WO2023276107A1 - Method for forming semiconductor layer - Google Patents

Method for forming semiconductor layer Download PDF

Info

Publication number
WO2023276107A1
WO2023276107A1 PCT/JP2021/024937 JP2021024937W WO2023276107A1 WO 2023276107 A1 WO2023276107 A1 WO 2023276107A1 JP 2021024937 W JP2021024937 W JP 2021024937W WO 2023276107 A1 WO2023276107 A1 WO 2023276107A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
forming
insulating layer
substrate
semiconductor
Prior art date
Application number
PCT/JP2021/024937
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 杉山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/024937 priority Critical patent/WO2023276107A1/en
Priority to JP2023531290A priority patent/JPWO2023276107A1/ja
Publication of WO2023276107A1 publication Critical patent/WO2023276107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a method for forming a semiconductor layer having a heterointerface perpendicular to a substrate.
  • Group III-V semiconductors can create functions by forming heterojunctions, and are used in various devices such as transistors, light-emitting/light-receiving elements. Heterojunctions are usually formed by growing crystals in a direction perpendicular to the III-V semiconductor substrate to form a heterointerface parallel to the substrate. Devices made of III-V compounds, which are widely put into practical use, utilize such heterojunctions and heterointerfaces. Formation of such heterojunction devices made of III-V group semiconductors on Si substrates is expected from the viewpoint of multifunctionality through integration with Si devices, and various fabrication techniques have been practiced. rice field.
  • TFET tunnel field effect transistor
  • Non-Patent Document 2 With conventional technology, it is necessary to form a nanowire structure as described in Non-Patent Document 2 and a mesa structure with a very high aspect ratio as described in Non-Patent Document 3, making it difficult to mass-produce practical devices. it is conceivable that.
  • Non-Patent Document 4 As a technique for overcoming this, for example, as described in Non-Patent Document 4, a ⁇ 111 ⁇ facet formed on a Si (100) substrate by anisotropic etching and a selective growth technique are used to apply A technique has been reported in which crystal growth is performed in the horizontal direction to form a heterojunction perpendicular to the growth direction. However, in this case, stacking faults are likely to occur due to growth in the ⁇ 111 ⁇ direction, making it difficult to form high-quality crystals with high uniformity.
  • Fujimatsu et al. "71mV/dec of Sub-threshold Slope in Vertical Tunnel Field-effect Transistors with GaAsSb/InGaAs Heterostructure", 2012 International Conference on Indium Phosphide and Related Materials, 13235642, pp. 25-28, 2013. Y. Han et al., "Micrometer-scale InP selectively grown on SOI for fully integrated Si-photonics", Applied Physics Letters, vol. 117, 052102, 2020.
  • the present invention has been made to solve the above-described problems, and makes it possible to easily form a heterojunction on a Si substrate by means of a heterointerface perpendicular to a substrate made of a Group III-V compound semiconductor. for the purpose.
  • a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is attached onto a Si substrate, and the attached crystal substrate is formed into a thin layer.
  • a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is adhered onto a Si substrate, whereby a second crystal substrate is formed on the Si substrate. Since one semiconductor layer is formed, a heterojunction can be easily formed on the Si substrate by a heterointerface perpendicular to the substrate made of a Group III-V compound semiconductor.
  • FIG. 1A is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining a method of forming a semiconductor layer according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing the state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining a method of forming a semiconductor layer according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state of
  • FIG. 1E is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1F is a plan view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1G is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1H is a plan view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1I is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1J is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1K is a cross-sectional view showing the state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1L is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1M is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1N is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1O is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIG. 1P is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
  • FIGS. 1A to 1P A method for forming a semiconductor layer according to an embodiment of the present invention will be described below with reference to FIGS. 1A to 1P.
  • a Si substrate 101 having a main surface formed with a Si oxide layer 102 made of SiO 2 is prepared.
  • the main surface of the Si substrate 101 is the (001) plane.
  • Si oxide layer 102 can be formed by depositing SiO 2 by well-known deposition techniques.
  • a crystal substrate 103 is attached onto the Si substrate 101. Then, as shown in FIG. 1B, the surface of the Si oxide layer 102 and the surface of the crystal substrate 103 are bonded by a known bonding technique.
  • the crystal substrate 103 is composed of a III-V group compound semiconductor crystal having a (110) plane as the main surface. This III-V compound semiconductor can be, for example, InP.
  • a first semiconductor layer 104 is formed on the Si substrate 101 as shown in FIG. 1C (first step).
  • the thinning of the crystal substrate 103 can be implemented by chemical etching, a CMP (chemical-mechanical-polishing) method, or the like.
  • the first semiconductor layer 104 is formed on the Si substrate 101 with the Si oxide layer 102 interposed therebetween.
  • the main surface of the first semiconductor layer 104 can be formed in a state inclined from the (110) plane toward the ⁇ 111 ⁇ B plane by 3 to 6°.
  • the above state can be obtained by using a crystal substrate 103 whose main surface is inclined from the (110) plane toward the ⁇ 111 ⁇ B plane by 3 to 6 degrees.
  • the thinning of the crystal substrate 103 is carried out, for example, by adjusting the polishing angle so that the main surface is inclined 3 to 6° from the (110) plane toward the ⁇ 111 ⁇ B plane. can be done.
  • the main surface of the first semiconductor layer 104 is tilted from the (110) plane toward the ⁇ 111 ⁇ B plane by 3 to 6 degrees, so that the first semiconductor layer 104, which will be described later, undergoes crystal re-growth. , it is possible to suppress the formation of ⁇ 112 ⁇ or ⁇ 111 ⁇ facets and obtain a flat growth surface (Refs. 1 and 2).
  • the first insulating layer 105 can have a laminated structure of an Al oxide layer 105a made of Al 2 O 3 and a Si oxide layer 105b (Reference 3).
  • the first insulating layer 105 can be configured with a laminated structure of an Al oxide layer 105a with a thickness of 3 nm and a Si oxide layer 105b with a thickness of 30 nm.
  • the [001] direction of the first semiconductor layer 104 is the long side, and [ A rectangular planar first opening 125b having a short side in the ⁇ 110] direction is formed (second step).
  • the first opening 125b can be formed by using a resist pattern formed by a known photolithography technique or electron beam lithography technique as a mask and performing an etching process such as well-known ICP etching.
  • the first opening 125b can have a long side length of 1 ⁇ m and a short side length of 100 nm in plan view. The size of this aperture can be appropriately set according to the size of the desired heterostructure.
  • a sacrificial pattern 106 made of amorphous Si is formed on the first insulating layer 105 (third step).
  • the sacrificial pattern 106 is formed in a rectangular planar shape with long sides in the [ ⁇ 110] direction of the first semiconductor layer 104 and short sides in the [001] direction.
  • the sacrificial pattern 106 has an area larger than that of the first opening 125b when viewed from above, and is formed so as to be centered on the first opening 125b.
  • the sacrificial pattern 106 fills (fills) the first opening 125b to form a flat surface.
  • the sacrificial pattern 106 can be formed by depositing Si by a chemical vapor deposition method or the like to form a Si film, and patterning the formed silicon film by a known lithography technique or etching technique.
  • the dimensions such as the long side, short side and thickness of the sacrificial pattern 106 can be appropriately set according to the size of the semiconductor device having the desired heterojunction structure.
  • sacrificial pattern 106 may be 50 nm thick.
  • a second insulating layer 107 is formed on the first insulating layer 105 to cover the sacrificial pattern 106 (fourth step).
  • the second insulating layer 107 is used as a selective growth mask for III-V compound semiconductors, and can be made of SiO 2 , for example.
  • the second insulating layer 107 can be formed, for example, to have a thickness of about 100 nm.
  • a through-hole 127 reaching the sacrificial pattern 106 is formed at a location that does not overlap the first opening 125b of the second insulating layer 107 (fifth step).
  • the through holes 127 are formed, for example, at the edges of the two short sides of the sacrificial pattern 106, which is rectangular in plan view.
  • the sacrificial pattern 106 is removed through the two formed through holes 127 to form a hollow structure 126 between the first insulating layer 105 and the second insulating layer 107, as shown in FIG. 1K. . Further, a first lower opening 125a is formed in the Al oxide layer 105a below the first opening 125b to expose the first semiconductor layer 104 in this region (sixth step).
  • the hollow structure 126 is formed in a rectangular planar shape with long sides in the [ ⁇ 110] direction of the first semiconductor layer 104 and short sides in the [001] direction.
  • the sacrificial pattern 106 can be selectively removed by dry etching using XeF2 .
  • the first lower opening 125a can be formed in the Al oxide layer 105a by selective etching using TMAH (Methyl Ammonium Hydroxide).
  • the first insulating layer 105 is used as a selective growth mask to crystallize (epitaxially) grow a group III-V compound semiconductor, As shown in FIG. 1L, a second semiconductor layer 108 is formed (seventh step). The second semiconductor layer 108 is grown between the first insulating layer 105 and the second insulating layer 107 (hollow structure 126) from the surface of the first semiconductor layer 104 exposed in the first opening 125b.
  • the hollow structure 126 moves left and right around the first opening 125b and has at least two side surfaces 138a and 138b. These side surfaces 138a and 138b are facets of crystal-grown group III-V compound semiconductors.
  • the second semiconductor layer 108 is formed in a range in which the side surfaces 138 a and 138 b are arranged between the first insulating layer 105 and the second insulating layer 107 .
  • the first semiconductor layer 104 can be formed by epitaxially growing InP from the exposed surface (110) of the first semiconductor layer 104 made of InP by metal organic chemical vapor deposition (MOCVD). (Reference 3).
  • MOCVD metal organic chemical vapor deposition
  • the side surfaces 138a and 138b of the second semiconductor layer 108 are grown perpendicular to the surface of the Si substrate 101.
  • a [ ⁇ 110] facet can be obtained, and the crystal grows in the [ ⁇ 110] direction while maintaining this state.
  • the second semiconductor layer 108 is, for example, epitaxially grown until the side surfaces 138a and 138b reach a location several nm apart from the region of the first opening 125b in plan view. Alternatively, the second semiconductor layer 108 may be grown until it reaches the lower surface of the second insulating layer 107 that serves as the ceiling of the hollow structure 126 after it reaches the hollow structure 126 by filling the first opening 125b. can. Further, as illustrated in FIG. 1L, a second semiconductor layer 108 made of n + -InP into which n-type impurities are introduced at a high concentration is grown to reach the lower surface of the second insulating layer 107 that serves as the ceiling of the hollow structure 126. From this point, the growth of non-doped InP can be switched to continue the formation of the second semiconductor layers 108a and 108b.
  • the second semiconductor layer 108 (second semiconductor layer 108a, second semiconductor layer 108b) between the first insulating layer 105 and the second insulating layer 107 is formed.
  • a group III-V compound semiconductor having a composition different from that of the second semiconductor layer 108 is epitaxially grown from the side surfaces 138a and 138b of the second semiconductor layer 108a and the second semiconductor layer 108b).
  • the third semiconductor layer 109a and the third semiconductor layer 109a form heterojunctions with the side surfaces 138a and 138b of the second semiconductor layer 108 (the second semiconductor layers 108a and 108b).
  • a semiconductor layer 109b is formed (eighth step).
  • the interface where the heterojunction is formed is a plane perpendicular to the plane of the Si substrate 101 .
  • epitaxial growth of the third semiconductor layers 109a and 109b can be carried out by changing the material supplied at a predetermined time. For example, by epitaxially growing non-doped InGaAs, the third semiconductor layers 109a and 109b can be formed.
  • InGaAs doped with p-type impurities is epitaxially grown to form fourth semiconductor layers 110a and 110b, and InP doped with p-type impurities at a high concentration is grown to form a fifth semiconductor layer.
  • a semiconductor layer 111a and a fifth semiconductor layer 111b are formed.
  • the interface between the fourth semiconductor layer 110a and the fifth semiconductor layer 111a is a heterojunction interface, and the interface between the fourth semiconductor layer 110b and the fifth semiconductor layer 111b is also a heterojunction interface.
  • Each interface is a plane perpendicular to the plane of the Si substrate 101 .
  • the fourth semiconductor layer 110 a , the fourth semiconductor layer 110 b , the fifth semiconductor layer 111 a , and the fifth semiconductor layer 111 b are exposed on the first insulating layer 105 .
  • gate electrodes 114a and 114b are formed on the third semiconductor layers 109a and 109b via the gate insulating layers 113a and 113b. Also, source electrodes 115a and 115b are formed to be ohmically connected to the fifth semiconductor layers 111a and 111b. Also, a drain electrode 116 that is ohmically connected to the second semiconductor layer 108 is formed.
  • the n-type second semiconductor layer 108 is used as the drain
  • the p-type fourth semiconductor layers 110a and 110b are used as the sources
  • the hetero interface perpendicular to the plane of the Si substrate 101 forms a barrier.
  • a tunneling field effect transistor can be formed in which quantum tunneling is modulated by the gate voltage applied to the gate electrodes 114a and 114b.
  • the thickness, crystal composition, and doping concentration of each semiconductor layer can be applied by appropriately designing the transistor structure so as to obtain desired characteristics, and applying the designed values.
  • the crystal substrate 103 (the first semiconductor layer 104) is made of InP in the above description, it is not limited to this.
  • the crystal substrate 103 (first semiconductor layer 104) can be made of GaAs, for example.
  • Quantum well structures using materials such as InGaAs, InP, and InGaAsP can be formed by the method of forming a semiconductor layer according to the embodiment, and the methods can be applied to fabricate light-emitting devices such as lasers using minute quantum well structures. Needless to say.
  • a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is adhered onto a Si substrate, thereby forming a crystal substrate on the Si substrate. Since the first semiconductor layer is formed, it becomes possible to easily form a heterojunction on the Si substrate by a heterointerface perpendicular to the substrate made of a group III-V compound semiconductor. According to the present invention, it is possible to form a group III-V semiconductor thin film crystal having a heterointerface perpendicular to the substrate on a Si substrate, and the functions of a group III-V semiconductor device and a Si device are integrated. It becomes possible to fabricate a device that is not available in

Abstract

The present invention includes preparing a Si substrate (101) having a Si oxide layer (102) composed of SiO2 formed on a main surface, affixing a crystal substrate on the Si substrate (101), making the affixed crystal substrate into a thin layer, thereby forming a first semiconductor layer (104) on the Si substrate (101), and then forming a first insulation layer (105), and using the first insulation layer (105) as a selective growth mask to epitaxially grow a group III-V compound semiconductor from the surface of the first semiconductor layer (104) exposed in an anticipated region from a first opening (125b), thereby forming a second semiconductor layer (108).

Description

半導体層の形成方法Method for forming semiconductor layer
 本発明は、基板に垂直なヘテロ界面を有する半導体層の形成方法に関する。 The present invention relates to a method for forming a semiconductor layer having a heterointerface perpendicular to a substrate.
 III-V族半導体は、ヘテロ接合の形成による機能創出が可能であり、トランジスタ、発光・受光素子など、様々なデバイスに利用されている。通常、ヘテロ接合は、III-V族半導体基板に垂直な方向に結晶成長させることによって、基板に平行なヘテロ界面が形成される。広く実用化されているIII-V族化合物からなるデバイスは、このようなヘテロ接合、ヘテロ界面を利用している。また、このようなIII-V族半導体からなるヘテロ接合デバイスをSi基板上に形成することは、Siデバイスとの集積による多機能化の観点から期待されており、様々な作製技術が実践されてきた。 Group III-V semiconductors can create functions by forming heterojunctions, and are used in various devices such as transistors, light-emitting/light-receiving elements. Heterojunctions are usually formed by growing crystals in a direction perpendicular to the III-V semiconductor substrate to form a heterointerface parallel to the substrate. Devices made of III-V compounds, which are widely put into practical use, utilize such heterojunctions and heterointerfaces. Formation of such heterojunction devices made of III-V group semiconductors on Si substrates is expected from the viewpoint of multifunctionality through integration with Si devices, and various fabrication techniques have been practiced. rice field.
 一方、基板に垂直なヘテロ界面、基板に対して水平方向への高品質なヘテロ接合を、Si基板上に形成する技術、さらにそれを利用したデバイスをSi基板上に作製する技術については、報告がなく、技術として確立されていない。このような、基板平面に対して垂直なヘテロ接合面の形成技術が実現すれば、様々な応用が考えられる。例えば、非特許文献1に記載のようなヘテロ接合からなるトンネル電界効果型トランジスタ(TFET)をSi基板上に形成することが可能となる。非特許文献1に記載の通り、このデバイスでは、ゲート電極やゲート絶縁層に対して垂直なヘテロ接合の形成が必要である。 On the other hand, the technology for forming high-quality heterointerfaces perpendicular to the substrate and the horizontal heterojunctions on Si substrates, and the technology for fabricating devices on Si substrates using such heterointerfaces have been reported. is not established as a technology. If such a technique for forming a heterojunction surface perpendicular to the substrate plane is realized, various applications can be considered. For example, a tunnel field effect transistor (TFET) composed of a heterojunction as described in Non-Patent Document 1 can be formed on a Si substrate. As described in Non-Patent Document 1, this device requires the formation of a heterojunction perpendicular to the gate electrode and gate insulating layer.
 従来の技術では、非特許文献2のようなナノワイヤ構造や、非特許文献3に記載のような非常にアスペクト比の高いメサ構造を形成する必要があり、実用的なデバイスを量産することは困難と考えられる。 With conventional technology, it is necessary to form a nanowire structure as described in Non-Patent Document 2 and a mesa structure with a very high aspect ratio as described in Non-Patent Document 3, making it difficult to mass-produce practical devices. it is conceivable that.
 これを克服する技術として、例えば非特許文献4に記載のように、Si(100)基板上に異方性エッチングによって形成した{111}ファセットと選択成長技術とを利用して、基板に対して水平方向の結晶成長を行い、成長方向に対して垂直のヘテロ接合を形成する技術が報告されている。しかし、この場合、{111}方向の成長に起因する積層欠陥が発生しやすいため、均一性の高い高品質結晶を形成することは困難である。 As a technique for overcoming this, for example, as described in Non-Patent Document 4, a {111} facet formed on a Si (100) substrate by anisotropic etching and a selective growth technique are used to apply A technique has been reported in which crystal growth is performed in the horizontal direction to form a heterojunction perpendicular to the growth direction. However, in this case, stacking faults are likely to occur due to growth in the {111} direction, making it difficult to form high-quality crystals with high uniformity.
 上述したように、従来、III-V族化合物半導体による基板に垂直なヘテロ界面によるヘテロ接合を、Si基板上に形成することが容易ではないという問題があった。 As described above, conventionally, there has been the problem that it is not easy to form a heterojunction on a Si substrate by means of a heterointerface perpendicular to a substrate made of a Group III-V compound semiconductor.
 本発明は、以上のような問題点を解消するためになされたものであり、III-V族化合物半導体による基板に垂直なヘテロ界面によるヘテロ接合を、Si基板上に容易に形成できるようにすることを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and makes it possible to easily form a heterojunction on a Si substrate by means of a heterointerface perpendicular to a substrate made of a Group III-V compound semiconductor. for the purpose.
 本発明に係る半導体層の形成方法は、主表面を(110)面としたIII-V族化合物半導体の結晶からなる結晶基板をSi基板の上に貼り付けて、貼り付けた結晶基板を薄層化してSi基板の上に第1半導体層を形成する第1工程と、第1半導体層の上に、第1半導体層の[001]方向を長辺とし、[-110]方向を短辺とする長方形の平面形状の第1開口を有する第1絶縁層を形成する第2工程と、第1絶縁層の上に、第1半導体層の[-110]方向を長辺とし、[001]方向を短辺とする長方形の平面形状を有する、非晶質Siからなる犠牲パターンを形成する第3工程と、第1絶縁層の上に、犠牲パターンを覆って第2絶縁層を形成する第4工程と、第2絶縁層の第1開口に重ならない箇所に、犠牲パターンに到達する貫通孔を形成する第5工程と、貫通孔を介して犠牲パターンを除去して第1開口に第1半導体層の表面が露出した状態とする第6工程と、第1開口を備える第1絶縁層を選択成長マスクとして、第1開口において露出する第1半導体層の表面よりIII-V族化合物半導体を結晶成長し、第1絶縁層と第2絶縁層との間に結晶成長したIII-V族化合物半導体のファセットからなる側面が配置される状態で、第1絶縁層と第2絶縁層との間に第2半導体層を形成する第7工程と、第2半導体層の形成に引き続き、第1絶縁層と第2絶縁層との間の第2半導体層の側面より、第2半導体層とは異なる組成のIII-V族化合物半導体を結晶成長し、第2半導体層の側面との間にヘテロ接合を形成する第3半導体層を形成する第8工程とを備える。 In the method of forming a semiconductor layer according to the present invention, a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is attached onto a Si substrate, and the attached crystal substrate is formed into a thin layer. a first step of forming a first semiconductor layer on a Si substrate by converting the first semiconductor layer on the first semiconductor layer; a second step of forming a first insulating layer having a first opening having a rectangular planar shape to form a rectangular planar shape; A third step of forming a sacrificial pattern made of amorphous Si and having a rectangular planar shape with a short side of a fifth step of forming a through hole reaching the sacrificial pattern in a portion of the second insulating layer that does not overlap with the first opening; a sixth step in which the surface of the layer is exposed; and using the first insulating layer having the first opening as a selective growth mask, the III-V group compound semiconductor is crystallized from the surface of the first semiconductor layer exposed in the first opening. between the first insulating layer and the second insulating layer, with the side faces consisting of the facets of the grown III-V compound semiconductor being crystallized between the first insulating layer and the second insulating layer. A seventh step of forming a second semiconductor layer; and an eighth step of crystal-growing the group III-V compound semiconductor to form a third semiconductor layer forming a heterojunction with the side surface of the second semiconductor layer.
 以上説明したように、本発明によれば、主表面を(110)面としたIII-V族化合物半導体の結晶からなる結晶基板をSi基板の上に貼り付けることで、Si基板の上に第1半導体層を形成するので、III-V族化合物半導体による基板に垂直なヘテロ界面によるヘテロ接合を、Si基板上に容易に形成できる。 As described above, according to the present invention, a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is adhered onto a Si substrate, whereby a second crystal substrate is formed on the Si substrate. Since one semiconductor layer is formed, a heterojunction can be easily formed on the Si substrate by a heterointerface perpendicular to the substrate made of a Group III-V compound semiconductor.
図1Aは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1A is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining a method of forming a semiconductor layer according to an embodiment of the present invention. 図1Bは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1B is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Cは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1C is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Dは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1D is a cross-sectional view showing the state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Eは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1E is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Fは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す平面図である。FIG. 1F is a plan view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Gは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1G is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Hは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す平面図である。FIG. 1H is a plan view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Iは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1I is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Jは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1J is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Kは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1K is a cross-sectional view showing the state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Lは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1L is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Mは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1M is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Nは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1N is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Oは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1O is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention. 図1Pは、本発明の実施の形態に係る半導体層の形成方法を説明するための途中工程の半導体層の状態を示す断面図である。FIG. 1P is a cross-sectional view showing a state of a semiconductor layer in an intermediate step for explaining the method of forming a semiconductor layer according to the embodiment of the present invention.
 以下、本発明の実施の形態に係る半導体層の形成方法について図1A~図1Pを参照して説明する。 A method for forming a semiconductor layer according to an embodiment of the present invention will be described below with reference to FIGS. 1A to 1P.
 まず、図1Aに示すように、主表面にSiO2から構成されたSi酸化層102が形成されたSi基板101を用意する。Si基板101は、主表面が(001)面とされている。例えば、よく知られた堆積法によりSiO2を堆積することで、Si酸化層102が形成できる。 First, as shown in FIG. 1A, a Si substrate 101 having a main surface formed with a Si oxide layer 102 made of SiO 2 is prepared. The main surface of the Si substrate 101 is the (001) plane. For example, Si oxide layer 102 can be formed by depositing SiO 2 by well-known deposition techniques.
 次に、図1Bに示すように、結晶基板103をSi基板101の上に貼り付ける。この例では、Si酸化層102の表面と結晶基板103の表面とを、公知の接合技術により接合させる。結晶基板103は、主表面が(110)面とされたIII-V族化合物半導体の結晶から構成されている。このIII-V族化合物半導体は、例えば、InPとすることができる。 Next, as shown in FIG. 1B, a crystal substrate 103 is attached onto the Si substrate 101. Then, as shown in FIG. In this example, the surface of the Si oxide layer 102 and the surface of the crystal substrate 103 are bonded by a known bonding technique. The crystal substrate 103 is composed of a III-V group compound semiconductor crystal having a (110) plane as the main surface. This III-V compound semiconductor can be, for example, InP.
 次に、貼り付けた結晶基板103を薄層化することで、図1Cに示すように、Si基板101の上に第1半導体層104を形成する(第1工程)。例えば、化学エッチングや、CMP(chemical-mechanical-polishing)法などにより、結晶基板103の薄層化が実施できる。この例において、第1半導体層104は、Si酸化層102を介してSi基板101の上に形成される。 Next, by thinning the attached crystal substrate 103, a first semiconductor layer 104 is formed on the Si substrate 101 as shown in FIG. 1C (first step). For example, the thinning of the crystal substrate 103 can be implemented by chemical etching, a CMP (chemical-mechanical-polishing) method, or the like. In this example, the first semiconductor layer 104 is formed on the Si substrate 101 with the Si oxide layer 102 interposed therebetween.
 ここで、第1半導体層104の主表面は、(110)面から{111}B面方向に3~6°傾斜した状態に形成することができる。例えば、主表面が(110)面から{111}B面方向に3~6°傾斜した結晶基板103を用いることで、上述した状態とすることができる。また、結晶基板103の薄層化を、例えば、研磨角度を調整することで、主表面が(110)面から{111}B面方向に3~6°傾斜した状態となるように実施することができる。 Here, the main surface of the first semiconductor layer 104 can be formed in a state inclined from the (110) plane toward the {111}B plane by 3 to 6°. For example, the above state can be obtained by using a crystal substrate 103 whose main surface is inclined from the (110) plane toward the {111}B plane by 3 to 6 degrees. Further, the thinning of the crystal substrate 103 is carried out, for example, by adjusting the polishing angle so that the main surface is inclined 3 to 6° from the (110) plane toward the {111}B plane. can be done.
 上述したように、第1半導体層104の主表面は、(110)面から{111}B面方向に3~6°傾斜した状態とすることで、後述する第1半導体層104より結晶再成長させるときに、{112}あるいは{111}ファセットの形成を抑制し、平坦な成長表面を得ることができるようになる(参考文献1および参考文献2)。 As described above, the main surface of the first semiconductor layer 104 is tilted from the (110) plane toward the {111}B plane by 3 to 6 degrees, so that the first semiconductor layer 104, which will be described later, undergoes crystal re-growth. , it is possible to suppress the formation of {112} or {111} facets and obtain a flat growth surface (Refs. 1 and 2).
 次に、図1Dに示すように、第1絶縁層105を形成する。第1絶縁層105は、Al23からなるAl酸化層105aと、Si酸化層105bとの積層構造とすることができる(参考文献3)。例えば、厚さ3nmのAl酸化層105aと、厚さ30nmのSi酸化層105bとの積層構造から第1絶縁層105を構成することができる。 Next, as shown in FIG. 1D, a first insulating layer 105 is formed. The first insulating layer 105 can have a laminated structure of an Al oxide layer 105a made of Al 2 O 3 and a Si oxide layer 105b (Reference 3). For example, the first insulating layer 105 can be configured with a laminated structure of an Al oxide layer 105a with a thickness of 3 nm and a Si oxide layer 105b with a thickness of 30 nm.
 次に、図1E、図1Fに示すように、第1絶縁層105のSi酸化層105bに、第1半導体層104の上に、第1半導体層104の[001]方向を長辺とし、[-110]方向を短辺とする長方形の平面形状の第1開口125bを形成する(第2工程)。例えば、公知のフォトリソグラフィー技術や電子線リソグラフィー技術により形成したレジストパターンをマスクとし、よく知られたICPエッチングなどによりエッチング処理することで、第1開口125bが形成できる。第1開口125bは、平面視で長辺の長さを1μmとし、短辺の長さを100nmとすることができる。この開口寸法は、所望とするヘテロ構造の大きさによって適宜設定することができる。 Next, as shown in FIGS. 1E and 1F, on the Si oxide layer 105b of the first insulating layer 105, on the first semiconductor layer 104, the [001] direction of the first semiconductor layer 104 is the long side, and [ A rectangular planar first opening 125b having a short side in the −110] direction is formed (second step). For example, the first opening 125b can be formed by using a resist pattern formed by a known photolithography technique or electron beam lithography technique as a mask and performing an etching process such as well-known ICP etching. The first opening 125b can have a long side length of 1 μm and a short side length of 100 nm in plan view. The size of this aperture can be appropriately set according to the size of the desired heterostructure.
 次に、図1G,図1Hに示すように、第1絶縁層105の上に、非晶質Siからなる犠牲パターン106を形成する(第3工程)。犠牲パターン106は、第1半導体層104の[-110]方向を長辺とし、[001]方向を短辺とする長方形の平面形状を有する状態に形成する。犠牲パターン106は、上面からみて第1開口125bより大きい面積で、第1開口125bの位置が中心となるように配置された状態で形成する。また、犠牲パターン106は、第1開口125bを埋め込んだ状態で(充填して)、表面を平坦な状態に形成する。 Next, as shown in FIGS. 1G and 1H, a sacrificial pattern 106 made of amorphous Si is formed on the first insulating layer 105 (third step). The sacrificial pattern 106 is formed in a rectangular planar shape with long sides in the [−110] direction of the first semiconductor layer 104 and short sides in the [001] direction. The sacrificial pattern 106 has an area larger than that of the first opening 125b when viewed from above, and is formed so as to be centered on the first opening 125b. In addition, the sacrificial pattern 106 fills (fills) the first opening 125b to form a flat surface.
 例えば、化学的気相成長法などによりSiを堆積してSi膜を形成し、形成したシリコン膜を、公知のリソグラフィー技術やエッチング技術によりパターニングすることで、犠牲パターン106が形成できる。犠牲パターン106の長辺,短辺、厚さなどの寸法は、所望とするヘテロ接合構造を有する半導体デバイスの大きさに合わせて適宜に設定することができる。例えば、犠牲パターン106は、厚さ50nmとすることができる。 For example, the sacrificial pattern 106 can be formed by depositing Si by a chemical vapor deposition method or the like to form a Si film, and patterning the formed silicon film by a known lithography technique or etching technique. The dimensions such as the long side, short side and thickness of the sacrificial pattern 106 can be appropriately set according to the size of the semiconductor device having the desired heterojunction structure. For example, sacrificial pattern 106 may be 50 nm thick.
 次に、図1Iに示すように、第1絶縁層105の上に、犠牲パターン106を覆って第2絶縁層107を形成する(第4工程)。第2絶縁層107は、III-V族化合物半導体の選択成長マスクとして用いるものであり、例えば、SiO2から構成することができる。第2絶縁層107は、例えば、厚さ100nm程度に形成することができる。 Next, as shown in FIG. 1I, a second insulating layer 107 is formed on the first insulating layer 105 to cover the sacrificial pattern 106 (fourth step). The second insulating layer 107 is used as a selective growth mask for III-V compound semiconductors, and can be made of SiO 2 , for example. The second insulating layer 107 can be formed, for example, to have a thickness of about 100 nm.
 次に、図1Jに示すように、第2絶縁層107の第1開口125bに重ならない箇所に、犠牲パターン106に到達する貫通孔127を形成する(第5工程)。貫通孔127は、例えば、平面視長方形としている犠牲パターン106の2つの短辺側の各々の縁の位置に形成する。 Next, as shown in FIG. 1J, a through-hole 127 reaching the sacrificial pattern 106 is formed at a location that does not overlap the first opening 125b of the second insulating layer 107 (fifth step). The through holes 127 are formed, for example, at the edges of the two short sides of the sacrificial pattern 106, which is rectangular in plan view.
 次に、形成した2つの貫通孔127を介して犠牲パターン106を除去することで、図1Kに示すように、第1絶縁層105と第2絶縁層107との間に中空構造126を形成する。さらに、第1開口125bの下のAl酸化層105aに第1下部開口125aを形成してこの領域の第1半導体層104を露出させる(第6工程)。中空構造126は、第1半導体層104の[-110]方向を長辺とし、[001]方向を短辺とする長方形の平面形状を有する状態に形成される。 Next, the sacrificial pattern 106 is removed through the two formed through holes 127 to form a hollow structure 126 between the first insulating layer 105 and the second insulating layer 107, as shown in FIG. 1K. . Further, a first lower opening 125a is formed in the Al oxide layer 105a below the first opening 125b to expose the first semiconductor layer 104 in this region (sixth step). The hollow structure 126 is formed in a rectangular planar shape with long sides in the [−110] direction of the first semiconductor layer 104 and short sides in the [001] direction.
 例えば、XeF2を用いたドライエッチングにより、犠牲パターン106を選択的に除去することができる。また、TMAH(Methyl Ammonium Hydroxide)を用いた選択エッチングにより、Al酸化層105aに第1下部開口125aを形成することができる。 For example, the sacrificial pattern 106 can be selectively removed by dry etching using XeF2 . Also, the first lower opening 125a can be formed in the Al oxide layer 105a by selective etching using TMAH (Methyl Ammonium Hydroxide).
 次に、第1開口125bから見込める領域に露出している第1半導体層104の表面より、第1絶縁層105を選択成長マスクとしてIII-V族化合物半導体を結晶(エピタキシャル)成長させることで、図1Lに示すように、第2半導体層108を形成する(第7工程)。第2半導体層108は、第1開口125bにおいて露出する第1半導体層104の表面より、第1絶縁層105と第2絶縁層107との間(中空構造126)に成長させる。 Next, from the surface of the first semiconductor layer 104 exposed in the region seen from the first opening 125b, the first insulating layer 105 is used as a selective growth mask to crystallize (epitaxially) grow a group III-V compound semiconductor, As shown in FIG. 1L, a second semiconductor layer 108 is formed (seventh step). The second semiconductor layer 108 is grown between the first insulating layer 105 and the second insulating layer 107 (hollow structure 126) from the surface of the first semiconductor layer 104 exposed in the first opening 125b.
 この成長は、第1下部開口125a、第1開口125bを充填して中空構造126に到達すると、第1開口125bを中心として、第1半導体層104の[-110]方向に進行する。中空構造126においては、第1開口125bを中心として、中空構造126を左右に進行し、少なくとも2つの側面138a,側面138bを備える状態となる。これら側面138a,側面138bは、結晶成長したIII-V族化合物半導体のファセットである。側面138a,側面138bが、第1絶縁層105と第2絶縁層107との間に配置される状態の範囲に第2半導体層108を形成する。 When this growth reaches the hollow structure 126 by filling the first lower openings 125a and 125b, it progresses in the [-110] direction of the first semiconductor layer 104 centering on the first openings 125b. The hollow structure 126 moves left and right around the first opening 125b and has at least two side surfaces 138a and 138b. These side surfaces 138a and 138b are facets of crystal-grown group III-V compound semiconductors. The second semiconductor layer 108 is formed in a range in which the side surfaces 138 a and 138 b are arranged between the first insulating layer 105 and the second insulating layer 107 .
 例えば、InPからなる第1半導体層104の(110)とされている露出面より、有機金属気相成長(MOCVD)法によりInPをエピタキシャル成長することで、第1半導体層104を形成することができる(参考文献3)。この成長において、成長温度およびV族原料とIII族原料との供給比を適宜調節することによって、第2半導体層108の成長している側面138a,側面138bを、Si基板101の面に垂直な[-110]ファセットとすることができ、また、この状態を維持したまま[-110]方向に結晶が成長する。 For example, the first semiconductor layer 104 can be formed by epitaxially growing InP from the exposed surface (110) of the first semiconductor layer 104 made of InP by metal organic chemical vapor deposition (MOCVD). (Reference 3). In this growth, by appropriately adjusting the growth temperature and the supply ratio of the group V source material and the group III source material, the side surfaces 138a and 138b of the second semiconductor layer 108 are grown perpendicular to the surface of the Si substrate 101. A [−110] facet can be obtained, and the crystal grows in the [−110] direction while maintaining this state.
 第2半導体層108は、例えば、平面視で、第1開口125bの領域より数nm離れた箇所に、側面138a,側面138bが到達するまでエピタキシャル成長させる。また、第2半導体層108の成長は、第1開口125bを充填して中空構造126に到達した後、中空構造126の天井となる第2絶縁層107の下面に到達した時点までとすることもできる。また、図1Lに例示するように、高濃度にn型不純物を導入したn+-InPからなる第2半導体層108を成長させ、中空構造126の天井となる第2絶縁層107の下面に到達した時点より、ノンドープのInPの成長に切り替えて、第2半導体層108a、第2半導体層108bの形成を継続することができる。 The second semiconductor layer 108 is, for example, epitaxially grown until the side surfaces 138a and 138b reach a location several nm apart from the region of the first opening 125b in plan view. Alternatively, the second semiconductor layer 108 may be grown until it reaches the lower surface of the second insulating layer 107 that serves as the ceiling of the hollow structure 126 after it reaches the hollow structure 126 by filling the first opening 125b. can. Further, as illustrated in FIG. 1L, a second semiconductor layer 108 made of n + -InP into which n-type impurities are introduced at a high concentration is grown to reach the lower surface of the second insulating layer 107 that serves as the ceiling of the hollow structure 126. From this point, the growth of non-doped InP can be switched to continue the formation of the second semiconductor layers 108a and 108b.
 次に、上述した第2半導体層108(第2半導体層108a、第2半導体層108b)の形成に引き続き、第1絶縁層105と第2絶縁層107との間の第2半導体層108(第2半導体層108a、第2半導体層108b)の側面138a,側面138bより、第2半導体層108とは異なる組成のIII-V族化合物半導体を結晶(エピタキシャル)成長する。これにより、図1Mに示すように、第2半導体層108(第2半導体層108a、第2半導体層108b)の側面138a,側面138bとの間にヘテロ接合を形成する第3半導体層109a,第3半導体層109bを形成する(第8工程)。ヘテロ接合が形成される界面は、Si基板101の平面に対して垂直な面となる。 Next, following the formation of the second semiconductor layer 108 (second semiconductor layer 108a, second semiconductor layer 108b) described above, the second semiconductor layer 108 (second semiconductor layer 108) between the first insulating layer 105 and the second insulating layer 107 is formed. A group III-V compound semiconductor having a composition different from that of the second semiconductor layer 108 is epitaxially grown from the side surfaces 138a and 138b of the second semiconductor layer 108a and the second semiconductor layer 108b). As a result, as shown in FIG. 1M, the third semiconductor layer 109a and the third semiconductor layer 109a form heterojunctions with the side surfaces 138a and 138b of the second semiconductor layer 108 (the second semiconductor layers 108a and 108b). 3 A semiconductor layer 109b is formed (eighth step). The interface where the heterojunction is formed is a plane perpendicular to the plane of the Si substrate 101 .
 例えば、MOCVD法による第2半導体層108の成長において、所定の時点で供給する原料を変更することで、第3半導体層109a,第3半導体層109bのエピタキシャル成長を実施することができる。例えば、ノンドープのInGaAsをエピタキシャル成長することで、第3半導体層109a,第3半導体層109bを形成することができる。 For example, in the growth of the second semiconductor layer 108 by the MOCVD method, epitaxial growth of the third semiconductor layers 109a and 109b can be carried out by changing the material supplied at a predetermined time. For example, by epitaxially growing non-doped InGaAs, the third semiconductor layers 109a and 109b can be formed.
 引き続き、p型の不純物を導入したInGaAsをエピタキシャル成長することで、第4半導体層110a,第4半導体層110bを形成し、p型の不純物を高濃度に導入したInPを成長することで、第5半導体層111a,第5半導体層111bを形成する。第4半導体層110aと第5半導体層111aとの界面はヘテロ接合界面となり、第4半導体層110bと第5半導体層111bとの界面もヘテロ接合界面となる。各々の界面は、Si基板101の平面に対して垂直な面となる。 Subsequently, InGaAs doped with p-type impurities is epitaxially grown to form fourth semiconductor layers 110a and 110b, and InP doped with p-type impurities at a high concentration is grown to form a fifth semiconductor layer. A semiconductor layer 111a and a fifth semiconductor layer 111b are formed. The interface between the fourth semiconductor layer 110a and the fifth semiconductor layer 111a is a heterojunction interface, and the interface between the fourth semiconductor layer 110b and the fifth semiconductor layer 111b is also a heterojunction interface. Each interface is a plane perpendicular to the plane of the Si substrate 101 .
 この後、第2絶縁層107を除去することで、図1Oに示すように、第2半導体層108、第2半導体層108a、第2半導体層108b、第3半導体層109a,第3半導体層109b、第4半導体層110a,第4半導体層110b、第5半導体層111a,第5半導体層111bを、第1絶縁層105の上で露出させる。 After that, by removing the second insulating layer 107, as shown in FIG. , the fourth semiconductor layer 110 a , the fourth semiconductor layer 110 b , the fifth semiconductor layer 111 a , and the fifth semiconductor layer 111 b are exposed on the first insulating layer 105 .
 この後、図1Pに示すように、第3半導体層109a,第3半導体層109bの上に、ゲート絶縁層113a,ゲート絶縁層113bを介してゲート電極114a、ゲート電極114bを形成する。また、第5半導体層111a,第5半導体層111bにオーミック接続するソース電極115a、ソース電極115bを形成する。また、第2半導体層108にオーミック接続するドレイン電極116を形成する。 After that, as shown in FIG. 1P, gate electrodes 114a and 114b are formed on the third semiconductor layers 109a and 109b via the gate insulating layers 113a and 113b. Also, source electrodes 115a and 115b are formed to be ohmically connected to the fifth semiconductor layers 111a and 111b. Also, a drain electrode 116 that is ohmically connected to the second semiconductor layer 108 is formed.
 上述したことにより、n型の第2半導体層108をドレインとし、p型の第4半導体層110a,第4半導体層110bをソースとし、Si基板101の平面に対して垂直なヘテロ界面による障壁を介して、量子トンネリングを、ゲート電極114a、ゲート電極114bに印加されるゲート電圧で変調するトンネル電界効果型トランジスタが形成できる。なお、各半導体層の厚さ、晶組成、ドーピング濃度は、所望の特性が得られるよう適宜トランジスタ構造の設計を行い、設計した値を適用することができる。 As described above, the n-type second semiconductor layer 108 is used as the drain, the p-type fourth semiconductor layers 110a and 110b are used as the sources, and the hetero interface perpendicular to the plane of the Si substrate 101 forms a barrier. Through this, a tunneling field effect transistor can be formed in which quantum tunneling is modulated by the gate voltage applied to the gate electrodes 114a and 114b. The thickness, crystal composition, and doping concentration of each semiconductor layer can be applied by appropriately designing the transistor structure so as to obtain desired characteristics, and applying the designed values.
 また、上述では、結晶基板103(第1半導体層104)をInPから構成したが、これに限るものではない。結晶基板103(第1半導体層104)は、例えばGaAsから構成することができる。また、上述では、実施の形態に係る半導体層の形成方法により、電界効果型トランジスタを作製する例を示したが、これに限るものではない。実施の形態に係る半導体層の形成方法により、InGaAs、InP、InGaAsPなどの材料を用いた量子井戸構造を形成し、微小量子井戸構造を用いたレーザーなどの発光デバイスなどの作製に応用可能であることは言うまでもない。 In addition, although the crystal substrate 103 (the first semiconductor layer 104) is made of InP in the above description, it is not limited to this. The crystal substrate 103 (first semiconductor layer 104) can be made of GaAs, for example. Also, in the above description, an example of manufacturing a field effect transistor by the method of forming a semiconductor layer according to the embodiment has been described, but the present invention is not limited to this. Quantum well structures using materials such as InGaAs, InP, and InGaAsP can be formed by the method of forming a semiconductor layer according to the embodiment, and the methods can be applied to fabricate light-emitting devices such as lasers using minute quantum well structures. Needless to say.
 以上に説明したように、本発明によれば、主表面を(110)面としたIII-V族化合物半導体の結晶からなる結晶基板をSi基板の上に貼り付けることで、Si基板の上に第1半導体層を形成するので、III-V族化合物半導体による基板に垂直なヘテロ界面によるヘテロ接合を、Si基板上に容易に形成できるようになる。本発明によれば、Si基板上に、基板に垂直方向のヘテロ界面を有するIII-V族半導体薄膜結晶を形成することが可能となり、III-V族半導体デバイスとSiデバイスの機能を集積した従来に無いデバイスを作製することが可能となる。 As described above, according to the present invention, a crystal substrate made of a group III-V compound semiconductor crystal having a (110) plane as a main surface is adhered onto a Si substrate, thereby forming a crystal substrate on the Si substrate. Since the first semiconductor layer is formed, it becomes possible to easily form a heterojunction on the Si substrate by a heterointerface perpendicular to the substrate made of a group III-V compound semiconductor. According to the present invention, it is possible to form a group III-V semiconductor thin film crystal having a heterointerface perpendicular to the substrate on a Si substrate, and the functions of a group III-V semiconductor device and a Si device are integrated. It becomes possible to fabricate a device that is not available in
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by those skilled in the art within the technical concept of the present invention. It is clear.
[参考文献1]M. Mitsuhara et al., "InP and related compounds grown on (110) InP substrates by metalorganic molecular beam epitaxy (chemical beam epitaxy)", Journal of Crystal Growth, vol. 136, pp. 195-199, 1994.
[参考文献2]Y. Ogiso et al., "Static properties of planar Mach-Zehnder optical modulator on (110) InP substrate", Electronics Letters, vol. 49, no. 14, 2013.
[参考文献3]A. Goswami et al., "Controlling facets and defects of InP nanostructures in confined epitaxial lateral overgrowth", PHYSICAL REVIEW MATERIALS, vol. 4, no. 12, 123403, 2020.
[Reference 1] M. Mitsuhara et al., "InP and related compounds grown on (110) InP substrates by metalorganic molecular beam epitaxy (chemical beam epitaxy)", Journal of Crystal Growth, vol. 136, pp. 195-199 , 1994.
[Reference 2] Y. Ogiso et al., "Static properties of planar Mach-Zehnder optical modulator on (110) InP substrate", Electronics Letters, vol. 49, no. 14, 2013.
[Reference 3] A. Goswami et al., "Controlling facets and defects of InP nanostructures in confined epitaxial lateral overgrowth", PHYSICAL REVIEW MATERIALS, vol. 4, no. 12, 123403, 2020.
 101…Si基板、102…Si酸化層、103…結晶基板、104…第1半導体層、105…第1絶縁層、105a…Al酸化層、105b…Si酸化層、106…犠牲パターン、107…第2絶縁層、108,108a,108b…第2半導体層、109a,109b…第3半導体層、110a,110b…第4半導体層、111a,111b…第5半導体層、113a,113b…ゲート絶縁層、114a,114b…ゲート電極、115a,115b…ソース電極、116…ドレイン電極、125a…第1下部開口、125b…第1開口、126…中空構造、127…貫通孔、138a,138b…側面。 Reference Signs List 101 Si substrate 102 Si oxide layer 103 Crystal substrate 104 First semiconductor layer 105 First insulating layer 105a Al oxide layer 105b Si oxide layer 106 Sacrificial pattern 107 Third 2 insulating layers 108, 108a, 108b... second semiconductor layer 109a, 109b... third semiconductor layer 110a, 110b... fourth semiconductor layer 111a, 111b... fifth semiconductor layer 113a, 113b... gate insulating layer, Reference numerals 114a, 114b: gate electrode, 115a, 115b: source electrode, 116: drain electrode, 125a: first lower opening, 125b: first opening, 126: hollow structure, 127: through hole, 138a, 138b: side surface.

Claims (3)

  1.  主表面を(110)面としたIII-V族化合物半導体の結晶からなる結晶基板をSi基板の上に貼り付けて、貼り付けた前記結晶基板を薄層化して前記Si基板の上に第1半導体層を形成する第1工程と、
     前記第1半導体層の上に、前記第1半導体層の[001]方向を長辺とし、[-110]方向を短辺とする長方形の平面形状の第1開口を有する第1絶縁層を形成する第2工程と、
     前記第1絶縁層の上に、前記第1半導体層の[-110]方向を長辺とし、[001]方向を短辺とする長方形の平面形状を有する、非晶質Siからなる犠牲パターンを形成する第3工程と、
     前記第1絶縁層の上に、前記犠牲パターンを覆って第2絶縁層を形成する第4工程と、
     前記第2絶縁層の前記第1開口に重ならない箇所に、前記犠牲パターンに到達する貫通孔を形成する第5工程と、
     前記貫通孔を介して前記犠牲パターンを除去して前記第1開口に前記第1半導体層の表面が露出した状態とする第6工程と、
     前記第1開口を備える前記第1絶縁層を選択成長マスクとして、前記第1開口において露出する前記第1半導体層の表面よりIII-V族化合物半導体を結晶成長し、前記第1絶縁層と前記第2絶縁層との間に結晶成長したIII-V族化合物半導体のファセットからなる側面が配置される状態で、前記第1絶縁層と前記第2絶縁層との間に第2半導体層を形成する第7工程と、
     前記第2半導体層の形成に引き続き、前記第1絶縁層と前記第2絶縁層との間の前記第2半導体層の前記側面より、前記第2半導体層とは異なる組成のIII-V族化合物半導体を結晶成長し、前記第2半導体層の前記側面との間にヘテロ接合を形成する第3半導体層を形成する第8工程と
     を備える半導体層の形成方法。
    A crystal substrate made of a group III-V compound semiconductor crystal having a main surface of (110) plane is adhered onto a Si substrate, and the adhered crystal substrate is thinned to form a first substrate on the Si substrate. a first step of forming a semiconductor layer;
    On the first semiconductor layer, a first insulating layer is formed having a rectangular planar first opening whose long sides are in the [001] direction of the first semiconductor layer and whose short sides are in the [−110] direction. a second step of
    On the first insulating layer, a sacrificial pattern made of amorphous Si having a rectangular planar shape with long sides in the [−110] direction of the first semiconductor layer and short sides in the [001] direction of the first semiconductor layer is provided. a third step of forming;
    a fourth step of forming a second insulating layer on the first insulating layer to cover the sacrificial pattern;
    a fifth step of forming a through hole reaching the sacrificial pattern in a portion of the second insulating layer that does not overlap with the first opening;
    a sixth step of removing the sacrificial pattern through the through hole to expose the surface of the first semiconductor layer in the first opening;
    Using the first insulating layer having the first opening as a selective growth mask, a group III-V compound semiconductor is crystal-grown from the surface of the first semiconductor layer exposed in the first opening, and the first insulating layer and the A second semiconductor layer is formed between the first insulating layer and the second insulating layer in a state in which a side surface composed of facets of a group III-V compound semiconductor crystal-grown is arranged between the second insulating layer and the second insulating layer. a seventh step to
    Subsequent to the formation of the second semiconductor layer, from the side surface of the second semiconductor layer between the first insulating layer and the second insulating layer, a Group III-V compound having a composition different from that of the second semiconductor layer and an eighth step of crystal-growing a semiconductor to form a third semiconductor layer forming a heterojunction with the side surface of the second semiconductor layer.
  2.  請求項1記載の半導体層の形成方法において、
     前記第1半導体層の主表面は、(110)面から{111}B面方向に3~6°傾斜した状態に形成することを特徴とする半導体層の形成方法。
    In the method of forming a semiconductor layer according to claim 1,
    A method of forming a semiconductor layer, wherein the main surface of the first semiconductor layer is formed in a state inclined from the (110) plane toward the {111}B plane by 3 to 6 degrees.
  3.  請求項1または2記載の半導体層の形成方法において、
     前記結晶基板は、InPまたはGaAsから構成されていることを特徴とする半導体層の形成方法。
    In the method for forming a semiconductor layer according to claim 1 or 2,
    A method of forming a semiconductor layer, wherein the crystal substrate is made of InP or GaAs.
PCT/JP2021/024937 2021-07-01 2021-07-01 Method for forming semiconductor layer WO2023276107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024937 WO2023276107A1 (en) 2021-07-01 2021-07-01 Method for forming semiconductor layer
JP2023531290A JPWO2023276107A1 (en) 2021-07-01 2021-07-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024937 WO2023276107A1 (en) 2021-07-01 2021-07-01 Method for forming semiconductor layer

Publications (1)

Publication Number Publication Date
WO2023276107A1 true WO2023276107A1 (en) 2023-01-05

Family

ID=84691677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024937 WO2023276107A1 (en) 2021-07-01 2021-07-01 Method for forming semiconductor layer

Country Status (2)

Country Link
JP (1) JPWO2023276107A1 (en)
WO (1) WO2023276107A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210825A (en) * 1988-04-05 1990-01-16 Thomson Csf Manufacture of alternate structure of single crystal semiconductor material layers and insulating material layers
JPH02130917A (en) * 1988-11-11 1990-05-18 Nec Corp Manufacture of semiconductor film
JPH02188912A (en) * 1989-01-17 1990-07-25 Nec Corp Selective growth method of iii-v compound semiconductor
JPH06140346A (en) * 1992-04-02 1994-05-20 Thomson Csf Manufacture of heteroepitaxial thin layer and of electronic device
JP2013098559A (en) * 2011-10-31 2013-05-20 Samsung Electronics Co Ltd Semiconductor element including iii-v compound semiconductor layer and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210825A (en) * 1988-04-05 1990-01-16 Thomson Csf Manufacture of alternate structure of single crystal semiconductor material layers and insulating material layers
JPH02130917A (en) * 1988-11-11 1990-05-18 Nec Corp Manufacture of semiconductor film
JPH02188912A (en) * 1989-01-17 1990-07-25 Nec Corp Selective growth method of iii-v compound semiconductor
JPH06140346A (en) * 1992-04-02 1994-05-20 Thomson Csf Manufacture of heteroepitaxial thin layer and of electronic device
JP2013098559A (en) * 2011-10-31 2013-05-20 Samsung Electronics Co Ltd Semiconductor element including iii-v compound semiconductor layer and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2023276107A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US6235547B1 (en) Semiconductor device and method of fabricating the same
JP5318940B2 (en) Method for forming buffer layer structure on silicon and structure formed by the method
EP0232431B1 (en) Semiconductor device
WO2008034823A1 (en) Method of producing precision vertical and horizontal layers in a vertical semiconductor structure
JPH07101739B2 (en) Semiconductor device
US9355917B2 (en) Complementary metal oxide semiconductor device, optical apparatus including the same, and method of manufacturing the same
US5729030A (en) Semiconductor device
JPH02266514A (en) Semiconductor device in hetero structure and its manufacture
US11929253B2 (en) SAG nanowire growth with a planarization process
WO2023276107A1 (en) Method for forming semiconductor layer
KR20180031981A (en) Method for manufacturing semiconductor device by epitaxial lift-off using plane dependency of iii-v compound
US9941168B1 (en) Method for manufacturing semiconductor device by epitaxial lift-off using plane dependency of III-V compound
KR20090012472A (en) Method of forming ge mesa structure
JP2803719B2 (en) Semiconductor quantum dot device and method of manufacturing the same
JPS6154665A (en) Semiconductor device and manufacture thereof
JPH04277680A (en) Tunnel transistor and manufacture of the same
EP2419935A1 (en) P-type semiconductor devices
JP2001007324A (en) Tunnel transistor and manufacture thereof
JP2013069970A (en) Semiconductor lamination substrate and manufacturing method thereof
JPH028450B2 (en)
Desplanque et al. InAs/AlGaSb Esaki tunnel diodes grown by selective area epitaxy on GaSb (001) substrate
El Kazzi Molecular Beam Epitaxy for Steep Switching Tunnel FETs
JPH0388340A (en) High electron-mobility transistor
JP2800457B2 (en) Semiconductor device
JPH0810762B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531290

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE