WO2020183605A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2020183605A1
WO2020183605A1 PCT/JP2019/009961 JP2019009961W WO2020183605A1 WO 2020183605 A1 WO2020183605 A1 WO 2020183605A1 JP 2019009961 W JP2019009961 W JP 2019009961W WO 2020183605 A1 WO2020183605 A1 WO 2020183605A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust bearing
pump case
refueling
pump
compressor
Prior art date
Application number
PCT/JP2019/009961
Other languages
French (fr)
Japanese (ja)
Inventor
龍扶 高野
ジョー ヒル
泰典 中野
佑介 上橋
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2019/009961 priority Critical patent/WO2020183605A1/en
Publication of WO2020183605A1 publication Critical patent/WO2020183605A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor or the like.
  • Patent Document 1 describes a positive displacement compressor including a thrust bearing support portion that supports a thrust bearing.
  • Patent Document 2 describes a compressor provided with a damping mechanism for attenuating the vibration in the axial direction of the drive shaft in the thrust force transmission path transmitted from the drive shaft to the bearing portion via the thrust bearing member. Have been described.
  • a predetermined step is provided in the thrust bearing support portion in order to hold the thrust bearing. Since high dimensional accuracy is required for processing this step, the cost required for processing the thrust bearing support portion and the like increases. Further, in the technique described in Patent Document 1, a predetermined wall thickness for supporting the thrust bearing is required for the thrust bearing support portion, which leads to an increase in material cost and an increase in size of the compressor.
  • an object of the present invention is to provide a highly reliable compressor or the like with a simple configuration.
  • the coupling portion penetrates the pump case and the thrust bearing and is coupled to the fixing member to fix the thrust bearing, and the thrust bearing and the thrust bearing are fixed. It was decided that an axial gap was provided between the pump case and the pump case.
  • FIG. 5 is an exploded perspective view including a crankshaft, a subframe, a thrust bearing, a refueling pump, and a stepped bolt of the compressor according to the first embodiment of the present invention. It is a partially enlarged view which enlarged the Q part of FIG. 2 in the compressor which concerns on 1st Embodiment of this invention. It is a partially enlarged view of the vicinity of a refueling pump in the cross section of the compressor according to the second embodiment of the present invention.
  • FIG. 1 is a vertical sectional view of the compressor 100 according to the first embodiment.
  • the compressor 100 shown in FIG. 1 is a device that compresses a gaseous refrigerant in the compression chamber C between the fixed scroll 2a and the swivel scroll 2b.
  • the compressor 100 includes a closed container 1, a compression mechanism 2, a frame 3, a crankshaft 4 (drive shaft), a main bearing 5, a swivel bearing 6, and an electric motor 7. It has.
  • the compressor 100 includes an oldham joint 8, balancers 9a and 9b, a subframe 10 (fixing member), an auxiliary bearing 11 (radial bearing), a refueling pump 12, and a thrust bearing. 13 and a stepped bolt 14 (joint portion) are provided.
  • the closed container 1 is a shell-shaped container that houses the compression mechanism 2, the crankshaft 4, the electric motor 7, the refueling pump 12, and the like, and is substantially sealed.
  • Lubricating oil for improving the lubricity and sealing property of the compressor 100 is sealed in the closed container 1.
  • the lubricating oil is stored as an oil sump R at the bottom of the closed container 1.
  • the closed container 1 includes a cylindrical case 1a, an upper cap 1b welded to the upper part of the case 1a, and a lower cap 1c welded to the lower part of the case 1a.
  • the compression mechanism unit 2 is a mechanism that compresses the refrigerant (gas) in the compression chamber C as the crankshaft 4 rotates.
  • the compression mechanism unit 2 includes a fixed scroll 2a and a swivel scroll 2b, and is arranged in the upper space inside the closed container 1.
  • the fixed scroll 2a is a member fixed in the closed container 1, and has a base plate ia and a spiral wrap ib erected on the base plate ia.
  • the swivel scroll 2b is a member that forms a compression chamber C between the swivel scroll 2b and the fixed scroll 2a by its movement, and is arranged so as to swivel so as to face the fixed scroll 2a.
  • the swivel scroll 2b has a base plate ja, a spiral wrap jb erected on the base plate ja, and a boss portion jc fitted to the upper end portion of the crankshaft 4.
  • the wrap jb is provided on the upper side of the base plate ja
  • the boss portion jc is provided on the lower side of the base plate ja.
  • the compression chamber C is a space for compressing the gaseous refrigerant, and is formed on the outer line side and the extension side of the lap jb of the swivel scroll 2b, respectively.
  • the frame 3 shown in FIG. 1 is a member that supports the swivel scroll 2b and fixes the main bearing 5, and is fastened to the fixed scroll 2a.
  • the frame 3 is provided with a hole (not shown) through which the crankshaft 4 is inserted.
  • the crankshaft 4 is a shaft that rotates integrally with the rotor 7b of the electric motor 7.
  • the crankshaft 4 includes a main shaft 4a, an eccentric portion 4b extending upward of the main shaft 4a, and a protrusion 4c extending downward of the main shaft 4a.
  • the spindle 4a is coaxially fixed to the rotor 7b of the electric motor 7 and rotates integrally with the rotor 7b.
  • the eccentric portion 4b is a shaft that rotates while being eccentric with respect to the main shaft 4a, and is fitted to the boss portion jc described above. Then, the eccentric portion 4b rotates while being eccentric, so that the swivel scroll 2b rotates.
  • the protrusion 4c has a cylindrical shape and extends downward from the center of the lower end of the main shaft 4a.
  • the outer diameter of the protrusion 4c is smaller than the outer diameter of the main shaft 4a.
  • An inner rotor 12a (see FIG. 2) of the refueling pump 12, which will be described later, is installed on the protrusion 4c.
  • a lubrication flow path 4d through which lubricating oil flows is provided inside the crankshaft 4.
  • the lubricating oil flowing through the oil supply flow path 4d is guided to the main bearing 5, the swivel bearing 6, the auxiliary bearing 11, and the like in addition to the compression mechanism portion 2.
  • the main bearing 5 rotatably supports the upper portion of the main shaft 4a with respect to the frame 3, and is fixed to the peripheral wall surface of the hole (reference numeral not shown) of the frame 3.
  • the swivel bearing 6 rotatably supports the eccentric portion 4b with respect to the boss portion jc, and is fixed to the inner peripheral wall of the boss portion jc.
  • a main bearing 5 and a swing bearing 6, for example, a slide bearing is used.
  • the electric motor 7 is a drive source for rotating the crankshaft 4.
  • the electric motor 7 includes a stator 7a and a rotor 7b, and is installed inside the closed container 1 (between the frame 3 and the subframe 10).
  • the stator 7a is fixed to the inner peripheral wall of the closed container 1 by press fitting or the like.
  • the rotor 7b is rotatably arranged with respect to the stator 7a.
  • the height position of the rotor 7b is slightly higher than that of the stator 7a.
  • a magnetic force is generated to move the rotor 7b downward so that the height positions of the stator 7a and the rotor 7b are aligned.
  • the crankshaft 4 presses the thrust bearing 13 downward, so that the vertical vibration of the crankshaft 4 is suppressed.
  • the Oldham joint 8 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 4b and rotates the swivel scroll 2b without rotating.
  • the oldham joint 8 is provided between the swivel scroll 2b and the frame 3.
  • the balancers 9a and 9b are members for suppressing the vibration of the compressor 100, and are provided at predetermined positions in the closed container 1.
  • the subframe 10 is a "fixing member" for fixing the auxiliary bearing 11.
  • the subframe 10 includes a cylindrical cylindrical portion 10a and three legs 10b (see also FIG. 3) extending radially outward from the cylindrical portion 10a.
  • An auxiliary bearing 11 is fixed to the inner peripheral wall of the cylindrical portion 10a.
  • the three legs 10b (see FIG. 3) are provided at intervals of about 120 ° in the circumferential direction and are integrally formed with the cylindrical portion 10a. The tips of the three legs 10b are fixed to the inner peripheral wall of the closed container 1, respectively.
  • each of these thick portions 10s is provided with one screw hole n for screwing the stepped bolt 14 described later from the lower side. That is, each screw hole n is opened downward.
  • the auxiliary bearing 11 shown in FIG. 1 is a "radial bearing” that supports the crankshaft 4 and receives a radial load from the crankshaft 4. As described above, the auxiliary bearing 11 is fixed to the inner peripheral wall of the cylindrical portion 10a by press fitting or the like. As such an auxiliary bearing 11, for example, a slide bearing is used.
  • the refueling pump 12 is a pump that sucks up lubricating oil from the oil sump R of the closed container 1 and supplies it to the refueling flow path 4d, and is installed at the lower end (end) of the crankshaft 4.
  • a refueling pump 12 for example, a trochoidal pump can be used.
  • the thrust bearing 13 is a bearing that receives a load in the axial direction (thrust direction) from the crankshaft 4, and is installed near the lower end of the crankshaft 4.
  • the stepped bolt 14 is a "joining portion" that connects the thrust bearing 13 to the subframe 10 (fixing member).
  • the suction pipe Pa is a pipe that guides the refrigerant to the compression chamber C via the suction chamber H, and is installed in the upper cap 1b of the closed container 1.
  • the gaseous refrigerant is guided to the suction chamber H via the suction pipe Pa. Then, the refrigerant is compressed by reducing the volume of the compression chambers C formed one after another as the swivel scroll 2b swivels. The compressed refrigerant is discharged into the closed container 1 through the discharge port N provided near the center of the fixed scroll 2a.
  • the discharge pipe Pb shown in FIG. 1 is a pipe through which the refrigerant discharged through the discharge port N passes, and is installed in the case 1a of the closed container 1.
  • the refrigerant discharged from the compressor 100 via the discharge pipe Pb sequentially passes through, for example, a condenser (not shown), an expansion valve (not shown), and an evaporator (not shown) in a refrigeration cycle (not shown). It circulates in a heat pump cycle) and is further returned to the compressor 100 via a suction pipe Pa.
  • FIG. 2 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100.
  • the refueling pump 12 includes an inner rotor 12a, an outer rotor 12b, a pump cover 12c, and a pump case 12d.
  • the inner rotor 12a is a rotor provided with trochoidal curved teeth on the outer peripheral side.
  • the inner rotor 12a is installed on the protrusion 4c of the crankshaft 4 and rotates integrally with the crankshaft 4.
  • the outer rotor 12b is arranged so as to surround the inner rotor 12a, and trochoidal curved teeth are provided on the inner peripheral side thereof.
  • the "lubricating section” that supplies lubricating oil to the lubricating flow path 4d as the crankshaft 4 rotates includes an inner rotor 12a and an outer rotor 12b.
  • the pump cover 12c is a cover that forms a space for pumping lubricating oil together with the inner rotor 12a and the outer rotor 12b, and is fixed to the pump case 12d.
  • the pump case 12d is a case for accommodating the inner rotor 12a and the outer rotor 12b (that is, the "refueling unit").
  • the pump case 12d includes a concave accommodating portion 121d in which the inner rotor 12a, the outer rotor 12b, and the like are accommodated, an immersion portion 122d extending downward from the accommodating portion 121d, and a flange 123d extending radially outward from the accommodating portion 121d. Is equipped with.
  • the immersion portion 122d is usually immersed in the oil sump R near the tip thereof.
  • the immersion portion 122d is provided with a flow path hd for guiding the lubricating oil into the space between the inner rotor 12a and the outer rotor 12b.
  • the flange 123d is a portion where the stepped bolt 14 is installed.
  • the flange 123d is provided with holes h4 (see FIG. 3) having a size corresponding to the intermediate portion 14b (see FIG. 3) of the stepped bolt 14 at three locations.
  • the thrust bearing 13 shown in FIG. 2 is a bearing that receives a load in the axial direction (thrust direction) from the crankshaft 4. More specifically, the thrust bearing 13 is installed at a position where there is a step between the main shaft 4a and the protrusion 4c of the crankshaft 4. Further, the thrust bearing 13 is interposed between the subframe 10 (fixing member) and the oil supply pump 12, and is fixed to the lower surface of the subframe 10 with a stepped bolt 14. The thrust bearing 13 is provided with a hole h2 through which a protrusion 4c of the crankshaft 4 (see also FIG. 3) is inserted.
  • the thrust bearing 13 has, for example, a thin disk shape, and has a configuration in which a predetermined porous sintered layer is provided on the sliding surface side of a base steel plate (called a back metal).
  • a back metal a base steel plate
  • FIG. 3 is an exploded perspective view including a crankshaft 4, a subframe 10, a thrust bearing 13, a refueling pump 12, and a stepped bolt 14.
  • a crankshaft 4 As shown in FIG. 3, one hole h2 through which the protrusion 4c at the lower end of the crankshaft 4 is inserted is provided in the central portion of the thrust bearing 13.
  • three holes h3 through which the threaded portion 14a of the stepped bolt 14 is inserted are provided at equal intervals in the circumferential direction.
  • a radial groove (not shown) for taking in lubricating oil is provided on the sliding surface (upper surface) with the crankshaft 4.
  • a predetermined groove may be provided on the sliding surface (lower end surface) of the crankshaft 4 with the thrust bearing 13.
  • the stepped bolt 14 is a "joining portion" that connects the thrust bearing 13 to the subframe 10 (fixing member).
  • the stepped bolt 14 also has a function of supporting the refueling pump 12.
  • the stepped bolt 14 includes a screw portion 14a, an intermediate portion 14b, and a head portion 14c.
  • the screw portion 14a is provided with a screw groove m (see FIG. 4) for screwing into the screw hole n of the subframe 10.
  • the intermediate portion 14b is connected to the threaded portion 14a and has a larger diameter than the threaded portion 14a.
  • the head 14c is connected to the intermediate portion 14b and has a larger diameter than the intermediate portion 14b.
  • the stepped bolt 14 penetrates the pump case 12d and the thrust bearing 13 in the axial direction, and is coupled to the subframe 10 to fix the thrust bearing 13. That is, the stepped bolt 14 is screwed into the screw hole n provided in the subframe 10 (fixing member) from below.
  • FIG. 4 is a partially enlarged view of the Q portion shown in FIG. 2.
  • these gaps GD and GA are shown longer than they actually are in order to make it easier to understand the radial gap GD and the axial gap GA.
  • the diameter of the intermediate portion 14b of the stepped bolt 14 is larger than the diameter of the hole h3 of the thrust bearing 13, while being smaller than the diameter of the hole h4 of the pump case 12d.
  • the intermediate portion 14b is pressed against the lower surface of the thrust bearing 13, and the upper surface of the intermediate portion 14b and the thrust bearing are pressed against each other. It is in direct contact with the lower surface of 13. That is, the thrust bearing 13 is sandwiched and fixed by the intermediate portion 14b of the stepped bolt 14 and the subframe 10 (fixing member). Further, three stepped bolts 14 are installed corresponding to the three screw holes n of the subframe 10 (see FIG. 3). As a result, the movement of the thrust bearing 13 in the circumferential direction is restricted.
  • the diameter of the hole h4 in which the intermediate portion 14b of the stepped bolt 14 is installed is slightly larger than the diameter of the intermediate portion 14b. Therefore, in the state where the stepped bolt 14 is installed, a predetermined radial gap GD is provided between the intermediate portion 14b and the peripheral wall surface of the hole h4 of the pump case 12d.
  • the wall thickness (thickness in the vertical direction) of the flange 123d around the intermediate portion 14b is slightly thinner than the wall thickness (thickness in the vertical direction) of the intermediate portion 14b. Therefore, in the state where the stepped bolt 14 is installed, a predetermined axial gap GA is provided between the upper surface of the flange 123d of the pump case 12d and the thrust bearing 13.
  • a radial gap GD is provided between the intermediate portion 14b of the stepped bolt 14 and the pump case 12d, while an axial gap GA is provided between the thrust bearing 13 and the pump case 12d.
  • the refueling pump 12 is supported (suspended) by the head 14c of the three stepped bolts 14 (see FIG. 3). That is, the stepped bolt 14 is in direct contact with a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4).
  • the dimension L1 of the radial gap GD between the intermediate portion 14b of the stepped bolt 14 and the pump case 12d is the middle within the range in which the radial gap is formed. It is preferable that the shaft diameter of the portion 14b (joining portion) is 4% or more and 13% or less of the hole diameter of the hole h4 of the pump case 12d in the range of forming the above-mentioned radial gap. As a result, the runout of the crankshaft 4 is appropriately absorbed.
  • the dimension L2 of the axial clearance GA between the thrust bearing 13 and the pump case 12d (the length of the clearance GA: see FIG. 4) is the intermediate portion 14b (joint portion) in the range in which the axial clearance is formed. ) In the axial direction, or 1% or more and 6% or less of the vertical wall thickness of the flange 123d of the pump case 12d around the above-mentioned axial gap. As a result, the runout of the crankshaft 4 is appropriately absorbed.
  • the inner diameter of the cylindrical portion 10a is constant in the vicinity of the thrust bearing 13 in the axial direction of the cylindrical portion 10a of the subframe 10 (fixing member). As a result, high dimensional accuracy is rarely required when processing the subframe 10, so that the man-hours and costs required for processing can be reduced.
  • a step is provided in the lower part of the subframe 10 (near the thrust bearing 13) according to the size of the thrust bearing 13, and the rotation of the thrust bearing 13 in the circumferential direction is regulated without using screws.
  • the subframe 10 is formed on the surface, high processing accuracy is required.
  • the inner diameter of the cylindrical portion 10a is constant in the axial direction, and the rotation of the thrust bearing 13 in the circumferential direction is regulated by the three stepped bolts 14. (See Fig. 3). Therefore, the processing cost of the subframe 10 can be reduced.
  • the thrust bearing 13 is sandwiched in the vertical direction between the intermediate portion 14b of the stepped bolt 14 and the subframe 10 and is firmly fixed.
  • the three stepped bolts 14 also serve to prevent the thrust bearing 13 from rotating. Therefore, it is not necessary to adopt a detent shape such as a so-called D-cut shape for the thrust bearing 13, and it is not necessary to perform high-precision processing that requires a strict dimensional tolerance.
  • the thrust bearing 13 one with an inexpensive back metal in which a porous sintered layer or the like is provided only on one surface on the side receiving an axial load from the crankshaft 4 can be adopted.
  • the thrust bearing 13 is sandwiched between the intermediate portion 14b of the stepped bolt 14 and the subframe 10 to be firmly fixed, while the intermediate portion 14b is provided with a radial gap GD and an axial gap GA. Has been done. As a result, it is possible to prevent an excessive load from being applied to the inner rotor 12a and the outer rotor 12b of the refueling pump 12 when the crankshaft 4 swings around. As a result, it is possible to prevent problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12.
  • the thrust bearing 13 is arranged under the subframe 10. Therefore, it is not necessary to provide a predetermined step for holding the thrust bearing 13 in the subframe 10 or to secure a predetermined wall thickness to support the load of the thrust bearing 13. Therefore, it is possible to suppress an increase in the size of the subframe 10 and an increase in material cost.
  • the thrust bearing 13 is provided on the lower side of the crankshaft 4. Therefore, for example, as compared with a configuration in which a large-diameter flange portion (not shown) is provided at a predetermined position on the crankshaft 4 and a thrust bearing 13 is installed on the flange portion, the size of the crankshaft 4 is increased and the material cost is increased. Can be suppressed. Further, since the stepped bolt 14 serves both of fixing the thrust bearing 13 and supporting the refueling pump 12, the number of parts can be reduced.
  • the compressor 100A (see FIG. 5) according to the second embodiment has a bolt 15A (see FIG. 5) and a spacer 16A (see FIG. 5) in place of the stepped bolt 14 (see FIG. 2) described in the first embodiment. ) Is provided. Others are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 5 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100A according to the second embodiment.
  • the compressor 100A in addition to the crankshaft 4 (drive shaft) and the subframe 10 (fixing member), the auxiliary bearing 11 (radial bearing), the oil supply pump 12, the thrust bearing 13, and the thrust bearing 13 are included.
  • a bolt 15A (joint portion) and a spacer 16A (joint portion) are provided.
  • the bolt 15A has a screw portion 151A provided with a screw groove to be screwed into a screw hole of the subframe 10, and a head portion 152A having a diameter larger than that of the screw portion 151A.
  • the spacer 16A is a member (collar) that maintains a vertical distance between the head portion 152A of the bolt 15A and the thrust bearing 13, and has a cylindrical shape.
  • the axial length of the spacer 16A is longer than the wall thickness around the spacer 16A in the pump case 12d. Further, the threaded portion 151A of the bolt 15A is inserted through the spacer 16A.
  • the thrust bearing 13 is sandwiched and fixed by the spacer 16A and the subframe 10.
  • the diameter of the head 152A of the bolt 15A is larger than the outer diameter of the spacer 16A. Further, a radial gap is provided between the spacer 16A and the pump case 12d, while an axial gap is provided between the thrust bearing 13 and the pump case 12d.
  • the refueling pump 12 is supported by the head 152A of the bolt 15A. That is, the bolt 15A is in direct contact with a part (lower surface) of the pump case 12d.
  • the dimension of the radial gap between the spacer 16A and the pump case 12d is preferably 4% or more and 13% or less of the diameter of the spacer 16A (or the diameter of the hole h4 of the pump case 12d).
  • the dimension of the axial gap between the thrust bearing 13 and the pump case 12d is 1% or more and 6% or less of the axial length of the spacer 16A (or the vertical wall thickness of the flange 123d). It is preferable to have. As a result, the runout of the crankshaft 4 is appropriately absorbed.
  • the thrust bearing 13 is sandwiched between the spacer 16A and the subframe 10 and firmly fixed, while the spacer 16A is provided with gaps in the radial and axial directions. ..
  • problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12 can be prevented.
  • FIG. 6 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100B according to the third embodiment of the present invention.
  • the compressor 100B shown in FIG. 6 is the first except that the diameter of the head 152B of the bolt 15B (joining portion) is relatively small and the spacer 16B (joining portion) has the flange portion 162B. Since it is the same as that of the second embodiment (see FIG. 5), detailed description thereof will be omitted.
  • the spacer 16B includes a cylindrical cylindrical portion 161B and a flange portion 162B extending radially outward from the lower end portion (one end portion in the axial direction) of the cylindrical portion 161B.
  • the axial length of the cylindrical portion 161B is longer than the wall thickness around the cylindrical portion 161B in the pump case 12d. Further, the threaded portion 151B of the bolt 15B is inserted through the spacer 16B so that the head portion 152B of the bolt 15B abuts on the flange portion 162B of the spacer 16B.
  • the thrust bearing 13 is sandwiched and fixed by the spacer 16B and the subframe 10.
  • the diameter of the head 152B of the bolt 15B is larger than the inner diameter of the spacer 16B. Further, a radial gap is provided between the spacer 16B and the pump case 12d, while an axial gap is provided between the thrust bearing 13 and the pump case 12d.
  • the refueling pump 12 is supported by the head portion 152B of the bolt 15B via the flange portion 162B of the spacer 16B. That is, the bolt 15B is in direct contact with a part (lower surface) of the pump case 12d.
  • the dimension of the radial gap between the spacer 16B and the pump case 12d is preferably 4% or more and 13% or less of the diameter of the spacer 16B (or the diameter of the hole h4 of the pump case 12d).
  • the dimension of the axial gap between the thrust bearing 13 and the pump case 12d is 1% or more of the axial length of the cylindrical portion 161B of the spacer 16B (or the vertical wall thickness of the flange 123d). It is preferably 6% or less.
  • the thrust bearing 13 is sandwiched between the spacer 16B and the subframe 10 and firmly fixed, while the spacer 16B is provided with gaps in the radial and axial directions. ..
  • problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12 can be prevented.
  • FIG. 7 is a block diagram of the refrigerant circuit K of the air conditioner W.
  • the solid line arrow in FIG. 7 indicates the flow of the refrigerant during the heating operation. Further, the broken line arrow in FIG. 7 indicates the flow of the refrigerant during the cooling operation.
  • the air conditioner W is a device that performs air conditioning such as cooling and heating. As shown in FIG. 7, the air conditioner W includes a compressor 100, an outdoor heat exchanger Eo, an outdoor fan Fo, an expansion valve Ve, a four-way valve Vf, an indoor heat exchanger Ei, and an indoor fan Fi. And have.
  • the compressor 100, the outdoor heat exchanger Eo, the outdoor fan Fo, the expansion valve Ve, and the four-way valve Vf are provided in the outdoor unit Wo.
  • the indoor heat exchanger Ei and the indoor fan Fi are provided in the indoor unit Wi.
  • the compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1).
  • the outdoor heat exchanger Eo is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan Fo.
  • the outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger Eo.
  • the outdoor fan Fo includes an outdoor fan motor Mo which is a drive source, and is installed near the outdoor heat exchanger Eo.
  • the indoor heat exchanger Ei is a heat exchanger in which heat is exchanged between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air-conditioned space) sent from the indoor fan Fi.
  • the indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger Ei.
  • the indoor fan Fi includes an indoor fan motor Mi as a drive source, and is installed in the vicinity of the indoor heat exchanger Ei.
  • the expansion valve Ve is a valve that reduces the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
  • the refrigerant decompressed by the expansion valve Ve is guided to an "evaporator" (the other of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
  • the four-way valve Vf is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W. For example, during cooling operation (see the dashed arrow in FIG. 7), the compressor 100, the outdoor heat exchanger Eo (condenser), the expansion valve Ve, and the indoor heat exchanger Ei (evaporator) are the four-way valve Vf. In the refrigerant circuit K which is sequentially connected via the above, the refrigerant circulates in the refrigeration cycle.
  • the compressor 100, the indoor heat exchanger Ei (condenser), the expansion valve Ve, and the outdoor heat exchanger Eo (evaporator) are the four-way valve Vf.
  • the refrigerant circuit K which is sequentially connected via the above, the refrigerant circulates in the refrigeration cycle.
  • the refrigerant circulates in sequence through the compressor 100, the "condenser", the expansion valve Ve, and the “evaporator”.
  • Devices such as the compressor 100, the outdoor fan Fo, the expansion valve Ve, and the indoor fan Fi are driven based on a command from a control device (not shown).
  • the configuration in which the head portion 14c of the stepped bolt 14 (joining portion) is in direct contact with a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4) has been described. (See FIG. 4), but not limited to this.
  • a washer (washer: not shown) may be interposed between the head 14c of the stepped bolt 14 and a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4).
  • each embodiment can be applied to a configuration in which the compressor 100 is installed horizontally.
  • the case where the compressor 100 is a scroll type compressor has been described, but the present invention is not limited to this. That is, each embodiment can be applied to another type of compressor such as a rotary type compressor.
  • each embodiment can be combined as appropriate.
  • a compressor 100A second embodiment
  • a spacer 16A see FIG. 5
  • the third embodiment and the fourth embodiment may be combined.
  • the air conditioner W (refrigeration cycle device: see FIG. 7) including the compressor 100 has been described, but the present invention is not limited to this.
  • the fourth embodiment can be applied to other "refrigeration cycle devices" such as refrigerators, water heaters, air-conditioning hot water supply devices, and chillers.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to appropriately add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
  • the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a compressor and the like with a simple configuration and high reliability. A stepped bolt (14) of this compressor (100) is inserted through a pump case (12d) and a thrust bearing (13) to be engaged with a threaded hole provided in a subframe (10). The thrust bearing (13) is secured by being sandwiched between the stepped bolt (14) and the subframe (10). A radial gap is provided between the stepped bolt (14) and pump case (12d), an axial gap is provided between the thrust bearing (13) and the pump case (12d), and an oil feed pump (12) is supported by the stepped bolt (14).

Description

圧縮機及び冷凍サイクル装置Compressor and refrigeration cycle equipment
 本発明は、圧縮機等に関する。 The present invention relates to a compressor or the like.
 圧縮機のクランク軸から軸方向(スラスト方向)の荷重を受けるスラスト軸受の固定構造に関して、例えば、特許文献1,2に記載の技術が知られている。
 すなわち、特許文献1に、スラスト軸受を支持するスラスト軸受支持部を備える容積型圧縮機について記載されている。
Regarding the fixed structure of a thrust bearing that receives a load in the axial direction (thrust direction) from the crankshaft of a compressor, for example, the techniques described in Patent Documents 1 and 2 are known.
That is, Patent Document 1 describes a positive displacement compressor including a thrust bearing support portion that supports a thrust bearing.
 また、特許文献2には、駆動軸からスラスト軸受部材を経由して軸受部へ伝達されるスラスト力の伝達経路に、駆動軸の軸方向の振動を減衰させる減衰機構が設けられた圧縮機について記載されている。 Further, Patent Document 2 describes a compressor provided with a damping mechanism for attenuating the vibration in the axial direction of the drive shaft in the thrust force transmission path transmitted from the drive shaft to the bearing portion via the thrust bearing member. Have been described.
特開2007-270696号公報JP-A-2007-270696 特開2012-97581号公報Japanese Unexamined Patent Publication No. 2012-97581
 特許文献1に記載の技術では、スラスト軸受を保持するために、スラスト軸受支持部に所定の段差が設けられる。この段差の加工には高い寸法精度が求められるため、スラスト軸受支持部等の加工に要するコストが高くなる。さらに、特許文献1に記載の技術では、スラスト軸受を支えるための所定の肉厚がスラスト軸受支持部に必要になるため、材料費の増加や圧縮機の大型化を招く。 In the technique described in Patent Document 1, a predetermined step is provided in the thrust bearing support portion in order to hold the thrust bearing. Since high dimensional accuracy is required for processing this step, the cost required for processing the thrust bearing support portion and the like increases. Further, in the technique described in Patent Document 1, a predetermined wall thickness for supporting the thrust bearing is required for the thrust bearing support portion, which leads to an increase in material cost and an increase in size of the compressor.
 また、特許文献2に記載の技術では、駆動軸の軸方向の振動を減衰させる減衰機構が設けられるため、部品点数や製造コストの増加を招き、また、組立工程の複雑化を招く。さらに、特許文献2に記載の技術では、ゴム製である減衰機構の弾性変形に伴い、ラジアル軸受に対する駆動軸の片当たり(荷重の片寄り)が生じやすい。このように特許文献1,2に記載の技術は、圧縮機の構成の簡素化や信頼性の面において改善の余地がある。 Further, in the technique described in Patent Document 2, since a damping mechanism for damping the vibration in the axial direction of the drive shaft is provided, the number of parts and the manufacturing cost are increased, and the assembly process is complicated. Further, in the technique described in Patent Document 2, one-sided contact (shifting of the load) of the drive shaft with respect to the radial bearing is likely to occur due to the elastic deformation of the damping mechanism made of rubber. As described above, the techniques described in Patent Documents 1 and 2 have room for improvement in terms of simplification and reliability of the compressor configuration.
 そこで、本発明は、簡素な構成で信頼性の高い圧縮機等を提供することを課題とする。 Therefore, an object of the present invention is to provide a highly reliable compressor or the like with a simple configuration.
 前記した課題を解決するために、本発明に係る圧縮機は、結合部が、ポンプケース及びスラスト軸受を貫通し、固定部材に結合されて前記スラスト軸受を固定しており、前記スラスト軸受と前記ポンプケースとの間には軸方向の隙間が設けられていることとした。 In order to solve the above-mentioned problems, in the compressor according to the present invention, the coupling portion penetrates the pump case and the thrust bearing and is coupled to the fixing member to fix the thrust bearing, and the thrust bearing and the thrust bearing are fixed. It was decided that an axial gap was provided between the pump case and the pump case.
 本発明によれば、簡素な構成で信頼性の高い圧縮機等を提供できる。 According to the present invention, it is possible to provide a highly reliable compressor or the like with a simple configuration.
本発明の第1実施形態に係る圧縮機の縦断面図である。It is a vertical sectional view of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機の断面における給油ポンプ付近の部分拡大図である。It is a partially enlarged view of the vicinity of a refueling pump in the cross section of the compressor according to the first embodiment of the present invention. 本発明の第1実施形態に係る圧縮機のクランク軸、サブフレーム、スラスト軸受、給油ポンプ、及び段付きボルトを含む分解斜視図である。FIG. 5 is an exploded perspective view including a crankshaft, a subframe, a thrust bearing, a refueling pump, and a stepped bolt of the compressor according to the first embodiment of the present invention. 本発明の第1実施形態に係る圧縮機において、図2のQ部を拡大した部分拡大図である。It is a partially enlarged view which enlarged the Q part of FIG. 2 in the compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る圧縮機の断面における給油ポンプ付近の部分拡大図である。It is a partially enlarged view of the vicinity of a refueling pump in the cross section of the compressor according to the second embodiment of the present invention. 本発明の第3実施形態に係る圧縮機の断面における給油ポンプ付近の部分拡大図である。It is a partially enlarged view of the vicinity of a refueling pump in the cross section of the compressor according to the third embodiment of the present invention. 本発明の第4実施形態に係る空気調和機の冷媒回路の構成図である。It is a block diagram of the refrigerant circuit of the air conditioner which concerns on 4th Embodiment of this invention.
≪第1実施形態≫
 以下では、一例として、クランク軸4(図1参照)に給油ポンプ12が設置されたスクロール式の圧縮機100について説明する。
<< First Embodiment >>
In the following, as an example, the scroll type compressor 100 in which the refueling pump 12 is installed on the crankshaft 4 (see FIG. 1) will be described.
<圧縮機の構成>
 図1は、第1実施形態に係る圧縮機100の縦断面図である。
 図1に示す圧縮機100は、固定スクロール2aと旋回スクロール2bとの間の圧縮室Cにおいてガス状の冷媒を圧縮する機器である。
 図1に示すように、圧縮機100は、密閉容器1と、圧縮機構部2と、フレーム3と、クランク軸4(駆動軸)と、主軸受5と、旋回軸受6と、電動機7と、を備えている。また、圧縮機100は、前記した構成の他に、オルダム継手8と、バランサ9a,9bと、サブフレーム10(固定部材)と、副軸受11(ラジアル軸受)と、給油ポンプ12と、スラスト軸受13と、段付きボルト14(結合部)と、を備えている。
<Compressor configuration>
FIG. 1 is a vertical sectional view of the compressor 100 according to the first embodiment.
The compressor 100 shown in FIG. 1 is a device that compresses a gaseous refrigerant in the compression chamber C between the fixed scroll 2a and the swivel scroll 2b.
As shown in FIG. 1, the compressor 100 includes a closed container 1, a compression mechanism 2, a frame 3, a crankshaft 4 (drive shaft), a main bearing 5, a swivel bearing 6, and an electric motor 7. It has. Further, in addition to the above-described configuration, the compressor 100 includes an oldham joint 8, balancers 9a and 9b, a subframe 10 (fixing member), an auxiliary bearing 11 (radial bearing), a refueling pump 12, and a thrust bearing. 13 and a stepped bolt 14 (joint portion) are provided.
 密閉容器1は、圧縮機構部2、クランク軸4、電動機7、給油ポンプ12等を収容する殻状の容器であり、略密閉されている。この密閉容器1には、圧縮機100の潤滑性やシール性を高めるための潤滑油が封入されている。なお、潤滑油は、密閉容器1の底部に油溜りRとして貯留されている。密閉容器1は、円筒状のケース1aと、このケース1aの上部に溶接された上キャップ1bと、ケース1aの下部に溶接された下キャップ1cと、を備えている。 The closed container 1 is a shell-shaped container that houses the compression mechanism 2, the crankshaft 4, the electric motor 7, the refueling pump 12, and the like, and is substantially sealed. Lubricating oil for improving the lubricity and sealing property of the compressor 100 is sealed in the closed container 1. The lubricating oil is stored as an oil sump R at the bottom of the closed container 1. The closed container 1 includes a cylindrical case 1a, an upper cap 1b welded to the upper part of the case 1a, and a lower cap 1c welded to the lower part of the case 1a.
 圧縮機構部2は、クランク軸4の回転に伴って、圧縮室Cで冷媒(ガス)を圧縮する機構である。圧縮機構部2は、固定スクロール2aと、旋回スクロール2bと、を備え、密閉容器1内の上部空間に配置されている。 The compression mechanism unit 2 is a mechanism that compresses the refrigerant (gas) in the compression chamber C as the crankshaft 4 rotates. The compression mechanism unit 2 includes a fixed scroll 2a and a swivel scroll 2b, and is arranged in the upper space inside the closed container 1.
 固定スクロール2aは、密閉容器1内に固定される部材であり、台板iaと、この台板iaに立設される渦巻状のラップibと、を有している。
 旋回スクロール2bは、その移動によって固定スクロール2aとの間に圧縮室Cを形成する部材であり、固定スクロール2aに対向して旋回自在に配置されている。
The fixed scroll 2a is a member fixed in the closed container 1, and has a base plate ia and a spiral wrap ib erected on the base plate ia.
The swivel scroll 2b is a member that forms a compression chamber C between the swivel scroll 2b and the fixed scroll 2a by its movement, and is arranged so as to swivel so as to face the fixed scroll 2a.
 旋回スクロール2bは、台板jaと、この台板jaに立設される渦巻状のラップjbと、クランク軸4の上端部に嵌合するボス部jcと、を有している。図1の例では、台板jaの上側にラップjbが設けられる一方、台板jaの下側にボス部jcが設けられている。 The swivel scroll 2b has a base plate ja, a spiral wrap jb erected on the base plate ja, and a boss portion jc fitted to the upper end portion of the crankshaft 4. In the example of FIG. 1, the wrap jb is provided on the upper side of the base plate ja, while the boss portion jc is provided on the lower side of the base plate ja.
 そして、固定スクロール2aのラップibと、旋回スクロール2bのラップjbと、が噛み合うことで、ラップib,jbの間に圧縮室Cが形成される。前記した圧縮室Cは、ガス状の冷媒を圧縮する空間であり、旋回スクロール2bのラップjbの外線側・内線側にそれぞれ形成される。 Then, the lap ib of the fixed scroll 2a and the lap jb of the swivel scroll 2b mesh with each other to form a compression chamber C between the laps ib and jb. The compression chamber C is a space for compressing the gaseous refrigerant, and is formed on the outer line side and the extension side of the lap jb of the swivel scroll 2b, respectively.
 図1に示すフレーム3は、旋回スクロール2bを支持したり、主軸受5を固定したりする部材であり、固定スクロール2aに締結されている。フレーム3には、クランク軸4が挿通される孔(符号は図示せず)が設けられている。
 クランク軸4は、電動機7の回転子7bと一体で回転する軸である。図1に示すように、クランク軸4は、主軸4aと、この主軸4aの上側に延びる偏心部4bと、主軸4aの下側に延びる突起4cと、を備えている。
The frame 3 shown in FIG. 1 is a member that supports the swivel scroll 2b and fixes the main bearing 5, and is fastened to the fixed scroll 2a. The frame 3 is provided with a hole (not shown) through which the crankshaft 4 is inserted.
The crankshaft 4 is a shaft that rotates integrally with the rotor 7b of the electric motor 7. As shown in FIG. 1, the crankshaft 4 includes a main shaft 4a, an eccentric portion 4b extending upward of the main shaft 4a, and a protrusion 4c extending downward of the main shaft 4a.
 主軸4aは、電動機7の回転子7bに同軸で固定され、この回転子7bと一体で回転する。偏心部4bは、主軸4aに対して偏心しながら回転する軸であり、前記したボス部jcに嵌合している。そして、偏心部4bが偏心しながら回転することによって、旋回スクロール2bが旋回するようになっている。 The spindle 4a is coaxially fixed to the rotor 7b of the electric motor 7 and rotates integrally with the rotor 7b. The eccentric portion 4b is a shaft that rotates while being eccentric with respect to the main shaft 4a, and is fitted to the boss portion jc described above. Then, the eccentric portion 4b rotates while being eccentric, so that the swivel scroll 2b rotates.
 突起4cは、円筒状を呈し、主軸4aの下端部中央から下側に延びている。なお、突起4cの外径は、主軸4aの外径よりも小さい。突起4cには、後記する給油ポンプ12のインナロータ12a(図2参照)が設置されている。 The protrusion 4c has a cylindrical shape and extends downward from the center of the lower end of the main shaft 4a. The outer diameter of the protrusion 4c is smaller than the outer diameter of the main shaft 4a. An inner rotor 12a (see FIG. 2) of the refueling pump 12, which will be described later, is installed on the protrusion 4c.
 クランク軸4の内部には、潤滑油が通流する給油流路4dが設けられている。給油流路4dを介して通流する潤滑油は、圧縮機構部2の他、主軸受5や旋回軸受6、副軸受11等に導かれる。 Inside the crankshaft 4, a lubrication flow path 4d through which lubricating oil flows is provided. The lubricating oil flowing through the oil supply flow path 4d is guided to the main bearing 5, the swivel bearing 6, the auxiliary bearing 11, and the like in addition to the compression mechanism portion 2.
 主軸受5は、フレーム3に対して主軸4aの上部を回転自在に軸支するものであり、フレーム3の孔(符号は図示せず)の周壁面に固定されている。
 旋回軸受6は、ボス部jcに対して偏心部4bを回転自在に軸支するものであり、ボス部jcの内周壁に固定されている。このような主軸受5や旋回軸受6として、例えば、滑り軸受が用いられる。
The main bearing 5 rotatably supports the upper portion of the main shaft 4a with respect to the frame 3, and is fixed to the peripheral wall surface of the hole (reference numeral not shown) of the frame 3.
The swivel bearing 6 rotatably supports the eccentric portion 4b with respect to the boss portion jc, and is fixed to the inner peripheral wall of the boss portion jc. As such a main bearing 5 and a swing bearing 6, for example, a slide bearing is used.
 電動機7は、クランク軸4を回転させる駆動源である。この電動機7は、固定子7aと、回転子7bと、を備え、密閉容器1の内部(フレーム3とサブフレーム10との間)に設置されている。固定子7aは、圧入等によって密閉容器1の内周壁に固定されている。回転子7bは、固定子7aに対して回転自在に配置されている。 The electric motor 7 is a drive source for rotating the crankshaft 4. The electric motor 7 includes a stator 7a and a rotor 7b, and is installed inside the closed container 1 (between the frame 3 and the subframe 10). The stator 7a is fixed to the inner peripheral wall of the closed container 1 by press fitting or the like. The rotor 7b is rotatably arranged with respect to the stator 7a.
 ちなみに、図1の例では、固定子7aよりも回転子7bのほうが、高さ位置が若干高くなっている。これによって、固定子7aと回転子7bとの高さ位置を揃えるように回転子7bを下向きに移動させる磁力が発生する。その結果、クランク軸4がスラスト軸受13を下向きに押圧するため、クランク軸4の上下方向の振動が抑制される。 By the way, in the example of FIG. 1, the height position of the rotor 7b is slightly higher than that of the stator 7a. As a result, a magnetic force is generated to move the rotor 7b downward so that the height positions of the stator 7a and the rotor 7b are aligned. As a result, the crankshaft 4 presses the thrust bearing 13 downward, so that the vertical vibration of the crankshaft 4 is suppressed.
 オルダム継手8は、偏心部4bの偏心回転を受けて、旋回スクロール2bを自転させることなく旋回させる輪状部材である。このオルダム継手8は、旋回スクロール2bとフレーム3との間に設けられている。
 バランサ9a,9bは、圧縮機100の振動を抑制するための部材であり、密閉容器1内の所定箇所に設けられている。
The Oldham joint 8 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 4b and rotates the swivel scroll 2b without rotating. The oldham joint 8 is provided between the swivel scroll 2b and the frame 3.
The balancers 9a and 9b are members for suppressing the vibration of the compressor 100, and are provided at predetermined positions in the closed container 1.
 サブフレーム10は、副軸受11を固定する「固定部材」である。サブフレーム10は、円筒状の円筒部10aと、この円筒部10aから径方向外側に延びる3本の脚10b(図3も参照)と、を備えている。円筒部10aの内周壁には、副軸受11が固定されている。3本の脚10b(図3参照)は、周方向において約120°間隔で設けられ、円筒部10aと一体形成されている。3本の脚10bの先端は、それぞれ、密閉容器1の内周壁に固定されている。 The subframe 10 is a "fixing member" for fixing the auxiliary bearing 11. The subframe 10 includes a cylindrical cylindrical portion 10a and three legs 10b (see also FIG. 3) extending radially outward from the cylindrical portion 10a. An auxiliary bearing 11 is fixed to the inner peripheral wall of the cylindrical portion 10a. The three legs 10b (see FIG. 3) are provided at intervals of about 120 ° in the circumferential direction and are integrally formed with the cylindrical portion 10a. The tips of the three legs 10b are fixed to the inner peripheral wall of the closed container 1, respectively.
 円筒部10aにおいて、3本の脚10bの直下の部分10s(図3参照)は、それぞれ、肉厚に形成されている。これらの肉厚の部分10sには、後記する段付きボルト14を下側から螺合するためのネジ穴nがひとつずつ設けられている。すなわち、それぞれのネジ穴nは、下側に開口している。 In the cylindrical portion 10a, the portions 10s (see FIG. 3) directly below the three legs 10b are each formed to be thick. Each of these thick portions 10s is provided with one screw hole n for screwing the stepped bolt 14 described later from the lower side. That is, each screw hole n is opened downward.
 図1に示す副軸受11は、クランク軸4を軸支し、クランク軸4から径方向の荷重を受ける「ラジアル軸受」である。副軸受11は、前記したように、円筒部10aの内周壁に圧入等で固定されている。このような副軸受11として、例えば、滑り軸受が用いられる。 The auxiliary bearing 11 shown in FIG. 1 is a "radial bearing" that supports the crankshaft 4 and receives a radial load from the crankshaft 4. As described above, the auxiliary bearing 11 is fixed to the inner peripheral wall of the cylindrical portion 10a by press fitting or the like. As such an auxiliary bearing 11, for example, a slide bearing is used.
 給油ポンプ12は、密閉容器1の油溜りRから潤滑油を吸い上げて、給油流路4dに供給するポンプであり、クランク軸4の下端部(端部)に設置されている。このような給油ポンプ12として、例えば、トロコイドポンプを用いることができる。 The refueling pump 12 is a pump that sucks up lubricating oil from the oil sump R of the closed container 1 and supplies it to the refueling flow path 4d, and is installed at the lower end (end) of the crankshaft 4. As such a refueling pump 12, for example, a trochoidal pump can be used.
 スラスト軸受13は、クランク軸4から軸方向(スラスト方向)の荷重を受ける軸受であり、クランク軸4の下端付近に設置されている。
 段付きボルト14は、スラスト軸受13をサブフレーム10(固定部材)に結合する「結合部」である。
The thrust bearing 13 is a bearing that receives a load in the axial direction (thrust direction) from the crankshaft 4, and is installed near the lower end of the crankshaft 4.
The stepped bolt 14 is a "joining portion" that connects the thrust bearing 13 to the subframe 10 (fixing member).
 吸込パイプPaは、吸込室Hを介して圧縮室Cに冷媒を導く管であり、密閉容器1の上キャップ1bに設置されている。 The suction pipe Pa is a pipe that guides the refrigerant to the compression chamber C via the suction chamber H, and is installed in the upper cap 1b of the closed container 1.
 電動機7の駆動によって旋回スクロール2bが旋回すると、吸込パイプPaを介してガス状の冷媒が吸込室Hに導かれる。そして、旋回スクロール2bの旋回に伴って次々に形成される圧縮室Cの容積が縮小することで、冷媒が圧縮される。圧縮された冷媒は、固定スクロール2aの中心付近に設けられた吐出口Nを介して、密閉容器1内に吐出される。 When the swivel scroll 2b is swiveled by the drive of the electric motor 7, the gaseous refrigerant is guided to the suction chamber H via the suction pipe Pa. Then, the refrigerant is compressed by reducing the volume of the compression chambers C formed one after another as the swivel scroll 2b swivels. The compressed refrigerant is discharged into the closed container 1 through the discharge port N provided near the center of the fixed scroll 2a.
 図1に示す吐出パイプPbは、吐出口Nを介して吐出された冷媒が通流する管であり、密閉容器1のケース1aに設置されている。吐出パイプPbを介して圧縮機100から吐出された冷媒は、例えば、凝縮器(図示せず)、膨張弁(図示せず)、及び蒸発器(図示せず)を順次に介して冷凍サイクル(ヒートポンプサイクル)で循環し、さらに、吸込パイプPaを介して、圧縮機100に戻される。
 次に、給油ポンプ12、スラスト軸受13、及び段付きボルト14の構成について、詳細に説明する。
The discharge pipe Pb shown in FIG. 1 is a pipe through which the refrigerant discharged through the discharge port N passes, and is installed in the case 1a of the closed container 1. The refrigerant discharged from the compressor 100 via the discharge pipe Pb sequentially passes through, for example, a condenser (not shown), an expansion valve (not shown), and an evaporator (not shown) in a refrigeration cycle (not shown). It circulates in a heat pump cycle) and is further returned to the compressor 100 via a suction pipe Pa.
Next, the configurations of the refueling pump 12, the thrust bearing 13, and the stepped bolt 14 will be described in detail.
 図2は、圧縮機100の断面における給油ポンプ12付近の部分拡大図である。
 図2に示すように、給油ポンプ12は、インナロータ12aと、アウタロータ12bと、ポンプカバー12cと、ポンプケース12dと、を備えている。
 インナロータ12aは、外周側にトロコイド曲線状の歯が設けられたロータである。このインナロータ12aは、クランク軸4の突起4cに設置され、クランク軸4と一体で回転する。
FIG. 2 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100.
As shown in FIG. 2, the refueling pump 12 includes an inner rotor 12a, an outer rotor 12b, a pump cover 12c, and a pump case 12d.
The inner rotor 12a is a rotor provided with trochoidal curved teeth on the outer peripheral side. The inner rotor 12a is installed on the protrusion 4c of the crankshaft 4 and rotates integrally with the crankshaft 4.
 アウタロータ12bは、インナロータ12aを囲むように配置され、その内周側にはトロコイド曲線状の歯が設けられている。なお、クランク軸4の回転に伴って給油流路4dに潤滑油を供給する「給油部」は、インナロータ12aと、アウタロータ12bと、を含んで構成される。 The outer rotor 12b is arranged so as to surround the inner rotor 12a, and trochoidal curved teeth are provided on the inner peripheral side thereof. The "lubricating section" that supplies lubricating oil to the lubricating flow path 4d as the crankshaft 4 rotates includes an inner rotor 12a and an outer rotor 12b.
 そして、インナロータ12a及びアウタロータ12bが互いに噛合しながら回転することで、油溜りR(図1参照)の潤滑油が吸い上げられて給油流路4dに導かれるようになっている。
 ポンプカバー12cは、潤滑油を圧送するための空間をインナロータ12aやアウタロータ12bとともに形成するカバーであり、ポンプケース12dに固定されている。
Then, the inner rotor 12a and the outer rotor 12b rotate while meshing with each other, so that the lubricating oil in the oil sump R (see FIG. 1) is sucked up and guided to the oil supply flow path 4d.
The pump cover 12c is a cover that forms a space for pumping lubricating oil together with the inner rotor 12a and the outer rotor 12b, and is fixed to the pump case 12d.
 ポンプケース12dは、インナロータ12aやアウタロータ12b(つまり、「給油部」)を収容するケースである。ポンプケース12dは、インナロータ12aやアウタロータ12b等が収容される凹状の収容部121dと、この収容部121dから下側に細長く延びる浸漬部122dと、収容部121dから径方向外側に延びるフランジ123dと、を備えている。 The pump case 12d is a case for accommodating the inner rotor 12a and the outer rotor 12b (that is, the "refueling unit"). The pump case 12d includes a concave accommodating portion 121d in which the inner rotor 12a, the outer rotor 12b, and the like are accommodated, an immersion portion 122d extending downward from the accommodating portion 121d, and a flange 123d extending radially outward from the accommodating portion 121d. Is equipped with.
 浸漬部122dは、通常、その先端付近が油溜りRに浸漬している。浸漬部122dには、インナロータ12aとアウタロータ12bとの間の空間に潤滑油を導くための流路hdが設けられている。
 フランジ123dは、段付きボルト14が設置される部分である。このフランジ123dには、段付きボルト14の中間部14b(図3参照)に対応する大きさの孔h4(図3参照)が3箇所に設けられている。
The immersion portion 122d is usually immersed in the oil sump R near the tip thereof. The immersion portion 122d is provided with a flow path hd for guiding the lubricating oil into the space between the inner rotor 12a and the outer rotor 12b.
The flange 123d is a portion where the stepped bolt 14 is installed. The flange 123d is provided with holes h4 (see FIG. 3) having a size corresponding to the intermediate portion 14b (see FIG. 3) of the stepped bolt 14 at three locations.
 図2に示すスラスト軸受13は、前記したように、クランク軸4から軸方向(スラスト方向)の荷重を受ける軸受である。より詳しく説明すると、クランク軸4の主軸4aと突起4cとの間で段差になっている箇所にスラスト軸受13が設置されている。また、スラスト軸受13は、サブフレーム10(固定部材)と給油ポンプ12との間に介在し、サブフレーム10の下面に段付きボルト14で固定されている。なお、スラスト軸受13には、クランク軸4の突起4c(図3も参照)が挿通される孔h2が設けられている。 As described above, the thrust bearing 13 shown in FIG. 2 is a bearing that receives a load in the axial direction (thrust direction) from the crankshaft 4. More specifically, the thrust bearing 13 is installed at a position where there is a step between the main shaft 4a and the protrusion 4c of the crankshaft 4. Further, the thrust bearing 13 is interposed between the subframe 10 (fixing member) and the oil supply pump 12, and is fixed to the lower surface of the subframe 10 with a stepped bolt 14. The thrust bearing 13 is provided with a hole h2 through which a protrusion 4c of the crankshaft 4 (see also FIG. 3) is inserted.
 スラスト軸受13は、例えば、肉薄の円板状を呈し、ベースとなる鋼板(バックメタルという)の摺動面側に所定の多孔質焼結層が設けられた構成になっている。なお、前記した構成は一例であり、スラスト軸受13の構成は、これに限定されるものではない。 The thrust bearing 13 has, for example, a thin disk shape, and has a configuration in which a predetermined porous sintered layer is provided on the sliding surface side of a base steel plate (called a back metal). The configuration described above is an example, and the configuration of the thrust bearing 13 is not limited to this.
 図3は、クランク軸4、サブフレーム10、スラスト軸受13、給油ポンプ12、及び段付きボルト14を含む分解斜視図である。
 図3に示すように、スラスト軸受13の中央部には、クランク軸4の下端部の突起4cが挿通される1つの孔h2が設けられている。一方、スラスト軸受13の縁付近には、段付きボルト14のネジ部14aが挿通される3つの孔h3が周方向に等間隔で設けられている。
FIG. 3 is an exploded perspective view including a crankshaft 4, a subframe 10, a thrust bearing 13, a refueling pump 12, and a stepped bolt 14.
As shown in FIG. 3, one hole h2 through which the protrusion 4c at the lower end of the crankshaft 4 is inserted is provided in the central portion of the thrust bearing 13. On the other hand, near the edge of the thrust bearing 13, three holes h3 through which the threaded portion 14a of the stepped bolt 14 is inserted are provided at equal intervals in the circumferential direction.
 また、スラスト軸受13においてクランク軸4との摺動面(上面)には、潤滑油を取り込むための径方向の溝(図示せず)が設けられている。なお、前記した溝に代えて、クランク軸4においてスラスト軸受13との摺動面(下端面)に所定の溝(図示せず)を設けるようにしてもよい。 Further, in the thrust bearing 13, a radial groove (not shown) for taking in lubricating oil is provided on the sliding surface (upper surface) with the crankshaft 4. Instead of the groove described above, a predetermined groove (not shown) may be provided on the sliding surface (lower end surface) of the crankshaft 4 with the thrust bearing 13.
 段付きボルト14は、前記したように、スラスト軸受13をサブフレーム10(固定部材)に結合する「結合部」である。その他に段付きボルト14は、給油ポンプ12を支える機能も有している。 As described above, the stepped bolt 14 is a "joining portion" that connects the thrust bearing 13 to the subframe 10 (fixing member). In addition, the stepped bolt 14 also has a function of supporting the refueling pump 12.
 図3に示すように、段付きボルト14は、ネジ部14aと、中間部14bと、頭部14cと、を備えている。ネジ部14aには、サブフレーム10のネジ穴nに螺合するネジ溝m(図4参照)が設けられている。中間部14bは、ネジ部14aに連なり、ネジ部14aよりも径が大きい。頭部14cは、中間部14bに連なり、中間部14bよりも径がさらに大きい。段付きボルト14は、ポンプケース12d及びスラスト軸受13を軸方向に貫通し、サブフレーム10に結合されてスラスト軸受13を固定している。すなわち、段付きボルト14は、サブフレーム10(固定部材)に設けられたネジ穴nに下側から螺合している。 As shown in FIG. 3, the stepped bolt 14 includes a screw portion 14a, an intermediate portion 14b, and a head portion 14c. The screw portion 14a is provided with a screw groove m (see FIG. 4) for screwing into the screw hole n of the subframe 10. The intermediate portion 14b is connected to the threaded portion 14a and has a larger diameter than the threaded portion 14a. The head 14c is connected to the intermediate portion 14b and has a larger diameter than the intermediate portion 14b. The stepped bolt 14 penetrates the pump case 12d and the thrust bearing 13 in the axial direction, and is coupled to the subframe 10 to fix the thrust bearing 13. That is, the stepped bolt 14 is screwed into the screw hole n provided in the subframe 10 (fixing member) from below.
 図4は、図2に示すQ部を拡大した部分拡大図である。
 なお、図4では、径方向の隙間GDや軸方向の隙間GAを分かりやすくするために、これらの隙間GD,GAを実際よりも長めに図示している。
 図4に示すように、段付きボルト14の中間部14bの径は、スラスト軸受13の孔h3の径よりも大きく、その一方で、ポンプケース12dの孔h4の径よりも小さい。
FIG. 4 is a partially enlarged view of the Q portion shown in FIG. 2.
In FIG. 4, these gaps GD and GA are shown longer than they actually are in order to make it easier to understand the radial gap GD and the axial gap GA.
As shown in FIG. 4, the diameter of the intermediate portion 14b of the stepped bolt 14 is larger than the diameter of the hole h3 of the thrust bearing 13, while being smaller than the diameter of the hole h4 of the pump case 12d.
 そして、段付きボルト14のネジ部14aがサブフレーム10のネジ穴nに螺合すると、中間部14bがスラスト軸受13の下面に押し当てられるようになっており、中間部14bの上面とスラスト軸受13の下面とが直接接触している。すなわち、段付きボルト14の中間部14bとサブフレーム10(固定部材)とによって、スラスト軸受13が挟み込まれて固定されている。さらに、サブフレーム10の3つのネジ穴nに対応して、3本の段付きボルト14が設置されている(図3参照)。これによって、スラスト軸受13の周方向の移動が規制される。 When the screw portion 14a of the stepped bolt 14 is screwed into the screw hole n of the subframe 10, the intermediate portion 14b is pressed against the lower surface of the thrust bearing 13, and the upper surface of the intermediate portion 14b and the thrust bearing are pressed against each other. It is in direct contact with the lower surface of 13. That is, the thrust bearing 13 is sandwiched and fixed by the intermediate portion 14b of the stepped bolt 14 and the subframe 10 (fixing member). Further, three stepped bolts 14 are installed corresponding to the three screw holes n of the subframe 10 (see FIG. 3). As a result, the movement of the thrust bearing 13 in the circumferential direction is restricted.
 また、ポンプケース12dのフランジ123dにおいて、段付きボルト14の中間部14bが設置される孔h4の径は、中間部14bの径よりも若干大きくなっている。したがって、段付きボルト14が設置された状態では、中間部14bとポンプケース12dの孔h4の周壁面との間に径方向の所定の隙間GDが設けられている。 Further, in the flange 123d of the pump case 12d, the diameter of the hole h4 in which the intermediate portion 14b of the stepped bolt 14 is installed is slightly larger than the diameter of the intermediate portion 14b. Therefore, in the state where the stepped bolt 14 is installed, a predetermined radial gap GD is provided between the intermediate portion 14b and the peripheral wall surface of the hole h4 of the pump case 12d.
 また、中間部14bの周囲におけるフランジ123dの肉厚(上下方向の厚さ)は、中間部14bの肉厚(上下方向の厚さ)よりも若干薄くなっている。したがって、段付きボルト14が設置された状態では、ポンプケース12dのフランジ123dの上面と、スラスト軸受13と、の間に軸方向の所定の隙間GAが設けられている。 Further, the wall thickness (thickness in the vertical direction) of the flange 123d around the intermediate portion 14b is slightly thinner than the wall thickness (thickness in the vertical direction) of the intermediate portion 14b. Therefore, in the state where the stepped bolt 14 is installed, a predetermined axial gap GA is provided between the upper surface of the flange 123d of the pump case 12d and the thrust bearing 13.
 このように、段付きボルト14の中間部14bとポンプケース12dとの間には径方向の隙間GDが設けられる一方、スラスト軸受13とポンプケース12dとの間には軸方向の隙間GAが設けられている。そして、3本の段付きボルト14(図3参照)の頭部14cによって、給油ポンプ12が支えられている(吊り下げられている)。すなわち、段付きボルト14は、ポンプケース12dの一部(ポンプケース12dの孔h4付近の下面)と直接接触している。 As described above, a radial gap GD is provided between the intermediate portion 14b of the stepped bolt 14 and the pump case 12d, while an axial gap GA is provided between the thrust bearing 13 and the pump case 12d. Has been done. The refueling pump 12 is supported (suspended) by the head 14c of the three stepped bolts 14 (see FIG. 3). That is, the stepped bolt 14 is in direct contact with a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4).
 これによって、クランク軸4で振れ回りが生じた場合でも、前記した径方向の隙間GDや軸方向の隙間GAによって、クランク軸4の振れ回りが吸収される。つまり、クランク軸4の振れ回りに伴って、給油ポンプ12のインナロータ12a(図2参照)が若干傾くと、径方向の隙間GDや軸方向の隙間GAの許容範囲内で、アウタロータ12b(図2参照)も若干傾く。したがって、給油ポンプ12のインナロータ12aやアウタロータ12bに過大な荷重が生じないため、クランク軸4の折損や給油ポンプ12のかじり・焼付きといった不具合を防止できる。 As a result, even if the crankshaft 4 has a runout, the runout of the crankshaft 4 is absorbed by the radial gap GD and the axial gap GA described above. That is, when the inner rotor 12a (see FIG. 2) of the refueling pump 12 is slightly tilted with the swing of the crankshaft 4, the outer rotor 12b (FIG. 2) is within the allowable range of the radial gap GD and the axial gap GA. See) also tilts slightly. Therefore, since an excessive load is not generated on the inner rotor 12a and the outer rotor 12b of the refueling pump 12, problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12 can be prevented.
 なお、段付きボルト14の中間部14bとポンプケース12dとの間の径方向の隙間GDの寸法L1(隙間GDの長さ:図4参照)は、この径方向の隙間を形成する範囲における中間部14b(結合部)の軸径、又は、前記した径方向の隙間を形成する範囲におけるポンプケース12dの孔h4の孔径の4%以上かつ13%以下であることが好ましい。これによって、クランク軸4の振れ回りが適切に吸収される。 The dimension L1 of the radial gap GD between the intermediate portion 14b of the stepped bolt 14 and the pump case 12d (the length of the gap GD: see FIG. 4) is the middle within the range in which the radial gap is formed. It is preferable that the shaft diameter of the portion 14b (joining portion) is 4% or more and 13% or less of the hole diameter of the hole h4 of the pump case 12d in the range of forming the above-mentioned radial gap. As a result, the runout of the crankshaft 4 is appropriately absorbed.
 また、スラスト軸受13とポンプケース12dとの間の軸方向の隙間GAの寸法L2(隙間GAの長さ:図4参照)は、この軸方向の隙間を形成する範囲における中間部14b(結合部)の軸方向の長さ、又は、前記した軸方向の隙間の周囲におけるポンプケース12dのフランジ123dの上下方向の肉厚の1%以上かつ6%以下であることが好ましい。これによって、クランク軸4の振れ回りが適切に吸収される。 Further, the dimension L2 of the axial clearance GA between the thrust bearing 13 and the pump case 12d (the length of the clearance GA: see FIG. 4) is the intermediate portion 14b (joint portion) in the range in which the axial clearance is formed. ) In the axial direction, or 1% or more and 6% or less of the vertical wall thickness of the flange 123d of the pump case 12d around the above-mentioned axial gap. As a result, the runout of the crankshaft 4 is appropriately absorbed.
 また、図2に示すように、サブフレーム10(固定部材)の円筒部10aの軸方向において、スラスト軸受13の付近では、円筒部の10aの内径が一定であることが好ましい。これによって、サブフレーム10を加工する際に高い寸法精度が求められることがほとんどないため、加工に要する工数やコストを削減できる。 Further, as shown in FIG. 2, it is preferable that the inner diameter of the cylindrical portion 10a is constant in the vicinity of the thrust bearing 13 in the axial direction of the cylindrical portion 10a of the subframe 10 (fixing member). As a result, high dimensional accuracy is rarely required when processing the subframe 10, so that the man-hours and costs required for processing can be reduced.
 なお、仮に、スラスト軸受13の大きさに合わせて、サブフレーム10の下部(スラスト軸受13の付近)に段差を設け、さらに、スラスト軸受13の周方向の回転をねじを使わずに規制するようにサブフレーム10を形成すると、高い加工精度が求められる。これに対して本実施形態では、前記したように、円筒部の10aの内径が軸方向で一定であり、また、スラスト軸受13の周方向の回転が3個の段付きボルト14で規制されている(図3参照)。したがって、サブフレーム10の加工コストを削減できる。 Temporarily, a step is provided in the lower part of the subframe 10 (near the thrust bearing 13) according to the size of the thrust bearing 13, and the rotation of the thrust bearing 13 in the circumferential direction is regulated without using screws. When the subframe 10 is formed on the surface, high processing accuracy is required. On the other hand, in the present embodiment, as described above, the inner diameter of the cylindrical portion 10a is constant in the axial direction, and the rotation of the thrust bearing 13 in the circumferential direction is regulated by the three stepped bolts 14. (See Fig. 3). Therefore, the processing cost of the subframe 10 can be reduced.
<効果>
 第1実施形態によれば、段付きボルト14の中間部14bとサブフレーム10との間でスラスト軸受13が上下方向で挟み込まれて強固に固定される。また、3個の段付きボルト14が、スラスト軸受13の回り止めの機能も担っている。したがって、スラスト軸受13に関して、いわゆるDカット形状といった回り止めの形状を採用する必要がないため、厳しい寸法公差が求められる高精度な加工を行う必要がない。さらに、スラスト軸受13として、クランク軸4から軸方向の荷重を受ける側の片面のみに多孔質焼結層等が設けられた安価なバックメタル付きのものを採用できる。
<Effect>
According to the first embodiment, the thrust bearing 13 is sandwiched in the vertical direction between the intermediate portion 14b of the stepped bolt 14 and the subframe 10 and is firmly fixed. In addition, the three stepped bolts 14 also serve to prevent the thrust bearing 13 from rotating. Therefore, it is not necessary to adopt a detent shape such as a so-called D-cut shape for the thrust bearing 13, and it is not necessary to perform high-precision processing that requires a strict dimensional tolerance. Further, as the thrust bearing 13, one with an inexpensive back metal in which a porous sintered layer or the like is provided only on one surface on the side receiving an axial load from the crankshaft 4 can be adopted.
 また、段付きボルト14の中間部14bとサブフレーム10との間にスラスト軸受13が挟み込まれて強固に固定される一方、中間部14bには径方向の隙間GDや軸方向の隙間GAが設けられている。これによって、クランク軸4の振れ回りが生じたとき、給油ポンプ12のインナロータ12aやアウタロータ12bに過大な荷重がかかることを防止できる。その結果、クランク軸4の折損や給油ポンプ12のかじり・焼付きといった不具合を防止できる。 Further, the thrust bearing 13 is sandwiched between the intermediate portion 14b of the stepped bolt 14 and the subframe 10 to be firmly fixed, while the intermediate portion 14b is provided with a radial gap GD and an axial gap GA. Has been done. As a result, it is possible to prevent an excessive load from being applied to the inner rotor 12a and the outer rotor 12b of the refueling pump 12 when the crankshaft 4 swings around. As a result, it is possible to prevent problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12.
 また、第1実施形態では、サブフレーム10の下側にスラスト軸受13が配置されている。したがって、サブフレーム10において、スラスト軸受13を保持するための所定の段差を設けたり、スラスト軸受13の荷重を支えるために所定の肉厚を確保したりする必要がない。したがって、サブフレーム10の大型化や材料費の増加を抑制できる。 Further, in the first embodiment, the thrust bearing 13 is arranged under the subframe 10. Therefore, it is not necessary to provide a predetermined step for holding the thrust bearing 13 in the subframe 10 or to secure a predetermined wall thickness to support the load of the thrust bearing 13. Therefore, it is possible to suppress an increase in the size of the subframe 10 and an increase in material cost.
 また、第1実施形態では、クランク軸4の下側にスラスト軸受13が設けられる。したがって、例えば、クランク軸4の所定箇所に大径の鍔部(図示せず)を設け、この鍔部にスラスト軸受13を設置する構成に比べて、クランク軸4の大型化や材料費の増加を抑制できる。さらに、段付きボルト14が、スラスト軸受13の固定と、給油ポンプ12の支持と、の両方の役割を兼ねているため、部品点数を削減できる。 Further, in the first embodiment, the thrust bearing 13 is provided on the lower side of the crankshaft 4. Therefore, for example, as compared with a configuration in which a large-diameter flange portion (not shown) is provided at a predetermined position on the crankshaft 4 and a thrust bearing 13 is installed on the flange portion, the size of the crankshaft 4 is increased and the material cost is increased. Can be suppressed. Further, since the stepped bolt 14 serves both of fixing the thrust bearing 13 and supporting the refueling pump 12, the number of parts can be reduced.
 このように本実施形態によれば、給油ポンプ12に過大な荷重が発生しにくく、信頼性の高い圧縮機100を提供できる。また、部品点数が少なく簡素な構成で、加工性や組立性に優れた安価な圧縮機100を提供できる。 As described above, according to the present embodiment, it is possible to provide a highly reliable compressor 100 in which an excessive load is unlikely to be generated in the refueling pump 12. Further, it is possible to provide an inexpensive compressor 100 having excellent workability and assembling property with a simple configuration with a small number of parts.
≪第2実施形態≫
 第2実施形態に係る圧縮機100A(図5参照)は、第1実施形態で説明した段付きボルト14(図2参照)に代えて、ボルト15A(図5参照)及びスペーサ16A(図5参照)を備える構成になっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Second Embodiment >>
The compressor 100A (see FIG. 5) according to the second embodiment has a bolt 15A (see FIG. 5) and a spacer 16A (see FIG. 5) in place of the stepped bolt 14 (see FIG. 2) described in the first embodiment. ) Is provided. Others are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図5は、第2実施形態に係る圧縮機100Aの断面における給油ポンプ12付近の部分拡大図である。
 図5に示すように、圧縮機100Aは、クランク軸4(駆動軸)やサブフレーム10(固定部材)の他に、副軸受11(ラジアル軸受)と、給油ポンプ12と、スラスト軸受13と、ボルト15A(結合部)と、スペーサ16A(結合部)と、を備えている。
FIG. 5 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100A according to the second embodiment.
As shown in FIG. 5, in the compressor 100A, in addition to the crankshaft 4 (drive shaft) and the subframe 10 (fixing member), the auxiliary bearing 11 (radial bearing), the oil supply pump 12, the thrust bearing 13, and the thrust bearing 13 are included. A bolt 15A (joint portion) and a spacer 16A (joint portion) are provided.
 ボルト15Aは、サブフレーム10のネジ穴に螺合するネジ溝が設けられたネジ部151Aと、このネジ部151Aよりも径が大きい頭部152Aと、を有している。
 スペーサ16Aは、ボルト15Aの頭部152Aとスラスト軸受13との間の上下方向の距離を保持する部材(カラー)であり、円筒状を呈している。なお、スペーサ16Aの軸方向の長さは、ポンプケース12dにおけるスペーサ16Aの周囲の肉厚よりも長くなっている。また、スペーサ16Aには、ボルト15Aのネジ部151Aが挿通されている。
The bolt 15A has a screw portion 151A provided with a screw groove to be screwed into a screw hole of the subframe 10, and a head portion 152A having a diameter larger than that of the screw portion 151A.
The spacer 16A is a member (collar) that maintains a vertical distance between the head portion 152A of the bolt 15A and the thrust bearing 13, and has a cylindrical shape. The axial length of the spacer 16A is longer than the wall thickness around the spacer 16A in the pump case 12d. Further, the threaded portion 151A of the bolt 15A is inserted through the spacer 16A.
 そして、スペーサ16Aとサブフレーム10とによって、スラスト軸受13が挟み込まれて固定されている。なお、ボルト15Aの頭部152Aの径は、スペーサ16Aの外径よりも大きい。
 また、スペーサ16Aとポンプケース12dとの間には径方向の隙間が設けられる一方、スラスト軸受13とポンプケース12dとの間には軸方向の隙間が設けられている。そして、ボルト15Aの頭部152Aによって、給油ポンプ12が支えられている。つまり、ボルト15Aは、ポンプケース12dの一部(下面)と直接接触している。
The thrust bearing 13 is sandwiched and fixed by the spacer 16A and the subframe 10. The diameter of the head 152A of the bolt 15A is larger than the outer diameter of the spacer 16A.
Further, a radial gap is provided between the spacer 16A and the pump case 12d, while an axial gap is provided between the thrust bearing 13 and the pump case 12d. The refueling pump 12 is supported by the head 152A of the bolt 15A. That is, the bolt 15A is in direct contact with a part (lower surface) of the pump case 12d.
 なお、スペーサ16Aとポンプケース12dとの間の径方向の隙間の寸法は、スペーサ16Aの径(又は、ポンプケース12dの孔h4の径)の4%以上かつ13%以下であることが好ましい。また、スラスト軸受13とポンプケース12dとの間の軸方向の隙間の寸法は、スペーサ16Aの軸方向の長さ(又は、フランジ123dの上下方向の肉厚)の1%以上かつ6%以下であることが好ましい。これによって、クランク軸4の振れ回りが適切に吸収される。 The dimension of the radial gap between the spacer 16A and the pump case 12d is preferably 4% or more and 13% or less of the diameter of the spacer 16A (or the diameter of the hole h4 of the pump case 12d). The dimension of the axial gap between the thrust bearing 13 and the pump case 12d is 1% or more and 6% or less of the axial length of the spacer 16A (or the vertical wall thickness of the flange 123d). It is preferable to have. As a result, the runout of the crankshaft 4 is appropriately absorbed.
<効果>
 第2実施形態によれば、スペーサ16Aとサブフレーム10との間にスラスト軸受13が挟み込まれて強固に固定され、その一方で、スペーサ16Aには径方向・軸方向の隙間が設けられている。これによって、クランク軸4の振れ回りが生じた場合でも、クランク軸4の折損や給油ポンプ12のかじり・焼付きといった不具合を防止できる。
<Effect>
According to the second embodiment, the thrust bearing 13 is sandwiched between the spacer 16A and the subframe 10 and firmly fixed, while the spacer 16A is provided with gaps in the radial and axial directions. .. As a result, even if the crankshaft 4 swings around, problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12 can be prevented.
≪第3実施形態≫
 第3実施形態は、ボルト15B(図6参照)やスペーサ16B(図6参照)の形状が第2実施形態とは異なっているが、その他については第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Third Embodiment >>
In the third embodiment, the shapes of the bolt 15B (see FIG. 6) and the spacer 16B (see FIG. 6) are different from those of the second embodiment, but the other aspects are the same as those of the second embodiment. Therefore, a part different from the second embodiment will be described, and a description of the overlapping part will be omitted.
 図6は、本発明の第3実施形態に係る圧縮機100Bの断面における給油ポンプ12付近の部分拡大図である。
 なお、図6に示す圧縮機100Bは、ボルト15B(結合部)の頭部152Bの径が比較的小さい点と、スペーサ16B(結合部)が鍔部162Bを有している点以外は、第2実施形態(図5参照)と同様であるから、詳細な説明は省略する。
FIG. 6 is a partially enlarged view of the vicinity of the refueling pump 12 in the cross section of the compressor 100B according to the third embodiment of the present invention.
Note that the compressor 100B shown in FIG. 6 is the first except that the diameter of the head 152B of the bolt 15B (joining portion) is relatively small and the spacer 16B (joining portion) has the flange portion 162B. Since it is the same as that of the second embodiment (see FIG. 5), detailed description thereof will be omitted.
 スペーサ16Bは、円筒状の円筒部161Bと、この円筒部161Bの下端部(軸方向の一方側の端部)から径方向外側に延びる鍔部162Bと、を備えている。なお、円筒部161Bの軸方向の長さは、ポンプケース12dにおける円筒部161Bの周囲の肉厚よりも長くなっている。また、ボルト15Bの頭部152Bがスペーサ16Bの鍔部162Bに当接するように、ボルト15Bのネジ部151Bがスペーサ16Bに挿通されている。 The spacer 16B includes a cylindrical cylindrical portion 161B and a flange portion 162B extending radially outward from the lower end portion (one end portion in the axial direction) of the cylindrical portion 161B. The axial length of the cylindrical portion 161B is longer than the wall thickness around the cylindrical portion 161B in the pump case 12d. Further, the threaded portion 151B of the bolt 15B is inserted through the spacer 16B so that the head portion 152B of the bolt 15B abuts on the flange portion 162B of the spacer 16B.
 そして、スペーサ16Bとサブフレーム10とによって、スラスト軸受13が挟み込まれて固定されている。なお、ボルト15Bの頭部152Bの径は、スペーサ16Bの内径よりも大きい。
 また、スペーサ16Bとポンプケース12dとの間には径方向の隙間が設けられる一方、スラスト軸受13とポンプケース12dとの間には軸方向の隙間が設けられている。そして、スペーサ16Bの鍔部162Bを介して、ボルト15Bの頭部152Bによって、給油ポンプ12が支えられている。つまり、ボルト15Bは、ポンプケース12dの一部(下面)と直接接触している。
The thrust bearing 13 is sandwiched and fixed by the spacer 16B and the subframe 10. The diameter of the head 152B of the bolt 15B is larger than the inner diameter of the spacer 16B.
Further, a radial gap is provided between the spacer 16B and the pump case 12d, while an axial gap is provided between the thrust bearing 13 and the pump case 12d. The refueling pump 12 is supported by the head portion 152B of the bolt 15B via the flange portion 162B of the spacer 16B. That is, the bolt 15B is in direct contact with a part (lower surface) of the pump case 12d.
 なお、スペーサ16Bとポンプケース12dとの間の径方向の隙間の寸法は、スペーサ16Bの径(又は、ポンプケース12dの孔h4の径)の4%以上かつ13%以下であることが好ましい。また、スラスト軸受13とポンプケース12dとの間の軸方向の隙間の寸法は、スペーサ16Bの円筒部161Bの軸方向の長さ(又は、フランジ123dの上下方向の肉厚)の1%以上かつ6%以下であることが好ましい。これによって、クランク軸4の振れ回りが適切に吸収される。 The dimension of the radial gap between the spacer 16B and the pump case 12d is preferably 4% or more and 13% or less of the diameter of the spacer 16B (or the diameter of the hole h4 of the pump case 12d). The dimension of the axial gap between the thrust bearing 13 and the pump case 12d is 1% or more of the axial length of the cylindrical portion 161B of the spacer 16B (or the vertical wall thickness of the flange 123d). It is preferably 6% or less. As a result, the runout of the crankshaft 4 is appropriately absorbed.
<効果>
 第3実施形態によれば、スペーサ16Bとサブフレーム10との間にスラスト軸受13が挟み込まれて強固に固定され、その一方で、スペーサ16Bには径方向・軸方向の隙間が設けられている。これによって、クランク軸4の振れ回りが生じた場合でも、クランク軸4の折損や給油ポンプ12のかじり・焼付きといった不具合を防止できる。
<Effect>
According to the third embodiment, the thrust bearing 13 is sandwiched between the spacer 16B and the subframe 10 and firmly fixed, while the spacer 16B is provided with gaps in the radial and axial directions. .. As a result, even if the crankshaft 4 swings around, problems such as breakage of the crankshaft 4 and galling / seizure of the refueling pump 12 can be prevented.
≪第4実施形態≫
 第4実施形態では、第1実施形態で説明した圧縮機100(図1参照)を備える空気調和機W(冷凍サイクル装置:図7参照)について説明する。
<< Fourth Embodiment >>
In the fourth embodiment, the air conditioner W (refrigeration cycle device: see FIG. 7) including the compressor 100 (see FIG. 1) described in the first embodiment will be described.
 図7は、空気調和機Wの冷媒回路Kの構成図である。
 なお、図7の実線矢印は、暖房運転時における冷媒の流れを示している。
 また、図7の破線矢印は、冷房運転時における冷媒の流れを示している。
 空気調和機Wは、冷房や暖房等の空調を行う機器である。図7に示すように、空気調和機Wは、圧縮機100と、室外熱交換器Eoと、室外ファンFoと、膨張弁Veと、四方弁Vfと、室内熱交換器Eiと、室内ファンFiと、を備えている。
FIG. 7 is a block diagram of the refrigerant circuit K of the air conditioner W.
The solid line arrow in FIG. 7 indicates the flow of the refrigerant during the heating operation.
Further, the broken line arrow in FIG. 7 indicates the flow of the refrigerant during the cooling operation.
The air conditioner W is a device that performs air conditioning such as cooling and heating. As shown in FIG. 7, the air conditioner W includes a compressor 100, an outdoor heat exchanger Eo, an outdoor fan Fo, an expansion valve Ve, a four-way valve Vf, an indoor heat exchanger Ei, and an indoor fan Fi. And have.
 図7に示す例では、圧縮機100、室外熱交換器Eo、室外ファンFo、膨張弁Ve、及び四方弁Vfが、室外機Woに設けられている。一方、室内熱交換器Ei及び室内ファンFiは、室内機Wiに設けられている。 In the example shown in FIG. 7, the compressor 100, the outdoor heat exchanger Eo, the outdoor fan Fo, the expansion valve Ve, and the four-way valve Vf are provided in the outdoor unit Wo. On the other hand, the indoor heat exchanger Ei and the indoor fan Fi are provided in the indoor unit Wi.
 圧縮機100は、ガス状の冷媒を圧縮する機器であり、第1実施形態(図1参照)と同様の構成を備えている。
 室外熱交換器Eoは、その伝熱管(図示せず)を通流する冷媒と、室外ファンFoから送り込まれる外気と、の間で熱交換が行われる熱交換器である。
 室外ファンFoは、室外熱交換器Eoに外気を送り込むファンである。室外ファンFoは、駆動源である室外ファンモータMoを備え、室外熱交換器Eoの付近に設置されている。
The compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1).
The outdoor heat exchanger Eo is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan Fo.
The outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger Eo. The outdoor fan Fo includes an outdoor fan motor Mo which is a drive source, and is installed near the outdoor heat exchanger Eo.
 室内熱交換器Eiは、その伝熱管(図示せず)を通流する冷媒と、室内ファンFiから送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファンFiは、室内熱交換器Eiに室内空気を送り込むファンである。室内ファンFiは、駆動源である室内ファンモータMiを備え、室内熱交換器Eiの付近に設置されている。
The indoor heat exchanger Ei is a heat exchanger in which heat is exchanged between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air-conditioned space) sent from the indoor fan Fi. Is.
The indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger Ei. The indoor fan Fi includes an indoor fan motor Mi as a drive source, and is installed in the vicinity of the indoor heat exchanger Ei.
 膨張弁Veは、「凝縮器」(室外熱交換器Eo及び室内熱交換器Eiの一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁Veによって減圧された冷媒は、「蒸発器」(室外熱交換器Eo及び室内熱交換器Eiの他方)に導かれる。 The expansion valve Ve is a valve that reduces the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger Eo and the indoor heat exchanger Ei). The refrigerant decompressed by the expansion valve Ve is guided to an "evaporator" (the other of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
 四方弁Vfは、空気調和機Wの運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図7の破線矢印を参照)には、圧縮機100、室外熱交換器Eo(凝縮器)、膨張弁Ve、及び室内熱交換器Ei(蒸発器)が、四方弁Vfを介して順次接続されてなる冷媒回路Kにおいて、冷凍サイクルで冷媒が循環する。 The four-way valve Vf is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W. For example, during cooling operation (see the dashed arrow in FIG. 7), the compressor 100, the outdoor heat exchanger Eo (condenser), the expansion valve Ve, and the indoor heat exchanger Ei (evaporator) are the four-way valve Vf. In the refrigerant circuit K which is sequentially connected via the above, the refrigerant circulates in the refrigeration cycle.
 一方、暖房運転時(図7の実線矢印を参照)には、圧縮機100、室内熱交換器Ei(凝縮器)、膨張弁Ve、及び室外熱交換器Eo(蒸発器)が、四方弁Vfを介して順次接続されてなる冷媒回路Kにおいて、冷凍サイクルで冷媒が循環する。 On the other hand, during the heating operation (see the solid line arrow in FIG. 7), the compressor 100, the indoor heat exchanger Ei (condenser), the expansion valve Ve, and the outdoor heat exchanger Eo (evaporator) are the four-way valve Vf. In the refrigerant circuit K which is sequentially connected via the above, the refrigerant circulates in the refrigeration cycle.
 このように、圧縮機100、「凝縮器」、膨張弁Ve、及び「蒸発器」を順次に介して冷媒が循環するようになっている。なお、圧縮機100、室外ファンFo、膨張弁Ve、室内ファンFi等の機器は、不図示の制御装置からの指令に基づいて駆動される。 In this way, the refrigerant circulates in sequence through the compressor 100, the "condenser", the expansion valve Ve, and the "evaporator". Devices such as the compressor 100, the outdoor fan Fo, the expansion valve Ve, and the indoor fan Fi are driven based on a command from a control device (not shown).
<効果>
 第4実施形態によれば、簡素な構成で信頼性の高い圧縮機100を備えた空気調和機Wを提供できる。
<Effect>
According to the fourth embodiment, it is possible to provide an air conditioner W having a highly reliable compressor 100 with a simple configuration.
≪変形例≫
 以上、本発明に係る圧縮機100や空気調和機W等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、第1実施形態では、圧縮機100(図1参照)のクランク軸4と給油ポンプ12とが直接的に接続された構成について説明したが、これに限らない。すなわち、クランク軸4と給油ポンプ12との間に所定の接続部(図示せず)が別体で設けられていてもよい。このような構成でも、第1実施形態と同様の効果が奏される。
≪Modification≫
Although the compressor 100, the air conditioner W, and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in the first embodiment, the configuration in which the crankshaft 4 of the compressor 100 (see FIG. 1) and the refueling pump 12 are directly connected has been described, but the present invention is not limited to this. That is, a predetermined connection portion (not shown) may be separately provided between the crankshaft 4 and the refueling pump 12. Even with such a configuration, the same effect as that of the first embodiment is obtained.
 また、第1実施形態では、サブフレーム10の脚10bが3本設けられ(図3参照)、また、段付きボルト14が3本設けられる構成について説明したが(図3参照)、これに限らない。すなわち、サブフレーム10の脚10bや段付きボルト14は、複数設けられていればよく、その個数は適宜に変更可能である。 Further, in the first embodiment, a configuration in which three legs 10b of the subframe 10 are provided (see FIG. 3) and three stepped bolts 14 are provided (see FIG. 3) has been described, but the present invention is limited to this. Absent. That is, a plurality of legs 10b and stepped bolts 14 of the subframe 10 may be provided, and the number thereof can be appropriately changed.
 また、第1実施形態では、段付きボルト14(結合部)の頭部14cが、ポンプケース12dの一部(ポンプケース12dの孔h4付近の下面)と直接接触している構成について説明したが(図4参照)、これに限らない。例えば、段付きボルト14の頭部14cと、ポンプケース12dの一部(ポンプケース12dの孔h4付近の下面)と、の間にワッシャー(座金:図示せず)が介在していてもよい。 Further, in the first embodiment, the configuration in which the head portion 14c of the stepped bolt 14 (joining portion) is in direct contact with a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4) has been described. (See FIG. 4), but not limited to this. For example, a washer (washer: not shown) may be interposed between the head 14c of the stepped bolt 14 and a part of the pump case 12d (the lower surface of the pump case 12d near the hole h4).
 また、各実施形態では、圧縮機100が縦置きで設置される構成について説明したが、これに限らない。例えば、圧縮機100が横置きで設置される構成にも各実施形態を適用できる。
 また、各実施形態では、圧縮機100がスクロール式の圧縮機である場合について説明したが、これに限らない。すなわち、各実施形態は、ロータリ式等の別タイプの圧縮機にも適用できる。
Further, in each embodiment, the configuration in which the compressor 100 is installed vertically has been described, but the present invention is not limited to this. For example, each embodiment can be applied to a configuration in which the compressor 100 is installed horizontally.
Further, in each embodiment, the case where the compressor 100 is a scroll type compressor has been described, but the present invention is not limited to this. That is, each embodiment can be applied to another type of compressor such as a rotary type compressor.
 また、各実施形態は、適宜に組み合わせることが可能である。例えば、第2実施形態と第4実施形態とを組み合わせ、ボルト15A(図5参照)及びスペーサ16A(図5参照)を備える圧縮機100A(第2実施形態)を空気調和機に搭載してもよい(第4実施形態)。同様に、第3実施形態と第4実施形態とを組み合わせてもよい。 In addition, each embodiment can be combined as appropriate. For example, even if the second embodiment and the fourth embodiment are combined and a compressor 100A (second embodiment) including a bolt 15A (see FIG. 5) and a spacer 16A (see FIG. 5) is mounted on the air conditioner. Good (4th embodiment). Similarly, the third embodiment and the fourth embodiment may be combined.
 また、第4実施形態では、圧縮機100を備える空気調和機W(冷凍サイクル装置:図7参照)について説明したが、これに限らない。例えば、冷蔵庫、給湯機、空調給湯装置、チラーといった他の「冷凍サイクル装置」にも、第4実施形態を適用可能である。 Further, in the fourth embodiment, the air conditioner W (refrigeration cycle device: see FIG. 7) including the compressor 100 has been described, but the present invention is not limited to this. For example, the fourth embodiment can be applied to other "refrigeration cycle devices" such as refrigerators, water heaters, air-conditioning hot water supply devices, and chillers.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換を適宜に行うことが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to appropriately add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
In addition, the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
 100,100A,100B 圧縮機
 1 密閉容器
 2 圧縮機構部
 3 フレーム
 4 クランク軸(駆動軸)
 4d 給油流路
 5 主軸受
 6 旋回軸受
 7 電動機
 7a 固定子
 7b 回転子
 10 サブフレーム(固定部材)
 10a 円筒部
 10b 脚
 11 副軸受(ラジアル軸受)
 12 給油ポンプ
 12a インナロータ(給油部)
 12b アウタロータ(給油部)
 12c ポンプカバー
 12d ポンプケース
 13 スラスト軸受
 14 段付きボルト(結合部)
 14a ネジ部
 14b 中間部
 14c 頭部
 15A,15B ボルト(結合部)
 151A,151B ネジ部
 152A、152B 頭部
 16A,16B スペーサ(結合部)
 C 圧縮室
 Ei 室内熱交換器(蒸発器/凝縮器)
 Eo 室外熱交換器(凝縮器/蒸発器)
 GA 隙間(軸方向の隙間)
 GD 隙間(径方向の隙間)
 K 冷媒回路
 R 油溜り
 Ve 膨張弁
 W 空気調和機(冷凍サイクル装置)
 n ネジ穴
 m ネジ溝
100, 100A, 100B Compressor 1 Sealed container 2 Compression mechanism 3 Frame 4 Crankshaft (drive shaft)
4d Refueling flow path 5 Main bearing 6 Swivel bearing 7 Electric motor 7a Stator 7b Rotor 10 Subframe (fixing member)
10a Cylindrical part 10b Leg 11 Sub-bearing (radial bearing)
12 Refueling pump 12a Inner rotor (refueling section)
12b Outer rotor (refueling section)
12c Pump cover 12d Pump case 13 Thrust bearing 14 Stepped bolt (joint)
14a Threaded part 14b Intermediate part 14c Head 15A, 15B Bolt (joint part)
151A, 151B Threaded part 152A, 152B Head 16A, 16B Spacer (joining part)
C Compression chamber Ei Indoor heat exchanger (evaporator / condenser)
Eo outdoor heat exchanger (condenser / evaporator)
GA gap (axial gap)
GD gap (diameter gap)
K Refrigerant circuit R Oil sump Ve Expansion valve W Air conditioner (refrigeration cycle device)
n screw hole m screw groove

Claims (7)

  1.  潤滑油が通流する給油流路が設けられた駆動軸と、
     前記駆動軸の回転に伴って、ガスを圧縮する圧縮機構部と、
     前記駆動軸を軸支するラジアル軸受と、
     前記ラジアル軸受を固定する固定部材と、
     前記駆動軸の端部に設置される給油ポンプと、を備えるとともに、
     前記固定部材と前記給油ポンプとの間に介在するスラスト軸受と、
     前記スラスト軸受を前記固定部材に結合する結合部と、を備え、
     前記給油ポンプは、前記給油流路に潤滑油を供給する給油部と、前記給油部を収容するポンプケースと、を少なくとも有し、
     前記結合部は、前記ポンプケース及び前記スラスト軸受を貫通し、前記固定部材に結合されて前記スラスト軸受を固定しており、
     前記スラスト軸受と前記ポンプケースとの間には軸方向の隙間が設けられている圧縮機。
    A drive shaft provided with a lubrication flow path through which lubricating oil flows,
    A compression mechanism that compresses gas as the drive shaft rotates,
    Radial bearings that support the drive shaft and
    A fixing member for fixing the radial bearing and
    It is equipped with a refueling pump installed at the end of the drive shaft, and
    A thrust bearing interposed between the fixing member and the refueling pump,
    A joint portion for connecting the thrust bearing to the fixing member is provided.
    The refueling pump has at least a refueling unit that supplies lubricating oil to the refueling flow path and a pump case that houses the refueling unit.
    The coupling portion penetrates the pump case and the thrust bearing, and is coupled to the fixing member to fix the thrust bearing.
    A compressor in which an axial gap is provided between the thrust bearing and the pump case.
  2.  前記結合部は、
     前記固定部材のネジ穴に螺合するネジ溝が設けられたネジ部と、
     前記ネジ部に連なり、前記ネジ部よりも径が大きい中間部と、
     前記中間部に連なり、前記中間部よりも径がさらに大きい頭部と、を有する段付きボルトであり、
     前記中間部と前記固定部材とによって、前記スラスト軸受が挟み込まれて固定されており、
     前記スラスト軸受と前記ポンプケースとの間には前記軸方向の隙間が設けられ、
     前記頭部によって、前記給油ポンプが支えられていること
     を特徴とする請求項1に記載の圧縮機。
    The joint
    A screw portion provided with a screw groove to be screwed into the screw hole of the fixing member, and a screw portion.
    An intermediate portion connected to the threaded portion and having a diameter larger than that of the threaded portion,
    A stepped bolt having a head connected to the intermediate portion and having a diameter larger than that of the intermediate portion.
    The thrust bearing is sandwiched and fixed by the intermediate portion and the fixing member.
    An axial gap is provided between the thrust bearing and the pump case.
    The compressor according to claim 1, wherein the refueling pump is supported by the head.
  3.  前記結合部は、
     前記固定部材のネジ穴に螺合するネジ溝が設けられたネジ部、及び、前記ネジ部よりも径が大きい頭部を有するボルトと、
     円筒状のスペーサと、を含み、
     前記スペーサには、前記ネジ部が挿通され、
     前記スペーサと前記固定部材とによって、前記スラスト軸受が挟み込まれて固定されており、
     前記スラスト軸受と前記ポンプケースとの間には前記軸方向の隙間が設けられ、
     前記頭部によって、前記給油ポンプが支えられていること
     を特徴とする請求項1に記載の圧縮機。
    The joint
    A screw portion provided with a screw groove to be screwed into a screw hole of the fixing member, and a bolt having a head having a diameter larger than that of the screw portion.
    Includes a cylindrical spacer,
    The threaded portion is inserted through the spacer.
    The thrust bearing is sandwiched and fixed by the spacer and the fixing member.
    An axial gap is provided between the thrust bearing and the pump case.
    The compressor according to claim 1, wherein the refueling pump is supported by the head.
  4.  前記結合部は、前記ポンプケースの一部と直接接触していること
     を特徴とする請求項1から請求項3のいずれか一項に記載の圧縮機。
    The compressor according to any one of claims 1 to 3, wherein the coupling portion is in direct contact with a part of the pump case.
  5.  前記結合部と前記ポンプケースとの間には径方向の隙間が設けられていること
     を特徴とする請求項1から請求項3のいずれか一項に記載の圧縮機。
    The compressor according to any one of claims 1 to 3, wherein a gap in the radial direction is provided between the joint portion and the pump case.
  6.  前記結合部と前記ポンプケースとの間の前記径方向の隙間の長さは、前記径方向の隙間を形成する範囲における前記結合部の軸径、又は、前記径方向の隙間を形成する範囲における前記ポンプケースの孔径の4%以上かつ13%以下であり、
     前記スラスト軸受と前記ポンプケースとの間の前記軸方向の隙間の長さは、前記軸方向の隙間を形成する範囲における前記結合部の軸方向の長さ、又は、前記軸方向の隙間の周囲における前記ポンプケースの上下方向の肉厚の1%以上かつ6%以下であること
     を特徴とする請求項5に記載の圧縮機。
    The length of the radial gap between the joint portion and the pump case is the shaft diameter of the joint portion in the range in which the radial gap is formed, or the range in which the radial gap is formed. 4% or more and 13% or less of the hole diameter of the pump case.
    The length of the axial gap between the thrust bearing and the pump case is the axial length of the coupling portion in the range forming the axial gap, or the circumference of the axial gap. The compressor according to claim 5, wherein the wall thickness in the vertical direction of the pump case is 1% or more and 6% or less.
  7.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を備え、
     前記圧縮機は、
     潤滑油が通流する給油流路が設けられた駆動軸と、
     前記駆動軸の回転に伴って、ガス状の冷媒を圧縮する圧縮機構部と、
     前記駆動軸を軸支するラジアル軸受と、
     前記ラジアル軸受を固定する固定部材と、
     前記駆動軸の端部に設置される給油ポンプと、を備えるとともに、
     前記固定部材と前記給油ポンプとの間に介在するスラスト軸受と、
     前記スラスト軸受を前記固定部材に結合する結合部と、を備え、
     前記給油ポンプは、前記給油流路に潤滑油を供給する給油部と、前記給油部を収容するポンプケースと、を少なくとも有し、
     前記結合部は、前記ポンプケース及び前記スラスト軸受を貫通し、前記固定部材に結合されて前記スラスト軸受を固定しており、
     前記スラスト軸受と前記ポンプケースとの間には軸方向の隙間が設けられている冷凍サイクル装置。
    It is equipped with a refrigerant circuit in which the refrigerant circulates sequentially through a compressor, a condenser, an expansion valve, and an evaporator.
    The compressor
    A drive shaft provided with a lubrication flow path through which lubricating oil flows,
    A compression mechanism that compresses the gaseous refrigerant as the drive shaft rotates,
    Radial bearings that support the drive shaft and
    A fixing member for fixing the radial bearing and
    It is equipped with a refueling pump installed at the end of the drive shaft, and
    A thrust bearing interposed between the fixing member and the refueling pump,
    A joint portion for connecting the thrust bearing to the fixing member is provided.
    The refueling pump has at least a refueling unit that supplies lubricating oil to the refueling flow path and a pump case that houses the refueling unit.
    The coupling portion penetrates the pump case and the thrust bearing, and is coupled to the fixing member to fix the thrust bearing.
    A refrigeration cycle device in which an axial gap is provided between the thrust bearing and the pump case.
PCT/JP2019/009961 2019-03-12 2019-03-12 Compressor and refrigeration cycle device WO2020183605A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009961 WO2020183605A1 (en) 2019-03-12 2019-03-12 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009961 WO2020183605A1 (en) 2019-03-12 2019-03-12 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020183605A1 true WO2020183605A1 (en) 2020-09-17

Family

ID=72427295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009961 WO2020183605A1 (en) 2019-03-12 2019-03-12 Compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2020183605A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112441A (en) * 1995-10-23 1997-05-02 Hitachi Ltd Positive displacement pump and compressor
JP2004293530A (en) * 2003-03-28 2004-10-21 Hitachi Ltd Fluid compressor
JP2012097581A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Compressor
JP2018119503A (en) * 2017-01-27 2018-08-02 パナソニックIpマネジメント株式会社 Hermetic compressor
JP2019007382A (en) * 2017-06-22 2019-01-17 日立ジョンソンコントロールズ空調株式会社 Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112441A (en) * 1995-10-23 1997-05-02 Hitachi Ltd Positive displacement pump and compressor
JP2004293530A (en) * 2003-03-28 2004-10-21 Hitachi Ltd Fluid compressor
JP2012097581A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Compressor
JP2018119503A (en) * 2017-01-27 2018-08-02 パナソニックIpマネジメント株式会社 Hermetic compressor
JP2019007382A (en) * 2017-06-22 2019-01-17 日立ジョンソンコントロールズ空調株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
WO2016206054A1 (en) Rotary compressor and refrigerating cycle device having same
US11592022B2 (en) Scroll compressor and refrigeration cycle device
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
WO2020183605A1 (en) Compressor and refrigeration cycle device
US11231035B2 (en) Scroll compressor
WO2022004597A1 (en) Heat source unit and scroll compressor
WO2016075768A1 (en) Scroll compressor
JP6935834B1 (en) Scroll compressor, heat source unit
JP6743407B2 (en) Scroll compressor and air conditioner including the same
JP7466063B2 (en) Scroll compressor and refrigeration cycle device
JP6935833B1 (en) Scroll compressor, heat source unit
JP7157274B2 (en) Scroll compressor and refrigeration cycle device
US12000395B2 (en) Scroll compressor and refrigeration cycle device
JP2020020291A (en) Compressor
JP7469679B2 (en) Scroll compressor and refrigeration cycle device equipped with same
WO2022123657A1 (en) Scroll compressor and refrigeration cycle device
WO2017122304A1 (en) Scroll compressor
WO2023218587A1 (en) Compressor and refrigeration cycle device
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
JP6768969B2 (en) Unit and air conditioner
WO2020039489A1 (en) Compressor and refrigeration cycle device equipped with same
WO2018198862A1 (en) Scroll compressor, and air conditioner
JP6627557B2 (en) Bearing housing and rotating machine
JP2016217141A (en) Compressor
KR20230042358A (en) Compressor with shell fittings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP