing the sixth lens 49.
  • the sixth lens 49 is arranged between the tube holder 43 and the third lens 44, as shown in FIG.
  • This sixth lens 49 corresponds to the second optical system according to the present disclosure. That is, the sixth lens 49 functions as an optical element (cylindrical lens) that parallelizes the light that has passed through the tube TB in the plane including the longitudinal direction of the tube TB.
  • the sixth lens 49 is provided to collimate the light that has passed through the tube TB in the plane including the longitudinal direction of the tube TB. Prepare. Therefore, by using both the tube TB and the sixth lens 49, which function as cylindrical lenses, more light passing through the tube TB can be detected by the detector 48. FIG. That is, it is possible to ensure a better amount of light detected by the detection unit 48, and to further improve the measurement accuracy of the cell concentration.
  • FIG. 10 is a diagram showing the configuration of a measuring device main body 4B according to the third embodiment of the present disclosure.
  • the fourth and fifth lenses 46 and 47 are omitted from the measuring device main body 4 described in the first embodiment. It is
  • the light shielding plate 45 is arranged in contact with the detection section 48 .
  • the fourth and fifth lenses 46 and 47 are omitted in the measuring device body 4B according to the third embodiment. Therefore, the configuration of the measuring device main body 4B can be simplified.
  • FIG. 11 is a diagram showing the configuration of a measuring device main body 4C according to the fourth embodiment of the present disclosure.
  • the fourth and fifth lenses 46 and 47 are omitted from the measuring device main body 4A described in the second embodiment. It is The light shielding plate 45 is arranged in contact with the detection section 48 .
  • the fourth and fifth lenses 46 and 47 are omitted in the measuring device main body 4C according to the fourth embodiment. Therefore, the configuration of the measuring device main body 4C can be simplified.
  • the concentration adjustment device 1 adopts a configuration that aseptically adjusts the cell concentration in the cell suspension L1.
  • a configuration in which the cell concentration is adjusted may also be used.
  • the configuration of the density adjustment device 1 is merely an example, and other configurations may be employed.
  • FIG. 12 is a hardware configuration diagram showing an example of a computer 1000 that implements the functions of the control device 6.
  • the computer 1000 has a CPU 1100 , a RAM 1200 , a ROM (Read Only Memory) 1300 , a HDD (Hard Disk Drive) 1400 , a communication interface 1500 and an input/output interface 1600 .
  • Each part of computer 1000 is connected by bus 1050 .
  • the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
  • the ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by such programs.
  • HDD 1400 is a recording medium that records a program for executing each operation according to the present disclosure, which is an example of program data 1450 .
  • a communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device via the communication interface 1500, and transmits data generated by the CPU 1100 to another device.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000 .
  • the CPU 1100 receives data from input devices such as a keyboard and mouse via the input/output interface 1600 .
  • the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600 .
  • the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium.
  • Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
  • optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk)
  • magneto-optical recording media such as MO (Magneto-Optical disk)
  • tape media magnetic recording media
  • magnetic recording media semiconductor memories, etc. is.
  • the CPU 1100 of the computer 1000 implements the functions of the control device 6 by executing the program loaded on the RAM 1200.
  • the HDD 1400 also stores programs and the like according to the present disclosure.
  • CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
  • information processing section 6103 that constitutes the biological sample analyzer 6100 can also be realized by the same hardware configuration as the computer 1000 described above.
  • a light source that emits light
  • a first optical system provided on an optical path of the light emitted from the light source and condensing the light emitted from the light source
  • a light-transmitting cylindrical body disposed at a position on the optical path downstream of the focal position of the first optical system and parallelizing the light incident on the side surface thereof with a fluid flowing therein; , a detection unit that detects light passing through the cylinder;
  • a concentration measuring device comprising a (2) The density measuring device according to (1), wherein the cylindrical body has a cylindrical shape, and the light passing through the cylindrical body is collimated in a plane perpendicular to the longitudinal direction of the cylindrical body.
  • the concentration measuring device described in 2). (4) a light shielding plate provided between the cylindrical body and the detection unit and having an opening extending through the front and back; a third optical system provided between the cylinder and the light shielding plate for condensing light passing through the cylinder into the opening;
  • the concentration measuring device according to (6), wherein the fluid is a cell suspension stained with an antibody dye.
  • the density measuring apparatus according to any one of (1) to (7), wherein the light source emits light in a wavelength band of 700 nm or more.
  • the control unit controls the detection result obtained by the detection unit detecting light passing through the cylinder in a state in which a reference fluid having a concentration of 0 is circulating in the cylinder, and a measurement target in the cylinder.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

濃度測定装置は、光を出射する光源と、前記光源から出射した光の光路上に設けられ、前記光源から出射された光を集光する第1の光学系と、前記光路上における前記第1の光学系の焦点位置よりも後段側の位置に配置され、内部に流体が流通している状態で側面に入射した前記光を平行化する光透過性の筒体と、前記筒体を介した光を検出する検出部と、を備える。

Description

濃度測定装置
 本開示は、濃度測定装置に関する。
 従来、樹脂チューブと、当該樹脂チューブ内の流体に向けて光を出射する光源と、当該樹脂チューブを介した光を受光する受光素子とを備え、ランベルト-ベールの法則を利用して、当該流体の濃度を測定する濃度測定装置が知られている(例えば、特許文献1参照)。
特開2016-223878号公報
 しかしながら、特許文献1に記載の濃度測定装置では、光源から出射され、樹脂チューブを介した光は、拡散した状態で出射される。すなわち、樹脂チューブを介した光の一部は、受光素子に到達しない方向に進行し、当該受光素子にて検出されない。
 したがって、特許文献1に記載の濃度測定装置では、受光素子における検出光量を十分に確保することができず、測定精度が低下してしまう場合がある。
 そこで、本開示は、測定精度を向上させることができる濃度測定装置に関する。
 本開示によれば、光を出射する光源と、前記光源から出射した光の光路上に設けられ、前記光源から出射された光を集光する第1の光学系と、前記光路上における前記第1の光学系の焦点位置よりも後段側の位置に配置され、内部に流体が流通している状態で側面に入射した前記光を平行化する光透過性の筒体と、前記筒体を介した光を検出する検出部と、を備える濃度測定装置が提供される。
本開示の第1の実施形態に係る濃度調整装置の構成を示す図である。 測定装置本体の構成を示す図である。 チューブホルダを示す図である。 チューブホルダを示す図である。 細胞濃度の算出方法を説明する図である。 細胞濃度の算出方法を説明する図である。 生体試料分析装置の構成を示す図である。 本開示の第2の実施形態に係る測定装置本体の構成を示す図である。 第6のレンズを示す図である。 本開示の第3の実施形態に係る測定装置本体の構成を示す図である。 本開示の第4の実施形態に係る測定装置本体の構成を示す図である。 実施形態に係る制御装置の機能を実現するコンピュータの一例を示すハードウエア構成図である。
 以下に、図面を参照して、本開示の実施形態について説明する。なお、以下に説明する実施形態によって本開示が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。
(第1の実施形態)
 〔濃度調整装置の概略構成〕
 図1は、本開示の第1の実施形態に係る濃度調整装置1の構成を示す図である。
 濃度調整装置1は、生体粒子を含む流体の濃度を調整する装置である。具体的に、濃度調整装置1は、当該流体の濃度を生体試料分析装置6100(図7参照)に投入すべき適切な濃度に調整する。なお、濃度調整装置1と生体試料分析装置6100との間をチューブにより直接、繋ぎ、当該チューブを介して当該濃度調整装置にて濃度を調整した流体を当該生体試料分析装置6100に投入してもよく、あるいは、当該濃度調整装置にて濃度を調整した流体を当該濃度調整装置から取り出して、当該生体試料分析装置6100に投入しても構わない。第1の実施形態では、生体試料分析装置6100は、細胞治療に用いられる装置であり、その詳細な構成については後述する「生体試料分析装置の構成」において説明する。そして、第1の実施形態では、当該流体は、抗体色素による染色(標識物質によって標識)が施された細胞懸濁液である。すなわち、濃度調整装置1は、細胞懸濁液に直接触れることなく、無菌的に、当該細胞懸濁液における細胞濃度を後述する生体試料分析装置6100に投入すべき適切な細胞濃度に調整する。この濃度調整装置1は、図1に示すように、細胞懸濁液容器2と、中空糸モジュール3と、測定装置本体4と、廃液容器5と、制御装置6と、配管71~75とポンプPO1~PO3と、バルブV1~V3とを備える。
 細胞懸濁液容器2は、図1に示すように、細胞懸濁液L1を収容する容器である。
 この細胞懸濁液容器2には、配管71が接続されている。そして、制御装置6による制御の下、当該配管71上に配置されたバルブV1が開かれ、かつポンプPO1が駆動されることにより、当該配管71を介して細胞懸濁液L1が細胞懸濁液容器2内に供給される。
 また、細胞懸濁液容器2には、配管72,74が接続されている。さらに、細胞懸濁液容器2は、配管72~中空糸モジュール3~配管73~測定装置本体4~配管74~細胞懸濁液容器2~配管72の環状の流路上に配置されている。そして、制御装置6による制御の下、配管73上に配置されたバルブV2、配管74上に配置されたバルブV3が開かれ、かつ配管72上に配置されたポンプPO2が駆動されることにより、細胞懸濁液容器2内の細胞懸濁液L1は、当該環状の流路を辿って流通する。
 中空糸モジュール3は、図1に示すように、中空糸膜31と、当該中空糸膜31を収容する外筒32とを備える。なお、図1では、外筒32内に中空糸膜31を1つのみ図示しているが、実際には、外筒32内には、複数の中空糸膜31が収容されている。
 中空糸膜31は、ストロー状に形成され、内部が中空に形成された膜であり、表面に細胞懸濁液L1中の細胞よりも小さな孔を多数有している。当該孔は、未結合の抗体色素等を通過可能とし、細胞を通過不能とする孔である。
 この中空糸モジュール3には、配管75が接続されている。そして、制御装置6による制御の下、当該配管75上に配置されたポンプPO3が駆動されることにより、上述した環状の流路を辿って、中空糸膜31内を細胞懸濁液L1が流通すると、当該中空糸膜31内に当該細胞懸濁液L1中の細胞が残存しつつ、当該中空糸膜31外に当該細胞懸濁液L1中の未結合の抗体色素等が排出される。当該中空糸膜31外に排出された未結合の抗体色素等は、配管75を辿って、廃液容器5内に排出される。
 測定装置本体4は、上述した環状の流路を辿って流通する細胞懸濁液L1における細胞濃度を測定するための装置である。
 なお、測定装置本体4の詳細な構成については、後述する「測定装置本体の構成」において説明する。
 廃液容器5は、図1に示すように、中空糸膜31外に排出された未結合の抗体色素等の廃液L2を収容する容器である。
 制御装置6は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等のコントローラ、または、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路を含む。そして、制御装置6は、測定装置本体4の検出結果に基づいて細胞懸濁液L1における細胞濃度を算出しつつ、上述したようにポンプPO1~PO3及びバルブV1~V3の動作を制御することにより、当該細胞濃度を調整する。
 すなわち、制御装置6は、本開示に係る制御部に相当する。また、測定装置本体4及び制御装置6は、本開示に係る濃度測定装置100(図1)に相当する。
 〔測定装置本体の構成〕
 図2は、測定装置本体4の構成を示す図である。
 測定装置本体4は、図2に示すように、光源41と、第1のレンズ421と、第2のレンズ422と、チューブTBと、チューブホルダ43と、第3のレンズ44と、遮光板45と、第4のレンズ46と、第5のレンズ47と、検出部48とを備える。
 チューブTBは、本開示に係る筒体に相当する。すなわち、チューブTBは、円筒状に形成され、光透過性を有する。当該チューブTBの材料としては、PVC(ポリ塩化ビニル)等の樹脂材料を例示することができる。そして、チューブTBは、上述した環状の流路の一部を構成する。すなわち、細胞懸濁液L1は、当該チューブTB内を流通する。
 光源41は、チューブTB内の細胞懸濁液L1に向けて光を出射する。第1の実施形態では、光源41は、700nm以上の波長帯域の光を出射する。
 第1のレンズ421は、図2に示すように、光源41の光路後段側に配置され、光源41から出射された光を平行化する。
 第2のレンズ422は、図2に示すように、第1のレンズ421よりも光路後段側に配置され、当該第1のレンズ421を介した平行光をチューブTBよりも光路前段側の位置に集光する。
 以上説明した第1,第2のレンズ421,422は、本開示に係る第1の光学系42(図2)に相当する。
 図3及び図4は、チューブホルダ43を示す図である。具体的に、図3は、チューブホルダ43を光路前段側から見た斜視図である。図4は、チューブホルダ43を光路後段側から見た斜視図である。
 チューブホルダ43は、図2に示すように、第1の光学系42よりも光路後段側に配置されている。このチューブホルダ43は、図3または図4に示すように、平面視略矩形状の板体であり、光を遮断する遮光材料で構成されている。そして、チューブホルダ43は、チューブTBを保持する。このチューブホルダ43は、各板面が光源41から出射された光の光軸に対して略直交する姿勢で配置される。
 このチューブホルダ43において、光路前段側の板面には、図3または図4中、上下方向に直線状に延在するチューブ用溝部431が形成されている。
 また、チューブホルダ43には、板面の略中央に位置し、各板面を貫通するとともに、チューブ用溝部431に連通する貫通孔432が形成されている。
 さらに、チューブホルダ43において、各板面には、貫通孔432を中心とする円形状の凹部433,434がそれぞれ形成されている。
 そして、チューブTBは、チューブ用溝部431内に挿通された状態でチューブホルダ43に保持される。また、チューブTBを介した光の一部は、貫通孔432を通過する。
 ここで、チューブTBは、内部に細胞懸濁液L1が流通している状態で側面に入射した光を平行化する。具体的に、第1の実施形態では、チューブTBは、第1の光学系42を介した光のうち、当該チューブTBの長手方向に直交する面内において当該チューブTBを透過した光を平行化する光学素子(シリンドリカルレンズ)として機能する。すなわち、チューブTB(シリンドリカルレンズ)の焦点位置は、第1の光学系42の集光位置(第2のレンズ422の焦点位置)に設定されている。
 遮光板45は、図2に示すように、チューブホルダ43よりも光路後段側に配置されている。この遮光板45は、板体であり、光を遮断する遮光材料で構成されている。また、遮光板45は、各板面が光源41から出射された光の光軸に対して略直交する姿勢で配置される。
 この遮光板45において、略中央の位置には、図2に示すように、各板面を貫通する開口部451が形成されている。
 第3のレンズ44は、図2に示すように、チューブTBと遮光板45との間に設けられている。この第3のレンズ44は、本開示に係る第3の光学系に相当する。すなわち、第3のレンズ44は、チューブTBを介した平行光を開口部451に集光する。
 第4のレンズ46は、図2に示すように、遮光板45よりも光路後段側に配置されている。そして、第4のレンズ46は、第3のレンズ44にて集光され、開口部451を通過した光を平行化する。
 第5のレンズ47は、図2に示すように、第4のレンズ46よりも光路後段側に配置されている。そして、第5のレンズ47は、第5のレンズ47にて平行化された光を検出部48の検出面上に集光する。
 検出部48は、チューブTB内の細胞懸濁液L1を介した光(第5のレンズ47を介した光)を検出する。第1の実施形態では、検出部48は、フォトダイオードにて構成され、受光量に応じた電圧を制御装置6に対して出力する。
 そして、制御装置6は、当該電圧に基づいて、細胞懸濁液L1における細胞濃度を算出する。
 〔細胞濃度の算出方法について〕
 次に、制御装置6による細胞濃度の算出方法について説明する。
 図5及び図6は、細胞濃度の算出方法を説明する図である。
 ランベルト-ベールの法則により、細胞懸濁液L1の吸光度は、細胞濃度に比例することが知られている。
 また、吸光度は、図5に示すように、入射光量P0と透過光量P1とを測定することで、以下の式(1)に基づいて算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ところで、式(1)によって吸光度を測定することができるが、この方法では、測定結果にチューブTBの吸光度も反映されてしまう。そこで、制御装置6は、チューブTB内に細胞濃度が0(細胞を含まない)の基準となる基準流体L1を入れて測定した際に検出部48にて検出された電圧をV0とし、同一のチューブTB内に細胞を含む測定対象である細胞懸濁液L1を入れて測定した際に検出部48にて検出された電圧をVとして、以下の式(2)に基づいて吸光度を算出する。
Figure JPOXMLDOC01-appb-M000002
 そして、制御装置6は、細胞懸濁液L1の吸光度と細胞濃度との関係式(以下、検量線(以下の式(3)参照)と記載)に対して、式(2)によって算出した吸光度を代入することで、当該細胞懸濁液L1における細胞濃度を算出する。
 なお、検量線は、例えば、以下に示すように予め算出される。
 先ず、以下の表1に示すように、細胞濃度が0である細胞懸濁液L1(サンプルNo.0)を含む細胞濃度の異なる細胞懸濁液L1を8種類(サンプルNo.0~No.7)用意する(ステップS1)。
Figure JPOXMLDOC01-appb-T000003
 次に、10cm程度にカットしたチューブTBを8本用意し、当該8本のチューブTB内にステップS1で用意した8種類の細胞懸濁液L1(サンプルNo.0~No.7)を入れて、各チューブTBの両端をシールする(ステップS2)。
 次に、ステップS2で作成した各チューブTB(8種類の細胞懸濁液L1(サンプルNo.0~No.7)を入れた各チューブTB)をそれぞれ測定装置本体4に設置し、検出部48により電圧値をそれぞれ測定する(ステップS3)。当該ステップS3で測定された各電圧値は、表1に示す通りである。
 次に、ステップS3で測定された各電圧値を式(2)に代入することにより、各サンプルNo.0~No.7の吸光度を算出する(ステップS4)。当該ステップS4で算出された各吸光度は、表1に示す通りである。
 そして、サンプルNo.0~No.7における各細胞濃度と各吸光度とから図6に示すように、近似直線(図6に破線で示した直線)を算出することで、当該近似直線を検量線とする。
 なお、上記の例では、検量線は、以下の式(3)で示される。
Figure JPOXMLDOC01-appb-M000004
 〔生体試料分析装置の構成〕
 次に、生体試料分析装置6100の構成について説明する。
 本開示の生体試料分析装置の構成例を図7に示す。図7に示される生体試料分析装置6100は、流路Cを流れる生体試料Sに光を照射する光照射部6101、前記生体試料Sに光を照射することにより生じた光を検出する検出部6102、及び前記検出部により検出された光に関する情報を処理する情報処理部6103を含む。生体試料分析装置6100の例としては、フローサイトメータ及びイメージングサイトメータを挙げることができる。生体試料分析装置6100は、生体試料内の特定の生体粒子Pの分取を行う分取部6104を含んでもよい。前記分取部を含む生体試料分析装置6100の例としては、セルソータを挙げることができる。
(生体試料)
 生体試料Sは、生体粒子を含む液状試料であってよい。当該生体粒子は、例えば細胞又は非細胞性生体粒子である。前記細胞は、生細胞であってよく、より具体的な例として、赤血球や白血球などの血液細胞、及び精子や受精卵等生殖細胞を挙げることができる。また前記細胞は全血等検体から直接採取されたものでもよいし、培養後に取得された培養細胞であってもよい。前記非細胞性生体粒子として、細胞外小胞、特にはエクソソーム及びマイクロベシクルなどを挙げることができる。前記生体粒子は、1つ又は複数の標識物質(例えば(特には蛍光色素)及び蛍光色素標識抗体など)によって標識されていてもよい。なお、本開示の生体試料分析装置により、生体粒子以外の粒子が分析されてもよく、キャリブレーションなどのために、ビーズなどが分析されてもよい。
(流路)
 流路Cは、生体試料Sが流れるように構成される。特には、流路Cは、前記生体試料に含まれる生体粒子が略一列に並んだ流れが形成されるように構成されうる。流路Cを含む流路構造は、層流が形成されるように設計されてよい。特には、当該流路構造は、生体試料の流れ(サンプル流)がシース液の流れによって包まれた層流が形成されるように設計される。当該流路構造の設計は、当業者により適宜選択されてよく、既知のものが採用されてもよい。流路Cは、マイクロチップ(マイクロメートルオーダーの流路を有するチップ)又はフローセルなどの流路構造体(flow channel structure)中に形成されてよい。流路Cの幅は、1mm以下であり、特には10μm以上1mm以下であってよい。流路C及びそれを含む流路構造体は、プラスチックやガラスなどの材料から形成されてよい。
 流路C内を流れる生体試料、特には当該生体試料中の生体粒子に、光照射部6101からの光が照射されるように、本開示の生体試料分析装置は構成される。本開示の生体試料分析装置は、生体試料に対する光の照射点(interrogation point)が、流路Cが形成されている流路構造体中にあるように構成されてよく、又は、当該光の照射点が、当該流路構造体の外にあるように構成されてもよい。前者の例として、マイクロチップ又はフローセル内の流路Cに前記光が照射される構成を挙げることができる。後者では、流路構造体(特にはそのノズル部)から出た後の生体粒子に前記光が照射されてよく、例えばJet in Air方式のフローサイトメータを挙げることができる。
(光照射部)
 光照射部6101は、光を出射する光源部と、当該光を照射点へと導く導光光学系とを含む。前記光源部は、1又は複数の光源を含む。光源の種類は、例えばレーザ光源又はLEDである。各光源から出射される光の波長は、紫外光、可視光、又は赤外光のいずれかの波長であってよい。導光光学系は、例えばビームスプリッター群、ミラー群又は光ファイバなどの光学部品を含む。また、導光光学系は、光を集光するためのレンズ群を含んでよく、例えば対物レンズを含む。生体試料と光が交差する照射点は、1つ又は複数であってよい。光照射部6101は、一の照射点に対して、一つ又は異なる複数の光源から照射された光を集光するよう構成されていてもよい。
(検出部)
 検出部6102は、生体粒子への光照射により生じた光を検出する少なくとも一つの光検出器を備えている。検出する光は、例えば蛍光又は散乱光(例えば前方散乱光、後方散乱光、及び側方散乱光のいずれか1つ以上)である。各光検出器は、1以上の受光素子を含み、例えば受光素子アレイを有する。各光検出器は、受光素子として、1又は複数のPMT(光電子増倍管)及び/又はAPD及びMPPC等のフォトダイオードを含んでよい。当該光検出器は、例えば複数のPMTを一次元方向に配列したPMTアレイを含む。また、検出部6102は、CCD又はCMOSなどの撮像素子を含んでもよい。検出部6102は、当該撮像素子により、生体粒子の画像(例えば明視野画像、暗視野画像、及び蛍光画像など)を取得しうる。
 検出部6102は、所定の検出波長の光を、対応する光検出器に到達させる検出光学系を含む。検出光学系は、プリズムや回折格子等の分光部又はダイクロイックミラーや光学フィルタ等の波長分離部を含む。検出光学系は、例えば生体粒子への光照射により生じた光を分光し、当該分光された光が、生体粒子が標識された蛍光色素の数より多い複数の光検出器にて検出されるよう構成される。このような検出光学系を含むフローサイトメータをスペクトル型フローサイトメータと呼ぶ。また、検出光学系は、例えば生体粒子への光照射により生じた光から特定の蛍光色素の蛍光波長域に対応する光を分離し、当該分離された光を、対応する光検出器に検出させるよう構成される。
 また、検出部6102は、光検出器により得られた電気信号をデジタル信号に変換する信号処理部を含みうる。当該信号処理部が、当該変換を行う装置としてA/D変換器を含んでよい。当該信号処理部による変換により得られたデジタル信号が、情報処理部6103に送信されうる。前記デジタル信号が、情報処理部6103により、光に関するデータ(以下「光データ」ともいう)として取り扱われうる。前記光データは、例えば蛍光データを含む光データであってよい。より具体的には、前記光データは、光強度データであってよく、当該光強度は、蛍光を含む光の光強度データ(Area、Height、Width等の特徴量を含んでもよい)であってよい。
(情報処理部)
 情報処理部6103は、例えば各種データ(例えば光データ)の処理を実行する処理部及び各種データを記憶する記憶部を含む。処理部は、蛍光色素に対応する光データを検出部6102より取得した場合、光強度データに対し蛍光漏れ込み補正(コンペンセーション処理)を行いうる。また、処理部は、スペクトル型フローサイトメータの場合、光データに対して蛍光分離処理を実行し、蛍光色素に対応する光強度データを取得する。 前記蛍光分離処理は、例えば特開2011-232259号公報に記載されたアンミキシング方法に従い行われてよい。検出部6102が撮像素子を含む場合、処理部は、撮像素子により取得された画像に基づき、生体粒子の形態情報を取得してもよい。記憶部は、取得された光データを格納できるように構成されていてよい。記憶部は、さらに、前記アンミキシング処理において用いられるスペクトラルリファレンスデータを格納できるように構成されていてよい。
 生体試料分析装置6100が後述の分取部6104を含む場合、情報処理部6103は、光データ及び/又は形態情報に基づき、生体粒子を分取するかの判定を実行しうる。そして、情報処理部6103は、当該判定の結果に基づき当該分取部6104を制御し、分取部6104による生体粒子の分取が行われうる。
 情報処理部6103は、各種データ(例えば光データや画像)を出力することができるように構成されていてよい。例えば、情報処理部6103は、当該光データに基づき生成された各種データ(例えば二次元プロット、スペクトルプロットなど)を出力しうる。また、情報処理部6103は、各種データの入力を受け付けることができるように構成されていてよく、例えばユーザによるプロット上へのゲーティング処理を受け付ける。情報処理部6103は、当該出力又は当該入力を実行させるための出力部(例えばディスプレイなど)又は入力部(例えばキーボードなど)を含みうる。
 情報処理部6103は、汎用のコンピュータとして構成されてよく、例えばCPU、RAM、及びROMを備えている情報処理装置として構成されてよい。情報処理部6103は、光照射部6101及び検出部6102が備えられている筐体内に含まれていてよく、又は、当該筐体の外にあってもよい。また、情報処理部6103による各種処理又は機能は、ネットワークを介して接続されたサーバコンピュータ又はクラウドにより実現されてもよい。
(分取部)
 分取部6104は、情報処理部6103による判定結果に応じて、生体粒子の分取を実行する。分取の方式は、振動により生体粒子を含む液滴を生成し、分取対象の液滴に対して電荷をかけ、当該液滴の進行方向を電極により制御する方式であってよい。分取の方式は、流路構造体内にて生体粒子の進行方向を制御し分取を行う方式であってもよい。当該流路構造体には、例えば、圧力(噴射若しくは吸引)又は電荷による制御機構が設けられる。当該流路構造体の例として、流路Cがその下流で回収流路及び廃液流路へと分岐している流路構造を有し、特定の生体粒子が当該回収流路へ回収されるチップ(例えば特開2020-76736に記載されたチップ)を挙げることができる。
 〔第1の実施形態の効果〕
 以上説明した第1の実施形態によれば、以下の効果を奏する。
 第1の実施形態に係る濃度測定装置4では、第1の光学系42は、光源41から出射された光をチューブTBよりも光路前段側の位置に集光する。言い換えれば、チューブTBは、第1の光学系42の焦点位置よりも後段側の位置に配置されている。そして、チューブTBは、第1の光学系42を介した光のうち、当該チューブTBの長手方向に直交する面内において当該チューブTBを透過した光を平行化する光学素子(シリンドリカルレンズ)として機能する。
 このため、チューブTBを介した光の多くを検出部48にて検出することができる。すなわち、検出部48における検出光量を十分に確保することができ、細胞濃度の測定精度を向上させることができる。
 ところで、検出部48において、チューブTB(細胞懸濁液L1)を透過した透過光の他、当該細胞懸濁液L1において散乱した散乱孔を検出した場合には、吸光度を正しく算出することができない。
 第1の実施形態に係る濃度測定装置4では、第3のレンズ44は、チューブTB(細胞懸濁液L1)を介した平行光を遮光板45の開口部451に集光する。このため、上述した透過光が開口部451を通過する一方、上述した散乱光は、遮光板45にて遮断される。したがって、検出部48において、上述した透過光のみを検出することができ、吸光度を正しく算出することができる。
 ところで、細胞懸濁液L1における抗体色素としては、405nm前後、488nm前後、561nm前後、及び638nm前後のいずれかの波長帯域(以下、励起波長と記載)の光によって励起して蛍光を発する抗体色素が多い。このため、濃度測定装置4において、光源41から上述した励起波長の光を発するように構成した場合には、抗体色素が褪色してしまい、生体試料分析装置6100において上述した励起波長の光が照射されても蛍光を発しない。
 ここで、第1の実施形態に係る濃度測定装置4では、光源41は、700nm以上の波長帯域の光を出射する。このため、濃度測定装置4で細胞懸濁液L1における細胞濃度を測定している際に、抗体色素が褪色してしまうことがない。
 ところで、細胞懸濁液L1における細胞濃度を測定するにあたって、当該細胞懸濁液L1に含まれる赤血球は、ノイズ源となり、吸光度を正しく測定することが難しくなる。また、赤血球中の脱酸素化ヘモグロビン及び酸素化ヘモグロビンの吸光係数は、波長が700nm以上では、比較的に低いものとなる。
 ここで、第1の実施形態に係る濃度測定装置4では、光源41は、700nm以上の波長帯域の光を出射する。このため、細胞懸濁液L1に含まれる赤血球が吸光度に与える影響を低減し、当該吸光度を正しく測定することが可能となる。
 ところで、チューブTBを介して細胞懸濁液L1の光学特性を測定する場合には、当該チューブTBの個体差(チューブTBの内径や肉厚のバラつき)によって、当該光学特性を正確に測定することが難しい。
 第1の実施形態に係る濃度測定装置4では、チューブTB内に細胞濃度が0(細胞を含まない)の基準となる基準流体L1を入れて測定した際に検出部48にて検出された電圧をV0とし、同一のチューブTB内に細胞を含む測定対象である細胞懸濁液L1を入れて測定した際に検出部48にて検出された電圧をVとして、式(2)に基づいて吸光度を算出する。このため、チューブTBの個体差をキャンセルして測定対象である細胞懸濁液L1の吸光度及び細胞濃度を正確に測定することができる。
(第2の実施形態)
 次に、第2の実施形態について説明する。
 以下では、上述した第1の実施形態と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、本開示の第2の実施形態に係る測定装置本体4Aの構成を示す図である。
 第2の実施形態に係る測定装置本体4Aでは、図8に示すように、上述した第1の実施形態で説明した測定装置本体4に対して、第6のレンズ49が追加されている。
 図9は、第6のレンズ49を示す図である。
 第6のレンズ49は、図8に示すように、チューブホルダ43と第3のレンズ44との間に配置されている。この第6のレンズ49は、本開示に係る第2の光学系に相当する。すなわち、第6のレンズ49は、チューブTBを介した光のうち、当該チューブTBの長手方向を含む面内において当該チューブTBを介した光を平行化する光学素子(シリンドリカルレンズ)として機能する。
 〔第2の実施形態の効果〕
 第2の実施形態に係る測定装置本体4Aでは、チューブTBを介した光のうち、当該チューブTBの長手方向を含む面内において当該チューブTBを介した光を平行化する第6のレンズ49を備える。
 このため、シリンドリカルレンズとしてそれぞれ機能するチューブTB及び第6のレンズ49を併用することにより、当該チューブTBを介した光のより多くを検出部48にて検出することができる。すなわち、検出部48における検出光量をさらに良好に確保することができ、細胞濃度の測定精度をさらに向上させることができる。
(第3の実施形態)
 次に、第3の実施形態について説明する。
 以下では、上述した第1の実施形態と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図10は、本開示の第3の実施形態に係る測定装置本体4Bの構成を示す図である。
 第3の実施形態に係る測定装置本体4Bでは、図10に示すように、上述した第1の実施形態で説明した測定装置本体4に対して、第4,第5のレンズ46,47が省略されている。そして、遮光板45は、検出部48に対して当接した状態で配置されている。
 〔第3の実施形態の効果〕
 第3の実施形態に係る測定装置本体4Bでは、第4,第5のレンズ46,47が省略されている。このため、測定装置本体4Bの構成を簡素化することができる。
(第4の実施形態)
 次に、第4の実施形態について説明する。
 以下では、上述した第2の実施形態と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図11は、本開示の第4の実施形態に係る測定装置本体4Cの構成を示す図である。
 第4の実施形態に係る測定装置本体4Cでは、図11に示すように、上述した第2の実施形態で説明した測定装置本体4Aに対して、第4,第5のレンズ46,47が省略されている。そして、遮光板45は、検出部48に対して当接した状態で配置されている。
 〔第4の実施形態の効果〕
 第4の実施形態に係る測定装置本体4Cでは、第4,第5のレンズ46,47が省略されている。このため、測定装置本体4Cの構成を簡素化することができる。
(その他の実施形態)
 ここまで、本開示を実施するための形態を説明してきたが、本開示は上述した第1~第4の実施形態によってのみ限定されるべきものではない。
 上述した第1~第4の実施形態では、濃度調整装置1として、無菌的に細胞懸濁液L1における細胞濃度を調整する構成を採用していたが、これに限らず、無菌的ではなく当該細胞濃度を調整する構成としても構わない。また、濃度調整装置1の構成は、あくまでも一例であり、その他の構成を採用しても構わない。
(ハードウエア構成)
 上述してきた実施形態及びその変形例並びに応用例に係る制御装置6は、例えば図12に示すような構成のコンピュータ1000によって実現され得る。図12は、制御装置6の機能を実現するコンピュータ1000の一例を示すハードウエア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インタフェース1500、及び入出力インタフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウエアに依存するプログラム等を格納する。
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る各動作を実行するためのプログラムを記録する記録媒体である。
 通信インタフェース1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインタフェースである。例えば、CPU1100は、通信インタフェース1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
 入出力インタフェース1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインタフェースである。例えば、CPU1100は、入出力インタフェース1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インタフェース1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インタフェース1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインタフェースとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
 例えば、コンピュータ1000が上述の実施形態に係る制御装置6として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御装置6の機能を実現する。また、HDD1400には、本開示に係るプログラム等が格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
 なお、生体試料分析装置6100を構成する情報処理部6103についても、上述したコンピュータ1000と同様のハードウエア構成によって実現され得る。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 光を出射する光源と、
 前記光源から出射した光の光路上に設けられ、前記光源から出射された光を集光する第1の光学系と、
 前記光路上における前記第1の光学系の焦点位置よりも後段側の位置に配置され、内部に流体が流通している状態で側面に入射した前記光を平行化する光透過性の筒体と、
 前記筒体を介した光を検出する検出部と、
 を備える濃度測定装置。
(2)
 前記筒体は、円筒状の形状を有し、前記筒体の長手方向に直交する面内において前記筒体を介した光を平行化する前記(1)に記載の濃度測定装置。
(3)
 前記筒体と前記検出部との間に設けられ、前記筒体の長手方向を含む面内において前記筒体を介した光を平行化する第2の光学系をさらに備える前記(1)または(2)に記載の濃度測定装置。
(4)
 前記筒体と前記検出部との間に設けられ、表裏を貫通した開口部を有する遮光板と、
 前記筒体と前記遮光板との間に設けられ、前記筒体を介した光を前記開口部に集光する第3の光学系と、
 をさらに備える前記(1)~(3)のいずれか1つに記載の濃度測定装置。
(5)
 前記遮光板は、前記検出部の光路前段側に当接した状態で配置されている前記(4)に記載の濃度測定装置。
(6)
 前記流体は、生体粒子を含む流体である前記(1)~(5)のいずれか1つに記載の濃度測定装置。
(7)
 前記流体は、抗体色素により染色が施された細胞懸濁液である前記(6)に記載の濃度測定装置。
(8)
 前記光源は、700nm以上の波長帯域の光を出射する前記(1)~(7)のいずれか1つに記載の濃度測定装置。
(9)
 ランベルト-ベールの法則により、前記流体の吸光度から前記流体の濃度を算出する制御部をさらに備え、
 前記制御部は、前記筒体内に濃度が0の基準となる基準流体が流通している状態で前記筒体を介した光を前記検出部が検出した検出結果と、前記筒体内に測定対象となる前記流体が流通している状態で前記筒体を介した光を前記検出部が検出した検出結果とから前記吸光度を算出する前記(1)~(8)のいずれか1つに記載の濃度測定装置。
 1 濃度調整装置
 2 細胞懸濁液容器
 3 中空糸モジュール
 4,4A~4C 測定装置本体
 5 廃液容器
 6 制御装置
 31 中空糸膜
 32 外筒
 41 光源
 42 第1の光学系
 43 チューブホルダ
 44 第3のレンズ
 45 遮光板
 46 第4のレンズ
 47 第5のレンズ
 48 検出部
 49 第6のレンズ
 71~75 配管
 100 濃度測定装置
 421 第1のレンズ
 422 第2のレンズ
 431 チューブ用溝部
 432 貫通孔
 433,434 凹部
 451 開口部
 1000 コンピュータ
 1050 バス
 1100 CPU
 1200 RAM
 1300 ROM
 1400 HDD
 1450 プログラムデータ
 1500 通信インタフェース
 1550 外部ネットワーク
 1600 入出力インタフェース
 1650 入出力デバイス
 6100 生体試料分析装置
 6101 光照射部
 6102 検出部
 6103 情報処理部
 6104 分取部
 C 流路
 L1 細胞懸濁液
 L2 廃液
 P 生体粒子
 PO1~PO3 ポンプ
 S 生体試料
 TB チューブ
 V1~V3 バルブ

Claims (9)

  1.  光を出射する光源と、
     前記光源から出射した光の光路上に設けられ、前記光源から出射された光を集光する第1の光学系と、
     前記光路上における前記第1の光学系の焦点位置よりも後段側の位置に配置され、内部に流体が流通している状態で側面に入射した前記光を平行化する光透過性の筒体と、
     前記筒体を介した光を検出する検出部と、
     を備える濃度測定装置。
  2.  前記筒体は、円筒状の形状を有し、前記筒体の長手方向に直交する面内において前記筒体を介した光を平行化する請求項1に記載の濃度測定装置。
  3.  前記筒体と前記検出部との間に設けられ、前記筒体の長手方向を含む面内において前記筒体を介した光を平行化する第2の光学系をさらに備える請求項1に記載の濃度測定装置。
  4.  前記筒体と前記検出部との間に設けられ、表裏を貫通した開口部を有する遮光板と、
     前記筒体と前記遮光板との間に設けられ、前記筒体を介した光を前記開口部に集光する第3の光学系と、
     をさらに備える請求項1に記載の濃度測定装置。
  5.  前記遮光板は、前記検出部の光路前段側に当接した状態で配置されている請求項4に記載の濃度測定装置。
  6.  前記流体は、生体粒子を含む流体である請求項1に記載の濃度測定装置。
  7.  前記流体は、抗体色素により染色が施された細胞懸濁液である請求項6に記載の濃度測定装置。
  8.  前記光源は、700nm以上の波長帯域の光を出射する請求項1に記載の濃度測定装置。
  9.  ランベルト-ベールの法則により、前記流体の吸光度から前記流体の濃度を算出する制御部をさらに備え、
     前記制御部は、前記筒体内に濃度が0の基準となる基準流体が流通している状態で前記筒体を介した光を前記検出部が検出した検出結果と、前記筒体内に測定対象となる前記流体が流通している状態で前記筒体を介した光を前記検出部が検出した検出結果とから前記吸光度を算出する請求項1に記載の濃度測定装置。
PCT/JP2022/004787 2021-06-29 2022-02-08 濃度測定装置 WO2023276230A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023531369A JPWO2023276230A1 (ja) 2021-06-29 2022-02-08
CN202280044485.7A CN117546006A (zh) 2021-06-29 2022-02-08 浓度测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108087 2021-06-29
JP2021-108087 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276230A1 true WO2023276230A1 (ja) 2023-01-05

Family

ID=84691115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004787 WO2023276230A1 (ja) 2021-06-29 2022-02-08 濃度測定装置

Country Status (3)

Country Link
JP (1) JPWO2023276230A1 (ja)
CN (1) CN117546006A (ja)
WO (1) WO2023276230A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654535A (en) * 1982-09-30 1987-03-31 Wolske James P Meniscus position detector with detector at the focal plane of the lens formed by tube and liquid
US4797000A (en) * 1986-01-02 1989-01-10 Artel Comparative colorimeter
JP2009510475A (ja) * 2005-10-03 2009-03-12 クリアティーヴィ・マイクロテク,インコーポレーテッド 感応式放出光収集及び検出システム
JP2016024093A (ja) * 2014-07-22 2016-02-08 シスメックス株式会社 フローサイトメータ、粒子分析装置およびフローサイトメトリー法
US20190301929A1 (en) * 2018-03-30 2019-10-03 InnoSpectra Corporation Transmissive sampling module and transmissive spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654535A (en) * 1982-09-30 1987-03-31 Wolske James P Meniscus position detector with detector at the focal plane of the lens formed by tube and liquid
US4797000A (en) * 1986-01-02 1989-01-10 Artel Comparative colorimeter
JP2009510475A (ja) * 2005-10-03 2009-03-12 クリアティーヴィ・マイクロテク,インコーポレーテッド 感応式放出光収集及び検出システム
JP2016024093A (ja) * 2014-07-22 2016-02-08 シスメックス株式会社 フローサイトメータ、粒子分析装置およびフローサイトメトリー法
US20190301929A1 (en) * 2018-03-30 2019-10-03 InnoSpectra Corporation Transmissive sampling module and transmissive spectrometer

Also Published As

Publication number Publication date
CN117546006A (zh) 2024-02-09
JPWO2023276230A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6031178B2 (ja) 使い捨てチップ型フローセルとそれを用いたセルソーター
JP5381741B2 (ja) 光学的測定装置及び光学的測定方法
JP6100658B2 (ja) 血球分析装置および血球分析方法
JP6076801B2 (ja) 血球分析装置および血球分析方法
JP5895064B2 (ja) フロー式単粒子分光器
US10094760B2 (en) Particle measuring apparatus
CN107209102B (zh) 光学检测系统及其使用方法
US20110069311A1 (en) Flow cytometer and flow cell for the same
CN113670800B (zh) 样本分析仪及样本分析方法
JP2020122803A (ja) 微小粒子測定装置、情報処理装置及び情報処理方法
WO2021116959A1 (en) Analyzing an analyte disposed within a medium
CN116438438A (zh) 用于基于流动的单颗粒和/或单分子分析的方法和设备
US20220404260A1 (en) Particle detection apparatus, information processing apparatus, information processing method, and particle detection method
CN113196039A (zh) 样本光学检测装置、样本检测方法及样本分析仪
WO2023276230A1 (ja) 濃度測定装置
CN111771117B (zh) 粒子测定装置及粒子测定方法
JPH0486546A (ja) 検体検査装置
WO2023188476A1 (ja) 濃度測定装置
JPH04188043A (ja) 検体測定装置
CN112229780A (zh) 一种改进的基于光纤集成微流芯片的流式细胞仪
JPH03154850A (ja) 検体検査装置
WO2024111263A1 (ja) 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法
US20230349809A1 (en) Optical measurement apparatus and information processing system
JPH04188041A (ja) 検体測定装置
WO2023145551A1 (ja) 生体試料分析システム、生体試料分析システムにおける光データ取得区間の設定方法、及び情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531369

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280044485.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832398

Country of ref document: EP

Kind code of ref document: A1