WO2023276157A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2023276157A1
WO2023276157A1 PCT/JP2021/025201 JP2021025201W WO2023276157A1 WO 2023276157 A1 WO2023276157 A1 WO 2023276157A1 JP 2021025201 W JP2021025201 W JP 2021025201W WO 2023276157 A1 WO2023276157 A1 WO 2023276157A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbiting
scroll
shaft
balance weight
scroll compressor
Prior art date
Application number
PCT/JP2021/025201
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 飯島
和行 松永
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2021/025201 priority Critical patent/WO2023276157A1/en
Priority to JP2023531332A priority patent/JP7466063B2/en
Publication of WO2023276157A1 publication Critical patent/WO2023276157A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to scroll compressors and the like.
  • Patent Document 1 describes that a main shaft portion with an enlarged diameter is provided on the upper portion of the shaft, and a slewing bearing is provided on this main shaft portion.
  • Patent Literature 1 shows a technique for suppressing the overload on the orbiting bearing and further improve the reliability of the scroll compressor.
  • an object of the present invention is to provide a highly reliable scroll compressor and the like.
  • a scroll compressor includes a closed container, a stator and a rotor, an electric motor housed in the closed container, and a shaft that rotates integrally with the rotor.
  • a fixed scroll having a spiral stationary wrap
  • an orbiting scroll having a spiral orbiting wrap provided on an end plate and forming a compression chamber between the stationary wrap and the orbiting wrap
  • an orbiting bearing that rotatably supports the orbiting scroll
  • a frame that has an insertion hole for the shaft and supports the fixed scroll.
  • a swivel balance weight that rotates together with a shaft is provided, the shaft and the swivel balance weight are fitted together, and a first fitting portion on the shaft side and a second fitting portion on the swivel balance weight side. A gap was provided between them.
  • a highly reliable scroll compressor and the like can be provided.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view of the scroll compressor according to the first embodiment taken along line II-II of FIG. 1
  • 1 is an exploded perspective view including an orbiting scroll, an orbiting bearing, an orbiting balance weight, and an upper end portion of a crankshaft of a scroll compressor according to a first embodiment
  • FIG. FIG. 2 is an explanatory diagram showing the force generated in each member by partially enlarging the region K1 shown in FIG. 1 in the scroll compressor according to the first embodiment
  • It is an explanatory view showing relation between rotation speed of a scroll compressor concerning a 1st embodiment, and load. 1.
  • FIG. 8 is an exploded perspective view including the orbiting scroll, orbiting bearing, orbiting balance weight, partition member, seal member, and upper end portion of the crankshaft of the scroll compressor according to the second embodiment.
  • FIG. 8 is a perspective view of a partition member of a scroll compressor according to a modified example of the second embodiment; 1. It is the longitudinal cross-sectional view which expanded the part corresponded to the area
  • FIG. 11 is an exploded perspective view including an orbiting scroll, an orbiting bearing, an orbiting balance weight, a seal member, and an upper end portion of a crankshaft of a scroll compressor according to a third embodiment;
  • FIG. 11 is a configuration diagram of a refrigerant circuit of an air conditioner according to a fourth embodiment;
  • FIG. 1 is a longitudinal sectional view of a scroll compressor 100 according to the first embodiment.
  • a scroll compressor 100 shown in FIG. 1 is a device that compresses gaseous refrigerant.
  • the scroll compressor 100 includes a closed container 1, a compression mechanism section 2, a crankshaft 3 (shaft), an electric motor 4, an Oldham ring 5, and balance weights 6a and 6b.
  • the scroll compressor 100 includes a fixed member 7, a subframe 8, a lower bearing 9, a leg 10, a power terminal 11, a main bearing 12, a turning bearing 13, and a turning A balance weight 14 is provided.
  • the sealed container 1 is a shell-shaped container that houses the compression mechanism 2, the crankshaft 3, the electric motor 4, etc., and is substantially sealed. A lubricating oil is enclosed in the sealed container 1 and stored in the bottom of the sealed container 1 as an oil reservoir R1.
  • the sealed container 1 includes a cylindrical cylindrical chamber 1a, a lid chamber 1b that closes the upper side of the cylindrical chamber 1a, and a bottom chamber 1c that closes the lower side of the cylindrical chamber 1a.
  • a suction pipe P1 is inserted into and fixed to the lid chamber 1b of the sealed container 1.
  • the suction pipe P ⁇ b>1 is a pipe that guides the refrigerant to the suction port J ⁇ b>1 of the compression mechanism section 2 .
  • a discharge pipe P2 is inserted and fixed at a predetermined position below the frame 21 in the cylindrical chamber 1a of the sealed container 1.
  • the discharge pipe P ⁇ b>2 is a pipe that guides the refrigerant compressed by the compression mechanism 2 to the outside of the scroll compressor 100 .
  • the compression mechanism 2 is a mechanism that compresses the refrigerant as the crankshaft 3 rotates.
  • the compression mechanism section 2 includes a frame 21 , a fixed scroll 22 and an orbiting scroll 23 , and is arranged in the upper space inside the sealed container 1 .
  • the frame 21 is a member that supports the fixed scroll 22 and is fixed inside the sealed container 1 . Specifically, the frame 21 is fixed to the cylindrical chamber 1a by welding or the like. The frame 21 is provided with an insertion hole H1 through which the crankshaft 3 (shaft) is inserted.
  • the fixed scroll 22 is a member that forms a compression chamber S1 together with an orbiting scroll 23 described below.
  • the fixed scroll 22 is installed above the frame 21 and fastened to the frame 21 with bolts B1. As shown in FIG. 1, the fixed scroll 22 includes a base plate 22a and a fixed wrap 22b.
  • the base plate 22a is a thick member having a circular shape in plan view.
  • the vicinity of the center of the lower surface of the base plate 22a is recessed upward by a predetermined amount.
  • a suction port J1 for introducing the refrigerant through the suction pipe P1 is provided in the base plate 22a.
  • the fixing wrap 22b has a spiral shape and extends downward from the base plate 22a in the region S2.
  • the bottom surface of the base plate 22a (the bottom surface of the radially outer portion of the region S2) and the bottom end of the fixing wrap 22b are substantially flush with each other.
  • the orbiting scroll 23 is a member that forms a compression chamber S1 between itself and the fixed scroll 22 by its movement (orbiting), and is provided between the frame 21 and the fixed scroll 22 .
  • the orbiting scroll 23 includes a disk-shaped end plate 23a, a spiral orbiting wrap 23b erected on the end plate 23a, and a turning shaft 23c extending downward from near the center of the end plate 23a. That is, in the orbiting scroll 23, an orbiting wrap 23b is provided on the upper side (one side) of the end plate 23a, and a turning shaft 23c is provided on the lower side (the other side) of the end plate 23a.
  • the orbiting wrap 23b is a member that forms the compression chamber S1 together with the fixed wrap 22b.
  • the turning shaft 23c has a columnar shape and is fitted into the eccentric hole H2 of the upper end portion 3b of the crankshaft 3.
  • the spiral fixed wrap 22b and the spiral swirl wrap 23b are meshed to form a compression chamber S1 between the fixed wrap 22b and the swirl wrap 23b.
  • the compression chambers S1 are spaces for compressing gaseous refrigerant, and are formed on the outer line side and the inner line side of the orbiting wrap 23b.
  • a discharge port J2 is provided in the vicinity of the center of the base plate 22a of the fixed scroll 22 to guide the refrigerant compressed in the compression chamber S1 to the upper space S3 inside the sealed container 1. As shown in FIG.
  • the crankshaft 3 (shaft) is a shaft that rotates integrally with the rotor 4b of the electric motor 4, and extends vertically. As shown in FIG. 1, the crankshaft 3 includes a main shaft portion 3a, an upper end portion 3b, a lower shaft portion 3c, and an oil supply piece 3d. The crankshaft 3 has an upper end portion 3 b supported by a main bearing 12 and a lower shaft portion 3 c supported by a lower bearing 9 .
  • the main shaft portion 3a is coaxially fixed to the rotor 4b of the electric motor 4 and rotates integrally with the rotor 4b.
  • the upper end portion 3b is a portion that extends upward from the main shaft portion 3a and has a bottomed cylindrical shape that opens upward.
  • An eccentric hole H2 that is eccentric with respect to the central axis Z1 of the crankshaft 3 is provided in the upper end portion 3b (end portion) of the crankshaft 3 (shaft).
  • the central axis (not shown) of the eccentric hole H2 which has a circular cross-sectional view, is eccentric with respect to the central axis Z1 of the crankshaft 3 (main shaft portion 3a, etc.).
  • the swivel shaft 23c with the swivel bearing 13 installed is fitted in the eccentric hole H2.
  • a small radial gap is provided between the inner peripheral surface of the eccentric hole H2 and the orbiting bearing 13 so that lubricating oil can enter.
  • the turning shaft 23c rotates eccentrically with respect to the main shaft portion 3a.
  • the upper end 3b (end) of the crankshaft 3 (shaft) is provided with a projection 31b (see also FIG. 2) projecting upward (toward the orbiting scroll 23) as a "first fitting portion".
  • the protrusion 31b is fitted into the fitting hole H3 (not shown in FIG. 1, see FIG. 2) of the turning balance weight 14. As shown in FIG.
  • the lower shaft portion 3c of the crankshaft 3 is supported by the lower bearing 9 and extends below the main shaft portion 3a.
  • the oil supply piece 3d is a portion that sucks up lubricating oil from the oil reservoir R1 of the sealed container 1, and elongates downward from the lower shaft portion 3c.
  • a positive displacement pump, a centrifugal pump, or the like may be provided in the oil supply piece 3d.
  • the crankshaft 3 (that is, the main shaft portion 3a, the upper end portion 3b, the lower shaft portion 3c, and the oil supply piece 3d) is provided with an oil supply passage 3e that guides the lubricating oil.
  • the lubricating oil stored as the oil reservoir R1 in the sealed container 1 rises through the oil supply passage 3e and is guided to the eccentric hole H2 of the upper end portion 3b.
  • the oil supply passage 3e is branched in a predetermined manner so that the lubricating oil is also supplied to the lower bearing 9, the main bearing 12, the orbiting bearing 13, and the like.
  • the electric motor 4 is a drive source that rotates the crankshaft 3 and is provided between the frame 21 and the sub-frame 8 in the axial direction.
  • the electric motor 4 includes a stator 4a and a rotor 4b.
  • the stator 4a has windings 41a and is fixed to the inner peripheral surface of the cylinder chamber 1a.
  • the rotor 4b is rotatably arranged radially inside the stator 4a.
  • the crankshaft 3 is fixed to the rotor 4b by press fitting or the like so as to be coaxial with the central axis Z1.
  • the Oldham ring 5 is a ring-shaped member that receives the eccentric rotation of the orbiting shaft 23c and causes the orbiting scroll 23 to revolve (orbit) without rotating. As shown in FIG. 1 , the Oldham ring 5 is provided between the frame 21 and the orbiting scroll 23 . Specifically, the Oldham ring 5 is installed in a groove (not shown) formed in the lower surface of the orbiting scroll 23 and is installed in a groove (not shown) formed in the frame 21. .
  • Balance weights 6 a and 6 b are members for suppressing vibration of scroll compressor 100 . In the example of FIG. 1, a balance weight 6a is installed on the upper side of the rotor 4b in the main shaft portion 3a, and another balance weight 6b is installed on the lower surface of the rotor 4b.
  • the fixing member 7 is a member that fixes the position of the sub-frame 8, and is fixed to the inner peripheral surface of the closed container 1 by welding or the like.
  • the subframe 8 is a member on which the lower bearing 9 is installed, and is fastened to the fixed member 7 with bolts B2.
  • the sub-frame 8 is provided with a hole (not shown) through which the crankshaft 3 is inserted.
  • the lower bearing 9 rotatably supports the lower shaft portion 3 c of the crankshaft 3 and is installed on the inner peripheral surface of the hole of the sub-frame 8 .
  • a plurality of legs 10 are members that support the sealed container 1 and are installed in the bottom chamber 1c.
  • the power terminal 11 is a terminal used for power supply to the electric motor 4 .
  • the power terminal 11 is installed in the cylinder chamber 1 a and electrically connected to the winding 41 a of the electric motor 4 .
  • the main bearing 12 rotatably supports the upper end portion 3b of the crankshaft 3 with respect to the frame 21, and is fixed to the insertion hole H1 of the frame 21 by press fitting or the like.
  • a main bearing 12 for example, a cylindrical sliding bearing is used.
  • the orbiting bearing 13 rotatably supports the upper end portion 3b of the crankshaft 3 (shaft) with respect to the orbiting scroll 23, and is fixed to the outer peripheral surface of the orbiting shaft 23c by press fitting or the like.
  • a turning bearing 13 for example, a cylindrical sliding bearing is used.
  • the installation areas of the main bearing 12 and the orbiting bearing 13 partially overlap in the axial direction.
  • the axial distance between the point of action of the force from the main bearing 12 to the crankshaft 3 and the point of action of the force from the swivel bearing 13 to the crankshaft 3 is reduced. can be shortened. Therefore, it is possible to suppress the occurrence of a moment that causes the crankshaft 3 to tilt, thereby suppressing deflection and uneven contact of the crankshaft 3 .
  • the length of the crankshaft 3 can be shortened by adopting the double bearing structure, it is possible to reduce the size and cost of the scroll compressor 100 .
  • the turning balance weight 14 shown in FIG. 1 is a member for reducing the load acting on the turning bearing 13, and is provided between the frame 21 and the end plate 23a. That is, the orbiting balance weight 14 is installed so as to fit in the space between the frame 21 and the orbiting scroll 23 . To explain the positional relationship of the turning balance weight 14 from another point of view, it can be said that the turning balance weight 14 is provided between the crankshaft 3 and the end plate 23a.
  • the swivel shaft 23c with the swivel bearing 13 installed is fitted in the eccentric hole H2, but the upper end of the swivel bearing 13 is exposed from the eccentric hole H2.
  • a swivel balance weight 14 is provided radially outside the portion (upper end portion of the swivel bearing 13) where the swivel bearing 13 is exposed from the eccentric hole H2.
  • FIG. 2 is a cross-sectional view of the scroll compressor taken along line II--II in FIG. 2, illustration of the sealed container 1 (see FIG. 1), the Oldham ring 5 (see FIG. 1), the frame 21 (see FIG. 1), etc. is omitted. 2 also shows the center axis Z1 of the crankshaft 3, the center axis Z2 of the turning shaft 23c, and the center of gravity G1 of the turning balance weight 14. As shown in FIG.
  • the turning balance weight 14 is provided with a circular hole H4 in a cross-sectional view with the central axis Z2 of the turning shaft 23c as a reference.
  • the diameter of the hole H ⁇ b>4 of the turning balance weight 14 is slightly larger than the outer diameter of the turning bearing 13 . That is, between the inner peripheral surface of the hole H4 of the swivel balance weight 14 and the outer peripheral surface of the swivel bearing 13, a minute gap (not shown) is provided in the radial direction.
  • a minute gap (not shown) is provided in the radial direction.
  • the swivel balance weight 14 has a semicircular plummet 14a in a cross-sectional view in a region opposite to the "eccentric side" of the swivel shaft 23c.
  • the "eccentric side” of the turning shaft 23c (that is, the eccentric side of the eccentric hole H2 in FIG. 1) means that the central axis Z2 of the turning shaft 23c is eccentric with respect to the central axis Z1 of the crankshaft 3.
  • side (the right side of the paper surface of FIG. 2). That is, the center of gravity G1 of the turning balance weight 14 is located on the opposite side of the center axis Z2 of the turning shaft 23c with the center axis Z1 of the crankshaft 3 as a reference.
  • part of the centrifugal force of the orbiting scroll 23 is offset by the orbiting balance weight 14, so the load on the orbiting bearing 13 can be reduced.
  • the crankshaft 3 (shaft) and the turning balance weight 14 are fitted. That is, the weight portion 14a of the turning balance weight 14 has a fitting hole H3, which is a hole that fits into the protrusion 31b (first fitting portion: see also FIG. 1) of the crankshaft 3. Department”. Moreover, there is a gap between the protrusion 31b that is the "first fitting portion” on the crankshaft 3 (shaft) side and the fitting hole H3 that is the "second fitting portion” on the turning balance weight 14 side. is provided. More specifically, as shown in FIG. 2, radial gaps C1 and C2 are formed between the inner wall surface of the fitting hole H3 and the protrusion 31b with the center axis Z1 of the crankshaft 3 as a reference (center). is provided. A gap C1 on the radially outer side of the protrusion 31b and a gap C2 on the radially inner side of the protrusion 31b are minute gaps (symbol not shown).
  • the gaps C1 and C2 between the inner wall surface of the fitting hole H3 (second fitting portion) and the protrusion 31b are longer than the radial length of the gap between the swivel bearing 13 and the swivel balance weight 14. are longer in the radial direction.
  • a slight gap is provided between the inner wall surface of the fitting hole H3 and the protrusion 31b.
  • a predetermined gap is provided between the inner wall surface of the fitting hole H3 and the protrusion 31b in a direction (horizontal direction including radial direction and circumferential direction) perpendicular to the central axis Z1 of the crankshaft 3.
  • FIG. 3 is an exploded perspective view including the orbiting scroll 23, the orbiting bearing 13, the orbiting balance weight 14, and the upper end portion 3b of the crankshaft 3.
  • FIG. 3 the orbiting scroll 23 and orbiting bearing 13 are shown cut along a predetermined plane (not shown) including the center axis Z1 of the crankshaft 3 (see FIG. 1).
  • the upper end portion 3b of the crankshaft 3 is provided with the projecting portion 31b projecting upward.
  • the turning balance weight 14 is provided with a fitting hole H3 into which the protrusion 31b is fitted.
  • FIG. 4 is an explanatory diagram showing the force generated in each member by partially enlarging the region K1 shown in FIG.
  • the centrifugal force Fcos indicated by the white arrow in FIG. 4 acts on the orbiting scroll 23 as the center of gravity moves.
  • gas loads (white arrows not shown) are generated in the tangential direction and the radial direction in the movement of the orbiting scroll 23 as a reaction accompanying the compression of the refrigerant.
  • the centrifugal force Fcos acting on the orbiting scroll 23 increases in proportion to the square of the moving speed of the orbiting scroll 23, the increase in the centrifugal force Fcos of the orbiting scroll 23 is particularly noticeable in the high speed range. Therefore, in the conventional configuration in which the orbital balance weight 14 is not provided, if the upper limit speed of the scroll compressor is increased, there is a possibility that the orbital bearing 13 will be overloaded. In addition, in the conventional configuration, the oil film thickness on the outer peripheral side of the slewing bearing 13 becomes thin, especially in the high speed range, and the friction coefficient associated with the direct contact between the inner peripheral surface of the eccentric hole H2 and the slewing bearing 13 increases. , the slewing bearing 13 and the like may be worn or seized.
  • the orbiting balance weight 14 is provided between the end plate 23a of the orbiting scroll 23 and the frame 21.
  • the orbiting balance weight 14 is eccentric on the side opposite to the orbiting shaft 23c of the orbiting scroll 23 (see FIG. 2). Therefore, the centrifugal force Fcob acting on the orbiting balance weight 14 acts in the opposite direction to the centrifugal force Fcos of the orbiting scroll 23 .
  • a load Fr having a magnitude obtained by subtracting the centrifugal force Fcob of the orbiting balance weight 14 from the centrifugal force Fcos of the orbiting scroll 23 acts on the orbiting bearing 13 as a reaction force of the centrifugal force.
  • FIG. 5 is an explanatory diagram showing the relationship between the rotation speed and the load of the scroll compressor (see also FIG. 4 as appropriate).
  • the horizontal axis of FIG. 5 is the rotation speed of the scroll compressor 100 (that is, the rotation speed of the electric motor 4), and the vertical axis is the load.
  • the dashed-dotted line in FIG. 5 is the horizontal gas load Fg accompanying the compression of the refrigerant.
  • a dashed line in FIG. 5 represents the centrifugal force Fcos acting on the orbiting scroll 23 .
  • the white arrow in FIG. 5 represents the centrifugal force Fcob acting on the turning balance weight 14 .
  • the solid line in FIG. 5 is the load Fr acting on the orbiting bearing 13 as the reaction force of the centrifugal force.
  • the gas load Fg associated with refrigerant compression is substantially constant regardless of the rotation speed of the scroll compressor 100.
  • the centrifugal force Fcos of the orbiting scroll 23 increases in proportion to the square of the rotational speed of the scroll compressor 100 . If the swivel balance weight 14 were not provided, the sum of the gas load Fg and the centrifugal force Fcos would act on the swivel bearing 13, which could overload the swivel bearing 13 in the high speed range.
  • the sum of this load Fr and the gas load Fg acts on the turning bearing 13 . Therefore, particularly in a high speed region where the centrifugal force of the orbiting scroll 23 increases, the load applied to the orbiting bearing 13 can be greatly reduced.
  • the space between the orbiting scroll 23 and the frame 21 is filled with the lubricating oil after the main bearing 12 and the orbiting bearing 13 have been lubricated. That is, since an oil film is formed between the inner peripheral surface of the hole H4 (see FIG. 2) of the turning balance weight 14 and the turning bearing 13, a good lubricating state is maintained.
  • the protrusion 31b first fitting portion: see FIG. 2) of the crankshaft 3, the fitting hole H3 (second fitting portion: see FIG. 2) of the turning balance weight 14, A gap (clearances C1, C2, etc. in FIG. 2) is provided between the . Therefore, when the projection 31b presses the wall surface of the fitting hole H3 in the circumferential direction to rotate the turning balance weight 14, the turning balance weight 14 moves radially within the range of the gap due to the centrifugal force. It contacts the swivel bearing 13 . As a result, part of the centrifugal force Fcos (see FIG. 4) of the orbiting scroll 23 is canceled by the centrifugal force Fcob (see FIG.
  • the load applied to the orbiting bearing 13 can be significantly reduced particularly in a high speed range where the centrifugal force of the orbiting scroll 23 increases.
  • the friction loss of the orbiting bearing 13 can be reduced, and wear and seizure of the orbiting bearing 13 can be suppressed.
  • the scroll compressor 100 with high performance and high reliability can be provided.
  • a turning balance weight 14 is provided between the turning scroll 23 and the frame 21 so that the centrifugal force of the turning balance weight 14 directly acts on the turning bearing 13 .
  • the load applied to the orbiting bearing 13 can be reduced, and the deflection of the crankshaft 3 can be suppressed.
  • the second embodiment differs from the first embodiment in that a partition member 15 (see FIG. 6) is provided between the orbiting scroll 23 and the frame 21. configuration, etc.: see FIG. 1) are the same as in the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 6 is an enlarged vertical cross-sectional view of a portion corresponding to the region K1 shown in FIG. 1 in the scroll compressor 100A according to the second embodiment.
  • the scroll compressor 100A includes a partition member 15 and two seal members 16a and 16b in addition to the configuration described in the first embodiment.
  • the partition member 15 defines a discharge pressure space S4 (first discharge pressure space S4) including the insertion hole H1 of the crankshaft 3 when the space between the orbiting scroll 23 and the frame 21 is viewed from the direction of the center axis Z1 of the crankshaft 3 (shaft). region) and a back pressure chamber S5 (second region) radially outside the discharge pressure space S4.
  • the partition member 15 is provided between the orbiting scroll 23 and the frame 21 .
  • a swivel balance weight 14 is provided inside the partition member 15 .
  • This lubricating oil has substantially the same discharge pressure as the refrigerant compressed by the compression mechanism portion 2 . Therefore, the pressure in the discharge pressure space S4 is substantially equal to the discharge pressure described above. Further, when the pressure in the back pressure chamber S5 becomes lower than that in the discharge pressure space S4, the pressure difference between the discharge pressure space S4 and the back pressure chamber S5 is maintained because the partition member 15 separates the discharge pressure space S4 and the back pressure chamber S5. be done.
  • the pressure (back pressure) in the back pressure chamber S5 can be controlled, for example, by intermittently communicating the compression chamber S1 and the back pressure chamber S5 with the movement of the orbiting scroll 23, or by providing a back pressure valve (not shown). can be adjusted by By providing such a back pressure chamber S5, it is possible to prevent the force that presses the orbiting scroll 23 upward against the fixed scroll 22 from becoming too large.
  • FIG. 7 is an exploded perspective view including the orbiting scroll 23, orbiting bearing 13, orbiting balance weight 14, partition member 15, seal member 16a, and upper end portion 3b of the crankshaft 3 of the scroll compressor 100A.
  • the orbiting scroll 23 and orbiting bearing 13, as well as the partition member 15 and the seal member 16a are cut along a predetermined plane (not shown) including the central axis line Z1 (see FIG. 6) of the crankshaft 3.
  • the partition member 15 includes an annular portion 15a and a peripheral wall 15b.
  • the annular portion 15a has an annular shape when viewed from the direction of the central axis Z1 (see FIG. 1) of the crankshaft 3 (shaft), and surrounds the turning bearing 13 (see also FIG. 6).
  • the peripheral wall 15b extends downward (on the frame 21 side: see FIG. 6) from the outer peripheral edge of the annular portion 15a.
  • the edge 151 b (lower end) of the peripheral wall 15 b of the partition member 15 abuts on the frame 21 .
  • Such a partition member 15 may be made of metal, or may be made of resin, for example.
  • a seal member 16a shown in FIG. 6 is a member made of resin that closes a minute gap between the annular portion 15a of the partition member 15 and the end plate 23a of the orbiting scroll 23.
  • an annular groove M1 is formed in the lower surface of the end plate 23a, and the seal member 16a is installed in this groove M1.
  • the sealing member 16a is vertically compressed by the partition member 15 and the end plate 23a.
  • the frame 21 has an annular thick portion 21a in plan view in a portion including the peripheral wall surface of the insertion hole H1.
  • the thick portion 21a is formed to be thicker in the axial direction than the outer peripheral side thereof, and protrudes upward (toward the orbiting scroll 23).
  • a seal member 16b shown in FIG. 6 is a member made of resin that closes a minute gap between the peripheral wall 15b of the partition member 15 and the thick portion 21a of the frame 21.
  • an annular groove M2 is formed in the outer peripheral surface of the thick portion 21a of the frame 21, and the seal member 16b is installed in this groove M2.
  • the partition member 15 and the frame 21 compress the sealing member 16b in the radial direction.
  • the partition member 15 partitions the space between the orbiting scroll 23 and the frame 21 into the discharge pressure space S4 and the back pressure chamber S5.
  • the partition member 15 partitions the space between the orbiting scroll 23 and the frame 21 into the discharge pressure space S4 and the back pressure chamber S5.
  • the configuration in which the partition member 15 (see FIG. 7) is not particularly provided with grooves has been described, but the configuration is not limited to this.
  • a radial groove 15c may be provided in the upper surface of the annular portion 15a of the partition member 15A (see FIG. 8), and the lubricating oil may flow through this groove 15c.
  • FIG. 8 is a perspective view of a partition member 15A of a scroll compressor according to a modification of the second embodiment.
  • a groove 15c is provided on the upper surface of the annular portion 15a of the partition member 15A. More specifically, a groove 15c extending from the inner peripheral edge to the outer peripheral edge of the annular portion 15a is provided in the radial direction.
  • the groove 15c is a flow path that guides the lubricating oil that has lubricated the main bearing 12, the orbiting bearing 13, etc. from the discharge pressure space S4 (see FIG. 6) to the back pressure chamber S5 (see FIG. 6).
  • the lubricating oil flowing from the discharge pressure space S4 (see FIG. 6) is squeezed by the grooves 15c and then ).
  • the pressure (back pressure) of the back pressure chamber S5 can be adjusted by appropriately adjusting the channel cross-sectional area of the groove 15c at the design stage.
  • FIG. 8 shows an example in which one groove 15c is provided, a plurality of grooves may be provided.
  • a groove (not shown) as a flow path for guiding the lubricating oil from the discharge pressure space S4 (see FIG. 6) to the back pressure chamber S5 (see FIG. 6) is provided in the orbiting scroll.
  • 23 may be provided on the lower surface of the end plate 23a (see FIG. 6).
  • a groove 15c (see FIG. 8) may be provided on the upper surface of the partition member 15A, and a groove (not shown) may be provided on the lower surface of the end plate 23a (see FIG. 6) of the orbiting scroll 23.
  • the grooves (not shown) provided on the lower surface of the end plate 23a and the grooves 15c provided on the upper surface of the partition member 15A may overlap each other in plan view. may not overlap.
  • the third embodiment differs from the second embodiment in that two sealing members 17a and 17b (see FIG. 9) are provided instead of the partition wall member 15A (see FIG. 6). Points (such as the overall configuration of the scroll compressor) are the same as in the second embodiment. Therefore, the parts different from the second embodiment will be explained, and the explanation of overlapping parts will be omitted.
  • FIG. 9 is an enlarged longitudinal sectional view of a portion corresponding to the region K1 shown in FIG. 1 in the scroll compressor 100B according to the third embodiment.
  • the scroll compressor 100B has two seal members 17a and 17b installed on the orbital balance weight 14B. These seal members 17a and 17b divide the space between the orbiting scroll 23 and the frame 21 in the radial direction into a discharge pressure space S4 (first region) including an insertion hole H1 for the crankshaft 3 (shaft) and a discharge pressure space S4 (first region). It is a member made of resin that partitions into a back pressure chamber S5 (second region) on the radially outer side of the pressure space S4.
  • FIG. 10 is an exploded perspective view including the orbiting scroll 23, orbiting bearing 13, orbiting balance weight 14B, seal members 17a and 17b, and the upper end portion 3b of the crankshaft 3 of the scroll compressor 100B.
  • an annular groove M3 (see also FIG. 9) is formed in the upper surface of the swing balance weight 14B.
  • An annular seal member 17a (first seal member) is installed in the groove M3.
  • the annular seal member 17a is provided in the gap between the turning balance weight 14B and the end plate 23a.
  • annular groove M4 (see FIG. 9) is also formed on the lower surface of the turning balance weight 14B.
  • An annular seal member 17b (second seal member) is installed in the groove M4. As shown in FIG. 9, the annular seal member 17b is provided in the gap between the swing balance weight 14B and the frame 21. As shown in FIG. In order to provide the annular grooves M3 and M4, the diameter of the annular portion 14b including the peripheral wall surface of the hole H4 of the turning balance weight 14B is longer than in the first embodiment (see FIG. 3).
  • the orbiting balance weight 14B and the seal members 17a and 17b are integrally moved (rotated) in the circumferential direction. That is, one seal member 17a moves in the circumferential direction together with the orbiting balance weight 14B while being vertically compressed between the orbiting balance weight 14B and the orbiting scroll 23 . The other seal member 17b moves in the circumferential direction together with the rotating balance weight 14B while being vertically compressed between the rotating balance weight 14B and the frame 21 .
  • two sealing members 17a and 17b are provided to divide the space between the orbiting scroll 23 and the frame 21 into a discharge pressure space S4 (see FIG. 9) and a back pressure chamber S5 (see FIG. 9). ) can be divided into Moreover, unlike the second embodiment, the radial size of the turning balance weight 14B is not particularly limited to a size that can be accommodated in the partition member 15 (see FIG. 6). Therefore, according to the third embodiment, it is possible to sufficiently secure the outer diameter of the turning balance weight 14B. As a result, the load on the orbiting bearing 13 can be further reduced, and the performance and reliability of the scroll compressor 100B can be improved.
  • grooves (not shown) for guiding lubricating oil from the discharge pressure space S4 to the back pressure chamber S5 are formed on the lower surface of the end plate 23a of the orbiting scroll 23 (the surface on the side of the orbiting balance weight 14) and the upper surface of the frame 21 (orbiting surface facing the balance weight 14). Accordingly, the pressure (back pressure) of the back pressure chamber S5 can be adjusted by appropriately adjusting the channel cross-sectional area of the groove (not shown) at the design stage.
  • FIG. 11 is a configuration diagram of the refrigerant circuit Q1 of the air conditioner W1 according to the fourth embodiment.
  • the solid line arrows in FIG. 11 indicate the flow of the refrigerant during the heating operation.
  • dashed arrows in FIG. 11 indicate the flow of the refrigerant during the cooling operation.
  • the air conditioner W1 is a device that performs air conditioning such as cooling and heating. As shown in FIG. 11, the air conditioner W1 includes a scroll compressor 100, an outdoor heat exchanger 71, an outdoor fan 72, an expansion valve 73, a four-way valve 74, an indoor heat exchanger 75, an indoor fan 76 and .
  • the scroll compressor 100, the outdoor heat exchanger 71, the outdoor fan 72, the expansion valve 73, and the four-way valve 74 are provided in the outdoor unit 81.
  • the indoor heat exchanger 75 and the indoor fan 76 are provided in the indoor unit 82 .
  • the scroll compressor 100 is a device that compresses gaseous refrigerant, and has the same configuration as the first embodiment (see FIG. 1).
  • the outdoor heat exchanger 71 is a heat exchanger that exchanges heat between a refrigerant flowing through its heat transfer tubes (not shown) and outside air sent from the outdoor fan 72 .
  • the outdoor fan 72 is a fan that sends outside air to the outdoor heat exchanger 71 .
  • the outdoor fan 72 is provided with an outdoor fan motor 72a as a driving source, and is installed near the outdoor heat exchanger 71. As shown in FIG.
  • the indoor heat exchanger 75 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the heat transfer tube (not shown) and the indoor air (air-conditioned room air) sent from the indoor fan 76 .
  • the indoor fan 76 is a fan that sends indoor air to the indoor heat exchanger 75 .
  • the indoor fan 76 is provided with an indoor fan motor 76 a as a drive source and is installed near the indoor heat exchanger 75 .
  • the expansion valve 73 is a valve that reduces the pressure of the refrigerant condensed in the "condenser” (one of the outdoor heat exchanger 71 and the indoor heat exchanger 75).
  • the refrigerant decompressed by the expansion valve 73 is guided to an "evaporator" (the other of the outdoor heat exchanger 71 and the indoor heat exchanger 75).
  • the four-way valve 74 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W1. For example, during cooling operation (see the dashed arrow in FIG. 11), in the refrigerant circuit Q1, the scroll compressor 100, the outdoor heat exchanger 71 (condenser), the expansion valve 73, and the indoor heat exchanger 75 (evaporator ) in sequence, the refrigerant circulates. On the other hand, during heating operation (see the solid line arrow in FIG. 11), in the refrigerant circuit Q1, the scroll compressor 100, the indoor heat exchanger 75 (condenser), the expansion valve 73, and the outdoor heat exchanger 71 (evaporator ) in sequence. In addition to the scroll compressor 100 and the outdoor fan 72, devices such as the expansion valve 73, the four-way valve 74, and the indoor fan 76 are controlled in a predetermined manner by a controller (not shown).
  • the air conditioner W1 includes the scroll compressor 100 having the same configuration as in the first embodiment. As a result, the performance and reliability of the air conditioner W1 as a whole can be improved.
  • the turning balance weight 14 is provided between the frame 21 and the end plate 23 a and rotates together with the crankshaft 3 .
  • the crankshaft 3 (shaft) and the turning balance weight 14 are fitted together, and the "first fitting portion" on the crankshaft 3 side, the “second fitting portion” on the turning balance weight 14 side, It is assumed that a predetermined gap (for example, a gap in a direction perpendicular to the center axis of the crankshaft 3) is provided between them.
  • a predetermined gap for example, a gap in a direction perpendicular to the center axis of the crankshaft 3
  • the center of gravity of the turning balance weight 14 is located on the side opposite to the side where the eccentric portion (not shown) of the crankshaft 3 is eccentric with respect to the central axis Z1.
  • a fitting hole H3 (second fitting portion) is provided in the turning balance weight 14 (see FIG. 2), and the projection portion 31b (first fitting portion) of the crankshaft 3 is provided in the fitting hole H3.
  • a fitting groove (second fitting portion: not shown) is provided as a groove that fits into the turning balance weight 14, and the projection portion 31b (first fitting portion) of the crankshaft 3 is provided in this fitting groove. may be fitted.
  • the turning balance weight 14 may be provided with a “second fitting portion” that is a hole or groove that fits into the protrusion 31b.
  • a projection (second fitting portion, not shown) extending axially downward (toward the frame 21 side) is provided on the turning balance weight 14, and a fitting hole or fitting groove (not shown) in which the projection is fitted is provided.
  • a first fitting portion (not shown) may be provided at the upper end portion 3 b of the crankshaft 3 . In such a configuration, a gap (for example, a clearance in the vertical direction) may be provided. Even with such a configuration, the same effects as those of each embodiment can be obtained. Also, in each embodiment, the case where the main bearing 12 (see FIG. 1) and the frame 21 (see FIG. 1) are separate bodies has been described, but the present invention is not limited to this.
  • the peripheral wall surface of the insertion hole H1 in the frame 21 may be subjected to a predetermined polishing process or surface treatment so that the peripheral wall surface of the insertion hole H1 functions as a "main bearing".
  • a predetermined polishing process or surface treatment so that the peripheral wall surface of the insertion hole H1 functions as a "main bearing".
  • the "main bearing” is provided in the insertion hole H1 of the frame 21.
  • the peripheral wall surface of the rotating shaft 23c may be made to function as a "swivel bearing” by subjecting the peripheral wall surface of the rotating shaft 23c to a predetermined polishing process or surface treatment.
  • Such a configuration is also included in the matter that the orbiting scroll 23 is provided with the "orbiting bearing".
  • a seal member 16a is provided between the partition member 15 and the end plate 23a, and another seal member 16b is provided between the partition member 15 and the frame 21. Illustrated, but not limited to. For example, one or both of the two seal members 16a and 16b may be omitted. Even with such a configuration, the space between the orbiting scroll 23 and the frame 21 can be partitioned into the discharge pressure space S4 and the back pressure chamber S5 by the partition member 15 (see FIG. 6).
  • the air conditioner W1 (see FIG. 11) described in the fourth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings.
  • the air conditioner W1 (refrigerating cycle device: see FIG. 11) including the scroll compressor 100 has been described, but the present invention is not limited to this.
  • the fourth embodiment can be applied to other "refrigerating cycle devices" such as refrigerators, water heaters, air-conditioning water heaters, chillers, and refrigerators.
  • each embodiment demonstrated the structure by which the scroll compressor 100 was vertically installed, it does not restrict to this.
  • each embodiment can be applied to a configuration in which the scroll compressor 100 is installed horizontally or diagonally.
  • each embodiment demonstrated the case where the refrigerant
  • each embodiment can be combined as appropriate.
  • the air conditioner W1 (fourth embodiment: see FIG. 11) includes the scroll compressor 100A (see FIG. 7) having the configuration described in the second embodiment. You may prepare.
  • combinations of the third embodiment and the fourth embodiment, etc. are also possible.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to appropriately add, delete, or replace a part of the configuration of each embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
  • Reference Signs List 100, 100A, 100B Scroll Compressor 1 Sealed Container 2 Compression Mechanism Part 21 Frame 22 Fixed Scroll 22a Base Plate 22b Fixed Wrap 23 Orbiting Scroll 23a End Plate 23b Orbiting Wrap 23c Orbiting Axis 3 Crankshaft (Shaft) 3b upper end (end of shaft) 31b projection (first fitting portion) 4 electric motor 4a stator 4b rotor 12 main bearing 13 swivel bearing 14, 14B swivel balance weight 15, 15A partition member 15a annular portion 15b peripheral wall 151b edge 15c groove 17a seal member (first seal member) 17b sealing member (second sealing member) 71 outdoor heat exchanger 72 outdoor fan 73 expansion valve 74 four-way valve 75 indoor heat exchanger 76 indoor fans C1, C2 gap H1 insertion hole H2 eccentric hole H3 fitting hole (second fitting portion) S1 compression chamber S4 discharge pressure space (first region) S5 back pressure chamber (second area) W1 Air conditioner (refrigeration cycle device) Z1 center axis

Abstract

In order to provide a highly reliable scroll compressor, etc. This scroll compressor (100) comprises: a sealed container (1); an electric motor (4); a crankshaft (3); a fixed scroll (22); an orbiting scroll (23); an orbiting bearing (13) that pivotally supports the crankshaft (3) so that the crankshaft (3) is able to rotate with respect to the orbiting scroll (23); and a frame (21) that has a through-hole (H1) for the crankshaft (3) and supports the fixed scroll (22), the scroll compressor (100) further comprising an orbiting balance weight (14) provided between the frame (21) and a mirror plate (23a) and rotating with the crankshaft (3), wherein the crankshaft (3) and the orbiting balance weight (14) are fitted together, and a gap is provided between a protruding part (31b) on the crankshaft (3) side and a fitting hole on the orbiting balance weight (14) side.

Description

スクロール圧縮機及び冷凍サイクル装置Scroll compressor and refrigeration cycle device
 本発明は、スクロール圧縮機等に関する。 The present invention relates to scroll compressors and the like.
 スクロール圧縮機の構成として、旋回スクロールに旋回軸を設け、この旋回軸に旋回軸受を設置するとともに、旋回軸受の径方向外側のフレームに主軸受を設置する、いわゆる二重軸受構造のものが知られている。このような二重軸受構造のスクロール圧縮機として、例えば、特許文献1には、シャフトの上部に径の拡大した主軸部を設け、この主軸部に旋回軸受を設けることが記載されている。 As a structure of a scroll compressor, a so-called double bearing structure is known, in which an orbiting scroll is provided with an orbiting shaft, an orbiting bearing is installed on the orbiting shaft, and a main bearing is installed on a frame radially outside the orbiting bearing. It is As a scroll compressor having such a double bearing structure, for example, Patent Document 1 describes that a main shaft portion with an enlarged diameter is provided on the upper portion of the shaft, and a slewing bearing is provided on this main shaft portion.
特許第5018832号公報Japanese Patent No. 5018832
 特許文献1のように二重軸受構造にすることで、旋回スクロールとバランスウェイトとの間の距離が短くなるため、バランスウェイトの重量を小さくできる他、特に高速運転時の遠心力によるクランク軸のたわみを抑制できる。 By adopting a double bearing structure as in Patent Document 1, the distance between the orbiting scroll and the balance weight is shortened, so the weight of the balance weight can be reduced. Deflection can be suppressed.
 しかしながら、高速運転時には、旋回スクロールの遠心力の増加に伴って、旋回軸受への荷重も増加する。特許文献1に記載の技術では、このような旋回軸受への荷重の増加を抑制することは困難である。旋回軸受への過負荷を抑制し、スクロール圧縮機の信頼性をさらに高めることが望まれるが、そのような技術については特許文献1には記載されていない。 However, during high-speed operation, the load on the orbiting bearing increases as the centrifugal force of the orbiting scroll increases. With the technique described in Patent Literature 1, it is difficult to suppress such an increase in the load on the slewing bearing. Although it is desirable to suppress the overload on the orbiting bearing and further improve the reliability of the scroll compressor, Patent Document 1 does not describe such a technique.
 そこで、本発明は、信頼性の高いスクロール圧縮機等を提供することを課題とする。 Therefore, an object of the present invention is to provide a highly reliable scroll compressor and the like.
 前記した課題を解決するために、本発明に係るスクロール圧縮機は、密閉容器と、固定子及び回転子を有し、前記密閉容器に収容される電動機と、前記回転子と一体で回転するシャフトと、渦巻状の固定ラップを有する固定スクロールと、鏡板に設けられる渦巻状の旋回ラップを有し、前記固定ラップと前記旋回ラップとの間に圧縮室を形成する旋回スクロールと、前記シャフトを前記旋回スクロールに対して回転自在に軸支する旋回軸受と、前記シャフトの挿通孔を有し、前記固定スクロールを支持するフレームと、を備えるとともに、前記フレームと前記鏡板との間に設けられ、前記シャフトとともに回転する旋回バランスウェイトを備え、前記シャフトと前記旋回バランスウェイトとが嵌合しており、前記シャフト側の第1嵌合部と、前記旋回バランスウェイト側の第2嵌合部と、の間に隙間が設けられていることとした。 In order to solve the above-described problems, a scroll compressor according to the present invention includes a closed container, a stator and a rotor, an electric motor housed in the closed container, and a shaft that rotates integrally with the rotor. a fixed scroll having a spiral stationary wrap; an orbiting scroll having a spiral orbiting wrap provided on an end plate and forming a compression chamber between the stationary wrap and the orbiting wrap; an orbiting bearing that rotatably supports the orbiting scroll; and a frame that has an insertion hole for the shaft and supports the fixed scroll. A swivel balance weight that rotates together with a shaft is provided, the shaft and the swivel balance weight are fitted together, and a first fitting portion on the shaft side and a second fitting portion on the swivel balance weight side. A gap was provided between them.
 本発明によれば、信頼性の高いスクロール圧縮機等を提供できる。 According to the present invention, a highly reliable scroll compressor and the like can be provided.
第1実施形態に係るスクロール圧縮機の縦断面図である。1 is a longitudinal sectional view of a scroll compressor according to a first embodiment; FIG. 第1実施形態に係るスクロール圧縮機を図1のII-II線で切断した場合の横断面図である。FIG. 2 is a cross-sectional view of the scroll compressor according to the first embodiment taken along line II-II of FIG. 1; 第1実施形態に係るスクロール圧縮機の旋回スクロール、旋回軸受、旋回バランスウェイト、及びクランク軸の上端部を含む分解斜視図である。1 is an exploded perspective view including an orbiting scroll, an orbiting bearing, an orbiting balance weight, and an upper end portion of a crankshaft of a scroll compressor according to a first embodiment; FIG. 第1実施形態に係るスクロール圧縮機において、図1に示す領域K1を部分的に拡大し、各部材に生ずる力を示した説明図である。FIG. 2 is an explanatory diagram showing the force generated in each member by partially enlarging the region K1 shown in FIG. 1 in the scroll compressor according to the first embodiment; 第1実施形態に係るスクロール圧縮機の回転速度と荷重との関係を示す説明図である。It is an explanatory view showing relation between rotation speed of a scroll compressor concerning a 1st embodiment, and load. 第2実施形態に係るスクロール圧縮機において、図1に示す領域K1に相当する部分を拡大した縦断面図である。1. It is the longitudinal cross-sectional view which expanded the part corresponded to the area|region K1 shown in FIG. 1 in the scroll compressor which concerns on 2nd Embodiment. 第2実施形態に係るスクロール圧縮機の旋回スクロール、旋回軸受、旋回バランスウェイト、隔壁部材、シール部材、及びクランク軸の上端部を含む分解斜視図である。FIG. 8 is an exploded perspective view including the orbiting scroll, orbiting bearing, orbiting balance weight, partition member, seal member, and upper end portion of the crankshaft of the scroll compressor according to the second embodiment. 第2実施形態の変形例に係るスクロール圧縮機の隔壁部材の斜視図である。FIG. 8 is a perspective view of a partition member of a scroll compressor according to a modified example of the second embodiment; 第3実施形態に係るスクロール圧縮機において、図1に示す領域K1に相当する部分を拡大した縦断面図である。1. It is the longitudinal cross-sectional view which expanded the part corresponded to the area|region K1 shown in FIG. 1 in the scroll compressor which concerns on 3rd Embodiment. 第3実施形態に係るスクロール圧縮機の旋回スクロール、旋回軸受、旋回バランスウェイト、シール部材、及びクランク軸の上端部を含む分解斜視図である。FIG. 11 is an exploded perspective view including an orbiting scroll, an orbiting bearing, an orbiting balance weight, a seal member, and an upper end portion of a crankshaft of a scroll compressor according to a third embodiment; 第4実施形態に係る空気調和機の冷媒回路の構成図である。FIG. 11 is a configuration diagram of a refrigerant circuit of an air conditioner according to a fourth embodiment;
≪第1実施形態≫
<スクロール圧縮機の構成>
 図1は、第1実施形態に係るスクロール圧縮機100の縦断面図である。
 図1に示すスクロール圧縮機100は、ガス状の冷媒を圧縮する機器である。図1に示すように、スクロール圧縮機100は、密閉容器1と、圧縮機構部2と、クランク軸3(シャフト)と、電動機4と、オルダムリング5と、バランスウェイト6a,6bと、を備えている。また、スクロール圧縮機100は、前記した構成の他に、固定部材7と、サブフレーム8と、下軸受9と、脚10と、電源端子11と、主軸受12と、旋回軸受13と、旋回バランスウェイト14と、を備えている。
<<First embodiment>>
<Structure of scroll compressor>
FIG. 1 is a longitudinal sectional view of a scroll compressor 100 according to the first embodiment.
A scroll compressor 100 shown in FIG. 1 is a device that compresses gaseous refrigerant. As shown in FIG. 1, the scroll compressor 100 includes a closed container 1, a compression mechanism section 2, a crankshaft 3 (shaft), an electric motor 4, an Oldham ring 5, and balance weights 6a and 6b. ing. Further, the scroll compressor 100 includes a fixed member 7, a subframe 8, a lower bearing 9, a leg 10, a power terminal 11, a main bearing 12, a turning bearing 13, and a turning A balance weight 14 is provided.
 密閉容器1は、圧縮機構部2、クランク軸3、電動機4等を収容する殻状の容器であり、略密閉されている。密閉容器1には潤滑油が封入され、密閉容器1の底部に油溜りR1として貯留されている。密閉容器1は、円筒状の筒チャンバ1aと、この筒チャンバ1aの上側を塞ぐ蓋チャンバ1bと、筒チャンバ1aの下側を塞ぐ底チャンバ1cと、を備えている。 The sealed container 1 is a shell-shaped container that houses the compression mechanism 2, the crankshaft 3, the electric motor 4, etc., and is substantially sealed. A lubricating oil is enclosed in the sealed container 1 and stored in the bottom of the sealed container 1 as an oil reservoir R1. The sealed container 1 includes a cylindrical cylindrical chamber 1a, a lid chamber 1b that closes the upper side of the cylindrical chamber 1a, and a bottom chamber 1c that closes the lower side of the cylindrical chamber 1a.
 図1に示すように、密閉容器1の蓋チャンバ1bには、吸入パイプP1が差し込まれて固定されている。吸入パイプP1は、圧縮機構部2の吸入ポートJ1に冷媒を導く管である。また、密閉容器1の筒チャンバ1aにおいて、フレーム21よりも下側の所定箇所には、吐出パイプP2が差し込まれて固定されている。吐出パイプP2は、圧縮機構部2で圧縮された冷媒をスクロール圧縮機100の外部に導く管である。 As shown in FIG. 1, a suction pipe P1 is inserted into and fixed to the lid chamber 1b of the sealed container 1. The suction pipe P<b>1 is a pipe that guides the refrigerant to the suction port J<b>1 of the compression mechanism section 2 . A discharge pipe P2 is inserted and fixed at a predetermined position below the frame 21 in the cylindrical chamber 1a of the sealed container 1. As shown in FIG. The discharge pipe P<b>2 is a pipe that guides the refrigerant compressed by the compression mechanism 2 to the outside of the scroll compressor 100 .
 圧縮機構部2は、クランク軸3の回転に伴って冷媒を圧縮する機構である。圧縮機構部2は、フレーム21と、固定スクロール22と、旋回スクロール23と、を備え、密閉容器1内の上部空間に配置されている。 The compression mechanism 2 is a mechanism that compresses the refrigerant as the crankshaft 3 rotates. The compression mechanism section 2 includes a frame 21 , a fixed scroll 22 and an orbiting scroll 23 , and is arranged in the upper space inside the sealed container 1 .
 フレーム21は、固定スクロール22を支持する部材であり、密閉容器1の内部に固定されている。具体的には、フレーム21は、筒チャンバ1aに溶接等で固定されている。フレーム21には、クランク軸3(シャフト)が挿通される挿通孔H1が設けられている。
 固定スクロール22は、次に説明する旋回スクロール23とともに圧縮室S1を形成する部材である。固定スクロール22は、フレーム21の上側に設置され、このフレーム21にボルトB1で締結されている。図1に示すように、固定スクロール22は、台板22aと、固定ラップ22bと、を備えている。
The frame 21 is a member that supports the fixed scroll 22 and is fixed inside the sealed container 1 . Specifically, the frame 21 is fixed to the cylindrical chamber 1a by welding or the like. The frame 21 is provided with an insertion hole H1 through which the crankshaft 3 (shaft) is inserted.
The fixed scroll 22 is a member that forms a compression chamber S1 together with an orbiting scroll 23 described below. The fixed scroll 22 is installed above the frame 21 and fastened to the frame 21 with bolts B1. As shown in FIG. 1, the fixed scroll 22 includes a base plate 22a and a fixed wrap 22b.
 台板22aは、平面視で円形状を呈する肉厚の部材である。なお、固定ラップ22bに対して旋回ラップ23bが旋回する領域S2(下面視で円形状の領域)を確保するために、台板22aの下面の中心付近が上側に所定に凹んでいる。また、吸入パイプP1を介して冷媒を導く吸入ポートJ1が、台板22aに設けられている。
 固定ラップ22bは、渦巻状を呈し、前記した領域S2において台板22aから下側に延びている。なお、台板22aの下面(領域S2の径方向外側の部分の下面)と、固定ラップ22bの下端と、は略面一になっている。
The base plate 22a is a thick member having a circular shape in plan view. In addition, in order to secure a region S2 (a circular region in a bottom view) in which the turning wrap 23b turns with respect to the fixed wrap 22b, the vicinity of the center of the lower surface of the base plate 22a is recessed upward by a predetermined amount. A suction port J1 for introducing the refrigerant through the suction pipe P1 is provided in the base plate 22a.
The fixing wrap 22b has a spiral shape and extends downward from the base plate 22a in the region S2. The bottom surface of the base plate 22a (the bottom surface of the radially outer portion of the region S2) and the bottom end of the fixing wrap 22b are substantially flush with each other.
 旋回スクロール23は、その移動(旋回)によって、固定スクロール22との間に圧縮室S1を形成する部材であり、フレーム21と固定スクロール22との間に設けられている。旋回スクロール23は、円板状の鏡板23aと、この鏡板23aに立設される渦巻状の旋回ラップ23bと、鏡板23aの中央付近から下側に延びる旋回軸23cと、を備えている。つまり、旋回スクロール23において、鏡板23aの上側(一方側)に旋回ラップ23bが設けられ、鏡板23aの下側(他方側)に旋回軸23cが設けられている。 The orbiting scroll 23 is a member that forms a compression chamber S1 between itself and the fixed scroll 22 by its movement (orbiting), and is provided between the frame 21 and the fixed scroll 22 . The orbiting scroll 23 includes a disk-shaped end plate 23a, a spiral orbiting wrap 23b erected on the end plate 23a, and a turning shaft 23c extending downward from near the center of the end plate 23a. That is, in the orbiting scroll 23, an orbiting wrap 23b is provided on the upper side (one side) of the end plate 23a, and a turning shaft 23c is provided on the lower side (the other side) of the end plate 23a.
 旋回ラップ23bは、固定ラップ22bとともに圧縮室S1を形成する部材である。旋回軸23cは、円柱状を呈し、クランク軸3の上端部3bの偏心穴H2に嵌合している。そして、渦巻状の固定ラップ22bと、渦巻状の旋回ラップ23bと、が噛み合うことで、固定ラップ22bと旋回ラップ23bとの間に圧縮室S1が形成されるようになっている。なお、圧縮室S1は、ガス状の冷媒を圧縮する空間であり、旋回ラップ23bの外線側・内線側にそれぞれ形成される。固定スクロール22の台板22aの中心付近には、圧縮室S1で圧縮された冷媒を密閉容器1内の上部空間S3に導く吐出ポートJ2が設けられている。 The orbiting wrap 23b is a member that forms the compression chamber S1 together with the fixed wrap 22b. The turning shaft 23c has a columnar shape and is fitted into the eccentric hole H2 of the upper end portion 3b of the crankshaft 3. As shown in FIG. The spiral fixed wrap 22b and the spiral swirl wrap 23b are meshed to form a compression chamber S1 between the fixed wrap 22b and the swirl wrap 23b. The compression chambers S1 are spaces for compressing gaseous refrigerant, and are formed on the outer line side and the inner line side of the orbiting wrap 23b. A discharge port J2 is provided in the vicinity of the center of the base plate 22a of the fixed scroll 22 to guide the refrigerant compressed in the compression chamber S1 to the upper space S3 inside the sealed container 1. As shown in FIG.
 クランク軸3(シャフト)は、電動機4の回転子4bと一体で回転する軸であり、上下方向に延びている。図1に示すように、クランク軸3は、主軸部3aと、上端部3bと、下軸部3cと、給油ピース3dと、を備えている。クランク軸3は、その上端部3bが主軸受12によって軸支されるとともに、下軸部3cが下軸受9によって軸支されている。 The crankshaft 3 (shaft) is a shaft that rotates integrally with the rotor 4b of the electric motor 4, and extends vertically. As shown in FIG. 1, the crankshaft 3 includes a main shaft portion 3a, an upper end portion 3b, a lower shaft portion 3c, and an oil supply piece 3d. The crankshaft 3 has an upper end portion 3 b supported by a main bearing 12 and a lower shaft portion 3 c supported by a lower bearing 9 .
 主軸部3aは、電動機4の回転子4bに同軸で固定され、この回転子4bと一体で回転する。上端部3bは、主軸部3aから上側に延びている部分であり、上側に開口した有底円筒状を呈している。クランク軸3(シャフト)の上端部3b(端部)には、クランク軸3の中心軸線Z1に対して偏心している偏心穴H2が設けられている。言い換えると、横断面視で円形状を呈する偏心穴H2の中心軸線(図示せず)は、クランク軸3(主軸部3a等)の中心軸線Z1に対して偏心している。 The main shaft portion 3a is coaxially fixed to the rotor 4b of the electric motor 4 and rotates integrally with the rotor 4b. The upper end portion 3b is a portion that extends upward from the main shaft portion 3a and has a bottomed cylindrical shape that opens upward. An eccentric hole H2 that is eccentric with respect to the central axis Z1 of the crankshaft 3 is provided in the upper end portion 3b (end portion) of the crankshaft 3 (shaft). In other words, the central axis (not shown) of the eccentric hole H2, which has a circular cross-sectional view, is eccentric with respect to the central axis Z1 of the crankshaft 3 (main shaft portion 3a, etc.).
 また、旋回軸受13が設置された状態の旋回軸23cが、偏心穴H2に嵌合している。なお、偏心穴H2の内周面と旋回軸受13との間には、潤滑油が入り込むように、径方向で微小な隙間が設けられている。そして、電動機4の駆動に伴い、主軸部3aに対して旋回軸23cが偏心しながら回転するようになっている。 Also, the swivel shaft 23c with the swivel bearing 13 installed is fitted in the eccentric hole H2. A small radial gap is provided between the inner peripheral surface of the eccentric hole H2 and the orbiting bearing 13 so that lubricating oil can enter. As the electric motor 4 is driven, the turning shaft 23c rotates eccentrically with respect to the main shaft portion 3a.
 クランク軸3(シャフト)の上端部3b(端部)には、上側(旋回スクロール23側)に突出する突起部31b(図2も参照)が「第1嵌合部」として設けられている。詳細については後記するが、突起部31bは、旋回バランスウェイト14の嵌合孔H3(図1には符号を図示せず、図2参照)に嵌め込まれている。 The upper end 3b (end) of the crankshaft 3 (shaft) is provided with a projection 31b (see also FIG. 2) projecting upward (toward the orbiting scroll 23) as a "first fitting portion". Although the details will be described later, the protrusion 31b is fitted into the fitting hole H3 (not shown in FIG. 1, see FIG. 2) of the turning balance weight 14. As shown in FIG.
 クランク軸3の下軸部3cは、下軸受9によって軸支される部分であり、主軸部3aの下側に延びている。給油ピース3dは、密閉容器1の油溜りR1から潤滑油を吸い上げる部分であり、下軸部3cから下側に細長く延びている。なお、容積型ポンプや遠心ポンプ等が給油ピース3dに設けられるようにしてもよい。 The lower shaft portion 3c of the crankshaft 3 is supported by the lower bearing 9 and extends below the main shaft portion 3a. The oil supply piece 3d is a portion that sucks up lubricating oil from the oil reservoir R1 of the sealed container 1, and elongates downward from the lower shaft portion 3c. A positive displacement pump, a centrifugal pump, or the like may be provided in the oil supply piece 3d.
 図1に示すように、クランク軸3(つまり、主軸部3a、上端部3b、下軸部3c、及び給油ピース3d)には、潤滑油を導く給油流路3eが設けられている。そして、密閉容器1に油溜りR1として貯留されている潤滑油が、給油流路3eを介して上昇し、上端部3bの偏心穴H2に導かれるようになっている。また、給油流路3eは、下軸受9や主軸受12、旋回軸受13等にも潤滑油が供給されるように、所定に分岐している。 As shown in FIG. 1, the crankshaft 3 (that is, the main shaft portion 3a, the upper end portion 3b, the lower shaft portion 3c, and the oil supply piece 3d) is provided with an oil supply passage 3e that guides the lubricating oil. The lubricating oil stored as the oil reservoir R1 in the sealed container 1 rises through the oil supply passage 3e and is guided to the eccentric hole H2 of the upper end portion 3b. Further, the oil supply passage 3e is branched in a predetermined manner so that the lubricating oil is also supplied to the lower bearing 9, the main bearing 12, the orbiting bearing 13, and the like.
 電動機4は、クランク軸3を回転させる駆動源であり、軸方向においてフレーム21とサブフレーム8との間に設けられている。図1に示すように、電動機4は、固定子4aと、回転子4bと、を備えている。固定子4aは、巻線41aを有し、筒チャンバ1aの内周面に固定されている。回転子4bは、固定子4aの径方向内側で回転自在に配置されている。回転子4bには、その中心軸線Z1と同軸となるように、クランク軸3が圧入等で固定されている。 The electric motor 4 is a drive source that rotates the crankshaft 3 and is provided between the frame 21 and the sub-frame 8 in the axial direction. As shown in FIG. 1, the electric motor 4 includes a stator 4a and a rotor 4b. The stator 4a has windings 41a and is fixed to the inner peripheral surface of the cylinder chamber 1a. The rotor 4b is rotatably arranged radially inside the stator 4a. The crankshaft 3 is fixed to the rotor 4b by press fitting or the like so as to be coaxial with the central axis Z1.
 オルダムリング5は、旋回軸23cの偏心回転を受けて、旋回スクロール23を自転させることなく公転(旋回)させる輪状部材である。図1に示すように、オルダムリング5は、フレーム21と旋回スクロール23との間に設けられている。具体的には、オルダムリング5は、旋回スクロール23の下面に形成された溝(符号は図示せず)に設置されるとともに、フレーム21に形成された溝(図示せず)に設置されている。
 バランスウェイト6a,6bは、スクロール圧縮機100の振動を抑制するための部材である。図1の例では、主軸部3aにおいて回転子4bの上側にバランスウェイト6aが設置され、また、回転子4bの下面に別のバランスウェイト6bが設置されている。
The Oldham ring 5 is a ring-shaped member that receives the eccentric rotation of the orbiting shaft 23c and causes the orbiting scroll 23 to revolve (orbit) without rotating. As shown in FIG. 1 , the Oldham ring 5 is provided between the frame 21 and the orbiting scroll 23 . Specifically, the Oldham ring 5 is installed in a groove (not shown) formed in the lower surface of the orbiting scroll 23 and is installed in a groove (not shown) formed in the frame 21. .
Balance weights 6 a and 6 b are members for suppressing vibration of scroll compressor 100 . In the example of FIG. 1, a balance weight 6a is installed on the upper side of the rotor 4b in the main shaft portion 3a, and another balance weight 6b is installed on the lower surface of the rotor 4b.
 固定部材7は、サブフレーム8の位置を固定する部材であり、密閉容器1の内周面に溶接等で固定されている。サブフレーム8は、下軸受9が設置される部材であり、固定部材7にボルトB2で締結されている。サブフレーム8には、クランク軸3が挿通される孔(符号は図示せず)が設けられている。下軸受9は、クランク軸3の下軸部3cを回転自在に軸支するものであり、サブフレーム8の孔の内周面に設置されている。 The fixing member 7 is a member that fixes the position of the sub-frame 8, and is fixed to the inner peripheral surface of the closed container 1 by welding or the like. The subframe 8 is a member on which the lower bearing 9 is installed, and is fastened to the fixed member 7 with bolts B2. The sub-frame 8 is provided with a hole (not shown) through which the crankshaft 3 is inserted. The lower bearing 9 rotatably supports the lower shaft portion 3 c of the crankshaft 3 and is installed on the inner peripheral surface of the hole of the sub-frame 8 .
 複数の脚10は、密閉容器1を支持する部材であり、底チャンバ1cに設置されている。電源端子11は、電動機4への電力供給に用いられる端子である。この電源端子11は、筒チャンバ1aに設置され、電動機4の巻線41aに電気的に接続されている。 A plurality of legs 10 are members that support the sealed container 1 and are installed in the bottom chamber 1c. The power terminal 11 is a terminal used for power supply to the electric motor 4 . The power terminal 11 is installed in the cylinder chamber 1 a and electrically connected to the winding 41 a of the electric motor 4 .
 主軸受12は、クランク軸3の上端部3bをフレーム21に対して回転自在に軸支するものであり、フレーム21の挿通孔H1に圧入等で固定されている。このような主軸受12として、例えば、円筒状の滑り軸受が用いられる。
 旋回軸受13は、クランク軸3(シャフト)の上端部3bを旋回スクロール23に対して回転自在に軸支するものであり、旋回軸23cの外周面に圧入等で固定されている。このような旋回軸受13として、例えば、円筒状の滑り軸受が用いられる。
The main bearing 12 rotatably supports the upper end portion 3b of the crankshaft 3 with respect to the frame 21, and is fixed to the insertion hole H1 of the frame 21 by press fitting or the like. As such a main bearing 12, for example, a cylindrical sliding bearing is used.
The orbiting bearing 13 rotatably supports the upper end portion 3b of the crankshaft 3 (shaft) with respect to the orbiting scroll 23, and is fixed to the outer peripheral surface of the orbiting shaft 23c by press fitting or the like. As such a turning bearing 13, for example, a cylindrical sliding bearing is used.
 図1に示すように、主軸受12と旋回軸受13とは、軸方向において設置領域が部分的に重なっている。このような二重軸受構造にすることで、主軸受12からクランク軸3への力の作用点と、旋回軸受13からクランク軸3への力の作用点と、の間の軸方向の距離を短くすることができる。したがって、クランク軸3を傾斜させるモーメントが生じることを抑制し、ひいては、クランク軸3のたわみや片当たりを抑制できる。また、二重軸受構造にすることで、クランク軸3の長さが短くて済むため、スクロール圧縮機100の小型化・低コスト化を図ることができる。 As shown in FIG. 1, the installation areas of the main bearing 12 and the orbiting bearing 13 partially overlap in the axial direction. By adopting such a double bearing structure, the axial distance between the point of action of the force from the main bearing 12 to the crankshaft 3 and the point of action of the force from the swivel bearing 13 to the crankshaft 3 is reduced. can be shortened. Therefore, it is possible to suppress the occurrence of a moment that causes the crankshaft 3 to tilt, thereby suppressing deflection and uneven contact of the crankshaft 3 . Moreover, since the length of the crankshaft 3 can be shortened by adopting the double bearing structure, it is possible to reduce the size and cost of the scroll compressor 100 .
 図1に示す旋回バランスウェイト14は、旋回軸受13に作用する荷重を低減するための部材であり、フレーム21と鏡板23aとの間に設けられている。つまり、旋回バランスウェイト14は、フレーム21と旋回スクロール23との間の空間に収まるように設置されている。なお、旋回バランスウェイト14の位置関係について別の観点で説明すると、クランク軸3と鏡板23aとの間に旋回バランスウェイト14が設けられている、ともいえる。 The turning balance weight 14 shown in FIG. 1 is a member for reducing the load acting on the turning bearing 13, and is provided between the frame 21 and the end plate 23a. That is, the orbiting balance weight 14 is installed so as to fit in the space between the frame 21 and the orbiting scroll 23 . To explain the positional relationship of the turning balance weight 14 from another point of view, it can be said that the turning balance weight 14 is provided between the crankshaft 3 and the end plate 23a.
 前記したように、旋回軸受13が設置された状態の旋回軸23cが偏心穴H2に嵌合しているが、旋回軸受13の上端部は、偏心穴H2から露出している。そして、偏心穴H2から旋回軸受13が露出している部分(旋回軸受13の上端部)の径方向外側に、旋回バランスウェイト14が設けられている。このような旋回バランスウェイト14を含む構成について、図2を用いて詳細に説明する。 As described above, the swivel shaft 23c with the swivel bearing 13 installed is fitted in the eccentric hole H2, but the upper end of the swivel bearing 13 is exposed from the eccentric hole H2. A swivel balance weight 14 is provided radially outside the portion (upper end portion of the swivel bearing 13) where the swivel bearing 13 is exposed from the eccentric hole H2. A configuration including such a swing balance weight 14 will be described in detail with reference to FIG.
 図2は、スクロール圧縮機を図1のII-II線で切断した場合の横断面図である。
 なお、図2では、密閉容器1(図1参照)やオルダムリング5(図1参照)、フレーム21(図1参照)等の図示を省略している。また、図2には、クランク軸3の中心軸線Z1や、旋回軸23cの中心軸線Z2の他、旋回バランスウェイト14の重心G1も図示している。
FIG. 2 is a cross-sectional view of the scroll compressor taken along line II--II in FIG.
2, illustration of the sealed container 1 (see FIG. 1), the Oldham ring 5 (see FIG. 1), the frame 21 (see FIG. 1), etc. is omitted. 2 also shows the center axis Z1 of the crankshaft 3, the center axis Z2 of the turning shaft 23c, and the center of gravity G1 of the turning balance weight 14. As shown in FIG.
 図2に示すように、旋回軸23cの中心軸線Z2を基準として、横断面視で円形状の孔H4が、旋回バランスウェイト14に設けられている。なお、旋回バランスウェイト14の孔H4の径は、旋回軸受13の外径よりもわずかに大きい。つまり、旋回バランスウェイト14の孔H4の内周面と、旋回軸受13の外周面と、の間には、径方向で微小な隙間(符号は図示せず)が設けられている。このような微小な隙間を設けることで、旋回軸23cや旋回軸受13に対して、旋回バランスウェイト14が周方向で相対的に移動可能になっている。言い換えると、旋回バランスウェイト14が、旋回軸受13によって回転自在に軸支されている。 As shown in FIG. 2, the turning balance weight 14 is provided with a circular hole H4 in a cross-sectional view with the central axis Z2 of the turning shaft 23c as a reference. The diameter of the hole H<b>4 of the turning balance weight 14 is slightly larger than the outer diameter of the turning bearing 13 . That is, between the inner peripheral surface of the hole H4 of the swivel balance weight 14 and the outer peripheral surface of the swivel bearing 13, a minute gap (not shown) is provided in the radial direction. By providing such a minute gap, the turning balance weight 14 is relatively movable in the circumferential direction with respect to the turning shaft 23 c and the turning bearing 13 . In other words, the swivel balance weight 14 is rotatably supported by the swivel bearing 13 .
 旋回バランスウェイト14は、旋回軸23cの「偏心側」に対して反対側の領域に、横断面視で半円形状の錘部14aを有している。なお、前記した旋回軸23cの「偏心側」(つまり、図1の偏心穴H2の偏心側)とは、クランク軸3の中心軸線Z1に対して、旋回軸23cの中心軸線Z2が偏心している側(図2の紙面右側)のことである。つまり、旋回バランスウェイト14の重心G1は、クランク軸3の中心軸線Z1を基準として、旋回軸23cの中心軸線Z2の反対側に位置している。これによって、旋回スクロール23の遠心力の一部が旋回バランスウェイト14で相殺されるため、旋回軸受13への荷重を低減できる。 The swivel balance weight 14 has a semicircular plummet 14a in a cross-sectional view in a region opposite to the "eccentric side" of the swivel shaft 23c. The "eccentric side" of the turning shaft 23c (that is, the eccentric side of the eccentric hole H2 in FIG. 1) means that the central axis Z2 of the turning shaft 23c is eccentric with respect to the central axis Z1 of the crankshaft 3. side (the right side of the paper surface of FIG. 2). That is, the center of gravity G1 of the turning balance weight 14 is located on the opposite side of the center axis Z2 of the turning shaft 23c with the center axis Z1 of the crankshaft 3 as a reference. As a result, part of the centrifugal force of the orbiting scroll 23 is offset by the orbiting balance weight 14, so the load on the orbiting bearing 13 can be reduced.
 また、クランク軸3(シャフト)と旋回バランスウェイト14とが嵌合している。すなわち、旋回バランスウェイト14の錘部14aには、クランク軸3の突起部31b(第1嵌合部:図1も参照)に嵌合する孔である嵌合孔H3が、「第2嵌合部」として設けられている。また、クランク軸3(シャフト)側の「第1嵌合部」である突起部31bと、旋回バランスウェイト14側の「第2嵌合部」である嵌合孔H3と、の間に隙間が設けられている。より詳しく説明すると、図2に示すように、嵌合孔H3の内壁面と突起部31bとの間には、クランク軸3の中心軸線Z1を基準(中心)として、径方向の隙間C1,C2が設けられている。突起部31bの径方向外側の隙間C1、及び、突起部31bの径方向内側の隙間C2は、それぞれ、旋回バランスウェイト14の孔H4の周壁面と旋回軸受13との間の微小な隙間(符号は図示せず)よりも十分に大きくなるように形成されている。 Also, the crankshaft 3 (shaft) and the turning balance weight 14 are fitted. That is, the weight portion 14a of the turning balance weight 14 has a fitting hole H3, which is a hole that fits into the protrusion 31b (first fitting portion: see also FIG. 1) of the crankshaft 3. Department”. Moreover, there is a gap between the protrusion 31b that is the "first fitting portion" on the crankshaft 3 (shaft) side and the fitting hole H3 that is the "second fitting portion" on the turning balance weight 14 side. is provided. More specifically, as shown in FIG. 2, radial gaps C1 and C2 are formed between the inner wall surface of the fitting hole H3 and the protrusion 31b with the center axis Z1 of the crankshaft 3 as a reference (center). is provided. A gap C1 on the radially outer side of the protrusion 31b and a gap C2 on the radially inner side of the protrusion 31b are minute gaps (symbol not shown).
 言い換えると、旋回軸受13と旋回バランスウェイト14との間の隙間の径方向の長さよりも、嵌合孔H3(第2嵌合部)の内壁面と突起部31bとの間の隙間C1,C2のそれぞれの径方向の長さの方が長くなっている。これによって、旋回バランスウェイト14を径方向に動かそうとする力(ガス荷重や遠心力)が作用した場合、旋回軸受13が孔H4の周壁面に接触し、それ以上の移動が規制される。このように、旋回バランスウェイト14から旋回軸受13に径方向の力が直接的に作用するようにしている。
 なお、クランク軸3の中心軸線Z1を基準(中心)とする周方向においても、嵌合孔H3の内壁面と突起部31bとの間には、わずかな隙間が設けられている。つまり、クランク軸3の中心軸線Z1に対して垂直な方向(径方向・周方向を含む横方向)において、嵌合孔H3の内壁面と突起部31bとの間には、所定の隙間が設けられている。
In other words, the gaps C1 and C2 between the inner wall surface of the fitting hole H3 (second fitting portion) and the protrusion 31b are longer than the radial length of the gap between the swivel bearing 13 and the swivel balance weight 14. are longer in the radial direction. As a result, when a force (gas load or centrifugal force) acts to move the swing balance weight 14 in the radial direction, the swing bearing 13 comes into contact with the peripheral wall surface of the hole H4, and further movement is restricted. In this manner, a radial force is directly applied to the orbiting bearing 13 from the orbiting balance weight 14 .
Also in the circumferential direction with the center axis Z1 of the crankshaft 3 as a reference (center), a slight gap is provided between the inner wall surface of the fitting hole H3 and the protrusion 31b. In other words, a predetermined gap is provided between the inner wall surface of the fitting hole H3 and the protrusion 31b in a direction (horizontal direction including radial direction and circumferential direction) perpendicular to the central axis Z1 of the crankshaft 3. It is
 図3は、旋回スクロール23、旋回軸受13、旋回バランスウェイト14、及びクランク軸3の上端部3bを含む分解斜視図である。
 なお、図3では、旋回スクロール23や旋回軸受13については、クランク軸3の中心軸線Z1(図1参照)を含む所定平面(図示せず)で切断したものを図示している。
 前記したように、クランク軸3の上端部3bには、上側に突出する突起部31bが設けられている。一方、旋回バランスウェイト14には、突起部31bが嵌め込まれる嵌合孔H3が設けられている。
3 is an exploded perspective view including the orbiting scroll 23, the orbiting bearing 13, the orbiting balance weight 14, and the upper end portion 3b of the crankshaft 3. FIG.
3, the orbiting scroll 23 and orbiting bearing 13 are shown cut along a predetermined plane (not shown) including the center axis Z1 of the crankshaft 3 (see FIG. 1).
As described above, the upper end portion 3b of the crankshaft 3 is provided with the projecting portion 31b projecting upward. On the other hand, the turning balance weight 14 is provided with a fitting hole H3 into which the protrusion 31b is fitted.
 電動機4(図1参照)の駆動に伴ってクランク軸3が回転すると、突起部31bが周方向に移動するため、嵌合孔H3の内壁面を周方向(突起部31bが回転する際の接線方向)に押す力が作用する(図2も参照)。その結果、旋回バランスウェイト14がクランク軸3とともに回転する。つまり、旋回バランスウェイト14は、クランク軸3と一体的に同期回転(回転角が等しくなるように回転)する。 When the crankshaft 3 rotates with the driving of the electric motor 4 (see FIG. 1), the projection 31b moves in the circumferential direction, so that the inner wall surface of the fitting hole H3 moves in the circumferential direction (the tangential line when the projection 31b rotates). direction) (see also FIG. 2). As a result, the turning balance weight 14 rotates together with the crankshaft 3 . In other words, the turning balance weight 14 rotates synchronously (rotates so that the rotation angle becomes equal) integrally with the crankshaft 3 .
 また、図1に示す電動機4の駆動でクランク軸3が回転すると、これに伴って、上端部3bの偏心穴H2に嵌合している旋回軸23cが旋回する。その結果、固定スクロール22と旋回スクロール23との間の圧縮室S1が縮小して、冷媒が圧縮される。圧縮された冷媒は、固定スクロール22の吐出ポートJ2を介して、密閉容器1内の上部空間S3に吐出される。このように上部空間S3に吐出された冷媒は、密閉容器1と圧縮機構部2との間の流路(図示せず)を介して、圧縮機構部2の下側の空間に導かれ、さらに、吐出パイプP2を介して、密閉容器1の外部に吐出される。 Further, when the crankshaft 3 is rotated by driving the electric motor 4 shown in FIG. 1, the turning shaft 23c fitted in the eccentric hole H2 of the upper end portion 3b turns accordingly. As a result, the compression chamber S1 between the fixed scroll 22 and the orbiting scroll 23 is contracted to compress the refrigerant. The compressed refrigerant is discharged into the upper space S3 inside the sealed container 1 through the discharge port J2 of the fixed scroll 22 . The refrigerant discharged into the upper space S3 in this manner is guided to the space below the compression mechanism 2 through a flow path (not shown) between the closed vessel 1 and the compression mechanism 2, and further , is discharged to the outside of the sealed container 1 through the discharge pipe P2.
<作用>
 図4は、図1に示す領域K1を部分的に拡大し、各部材に生ずる力を示した説明図である。
 旋回スクロール23が旋回すると、その重心の移動に伴って、図4の白抜き矢印で示す遠心力Fcosが旋回スクロール23に作用する。また、冷媒の圧縮に伴う反作用として、旋回スクロール23の移動における接線方向及び径方向にガス荷重(白抜き矢印は図示せず)が発生する。
<Action>
FIG. 4 is an explanatory diagram showing the force generated in each member by partially enlarging the region K1 shown in FIG.
When the orbiting scroll 23 orbits, the centrifugal force Fcos indicated by the white arrow in FIG. 4 acts on the orbiting scroll 23 as the center of gravity moves. In addition, gas loads (white arrows not shown) are generated in the tangential direction and the radial direction in the movement of the orbiting scroll 23 as a reaction accompanying the compression of the refrigerant.
 ここで、旋回スクロール23に作用する遠心力Fcosは、旋回スクロール23の移動速度の2乗に比例して大きくなるため、特に高速域において旋回スクロール23の遠心力Fcosの増加が顕著になる。そのため、旋回バランスウェイト14が設けられていない従来の構成で、スクロール圧縮機の上限速度の拡大を図った場合、旋回軸受13に過負荷がかかる可能性があった。また、従来の構成では、特に高速域で、旋回軸受13の外周側の油膜厚さが薄くなり、偏心穴H2の内周面と旋回軸受13との直接的な接触に伴う摩擦係数が増加し、旋回軸受13等の摩耗や焼付きが生ずる可能性があった。 Here, since the centrifugal force Fcos acting on the orbiting scroll 23 increases in proportion to the square of the moving speed of the orbiting scroll 23, the increase in the centrifugal force Fcos of the orbiting scroll 23 is particularly noticeable in the high speed range. Therefore, in the conventional configuration in which the orbital balance weight 14 is not provided, if the upper limit speed of the scroll compressor is increased, there is a possibility that the orbital bearing 13 will be overloaded. In addition, in the conventional configuration, the oil film thickness on the outer peripheral side of the slewing bearing 13 becomes thin, especially in the high speed range, and the friction coefficient associated with the direct contact between the inner peripheral surface of the eccentric hole H2 and the slewing bearing 13 increases. , the slewing bearing 13 and the like may be worn or seized.
 これに対して、第1実施形態では、旋回スクロール23の鏡板23aとフレーム21との間に旋回バランスウェイト14を設けるようにしている。前記したように、旋回バランスウェイト14は、旋回スクロール23の旋回軸23cとは反対側に偏心している(図2参照)。したがって、旋回バランスウェイト14に作用する遠心力Fcobは、旋回スクロール23の遠心力Fcosに対して逆向きに作用する。その結果、旋回スクロール23の遠心力Fcosから、旋回バランスウェイト14の遠心力Fcobを差し引いた大きさの荷重Frが、遠心力の反力として旋回軸受13に作用する。 On the other hand, in the first embodiment, the orbiting balance weight 14 is provided between the end plate 23a of the orbiting scroll 23 and the frame 21. As described above, the orbiting balance weight 14 is eccentric on the side opposite to the orbiting shaft 23c of the orbiting scroll 23 (see FIG. 2). Therefore, the centrifugal force Fcob acting on the orbiting balance weight 14 acts in the opposite direction to the centrifugal force Fcos of the orbiting scroll 23 . As a result, a load Fr having a magnitude obtained by subtracting the centrifugal force Fcob of the orbiting balance weight 14 from the centrifugal force Fcos of the orbiting scroll 23 acts on the orbiting bearing 13 as a reaction force of the centrifugal force.
 図5は、スクロール圧縮機の回転速度と荷重との関係を示す説明図である(適宜、図4も参照)。
 なお、図5の横軸は、スクロール圧縮機100の回転速度(つまり、電動機4の回転速度)であり、縦軸は、荷重である。図5の一点鎖線は、冷媒の圧縮に伴う水平方向のガス荷重Fgである。図5の破線は、旋回スクロール23に作用する遠心力Fcosである。図5の白抜き矢印は、旋回バランスウェイト14に作用する遠心力Fcobである。図5の実線は、遠心力の反力として旋回軸受13に作用する荷重Frである。
FIG. 5 is an explanatory diagram showing the relationship between the rotation speed and the load of the scroll compressor (see also FIG. 4 as appropriate).
Note that the horizontal axis of FIG. 5 is the rotation speed of the scroll compressor 100 (that is, the rotation speed of the electric motor 4), and the vertical axis is the load. The dashed-dotted line in FIG. 5 is the horizontal gas load Fg accompanying the compression of the refrigerant. A dashed line in FIG. 5 represents the centrifugal force Fcos acting on the orbiting scroll 23 . The white arrow in FIG. 5 represents the centrifugal force Fcob acting on the turning balance weight 14 . The solid line in FIG. 5 is the load Fr acting on the orbiting bearing 13 as the reaction force of the centrifugal force.
 図5に示すように、冷媒の圧縮に伴うガス荷重Fgは、スクロール圧縮機100の回転速度に関わらず略一定である。一方、旋回スクロール23の遠心力Fcosは、スクロール圧縮機100の回転速度の2乗に比例して大きくなる。仮に、旋回バランスウェイト14が設けられていなければ、ガス荷重Fgと遠心力Fcosの和の荷重が旋回軸受13に作用するため、高速域で旋回軸受13に過負荷がかかる可能性がある。 As shown in FIG. 5, the gas load Fg associated with refrigerant compression is substantially constant regardless of the rotation speed of the scroll compressor 100. On the other hand, the centrifugal force Fcos of the orbiting scroll 23 increases in proportion to the square of the rotational speed of the scroll compressor 100 . If the swivel balance weight 14 were not provided, the sum of the gas load Fg and the centrifugal force Fcos would act on the swivel bearing 13, which could overload the swivel bearing 13 in the high speed range.
 これに対して、第1実施形態では、旋回バランスウェイト14が設けられているため、遠心力の反力として旋回軸受13に作用する荷重Frは、旋回スクロール23の遠心力Fcosから、旋回バランスウェイト14の遠心力Fcobを差し引いた値になる(Fr=Fcos-Fcob)。そして、この荷重Frとガス荷重Fgとの和が旋回軸受13に作用する。したがって、特に旋回スクロール23の遠心力が増加する高速域において、旋回軸受13にかかる荷重を大幅に低減できる。なお、旋回スクロール23とフレーム21との間の空間は、主軸受12や旋回軸受13に給油した後の潤滑油で満たされる。つまり、旋回バランスウェイト14の孔H4(図2参照)の内周面と、旋回軸受13と、の間に油膜が形成されるため、良好な潤滑状態が保たれる。 On the other hand, in the first embodiment, since the orbiting balance weight 14 is provided, the load Fr acting on the orbiting bearing 13 as a reaction force of the centrifugal force is calculated from the centrifugal force Fcos of the orbiting scroll 23 by the orbiting balance weight The value is obtained by subtracting the centrifugal force Fcob of 14 (Fr=Fcos-Fcob). The sum of this load Fr and the gas load Fg acts on the turning bearing 13 . Therefore, particularly in a high speed region where the centrifugal force of the orbiting scroll 23 increases, the load applied to the orbiting bearing 13 can be greatly reduced. Note that the space between the orbiting scroll 23 and the frame 21 is filled with the lubricating oil after the main bearing 12 and the orbiting bearing 13 have been lubricated. That is, since an oil film is formed between the inner peripheral surface of the hole H4 (see FIG. 2) of the turning balance weight 14 and the turning bearing 13, a good lubricating state is maintained.
<効果>
 第1実施形態によれば、クランク軸3の突起部31b(第1嵌合部:図2参照)と、旋回バランスウェイト14の嵌合孔H3(第2嵌合部:図2参照)と、の間に隙間(図2の隙間C1,C2等)が設けられている。したがって、突起部31bが嵌合孔H3の壁面を周方向に押圧することで旋回バランスウェイト14が回転すると、前記した隙間の範囲内で、旋回バランスウェイト14が遠心力によって径方向に移動し、旋回軸受13に接触する。その結果、この旋回軸受13において、旋回スクロール23の遠心力Fcos(図4参照)の一部が、旋回バランスウェイト14の遠心力Fcob(図4参照)によって打ち消される。これによって、特に旋回スクロール23の遠心力が増加する高速域において、旋回軸受13にかかる荷重を大幅に低減できる。また、旋回軸受13における潤滑油の油膜厚さが十分に確保されるため、旋回軸受13の摩擦損失を低減できる他、旋回軸受13の摩耗・焼付きを抑制できる。
<effect>
According to the first embodiment, the protrusion 31b (first fitting portion: see FIG. 2) of the crankshaft 3, the fitting hole H3 (second fitting portion: see FIG. 2) of the turning balance weight 14, A gap (clearances C1, C2, etc. in FIG. 2) is provided between the . Therefore, when the projection 31b presses the wall surface of the fitting hole H3 in the circumferential direction to rotate the turning balance weight 14, the turning balance weight 14 moves radially within the range of the gap due to the centrifugal force. It contacts the swivel bearing 13 . As a result, part of the centrifugal force Fcos (see FIG. 4) of the orbiting scroll 23 is canceled by the centrifugal force Fcob (see FIG. 4) of the orbiting balance weight 14 in the orbiting bearing 13 . As a result, the load applied to the orbiting bearing 13 can be significantly reduced particularly in a high speed range where the centrifugal force of the orbiting scroll 23 increases. In addition, since a sufficient film thickness of the lubricating oil is ensured in the orbiting bearing 13, the friction loss of the orbiting bearing 13 can be reduced, and wear and seizure of the orbiting bearing 13 can be suppressed.
 また、旋回軸受13の信頼性を確保しつつ、スクロール圧縮機100の回転速度の上限値を高くする(さらなる高速化を図る)ことが可能になる。このように、第1実施形態によれば、高性能で信頼性の高いスクロール圧縮機100を提供できる。また、旋回スクロール23とフレーム21との間に旋回バランスウェイト14を設け、旋回バランスウェイト14の遠心力を旋回軸受13に直接的に作用させるようにしている。これによって、旋回軸受13にかかる荷重を低減できる他、クランク軸3のたわみを抑制できる。 In addition, it is possible to increase the upper limit of the rotation speed of the scroll compressor 100 (further increase the speed) while ensuring the reliability of the orbiting bearing 13 . Thus, according to the first embodiment, the scroll compressor 100 with high performance and high reliability can be provided. A turning balance weight 14 is provided between the turning scroll 23 and the frame 21 so that the centrifugal force of the turning balance weight 14 directly acts on the turning bearing 13 . As a result, the load applied to the orbiting bearing 13 can be reduced, and the deflection of the crankshaft 3 can be suppressed.
≪第2実施形態≫
 第2実施形態は、旋回スクロール23とフレーム21との間に隔壁部材15(図6参照)を設ける点が、第1実施形態とは異なっているが、その他の点(スクロール圧縮機の全体的な構成等:図1参照)については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Second embodiment>>
The second embodiment differs from the first embodiment in that a partition member 15 (see FIG. 6) is provided between the orbiting scroll 23 and the frame 21. configuration, etc.: see FIG. 1) are the same as in the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図6は、第2実施形態に係るスクロール圧縮機100Aにおいて、図1に示す領域K1に相当する部分を拡大した縦断面図である。
 図6に示すように、スクロール圧縮機100Aは、第1実施形態で説明した構成に加えて、隔壁部材15と、2つのシール部材16a,16bと、を備えている。
 隔壁部材15は、旋回スクロール23とフレーム21との間の空間を、クランク軸3(シャフト)の中心軸線Z1の方向から見て、クランク軸3の挿通孔H1を含む吐出圧力空間S4(第1領域)と、この吐出圧力空間S4の径方向外側の背圧室S5(第2領域)と、に仕切る部材である。図6に示すように、隔壁部材15は、旋回スクロール23とフレーム21との間に設けられている。また、隔壁部材15の内部には、旋回バランスウェイト14が設けられている。
FIG. 6 is an enlarged vertical cross-sectional view of a portion corresponding to the region K1 shown in FIG. 1 in the scroll compressor 100A according to the second embodiment.
As shown in FIG. 6, the scroll compressor 100A includes a partition member 15 and two seal members 16a and 16b in addition to the configuration described in the first embodiment.
The partition member 15 defines a discharge pressure space S4 (first discharge pressure space S4) including the insertion hole H1 of the crankshaft 3 when the space between the orbiting scroll 23 and the frame 21 is viewed from the direction of the center axis Z1 of the crankshaft 3 (shaft). region) and a back pressure chamber S5 (second region) radially outside the discharge pressure space S4. As shown in FIG. 6 , the partition member 15 is provided between the orbiting scroll 23 and the frame 21 . A swivel balance weight 14 is provided inside the partition member 15 .
 隔壁部材15の内側の吐出圧力空間S4には、主軸受12や旋回軸受13等を潤滑した後の潤滑油が流入する。この潤滑油は、圧縮機構部2で圧縮された冷媒の吐出圧力に略等しい。したがって、吐出圧力空間S4の圧力は、前記した吐出圧力に略等しくなっている。また、吐出圧力空間S4よりも背圧室S5の方が圧力が低くなった場合には、吐出圧力空間S4と背圧室S5とが隔壁部材15で仕切られているため、その差圧が維持される。 Lubricating oil after lubricating the main bearing 12, the orbiting bearing 13 and the like flows into the discharge pressure space S4 inside the partition member 15. This lubricating oil has substantially the same discharge pressure as the refrigerant compressed by the compression mechanism portion 2 . Therefore, the pressure in the discharge pressure space S4 is substantially equal to the discharge pressure described above. Further, when the pressure in the back pressure chamber S5 becomes lower than that in the discharge pressure space S4, the pressure difference between the discharge pressure space S4 and the back pressure chamber S5 is maintained because the partition member 15 separates the discharge pressure space S4 and the back pressure chamber S5. be done.
 なお、背圧室S5の圧力(背圧)は、例えば、旋回スクロール23の移動に伴って圧縮室S1と背圧室S5とを間欠的に連通させたり、背圧弁(図示せず)を設けたりすることで調整できる。このような背圧室S5を設けることで、固定スクロール22に対して、旋回スクロール23を上向きに押し付ける力が大きくなりすぎることを抑制できる。 The pressure (back pressure) in the back pressure chamber S5 can be controlled, for example, by intermittently communicating the compression chamber S1 and the back pressure chamber S5 with the movement of the orbiting scroll 23, or by providing a back pressure valve (not shown). can be adjusted by By providing such a back pressure chamber S5, it is possible to prevent the force that presses the orbiting scroll 23 upward against the fixed scroll 22 from becoming too large.
 図7は、スクロール圧縮機100Aの旋回スクロール23、旋回軸受13、旋回バランスウェイト14、隔壁部材15、シール部材16a、及びクランク軸3の上端部3bを含む分解斜視図である。
 なお、図7では、旋回スクロール23や旋回軸受13の他、隔壁部材15やシール部材16aについては、クランク軸3の中心軸線Z1(図6参照)を含む所定平面(図示せず)で切断したものを図示している。また、図7では、隔壁部材15の内側のシール部材16b(図6参照)の図示を省略している。
FIG. 7 is an exploded perspective view including the orbiting scroll 23, orbiting bearing 13, orbiting balance weight 14, partition member 15, seal member 16a, and upper end portion 3b of the crankshaft 3 of the scroll compressor 100A.
7, the orbiting scroll 23 and orbiting bearing 13, as well as the partition member 15 and the seal member 16a, are cut along a predetermined plane (not shown) including the central axis line Z1 (see FIG. 6) of the crankshaft 3. Illustrates things. 7, illustration of the seal member 16b (see FIG. 6) inside the partition member 15 is omitted.
 図7に示すように、隔壁部材15は、環状部15aと、周壁15bと、を備えている。環状部15aは、クランク軸3(シャフト)の中心軸線Z1(図1参照)の方向から見て環状を呈し、旋回軸受13を囲んでいる(図6も参照)。周壁15bは、環状部15aの外周縁から下側(フレーム21側:図6参照)に延びている。図6に示すように、隔壁部材15の周壁15bの縁部151b(下端)は、フレーム21に当接している。このような隔壁部材15は、例えば、金属製であってもよいし、また、樹脂製であってもよい。 As shown in FIG. 7, the partition member 15 includes an annular portion 15a and a peripheral wall 15b. The annular portion 15a has an annular shape when viewed from the direction of the central axis Z1 (see FIG. 1) of the crankshaft 3 (shaft), and surrounds the turning bearing 13 (see also FIG. 6). The peripheral wall 15b extends downward (on the frame 21 side: see FIG. 6) from the outer peripheral edge of the annular portion 15a. As shown in FIG. 6 , the edge 151 b (lower end) of the peripheral wall 15 b of the partition member 15 abuts on the frame 21 . Such a partition member 15 may be made of metal, or may be made of resin, for example.
 図6に示すシール部材16aは、隔壁部材15の環状部15aと、旋回スクロール23の鏡板23aと、の間の微小な隙間を塞ぐ樹脂製の部材である。図6の例では、鏡板23aの下面に環状の溝M1が形成され、この溝M1にシール部材16aが設置されている。そして、隔壁部材15と鏡板23aとによって、シール部材16aが上下方向に圧縮されるようになっている。 A seal member 16a shown in FIG. 6 is a member made of resin that closes a minute gap between the annular portion 15a of the partition member 15 and the end plate 23a of the orbiting scroll 23. In the example of FIG. 6, an annular groove M1 is formed in the lower surface of the end plate 23a, and the seal member 16a is installed in this groove M1. The sealing member 16a is vertically compressed by the partition member 15 and the end plate 23a.
 図6に示すように、フレーム21は、挿通孔H1の周壁面を含む部分において、平面視で環状の肉厚部21aを有している。肉厚部21aは、その外周側よりも軸方向の厚さが肉厚に形成され、上側(旋回スクロール23側)に突出している。 As shown in FIG. 6, the frame 21 has an annular thick portion 21a in plan view in a portion including the peripheral wall surface of the insertion hole H1. The thick portion 21a is formed to be thicker in the axial direction than the outer peripheral side thereof, and protrudes upward (toward the orbiting scroll 23).
 図6に示すシール部材16bは、隔壁部材15の周壁15bと、フレーム21の肉厚部21aと、の間の微小な隙間を塞ぐ樹脂製の部材である。図6の例では、フレーム21の肉厚部21aの外周面に環状の溝M2が形成され、この溝M2にシール部材16bが設置されている。そして、隔壁部材15とフレーム21とによって、シール部材16bが径方向に圧縮されるようになっている。これらのシール部材16a,16bを設けることで、隔壁部材15の内側から外側への冷媒の漏れを抑制できる。 A seal member 16b shown in FIG. 6 is a member made of resin that closes a minute gap between the peripheral wall 15b of the partition member 15 and the thick portion 21a of the frame 21. In the example of FIG. 6, an annular groove M2 is formed in the outer peripheral surface of the thick portion 21a of the frame 21, and the seal member 16b is installed in this groove M2. The partition member 15 and the frame 21 compress the sealing member 16b in the radial direction. By providing these seal members 16a and 16b, leakage of refrigerant from the inside to the outside of the partition member 15 can be suppressed.
<効果>
 第2実施形態によれば、隔壁部材15(図6参照)によって、旋回スクロール23とフレーム21との間の空間が吐出圧力空間S4と背圧室S5とを仕切られる。これによって、例えば、クランク軸3の下端に吐出圧力が作用する構造であっても、上・下の差圧でクランク軸3が浮上することを抑制できる。また、背圧室S5の圧力(背圧)を調整することで、旋回スクロール23を固定スクロール22に押し付ける際のスラスト荷重(軸方向の荷重)を低減できる。その結果、圧縮機構部2の摩擦損失を低減し、摩耗や焼付きを抑制できる。
<effect>
According to the second embodiment, the partition member 15 (see FIG. 6) partitions the space between the orbiting scroll 23 and the frame 21 into the discharge pressure space S4 and the back pressure chamber S5. As a result, for example, even with a structure in which the discharge pressure acts on the lower end of the crankshaft 3, it is possible to prevent the crankshaft 3 from floating due to the differential pressure between the upper and lower sides. Further, by adjusting the pressure (back pressure) of the back pressure chamber S5, the thrust load (load in the axial direction) when pressing the orbiting scroll 23 against the fixed scroll 22 can be reduced. As a result, the friction loss of the compression mechanism portion 2 can be reduced, and wear and seizure can be suppressed.
≪第2実施形態の変形例≫
 第2実施形態では、隔壁部材15(図7参照)に溝が特に設けられていない構成について説明したが、これに限らない。例えば、次に説明するように、隔壁部材15A(図8参照)の環状部15aの上面に径方向の溝15cを設け、この溝15cを介して潤滑油を通流させるようにしてもよい。
<<Modification of Second Embodiment>>
In the second embodiment, the configuration in which the partition member 15 (see FIG. 7) is not particularly provided with grooves has been described, but the configuration is not limited to this. For example, as described below, a radial groove 15c may be provided in the upper surface of the annular portion 15a of the partition member 15A (see FIG. 8), and the lubricating oil may flow through this groove 15c.
 図8は、第2実施形態の変形例に係るスクロール圧縮機の隔壁部材15Aの斜視図である。
 図8の変形例では、隔壁部材15Aの環状部15aの上面に溝15cが設けられている。より詳しく説明すると、環状部15aの内周縁から外周縁に至る溝15cが径方向に設けられている。この溝15cは、主軸受12や旋回軸受13等を潤滑した潤滑油を、吐出圧力空間S4(図6参照)から背圧室S5(図6参照)に導く流路である。
FIG. 8 is a perspective view of a partition member 15A of a scroll compressor according to a modification of the second embodiment.
In the modified example of FIG. 8, a groove 15c is provided on the upper surface of the annular portion 15a of the partition member 15A. More specifically, a groove 15c extending from the inner peripheral edge to the outer peripheral edge of the annular portion 15a is provided in the radial direction. The groove 15c is a flow path that guides the lubricating oil that has lubricated the main bearing 12, the orbiting bearing 13, etc. from the discharge pressure space S4 (see FIG. 6) to the back pressure chamber S5 (see FIG. 6).
 このように隔壁部材15Aの上面に微小な溝15cを設けることで、吐出圧力空間S4(図6参照)から流入する潤滑油が溝15cで絞られた上で、背圧室S5(図6参照)に導かれる。これによって、例えば、溝15cの流路断面積を設計段階で適宜に調整することで、背圧室S5の圧力(背圧)を調整できる。なお、図8では1本の溝15cが設けられる例を示したが、複数の溝が設けられてもよい。 By providing the minute grooves 15c on the upper surface of the partition member 15A in this manner, the lubricating oil flowing from the discharge pressure space S4 (see FIG. 6) is squeezed by the grooves 15c and then ). As a result, for example, the pressure (back pressure) of the back pressure chamber S5 can be adjusted by appropriately adjusting the channel cross-sectional area of the groove 15c at the design stage. Although FIG. 8 shows an example in which one groove 15c is provided, a plurality of grooves may be provided.
 また、図8に示す溝15cに代えて、吐出圧力空間S4(図6参照)から背圧室S5(図6参照)に潤滑油を導く流路としての溝(図示せず)を、旋回スクロール23の鏡板23a(図6参照)の下面に設けるようにしてもよい。
 また、隔壁部材15Aの上面に溝15c(図8参照)を設けるとともに、旋回スクロール23の鏡板23a(図6参照)の下面に溝(図示せず)を設けるようにしてもよい。ここで、鏡板23aの下面に設けられた溝(図示せず)と、隔壁部材15Aの上面に設けられた溝15cとは、その位置が平面視で重なっていてもよいし、また、平面視で重なっていなくてもよい。
Further, instead of the groove 15c shown in FIG. 8, a groove (not shown) as a flow path for guiding the lubricating oil from the discharge pressure space S4 (see FIG. 6) to the back pressure chamber S5 (see FIG. 6) is provided in the orbiting scroll. 23 may be provided on the lower surface of the end plate 23a (see FIG. 6).
A groove 15c (see FIG. 8) may be provided on the upper surface of the partition member 15A, and a groove (not shown) may be provided on the lower surface of the end plate 23a (see FIG. 6) of the orbiting scroll 23. Here, the grooves (not shown) provided on the lower surface of the end plate 23a and the grooves 15c provided on the upper surface of the partition member 15A may overlap each other in plan view. may not overlap.
 このように、隔壁部材15Aの旋回スクロール23側の面、及び/又は、鏡板23aの隔壁部材15A側の面には、吐出圧力空間S4(第1領域)から背圧室S5(第2領域)に潤滑油を導く溝(図8の溝15c等)が設けられている。このような構成によれば、溝15c等の流路断面積を設計段階で適宜に調整することで、背圧室S5(図6参照)の圧力を調整できる。 In this way, on the surface of the partition member 15A on the orbiting scroll 23 side and/or on the surface of the end plate 23a on the partition member 15A side, there is a discharge pressure space S4 (first region) to a back pressure chamber S5 (second region). grooves (such as the groove 15c in FIG. 8) are provided to guide the lubricating oil. According to such a configuration, the pressure in the back pressure chamber S5 (see FIG. 6) can be adjusted by appropriately adjusting the cross-sectional area of the channel such as the groove 15c at the design stage.
≪第3実施形態≫
 第3実施形態は、前記した隔壁部材15A(図6参照)に代えて、2つのシール部材17a,17b(図9参照)を設ける点が、第2実施形態とは異なっているが、その他の点(スクロール圧縮機の全体的な構成等)については第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Third Embodiment>>
The third embodiment differs from the second embodiment in that two sealing members 17a and 17b (see FIG. 9) are provided instead of the partition wall member 15A (see FIG. 6). Points (such as the overall configuration of the scroll compressor) are the same as in the second embodiment. Therefore, the parts different from the second embodiment will be explained, and the explanation of overlapping parts will be omitted.
 図9は、第3実施形態に係るスクロール圧縮機100Bにおいて、図1に示す領域K1に相当する部分を拡大した縦断面図である。
 図9に示すように、スクロール圧縮機100Bは、旋回バランスウェイト14Bに設置される2つのシール部材17a,17bを備えている。これらのシール部材17a,17bは、旋回スクロール23とフレーム21との間の空間を、径方向においてクランク軸3(シャフト)の挿通孔H1を含む吐出圧力空間S4(第1領域)と、この吐出圧力空間S4の径方向外側の背圧室S5(第2領域)と、に仕切る樹脂製の部材である。
FIG. 9 is an enlarged longitudinal sectional view of a portion corresponding to the region K1 shown in FIG. 1 in the scroll compressor 100B according to the third embodiment.
As shown in FIG. 9, the scroll compressor 100B has two seal members 17a and 17b installed on the orbital balance weight 14B. These seal members 17a and 17b divide the space between the orbiting scroll 23 and the frame 21 in the radial direction into a discharge pressure space S4 (first region) including an insertion hole H1 for the crankshaft 3 (shaft) and a discharge pressure space S4 (first region). It is a member made of resin that partitions into a back pressure chamber S5 (second region) on the radially outer side of the pressure space S4.
 図10は、スクロール圧縮機100Bの旋回スクロール23、旋回軸受13、旋回バランスウェイト14B、シール部材17a,17b、及びクランク軸3の上端部3bを含む分解斜視図である。
 図10に示すように、旋回バランスウェイト14Bの上面には、環状の溝M3(図9も参照)が形成されている。そして、この溝M3に環状のシール部材17a(第1シール部材)が設置されている。図9に示すように、環状のシール部材17aは、旋回バランスウェイト14Bと鏡板23aとの間の隙間に設けられている。
FIG. 10 is an exploded perspective view including the orbiting scroll 23, orbiting bearing 13, orbiting balance weight 14B, seal members 17a and 17b, and the upper end portion 3b of the crankshaft 3 of the scroll compressor 100B.
As shown in FIG. 10, an annular groove M3 (see also FIG. 9) is formed in the upper surface of the swing balance weight 14B. An annular seal member 17a (first seal member) is installed in the groove M3. As shown in FIG. 9, the annular seal member 17a is provided in the gap between the turning balance weight 14B and the end plate 23a.
 一方、旋回バランスウェイト14Bの下面にも、環状の溝M4(図9参照)が形成されている。そして、この溝M4に環状のシール部材17b(第2シール部材)が設置されている。図9に示すように、環状のシール部材17bは、旋回バランスウェイト14Bとフレーム21との間の隙間に設けられている。なお、環状の溝M3,M4を設けるために、旋回バランスウェイト14Bの孔H4の周壁面を含む円環状の部分14bの径が、第1実施形態(図3参照)よりも長くなっている。 On the other hand, an annular groove M4 (see FIG. 9) is also formed on the lower surface of the turning balance weight 14B. An annular seal member 17b (second seal member) is installed in the groove M4. As shown in FIG. 9, the annular seal member 17b is provided in the gap between the swing balance weight 14B and the frame 21. As shown in FIG. In order to provide the annular grooves M3 and M4, the diameter of the annular portion 14b including the peripheral wall surface of the hole H4 of the turning balance weight 14B is longer than in the first embodiment (see FIG. 3).
 スクロール圧縮機100Bの駆動中、旋回バランスウェイト14B及びシール部材17a,17bは、周方向に一体的に移動(回転)する。すなわち、一方のシール部材17aは、旋回バランスウェイト14Bと旋回スクロール23との間で上下方向に圧縮されつつ、旋回バランスウェイト14Bとともに周方向に移動する。他方のシール部材17bは、旋回バランスウェイト14Bとフレーム21との間で上下方向に圧縮されつつ、旋回バランスウェイト14Bとともに周方向に移動する。 While the scroll compressor 100B is being driven, the orbiting balance weight 14B and the seal members 17a and 17b are integrally moved (rotated) in the circumferential direction. That is, one seal member 17a moves in the circumferential direction together with the orbiting balance weight 14B while being vertically compressed between the orbiting balance weight 14B and the orbiting scroll 23 . The other seal member 17b moves in the circumferential direction together with the rotating balance weight 14B while being vertically compressed between the rotating balance weight 14B and the frame 21 .
<効果>
 第3実施形態によれば、2つのシール部材17a,17bを設けることで、旋回スクロール23とフレーム21との間の空間を吐出圧力空間S4(図9参照)と背圧室S5(図9参照)とに仕切ることができる。また、第2実施形態のように、旋回バランスウェイト14Bの径方向のサイズが、隔壁部材15(図6参照)に収容される程度の大きさに制限されることが特にない。したがって、第3実施形態によれば、旋回バランスウェイト14Bの外径を十分に確保できる。これによって、旋回軸受13への荷重をさらに低減し、ひいては、スクロール圧縮機100Bの性能や信頼性を高めることができる。
<effect>
According to the third embodiment, two sealing members 17a and 17b are provided to divide the space between the orbiting scroll 23 and the frame 21 into a discharge pressure space S4 (see FIG. 9) and a back pressure chamber S5 (see FIG. 9). ) can be divided into Moreover, unlike the second embodiment, the radial size of the turning balance weight 14B is not particularly limited to a size that can be accommodated in the partition member 15 (see FIG. 6). Therefore, according to the third embodiment, it is possible to sufficiently secure the outer diameter of the turning balance weight 14B. As a result, the load on the orbiting bearing 13 can be further reduced, and the performance and reliability of the scroll compressor 100B can be improved.
≪第3実施形態の変形例≫
 第3実施形態では、2つのシール部材17a,17bが旋回バランスウェイト14Bに設けられる場合について説明したが、これに限らない。例えば、旋回スクロール23の鏡板23aの下面に環状の溝(図示せず)を設け、この溝にシール部材17a(第1シール部材)を設置するようにしてもよい。また、フレーム21の上面に環状の溝(図示せず)を設け、この溝にシール部材17b(第2シール部材)を設置するようにしてもよい。このような構成でも、第3実施形態と同様の効果が奏される。
<<Modification of Third Embodiment>>
Although the case where the two seal members 17a and 17b are provided in the turning balance weight 14B has been described in the third embodiment, the present invention is not limited to this. For example, an annular groove (not shown) may be provided on the lower surface of the end plate 23a of the orbiting scroll 23, and the seal member 17a (first seal member) may be installed in this groove. Alternatively, an annular groove (not shown) may be provided on the upper surface of the frame 21, and the seal member 17b (second seal member) may be installed in this groove. Even with such a configuration, the same effects as those of the third embodiment can be obtained.
 また、吐出圧力空間S4から背圧室S5に潤滑油を導く溝(図示せず)を、旋回スクロール23の鏡板23aの下面(旋回バランスウェイト14側の面)、及び、フレーム21の上面(旋回バランスウェイト14側の面)のうちの少なくとも一方に設けてもよい。これによって、前記した溝(図示せず)の流路断面積を設計段階で適宜に調整することで、背圧室S5の圧力(背圧)を調整できる。 Further, grooves (not shown) for guiding lubricating oil from the discharge pressure space S4 to the back pressure chamber S5 are formed on the lower surface of the end plate 23a of the orbiting scroll 23 (the surface on the side of the orbiting balance weight 14) and the upper surface of the frame 21 (orbiting surface facing the balance weight 14). Accordingly, the pressure (back pressure) of the back pressure chamber S5 can be adjusted by appropriately adjusting the channel cross-sectional area of the groove (not shown) at the design stage.
≪第4実施形態≫
 第4実施形態では、第1実施形態で説明したスクロール圧縮機100(図1参照)を備える空気調和機W1(冷凍サイクル装置:図11参照)について説明する。
<<Fourth Embodiment>>
In the fourth embodiment, an air conditioner W1 (refrigeration cycle device: see FIG. 11) including the scroll compressor 100 (see FIG. 1) described in the first embodiment will be described.
 図11は、第4実施形態に係る空気調和機W1の冷媒回路Q1の構成図である。
 なお、図11の実線矢印は、暖房運転時における冷媒の流れを示している。
 一方、図11の破線矢印は、冷房運転時における冷媒の流れを示している。
 空気調和機W1は、冷房や暖房等の空調を行う機器である。図11に示すように、空気調和機W1は、スクロール圧縮機100と、室外熱交換器71と、室外ファン72と、膨張弁73と、四方弁74と、室内熱交換器75と、室内ファン76と、を備えている。
FIG. 11 is a configuration diagram of the refrigerant circuit Q1 of the air conditioner W1 according to the fourth embodiment.
The solid line arrows in FIG. 11 indicate the flow of the refrigerant during the heating operation.
On the other hand, dashed arrows in FIG. 11 indicate the flow of the refrigerant during the cooling operation.
The air conditioner W1 is a device that performs air conditioning such as cooling and heating. As shown in FIG. 11, the air conditioner W1 includes a scroll compressor 100, an outdoor heat exchanger 71, an outdoor fan 72, an expansion valve 73, a four-way valve 74, an indoor heat exchanger 75, an indoor fan 76 and .
 図11の例では、スクロール圧縮機100と、室外熱交換器71と、室外ファン72と、膨張弁73と、四方弁74と、が室外機81に設けられている。一方、室内熱交換器75や室内ファン76は、室内機82に設けられている。 In the example of FIG. 11, the scroll compressor 100, the outdoor heat exchanger 71, the outdoor fan 72, the expansion valve 73, and the four-way valve 74 are provided in the outdoor unit 81. On the other hand, the indoor heat exchanger 75 and the indoor fan 76 are provided in the indoor unit 82 .
 スクロール圧縮機100は、ガス状の冷媒を圧縮する機器であり、第1実施形態(図1参照)と同様の構成を備えている。室外熱交換器71は、その伝熱管(図示せず)を通流する冷媒と、室外ファン72から送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外ファン72は、室外熱交換器71に外気を送り込むファンである。この室外ファン72は、駆動源である室外ファンモータ72aを備え、室外熱交換器71の付近に設置されている。 The scroll compressor 100 is a device that compresses gaseous refrigerant, and has the same configuration as the first embodiment (see FIG. 1). The outdoor heat exchanger 71 is a heat exchanger that exchanges heat between a refrigerant flowing through its heat transfer tubes (not shown) and outside air sent from the outdoor fan 72 . The outdoor fan 72 is a fan that sends outside air to the outdoor heat exchanger 71 . The outdoor fan 72 is provided with an outdoor fan motor 72a as a driving source, and is installed near the outdoor heat exchanger 71. As shown in FIG.
 室内熱交換器75は、その伝熱管(図示せず)を通流する冷媒と、室内ファン76から送り込まれる室内空気(空調室の空気)と、の間で熱交換が行われる熱交換器である。室内ファン76は、室内熱交換器75に室内空気を送り込むファンである。この室内ファン76は、駆動源である室内ファンモータ76aを備え、室内熱交換器75の付近に設置されている。 The indoor heat exchanger 75 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the heat transfer tube (not shown) and the indoor air (air-conditioned room air) sent from the indoor fan 76 . be. The indoor fan 76 is a fan that sends indoor air to the indoor heat exchanger 75 . The indoor fan 76 is provided with an indoor fan motor 76 a as a drive source and is installed near the indoor heat exchanger 75 .
 膨張弁73は、「凝縮器」(室外熱交換器71及び室内熱交換器75の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁73によって減圧された冷媒は、「蒸発器」(室外熱交換器71及び室内熱交換器75の他方)に導かれる。 The expansion valve 73 is a valve that reduces the pressure of the refrigerant condensed in the "condenser" (one of the outdoor heat exchanger 71 and the indoor heat exchanger 75). The refrigerant decompressed by the expansion valve 73 is guided to an "evaporator" (the other of the outdoor heat exchanger 71 and the indoor heat exchanger 75).
 四方弁74は、空気調和機W1の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図11の破線矢印を参照)には、冷媒回路Q1において、スクロール圧縮機100、室外熱交換器71(凝縮器)、膨張弁73、及び室内熱交換器75(蒸発器)を順次に介して、冷媒が循環する。一方、暖房運転時(図11の実線矢印を参照)には、冷媒回路Q1において、スクロール圧縮機100、室内熱交換器75(凝縮器)、膨張弁73、及び室外熱交換器71(蒸発器)を順次に介して冷媒が循環する。なお、スクロール圧縮機100や室外ファン72の他、膨張弁73、四方弁74、室内ファン76等の機器は、制御装置(図示せず)によって所定に制御される。 The four-way valve 74 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W1. For example, during cooling operation (see the dashed arrow in FIG. 11), in the refrigerant circuit Q1, the scroll compressor 100, the outdoor heat exchanger 71 (condenser), the expansion valve 73, and the indoor heat exchanger 75 (evaporator ) in sequence, the refrigerant circulates. On the other hand, during heating operation (see the solid line arrow in FIG. 11), in the refrigerant circuit Q1, the scroll compressor 100, the indoor heat exchanger 75 (condenser), the expansion valve 73, and the outdoor heat exchanger 71 (evaporator ) in sequence. In addition to the scroll compressor 100 and the outdoor fan 72, devices such as the expansion valve 73, the four-way valve 74, and the indoor fan 76 are controlled in a predetermined manner by a controller (not shown).
<効果>
 第4実施形態によれば、空気調和機W1は、第1実施形態と同様の構成のスクロール圧縮機100を備えている。これによって、空気調和機W1の全体としての性能や信頼性を高めることができる。
<effect>
According to the fourth embodiment, the air conditioner W1 includes the scroll compressor 100 having the same configuration as in the first embodiment. As a result, the performance and reliability of the air conditioner W1 as a whole can be improved.
≪変形例≫
 以上、本発明に係るスクロール圧縮機100や空気調和機W1について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、二重軸受構造のスクロール圧縮機100等(図1参照)について説明したが、これに限らない。すなわち、旋回スクロール23において、鏡板23aの上側(軸方向の一方側)に旋回ラップ23bを設ける一方、鏡板23aの下側(軸方向の他方側)にボス部(図示せず)を設け、クランク軸3の偏心部(図示せず)をボス部の凹部に嵌め込む構成にしてもよい。このような構成において、旋回バランスウェイト14は、フレーム21と鏡板23aとの間に設けられ、クランク軸3とともに回転する。なお、クランク軸3(シャフト)と旋回バランスウェイト14とは嵌合しており、クランク軸3側の「第1嵌合部」と、旋回バランスウェイト14側の「第2嵌合部」と、の間に所定の隙間(例えば、クランク軸3の中心軸線に対して垂直な方向での隙間)が設けられているものとする。また、クランク軸3の偏心部(図示せず)が中心軸線Z1に対して偏心している側とは反対側に、旋回バランスウェイト14の重心が位置するものとする。このような構成でも、遠心力の反力として旋回軸受13に作用する荷重を低減できるため、スクロール圧縮機の性能や信頼性を高めることができる。また、このような構成に第2実施形態を適用することも可能であり、また、第3実施形態や第4実施形態を適用することも可能である。
<<Modification>>
Although the scroll compressor 100 and the air conditioner W1 according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in each embodiment, the scroll compressor 100 and the like (see FIG. 1) having a double bearing structure have been described, but the present invention is not limited to this. That is, in the orbiting scroll 23, an orbiting wrap 23b is provided on the upper side (one side in the axial direction) of the end plate 23a, and a boss portion (not shown) is provided on the lower side (the other side in the axial direction) of the end plate 23a to An eccentric portion (not shown) of the shaft 3 may be fitted into a concave portion of the boss portion. In such a configuration, the turning balance weight 14 is provided between the frame 21 and the end plate 23 a and rotates together with the crankshaft 3 . Note that the crankshaft 3 (shaft) and the turning balance weight 14 are fitted together, and the "first fitting portion" on the crankshaft 3 side, the "second fitting portion" on the turning balance weight 14 side, It is assumed that a predetermined gap (for example, a gap in a direction perpendicular to the center axis of the crankshaft 3) is provided between them. It is also assumed that the center of gravity of the turning balance weight 14 is located on the side opposite to the side where the eccentric portion (not shown) of the crankshaft 3 is eccentric with respect to the central axis Z1. Even with such a configuration, the load acting on the orbiting bearing 13 as the reaction force of the centrifugal force can be reduced, so the performance and reliability of the scroll compressor can be improved. Further, it is possible to apply the second embodiment to such a configuration, and it is also possible to apply the third embodiment and the fourth embodiment.
 また、各実施形態では、旋回バランスウェイト14(図2参照)に嵌合孔H3(第2嵌合部)が設けられ、この嵌合孔H3にクランク軸3の突起部31b(第1嵌合部)が嵌め込まれる構成について説明したが、これに限らない。例えば、旋回バランスウェイト14に嵌合する溝としての嵌合溝(第2嵌合部:図示せず)が設けられ、この嵌合溝にクランク軸3の突起部31b(第1嵌合部)が嵌め込まれるようにしてもよい。つまり、突起部31bに嵌合する孔又は溝である「第2嵌合部」が旋回バランスウェイト14に設けられるようにしてもよい。 Further, in each embodiment, a fitting hole H3 (second fitting portion) is provided in the turning balance weight 14 (see FIG. 2), and the projection portion 31b (first fitting portion) of the crankshaft 3 is provided in the fitting hole H3. Although the configuration in which the portion ) is fitted has been described, the configuration is not limited to this. For example, a fitting groove (second fitting portion: not shown) is provided as a groove that fits into the turning balance weight 14, and the projection portion 31b (first fitting portion) of the crankshaft 3 is provided in this fitting groove. may be fitted. In other words, the turning balance weight 14 may be provided with a “second fitting portion” that is a hole or groove that fits into the protrusion 31b.
 また、軸方向の下側(フレーム21側)に延びる突起部(第2嵌合部:図示せず)を旋回バランスウェイト14に設ける一方、この突起部が嵌め込まれる嵌合孔又は嵌合溝(第1嵌合部:図示せず)をクランク軸3の上端部3bに設けるようにしてもよい。このような構成において、クランク軸3側の「第1嵌合部」と、旋回バランスウェイト14側の「第2嵌合部」と、の間に隙間(例えば、クランク軸3の中心軸線に対して垂直な方向での隙間)が設けられるようにしてもよい。このような構成でも、各実施形態と同様の効果が奏される。
 また、各実施形態では、主軸受12(図1参照)とフレーム21(図1参照)とが別体である場合について説明したが、これに限らない。例えば、フレーム21における挿通孔H1の周壁面に所定の研磨加工や表面処理を施すことで、この挿通孔H1の周壁面を「主軸受」として機能させるようにしてもよい。このような構成も、フレーム21の挿通孔H1に「主軸受」が設けられるという事項に含まれる。
 また、各実施形態では、旋回軸受13(図1参照)が旋回軸23c(図1参照)と別体である場合について説明したが、これに限らない。例えば、旋回軸23cの周壁面に所定の研磨加工や表面処理を施すことで、この旋回軸23cの周壁面を「旋回軸受」として機能させるようにしてもよい。このような構成も、旋回スクロール23に「旋回軸受」が設けられるという事項に含まれる。
A projection (second fitting portion, not shown) extending axially downward (toward the frame 21 side) is provided on the turning balance weight 14, and a fitting hole or fitting groove (not shown) in which the projection is fitted is provided. A first fitting portion (not shown) may be provided at the upper end portion 3 b of the crankshaft 3 . In such a configuration, a gap (for example, a clearance in the vertical direction) may be provided. Even with such a configuration, the same effects as those of each embodiment can be obtained.
Also, in each embodiment, the case where the main bearing 12 (see FIG. 1) and the frame 21 (see FIG. 1) are separate bodies has been described, but the present invention is not limited to this. For example, the peripheral wall surface of the insertion hole H1 in the frame 21 may be subjected to a predetermined polishing process or surface treatment so that the peripheral wall surface of the insertion hole H1 functions as a "main bearing". Such a configuration is also included in the fact that the "main bearing" is provided in the insertion hole H1 of the frame 21. As shown in FIG.
Moreover, although each embodiment demonstrated the case where the turning bearing 13 (refer FIG. 1) was the turning shaft 23c (refer FIG. 1) and another body, it does not restrict to this. For example, the peripheral wall surface of the rotating shaft 23c may be made to function as a "swivel bearing" by subjecting the peripheral wall surface of the rotating shaft 23c to a predetermined polishing process or surface treatment. Such a configuration is also included in the matter that the orbiting scroll 23 is provided with the "orbiting bearing".
 また、第2実施形態(図6参照)では、隔壁部材15と鏡板23aとの間にシール部材16aを設け、また、隔壁部材15とフレーム21との間に別のシール部材16bを設ける構成について説明したが、これに限らない。例えば、2つのシール部材16a,16bのうち一方又は両方を省略してもよい。このような構成でも、隔壁部材15(図6参照)によって、旋回スクロール23とフレーム21との間の空間を吐出圧力空間S4と背圧室S5とに仕切ることができる。 In the second embodiment (see FIG. 6), a seal member 16a is provided between the partition member 15 and the end plate 23a, and another seal member 16b is provided between the partition member 15 and the frame 21. Illustrated, but not limited to. For example, one or both of the two seal members 16a and 16b may be omitted. Even with such a configuration, the space between the orbiting scroll 23 and the frame 21 can be partitioned into the discharge pressure space S4 and the back pressure chamber S5 by the partition member 15 (see FIG. 6).
 また、第4実施形態で説明した空気調和機W1(図11参照)は、ルームエアコンやパッケージエアコンの他、ビル用マルチエアコンといったさまざまな種類の空気調和機に適用できる。
 また、第4実施形態では、スクロール圧縮機100を備える空気調和機W1(冷凍サイクル装置:図11参照)について説明したが、これに限らない。例えば、冷凍機、給湯機、空調給湯装置、チラー、冷蔵庫といった他の「冷凍サイクル装置」にも、第4実施形態を適用できる。
Also, the air conditioner W1 (see FIG. 11) described in the fourth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings.
Moreover, in the fourth embodiment, the air conditioner W1 (refrigerating cycle device: see FIG. 11) including the scroll compressor 100 has been described, but the present invention is not limited to this. For example, the fourth embodiment can be applied to other "refrigerating cycle devices" such as refrigerators, water heaters, air-conditioning water heaters, chillers, and refrigerators.
 また、各実施形態では、スクロール圧縮機100が縦置きで設置される構成について説明したが、これに限らない。例えば、スクロール圧縮機100が横置き又は斜め置きで設置される構成にも各実施形態を適用できる。
 また、各実施形態では、スクロール圧縮機100で冷媒を圧縮する場合について説明したが、これに限らない。すなわち、冷媒以外の所定のガスをスクロール圧縮機100で圧縮する場合にも、各実施形態を適用できる。
Moreover, although each embodiment demonstrated the structure by which the scroll compressor 100 was vertically installed, it does not restrict to this. For example, each embodiment can be applied to a configuration in which the scroll compressor 100 is installed horizontally or diagonally.
Moreover, although each embodiment demonstrated the case where the refrigerant|coolant was compressed with the scroll compressor 100, it does not restrict to this. That is, each embodiment can also be applied when a predetermined gas other than refrigerant is compressed by the scroll compressor 100 .
 また、各実施形態は、適宜に組み合わせることができる。例えば、第2実施形態と第4実施形態とを組み合わせ、空気調和機W1(第4実施形態:図11参照)が、第2実施形態で説明した構成のスクロール圧縮機100A(図7参照)を備えるようにしてもよい。同様に、第3実施形態と第4実施形態との組合せ等も可能である。 Also, each embodiment can be combined as appropriate. For example, by combining the second embodiment and the fourth embodiment, the air conditioner W1 (fourth embodiment: see FIG. 11) includes the scroll compressor 100A (see FIG. 7) having the configuration described in the second embodiment. You may prepare. Similarly, combinations of the third embodiment and the fourth embodiment, etc. are also possible.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換を適宜に行うことが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Moreover, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to appropriately add, delete, or replace a part of the configuration of each embodiment with another configuration.
Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
 100,100A,100B スクロール圧縮機
 1 密閉容器
 2 圧縮機構部
 21 フレーム
 22 固定スクロール
 22a 台板
 22b 固定ラップ
 23 旋回スクロール
 23a 鏡板
 23b 旋回ラップ
 23c 旋回軸
 3 クランク軸(シャフト)
 3b 上端部(シャフトの端部)
 31b 突起部(第1嵌合部)
 4 電動機
 4a 固定子
 4b 回転子
 12 主軸受
 13 旋回軸受
 14,14B 旋回バランスウェイト
 15,15A 隔壁部材
 15a 環状部
 15b 周壁
 151b 縁部
 15c 溝
 17a シール部材(第1シール部材)
 17b シール部材(第2シール部材)
 71 室外熱交換器
 72 室外ファン
 73 膨張弁
 74 四方弁
 75 室内熱交換器
 76 室内ファン
 C1,C2 隙間
 H1 挿通孔
 H2 偏心穴
 H3 嵌合孔(第2嵌合部)
 S1 圧縮室
 S4 吐出圧力空間(第1領域)
 S5 背圧室(第2領域)
 W1 空気調和機(冷凍サイクル装置)
 Z1 中心軸線
 
Reference Signs List 100, 100A, 100B Scroll Compressor 1 Sealed Container 2 Compression Mechanism Part 21 Frame 22 Fixed Scroll 22a Base Plate 22b Fixed Wrap 23 Orbiting Scroll 23a End Plate 23b Orbiting Wrap 23c Orbiting Axis 3 Crankshaft (Shaft)
3b upper end (end of shaft)
31b projection (first fitting portion)
4 electric motor 4a stator 4b rotor 12 main bearing 13 swivel bearing 14, 14B swivel balance weight 15, 15A partition member 15a annular portion 15b peripheral wall 151b edge 15c groove 17a seal member (first seal member)
17b sealing member (second sealing member)
71 outdoor heat exchanger 72 outdoor fan 73 expansion valve 74 four-way valve 75 indoor heat exchanger 76 indoor fans C1, C2 gap H1 insertion hole H2 eccentric hole H3 fitting hole (second fitting portion)
S1 compression chamber S4 discharge pressure space (first region)
S5 back pressure chamber (second area)
W1 Air conditioner (refrigeration cycle device)
Z1 center axis

Claims (9)

  1.  密閉容器と、
     固定子及び回転子を有し、前記密閉容器に収容される電動機と、
     前記回転子と一体で回転するシャフトと、
     渦巻状の固定ラップを有する固定スクロールと、
     鏡板に設けられる渦巻状の旋回ラップを有し、前記固定ラップと前記旋回ラップとの間に圧縮室を形成する旋回スクロールと、
     前記シャフトを前記旋回スクロールに対して回転自在に軸支する旋回軸受と、
     前記シャフトの挿通孔を有し、前記固定スクロールを支持するフレームと、を備えるとともに、
     前記フレームと前記鏡板との間に設けられ、前記シャフトとともに回転する旋回バランスウェイトを備え、
     前記シャフトと前記旋回バランスウェイトとが嵌合しており、
     前記シャフト側の第1嵌合部と、前記旋回バランスウェイト側の第2嵌合部と、の間に隙間が設けられているスクロール圧縮機。
    a closed container;
    an electric motor having a stator and a rotor and housed in the closed container;
    a shaft that rotates integrally with the rotor;
    a stationary scroll having a spiral stationary wrap;
    an orbiting scroll having a spiral orbiting wrap provided on the end plate and forming a compression chamber between the fixed wrap and the orbiting wrap;
    an orbiting bearing that rotatably supports the shaft with respect to the orbiting scroll;
    a frame having an insertion hole for the shaft and supporting the fixed scroll;
    A turning balance weight provided between the frame and the end plate and rotating together with the shaft,
    The shaft and the turning balance weight are fitted together,
    A scroll compressor in which a gap is provided between a first fitting portion on the shaft side and a second fitting portion on the turning balance weight side.
  2.  前記旋回スクロールにおいて、前記鏡板の一方側に前記旋回ラップが設けられ、前記鏡板の他方側に旋回軸が設けられ、
     前記シャフトの端部には、前記シャフトの中心軸線に対して偏心している偏心穴が設けられ、
     前記旋回軸受が設置された状態の前記旋回軸が、前記偏心穴に嵌合しており、
     前記旋回バランスウェイトは、前記偏心穴から前記旋回軸受が露出している部分の径方向外側に設けられること
     を特徴とする請求項1に記載のスクロール圧縮機。
    In the orbiting scroll, the orbiting wrap is provided on one side of the end plate, and the orbiting shaft is provided on the other side of the end plate,
    An end of the shaft is provided with an eccentric hole that is eccentric with respect to the central axis of the shaft,
    The swivel shaft with the swivel bearing installed is fitted in the eccentric hole,
    The scroll compressor according to claim 1, wherein the orbital balance weight is provided radially outside a portion where the orbital bearing is exposed from the eccentric hole.
  3.  前記シャフトの前記端部には、前記旋回スクロール側に突出する突起部が前記第1嵌合部として設けられ、
     前記旋回バランスウェイトには、前記突起部に嵌合する孔又は溝が前記第2嵌合部として設けられること
     を特徴とする請求項2に記載のスクロール圧縮機。
    The end portion of the shaft is provided with a protrusion projecting toward the orbiting scroll as the first fitting portion,
    The scroll compressor according to claim 2, wherein the orbiting balance weight is provided with a hole or groove that fits into the protrusion as the second fitting portion.
  4.  前記旋回軸受と前記旋回バランスウェイトとの間の隙間の径方向の長さよりも、前記第2嵌合部の内壁面と前記突起部との間の隙間の径方向の長さの方が長いこと
     を特徴とする請求項3に記載のスクロール圧縮機。
    The radial length of the gap between the inner wall surface of the second fitting portion and the protrusion is longer than the radial length of the gap between the swivel bearing and the swivel balance weight. The scroll compressor according to claim 3, characterized by:
  5.  前記旋回スクロールと前記フレームとの間の空間を、前記シャフトの中心軸線の方向から見て前記シャフトの前記挿通孔を含む第1領域と、前記第1領域の径方向外側の第2領域と、に仕切る隔壁部材を備えること
     を特徴とする請求項1に記載のスクロール圧縮機。
    The space between the orbiting scroll and the frame includes a first region including the insertion hole of the shaft when viewed from the direction of the central axis of the shaft, and a second region radially outward of the first region, 2. The scroll compressor according to claim 1, further comprising a partition wall member that partitions the compressor.
  6.  前記隔壁部材は、
     前記シャフトの中心軸線の方向から見て環状を呈し、前記旋回軸受を囲む環状部と、
     前記環状部の外周縁から前記フレーム側に延びる周壁と、を備え、
     前記周壁の縁部は、前記フレームに当接していること
     を特徴とする請求項5に記載のスクロール圧縮機。
    The partition member is
    an annular portion that has an annular shape when viewed from the direction of the central axis of the shaft and surrounds the slewing bearing;
    a peripheral wall extending from the outer peripheral edge of the annular portion toward the frame;
    The scroll compressor according to claim 5, wherein the edge of the peripheral wall is in contact with the frame.
  7.  前記隔壁部材における前記旋回スクロール側の面、及び/又は、前記鏡板における前記隔壁部材側の面には、前記第1領域から前記第2領域に潤滑油を導く溝が設けられること
     を特徴とする請求項6に記載のスクロール圧縮機。
    The orbiting scroll side surface of the partition member and/or the partition member side surface of the end plate are provided with grooves for guiding lubricating oil from the first region to the second region. The scroll compressor according to claim 6.
  8.  前記旋回バランスウェイトと前記鏡板との間の隙間に設けられる環状の第1シール部材を備えるとともに、
     前記旋回バランスウェイトと前記フレームとの間の隙間に設けられる環状の第2シール部材を備えること
     を特徴とする請求項1に記載のスクロール圧縮機。
    An annular first seal member provided in a gap between the swivel balance weight and the end plate,
    The scroll compressor according to claim 1, further comprising an annular second seal member provided in a gap between the orbiting balance weight and the frame.
  9.  請求項1から請求項8のいずれか一項に記載のスクロール圧縮機を備えるとともに、室外熱交換器と、膨張弁と、室内熱交換器と、を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 8, and an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger.
PCT/JP2021/025201 2021-07-02 2021-07-02 Scroll compressor and refrigeration cycle device WO2023276157A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025201 WO2023276157A1 (en) 2021-07-02 2021-07-02 Scroll compressor and refrigeration cycle device
JP2023531332A JP7466063B2 (en) 2021-07-02 2021-07-02 Scroll compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025201 WO2023276157A1 (en) 2021-07-02 2021-07-02 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023276157A1 true WO2023276157A1 (en) 2023-01-05

Family

ID=84691048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025201 WO2023276157A1 (en) 2021-07-02 2021-07-02 Scroll compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7466063B2 (en)
WO (1) WO2023276157A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979086A (en) * 1982-10-27 1984-05-08 Hitachi Ltd Scroll hydraulic machine
JPS63159689A (en) * 1986-12-23 1988-07-02 Sanyo Electric Co Ltd Scroll compressor
JPS6463679A (en) * 1987-09-04 1989-03-09 Daikin Ind Ltd Scroll compressor
JPH01273890A (en) * 1988-04-26 1989-11-01 Matsushita Electric Ind Co Ltd Scroll-type compressor
JPH029973A (en) * 1988-06-28 1990-01-12 Daikin Ind Ltd Scroll type fluid device
JPH04175486A (en) * 1990-07-24 1992-06-23 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JPH06101660A (en) * 1992-09-24 1994-04-12 Nippondenso Co Ltd Scroll fluid machine
JPH06173866A (en) * 1992-12-08 1994-06-21 Nippon Soken Inc Scroll type compressor
JPH09112455A (en) * 1995-10-17 1997-05-02 Daikin Ind Ltd Scroll type fluid machine
JP2009024664A (en) * 2007-07-23 2009-02-05 Sanden Corp Scroll fluid machine
JP2018017211A (en) * 2016-07-29 2018-02-01 日立ジョンソンコントロールズ空調株式会社 Scroll compressor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979086A (en) * 1982-10-27 1984-05-08 Hitachi Ltd Scroll hydraulic machine
JPS63159689A (en) * 1986-12-23 1988-07-02 Sanyo Electric Co Ltd Scroll compressor
JPS6463679A (en) * 1987-09-04 1989-03-09 Daikin Ind Ltd Scroll compressor
JPH01273890A (en) * 1988-04-26 1989-11-01 Matsushita Electric Ind Co Ltd Scroll-type compressor
JPH029973A (en) * 1988-06-28 1990-01-12 Daikin Ind Ltd Scroll type fluid device
JPH04175486A (en) * 1990-07-24 1992-06-23 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JPH06101660A (en) * 1992-09-24 1994-04-12 Nippondenso Co Ltd Scroll fluid machine
JPH06173866A (en) * 1992-12-08 1994-06-21 Nippon Soken Inc Scroll type compressor
JPH09112455A (en) * 1995-10-17 1997-05-02 Daikin Ind Ltd Scroll type fluid machine
JP2009024664A (en) * 2007-07-23 2009-02-05 Sanden Corp Scroll fluid machine
JP2018017211A (en) * 2016-07-29 2018-02-01 日立ジョンソンコントロールズ空調株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP7466063B2 (en) 2024-04-11
JPWO2023276157A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN113279958B (en) Scroll compressor having a discharge port
CN113833654B (en) Scroll compressor and refrigeration cycle device
JP2008524515A (en) Variable capacity rotary compressor
JP2018048649A (en) Scroll compressor
WO2023276157A1 (en) Scroll compressor and refrigeration cycle device
US11231035B2 (en) Scroll compressor
JP7157274B2 (en) Scroll compressor and refrigeration cycle device
JP7253655B1 (en) Scroll compressor and refrigeration cycle device
JP7213382B1 (en) Scroll compressor and refrigeration cycle device
JP6598881B2 (en) Scroll compressor
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
JP2023037136A (en) Scroll compressor and refrigeration cycle device
JP7445623B2 (en) Scroll compressor and refrigeration cycle equipment
JP7358674B1 (en) Compressors and air conditioners
JP7357178B1 (en) Compressors and air conditioners
WO2020183605A1 (en) Compressor and refrigeration cycle device
WO2024069770A1 (en) Compressor and air conditioner
JP7212189B1 (en) Hermetic compressor and refrigeration cycle equipment
JPWO2019021432A1 (en) Scroll compressor
WO2022244238A1 (en) Scroll compressor
WO2023026651A1 (en) Scroll compressor and refrigeration device
JP6627557B2 (en) Bearing housing and rotating machine
WO2018198862A1 (en) Scroll compressor, and air conditioner
JPWO2023276157A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531332

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE