WO2018198862A1 - Scroll compressor, and air conditioner - Google Patents

Scroll compressor, and air conditioner Download PDF

Info

Publication number
WO2018198862A1
WO2018198862A1 PCT/JP2018/015740 JP2018015740W WO2018198862A1 WO 2018198862 A1 WO2018198862 A1 WO 2018198862A1 JP 2018015740 W JP2018015740 W JP 2018015740W WO 2018198862 A1 WO2018198862 A1 WO 2018198862A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
cast iron
scroll compressor
orbiting
orbiting scroll
Prior art date
Application number
PCT/JP2018/015740
Other languages
French (fr)
Japanese (ja)
Inventor
啓 武田
太田原 優
彰士 松村
隆雅 足立
洋平 山本
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Publication of WO2018198862A1 publication Critical patent/WO2018198862A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a scroll compressor and an air conditioner including the same.
  • scroll compressors are used as devices for compressing gaseous refrigerant (working fluid).
  • a scroll compressor is a device that compresses refrigerant by using a fixedly installed scroll member (hereinafter referred to as “fixed scroll”) and a scroll member that performs a revolving motion (hereinafter referred to as “revolving scroll”).
  • the scroll compressor forms a compression chamber between the fixed scroll and the orbiting scroll by rotating the orbiting scroll, and compresses the refrigerant in the compression chamber.
  • the scroll compressor has been downsized in order to reduce the environmental load by reducing the amount of material used.
  • the refrigerant circulation rate (kg / s) per unit time is reduced, so that the compression efficiency of the scroll compressor is lowered.
  • the cooling capacity of the air conditioner using the scroll compressor is lowered. Therefore, downsizing of the scroll compressor that does not change the rotation speed (orbiting speed) of the orbiting scroll is not preferable. Therefore, when the scroll compressor is downsized, it is necessary to ensure the same refrigerant circulation amount per unit time as before the downsizing in order to ensure the same compression efficiency as before the downsizing. And in order to satisfy
  • a fixed scroll such as FC250 (Japanese Industrial Standard (JIS)) or the like is used.
  • the orbiting scroll be formed of spheroidal graphite cast iron such as FCD600 (Japanese Industrial Standard (JIS)), for example, while being formed of gray cast iron.
  • Spheroidal graphite cast iron has a relatively large tensile strength (eg, a greater tensile strength than gray cast iron of the same weight). Therefore, the orbiting scroll made of spheroidal graphite cast iron can ensure sufficient strength even if the wall thickness is reduced.
  • the conventional scroll compressor described in Patent Document 1 can achieve high-speed rotation (high-speed rotation) of the orbiting scroll by using the orbiting scroll made of spheroidal graphite cast iron.
  • the conventional scroll compressor described in Patent Document 1 can improve the refrigerant circulation amount per unit time by rotating the orbiting scroll at a high speed (high speed orbiting). Yes.
  • the conventional scroll compressor described in Patent Document 1 uses a orbiting scroll made of spheroidal graphite cast iron in order to realize high-speed rotation (high-speed rotation) of the orbiting scroll.
  • spheroidal graphite cast iron is a material having a relatively high tensile strength, it is difficult to process. Therefore, in the conventional scroll compressor described in Patent Document 1, when the orbiting scroll is manufactured by cutting the spheroidal graphite cast iron, the processing tool is easily worn.
  • the present invention has been made to solve the above-described problem, and achieves high-speed rotation (high-speed rotation) of the orbiting scroll while reducing the amount of wear of the processing tool, and air including the same.
  • the main purpose is to provide a harmony machine.
  • the present invention has a fixed scroll having a spiral wrap erected on a base plate and a spiral wrap erected on the base plate, and between the fixed scroll and the fixed scroll.
  • An orbiting scroll forming a compression chamber for compressing the working fluid; and an electric motor for orbiting the orbiting scroll, wherein the orbiting scroll is a CV graphite cast iron product, and the fixed scroll is a gray cast iron product or a CV graphite cast iron.
  • the wear amount of the machining tool can be reduced while realizing high-speed rotation (high-speed rotation) of the orbiting scroll.
  • composition explanatory drawing of the air conditioner which concerns on embodiment. It is a longitudinal cross-sectional view of the scroll compressor which concerns on embodiment. It is a cross-sectional view of the fixed scroll and the turning scroll of the scroll compressor which concerns on embodiment seen from the lower side. It is explanatory drawing of the amount of wear of a processing tool.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings.
  • Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example.
  • symbol is attached
  • the present embodiment provides a scroll compressor S that reduces the amount of wear of a processing tool while realizing high-speed rotation (high-speed rotation) of the orbiting scroll.
  • the present embodiment provides a scroll compressor S that can use, as a working fluid, a gas containing 70 wt% or more of an R32 refrigerant by rotating the orbiting scroll at a high speed (high-speed orbiting). Intended.
  • the configuration of the air conditioner 101 using the scroll compressor S will be described first, and then the configuration of the scroll compressor S will be described.
  • FIG. 1 is a configuration explanatory diagram of the air conditioner 101.
  • the air conditioner 101 includes a scroll compressor S, a four-way valve 102, a cooling / heating throttle device 103 such as an expander, an indoor heat exchanger 104, and an outdoor heat exchanger 105. These are configured to be annularly connected by a predetermined pipe 106.
  • the air conditioner 101 can perform a cooling operation and a heating operation by switching the four-way valve 102.
  • the air conditioner 101 uses the indoor heat exchanger 104 as an evaporator and the outdoor heat exchanger 105 as a condenser during cooling operation.
  • the air conditioner 101 uses the indoor heat exchanger 104 as a condenser and the outdoor heat exchanger 105 as an evaporator during heating operation.
  • a solid line arrow X indicates the circulation direction of the gaseous refrigerant (working fluid) during the cooling operation
  • a broken line arrow Y indicates the circulation direction of the refrigerant during the heating operation.
  • the air conditioner 101 operates as follows, for example, during cooling operation.
  • the air conditioner 101 first compresses the refrigerant with the scroll compressor S. At this time, the refrigerant is compressed to be in a high temperature and high pressure state. The air conditioner 101 sends the refrigerant in that state to the outdoor heat exchanger 105 via the four-way valve 102.
  • the refrigerant exchanges heat with the air, dissipates heat by the heat exchange, and condenses.
  • the air conditioner 101 sends the condensed refrigerant into the cooling / heating throttle device 103.
  • the refrigerant expands in an equal enthalpy state, and enters a gas-liquid two-phase flow state in which a low-temperature and low-pressure gas refrigerant and a liquid refrigerant are mixed.
  • the air conditioner 101 sends the refrigerant in that state to the indoor heat exchanger 104.
  • the liquid refrigerant exchanges heat with air, absorbs heat and vaporizes by the heat exchange, and becomes a gas refrigerant.
  • the indoor heat exchanger 104 cools the surrounding air by vaporizing the liquid refrigerant.
  • the air conditioner 101 exhibits a cooling function.
  • the air conditioner 101 returns the refrigerant from the indoor heat exchanger 104 to the scroll compressor S.
  • the air conditioner 101 again compresses the refrigerant with the scroll compressor S, and then sequentially sends the refrigerant to the four-way valve 102, the outdoor heat exchanger 105, the cooling / heating throttle device 103, and the indoor heat exchanger 104.
  • the scroll compressor S the four-way valve 102, the outdoor heat exchanger 105, the cooling / heating throttle device 103, and the indoor heat exchanger 104 constitute a refrigerant circulation system, and the refrigerant is between them.
  • the refrigeration cycle is formed by repeating the circulation.
  • FIG. 2 is a longitudinal sectional view of the scroll compressor S.
  • FIG. 3 is a cross-sectional view of the fixed scroll and the orbiting scroll of the scroll compressor according to the embodiment as viewed from below.
  • the scroll compressor according to the present invention includes both an open scroll compressor and a hermetic scroll compressor.
  • description will be made assuming that the scroll compressor S is a hermetic scroll compressor.
  • the description will be made assuming that the scroll compressor S is a vertical device.
  • the scroll compressor S will be described on the assumption that a gas containing 70 wt% or more of R32 refrigerant is used as a working fluid.
  • the scroll compressor S includes a compression mechanism unit 1, an electric motor 2 that drives the compression mechanism unit 1, and a hermetic container 70 that houses them.
  • the compression mechanism unit 1 is disposed above the inside of the sealed container 70, and the electric motor 2 is disposed near the center inside the sealed container 70.
  • the compression mechanism unit 1 includes a fixed scroll 10 and a turning scroll 20.
  • the fixed scroll 10 is a scroll member fixedly installed.
  • the orbiting scroll 20 is a scroll member that performs an orbiting motion.
  • a suction port 13 is provided on the outer peripheral side of the fixed scroll 10.
  • a compression chamber 4 is provided inside the fixed scroll 10. The refrigerant is fed into the compression chamber 4 from the suction port 13 and is compressed in the compression chamber 4. Thereby, a refrigerant
  • coolant will be in a high voltage
  • the fixed scroll 10 includes a base plate 11 (see FIG. 2) and a spiral wrap 12 erected on the base plate 11.
  • the orbiting scroll 20 also has a base plate 21 (see FIG. 2) and a spiral wrap 22 erected on the base plate 21.
  • the orbiting scroll 20 is disposed to be opposed to the fixed scroll 10 so as to be orbitable. That is, the orbiting scroll 20 is arranged so that the base plate 21 faces the base plate 11 and the wrap 22 meshes with the wrap 11 with respect to the fixed scroll 10.
  • a suction chamber 14 communicating with the suction port 13 is provided.
  • a discharge port 15 communicating with the discharge chamber 5 is provided at the center of the fixed scroll 10.
  • the suction chamber 14 is a space before the compression chamber 4 is formed, and is divided into a space on the compression chamber 4 side and a space on the suction chamber 14 side when the compression chamber 4 is formed.
  • the scroll compressor S forms the compression chamber 4 for compressing the refrigerant between the wrap 12 of the fixed scroll 10 and the wrap 22 of the orbiting scroll 20 by turning the orbiting scroll 20.
  • Two compression chambers 4 are formed on the outer line side and the inner line side of the wrap 22 of the orbiting scroll 20.
  • the compression chamber 4a formed on the outer line side of the wrap 22 of the orbiting scroll 20 is referred to as “outer line side compression chamber 4a”
  • the compression chamber 4b formed on the inner line side of the wrap 22 of the orbiting scroll 20 is referred to as “inner side compression”. Room 4b ".
  • the compression mechanism unit 1 and the electric motor 2 are connected via a rotating shaft 30.
  • the electric motor 2 compresses the refrigerant by driving the orbiting scroll 20 of the compression mechanism unit 1 through the rotating shaft 30.
  • the rotary shaft 30 is supported by a main bearing 46 provided above the electric motor 2 and a sub-bearing 56 provided below the electric motor 2.
  • the main bearing 46 is fixed to the frame 40.
  • the frame 40 is a member fixed to the inner wall surface of the sealed container 70.
  • the auxiliary bearing 56 is fixed inside the sealed container 70.
  • a crank pin 31 is provided at the tip (upper end) of the rotating shaft 30.
  • the crankpin 31 is inserted into the orbiting bearing 26 of the shaft support portion 23 that protrudes from the back surface (on the side opposite to the lap) of the base plate 21 of the orbiting scroll 20.
  • the slewing bearing 26 is a bearing formed inside the shaft support portion 23.
  • the shaft support 23 and the slewing bearing 26 are provided at a position deviated from the center of the base plate 21.
  • the crank pin 31 has a shape that swells in one direction so as to be fitted to the swivel bearing 26.
  • a rotation prevention joint 51 is provided on the back surface of the base plate 21 of the orbiting scroll 20.
  • the rotation prevention joint 51 is a joint that restricts the rotation of the orbiting scroll 20 with respect to the fixed scroll 10.
  • the anti-rotation joint 51 is disposed between the orbiting scroll 20 and the frame 40.
  • the refrigerant is introduced into the suction chamber 14 from the suction port 13.
  • the compression chamber 4 is formed by the wrap 12 of the fixed scroll 10 and the wrap 22 of the orbiting scroll 20 in accordance with the orbiting motion of the orbiting scroll 20.
  • the compression chamber 4 moves to the center side with the orbiting motion of the orbiting scroll 20. At that time, the volume of the compression chamber 4 decreases. Thereby, the scroll compressor S compresses the refrigerant sucked into the compression chamber 4. The compressed refrigerant is discharged from the discharge port 15 to the discharge chamber 5.
  • the fixed scroll 10 is made of gray iron castings
  • the orbiting scroll 20 is made of CV graphite cast irons. Therefore, the fixed scroll 10 is a gray cast iron product, and the orbiting scroll 20 is a CV graphite cast iron product.
  • Gray cast iron is cast iron having massive graphite in the structure of the material.
  • CV graphite cast iron is cast iron having worm-like graphite in the material structure.
  • HB Brinell hardness
  • gray iron castings include FC100, FC150, FC200, FC250, FC300, and FC350 defined in JIS G5501-1995. However, the present invention is not limited to only these examples. Table 1 shows the type, tensile strength, and Brinell hardness (HB) of gray cast iron. The unit of tensile strength is “N / mm 2 ”. Brinell hardness (HB) is unitless.
  • Spheroidal graphite iron castings include, for example, FCD350-22, FCD350-22L, FCD400-18, FCD400-18L, FCD400-15, FCD450-10, FCD500 defined in JIS G5502-2001. -7, FCD600-3, FCD700-2, FCD800-2 and the like. Table 2 shows the types of spheroidal graphite cast iron, tensile strength, and Brinell hardness (HB).
  • CV graphite cast irons examples include FCV300, FCV350, FCV400, FCV450, FCV500 and the like defined in JIS G5505-2013. However, the present invention is not limited to only these examples. Table 3 shows the type, tensile strength, and Brinell hardness (HB) of CV graphite cast iron.
  • the fixed scroll 10 is formed of gray cast iron
  • the orbiting scroll 20 is formed of CV graphite cast iron.
  • Table 4 and Table 5 an example (see Table 4 and Table 5) is illustrated as an example of the scroll compressor S according to the present embodiment, and Comparative Examples 1 and 2 (see Table 4 and Table 5) are compared with the Example. Explain why.
  • Comparative Example 1 corresponds to a configuration example of a scroll compressor according to a technique prior to the conventional scroll compressor described in Patent Document 1 (Japanese Patent Laid-Open No. 2016-3645).
  • Comparative Example 2 corresponds to a configuration example of a conventional scroll compressor described in Patent Document 1 described above.
  • the scroll compressor S1 (not shown) of the comparative example 1 the scroll compressor S2 (not shown) of the comparative example 2, and the scroll compressor S of the example have the same configuration, the same shape, and the same size. It is assumed that only the material forming the orbiting scroll 20 is different.
  • the material of the fixed scroll 10 is FC250 made of gray cast iron.
  • the material of the orbiting scroll 20 of Comparative Example 1 is gray cast iron FC250.
  • the material of the orbiting scroll 20 of Comparative Example 2 is spheroidal graphite cast iron FCD600.
  • the material of the orbiting scroll 20 of the embodiment is FCV450 of CV graphite cast iron.
  • the scroll compressor S1 (not shown) when the scroll compressor S1 (not shown) is downsized, it is necessary to secure a refrigerant circulation amount per unit time equivalent to that before downsizing in order to ensure the same compression efficiency as before downsizing. There is.
  • the scroll compressor S1 (not shown) preferably rotates the orbiting scroll 20 at a high speed (high speed orbit).
  • the centrifugal force of the orbiting scroll 20 increases.
  • the load applied to peripheral components of the orbiting scroll 20 increases.
  • the reliability of the peripheral parts of the orbiting scroll 20 is reduced, vibration and noise are increased, and the compression efficiency is reduced.
  • the orbiting scroll 20 In order to reduce the centrifugal force of the orbiting scroll 20, it is necessary to reduce the weight of the orbiting scroll 20. In order to reduce the weight of the orbiting scroll 20, downsizing of the orbiting scroll 20 is effective. However, when the orbiting scroll 20 is downsized, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21, the thickness of the wrap 22, the thickness of the shaft support portion 23, etc.) is reduced. The strength of the will decrease. Therefore, in this case, it is desirable to form the orbiting scroll 20 with a special material having a high tensile strength (for example, high-strength gray cast iron). However, such materials are difficult to obtain due to low flowability. Also, such materials are difficult to process due to their high tensile strength.
  • a special material having a high tensile strength for example, high-strength gray cast iron
  • the scroll compressor S2 (not shown) of the comparative example 2 is different from the scroll compressor S1 (not shown) of the comparative example 1 described above in that the orbiting scroll 20 is formed of spheroidal graphite cast iron (FCD600). It is different. Spheroidal graphite cast iron (FCD600) has a greater tensile strength than gray cast iron (FC250) used in Comparative Example 1. Here, description will be made assuming that the tensile strength of spheroidal graphite cast iron (FCD600) is 600 N / mm 2 or more and less than 700 N / mm 2 .
  • Scroll compressor S2 of Comparative Example 2 (not shown), as the material of the orbiting scroll 20, for example, tensile strength was the "700 N / mm 2" very close 699N / mm 2 of CV graphite cast iron to the upper limit value of the , The tensile strength of the material can be “2.8” times the lower limit (250 N / mm 2 ) of gray cast iron (FC250) used in Comparative Example 1. Therefore, in this case, when the scroll compressor S2 (not shown) of the comparative example 2 is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness (for example, Even if the thickness of the base plate 21, the thickness of the wrap 22, the thickness of the shaft support portion 23, etc. is reduced by a factor of “0.36”, sufficient strength can be secured. Note that the value of “2.8” times as described above is calculated by “699/250”. Further, the above-mentioned value of “0.36” is calculated by “1 / 2.2.8”.
  • Such a scroll compressor S2 (not shown) of Comparative Example 2 can be reduced in weight while ensuring sufficient strength by reducing the thickness of the orbiting scroll 20. Moreover, the scroll compressor S2 (not shown) of Comparative Example 2 can reduce the centrifugal force applied to the orbiting scroll 20 when the orbiting scroll 20 rotates (turns). Therefore, the scroll compressor S2 (not shown) of Comparative Example 2 can realize the high-speed rotation (high-speed rotation) of the orbiting scroll 20.
  • the scroll compressor S2 (not shown) of Comparative Example 2 can improve the refrigerant circulation rate per unit time by rotating the orbiting scroll 20 at a high speed (high speed orbit), and thus can be reduced in size. I have to.
  • the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 has a higher tensile strength than the gray cast iron (FC250) used in Comparative Example 1, and is difficult to process.
  • spheroidal graphite cast iron tends to wear a processing tool, when manufacturing the turning scroll 20 by cutting.
  • the orbiting scroll 20 is formed of spheroidal graphite cast iron, the useful life of the processing tool is shortened, so that the frequency of replacement of the processing tool increases, and as a result, the time for exchanging the processing tool increases. Therefore, it is not preferable to form the orbiting scroll 20 with spheroidal graphite cast iron because the productivity of the orbiting scroll 20 is lowered and the manufacturing cost is increased.
  • the scroll compressor S2 (not shown) of Comparative Example 2 is desired to reduce the wear amount of the processing tool.
  • the scroll compressor S of the embodiment is a scroll scroll made of CV graphite cast iron (FCV450). 20 is different.
  • the CV graphite cast iron (FCV450) has a larger tensile strength than the gray cast iron (FC250) used in Comparative Example 1. .
  • the tensile strength of the CV graphite cast iron used in the examples is preferably 450 N / mm 2 or more. Further, the tensile strength of the CV graphite cast iron used in the examples is sufficiently smaller than the upper limit of the tensile strength of the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 (for example, less than 550 N / mm 2). ) Is preferable.
  • the material of the orbiting scroll 20 for example, a very close 549N / mm 2 of CV graphite cast iron to the upper limit of the tensile strength was the "less than 550 N / mm 2"
  • the tensile strength of the material can be set to “2.2” times the lower limit (250 N / mm 2 ) of gray cast iron (FC250) used in Comparative Example 1. Therefore, in this case, when the scroll compressor S of the embodiment is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21).
  • the scroll compressor S of an Example uses the CV graphite cast iron of 450 N / mm ⁇ 2 > whose tensile strength is a lower limit as a material of the turning scroll 20, for example, the tensile strength of the material is compared with Comparative Example 1.
  • the scroll compressor S of the embodiment has a strength that is at least “1.8” times that of the orbiting scroll 20 when compared with the scroll compressor S1 (not shown) of the first comparative example. can do.
  • the scroll compressor S of the embodiment when compared with the scroll compressor S1 (not shown) of Comparative Example 1 described above, the scroll compressor S of the embodiment has a minimum allowable tensile strength against a load applied to the orbiting scroll 20 of “1. 8 ”times. Therefore, in this case, when the scroll compressor S of the embodiment is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21). Even if the thickness of the sheath 22 (the thickness of the wrap 22 and the thickness of the shaft support portion 23, etc.) is reduced by a factor of “0.56”, sufficient strength without damage can be ensured. Note that the value of “1.8” times described above is calculated by “450/250”. Further, the above-mentioned value of “0.56” is calculated by “1 / 1.8”.
  • the scroll compressor S of such an embodiment is turned by reducing the thickness of the orbiting scroll 20 and reducing the thickness. It is possible to reduce the weight of the orbiting scroll 20 by reducing the thickness of the orbiting scroll 20 while ensuring sufficient strength of the scroll 20. And the scroll compressor S of an Example can reduce the centrifugal force added to the turning scroll 20 at the time of rotation (turning) of the turning scroll 20 by reducing the weight of the turning scroll 20. Therefore, the scroll compressor S of the embodiment can realize high-speed rotation (high-speed rotation) of the orbiting scroll 20.
  • the scroll compressor S of an Example can improve the refrigerant
  • coolant circulation amount per unit time means the refrigerant
  • the scroll compressor S of an Example has the tensile strength of a value sufficiently smaller than the upper limit of the tensile strength of the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 as the material of the orbiting scroll 20.
  • CV graphite cast iron (FCV450) is used.
  • the scroll compressor S of such an example can prolong the useful life of the processing tool as compared with the scroll compressor S2 (not shown) of the comparative example 2, it reduces the replacement frequency of the processing tool, As a result, the working time for exchanging the processing tool can be reduced.
  • FIG. 4 shows the amount of wear of the processing tool when the orbiting scroll 20 is manufactured in the comparative example 1, the comparative example 2, and the example.
  • FIG. 4 is an explanatory diagram of the wear amount of the processing tool.
  • the horizontal axis indicates the number of orbiting scrolls processed, and the vertical axis indicates the wear amount of the processing tool.
  • the symbol “Th” indicates a replacement reference value of the machining tool.
  • the line graph shown in FIG. 4 shows the number of processed orbiting scrolls 20 calculated from the result of processing a part of the orbiting scroll 20.
  • Comparative Example 1 As shown in FIG. 4, in Comparative Example 1, even when 100 or more orbiting scrolls 20 were machined, the amount of wear of the machining tool did not reach the machining tool replacement reference value Th at all. Therefore, the comparative example 1 can be used over a relatively long period of time without exchanging the processing tool. This is because gray cast iron (FC250) used in Comparative Example 1 is a material with relatively high workability.
  • the comparative example 2 can use a processing tool only for a comparatively short period.
  • the replacement frequency of the machining tool is increased as compared with the comparative example 1, the time for exchanging the machining tool is increased.
  • the comparative example 2 decreases the productivity of the orbiting scroll 20 and increases the manufacturing cost.
  • the tensile strength of the CV graphite cast iron forming the orbiting scroll 20 is preferably 450 N / mm 2 or more. Moreover, it is preferable that the tensile strength of the CV graphite cast iron which forms the turning scroll 20 is less than 550 N / mm ⁇ 2 >.
  • the Brinell hardness of the CV graphite cast iron forming the orbiting scroll 20 is 170 or more and less than 250, and the tensile strength of the gray cast iron forming the fixed scroll 10 is 250 N / mm 2. It is preferably less than 300 N / mm 2 and the Brinell hardness of the gray cast iron is 241 or less.
  • the Brinell hardness of CV graphite cast iron and the tensile strength and Brinell hardness of gray cast iron are within such ranges, so that the wear resistance accompanying the contact between the orbiting scroll 20 and the fixed scroll 10 is reduced. Can be improved. As a result, the scroll compressor S can suppress a decrease in compression performance due to wear.
  • the tensile strength of CV graphite cast iron has become less than 450 N / mm 2 or more 550 N / mm 2, and illustrates FCV450 One example of such a CV graphite cast iron.
  • the present invention is not limited only to this illustration.
  • the scroll compressor S according to the present embodiment uses CV graphite cast iron (for example, FCV450) that is easier to process than the spheroidal graphite cast iron (for example, FCD600) as the material of the orbiting scroll 20, wear of the processing tool The amount can be reduced. Therefore, the scroll compressor S can be used over a relatively long period of time without exchanging the processing tool. Since such a scroll compressor S can reduce the replacement frequency of a processing tool, it can reduce the replacement work time of a processing tool. As a result, the productivity of the orbiting scroll 20 can be improved and the manufacturing cost can be reduced.
  • CV graphite cast iron for example, FCV450
  • FCD600 spheroidal graphite cast iron
  • the scroll compressor S according to the present embodiment uses CV graphite cast iron (for example, FCV450) that is easy to obtain as a material of the orbiting scroll 20, the productivity of the orbiting scroll 20 is also increased. And the manufacturing cost can be reduced.
  • CV graphite cast iron for example, FCV450
  • the scroll compressor S that can use, as the working fluid, the gas containing 70 wt% or more of the R32 refrigerant by rotating the orbiting scroll at a high speed (high speed revolution). Is intended to provide. This is due to the following reason.
  • the R32 refrigerant is a working fluid having a lower density than the conventionally used R410A refrigerant.
  • Such R32 refrigerant leaks between the outer side compression chamber 4a (see FIG. 3) and the inner side compression chamber 4b (see FIG. 3) through the tip of the wrap 22 of the orbiting scroll 20 during the operation of the scroll compressor. It tends to be easy.
  • the leakage amount of R32 refrigerant increases.
  • the thickness of the wrap 22 of the orbiting scroll 20 is reduced in order to reduce the weight of the orbiting scroll 20, the area of the tip of the wrap 22 is reduced.
  • the time required for communication between the outer line side compression chamber 4a (see FIG. 3) and the inner line side compression chamber 4b (see FIG. 3) is prolonged. The amount increases.
  • the scroll compressor S according to the present embodiment can reduce the weight of the orbiting scroll 20 while ensuring the strength of the orbiting scroll 20. Therefore, the scroll compressor S according to the present embodiment can rotate the orbiting scroll 20 at a high speed (high speed revolution), and can efficiently reduce the leakage amount of the R32 refrigerant.
  • a scroll compressor S according to the present embodiment can use, for example, a gas containing 70 wt% or more of R32 refrigerant as the working fluid.
  • the scroll compressor S according to the present embodiment can improve the reliability of peripheral components of the orbiting scroll 20, reduce vibration and noise, and improve the compression efficiency.
  • the scroll compressor S according to this embodiment can reduce the environmental load because the global warming potential of the R32 refrigerant is lower than the global warming potential of the R410A refrigerant that has been conventionally used.
  • the scroll compressor S according to the present embodiment, it is possible to reduce the amount of wear of the processing tool while realizing high-speed rotation (high-speed rotation) of the orbiting scroll 20.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment.
  • the material of the fixed scroll 10 has been described as being gray cast iron (FC250).
  • the material of the fixed scroll 10 can also be CV graphite cast iron.
  • the material of the fixed scroll 10 can be the same FCV 450 as the orbiting scroll 20.
  • the tensile strength of the fixed scroll 10 is 450 N / mm 2 or more
  • the Brinell hardness of the fixed scroll 10 is 170 or more and less than 250.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

A scroll compressor (S) comprises: a fixed scroll (10) having a spiral-shaped wrap (12) which is disposed upright on a base plate (11); an orbiting scroll (20) having a spiral-shaped wrap (22) which is disposed upright on a base plate (21); and an electric motor (2) that causes the orbiting scroll to orbit. The fixed scroll (10) and the orbiting scroll (20) are disposed such that the wraps (12, 22) thereof engage with each other. The orbiting scroll (20) is a CV graphite cast iron product. The fixed scroll (10) is a gray cast iron product or a CV graphite cast iron product.

Description

スクロール圧縮機、及び、空気調和機Scroll compressor and air conditioner
 本発明は、スクロール圧縮機、及び、これを備える空気調和機に関する。 The present invention relates to a scroll compressor and an air conditioner including the same.
 空気調和機には、ガス状の冷媒(作動流体)を圧縮する装置としてスクロール圧縮機が用いられている。スクロール圧縮機は、固定設置されたスクロール部材(以下、「固定スクロール」と称する)と旋回運動を行うスクロール部材(以下、「旋回スクロール」と称する)とを用いて冷媒を圧縮する装置である。スクロール圧縮機は、旋回スクロールを旋回させることにより、固定スクロールと旋回スクロールとの間に圧縮室を形成して、圧縮室で冷媒を圧縮する。 In air conditioners, scroll compressors are used as devices for compressing gaseous refrigerant (working fluid). A scroll compressor is a device that compresses refrigerant by using a fixedly installed scroll member (hereinafter referred to as “fixed scroll”) and a scroll member that performs a revolving motion (hereinafter referred to as “revolving scroll”). The scroll compressor forms a compression chamber between the fixed scroll and the orbiting scroll by rotating the orbiting scroll, and compresses the refrigerant in the compression chamber.
 そのスクロール圧縮機は、近年、材料の使用量を低減して環境負荷を低減するために、小型化が図られている。しかしながら、旋回スクロールの回転速度(旋回速度)を変更することなく小型化した場合に、単位時間当たりの冷媒循環量(kg/s)が減少するため、スクロール圧縮機の圧縮効率が低下する。これにより、そのスクロール圧縮機を用いる空気調和機の冷却能力が低下する。そのため、このような旋回スクロールの回転速度(旋回速度)を変更しないスクロール圧縮機の小型化は好ましくない。したがって、スクロール圧縮機は、小型化する場合に、小型する前と同等の圧縮効率を確保するために、小型する前と同等の単位時間当たりの冷媒循環量を確保する必要がある。そして、このような要望を満たすために、スクロール圧縮機は、旋回スクロールを高速回転(高速旋回)させることが好ましい。 In recent years, the scroll compressor has been downsized in order to reduce the environmental load by reducing the amount of material used. However, when the size of the orbiting scroll is reduced without changing the rotation speed (orbiting speed), the refrigerant circulation rate (kg / s) per unit time is reduced, so that the compression efficiency of the scroll compressor is lowered. Thereby, the cooling capacity of the air conditioner using the scroll compressor is lowered. Therefore, downsizing of the scroll compressor that does not change the rotation speed (orbiting speed) of the orbiting scroll is not preferable. Therefore, when the scroll compressor is downsized, it is necessary to ensure the same refrigerant circulation amount per unit time as before the downsizing in order to ensure the same compression efficiency as before the downsizing. And in order to satisfy | fill such a request, it is preferable that a scroll compressor rotates a turning scroll at high speed (high-speed turning).
 そこで、例えば特許文献1では、スクロール圧縮機の小型化を実現しつつ、旋回スクロールの高速回転(高速旋回)を実現するために、固定スクロールを、例えばFC250(日本工業規格(JIS))等のねずみ鋳鉄で形成すると共に、旋回スクロールを、例えばFCD600(日本工業規格(JIS))等の球状黒鉛鋳鉄で形成することが提案されている。球状黒鉛鋳鉄は、比較的大きな引張強さ(例えば、同じ重さのねずみ鋳鉄よりも大きな引張強さ)を有している。そのため、球状黒鉛鋳鉄製の旋回スクロールは、肉厚を薄くしても十分な強度を確保することができる。このような球状黒鉛鋳鉄製の旋回スクロールは、肉厚を薄くすることにより、十分な強度を確保しながら軽量化を図ることができる。しかも、球状黒鉛鋳鉄製の旋回スクロールは、回転(旋回)時に自身に加わる遠心力を小さくすることができる。そのため、特許文献1に記載された従来のスクロール圧縮機は、球状黒鉛鋳鉄製の旋回スクロールを用いることにより、旋回スクロールの高速回転(高速旋回)を実現することができる。そして、特許文献1に記載された従来のスクロール圧縮機は、旋回スクロールを高速回転(高速旋回)させることにより、単位時間当たりの冷媒循環量を向上させることができるため、小型化を可能にしている。 Therefore, for example, in Patent Document 1, in order to realize high-speed rotation (high-speed rotation) of the orbiting scroll while realizing downsizing of the scroll compressor, a fixed scroll such as FC250 (Japanese Industrial Standard (JIS)) or the like is used. It has been proposed that the orbiting scroll be formed of spheroidal graphite cast iron such as FCD600 (Japanese Industrial Standard (JIS)), for example, while being formed of gray cast iron. Spheroidal graphite cast iron has a relatively large tensile strength (eg, a greater tensile strength than gray cast iron of the same weight). Therefore, the orbiting scroll made of spheroidal graphite cast iron can ensure sufficient strength even if the wall thickness is reduced. By reducing the wall thickness of such a spheroidal graphite cast iron orbiting scroll, it is possible to reduce the weight while ensuring sufficient strength. Moreover, the orbiting scroll made of spheroidal graphite cast iron can reduce the centrifugal force applied to itself during rotation (turning). Therefore, the conventional scroll compressor described in Patent Document 1 can achieve high-speed rotation (high-speed rotation) of the orbiting scroll by using the orbiting scroll made of spheroidal graphite cast iron. The conventional scroll compressor described in Patent Document 1 can improve the refrigerant circulation amount per unit time by rotating the orbiting scroll at a high speed (high speed orbiting). Yes.
特開2016-3645号公報JP 2016-3645 A
 しかしながら、特許文献1に記載された従来のスクロール圧縮機は、以下に説明するように、旋回スクロールを製造する際に、加工工具が摩耗し易い、という課題があった。 However, as described below, the conventional scroll compressor described in Patent Document 1 has a problem that the processing tool is easily worn when the orbiting scroll is manufactured.
 特許文献1に記載された従来のスクロール圧縮機は、旋回スクロールの高速回転(高速旋回)を実現するために、球状黒鉛鋳鉄製の旋回スクロールを用いている。しかしながら、球状黒鉛鋳鉄は、引張強さが比較的大きい材料であるため、加工し難い。そのため、特許文献1に記載された従来のスクロール圧縮機では、球状黒鉛鋳鉄を切削して旋回スクロールを製造するときに、加工工具が摩耗し易かった。 The conventional scroll compressor described in Patent Document 1 uses a orbiting scroll made of spheroidal graphite cast iron in order to realize high-speed rotation (high-speed rotation) of the orbiting scroll. However, since spheroidal graphite cast iron is a material having a relatively high tensile strength, it is difficult to process. Therefore, in the conventional scroll compressor described in Patent Document 1, when the orbiting scroll is manufactured by cutting the spheroidal graphite cast iron, the processing tool is easily worn.
 本発明は、前記した課題を解決するためになされたものであり、旋回スクロールの高速回転(高速旋回)を実現しつつ、加工工具の摩耗量を低減するスクロール圧縮機、及び、これを備える空気調和機を提供することを主な目的とする。 The present invention has been made to solve the above-described problem, and achieves high-speed rotation (high-speed rotation) of the orbiting scroll while reducing the amount of wear of the processing tool, and air including the same. The main purpose is to provide a harmony machine.
 前記目的を達成するため、本発明は、台板に立設された渦巻き状のラップを有する固定スクロールと、台板に立設された渦巻き状のラップを有すると共に、前記固定スクロールとの間に作動流体を圧縮する圧縮室を形成する旋回スクロールと、前記旋回スクロールを旋回させる電動機と、を備え、前記旋回スクロールは、CV黒鉛鋳鉄品であり、前記固定スクロールは、ねずみ鋳鉄品又はCV黒鉛鋳鉄品であることを特徴とするスクロール圧縮機、及び、このスクロール圧縮機を備える空気調和機とする。
 その他の手段は、後記する。
In order to achieve the above object, the present invention has a fixed scroll having a spiral wrap erected on a base plate and a spiral wrap erected on the base plate, and between the fixed scroll and the fixed scroll. An orbiting scroll forming a compression chamber for compressing the working fluid; and an electric motor for orbiting the orbiting scroll, wherein the orbiting scroll is a CV graphite cast iron product, and the fixed scroll is a gray cast iron product or a CV graphite cast iron. A scroll compressor characterized by being a product, and an air conditioner including the scroll compressor.
Other means will be described later.
 本発明によれば、旋回スクロールの高速回転(高速旋回)を実現しつつ、加工工具の摩耗量を低減することができる。 According to the present invention, the wear amount of the machining tool can be reduced while realizing high-speed rotation (high-speed rotation) of the orbiting scroll.
実施形態に係る空気調和機の構成説明図である。It is composition explanatory drawing of the air conditioner which concerns on embodiment. 実施形態に係るスクロール圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the scroll compressor which concerns on embodiment. 下側から見た実施形態に係るスクロール圧縮機の固定スクロールと旋回スクロールの横断面図である。It is a cross-sectional view of the fixed scroll and the turning scroll of the scroll compressor which concerns on embodiment seen from the lower side. 加工工具の摩耗量の説明図である。It is explanatory drawing of the amount of wear of a processing tool.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings. Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example. Moreover, in each figure, the same code | symbol is attached | subjected about the common component and the same component, and those overlapping description is abbreviate | omitted.
 [実施形態]
 本実施形態は、旋回スクロールの高速回転(高速旋回)を実現しつつ、加工工具の摩耗量を低減するスクロール圧縮機Sを提供するものである。特に、本実施形態は、旋回スクロールを高速回転(高速旋回)させることにより、R32冷媒が70重量%以上含まれているガスを作動流体として使用することができるスクロール圧縮機Sを提供することを意図している。以下、まず、スクロール圧縮機Sを用いる空気調和機101の構成について説明し、その後にスクロール圧縮機Sの構成について説明する。
[Embodiment]
The present embodiment provides a scroll compressor S that reduces the amount of wear of a processing tool while realizing high-speed rotation (high-speed rotation) of the orbiting scroll. In particular, the present embodiment provides a scroll compressor S that can use, as a working fluid, a gas containing 70 wt% or more of an R32 refrigerant by rotating the orbiting scroll at a high speed (high-speed orbiting). Intended. Hereinafter, the configuration of the air conditioner 101 using the scroll compressor S will be described first, and then the configuration of the scroll compressor S will be described.
 <空気調和機の構成>
 以下、図1を参照して、本実施形態に係る空気調和機101の構成につき説明する。図1は、空気調和機101の構成説明図である。
<Configuration of air conditioner>
Hereinafter, with reference to FIG. 1, it demonstrates per structure of the air conditioner 101 which concerns on this embodiment. FIG. 1 is a configuration explanatory diagram of the air conditioner 101.
 図1に示すように、空気調和機101は、スクロール圧縮機Sと、四方弁102と、膨張器等の冷暖房絞り装置103と、室内熱交換器104と、室外熱交換器105とを備えており、これらが所定の配管106で環状に接続された構成になっている。 As shown in FIG. 1, the air conditioner 101 includes a scroll compressor S, a four-way valve 102, a cooling / heating throttle device 103 such as an expander, an indoor heat exchanger 104, and an outdoor heat exchanger 105. These are configured to be annularly connected by a predetermined pipe 106.
 空気調和機101は、四方弁102を切替えることで冷房運転と暖房運転とを行うことができる。空気調和機101は、冷房運転時に、室内熱交換器104を蒸発器として使用すると共に、室外熱交換器105を凝縮器として使用する。一方、空気調和機101は、暖房運転時に、室内熱交換器104を凝縮器として使用すると共に、室外熱交換器105を蒸発器として使用する。 The air conditioner 101 can perform a cooling operation and a heating operation by switching the four-way valve 102. The air conditioner 101 uses the indoor heat exchanger 104 as an evaporator and the outdoor heat exchanger 105 as a condenser during cooling operation. On the other hand, the air conditioner 101 uses the indoor heat exchanger 104 as a condenser and the outdoor heat exchanger 105 as an evaporator during heating operation.
 図1中、実線矢印Xは冷房運転時におけるガス状の冷媒(作動流体)の循環方向を示しており、また、破線矢印Yは暖房運転時における冷媒の循環方向を示している。空気調和機101は、例えば、冷房運転時に、以下のように動作する。 1, a solid line arrow X indicates the circulation direction of the gaseous refrigerant (working fluid) during the cooling operation, and a broken line arrow Y indicates the circulation direction of the refrigerant during the heating operation. The air conditioner 101 operates as follows, for example, during cooling operation.
 冷房運転時において、まず、空気調和機101は、スクロール圧縮機Sで冷媒を圧縮する。このとき、冷媒は、圧縮されることにより、高温高圧状態になる。空気調和機101は、四方弁102を介して、その状態の冷媒を室外熱交換器105に送り込む。 During the cooling operation, the air conditioner 101 first compresses the refrigerant with the scroll compressor S. At this time, the refrigerant is compressed to be in a high temperature and high pressure state. The air conditioner 101 sends the refrigerant in that state to the outdoor heat exchanger 105 via the four-way valve 102.
 室外熱交換器105内において、冷媒は、空気との間で熱交換を行い、その熱交換により放熱して凝縮する。空気調和機101は、凝縮された冷媒を冷暖房絞り装置103に送り込む。 In the outdoor heat exchanger 105, the refrigerant exchanges heat with the air, dissipates heat by the heat exchange, and condenses. The air conditioner 101 sends the condensed refrigerant into the cooling / heating throttle device 103.
 冷暖房絞り装置103内において、冷媒は、等エンタルピ膨張し、低温低圧状態のガス冷媒と液冷媒とが混在した気液二相流の状態になる。空気調和機101は、その状態の冷媒を室内熱交換器104に送り込む。 In the cooling / heating throttle device 103, the refrigerant expands in an equal enthalpy state, and enters a gas-liquid two-phase flow state in which a low-temperature and low-pressure gas refrigerant and a liquid refrigerant are mixed. The air conditioner 101 sends the refrigerant in that state to the indoor heat exchanger 104.
 室内熱交換器104内において、液冷媒は、空気との間で熱交換を行い、その熱交換で吸熱して気化し、ガス冷媒となる。このとき、液冷媒が気化することにより、室内熱交換器104が周囲の空気を冷却する。その結果、空気調和機101は、冷房機能を発揮する。 In the indoor heat exchanger 104, the liquid refrigerant exchanges heat with air, absorbs heat and vaporizes by the heat exchange, and becomes a gas refrigerant. At this time, the indoor heat exchanger 104 cools the surrounding air by vaporizing the liquid refrigerant. As a result, the air conditioner 101 exhibits a cooling function.
 この後、空気調和機101は、冷媒を室内熱交換器104からスクロール圧縮機Sに戻す。そして、空気調和機101は、再び、スクロール圧縮機Sで冷媒を圧縮した後、四方弁102、室外熱交換器105、冷暖房絞り装置103、及び室内熱交換器104に順に送り込む。 Thereafter, the air conditioner 101 returns the refrigerant from the indoor heat exchanger 104 to the scroll compressor S. The air conditioner 101 again compresses the refrigerant with the scroll compressor S, and then sequentially sends the refrigerant to the four-way valve 102, the outdoor heat exchanger 105, the cooling / heating throttle device 103, and the indoor heat exchanger 104.
 このようにして空気調和機101は、スクロール圧縮機S、四方弁102、室外熱交換器105、冷暖房絞り装置103、及び室内熱交換器104で冷媒の循環系を構成し、これらの間で冷媒の循環を繰り返すことで冷凍サイクルを形成する。 Thus, in the air conditioner 101, the scroll compressor S, the four-way valve 102, the outdoor heat exchanger 105, the cooling / heating throttle device 103, and the indoor heat exchanger 104 constitute a refrigerant circulation system, and the refrigerant is between them. The refrigeration cycle is formed by repeating the circulation.
 <スクロール圧縮機の構成>
 以下、図2及び図3を参照して、スクロール圧縮機Sの構成につき説明する。図2は、スクロール圧縮機Sの縦断面図である。図3は、下側から見た実施形態に係るスクロール圧縮機の固定スクロールと旋回スクロールの横断面図である。
<Configuration of scroll compressor>
Hereinafter, the configuration of the scroll compressor S will be described with reference to FIGS. 2 and 3. FIG. 2 is a longitudinal sectional view of the scroll compressor S. FIG. 3 is a cross-sectional view of the fixed scroll and the orbiting scroll of the scroll compressor according to the embodiment as viewed from below.
 本発明に係るスクロール圧縮機は、開放型スクロール圧縮機及び密閉型スクロール圧縮機の双方を含んでいる。ここでは、スクロール圧縮機Sが密閉型スクロール圧縮機であるものとして説明する。また、スクロール圧縮機Sが縦型の装置であるものとして説明する。また、スクロール圧縮機Sは、R32冷媒が70重量%以上含まれているガスを作動流体として使用するものとして説明する。 The scroll compressor according to the present invention includes both an open scroll compressor and a hermetic scroll compressor. Here, description will be made assuming that the scroll compressor S is a hermetic scroll compressor. The description will be made assuming that the scroll compressor S is a vertical device. The scroll compressor S will be described on the assumption that a gas containing 70 wt% or more of R32 refrigerant is used as a working fluid.
 図2に示すように、スクロール圧縮機Sは、圧縮機構部1と、圧縮機構部1を駆動する電動機2と、これらを収納する密閉容器70とを備えている。図示例では、圧縮機構部1は、密閉容器70の内部の上方に配置され、電動機2は、密閉容器70の内部の中央付近に配置されている。 As shown in FIG. 2, the scroll compressor S includes a compression mechanism unit 1, an electric motor 2 that drives the compression mechanism unit 1, and a hermetic container 70 that houses them. In the illustrated example, the compression mechanism unit 1 is disposed above the inside of the sealed container 70, and the electric motor 2 is disposed near the center inside the sealed container 70.
 圧縮機構部1は、固定スクロール10と、旋回スクロール20とを備えている。固定スクロール10は、固定設置されたスクロール部材である。旋回スクロール20は、旋回運動を行うスクロール部材である。 The compression mechanism unit 1 includes a fixed scroll 10 and a turning scroll 20. The fixed scroll 10 is a scroll member fixedly installed. The orbiting scroll 20 is a scroll member that performs an orbiting motion.
 固定スクロール10の外周側には、吸入口13が設けられている。また、固定スクロール10の内部には、圧縮室4が設けられている。冷媒は、吸入口13から圧縮室4に送り込まれ、圧縮室4で圧縮される。これにより、冷媒は、高圧な状態になる。その後、冷媒は、圧縮室4から、密閉容器70の内部に設けられた吐出室5に吐出される。 A suction port 13 is provided on the outer peripheral side of the fixed scroll 10. A compression chamber 4 is provided inside the fixed scroll 10. The refrigerant is fed into the compression chamber 4 from the suction port 13 and is compressed in the compression chamber 4. Thereby, a refrigerant | coolant will be in a high voltage | pressure state. Thereafter, the refrigerant is discharged from the compression chamber 4 to the discharge chamber 5 provided inside the sealed container 70.
 図3に示すように、固定スクロール10は、台板11(図2参照)と、台板11に立設された渦巻き状のラップ12とを有している。同様に、旋回スクロール20も、台板21(図2参照)と、台板21に立設された渦巻き状のラップ22とを有している。 As shown in FIG. 3, the fixed scroll 10 includes a base plate 11 (see FIG. 2) and a spiral wrap 12 erected on the base plate 11. Similarly, the orbiting scroll 20 also has a base plate 21 (see FIG. 2) and a spiral wrap 22 erected on the base plate 21.
 旋回スクロール20は、固定スクロール10と相対向して旋回自在に配置されている。すなわち、旋回スクロール20は、固定スクロール10に対して、台板21が台板11に対向すると共に、ラップ22がラップ11に噛み合うように配置されている。 The orbiting scroll 20 is disposed to be opposed to the fixed scroll 10 so as to be orbitable. That is, the orbiting scroll 20 is arranged so that the base plate 21 faces the base plate 11 and the wrap 22 meshes with the wrap 11 with respect to the fixed scroll 10.
 固定スクロール10の外周部付近には、吸入口13(図2参照)に連通する吸入室14が設けられている。また、固定スクロール10の中央部には、吐出室5(図2参照)に連通する吐出口15が設けられている。吸入室14は、圧縮室4が形成される前の空間であり、圧縮室4が形成されることにより圧縮室4側の空間と吸入室14側の空間とに分断される。 Near the outer periphery of the fixed scroll 10, a suction chamber 14 communicating with the suction port 13 (see FIG. 2) is provided. In addition, a discharge port 15 communicating with the discharge chamber 5 (see FIG. 2) is provided at the center of the fixed scroll 10. The suction chamber 14 is a space before the compression chamber 4 is formed, and is divided into a space on the compression chamber 4 side and a space on the suction chamber 14 side when the compression chamber 4 is formed.
 スクロール圧縮機Sは、旋回スクロール20を旋回させることにより、固定スクロール10のラップ12と旋回スクロール20のラップ22との間に、冷媒を圧縮する圧縮室4を形成する。 The scroll compressor S forms the compression chamber 4 for compressing the refrigerant between the wrap 12 of the fixed scroll 10 and the wrap 22 of the orbiting scroll 20 by turning the orbiting scroll 20.
 圧縮室4は、旋回スクロール20のラップ22の外線側と内線側とに2つ形成される。以下、旋回スクロール20のラップ22の外線側に形成される圧縮室4aを「外線側圧縮室4a」と称し、旋回スクロール20のラップ22の内線側に形成される圧縮室4bを「内線側圧縮室4b」と称する。 Two compression chambers 4 are formed on the outer line side and the inner line side of the wrap 22 of the orbiting scroll 20. Hereinafter, the compression chamber 4a formed on the outer line side of the wrap 22 of the orbiting scroll 20 is referred to as “outer line side compression chamber 4a”, and the compression chamber 4b formed on the inner line side of the wrap 22 of the orbiting scroll 20 is referred to as “inner side compression”. Room 4b ".
 図2に戻り、圧縮機構部1と電動機2は、回転軸30を介して、連結されている。電動機2は、回転軸30を介して圧縮機構部1の旋回スクロール20を駆動することにより、冷媒を圧縮する。 Returning to FIG. 2, the compression mechanism unit 1 and the electric motor 2 are connected via a rotating shaft 30. The electric motor 2 compresses the refrigerant by driving the orbiting scroll 20 of the compression mechanism unit 1 through the rotating shaft 30.
 回転軸30は、電動機2の上方に設けられた主軸受46と電動機2の下方に設けられた副軸受56とによって支持されている。主軸受46は、フレーム40に固定されている。フレーム40は、密閉容器70の内壁面に固定された部材である。副軸受56は、密閉容器70の内部に固定されている。 The rotary shaft 30 is supported by a main bearing 46 provided above the electric motor 2 and a sub-bearing 56 provided below the electric motor 2. The main bearing 46 is fixed to the frame 40. The frame 40 is a member fixed to the inner wall surface of the sealed container 70. The auxiliary bearing 56 is fixed inside the sealed container 70.
 回転軸30の先端部(上端部)には、クランクピン31が設けられている。クランクピン31は、旋回スクロール20の台板21の背面(反ラップ側)に突設された軸支持部23の旋回軸受26に挿入されている。旋回軸受26は、軸支持部23の内部に形成された軸受である。 A crank pin 31 is provided at the tip (upper end) of the rotating shaft 30. The crankpin 31 is inserted into the orbiting bearing 26 of the shaft support portion 23 that protrudes from the back surface (on the side opposite to the lap) of the base plate 21 of the orbiting scroll 20. The slewing bearing 26 is a bearing formed inside the shaft support portion 23.
 軸支持部23及び旋回軸受26は、台板21の中央部から偏倚した位置に設けられている。クランクピン31は、旋回軸受26に嵌合するように、一方向に膨らむ形状になっている。 The shaft support 23 and the slewing bearing 26 are provided at a position deviated from the center of the base plate 21. The crank pin 31 has a shape that swells in one direction so as to be fitted to the swivel bearing 26.
 旋回スクロール20の台板21の背面には、自転防止継手51が設けられている。自転防止継手51は、固定スクロール10に対する旋回スクロール20の自転を規制する継手である。自転防止継手51は、旋回スクロール20とフレーム40との間に配置されている。 A rotation prevention joint 51 is provided on the back surface of the base plate 21 of the orbiting scroll 20. The rotation prevention joint 51 is a joint that restricts the rotation of the orbiting scroll 20 with respect to the fixed scroll 10. The anti-rotation joint 51 is disposed between the orbiting scroll 20 and the frame 40.
 スクロール圧縮機Sでは、電動機2が回転軸30を回転させると、クランクピン31が偏心回転する。これに合わせて、旋回軸受26が旋回し、同時に、旋回スクロール20が旋回する。このとき、自転防止継手51が固定スクロール10に対する旋回スクロール20の自転を規制する。そのため、旋回スクロール20は、固定スクロール10に対して自転することなく旋回する。 In the scroll compressor S, when the electric motor 2 rotates the rotary shaft 30, the crankpin 31 rotates eccentrically. In accordance with this, the orbiting bearing 26 orbits and the orbiting scroll 20 orbits at the same time. At this time, the rotation prevention joint 51 restricts the rotation of the orbiting scroll 20 with respect to the fixed scroll 10. Therefore, the turning scroll 20 turns without rotating with respect to the fixed scroll 10.
 このとき、冷媒は、吸入口13から吸入室14に導入される。吸入室14は、旋回スクロール20の旋回運動に伴い、固定スクロール10のラップ12と旋回スクロール20のラップ22とによって内部に圧縮室4が形成される。 At this time, the refrigerant is introduced into the suction chamber 14 from the suction port 13. In the suction chamber 14, the compression chamber 4 is formed by the wrap 12 of the fixed scroll 10 and the wrap 22 of the orbiting scroll 20 in accordance with the orbiting motion of the orbiting scroll 20.
 圧縮室4は、旋回スクロール20の旋回運動に伴い、中央部側に移動する。その際に、圧縮室4の容積が減少する。これにより、スクロール圧縮機Sは、圧縮室4内に吸入された冷媒を圧縮する。圧縮された冷媒は、吐出口15から吐出室5に吐出される。 The compression chamber 4 moves to the center side with the orbiting motion of the orbiting scroll 20. At that time, the volume of the compression chamber 4 decreases. Thereby, the scroll compressor S compresses the refrigerant sucked into the compression chamber 4. The compressed refrigerant is discharged from the discharge port 15 to the discharge chamber 5.
 <スクロール部材の材料>
 本実施形態では、固定スクロール10がねずみ鋳鉄(Grey iron castings)で形成されており、旋回スクロール20がCV黒鉛鋳鉄(Compacted(vermicular) graphite cast irons)で形成されている。したがって、固定スクロール10がねずみ鋳鉄品となっており、旋回スクロール20がCV黒鉛鋳鉄品となっている。
<Material of scroll member>
In the present embodiment, the fixed scroll 10 is made of gray iron castings, and the orbiting scroll 20 is made of CV graphite cast irons. Therefore, the fixed scroll 10 is a gray cast iron product, and the orbiting scroll 20 is a CV graphite cast iron product.
 ねずみ鋳鉄は、塊状の黒鉛を材料の組織中に有する鋳鉄である。一方、CV黒鉛鋳鉄は、芋虫状の形状の黒鉛を材料の組織中に有する鋳鉄である。以下に、各鋳鉄の種類や、引張強さ、ブリネル硬さ(HB)について説明する。なお、ここでは、前記した特許文献1(特開2016-3645号公報)に記載の旋回スクロールの材料に用いられた球状黒鉛鋳鉄(Spheroidal graphite iron castings)についても説明する。球状黒鉛鋳鉄は、球状の黒鉛を材料の組織中に有するである。 Gray cast iron is cast iron having massive graphite in the structure of the material. On the other hand, CV graphite cast iron is cast iron having worm-like graphite in the material structure. Below, the kind of each cast iron, tensile strength, and Brinell hardness (HB) are demonstrated. In addition, here, the spheroidal graphite cast iron (Spheroidal graphite iron ス ク ロ ー ル castings) used for the material of the orbiting scroll described in Patent Document 1 (Japanese Patent Laid-Open No. 2016-3645) described above will also be described. Spheroidal graphite cast iron has spherical graphite in the structure of the material.
 (1)ねずみ鋳鉄(Grey iron castings)としては、例えば、JIS G5501-1995に規定されたFC100、FC150、FC200、FC250、FC300、FC350等が挙げられる。ただし、本発明は、これらの例示のみに限定されるものではない。
 表1に、ねずみ鋳鉄の種類、引張強さ、及びブリネル硬さ(HB)を示す。なお、引張強さの単位は、「N/mm」である。ブリネル硬さ(HB)は、無単位である。
Figure JPOXMLDOC01-appb-T000001
(1) Examples of gray iron castings include FC100, FC150, FC200, FC250, FC300, and FC350 defined in JIS G5501-1995. However, the present invention is not limited to only these examples.
Table 1 shows the type, tensile strength, and Brinell hardness (HB) of gray cast iron. The unit of tensile strength is “N / mm 2 ”. Brinell hardness (HB) is unitless.
Figure JPOXMLDOC01-appb-T000001
 (2)球状黒鉛鋳鉄(Spheroidal graphite iron castings)としては、例えば、JIS G5502-2001に規定されたFCD350-22、FCD350-22L、FCD400-18、FCD400-18L、FCD400-15、FCD450-10、FCD500-7、FCD600-3、FCD700-2、FCD800-2等が挙げられる。
 表2に、球状黒鉛鋳鉄の種類、引張強さ、及びブリネル硬さ(HB)を示す。
Figure JPOXMLDOC01-appb-T000002
(2) Spheroidal graphite iron castings include, for example, FCD350-22, FCD350-22L, FCD400-18, FCD400-18L, FCD400-15, FCD450-10, FCD500 defined in JIS G5502-2001. -7, FCD600-3, FCD700-2, FCD800-2 and the like.
Table 2 shows the types of spheroidal graphite cast iron, tensile strength, and Brinell hardness (HB).
Figure JPOXMLDOC01-appb-T000002
 (3)CV黒鉛鋳鉄(Compacted(vermicular) graphite cast irons)としては、例えば、JIS G5505-2013に規定されたFCV300、FCV350、FCV400、FCV450、FCV500等が挙げられる。ただし、本発明は、これらの例示のみに限定されるものではない。
 表3に、CV黒鉛鋳鉄の種類、引張強さ、及びブリネル硬さ(HB)を示す。
Figure JPOXMLDOC01-appb-T000003
(3) Examples of CV graphite cast irons include FCV300, FCV350, FCV400, FCV450, FCV500 and the like defined in JIS G5505-2013. However, the present invention is not limited to only these examples.
Table 3 shows the type, tensile strength, and Brinell hardness (HB) of CV graphite cast iron.
Figure JPOXMLDOC01-appb-T000003
 前記した通り、本実施形態では、固定スクロール10がねずみ鋳鉄で形成されており、旋回スクロール20がCV黒鉛鋳鉄で形成されている。以下に、その理由を説明する。ここでは、本実施形態に係るスクロール圧縮機Sの一例として実施例(表4及び表5参照)を例示し、比較例1,2(表4及び表5参照)と実施例とを比較して、その理由を説明する。 As described above, in this embodiment, the fixed scroll 10 is formed of gray cast iron, and the orbiting scroll 20 is formed of CV graphite cast iron. The reason will be described below. Here, an example (see Table 4 and Table 5) is illustrated as an example of the scroll compressor S according to the present embodiment, and Comparative Examples 1 and 2 (see Table 4 and Table 5) are compared with the Example. Explain why.
 比較例1は、前記した特許文献1(特開2016-3645号公報)に記載された従来のスクロール圧縮機よりも前の技術に係るスクロール圧縮機の構成例に相当する。これに対して、比較例2は、前記した特許文献1に記載された従来のスクロール圧縮機の構成例に相当する。 Comparative Example 1 corresponds to a configuration example of a scroll compressor according to a technique prior to the conventional scroll compressor described in Patent Document 1 (Japanese Patent Laid-Open No. 2016-3645). On the other hand, Comparative Example 2 corresponds to a configuration example of a conventional scroll compressor described in Patent Document 1 described above.
 ここでは、比較例1のスクロール圧縮機S1(図示せず)と比較例2のスクロール圧縮機S2(図示せず)と実施例のスクロール圧縮機Sとが、同じ構成、同じ形状、同じサイズになっており、旋回スクロール20を形成する材料のみが相違しているものとして説明する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Here, the scroll compressor S1 (not shown) of the comparative example 1, the scroll compressor S2 (not shown) of the comparative example 2, and the scroll compressor S of the example have the same configuration, the same shape, and the same size. It is assumed that only the material forming the orbiting scroll 20 is different.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、比較例1と比較例2と実施例とでは、固定スクロール10の材料は、それぞれ、ねずみ鋳鉄のFC250になっている。一方、表5に示すように、比較例1の旋回スクロール20の材料は、ねずみ鋳鉄のFC250になっている。比較例2の旋回スクロール20の材料は、球状黒鉛鋳鉄のFCD600になっている。実施例の旋回スクロール20の材料は、CV黒鉛鋳鉄のFCV450になっている。 As shown in Table 4, in Comparative Example 1, Comparative Example 2, and Example, the material of the fixed scroll 10 is FC250 made of gray cast iron. On the other hand, as shown in Table 5, the material of the orbiting scroll 20 of Comparative Example 1 is gray cast iron FC250. The material of the orbiting scroll 20 of Comparative Example 2 is spheroidal graphite cast iron FCD600. The material of the orbiting scroll 20 of the embodiment is FCV450 of CV graphite cast iron.
  (比較例1)
 ここで、仮に比較例1のスクロール圧縮機S1(図示せず)に対して、材料の使用量を低減して環境負荷を低減するために、旋回スクロール20の回転速度(旋回速度)を変更することなく、小型化を図ったものとする。すると、スクロール圧縮機S1(図示せず)の小型化に伴って単位時間当たりの冷媒循環量(kg/s)が減少するため、スクロール圧縮機S1(図示せず)の圧縮効率が低下する。これにより、そのスクロール圧縮機S1(図示せず)を用いる空気調和機101の冷却能力が低下する。そのため、このような旋回スクロール20の回転速度(旋回速度)を変更しないスクロール圧縮機S1(図示せず)の小型化は好ましくない。したがって、スクロール圧縮機S1(図示せず)は、小型化する場合に、小型する前と同等の圧縮効率を確保するために、小型する前と同等の単位時間当たりの冷媒循環量を確保する必要がある。このような要望を満たすためには、スクロール圧縮機S1(図示せず)は、旋回スクロール20を高速回転(高速旋回)させることが好ましい。
(Comparative Example 1)
Here, for the scroll compressor S1 (not shown) of Comparative Example 1, the rotational speed (orbiting speed) of the orbiting scroll 20 is changed in order to reduce the amount of material used and reduce the environmental load. It is assumed that the miniaturization has been achieved. Then, as the scroll compressor S1 (not shown) is downsized, the refrigerant circulation rate (kg / s) per unit time decreases, so the compression efficiency of the scroll compressor S1 (not shown) decreases. Thereby, the cooling capacity of the air conditioner 101 using the scroll compressor S1 (not shown) is lowered. Therefore, downsizing of the scroll compressor S1 (not shown) that does not change the rotation speed (turning speed) of the orbiting scroll 20 is not preferable. Therefore, when the scroll compressor S1 (not shown) is downsized, it is necessary to secure a refrigerant circulation amount per unit time equivalent to that before downsizing in order to ensure the same compression efficiency as before downsizing. There is. In order to satisfy such a demand, the scroll compressor S1 (not shown) preferably rotates the orbiting scroll 20 at a high speed (high speed orbit).
 しかしながら、旋回スクロール20を高速回転(高速旋回)させると、旋回スクロール20の遠心力が増大する。これにより、旋回スクロール20の周辺部品(例えば、旋回軸受26や主軸受46、副軸受56等の軸受や、回転軸30、回転軸30を支持するフレーム40等の部材)に加わる負荷が増大する。その結果、旋回スクロール20の周辺部品の信頼性が低下すると共に、振動や騒音が増大し、圧縮効率が低下する。旋回スクロール20の周辺部品の信頼性を確保するためには、旋回スクロール20の周辺部品のサイズや高い負荷が加わる部分の面積を大型化することが望まれる。しかしながら、旋回スクロール20の周辺部品のサイズや高い負荷が加わる部分の面積を大型化することは、スクロール圧縮機S1(図示せず)の小型化を阻害してしまう。したがって、スクロール圧縮機S1(図示せず)では、小型化を阻害することなく、小型する前と同等の単位時間当たりの冷媒循環量を確保するためには、旋回スクロール20の遠心力を低減することが望まれる。 However, when the orbiting scroll 20 is rotated at high speed (high-speed orbiting), the centrifugal force of the orbiting scroll 20 increases. As a result, the load applied to peripheral components of the orbiting scroll 20 (for example, bearings such as the orbiting bearing 26, the main bearing 46, and the auxiliary bearing 56, and the members such as the rotating shaft 30 and the frame 40 that supports the rotating shaft 30) increases. . As a result, the reliability of the peripheral parts of the orbiting scroll 20 is reduced, vibration and noise are increased, and the compression efficiency is reduced. In order to ensure the reliability of the peripheral parts of the orbiting scroll 20, it is desired to increase the size of the peripheral parts of the orbiting scroll 20 and the area of a portion to which a high load is applied. However, increasing the size of the peripheral parts of the orbiting scroll 20 and the area of a portion to which a high load is applied hinders the downsizing of the scroll compressor S1 (not shown). Therefore, in the scroll compressor S1 (not shown), the centrifugal force of the orbiting scroll 20 is reduced in order to ensure the refrigerant circulation amount per unit time equivalent to that before the downsizing without inhibiting the downsizing. It is desirable.
 旋回スクロール20の遠心力を低減するためには、旋回スクロール20の重量を低減する必要がある。旋回スクロール20の重量を低減するためには、旋回スクロール20の小型化が有効である。しかしながら、旋回スクロール20を小型化した場合に、旋回スクロール20の肉厚(例えば、台板21の厚さやラップ22の厚さ、軸支持部23の厚さ等)が薄くなるため、旋回スクロール20の強度が低下してしまう。そのため、この場合は、引張強さが大きい特殊な材料(例えば、高強度のねずみ鋳鉄)で旋回スクロール20を形成することが望まれる。しかしながら、そのような材料は、流通性が低いため、入手することが困難である。また、そのような材料は、引張強さが大きいため、加工し難い。そして、そのような材料は、切削して旋回スクロール20を製造する場合に、加工工具を摩耗させ易い。そのため、そのような材料で旋回スクロール20を形成すると、加工工具の耐用期間が短くなるため、加工工具の交換頻度が増加し、その結果、加工工具の交換作業時間が増大する。したがって、そのような材料で旋回スクロール20を形成することは、旋回スクロール20の生産性を低下させると共に、製作費用を高騰させるため、好ましくない。以上の理由により、比較例1のスクロール圧縮機S1(図示せず)は、旋回スクロール20の高速回転(高速旋回)を実現しつつ、小型化を実現することが困難である。 In order to reduce the centrifugal force of the orbiting scroll 20, it is necessary to reduce the weight of the orbiting scroll 20. In order to reduce the weight of the orbiting scroll 20, downsizing of the orbiting scroll 20 is effective. However, when the orbiting scroll 20 is downsized, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21, the thickness of the wrap 22, the thickness of the shaft support portion 23, etc.) is reduced. The strength of the will decrease. Therefore, in this case, it is desirable to form the orbiting scroll 20 with a special material having a high tensile strength (for example, high-strength gray cast iron). However, such materials are difficult to obtain due to low flowability. Also, such materials are difficult to process due to their high tensile strength. And when such a material cuts and manufactures the turning scroll 20, it is easy to wear a processing tool. For this reason, when the orbiting scroll 20 is formed of such a material, the service tool life is shortened, so that the frequency of replacement of the work tool increases, and as a result, the work replacement time of the work tool increases. Therefore, it is not preferable to form the orbiting scroll 20 with such a material because the productivity of the orbiting scroll 20 is lowered and the manufacturing cost is increased. For the reasons described above, it is difficult to achieve downsizing of the scroll compressor S1 (not shown) of Comparative Example 1 while realizing the high-speed rotation (high-speed rotation) of the orbiting scroll 20.
  (比較例2)
 前記した比較例1のスクロール圧縮機S1(図示せず)に対し、比較例2のスクロール圧縮機S2(図示せず)は、球状黒鉛鋳鉄(FCD600)で旋回スクロール20を形成している点で相違している。球状黒鉛鋳鉄(FCD600)は、比較例1で用いられているねずみ鋳鉄(FC250)よりも大きな引張強さを有している。ここでは、球状黒鉛鋳鉄(FCD600)の引張強さが600N/mm以上700N/mm未満になっているものとして説明する。
(Comparative Example 2)
The scroll compressor S2 (not shown) of the comparative example 2 is different from the scroll compressor S1 (not shown) of the comparative example 1 described above in that the orbiting scroll 20 is formed of spheroidal graphite cast iron (FCD600). It is different. Spheroidal graphite cast iron (FCD600) has a greater tensile strength than gray cast iron (FC250) used in Comparative Example 1. Here, description will be made assuming that the tensile strength of spheroidal graphite cast iron (FCD600) is 600 N / mm 2 or more and less than 700 N / mm 2 .
 比較例2のスクロール圧縮機S2(図示せず)は、旋回スクロール20の材料として、例えば、引張強さが前記した「700N/mm」の上限値に極近い699N/mmのCV黒鉛鋳鉄を用いる場合に、その材料の引張強さを比較例1で用いられているねずみ鋳鉄(FC250)の下限値(250N/mm)の「2.8」倍にすることができる。そのため、この場合に、比較例2のスクロール圧縮機S2(図示せず)は、前記した比較例1のスクロール圧縮機S1(図示せず)と比較した場合に、旋回スクロール20の肉厚(例えば、台板21の厚さやラップ22の厚さ、軸支持部23の厚さ等)を「0.36」倍に薄くしても十分な強度を確保することができる。なお、前記した「2.8」倍の値は、「699/250」によって算出される。また、前記した「0.36」倍の値は、「1/2.8」によって算出される。 Scroll compressor S2 of Comparative Example 2 (not shown), as the material of the orbiting scroll 20, for example, tensile strength was the "700 N / mm 2" very close 699N / mm 2 of CV graphite cast iron to the upper limit value of the , The tensile strength of the material can be “2.8” times the lower limit (250 N / mm 2 ) of gray cast iron (FC250) used in Comparative Example 1. Therefore, in this case, when the scroll compressor S2 (not shown) of the comparative example 2 is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness (for example, Even if the thickness of the base plate 21, the thickness of the wrap 22, the thickness of the shaft support portion 23, etc. is reduced by a factor of “0.36”, sufficient strength can be secured. Note that the value of “2.8” times as described above is calculated by “699/250”. Further, the above-mentioned value of “0.36” is calculated by “1 / 2.2.8”.
 このような比較例2のスクロール圧縮機S2(図示せず)は、旋回スクロール20の肉厚を薄くすることにより、十分な強度を確保しながら軽量化を図ることができる。しかも、比較例2のスクロール圧縮機S2(図示せず)は、旋回スクロール20の回転(旋回)時に、旋回スクロール20に加わる遠心力を低減することができる。そのため、比較例2のスクロール圧縮機S2(図示せず)は、旋回スクロール20の高速回転(高速旋回)を実現することができる。そして、比較例2のスクロール圧縮機S2(図示せず)は、旋回スクロール20を高速回転(高速旋回)させることにより、単位時間当たりの冷媒循環量を向上させることができるため、小型化を可能にしている。 Such a scroll compressor S2 (not shown) of Comparative Example 2 can be reduced in weight while ensuring sufficient strength by reducing the thickness of the orbiting scroll 20. Moreover, the scroll compressor S2 (not shown) of Comparative Example 2 can reduce the centrifugal force applied to the orbiting scroll 20 when the orbiting scroll 20 rotates (turns). Therefore, the scroll compressor S2 (not shown) of Comparative Example 2 can realize the high-speed rotation (high-speed rotation) of the orbiting scroll 20. The scroll compressor S2 (not shown) of Comparative Example 2 can improve the refrigerant circulation rate per unit time by rotating the orbiting scroll 20 at a high speed (high speed orbit), and thus can be reduced in size. I have to.
 しかしながら、比較例2で用いられている球状黒鉛鋳鉄(FCD600)は、比較例1で用いられているねずみ鋳鉄(FC250)よりも大きな引張強さを有しているため、加工し難い。そして、球状黒鉛鋳鉄は、切削して旋回スクロール20を製造する場合に、加工工具を摩耗させ易い。そのため、球状黒鉛鋳鉄で旋回スクロール20を形成すると、加工工具の耐用期間が短くなるため、加工工具の交換頻度が増加し、その結果、加工工具の交換作業時間が増大する。したがって、球状黒鉛鋳鉄で旋回スクロール20を形成することは、旋回スクロール20の生産性を低下させると共に、製作費用を高騰させるため、好ましくない。以上の理由により、比較例2のスクロール圧縮機S2(図示せず)は、加工工具の摩耗量を低減することが望まれる。 However, the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 has a higher tensile strength than the gray cast iron (FC250) used in Comparative Example 1, and is difficult to process. And spheroidal graphite cast iron tends to wear a processing tool, when manufacturing the turning scroll 20 by cutting. For this reason, when the orbiting scroll 20 is formed of spheroidal graphite cast iron, the useful life of the processing tool is shortened, so that the frequency of replacement of the processing tool increases, and as a result, the time for exchanging the processing tool increases. Therefore, it is not preferable to form the orbiting scroll 20 with spheroidal graphite cast iron because the productivity of the orbiting scroll 20 is lowered and the manufacturing cost is increased. For the above reason, the scroll compressor S2 (not shown) of Comparative Example 2 is desired to reduce the wear amount of the processing tool.
  (実施例)
 前記した比較例1のスクロール圧縮機S1(図示せず)及び比較例2のスクロール圧縮機S2(図示せず)に対し、実施例のスクロール圧縮機Sは、CV黒鉛鋳鉄(FCV450)で旋回スクロール20を形成している点で相違している。
(Example)
In contrast to the scroll compressor S1 (not shown) of the comparative example 1 and the scroll compressor S2 (not shown) of the comparative example 2, the scroll compressor S of the embodiment is a scroll scroll made of CV graphite cast iron (FCV450). 20 is different.
 CV黒鉛鋳鉄(FCV450)は、比較例2で用いられている球状黒鉛鋳鉄(FCD600)と同様に、比較例1で用いられているねずみ鋳鉄(FC250)よりも大きな引張強さを有している。なお、製造される旋回スクロール20の強度及び重量と材料の加工し易さとを考慮すると、実施例で用いるCV黒鉛鋳鉄の引張強さは、450N/mm以上であることが好ましい。また、実施例で用いるCV黒鉛鋳鉄の引張強さは、比較例2で用いられている球状黒鉛鋳鉄(FCD600)の引張強さの上限値よりも十分に小さな値(例えば、550N/mm未満)であることが好ましい。 Similar to the spheroidal graphite cast iron (FCD600) used in Comparative Example 2, the CV graphite cast iron (FCV450) has a larger tensile strength than the gray cast iron (FC250) used in Comparative Example 1. . In consideration of the strength and weight of the orbiting scroll 20 to be manufactured and the ease of processing the material, the tensile strength of the CV graphite cast iron used in the examples is preferably 450 N / mm 2 or more. Further, the tensile strength of the CV graphite cast iron used in the examples is sufficiently smaller than the upper limit of the tensile strength of the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 (for example, less than 550 N / mm 2). ) Is preferable.
 このような実施例のスクロール圧縮機Sは、旋回スクロール20の材料として、例えば、引張強さが前記した「550N/mm未満」の上限値に極近い549N/mmのCV黒鉛鋳鉄を用いる場合に、その材料の引張強さを比較例1で用いられているねずみ鋳鉄(FC250)の下限値(250N/mm)の「2.2」倍にすることができる。そのため、この場合に、実施例のスクロール圧縮機Sは、前記した比較例1のスクロール圧縮機S1(図示せず)と比較した場合に、旋回スクロール20の肉厚(例えば、台板21の厚さやラップ22の厚さ、軸支持部23の厚さ等)を「0.46」倍に薄くしても十分な強度を確保することができる。なお、前記した「2.2」倍の値は、「549/250」によって算出される。また、前記した「0.46」倍の値は、「1/2.2」によって算出される。 Scroll compressor S of such an embodiment, the material of the orbiting scroll 20, for example, a very close 549N / mm 2 of CV graphite cast iron to the upper limit of the tensile strength was the "less than 550 N / mm 2" In this case, the tensile strength of the material can be set to “2.2” times the lower limit (250 N / mm 2 ) of gray cast iron (FC250) used in Comparative Example 1. Therefore, in this case, when the scroll compressor S of the embodiment is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21). Even if the thickness of the sheath 22 (the thickness of the wrap 22 and the thickness of the shaft support portion 23) is reduced by "0.46" times, sufficient strength can be ensured. Note that the value of “2.2” times as described above is calculated by “549/250”. Further, the above-mentioned value of “0.46” is calculated by “1 / 2.2”.
 また、実施例のスクロール圧縮機Sは、旋回スクロール20の材料として、例えば、引張強さが下限値の450N/mmのCV黒鉛鋳鉄を用いる場合に、その材料の引張強さを比較例1で用いられているねずみ鋳鉄(FC250)の下限値(250N/mm)の「1.8」倍にすることができる。つまり、実施例のスクロール圧縮機Sは、前記した比較例1のスクロール圧縮機S1(図示せず)と比較した場合に、旋回スクロール20に対して最小でも「1.8」倍の強度を確保することができる。換言すると、実施例のスクロール圧縮機Sは、前記した比較例1のスクロール圧縮機S1(図示せず)と比較した場合に、旋回スクロール20に加わる負荷に対する許容引張強さを最小でも「1.8」倍向上させることができる。そのため、この場合に、実施例のスクロール圧縮機Sは、前記した比較例1のスクロール圧縮機S1(図示せず)と比較した場合に、旋回スクロール20の肉厚(例えば、台板21の厚さやラップ22の厚さ、軸支持部23の厚さ等)を「0.56」倍に薄くしても、破損することのない十分な強度を確保することができる。なお、前記した「1.8」倍の値は、「450/250」によって算出される。また、前記した「0.56」倍の値は、「1/1.8」によって算出される。 Moreover, when the scroll compressor S of an Example uses the CV graphite cast iron of 450 N / mm < 2 > whose tensile strength is a lower limit as a material of the turning scroll 20, for example, the tensile strength of the material is compared with Comparative Example 1. Can be set to “1.8” times the lower limit (250 N / mm 2 ) of gray cast iron (FC250) used in the above. In other words, the scroll compressor S of the embodiment has a strength that is at least “1.8” times that of the orbiting scroll 20 when compared with the scroll compressor S1 (not shown) of the first comparative example. can do. In other words, when compared with the scroll compressor S1 (not shown) of Comparative Example 1 described above, the scroll compressor S of the embodiment has a minimum allowable tensile strength against a load applied to the orbiting scroll 20 of “1. 8 ”times. Therefore, in this case, when the scroll compressor S of the embodiment is compared with the scroll compressor S1 (not shown) of the comparative example 1 described above, the thickness of the orbiting scroll 20 (for example, the thickness of the base plate 21). Even if the thickness of the sheath 22 (the thickness of the wrap 22 and the thickness of the shaft support portion 23, etc.) is reduced by a factor of “0.56”, sufficient strength without damage can be ensured. Note that the value of “1.8” times described above is calculated by “450/250”. Further, the above-mentioned value of “0.56” is calculated by “1 / 1.8”.
 このような実施例のスクロール圧縮機Sは、比較例2のスクロール圧縮機S2(図示せず)と同様に、旋回スクロール20の肉厚を薄くすることにより、肉厚を薄くした分だけ、旋回スクロール20の十分な強度を確保しつつ、旋回スクロール20の肉厚を薄くした分だけ、旋回スクロール20を軽量化を図ることができる。しかも、実施例のスクロール圧縮機Sは、旋回スクロール20を軽量化することで、旋回スクロール20の回転(旋回)時に、旋回スクロール20に加わる遠心力を低減することができる。そのため、実施例のスクロール圧縮機Sは、旋回スクロール20の高速回転(高速旋回)を実現することができる。そして、実施例のスクロール圧縮機Sは、旋回スクロール20を高速回転(高速旋回)させることにより、単位時間当たりの冷媒循環量(kg/s)を向上させることができる。そのため、実施例のスクロール圧縮機Sは、前記した比較例1のスクロール圧縮機S1(図示せず)と同等の圧縮効率を確保しつつ、小型化を図ることができる。なお、単位時間当たりの冷媒循環量とは、例えば、旋回スクロール20の1回転の圧縮過程における冷媒循環量を意味している。 As with the scroll compressor S2 (not shown) of the comparative example 2, the scroll compressor S of such an embodiment is turned by reducing the thickness of the orbiting scroll 20 and reducing the thickness. It is possible to reduce the weight of the orbiting scroll 20 by reducing the thickness of the orbiting scroll 20 while ensuring sufficient strength of the scroll 20. And the scroll compressor S of an Example can reduce the centrifugal force added to the turning scroll 20 at the time of rotation (turning) of the turning scroll 20 by reducing the weight of the turning scroll 20. Therefore, the scroll compressor S of the embodiment can realize high-speed rotation (high-speed rotation) of the orbiting scroll 20. And the scroll compressor S of an Example can improve the refrigerant | coolant circulation amount (kg / s) per unit time by rotating the turning scroll 20 at high speed (high-speed turning). Therefore, the scroll compressor S of the embodiment can be downsized while ensuring the same compression efficiency as the scroll compressor S1 (not shown) of the comparative example 1 described above. In addition, the refrigerant | coolant circulation amount per unit time means the refrigerant | coolant circulation amount in the compression process of 1 rotation of the turning scroll 20, for example.
 また、実施例のスクロール圧縮機Sは、旋回スクロール20の材料として、比較例2で用いられている球状黒鉛鋳鉄(FCD600)の引張強さの上限値よりも十分に小さな値の引張強さのCV黒鉛鋳鉄(FCV450)を用いている。これにより、実施例のスクロール圧縮機Sは、旋回スクロール20の製造時に、比較例2のスクロール圧縮機S2(図示せず)よりも材料の加工性を向上させることができると共に、加工工具の摩耗量を低減することができる。このような実施例のスクロール圧縮機Sは、比較例2のスクロール圧縮機S2(図示せず)よりも加工工具の耐用期間を長期化することができるため、加工工具の交換頻度を低減し、その結果、加工工具の交換作業時間を低減することができる。 Moreover, the scroll compressor S of an Example has the tensile strength of a value sufficiently smaller than the upper limit of the tensile strength of the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 as the material of the orbiting scroll 20. CV graphite cast iron (FCV450) is used. As a result, the scroll compressor S of the embodiment can improve the workability of the material as compared with the scroll compressor S2 (not shown) of the comparative example 2 when the orbiting scroll 20 is manufactured, and wear of the processing tool. The amount can be reduced. Since the scroll compressor S of such an example can prolong the useful life of the processing tool as compared with the scroll compressor S2 (not shown) of the comparative example 2, it reduces the replacement frequency of the processing tool, As a result, the working time for exchanging the processing tool can be reduced.
 図4に、比較例1と比較例2と実施例とにおいて、旋回スクロール20を製造する際の加工工具の摩耗量を示す。図4は、加工工具の摩耗量の説明図である。図4中、横軸は旋回スクロールの加工台数を示しており、縦軸は加工工具の摩耗量を示している。また、符号「Th」は、加工工具の交換基準値を示している。図4に示す線グラフは、旋回スクロール20の一部を加工した結果から算出された旋回スクロール20の加工台数を示している。 FIG. 4 shows the amount of wear of the processing tool when the orbiting scroll 20 is manufactured in the comparative example 1, the comparative example 2, and the example. FIG. 4 is an explanatory diagram of the wear amount of the processing tool. In FIG. 4, the horizontal axis indicates the number of orbiting scrolls processed, and the vertical axis indicates the wear amount of the processing tool. Further, the symbol “Th” indicates a replacement reference value of the machining tool. The line graph shown in FIG. 4 shows the number of processed orbiting scrolls 20 calculated from the result of processing a part of the orbiting scroll 20.
 図4に示すように、比較例1では、100台以上の旋回スクロール20を加工しても、加工工具の摩耗量が加工工具の交換基準値Thに全く到達していない。そのため、比較例1は、加工工具を交換することなく比較的長期間に亘って使用することができる。これは、比較例1で用いられているねずみ鋳鉄(FC250)が比較的加工性の高い材料だからである。 As shown in FIG. 4, in Comparative Example 1, even when 100 or more orbiting scrolls 20 were machined, the amount of wear of the machining tool did not reach the machining tool replacement reference value Th at all. Therefore, the comparative example 1 can be used over a relatively long period of time without exchanging the processing tool. This is because gray cast iron (FC250) used in Comparative Example 1 is a material with relatively high workability.
 これに対して、比較例2で用いられている球状黒鉛鋳鉄(FCD600)と比較例1で用いられているねずみ鋳鉄(FC250)とでは加工性に大きな差がある。そのため、比較例2では、50台に達しない台数の旋回スクロール20を加工するだけで、加工工具の摩耗量が加工工具の交換基準値Thに到達している。そのため、比較例2は、比較的短期間しか加工工具を使用することができない。このような比較例2では、比較例1よりも、加工工具の交換頻度が増大するため、加工工具の交換作業時間が増大する。その結果、比較例2は、旋回スクロール20の生産性を低下させると共に、製作費用を高騰させる。 On the other hand, there is a great difference in workability between the spheroidal graphite cast iron (FCD600) used in Comparative Example 2 and the gray cast iron (FC250) used in Comparative Example 1. Therefore, in Comparative Example 2, the amount of wear of the machining tool reaches the machining tool replacement reference value Th simply by machining the number of orbiting scrolls 20 that do not reach 50 units. Therefore, the comparative example 2 can use a processing tool only for a comparatively short period. In such a comparative example 2, since the replacement frequency of the machining tool is increased as compared with the comparative example 1, the time for exchanging the machining tool is increased. As a result, the comparative example 2 decreases the productivity of the orbiting scroll 20 and increases the manufacturing cost.
 これに対して、実施例で用いられているCV黒鉛鋳鉄(FCV450)と比較例1で用いられているねずみ鋳鉄(FC250)とでは加工性に大きな差がない。そのため、実施例では、比較例1とほぼ同様に、100台以上の旋回スクロール20を加工しても、加工工具の摩耗量が加工工具の交換基準値Thに全く到達していない。そのため、実施例は、加工工具を交換することなく比較的長期間に亘って使用することができる。このような実施例は、比較例2と比較すると、比較例1と同等のレベルに加工工具の交換頻度を低減することができるため、加工工具の交換作業時間を低減することができる。その結果、実施例は、比較例2よりも、旋回スクロール20の生産性を向上させると共に、製作費用を低減させることができる。 On the other hand, there is no significant difference in workability between CV graphite cast iron (FCV450) used in Examples and gray cast iron (FC250) used in Comparative Example 1. For this reason, in the embodiment, as in Comparative Example 1, even when 100 or more orbiting scrolls 20 are machined, the wear amount of the machining tool does not reach the machining tool replacement reference value Th at all. For this reason, the embodiment can be used for a relatively long period of time without exchanging the processing tool. Compared with Comparative Example 2, such an example can reduce the replacement frequency of the processing tool to the same level as that of Comparative Example 1, and therefore can reduce the replacement work time of the processing tool. As a result, the embodiment can improve the productivity of the orbiting scroll 20 and reduce the manufacturing cost as compared with the comparative example 2.
 なお、実施例のスクロール圧縮機Sは、旋回スクロール20を形成するCV黒鉛鋳鉄の引張強さが450N/mm以上であることが好ましい。また、旋回スクロール20を形成するCV黒鉛鋳鉄の引張強さが550N/mm未満であることが好ましい。 In the scroll compressor S of the embodiment, the tensile strength of the CV graphite cast iron forming the orbiting scroll 20 is preferably 450 N / mm 2 or more. Moreover, it is preferable that the tensile strength of the CV graphite cast iron which forms the turning scroll 20 is less than 550 N / mm < 2 >.
 また、実施例のスクロール圧縮機Sは、旋回スクロール20を形成するCV黒鉛鋳鉄のブリネル硬さが170以上250未満であるとともに、固定スクロール10を形成するねずみ鋳鉄の引張強さが250N/mm以上300N/mm未満で、かつ、そのねずみ鋳鉄のブリネル硬さが241以下であることが好ましい。スクロール圧縮機Sは、CV黒鉛鋳鉄のブリネル硬さ、並びに、ねずみ鋳鉄の引張強さ及びブリネル硬さをこのような範囲とすることで、旋回スクロール20と固定スクロール10との接触に伴う耐摩耗性を向上することができる。その結果、スクロール圧縮機Sは、摩耗に伴う圧縮性能の低下を抑制することができる。これは、旋回スクロール20の材料であるCV黒鉛鋳鉄のブリネル硬さと固定スクロール10の材料であるねずみ鋳鉄のブリネル硬さとを同程度の値とすることで、旋回スクロール20と固定スクロール10とが接触したときに摩耗し難くなるためである。 Further, in the scroll compressor S of the example, the Brinell hardness of the CV graphite cast iron forming the orbiting scroll 20 is 170 or more and less than 250, and the tensile strength of the gray cast iron forming the fixed scroll 10 is 250 N / mm 2. It is preferably less than 300 N / mm 2 and the Brinell hardness of the gray cast iron is 241 or less. In the scroll compressor S, the Brinell hardness of CV graphite cast iron and the tensile strength and Brinell hardness of gray cast iron are within such ranges, so that the wear resistance accompanying the contact between the orbiting scroll 20 and the fixed scroll 10 is reduced. Can be improved. As a result, the scroll compressor S can suppress a decrease in compression performance due to wear. This is because the Brinell hardness of the CV graphite cast iron which is the material of the orbiting scroll 20 and the Brinell hardness of the gray cast iron which is the material of the fixed scroll 10 are set to the same value, so that the orbiting scroll 20 and the fixed scroll 10 are in contact with each other. This is because it becomes difficult to wear out.
 なお、実施例では、CV黒鉛鋳鉄の引張強さが450N/mm以上550N/mm未満になっており、このようなCV黒鉛鋳鉄の一例としてFCV450を例示した。しかしながら、本発明は、この例示にのみ限定されるものではない。 In the embodiment, the tensile strength of CV graphite cast iron has become less than 450 N / mm 2 or more 550 N / mm 2, and illustrates FCV450 One example of such a CV graphite cast iron. However, the present invention is not limited only to this illustration.
 <実施形態に係るスクロール圧縮機の主な特徴>
 (1)本実施形態に係るスクロール圧縮機Sは、旋回スクロール20の材料として、球状黒鉛鋳鉄(例えば、FCD600)よりも加工し易いCV黒鉛鋳鉄(例えば、FCV450)を用いるため、加工工具の摩耗量を低減することができる。そのため、スクロール圧縮機Sは、加工工具を交換することなく比較的長期間に亘って使用することができる。このようなスクロール圧縮機Sは、加工工具の交換頻度を低減することができるため、加工工具の交換作業時間を低減することができる。その結果、旋回スクロール20の生産性を向上させると共に、製作費用を低減させることができる。
<Main features of the scroll compressor according to the embodiment>
(1) Since the scroll compressor S according to the present embodiment uses CV graphite cast iron (for example, FCV450) that is easier to process than the spheroidal graphite cast iron (for example, FCD600) as the material of the orbiting scroll 20, wear of the processing tool The amount can be reduced. Therefore, the scroll compressor S can be used over a relatively long period of time without exchanging the processing tool. Since such a scroll compressor S can reduce the replacement frequency of a processing tool, it can reduce the replacement work time of a processing tool. As a result, the productivity of the orbiting scroll 20 can be improved and the manufacturing cost can be reduced.
 (2)本実施形態に係るスクロール圧縮機Sは、旋回スクロール20の材料として、流通性が高く入手し易いCV黒鉛鋳鉄(例えば、FCV450)を用いるため、これによっても、旋回スクロール20の生産性を向上させると共に、製作費用を低減させることができる。 (2) Since the scroll compressor S according to the present embodiment uses CV graphite cast iron (for example, FCV450) that is easy to obtain as a material of the orbiting scroll 20, the productivity of the orbiting scroll 20 is also increased. And the manufacturing cost can be reduced.
 (3)前記した通り、本実施形態は、旋回スクロールを高速回転(高速旋回)させることにより、R32冷媒が70重量%以上含まれているガスを作動流体として使用することができるスクロール圧縮機Sを提供することを意図している。これは、以下の理由によるものである。 (3) As described above, in the present embodiment, the scroll compressor S that can use, as the working fluid, the gas containing 70 wt% or more of the R32 refrigerant by rotating the orbiting scroll at a high speed (high speed revolution). Is intended to provide. This is due to the following reason.
 R32冷媒は、従来使用されていたR410A冷媒よりも低密度な作動流体である。このようなR32冷媒は、スクロール圧縮機の運転時に、旋回スクロール20のラップ22の先端を通して外線側圧縮室4a(図3参照)と内線側圧縮室4b(図3参照)との間で漏出し易い傾向にある。特に、スクロール圧縮機の低速運転時では、圧縮開始から圧縮完了までの時間が高速運転時よりも長いため、R32冷媒の漏出量が増大する。 The R32 refrigerant is a working fluid having a lower density than the conventionally used R410A refrigerant. Such R32 refrigerant leaks between the outer side compression chamber 4a (see FIG. 3) and the inner side compression chamber 4b (see FIG. 3) through the tip of the wrap 22 of the orbiting scroll 20 during the operation of the scroll compressor. It tends to be easy. In particular, at the time of low speed operation of the scroll compressor, since the time from the start of compression to the completion of compression is longer than at the time of high speed operation, the leakage amount of R32 refrigerant increases.
 また、旋回スクロール20の軽量化を図るために旋回スクロール20のラップ22の厚さを薄くした場合に、ラップ22の先端の面積が減少する。これにより、スクロール圧縮機の運転時に、その分だけ、外線側圧縮室4a(図3参照)と内線側圧縮室4b(図3参照)とが連通する時間が長期化するため、R32冷媒の漏出量が増大する。 Further, when the thickness of the wrap 22 of the orbiting scroll 20 is reduced in order to reduce the weight of the orbiting scroll 20, the area of the tip of the wrap 22 is reduced. As a result, during the operation of the scroll compressor, the time required for communication between the outer line side compression chamber 4a (see FIG. 3) and the inner line side compression chamber 4b (see FIG. 3) is prolonged. The amount increases.
 R32冷媒の漏出量を低減するためには、旋回スクロール20を高速回転(高速旋回)させることが有効である。しかしながら、旋回スクロール20を高速回転(高速旋回)させると、旋回スクロール20の遠心力が増大する。そのため、スクロール圧縮機は、旋回スクロール20の軽量化を図らないと、旋回スクロール20の周辺部品(例えば、旋回軸受26や主軸受46、副軸受56等の軸受や、回転軸30、回転軸30を支持するフレーム40等の部材)に加わる負荷が増大する。これにより、旋回スクロール20の周辺部品の信頼性が低下すると共に、振動や騒音が増大し、圧縮効率が低下する。 In order to reduce the leakage amount of the R32 refrigerant, it is effective to rotate the orbiting scroll 20 at a high speed (high speed rotation). However, when the orbiting scroll 20 is rotated at a high speed (high-speed orbiting), the centrifugal force of the orbiting scroll 20 increases. Therefore, if the scroll compressor does not reduce the weight of the orbiting scroll 20, peripheral components of the orbiting scroll 20 (for example, bearings such as the orbiting bearing 26, the main bearing 46, and the auxiliary bearing 56, the rotating shaft 30, and the rotating shaft 30). The load applied to the member (such as the frame 40 supporting the frame) increases. As a result, the reliability of the peripheral parts of the orbiting scroll 20 is reduced, vibration and noise are increased, and the compression efficiency is reduced.
 しかしながら、本実施形態に係るスクロール圧縮機Sは、旋回スクロール20の強度を確保しつつ、旋回スクロール20の軽量化を図ることができる。そのため、本実施形態に係るスクロール圧縮機Sは、旋回スクロール20を高速回転(高速旋回)させることができ、R32冷媒の漏出量を効率よく低減することができる。このような本実施形態に係るスクロール圧縮機Sは、例えばR32冷媒が70重量%以上含まれているガスを作動流体として使用することができる。また、本実施形態に係るスクロール圧縮機Sは、旋回スクロール20の周辺部品の信頼性を向上させると共に、振動や騒音を低減し、圧縮効率を向上させることができる。また、本実施形態に係るスクロール圧縮機Sは、R32冷媒の地球温暖化係数が従来使用されていたR410A冷媒の地球温暖化係数よりも低いため、環境負荷を低減することもできる。 However, the scroll compressor S according to the present embodiment can reduce the weight of the orbiting scroll 20 while ensuring the strength of the orbiting scroll 20. Therefore, the scroll compressor S according to the present embodiment can rotate the orbiting scroll 20 at a high speed (high speed revolution), and can efficiently reduce the leakage amount of the R32 refrigerant. Such a scroll compressor S according to the present embodiment can use, for example, a gas containing 70 wt% or more of R32 refrigerant as the working fluid. Further, the scroll compressor S according to the present embodiment can improve the reliability of peripheral components of the orbiting scroll 20, reduce vibration and noise, and improve the compression efficiency. Further, the scroll compressor S according to this embodiment can reduce the environmental load because the global warming potential of the R32 refrigerant is lower than the global warming potential of the R410A refrigerant that has been conventionally used.
 以上の通り、本実施形態に係るスクロール圧縮機Sによれば、旋回スクロール20の高速回転(高速旋回)を実現しつつ、加工工具の摩耗量を低減することができる。 As described above, according to the scroll compressor S according to the present embodiment, it is possible to reduce the amount of wear of the processing tool while realizing high-speed rotation (high-speed rotation) of the orbiting scroll 20.
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成に他の構成を加えることも可能である。また、各構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment. Moreover, it is possible to add / delete / replace other configurations for a part of each configuration.
 例えば、前記した実施形態では、固定スクロール10の材料がねずみ鋳鉄(FC250)であるものとして説明した。しかしながら、固定スクロール10の材料は、CV黒鉛鋳鉄にすることもできる。例えば、固定スクロール10の材料は、旋回スクロール20と同じFCV450にすることもできる。なお、FCV450で固定スクロール10を形成した場合に、固定スクロール10の引張強さは、450N/mm以上となり、かつ、固定スクロール10のブリネル硬さは、170以上250未満となる。 For example, in the above-described embodiment, the material of the fixed scroll 10 has been described as being gray cast iron (FC250). However, the material of the fixed scroll 10 can also be CV graphite cast iron. For example, the material of the fixed scroll 10 can be the same FCV 450 as the orbiting scroll 20. In addition, when the fixed scroll 10 is formed with FCV450, the tensile strength of the fixed scroll 10 is 450 N / mm 2 or more, and the Brinell hardness of the fixed scroll 10 is 170 or more and less than 250.
 1  圧縮機構部
 2  電動機
 4  圧縮室
 4a  外線側圧縮室
 4b  内線側圧縮室
 5  吐出室
 10  固定スクロール
 11,21  台板
 12,22  ラップ
 13  吸入口
 14  吸入室
 15  吐出口
 20  旋回スクロール
 23  軸支持部
 26  旋回軸受
 30  回転軸
 31  クランクピン
 40  フレーム
 46  主軸受
 51  自転防止継手
 56  副軸受
 70  密閉容器
 101  空気調和機
 102  四方弁
 103  冷暖房絞り装置
 104  室内熱交換器
 105  室外熱交換器
 106  配管
 S  スクロール圧縮機
DESCRIPTION OF SYMBOLS 1 Compression mechanism part 2 Electric motor 4 Compression chamber 4a Outer line side compression chamber 4b Inner line side compression chamber 5 Discharge chamber 10 Fixed scroll 11,21 Base plate 12,22 Lap 13 Suction port 14 Suction port 15 Discharge port 20 Orbiting scroll 23 Shaft support part 26 Rotating bearing 30 Rotating shaft 31 Crank pin 40 Frame 46 Main bearing 51 Anti-rotation joint 56 Sub bearing 70 Sealed container 101 Air conditioner 102 Four-way valve 103 Air conditioning / heating throttle device 104 Indoor heat exchanger 105 Outdoor heat exchanger 106 Piping S Scroll compression Machine

Claims (6)

  1.  台板に立設された渦巻き状のラップを有する固定スクロールと、
     台板に立設された渦巻き状のラップを有すると共に、前記固定スクロールとの間に作動流体を圧縮する圧縮室を形成する旋回スクロールと、
     前記旋回スクロールを旋回させる電動機と、を備え、
     前記旋回スクロールは、CV黒鉛鋳鉄品であり、
     前記固定スクロールは、ねずみ鋳鉄品又はCV黒鉛鋳鉄品である
    ことを特徴とするスクロール圧縮機。
    A fixed scroll having a spiral wrap erected on the base plate;
    A orbiting scroll having a spiral wrap standing on a base plate and forming a compression chamber for compressing a working fluid with the fixed scroll;
    An electric motor for turning the orbiting scroll,
    The orbiting scroll is a CV graphite cast iron product,
    The scroll compressor, wherein the fixed scroll is a gray cast iron product or a CV graphite cast iron product.
  2.  請求項1に記載のスクロール圧縮機において、
     前記CV黒鉛鋳鉄品の引張強さは、450N/mm以上である
    ことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    A scroll compressor characterized in that the tensile strength of the CV graphite cast iron product is 450 N / mm 2 or more.
  3.  請求項1に記載のスクロール圧縮機において、
     前記CV黒鉛鋳鉄品のブリネル硬さは、170以上250未満である
    ことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    A scroll compressor, wherein the CV graphite cast iron product has a Brinell hardness of 170 or more and less than 250.
  4.  請求項1に記載のスクロール圧縮機において、
     前記ねずみ鋳鉄品の引張強さは、250N/mm以上300N/mm未満であり、かつ、ブリネル硬さは、241以下である
    ことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    The scroll compressor characterized in that the tensile strength of the gray cast iron product is 250 N / mm 2 or more and less than 300 N / mm 2 , and the Brinell hardness is 241 or less.
  5.  請求項1に記載のスクロール圧縮機において、
     前記作動流体として、R32冷媒が70重量%以上含まれているガスを使用する
    ことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    A scroll compressor using a gas containing 70% by weight or more of R32 refrigerant as the working fluid.
  6.  スクロール圧縮機と、
     熱交換器と、を有し、
     前記スクロール圧縮機は、
     台板に立設された渦巻き状のラップを有する固定スクロールと、
     台板に立設された渦巻き状のラップを有すると共に、前記固定スクロールとの間に作動流体を圧縮する圧縮室を形成する旋回スクロールと、
     前記旋回スクロールを旋回させる電動機と、を備え、
     前記旋回スクロールは、CV黒鉛鋳鉄品であり、
     前記固定スクロールは、ねずみ鋳鉄品又はCV黒鉛鋳鉄品である
    ことを特徴とする空気調和機。
    A scroll compressor;
    A heat exchanger,
    The scroll compressor is
    A fixed scroll having a spiral wrap erected on the base plate;
    A orbiting scroll having a spiral wrap standing on a base plate and forming a compression chamber for compressing a working fluid with the fixed scroll;
    An electric motor for turning the orbiting scroll,
    The orbiting scroll is a CV graphite cast iron product,
    The air conditioner characterized in that the fixed scroll is a gray cast iron product or a CV graphite cast iron product.
PCT/JP2018/015740 2017-04-25 2018-04-16 Scroll compressor, and air conditioner WO2018198862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086350A JP2018184872A (en) 2017-04-25 2017-04-25 Scroll compressor and air conditioner
JP2017-086350 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018198862A1 true WO2018198862A1 (en) 2018-11-01

Family

ID=63919074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015740 WO2018198862A1 (en) 2017-04-25 2018-04-16 Scroll compressor, and air conditioner

Country Status (2)

Country Link
JP (1) JP2018184872A (en)
WO (1) WO2018198862A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038639A (en) * 1998-07-24 2000-02-08 Nissan Diesel Motor Co Ltd Compact vermicular graphite cast iron for engine case
US20140255233A1 (en) * 2013-03-08 2014-09-11 Jaebong PARK Compacted/vermicular graphite cast iron for orbital or fixed scroll and manufacturing method of orbital or fixed scroll using the same
JP2016003645A (en) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 Scroll compressor, and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038639A (en) * 1998-07-24 2000-02-08 Nissan Diesel Motor Co Ltd Compact vermicular graphite cast iron for engine case
US20140255233A1 (en) * 2013-03-08 2014-09-11 Jaebong PARK Compacted/vermicular graphite cast iron for orbital or fixed scroll and manufacturing method of orbital or fixed scroll using the same
JP2016003645A (en) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 Scroll compressor, and air conditioner

Also Published As

Publication number Publication date
JP2018184872A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
JP2000087892A (en) Two-stage compressor and air conditioner
JP2016003645A (en) Scroll compressor, and air conditioner
GB2572870A (en) Multi-stage scroll compressor
JP6057535B2 (en) Refrigerant compressor
WO2015114783A1 (en) Compressor and refrigeration cycle device
JP2017194064A (en) Refrigeration cycle
WO2018198862A1 (en) Scroll compressor, and air conditioner
JP2005307764A (en) Rotary compressor
CN114641617A (en) Scroll compressor and refrigeration cycle device
JP6118702B2 (en) Scroll compressor and refrigeration equipment
JP2017172346A (en) Scroll compressor and air conditioner
JP3476970B2 (en) Scroll compressor
JP2012241530A (en) Scroll compressor
JP2000352387A (en) Scroll compressor
WO2016016917A1 (en) Scroll compressor
JP6195466B2 (en) Scroll compressor
JPH06264881A (en) Rotary compressor
JP2014118954A (en) Scroll compressor
JP6429943B2 (en) Scroll compressor
WO2017056213A1 (en) Scroll compressor
JP5181463B2 (en) Fluid machinery
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
WO2020183605A1 (en) Compressor and refrigeration cycle device
CN114616394A (en) Scroll compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791448

Country of ref document: EP

Kind code of ref document: A1