WO2023275929A1 - 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体 - Google Patents

光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体 Download PDF

Info

Publication number
WO2023275929A1
WO2023275929A1 PCT/JP2021/024337 JP2021024337W WO2023275929A1 WO 2023275929 A1 WO2023275929 A1 WO 2023275929A1 JP 2021024337 W JP2021024337 W JP 2021024337W WO 2023275929 A1 WO2023275929 A1 WO 2023275929A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical coherence
wavelength
unit
Prior art date
Application number
PCT/JP2021/024337
Other languages
English (en)
French (fr)
Inventor
滋 中村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023531146A priority Critical patent/JPWO2023275929A1/ja
Priority to PCT/JP2021/024337 priority patent/WO2023275929A1/ja
Priority to US18/571,402 priority patent/US20240288263A1/en
Publication of WO2023275929A1 publication Critical patent/WO2023275929A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • This disclosure relates to the technical field of an optical coherence tomography apparatus, an optical coherence tomography method, and a recording medium that perform optical coherence tomography.
  • OCT Optical Coherence Tomography
  • Patent Literature 1 discloses a technique for calculating three-dimensional shape data of the cornea using OCT technology.
  • Patent Literature 2 discloses a technique for performing OCT scanning with a probe for ophthalmic surgery to generate an electronic image of tissue.
  • Patent Document 3 discloses that light from a light source may be split by two fiber couplers when creating a tomographic image showing the layer structure of the retina using OCT technology.
  • the purpose of this disclosure is to improve the technology disclosed in prior art documents.
  • One aspect of the optical coherence tomographic imaging apparatus of this disclosure includes a wavelength-swept laser light source, a branching unit that branches light emitted from the wavelength-swept laser light source into a plurality of lights, and a plurality of light beams output from the branching unit. and a plurality of units for acquiring tomographic structure information for different measurement objects using each of the lights, and each of the plurality of units splits the light output from the splitter to obtain object light and reference light.
  • a light beam scanning unit that irradiates the object light onto the measurement object; and an intensity of interference light resulting from interference between the object light scattered by the measurement object and the reference light.
  • an information generator for generating tomographic structure information of the measurement object based on the electrical signal.
  • One aspect of the optical coherence tomographic imaging method of this disclosure is that a computer emits light from a wavelength-swept laser light source, branches the light emitted from the wavelength-swept laser light source into a plurality of lights, and divides the plurality of lights.
  • An optical coherence tomography method for obtaining tomographic structure information for a different object to be measured using each of a plurality of units, wherein each of the plurality of units further splits the plurality of lights into object light and generating a reference light, irradiating the object light onto the object to be measured, and generating an electrical signal according to the intensity of interference light resulting from interference between the object light scattered by the object to be measured and the reference light; and generates tomographic structure information of the object to be measured based on the electric signal.
  • a computer emits light from a wavelength-swept laser light source, splits the light emitted from the wavelength-swept laser light source into a plurality of lights, and uses each of the plurality of lights.
  • an optical coherence tomography method for acquiring tomographic structure information for different measurement objects in each of a plurality of units, wherein each of the plurality of units further splits the plurality of lights into object light and reference light and irradiating the object light onto the object to be measured, and generating an electrical signal according to the intensity of interference light resulting from interference between the object light scattered by the object to be measured and the reference light
  • a computer program for executing an optical coherence tomographic imaging method for generating tomographic structure information of the object to be measured based on the electrical signal is recorded.
  • FIG. 1 is a block diagram showing the hardware configuration of an optical coherence tomographic imaging apparatus according to a first embodiment
  • FIG. 1 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a first embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a second embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a third embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a fourth embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a fifth embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a sixth embodiment
  • FIG. 11 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to a seventh embodiment
  • FIG. 12 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to an eighth embodiment
  • FIG. 21 is a schematic diagram showing a configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a contact fingerprint scanner
  • FIG. 21 is a schematic diagram (Part 1) showing the configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a non-contact fingerprint scanner
  • FIG. 20 is a schematic diagram (part 2) showing the configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a non-contact fingerprint scanner;
  • FIG. 1 is a block diagram showing the hardware configuration of an optical coherence tomographic imaging apparatus according to the first embodiment.
  • an optical coherence tomographic imaging apparatus 100 includes a processor 11, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 13, and a storage device 14. there is The optical coherence tomographic imaging apparatus 100 may further include an input device 15 and an output device 16 . Also, the optical coherence tomographic imaging apparatus 100 according to the first embodiment includes a wavelength swept laser light source 101 and a plurality of optical system units 20 .
  • the above-described processor 11, RAM 12, ROM 13, storage device 14, input device 15, output device 16, wavelength swept laser light source 101, and a plurality of optical system units 20 are connected via data bus 17. may be connected.
  • the processor 11 reads a computer program.
  • processor 11 is configured to read a computer program stored in at least one of RAM 12, ROM 13 and storage device .
  • the processor 11 may read a computer program stored in a computer-readable recording medium using a recording medium reader (not shown).
  • the processor 11 may acquire (that is, read) a computer program from a device (not shown) arranged outside the optical coherence tomography apparatus 100 via a network interface.
  • the processor 11 controls the RAM 12, the storage device 14, the input device 15 and the output device 16 by executing the read computer program.
  • the processor 11 may be configured as, for example, a CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field-Programmable Gate Array), DSP (Demand-Side Platform), and ASIC (Application Specific Integrate).
  • the processor 11 may be configured with one of these, or may be configured to use a plurality of them in parallel.
  • the RAM 12 temporarily stores computer programs executed by the processor 11.
  • the RAM 12 temporarily stores data temporarily used by the processor 11 while the processor 11 is executing the computer program.
  • the RAM 12 may be, for example, a D-RAM (Dynamic RAM).
  • the ROM 13 stores computer programs executed by the processor 11 .
  • the ROM 13 may also store other fixed data.
  • the ROM 13 may be, for example, a P-ROM (Programmable ROM).
  • the storage device 14 stores data that the optical coherence tomographic imaging apparatus 100 stores for a long period of time.
  • Storage device 14 may act as a temporary storage device for processor 11 .
  • the storage device 14 may include, for example, at least one of a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), and a disk array device.
  • the input device 15 is a device that receives input instructions from the user of the optical coherence tomographic imaging apparatus 100 .
  • Input device 15 may include, for example, at least one of a keyboard, mouse, and touch panel.
  • the input device 15 may be configured as a mobile terminal such as a smart phone or a tablet terminal.
  • the output device 16 is a device that outputs information about the optical coherence tomographic imaging apparatus 100 to the outside.
  • the output device 16 may be a display device (for example, display) capable of displaying information about the optical coherence tomography apparatus 10 .
  • the output device 16 may be a device (for example, a speaker) capable of outputting information about the optical coherence tomographic imaging apparatus 10 by voice.
  • the input device 15 may be configured as a mobile terminal such as a smart phone or a tablet terminal.
  • the wavelength swept laser light source 101 is a light source capable of generating laser light whose wavelength is continuously changed.
  • the optical coherence tomographic imaging apparatus 100 according to this embodiment is configured to be able to take a tomographic image of a measurement target using the coherence of laser light emitted from a wavelength-swept laser light source 101 .
  • the optical system unit 20 is configured as a unit including a plurality of optical members.
  • the optical system unit 20 guides the light emitted from the wavelength-swept laser light source 101 to the measurement target, and is configured to interfere light scattered by the measurement target to generate interference light.
  • a more specific configuration of the optical system unit 20 will be described later.
  • a plurality of optical system units 20 are provided for one wavelength swept laser light source 101 .
  • FIG. 2 is a block diagram showing the configuration of the optical coherence tomographic imaging apparatus according to the first embodiment.
  • an optical coherence tomographic imaging apparatus 100 is configured as an apparatus capable of imaging tomographic images of measurement objects 108 and 109 using light emitted from a wavelength-swept laser light source 101.
  • the optical coherence tomographic imaging apparatus 100 branches one wavelength-swept laser light source 101 and outputs it to a plurality of units, and different measurement objects (here, measurement objects 108 and 109) in each unit. tomographic image can be captured.
  • the optical pulse emitted from the wavelength-swept laser light source 101 is branched by the optical branching device 131, and then divided by the first optical interference/receiving unit 102, the optical beam scanning unit 104, and the signal processing unit 106. and a second unit including the optical interference/light receiving unit 103, the light beam scanning unit 105, and the signal processing unit 107, respectively.
  • a tomographic image of the measurement object 108 is obtained in the first unit, and a tomographic image of the measurement object 109 is obtained in the second unit.
  • the wavelength-swept laser light source 101 generates a light pulse whose wavelength increases from 1250 nm to 1350 nm for a duration of 10 ⁇ s, for example, and generates this light pulse at a repetition rate of 50 kHz every 20 ⁇ s.
  • the light emitted from the wavelength-swept laser light source 101 and supplied to the light interference/light receiving unit 102 of the first unit via the light splitter 131 passes through the light beam scanning unit 104, is irradiated onto the measurement object 108, and is scattered. . Part of this scattered light is returned to the light interference/light receiving unit 102 and photoelectrically converted. An electrical signal output from the optical interference/light receiving unit 102 is converted into tomographic image data by the signal processing unit 106, and a tomographic image of the measurement object 108 is obtained.
  • the light emitted from the wavelength swept laser light source 101 and supplied to the light interference/light receiving unit 103 of the second unit via the light splitter 131 passes through the light beam scanning unit 105, is irradiated onto the measurement object 109, and is scattered. be done. Part of this scattered light is returned to the light interference/light receiving unit 103 and photoelectrically converted. An electrical signal output from the optical interference/light receiving unit 103 is converted into tomographic image data by the signal processing unit 107, and a tomographic image of the measurement object 109 is obtained.
  • the light supplied to the optical interference/light-receiving unit 102 of the first unit is input to the splitter/merger 112 via the circulator 111 .
  • the light input to splitter/merger 112 is split into object light R11 and reference light R21.
  • the object light R11 passes through a fiber collimator 115, an irradiation optical system 116 consisting of a scanning mirror and a lens, and irradiates an object 108 to be measured.
  • the object light R31 scattered by the measurement object 108 returns to the splitter/merger 112 .
  • the reference beam R21 passes through the reference beam mirror 113 and returns to the splitter/merger 112 .
  • object light R31 scattered from measurement object 108 and reference light R41 reflected from reference light mirror 113 interfere with each other to generate interference light R51 and R61. That is, the intensity ratio between the interference light R51 and the interference light R61 is determined by the phase difference between the object light R31 and the reference light R41.
  • the interference light R51 passes through the circulator 111, and the interference light R61 is directly input to the two-input balanced photodetector 114.
  • a voltage corresponding to the intensity difference between the interference light R51 and the interference light R61 is output from the balanced photodetector 114 and input to the optical spectrum data generation/A-scan waveform generation section 117 forming the signal processing section 106 .
  • the balanced photodetector 114 is a photodetector in which two photodiodes are connected in series and the connection serves as an output (differential output). Also, the band of the balanced photodetector 114 is 1 GHz or less.
  • the optical spectrum data generation/A-scan waveform generation unit 117 generates an interference light spectrum based on the information on the wavelength change of the emitted light from the wavelength swept laser light source 101 and the information on the change in the intensity ratio between the interference lights R51 and R61. Generate data.
  • the optical spectrum data generation/A-scan waveform generation unit 117 Fourier-transforms the generated interference light spectrum data to obtain data indicating the intensity of backscattered light (object light) at different positions in the depth direction (Z direction). (Hereinafter, the operation of obtaining data indicating the intensity of backscattered light (object light) in the depth direction (Z direction) at a certain position on the measurement object 108 is referred to as "A scan").
  • an electrical signal with a repetition frequency of 50 kHz is supplied as a trigger signal from the wavelength-swept laser light source 101 to the signal processing unit 106 through the tomographic image generation unit 118 .
  • the trigger signal is branched by the trigger signal splitter 132 after being output from the wavelength swept laser light source 101 and supplied to the tomographic image generator 118 and the tomographic image generator 128 .
  • the intensity difference between the interference light R51 and the interference light R61 is given by the following equation (1).
  • the interference light spectrum data I(k) obtained by measuring from wavenumber k 0 ⁇ k/2 to k 0 + ⁇ k/2 shows modulation with a period of 2 ⁇ /z 0 .
  • the object to be measured is a mirror
  • the object light irradiated to the object to be measured propagates to the inside while being attenuated to some extent and is sequentially backscattered, and the light scattering points of the object light are distributed in a range from the surface to a certain depth.
  • the interference light spectrum has a modulation period of 2 ⁇ /(z 0 ⁇ z) to 2 ⁇ /(z 0 + ⁇ z). appear overlapping.
  • the irradiation position of the object light R31 is scanned on the measurement object 108 by the irradiation optical system 116 .
  • the beam position setting unit 119 controls the irradiation optical system 116 according to the trigger signal supplied through the tomographic image generation unit 118 to move the irradiation position of the object light R31 in the scanning line direction (X direction).
  • a two-dimensional map of the intensity of the backscattered light (object light) in the scanning line direction and the depth direction is generated as tomographic structure data.
  • B-scan the operation of repeatedly performing the A-scan operation in the scanning line direction (X direction) and connecting the measurement results.
  • the irradiation optical system 116 moves the irradiation position of the object light R31 not only in the direction of the scanning line but also in the direction perpendicular to the scanning line (Y direction) while repeatedly performing the B-scanning operation. By connecting the measurement results, three-dimensional tomographic structure data can be obtained. scan”).
  • the tomographic structure data of the object 109 to be measured can be obtained by the same procedure (that is, the same procedure as in the first unit described above).
  • the optical coherence tomographic imaging apparatus 100 As described with reference to FIGS. 1 and 2, in the optical coherence tomographic imaging apparatus 100 according to the first embodiment, light emitted from one wavelength-swept laser light source 101 is distributed to a plurality of units for measurement. will be In this way, it is possible to acquire the tomographic structure data of the object to be measured in each unit while sharing the high-cost wavelength swept laser light source among a plurality of units. As a result, it becomes possible to suppress the device cost.
  • ⁇ Second embodiment> An optical coherence tomographic imaging apparatus 200 according to the second embodiment will be described with reference to FIG.
  • the second embodiment may differ from the above-described first embodiment only in a part of configuration and operation, and the other parts may be the same as those of the first embodiment. For this reason, in the following, portions different from the already described first embodiment will be described in detail, and descriptions of overlapping portions will be omitted as appropriate.
  • FIG. 3 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the second embodiment. Note that FIG. 3 omits illustration of detailed components included in the light interference/light receiving unit, the light beam scanning unit, and the signal processing unit shown in FIG. 2 .
  • an optical coherence tomographic imaging apparatus 200 includes four units 210, 220, 230, and 240 as input destinations of light emitted from a wavelength-swept laser light source 201. ing.
  • the number of units into which a plurality of branched lights are input is not particularly limited.
  • the number of units may be, for example, 5, 6 or more.
  • the light emitted from the wavelength-swept laser light source 201 is split into four lights by the light splitter 202 . Then, each branched light is transmitted to the optical interference/light receiving section 211 of the first unit 210, the optical interference/light receiving section 221 of the second unit 220, the optical interference/light receiving section 231 of the third unit 230, and It is supplied to the optical interference/light receiving section 241 of the fourth unit 240 .
  • the light input to the light interference/light receiving section 211 of the first unit 210 is used for scanning by the light beam scanning section 212 .
  • the light input to the optical interference/light receiving section 221 of the second unit 220 is used for scanning by the light beam scanning section 222 .
  • the light input to the light interference/light receiving section 231 of the third unit 230 is used for scanning by the light beam scanning section 232 .
  • the light input to the light interference/light receiving section 241 of the fourth unit 240 is used for scanning by the light beam scanning section 242 .
  • each unit can acquire tomographic structure data of mutually different measurement objects (here, four measurement objects).
  • the trigger signal output from the wavelength swept laser light source 201 is also split by the trigger signal splitter 203, and the signal processing section 213 of the unit 210, the signal processing section 223 of the unit 220, the signal processing section 233 of the unit 230, and the It is supplied to the signal processing section 243 of the unit 240 .
  • the optical coherence tomographic imaging apparatus 200 As described with reference to FIG. 3, in the optical coherence tomographic imaging apparatus 200 according to the second embodiment, light emitted from one wavelength-swept laser light source 101 is distributed to a larger number of units than in the first embodiment. measurements are taken. In this way, the high-cost wavelength swept laser light source can be shared by a larger number of units, so that the device cost can be further reduced.
  • FIG. 4 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the third embodiment.
  • the same symbols are assigned to the same components as those shown in FIG.
  • an optical coherence tomographic imaging apparatus 300 includes an optical amplifier 204 that amplifies light pulses emitted from a wavelength-swept laser light source 201.
  • the optical pulse emitted from the wavelength swept laser light source 201 is first amplified by the optical amplifier 204 .
  • the amplified light is split into two by the optical splitter 205 .
  • Each light branched by the optical splitter 205 is supplied to the optical interference/light receiving section 211 of the first unit 210 and the optical interference/light receiving section 221 of the second unit 220 .
  • the light pulse emitted from the wavelength swept laser light source 201 is amplified before being split.
  • the reduction in optical pulse power due to branching can be compensated for by amplification. Therefore, for example, even if the number of branches is large and the power of the optical pulse after branching is insufficient as it is, the power is compensated for by amplification, and a tomographic image can be captured appropriately.
  • FIG. 5 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the fourth embodiment.
  • the same symbols are attached to the same components as those shown in FIGS.
  • an optical coherence tomographic imaging apparatus 400 includes a first optical branching device 206 that branches an optical pulse emitted from a wavelength-swept laser light source 201, and a first optical branching device. It has two optical amplifiers 207 that amplify each of the amplified lights, and a second optical splitter 208 that further splits each of the lights amplified by each of the optical amplifiers 207 .
  • the light pulse emitted from the wavelength-swept laser light source 201 is first split into two lights by the first optical splitter 206 .
  • the two split lights are supplied to two optical amplifiers 207, respectively.
  • the optical amplifier 207 amplifies each of the two lights split by the first optical splitter 206 .
  • the two lights amplified by the optical amplifier 207 are supplied to the second optical splitter 208, respectively.
  • the second optical splitter 208 splits the input light into two.
  • the optical pulse emitted from the wavelength swept laser light source 201 passes through the first optical splitter 206, the optical amplifier 207, and the second optical splitter 208 and is split into four lights.
  • the four lights emitted from the second optical splitter 208 are the optical interference/light receiving section 211 of the first unit 210, the optical interference/light receiving section 221 of the second unit 220, the It is supplied to the optical interference/light receiving section 231 of the third unit 230 and the optical interference/light receiving section 241 of the fourth unit 240 .
  • optical pulses are branched in stages with amplification interposed therebetween. In this way, when optical pulses are branched into a relatively large number, branching and amplification can be performed appropriately.
  • the optical pulse is branched in two steps, but the optical pulse may be branched in three or more steps. In that case, amplification may be performed before branching at each stage (that is, amplification may be performed multiple times in stages).
  • ⁇ Fifth Embodiment> An optical coherence tomographic imaging apparatus 500 according to the fifth embodiment will be described with reference to FIG. It should be noted that the fifth embodiment may differ from the first to fourth embodiments described above only in a part of the configuration and operation, and the other parts may be the same as those of the first to fourth embodiments. Therefore, in the following, portions different from the respective embodiments already described will be described in detail, and descriptions of other overlapping portions will be omitted as appropriate.
  • FIG. 6 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the fifth embodiment.
  • the same reference numerals are assigned to the same components as those shown in FIGS.
  • an optical coherence tomographic imaging apparatus 500 is configured with an optical switch 209 as an element for branching the light pulse emitted from the wavelength swept laser light source 201.
  • the optical switch 209 is configured to be able to time-divisionally split the wavelength-swept laser light source 201 (that is, switch the optical path depending on the timing).
  • the optical switch 209 switches so that the light pulses emitted from the wavelength swept laser light source 201 are sequentially supplied to the units 210 and 220.
  • the optical switch 209 is switched so that the optical pulse is first supplied to the optical interference/light receiving section 211 of the first unit 210 .
  • the optical switch 209 is switched so that the optical pulse is supplied to the optical interference/light receiving section 221 of the second unit 220 .
  • the optical pulse emitted from the wavelength swept laser light source 201 is split by the optical switch 209 .
  • the optical switch 209 it is possible to suppress a decrease in the power of the optical pulse due to branching. Therefore, it is possible to maintain the power of the optical pulse after branching without providing an optical amplifier as in the above-described third and fourth embodiments.
  • FIG. 7 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the sixth embodiment.
  • an optical coherence tomographic imaging apparatus 600 is configured as one integrated unit 310 in which the optical interference/light receiving units and signal processing units in a plurality of units are common.
  • the aggregation unit 310 includes optical interference/light receiving units 311 and 321 and signal processing units 313 and 323 .
  • the optical pulses branched by the optical branching unit 302 are supplied to each of the optical interference/light receiving units 311 and 321 included in the aggregation unit 310 . Further, the signal processing units 313 and 323 included in the aggregation unit 310 are supplied with the trigger signal split by the trigger signal splitter 303 .
  • a plurality of light beam scanners 312 and 322 are remotely located in the aggregation unit 310 .
  • Each of the plurality of light beam scanning units 312 and 322 is configured to operate via different optical interference/light receiving units and signal processing units included in the aggregation unit 310 .
  • Each of the light beam scanning units 312 and 322 is capable of scanning a plurality of different objects to be measured.
  • a plurality of optical interference/light receiving units and signal processing units are configured as one integrated unit 310 in common.
  • the device configuration can be simplified, and the cost is reduced. It is also possible to suppress the increase in
  • FIG. 8 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the seventh embodiment.
  • an optical coherence tomographic imaging apparatus 700 includes an optical combiner 721 and an optical splitter 722 .
  • the optical combiner 721 is configured to combine the wavelength-swept first optical pulse and the second optical pulse to output.
  • the optical splitter 722 is configured to split and output the light combined by the optical combiner 721 .
  • a wavelength-swept first optical pulse and a second optical pulse synchronized with repetition of this optical pulse are emitted from a wavelength-swept laser light source 701 .
  • a first wavelength-swept optical pulse is generated with a 50 kHz repetition every 20 ⁇ s, increasing in wavelength from 1250 nm to 1350 nm for a duration of 10 ⁇ s.
  • the second optical pulse is generated with a wavelength band of 1550 nm and a repetition rate of 50 kHz.
  • the first optical pulse and the second optical pulse are combined at the optical combiner 721 and split at the optical splitter 723 .
  • the optical combiner 721 can suppress optical loss during combining using a wavelength combiner.
  • the light branched by the optical splitter 723 is sent to the first unit consisting of the light interference/light receiving unit 702, the light beam scanning unit 104, and the signal processing unit 106, the light interference/light receiving unit 703, the light beam scanning unit 105, It is fed to a second unit consisting of signal processing section 107 .
  • the light emitted from the wavelength swept laser light source 701 and supplied to the optical interference/light receiving section 702 via the optical combiner 721 and optical splitter 722 is input to the trigger signal separation section 724 .
  • the first light pulse is guided to the circulator 111, and the second light pulse is photoelectrically converted by the light receiver.
  • the first light pulse is used to acquire tomographic structure data of the measurement object 108 in the same procedure as in the first embodiment (see FIG. 2).
  • An electrical signal obtained by photoelectrically converting the second light pulse is input to the tomographic image generation unit 118 of the signal processing unit 106 as in the first embodiment.
  • the tomographic structure data of the object 109 to be measured can be obtained by the same procedure (that is, the same procedure as in the first unit described above).
  • the first pulse and the second pulse are generated in each unit (specifically, the trigger signal separator 724 and 725).
  • the trigger signal separator 724 and 725 it is not necessary to separately supply the light pulses for generating the object light and the reference light and the light pulses for the trigger signal to each unit. Therefore, it is not necessary to separately provide an optical splitter and a trigger signal splitter, for example, in front of each unit.
  • FIG. 8 An optical coherence tomographic imaging apparatus 800 according to the eighth embodiment will be described with reference to FIG. It should be noted that the eighth embodiment may differ from the first to seventh embodiments described above only in part of the operation, and may be the same as the first to seventh embodiments in other respects. Therefore, in the following, portions different from the respective embodiments already described will be described in detail, and descriptions of other overlapping portions will be omitted as appropriate.
  • FIG. 9 is a block diagram showing the configuration of an optical coherence tomographic imaging apparatus according to the eighth embodiment.
  • each unit of the optical coherence tomographic imaging apparatus 800 includes trigger signal extractors 822 and 823 .
  • the trigger signal extraction units 822 and 823 are configured to be capable of generating an electrical signal synchronized with the optical pulse by branching and photoelectrically converting a portion of the power of the optical pulse.
  • a light pulse is emitted from the wavelength-swept laser light source 801, and a first unit consisting of a light interference/light receiving unit 802, a light beam scanning unit 104, a signal processing unit 106, and , the light interference/light receiving unit 803 , the light beam scanning unit 105 and the signal processing unit 107 .
  • one of the lights split by the optical splitter 821 is supplied to the optical interference/light receiving section 802 .
  • the optical pulse supplied to the optical interference/light receiving unit 802 is input to the trigger signal extraction unit 822 .
  • the trigger signal extractor 822 splits a portion of the power of the optical pulse and photoelectrically converts it to generate an electrical signal synchronized with the optical pulse. Most of the remaining power of the optical pulse is used to acquire tomographic structure data of the measurement object 108 in the same procedure as in the first embodiment (see FIG. 2).
  • the electrical signal obtained by the trigger signal extraction unit 822 is input to the tomographic image generation unit 118 of the signal processing unit 106 as a trigger signal.
  • the tomographic structure data of the object 109 to be measured can be obtained by the same procedure (that is, the same procedure as in the first unit described above).
  • each unit specifically, the trigger signal extraction units 822 and 823 of each unit.
  • FIG. 10 to 12 An optical coherence tomographic imaging apparatus according to the ninth embodiment will be described with reference to FIGS. 10 to 12.
  • FIG. The ninth embodiment describes specific application examples of the optical coherence tomographic imaging apparatuses according to the above-described first to eighth embodiments, and the basic configuration and operation of the apparatus are described in the first to eighth embodiments. It may be the same as the eighth embodiment. Therefore, in the following, portions different from the respective embodiments already described will be described in detail, and descriptions of other overlapping portions will be omitted as appropriate.
  • FIG. 10 is a schematic diagram showing the configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a contact fingerprint scanner.
  • symbol is attached
  • the optical coherence tomography apparatus may be applied to a contact fingerprint scanner (that is, a device that reads fingerprints by touching a finger to the device).
  • the scanning unit 910 with which the living finger 50 comes into contact may be configured with the irradiation optical system 116 .
  • the irradiation optical system 116 irradiates the finger 50 of the living body in contact with the scanning unit 910 with a light beam. Scattered light scattered by finger 50 of the living body enters irradiation optical system 116 . Based on this scattered light, a fingerprint image is generated in a contact fingerprint scanner.
  • the irradiation optical system 116 is supplied with the laser light emitted from the wavelength-swept laser light source 101 in a branched state. Therefore, although illustration is omitted here, a plurality of scanning units 910 may be provided for one wavelength swept laser light source 101 .
  • FIG. 11 is a schematic diagram (Part 1) showing the configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a non-contact fingerprint scanner.
  • FIG. 12 is a schematic diagram (part 2) showing the configuration when the optical coherence tomographic imaging apparatus according to the ninth embodiment is applied to a non-contact fingerprint scanner.
  • FIGS. 11 and 12 the same symbols are attached to the same elements as those shown in FIG.
  • the optical coherence tomography apparatus may be applied to a non-contact fingerprint scanner (that is, a device that reads fingerprints without touching the finger to the device).
  • the scanning unit 920 over which the living finger 50 is held may be configured with the irradiation optical system 116 .
  • the irradiation optical system 116 irradiates a light beam to the living finger 50 that is not in contact with the scanning unit 920 .
  • Scattered light scattered by finger 50 of the living body enters irradiation optical system 116 . Based on this scattered light, a fingerprint image is generated in a contactless fingerprint scanner.
  • the optical coherence tomography apparatus may be applied to a non-contact fingerprint scanner with a guide.
  • the scanning unit 930 over which the finger 50 of the living organism is held is provided with guide units 931 and 932 on which the finger 50 of the living organism is placed. In this way, even if the finger 50 of the living body is brought into contact with the guide parts 931 and 932, the scanner part 930 and the finger 50 of the living body do not contact each other (that is, the non-contact state can be maintained).
  • the irradiation optical system 116 in the non-contact scanner is also supplied with the laser light emitted from the wavelength swept laser light source 101 in a branched state. Therefore, although illustration is omitted here, a plurality of scanning units 920 or 930 may be provided for one wavelength swept laser light source 101 .
  • the optical coherence tomographic imaging apparatus is applied to contact fingerprint scanners or non-contact fingerprint scanners.
  • the high-cost wavelength swept laser light source 101 is shared by a plurality of units, each unit can obtain a fingerprint image of the living finger 50 . Therefore, even if there is only one wavelength swept laser light source 101, for example, fingerprint images of a plurality of living bodies can be obtained at the same time.
  • a processing method of recording a program for operating the configuration of each embodiment so as to realize the functions of each embodiment described above on a recording medium, reading the program recorded on the recording medium as a code, and executing it on a computer is also implemented. Included in the category of form. That is, a computer-readable recording medium is also included in the scope of each embodiment. In addition to the recording medium on which the above program is recorded, the program itself is also included in each embodiment.
  • a floppy (registered trademark) disk, hard disk, optical disk, magneto-optical disk, CD-ROM, magnetic tape, non-volatile memory card, and ROM can be used as recording media.
  • the program recorded on the recording medium alone executes the process, but also the one that operates on the OS and executes the process in cooperation with other software and functions of the expansion board. included in the category of
  • the optical coherence tomographic imaging apparatus includes a wavelength-swept laser light source, a branching section that branches light emitted from the wavelength-swept laser light source into a plurality of lights, and a plurality of lights output from the branching section. and a plurality of units for acquiring tomographic structure information for different measurement objects using each of the plurality of units, each of the plurality of units branching the light output from the branching unit into object light and reference light.
  • a branch generating unit that generates a branch, a light beam scanning unit that irradiates the object light onto the measurement object, and the object light scattered by the measurement object and the reference light according to the intensity of the interference light that interferes an optical coherence tomographic imaging apparatus comprising: a signal generation unit that generates an electric signal by using a signal; and an information generation unit that generates tomographic structure information of the object to be measured based on the electric signal.
  • the branching unit branches light emitted from the wavelength-swept laser light source, amplifies the branched light, further branches the amplified light, and divides the plurality of lights. It is an optical coherence tomographic imaging apparatus according to Supplementary Note 1, which outputs as .
  • (Appendix 4) 4. The optical coherence tomographic imaging apparatus according to any one of appendices 1 to 3, wherein the branching unit time-divides the light emitted from the wavelength-swept laser light source and outputs the light as the plurality of lights. It is an optical coherence tomographic imaging apparatus of description.
  • the wavelength-swept laser light source emits a first optical pulse and a second optical pulse
  • the branching unit emits the first optical pulse and the second optical pulse.
  • the light pulses are combined and output as the plurality of lights, and each of the plurality of units divides the light output from the branching section into the first light pulse and the second light
  • the first optical pulse is output as light for generating the object light and the reference light
  • the second optical pulse is used as a trigger for the signal generator to generate the tomographic structure information.
  • each of the plurality of units separates and photoelectrically converts a portion of the power of the light output from the branching unit, so that the signal generating unit is the tomographic structure.
  • a computer emits light from a wavelength-swept laser light source, branches the light emitted from the wavelength-swept laser light source into a plurality of lights, and divides each of the plurality of lights into an optical coherence tomography method for acquiring tomographic structure information for different measurement objects in each of a plurality of units, wherein each of the plurality of units further splits the plurality of lights into object light and reference and irradiating the object light onto the object to be measured, and generating an electric signal according to the intensity of the interference light resulting from interference between the object light scattered by the object to be measured and the reference light. and an optical coherence tomographic imaging method for generating tomographic structural information of the object to be measured based on the electrical signal.
  • the recording medium according to appendix 9 emits light from a wavelength-swept laser light source to a computer, branches the light emitted from the wavelength-swept laser light source into a plurality of lights, and uses each of the plurality of lights to An optical coherence tomography method for obtaining tomographic structure information for different measurement objects in each of a plurality of units, wherein each of the plurality of units further splits the plurality of lights into object light and reference light.
  • the recording medium stores a computer program for executing an optical coherence tomographic imaging method for generating tomographic structure information of the object to be measured based on the signal.
  • Appendix 10 causes a computer to emit light from a wavelength-swept laser light source, split the light emitted from the wavelength-swept laser light source into a plurality of lights, and use each of the plurality of lights to An optical coherence tomography method for obtaining tomographic structure information for different measurement objects in each of a plurality of units, wherein each of the plurality of units further splits the plurality of lights into object light and reference light.
  • a computer program for executing an optical coherence tomography method for generating tomographic structure information of the measurement object based on a signal.
  • optical coherence tomographic imaging apparatus 101 wavelength sweeping laser light source 102 optical interference/light receiving unit 104 light beam scanning unit 108 measurement object 111 circulator 112 branching/combining unit 113 reference light mirror 115 fiber collimator 116 irradiation optical system 117 optical spectrum data generation A Scan waveform generation unit 118 Tomographic image generation unit 119 Beam position setting unit 131 Optical splitter 132 Trigger signal splitter 204 Optical amplifier 205 Optical splitter 206 First optical splitter 207 Optical amplifier 208 Second optical splitter 209 Optical switch 310 Aggregation Unit 721 Optical Combiner 722 Optical Splitter 724 Trigger Signal Separating Section 822 Trigger Signal Extracting Section 910, 920, 930 Scanning Section 931, 932 Guide Section

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

光干渉断層撮像装置(100)は、波長掃引レーザ光源(101)と、波長掃引レーザ光源から出射された光を複数の光に分岐する分岐部(131)と、分岐部から出力された複数の光を用いて、異なる測定対象物(108,109)に対する断層構造情報を取得する複数のユニット(200)と、を備える。複数のユニットは、光を分岐させて物体光と参照光とを生成する分岐生成部(112)と、物体光を測定対象物に照射する光ビーム走査部(104)と、測定対象物で散乱された物体光と参照光とを干渉させた干渉光の強度に応じて電気信号を生成する信号生成部(114)と、電気信号に基づいて測定対象物の断層構造情報を生成する情報生成部(107)と、を備える。

Description

光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体
 この開示は、光干渉断層撮像を行う光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体の技術分野に関する。
 測定対象物の表面近傍の断層撮像を行う技術として、光コヒーレンス・トモグラフィー(Optical Coherence Tomography:OCT)技術が知られている。例えば特許文献1では、OCT技術を用いて角膜の3次元形状データを演算する技術が開示されている。特許文献2では、眼科手術用のプローブにおいてOCT走査を行い、組織の電子画像を生成する技術が開示されている。特許文献3では、OCT技術を用いて網膜の層構造を示す断層画像を作成する際に、光源からの光を2つのファイバーカプラーで分岐させてもよいことが開示されている。
特開2006-051101号公報 特表2014-503268号公報 特開2015-221091号公報
 この開示は、先行技術文献に開示された技術を改善することを目的とする。
 この開示の光干渉断層撮像装置の一の態様は、波長掃引レーザ光源と、前記波長掃引レーザ光源から出射された光を複数の光に分岐する分岐部と、前記分岐部から出力された複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を取得する複数のユニットと、を備え、前記複数のユニット各々は、前記分岐部から出力された光を分岐させて物体光と参照光とを生成する分岐生成部と、前記物体光を前記測定対象物に照射する光ビーム走査部と、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成する信号生成部と、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する情報生成部と、を備える。
 この開示の光干渉断層撮像方法の一の態様は、コンピュータによって、波長掃引レーザ光源から光を出射し、前記波長掃引レーザ光源から出射された光を複数の光に分岐し、前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する光干渉断層撮像方法であって、前記複数のユニット各々は、前記複数の光を更に分岐させて物体光と参照光とを生成し、前記物体光を前記測定対象物に照射し、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する。
 この開示の記録媒体の一の態様は、コンピュータに、波長掃引レーザ光源から光を出射し、前記波長掃引レーザ光源から出射された光を複数の光に分岐し、前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、光干渉断層撮像方法であって、前記複数のユニット各々は、前記複数の光を更に分岐させて物体光と参照光とを生成し、前記物体光を前記測定対象物に照射し、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、光干渉断層撮像方法を実行させるコンピュータプログラムが記録されている。
第1実施形態に係る光干渉断層撮像装置のハードウェア構成を示すブロック図である。 第1実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第2実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第3実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第4実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第5実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第6実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第7実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第8実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。 第9実施形態に係る光干渉断層撮像装置を接触型指紋スキャナに適用した場合の構成を示す概略図である。 第9実施形態に係る光干渉断層撮像装置を非接触型指紋スキャナに適用した場合の構成を示す概略図(その1)である。 第9実施形態に係る光干渉断層撮像装置を非接触型指紋スキャナに適用した場合の構成を示す概略図(その2)である。
 以下、図面を参照しながら、光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体の実施形態について説明する。
 <第1実施形態>
 第1実施形態に係る光干渉断層撮像装置について、図1及び図2を参照して説明する。
 (ハードウェア構成)
 まず、図1を参照しながら、第1実施形態に係る光干渉断層撮像装置100のハードウェア構成について説明する。図1は、第1実施形態に係る光干渉断層撮像装置のハードウェア構成を示すブロック図である。
 図1に示すように、第1実施形態に係る光干渉断層撮像装置100は、プロセッサ11と、RAM(Random Access Memory)12と、ROM(Read Only Memory)13と、記憶装置14とを備えている。光干渉断層撮像装置100は更に、入力装置15と、出力装置16と、を備えていてもよい。また、第1実施形態に係る光干渉断層撮像装置100は、波長掃引レーザ光源101と、複数の光学系ユニット20とを備えている。上述した、プロセッサ11と、RAM12と、ROM13と、記憶装置14と、入力装置15と、出力装置16と、波長掃引レーザ光源101と、複数の光学系ユニット20とは、データバス17を介して接続されていてよい。
 プロセッサ11は、コンピュータプログラムを読み込む。例えば、プロセッサ11は、RAM12、ROM13及び記憶装置14のうちの少なくとも一つが記憶しているコンピュータプログラムを読み込むように構成されている。或いは、プロセッサ11は、コンピュータで読み取り可能な記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。プロセッサ11は、ネットワークインタフェースを介して、光干渉断層撮像装置100の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、読み込んでもよい)。プロセッサ11は、読み込んだコンピュータプログラムを実行することで、RAM12、記憶装置14、入力装置15及び出力装置16を制御する。
 プロセッサ11は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(field-programmable gate array)、DSP(Demand-Side Platform)、ASIC(Application Specific Integrated Circuit)として構成されてよい。プロセッサ11は、これらのうち一つで構成されてもよいし、複数を並列で用いるように構成されてもよい。
 RAM12は、プロセッサ11が実行するコンピュータプログラムを一時的に記憶する。RAM12は、プロセッサ11がコンピュータプログラムを実行している際にプロセッサ11が一時的に使用するデータを一時的に記憶する。RAM12は、例えば、D-RAM(Dynamic RAM)であってもよい。
 ROM13は、プロセッサ11が実行するコンピュータプログラムを記憶する。ROM13は、その他に固定的なデータを記憶していてもよい。ROM13は、例えば、P-ROM(Programmable ROM)であってもよい。
 記憶装置14は、光干渉断層撮像装置100が長期的に保存するデータを記憶する。記憶装置14は、プロセッサ11の一時記憶装置として動作してもよい。記憶装置14は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。
 入力装置15は、光干渉断層撮像装置100のユーザからの入力指示を受け取る装置である。入力装置15は、例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つを含んでいてもよい。入力装置15は、スマートフォンやタブレット端末等の携帯端末として構成されてもよい。
 出力装置16は、光干渉断層撮像装置100に関する情報を外部に対して出力する装置である。例えば、出力装置16は、光干渉断層撮像装置10に関する情報を表示可能な表示装置(例えば、ディスプレイ)であってもよい。また、出力装置16は、光干渉断層撮像装置10に関する情報を音声出力可能な装置(例えば、スピーカ)であってもよい。入力装置15は、スマートフォンやタブレット端末等の携帯端末として構成されてもよい。
 波長掃引レーザ光源101は、波長を連続的に変化させたレーザ光を発生させることが可能な光源である。本実施形態に係る光干渉断層撮像装置100は、波長掃引レーザ光源101から出射されるレーザ光のコヒーレンス性を利用して、測定対象物の断層画像を行うことが可能に構成されている。
 光学系ユニット20は、複数の光学部材を備えるユニットとして構成されている。光学系ユニット20は、波長掃引レーザ光源101から出射される光を測定対象物まで導く他、測定対象物で散乱された光を干渉させて干渉光を生成可能に構成されている。なお、光学系ユニット20のより具体的な構成については後述する。本実施形態では特に、1つの波長掃引レーザ光源101に対して、複数の光学系ユニット20が備えられている。
 (具体的構成及び各部の動作)
 次に、図2を参照しながら、第1実施形態に係る光干渉断層撮像装置100の具体的な構成及び各部の動作について説明する。図2は、第1実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。
 図2において、第1実施形態に係る光干渉断層撮像装置100は、波長掃引レーザ光源101から出射される光を用いて、測定対象物108及び109の断層画像を撮像可能な装置として構成されている。本実施形態に係る光干渉断層撮像装置100は特に、1つの波長掃引レーザ光源101を分岐して複数のユニットに出力し、各ユニットで異なる測定対象物(ここでは、測定対象物108及び109)の断層画像を撮像可能に構成されている。
 具体的には、波長掃引レーザ光源101から出射される光パルスは、光分岐器131で分岐された後、光干渉・受光部102、光ビーム走査部104、及び信号処理部106を備える第一のユニットと、光干渉・受光部103、光ビーム走査部105、信号処理部107を備える第二のユニットと、にそれぞれ供給される。第一のユニットでは測定対象物108の断層画像が得られ、第二のユニットでは測定対象物109の断層画像が得られる。
 波長掃引レーザ光源101は、例えば持続時間10μsの間に波長が1250nmから1350nmまで増加する光パルスを生成し、この光パルスを20μs毎に50kHz繰り返しで生成する。
 波長掃引レーザ光源101から出射され、光分岐器131を経て第一のユニットの光干渉・受光部102に供給された光は、光ビーム走査部104を経て測定対象物108に照射され散乱される。この散乱光の一部が光干渉・受光部102に戻り光電変換される。光干渉・受光部102から出力される電気信号が信号処理部106で断層画像データに変換され、測定対象物108の断層画像が得られる。
 また、波長掃引レーザ光源101から出射され、光分岐器131を経て第二のユニットの光干渉・受光部103に供給された光は、光ビーム走査部105を経て測定対象物109に照射され散乱される。この散乱光の一部が光干渉・受光部103に戻り光電変換される。光干渉・受光部103から出力される電気信号が信号処理部107で断層画像データに変換され、測定対象物109の断層画像が得られる。
 より具体的には、第一のユニットの光干渉・受光部102に供給された光は、サーキュレータ111を経由して分岐合流器112に入力される。分岐合流器112入力された光は、物体光R11と参照光R21とに分岐される。物体光R11はファイバコリメータ115、走査ミラー及びレンズから成る照射光学系116を経て、測定対象物108に照射される。そして、測定対象物108において散乱された物体光R31は、分岐合流器112へ戻る。他方、参照光R21は参照光ミラー113を経て、分岐合流器112へ戻る。したがって、分岐合流器112では、測定対象物108から散乱された物体光R31と参照光ミラー113から反射された参照光R41とが干渉し、干渉光R51、R61が生成される。すなわち、物体光R31と参照光R41との位相差によって干渉光R51と干渉光R61との強度比が決定される。
 干渉光R51はサーキュレータ111を経て、干渉光R61は直接に、二入力のバランス型受光器114へ入力される。バランス型受光器114からは干渉光R51と干渉光R61の強度差に応じた電圧が出力され、信号処理部106を成す光スペクトルデータ生成・Aスキャン波形生成部117へ入力される。
 なお、バランス型受光器114は2つのフォトダイオードが直列に接続され、その接続が出力(差動出力)となっている受光器である。また、バランス型受光器114の帯域は1GHz以下である。
 光スペクトルデータ生成・Aスキャン波形生成部117では、波長掃引レーザ光源101からの出射光の波長変化に関する情報と、干渉光R51とR61との強度比の変化に関する情報とに基づいて、干渉光スペクトルデータを生成する。光スペクトルデータ生成・Aスキャン波形生成部117は、生成した干渉光スペクトルデータをフーリエ変換して、深さ方向(Z方向)の異なる位置における後方散乱光(物体光)の強度を示すデータを得る(以下、測定対象物108のある位置の深さ方向(Z方向)の後方散乱光(物体光)の強度を示すデータを得る動作を、「Aスキャン」と称する)。
 光パルスの繰り返し周期20μs毎にAスキャン波形を生成するため、波長掃引レーザ光源101から繰り返し周波数50kHzの電気信号がトリガ信号として断層画像生成部118を通して信号処理部106へ供給されている。なお、トリガ信号は、波長掃引レーザ光源101から出力された後、トリガ信号分岐器132で分岐され、断層画像生成部118及び断層画像生成部128に供給されている。
 波長λ、波数k(=2π/λ)の物体光と参照光の干渉を考える。参照光が分岐合流器112で分岐されてから参照光ミラー113で反射されて分岐合流器112へ戻るまでの光路長がPであり、物体光が分岐合流器112で分岐されてから測定対象物108の光散乱点1ケ所で後方散乱されて分岐合流器112へ戻るまでの光路長がP=P+zである場合、分岐合流器112で干渉する物体光R31と参照光R41は、位相差kz+φで干渉する。ここでφはkやzに依存しない定数である。分岐合流器112で干渉する物体光R31の振幅をE、参照光R41の振幅をEとすると、干渉光R51と干渉光R61の強度差は下記式(1)のようになる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、波数k-Δk/2からk+Δk/2まで測定して得られた干渉光スペクトルデータI(k)には、周期2π/zの変調が現れることになる。
 I(k)のフーリエ変換の振幅J(z)は、下記式(2)のようになる。
Figure JPOXMLDOC01-appb-M000002
 これは、光散乱点位置zを反映してz=z(およびz=-z)でδ関数状のピークを示すことになる。
 測定対象物がミラーの場合には光散乱点位置は1ヶ所である。しかし、通常、測定対象物に照射された物体光はある程度内部まで減衰しながら伝搬しつつ順次後方散乱され、物体光の光散乱点は表面からある深さまでの範囲に分布することになる。光散乱点が深さ方向にz-Δzからz+Δzまで分布している場合には、干渉光スペクトルにおいて周期2π/(z-Δz)から2π/(z+Δz)までの変調が重なって現れる。
 さらに、照射光学系116によって物体光R31の照射位置が測定対象物108上で走査される。断層画像生成部118を通して供給されるトリガ信号に応じてビーム位置設定部119が照射光学系116を制御して物体光R31の照射位置を走査線方向(X方向)に移動させる。Aスキャン動作を繰り返し行い、断層画像生成部118でAスキャン測定結果を接続することにより、走査線方向と深さ方向との二次元の後方散乱光(物体光)の強度のマップが断層構造データとして得られる(以下、走査線方向(X方向)にAスキャン動作を繰り返し行って、その測定結果を接続する動作を、「Bスキャン」と称する)。
 さらに、照射光学系116によって物体光R31の照射位置を走査線方向だけでなく走査線に垂直な方向(Y方向)にも移動させながらBスキャン動作を繰り返し行い、断層画像生成部118でAスキャン測定結果を接続することにより、三次元の断層構造データが得られる(以下、走査線に垂直な方向(Y方向)にBスキャン動作を繰り返し行って、その測定結果を接続する動作を、「Cスキャン」と称する)。
 なお、第二のユニットにおいても同様の手順(即ち、上述した第1ユニットと同様の手順)で測定対象物109の断層構造データが得られる。
 (技術的効果)
 次に、第1実施形態に係る光干渉断層撮像装置100によって得られる技術的効果について説明する。
 図1及び図2で説明したように、第1実施形態に係る光干渉断層撮像装置100では、1台の波長掃引レーザ光源101から出射される光が、複数のユニットに分配して測定が行われる。このようにすれば、高コストの波長掃引レーザ光源を複数台のユニットで共有しつつ、各々のユニットで測定対象物の断層構造データの取得が可能となる。その結果、装置コストを抑制することが可能となる。
 <第2実施形態>
 第2実施形態に係る光干渉断層撮像装置200について、図3を参照して説明する。なお、第2実施形態は、上述した第1実施形態と一部の構成及び動作が異なるのみであり、その他の部分については第1実施形態と同一であってよい。このため、以下では、すでに説明した第1実施形態と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図3を参照しながら、第2実施形態に係る光干渉断層撮像装置200の具体的な構成及び各部の動作について説明する。図3は、第2実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。なお、図3では、図2で示した光干渉・受光部、光ビーム走査部、及び信号処理部に含まれる詳細な構成要素の図示を省略している。
 図3に示すように、第2実施形態に係る光干渉断層撮像装置200は、波長掃引レーザ光源201から出射される光の入力先として、4台のユニット210、220、230、及び240を備えている。このように、分岐した複数の光が入力されるユニットの数は、特に制限されるものではない。よって、ユニットの数は、例えば5台、6台、あるいは、それ以上の数であってもよい。
 第2実施形態に係る光干渉断層撮像装置200では、波長掃引レーザ光源201から出射された光は、光分岐器202で4つの光に分岐される。そして、分岐された各々の光は、第一のユニット210の光干渉・受光部211、第二のユニット220の光干渉・受光部221、第三のユニット230の光干渉・受光部231、及び第四のユニット240の光干渉・受光部241に供給される。
 第一のユニット210の光干渉・受光部211に入力された光は、光ビーム走査部212による走査に用いられる。第二のユニット220の光干渉・受光部221に入力された光は、光ビーム走査部222による走査に用いられる。第三のユニット230の光干渉・受光部231に入力された光は、光ビーム走査部232による走査に用いられる。第四のユニット240の光干渉・受光部241に入力された光は、光ビーム走査部242による走査に用いられる。これにより、各々のユニットで、互いに異なる測定対象物(ここでは4個の測定対象物)の断層構造データの取得が可能となる。
 なお、波長掃引レーザ光源201から出力されるトリガ信号についても、トリガ信号分岐器203で分岐され、ユニット210の信号処理部213、ユニット220の信号処理部223、ユニット230の信号処理部233、及びユニット240の信号処理部243に供給されている。
 (技術的効果)
 次に、第2実施形態に係る光干渉断層撮像装置200によって得られる技術的効果について説明する。
 図3で説明したように、第2実施形態に係る光干渉断層撮像装置200では、1台の波長掃引レーザ光源101から出射される光が、第1実施形態よりも多い台数のユニットに分配して測定が行われる。このようにすれば、高コストの波長掃引レーザ光源をより多くのユニットで共有できるようになるため、更に装置コストを抑制することが可能となる。
 <第3実施形態>
 第3実施形態に係る光干渉断層撮像装置300について、図4を参照して説明する。なお、第3実施形態は、上述した第1及び第2実施形態と一部の構成及び動作が異なるのみであり、その他の部分については第1及び第2実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分について適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図4を参照しながら、第3実施形態に係る光干渉断層撮像装置300の具体的な構成及び各部の動作について説明する。図4は、第3実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。なお、図4では、図3で示した構成要素と同様のものに同一の符号を付している。
 図4に示すように、第3実施形態に係る光干渉断層撮像装置300は、波長掃引レーザ光源201から出射された光パルスを増幅する光増幅器204を備えている。光干渉断層撮像装置300が動作する際には、波長掃引レーザ光源201から出射された光パルスが、まず光増幅器204で増幅される。そして、増幅された光が光分岐器205で2つに分岐される。光分岐器205で分岐された各々の光は、第一のユニット210の光干渉・受光部211、及び第二のユニット220の光干渉・受光部221に供給される。
 (技術的効果)
 次に、第3実施形態に係る光干渉断層撮像装置300によって得られる技術的効果について説明する。
 図4で説明したように、第3実施形態に係る光干渉断層撮像装置300では、波長掃引レーザ光源201から出射された光パルスが分岐前に増幅される。このようにすれば、分岐による光パルスのパワーの減少を、増幅によって補うことができる。よって、例えば分岐数が多く、そのままでは分岐後の光パルスのパワーが不足してしまうような場合であっても、増幅によってパワーを補い、適切に断層画像を撮像することが可能となる。
 <第4実施形態>
 第4実施形態に係る光干渉断層撮像装置400について、図5を参照して説明する。なお、第4実施形態は、上述した第1から第3実施形態と一部の構成及び動作が異なるのみであり、その他の部分については第1から第3実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図5を参照しながら、第4実施形態に係る光干渉断層撮像装置400の具体的な構成及び各部の動作について説明する。図5は、第4実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。なお、図5では、図3及び図4で示した構成要素と同様のものに同一の符号を付している。
 図5に示すように、第4実施形態に係る光干渉断層撮像装置400は、波長掃引レーザ光源201から出射された光パルスを分岐する第1光分岐器206と、第1光分岐器で分岐された光の各々を増幅する2つの光増幅器207と、光増幅器207の各々で増幅された光の各々を更に分岐する第2光分岐器208とを備えている。
 光干渉断層撮像装置300が動作する際には、波長掃引レーザ光源201から出射された光パルスが、まず第1光分岐器206で2つの光に分岐される。そして、分岐された2つの光は、それぞれ2つの光増幅器207に供給される。光増幅器207では、第1光分岐器206分岐された2つの光の各々が増幅される。そして、光増幅器207で増幅された2つの光は、それぞれ第2光分岐器208に供給される。第2光分岐器208は、入力された光を更に2つに分岐する。
 上記の結果、波長掃引レーザ光源201から出射された光パルスは、第1光分岐器206、光増幅器207、及び第2光分岐器208を経て、4つの光に分岐される。第2光分岐器208から出射される4つの光は、第2実施形態と同様に、第一のユニット210の光干渉・受光部211、第二のユニット220の光干渉・受光部221、第三のユニット230の光干渉・受光部231、及び第四のユニット240の光干渉・受光部241に供給される。
 (技術的効果)
 次に、第4実施形態に係る光干渉断層撮像装置400によって得られる技術的効果について説明する。
 図5で説明したように、第4実施形態に係る光干渉断層撮像装置400では、増幅を挟んで段階的に光パルスが分岐される。このようにすれば、光パルスを比較的多い数に分岐する場合に、適切に分岐及び増幅が行える。なお、第4実施形態では2段階で光パルスを分岐する例を上げたが、3段階以上の段階で光パルスを分岐するようにしてもよい。その場合、各段階の分岐前に増幅を行うようにしてもよい(即ち、段階的に複数回の増幅を行うようにしてもよい)。
 <第5実施形態>
 第5実施形態に係る光干渉断層撮像装置500について、図6を参照して説明する。なお、第5実施形態は、上述した第1から第4実施形態と比べて一部の構成及び動作が異なるのみで、その他の部分については第1から第4実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図6を参照しながら、第5実施形態に係る光干渉断層撮像装置500の具体的な構成及び各部の動作について説明する。図6は、第5実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。なお、図6では、図3から図5で示した構成要素と同様のものに同一の符号を付している。
 図6に示すように、第5実施形態に係る光干渉断層撮像装置500は、波長掃引レーザ光源201から出射された光パルスを分岐する要素として、光スイッチ209を備えて構成されている。光スイッチ209は、波長掃引レーザ光源201を時分割して分岐させる(即ち、タイミングによって光の経路を切り替える)ことが可能に構成されている。
 光干渉断層撮像装置400が動作する際には、波長掃引レーザ光源201から出射された光パルスが、各ユニット210、及び220に順次供給されるように、光スイッチ209が切り替わる。例えば、最初に第一のユニット210の光干渉・受光部211に光パルスが供給されるように、光スイッチ209が切り替えられる。その後、第二のユニット220の光干渉・受光部221に光パルスが供給されるように、光スイッチ209が切り替えられる。このような一連の動作を繰り返せば、各ユニット210、及び220の各々に対して、波長掃引レーザ光源101から出射された光パルスを順次供給することが可能である。
 (技術的効果)
 次に、第5実施形態に係る光干渉断層撮像装置500によって得られる技術的効果について説明する。
 図6で説明したように、第5実施形態に係る光干渉断層撮像装置500では、波長掃引レーザ光源201から出射された光パルスが、光スイッチ209によって分岐される。このようにすれば、分岐による光パルスのパワーの減少を抑制することができる。よって、例えば上述した第3及び第4実施形態のように光増幅器を備えずとも、分岐後の光パルスのパワーを維持することが可能である。
 <第6実施形態>
 第6実施形態に係る光干渉断層撮像装置600について、図7を参照して説明する。なお、第6実施形態は、上述した第1から第5実施形態と比べて一部の構成及び動作が異なるのみで、その他の部分については第1から第5実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図7を参照しながら、第6実施形態に係る光干渉断層撮像装置600の具体的な構成及び各部の動作について説明する。図7は、第6実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。
 図7に示すように、第6実施形態に係る光干渉断層撮像装置600は、複数のユニットにおける光干渉・受光部及び信号処理部が、共通する1つの集約ユニット310として構成されている。具体的には、集約ユニット310は、光干渉・受光部311、及び321と、信号処理部313、及び323とを備えている。
 集約ユニット310に含まれる光干渉・受光部311、及び321の各々には、光分岐部302で分岐された光パルスが供給される。また、集約ユニット310に含まれる信号処理部313、及び323には、トリガ信号分岐器303で分岐されたトリガ信号が供給される。
 集約ユニット310には、複数の光ビーム走査部312、及び322が遠隔配置されている。これら複数の光ビーム走査部312、及び322の各々は、集約ユニット310に含まれる異なる光干渉・受光部及び信号処理部を介して動作するように構成されている。光ビーム走査部312、及び322の各々は、互いに異なる複数の対象測定物に対する走査を行うことが可能である。
 (技術的効果)
 次に、第6実施形態に係る光干渉断層撮像装置600によって得られる技術的効果について説明する。
 図7で説明したように、第6実施形態に係る光干渉断層撮像装置600では、複数の光干渉・受光部及び信号処理部が、共通する1つの集約ユニット310として構成されている。このようにすれば、光干渉・受光部及び信号処理部を別々のユニットとして構成する場合(例えば、第1から第5実施形態)と比較して、装置構成を簡単化することができ、コストの増加も抑制することが可能である。
 <第7実施形態>
 第7実施形態に係る光干渉断層撮像装置700について、図8を参照して説明する。なお、第7実施形態は、上述した第1から第6実施形態と比べて一部の動作が異なるのみであり、その他の部分については第1から第6実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図8を参照しながら、第7実施形態に係る光干渉断層撮像装置700の具体的な構成及び各部の動作について説明する。図8は、第7実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。
 図8に示すように、第7実施形態に係る光干渉断層撮像装置700は、光合流器721と、光分岐器722とを備えている。光合流器721は、波長掃引された第一の光パルス
第二の光パルスを合流して出力可能に構成されている。光分岐器722は、光合流器721で合流した光を分岐して出力可能に構成されている。
 第7実施形態に係る光干渉断層撮像装置700では、波長掃引レーザ光源701から、波長掃引された第一の光パルスと、この光パルスの繰り返しと同期した第二の光パルスが出射される。例えば、波長掃引された第一の光パルスは、持続時間10μsの間に波長が1250nmから1350nmまで増加し20μs毎に50kHz繰り返しで生成される。これと同期して、第二の光パルスは、波長1550nm帯で、50kHz繰り返しで生成されている。
 光干渉断層撮像装置700が動作する際には、第一の光パルスと第二の光パルスは、光合流器721で合流し、光分岐器723で分岐される。光合流器721は、第一の光パルスと第二の光パルスの波長帯が異なる場合、波長合波器を用いて合流時の光損失を抑制することができる。光分岐器723で分岐された光は、光干渉・受光部702、光ビーム走査部104、信号処理部106から成る第一のユニット、及び、光干渉・受光部703、光ビーム走査部105、信号処理部107から成る第二のユニットへ供給される。
 第一のユニットでは、波長掃引レーザ光源701から出射され光合流器721、光分岐器722を経て光干渉・受光部702に供給された光がトリガ信号分離部724に入力される。第一の光パルスと第二の光パルスの波長帯が異なる場合、波長分波器を用いて分離時の光損失を抑制しつつ、第一の光パルスと第二の光パルスを分離した後、第一の光パルスはサーキュレータ111へ導き、第二の光パルスは受光器で光電変換する。第一の光パルスは、第1実施形態(図2参照)と同様の手順で測定対象物108の断層構造データを取得するために用いられる。第二の光パルスを光電変換して得られた電気信号は、第1実施形態と同様に信号処理部106の断層画像生成部118に入力される。
 なお、第二のユニットにおいても同様の手順(即ち、上述した第1ユニットと同様の手順)で測定対象物109の断層構造データが得られる。
 (技術的効果)
 次に、第7実施形態に係る光干渉断層撮像装置700によって得られる技術的効果について説明する。
 図8で説明したように、第7実施形態に係る光干渉断層撮像装置700では、第1のパルス及び第2のパルスが、各ユニット(具体的には、各ユニットのトリガ信号分離部724及び725)において分離される。このようにすれば、各ユニットに物体光及び参照光を生成するための光パルスと、トリガ信号用の光パルスとを別々に供給せずに済む。よって、例えば各ユニットの前段に、光分岐器とトリガ信号分岐器とを別々に設ける必要がなくなる。
 <第8実施形態>
 第8実施形態に係る光干渉断層撮像装置800について、図9を参照して説明する。なお、第8実施形態は、上述した第1から第7実施形態と比べて一部の動作が異なるのみであり、その他の部分については第1から第7実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
 (具体的構成及び各部の動作)
 まず、図9を参照しながら、第8実施形態に係る光干渉断層撮像装置800の具体的な構成及び各部の動作について説明する。図9は、第8実施形態に係る光干渉断層撮像装置の構成を示すブロック図である。
 図9に示すように、第8実施形態に係る光干渉断層撮像装置800は、各ユニットがトリガ信号抽出部822及び823を備えている。トリガ信号抽出部822及び823は、光パルスのパワーの一部分を分岐して光電変換することにより、光パルスに同期した電気信号を生成することが可能に構成されている。
 光干渉断層撮像装置800が動作する際には、波長掃引レーザ光源801から光パルスが出射され、光干渉・受光部802、光ビーム走査部104、信号処理部106から成る第一のユニット、および、光干渉・受光部803、光ビーム走査部105、信号処理部107から成る第二のユニットへ供給される。
 第一のユニットには、光分岐器821で分岐された光の一方が、光干渉・受光部802に供給される。光干渉・受光部802に供給された光パルスは、トリガ信号抽出部822に入力される。トリガ信号抽出部822は、光パルスのパワーの一部分を分岐して光電変換して、光パルスに同期した電気信号を生成する。光パルスのパワーの残りの大部分は、第1実施形態(図2参照)と同様の手順で測定対象物108の断層構造データを取得するために用いられる。トリガ信号抽出部822で得られた電気信号は、トリガ信号として信号処理部106の断層画像生成部118に入力される。
 なお、第二のユニットにおいても同様の手順(即ち、上述した第1ユニットと同様の手順)で測定対象物109の断層構造データが得られる。
 (技術的効果)
 次に、第8実施形態に係る光干渉断層撮像装置800によって得られる技術的効果について説明する。
 図9で説明したように、第8実施形態に係る光干渉断層撮像装置800では、各ユニット(具体的には、各ユニットのトリガ信号抽出部822及び823)において分離される。このようにすれば、各ユニットに物体光及び参照光を生成するための光パルスと、トリガ信号用の光パルスとを別々に供給せずに済む。よって、例えば各ユニットの前段に、光分岐器とトリガ信号分岐器とを別々に設ける必要がなくなる。
 <第9実施形態>
 第9実施形態に係る光干渉断層撮像装置について、図10から図12を参照して説明する。なお、第9実施形態は、上述した第1から第8実施形態に係る光干渉断層撮像装置の具体的な適用例を説明するものであり、装置の基本的な構成や動作については第1から第8実施形態と同一であってよい。このため、以下では、すでに説明した各実施形態と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
 (接触型指紋スキャナ)
 まず、図10を参照しながら第9実施形態に係る光干渉断層撮像装置を接触型指紋スキャナに適用する場合の構成について説明する。図10は、第9実施形態に係る光干渉断層撮像装置を接触型指紋スキャナに適用した場合の構成を示す概略図である。なお、図10では、図2で示した構成要素と同様の要素に同一の符号を付している。
 図10に示すように、第9実施形態に係る光干渉断層撮像装置は、接触型指紋スキャナ(即ち、指を装置に接触させて指紋を読み取る装置)に適用されてよい。この場合、生体の指50が触れることになるスキャン部910は、照射光学系116を備えて構成されてよい。照射光学系116は、スキャン部910に接触している生体の指50に対して光ビームを照射する。そして、生体の指50において散乱された散乱光は照射光学系116に入射する。この散乱光に基づいて、接触型指紋スキャナでは指紋の画像が生成される。
 なお、すでに説明したように、照射光学系116には波長掃引レーザ光源101から出射されたレーザ光が、分岐された状態で供給されている。よって、ここでの図示は省略しているが、1つの波長掃引レーザ光源101に対して、複数のスキャン部910が備えられていてよい。
 (非接触型指紋スキャナ)
 次に、図11及び図12を参照しながら第9実施形態に係る光干渉断層撮像装置を非接触型指紋スキャナに適用する場合の構成について説明する。図11は、第9実施形態に係る光干渉断層撮像装置を非接触型指紋スキャナに適用した場合の構成を示す概略図(その1)である。図12は、第9実施形態に係る光干渉断層撮像装置を非接触型指紋スキャナに適用した場合の構成を示す概略図(その2)である。なお、図11及び図12では、図2で示した構成要素と同様の要素に同一の符号を付している。
 図11に示すように、第9実施形態に係る光干渉断層撮像装置は、非接触型指紋スキャナ(即ち、指を装置に接触させずに指紋を読み取る装置)に適用されてよい。この場合、生体の指50をかざすことになるスキャン部920は、照射光学系116を備えて構成されてよい。照射光学系116は、スキャン部920とは接触していない生体の指50に対して光ビームを照射する。そして、生体の指50において散乱された散乱光は照射光学系116に入射する。この散乱光に基づいて、非接触型指紋スキャナでは指紋の画像が生成される。
 図12に示すように、第9実施形態に係る光干渉断層撮像装置は、ガイド付きの非接触型指紋スキャナに適用されてもよい。この場合、生体の指50をかざすことになるスキャン部930には、生体の指50を載せるためのガイド部931及び932が設けられる。このようにすれば、ガイド部931及び932に生体の指50を接触させても、スキャナ部930と生体の指50とが接触しない(即ち、非接触状態を維持できる)。
 なお、接触型スキャナの場合と同様に、非接触型スキャナにおける照射光学系116にも波長掃引レーザ光源101から出射されたレーザ光が、分岐された状態で供給されている。よって、ここでの図示は省略しているが、1つの波長掃引レーザ光源101に対して、複数のスキャン部920又は930が備えられていてよい。
 (技術的効果)
 次に、第9実施形態に係る光干渉断層撮像装置によって得られる技術的効果について説明する。
 図10から図12で説明したように、第9実施形態に係る光干渉断層撮像装置は、接触型指紋スキャナ又は非接触型指紋スキャナに適用される。このようにすれば、、高コストの波長掃引レーザ光源101を複数台のユニットで共有しつつ、各々のユニットで生体の指50の指紋画像を取得できる。よって、例えば波長掃引レーザ光源101が1つしかない場合であっても、同時に複数の生体の指紋画像を取得可能である。
 上述した各実施形態の機能を実現するように該実施形態の構成を動作させるプログラムを記録媒体に記録させ、該記録媒体に記録されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も各実施形態の範疇に含まれる。すなわち、コンピュータ読取可能な記録媒体も各実施形態の範囲に含まれる。また、上述のプログラムが記録された記録媒体はもちろん、そのプログラム自体も各実施形態に含まれる。
 記録媒体としては例えばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。また該記録媒体に記録されたプログラム単体で処理を実行しているものに限らず、他のソフトウェア、拡張ボードの機能と共同して、OS上で動作して処理を実行するものも各実施形態の範疇に含まれる。
 この開示は、請求の範囲及び明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体もまたこの開示の技術思想に含まれる。
 <付記>
 以上説明した実施形態に関して、更に以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 付記1に記載の光干渉断層撮像装置は、波長掃引レーザ光源と、前記波長掃引レーザ光源から出射された光を複数の光に分岐する分岐部と、前記分岐部から出力された複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を取得する複数のユニットと、を備え、前記複数のユニット各々は、前記分岐部から出力された光を分岐させて物体光と参照光とを生成する分岐生成部と、前記物体光を前記測定対象物に照射する光ビーム走査部と、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成する信号生成部と、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する情報生成部と、を備える光干渉断層撮像装置である。
 (付記2)
 付記2に記載の光干渉断層撮像装置は、前記分岐部は、前記波長掃引レーザ光源から出射された光を増幅し、増幅した光を複数の光に分岐する付記1に記載の光干渉断層撮像装置である。
 (付記3)
 付記3に記載の光干渉断層撮像装置は、前記分岐部は、前記波長掃引レーザ光源から出射された光を分岐し、分岐した光を増幅し、増幅した光を更に分岐して前記複数の光として出力する付記1に記載の光干渉断層撮像装置である。
 (付記4)
 付記4に記載の光干渉断層撮像装置は、前記分岐部は、前記波長掃引レーザ光源から出射された光を時分割して、前記複数の光として出力する付記1から3のいずれか一項に記載の光干渉断層撮像装置である。
 (付記5)
 付記5に記載の光干渉断層撮像装置は、前記分岐生成部、前記信号生成部、及び前記情報生成部が、前記複数のユニット間で共通する1つの集約ユニットとして構成されている付記1から4のいずれか一項に記載の光干渉断層撮像装置である。
 (付記6)
 付記6に記載の光干渉断層撮像装置は、前記波長掃引レーザ光源は、第1の光パルスと第2の光パルスとを出射し、前記分岐部は、前記第1の光パルスと前記第2の光パルスとを合流させた光を分岐して前記複数の光として出力し、前記複数のユニットの各々は、前記分岐部から出力された光を前記第1の光パルスと前記第2の光パルスとに分離して、前記第1の光パルスを前記物体光と前記参照光を生成する光として出力し、前記第2の光パルスを前記信号生成部が前記断層構造情報を生成するトリガとなるトリガ信号として出力する分離部を更に備える付記1から5のいずれか一項に記載の光干渉断層撮像装置である。
 (付記7)
 付記7に記載の光干渉断層撮像装置は、前記複数のユニットの各々は、前記分岐部から出力された光のパワーの一部分を分離して光電変換することで、前記信号生成部が前記断層構造情報を生成するトリガとなるトリガ信号を抽出する抽出部を更に備える付記1から5のいずれか一項に記載の光干渉断層撮像装置である。
 (付記8)
 付記8に記載の光干渉断層撮像方法は、コンピュータによって、波長掃引レーザ光源から光を出射し、前記波長掃引レーザ光源から出射された光を複数の光に分岐し、前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、光干渉断層撮像方法であって、前記複数のユニット各々は、前記複数の光を更に分岐させて物体光と参照光とを生成し、前記物体光を前記測定対象物に照射し、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、光干渉断層撮像方法である。
 (付記9)
 付記9に記載の記録媒体は、コンピュータに、波長掃引レーザ光源から光を出射し、前記波長掃引レーザ光源から出射された光を複数の光に分岐し、前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、光干渉断層撮像方法であって、前記複数のユニット各々は、前記複数の光を更に分岐させて物体光と参照光とを生成し、前記物体光を前記測定対象物に照射し、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、光干渉断層撮像方法を実行させるコンピュータプログラムが記録された記録媒体である。
 (付記10)
 付記10に記載のコンピュータプログラムは、コンピュータに、波長掃引レーザ光源から光を出射し、前記波長掃引レーザ光源から出射された光を複数の光に分岐し、前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、光干渉断層撮像方法であって、前記複数のユニット各々は、前記複数の光を更に分岐させて物体光と参照光とを生成し、前記物体光を前記測定対象物に照射し、前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、光干渉断層撮像方法を実行させるコンピュータプログラムである。
 100 光干渉断層撮像装置
 101 波長掃引レーザ光源
 102 光干渉・受光部
 104 光ビーム走査部
 108 測定対象物
 111 サーキュレータ
 112 分岐合流器
 113 参照光ミラー
 115 ファイバコリメータ
 116 照射光学系
 117 光スペクトルデータ生成・Aスキャン波形生成部
 118 断層画像生成部
 119 ビーム位置設定部
 131 光分岐器
 132 トリガ信号分岐器
 204 光増幅器
 205 光分岐器
 206 第1光分岐器
 207 光増幅器
 208 第2光分岐器
 209 光スイッチ
 310 集約ユニット
 721 光合流器
 722 光分岐器
 724 トリガ信号分離部
 822 トリガ信号抽出部
 910,920,930 スキャン部
 931,932 ガイド部

Claims (9)

  1.  波長掃引レーザ光源と、
     前記波長掃引レーザ光源から出射された光を複数の光に分岐する分岐部と、
     前記分岐部から出力された複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を取得する複数のユニットと、
     を備え、
     前記複数のユニット各々は、
     前記分岐部から出力された光を分岐させて物体光と参照光とを生成する分岐生成部と、
     前記物体光を前記測定対象物に照射する光ビーム走査部と、
     前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成する信号生成部と、
     前記電気信号に基づいて前記測定対象物の断層構造情報を生成する情報生成部と、
     を備える光干渉断層撮像装置。
  2.  前記分岐部は、前記波長掃引レーザ光源から出射された光を増幅し、増幅した光を複数の光に分岐する請求項1に記載の光干渉断層撮像装置。
  3.  前記分岐部は、前記波長掃引レーザ光源から出射された光を分岐し、分岐した光を増幅し、増幅した光を更に分岐して前記複数の光として出力する請求項1に記載の光干渉断層撮像装置。
  4.  前記分岐部は、前記波長掃引レーザ光源から出射された光を時分割して、前記複数の光として出力する請求項1から3のいずれか一項に記載の光干渉断層撮像装置。
  5.  前記分岐生成部、前記信号生成部、及び前記情報生成部が、前記複数のユニット間で共通する1つの集約ユニットとして構成されている請求項1から4のいずれか一項に記載の光干渉断層撮像装置。
  6.  前記波長掃引レーザ光源は、第1の光パルスと第2の光パルスとを出射し、
     前記分岐部は、前記第1の光パルスと前記第2の光パルスとを合流させた光を分岐して前記複数の光として出力し、
     前記複数のユニットの各々は、前記分岐部から出力された光を前記第1の光パルスと前記第2の光パルスとに分離して、前記第1の光パルスを前記物体光と前記参照光を生成する光として出力し、前記第2の光パルスを前記信号生成部が前記断層構造情報を生成するトリガとなるトリガ信号として出力する分離部を更に備える
     請求項1から5のいずれか一項に記載の光干渉断層撮像装置。
  7.  前記複数のユニットの各々は、前記分岐部から出力された光のパワーの一部分を分離して光電変換することで、前記信号生成部が前記断層構造情報を生成するトリガとなるトリガ信号を抽出する抽出部を更に備える請求項1から5のいずれか一項に記載の光干渉断層撮像装置。
  8.  コンピュータによって、
     波長掃引レーザ光源から光を出射し、
     前記波長掃引レーザ光源から出射された光を複数の光に分岐し、
     前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、
     光干渉断層撮像方法であって、
     前記複数のユニット各々は、
     前記複数の光を更に分岐させて物体光と参照光とを生成し、
     前記物体光を前記測定対象物に照射し、
     前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、
     前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、
     光干渉断層撮像方法。
  9.  コンピュータに、
     波長掃引レーザ光源から光を出射し、
     前記波長掃引レーザ光源から出射された光を複数の光に分岐し、
     前記複数の光の各々を用いて、異なる測定対象物に対する断層構造情報を複数のユニットの各々で取得する、
     光干渉断層撮像方法であって、
     前記複数のユニット各々は、
     前記複数の光を更に分岐させて物体光と参照光とを生成し、
     前記物体光を前記測定対象物に照射し、
     前記測定対象物で散乱された前記物体光と前記参照光とを干渉させた干渉光の強度に応じて電気信号を生成し、
     前記電気信号に基づいて前記測定対象物の断層構造情報を生成する、
     光干渉断層撮像方法を実行させるコンピュータプログラムが記録された記録媒体。
PCT/JP2021/024337 2021-06-28 2021-06-28 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体 WO2023275929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023531146A JPWO2023275929A1 (ja) 2021-06-28 2021-06-28
PCT/JP2021/024337 WO2023275929A1 (ja) 2021-06-28 2021-06-28 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体
US18/571,402 US20240288263A1 (en) 2021-06-28 2021-06-28 Optical coherence tomography imaging apparatus, optical coherence tomography imaging method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024337 WO2023275929A1 (ja) 2021-06-28 2021-06-28 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体

Publications (1)

Publication Number Publication Date
WO2023275929A1 true WO2023275929A1 (ja) 2023-01-05

Family

ID=84691001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024337 WO2023275929A1 (ja) 2021-06-28 2021-06-28 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体

Country Status (3)

Country Link
US (1) US20240288263A1 (ja)
JP (1) JPWO2023275929A1 (ja)
WO (1) WO2023275929A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014037A (ja) * 2000-04-26 2002-01-18 Fuji Photo Film Co Ltd 光断層画像化装置
WO2008090599A1 (ja) * 2007-01-22 2008-07-31 School Juridical Person Kitasato Institute オプティカル・コヒーレンス・トモグラフィー装置
JP2010540914A (ja) * 2007-09-28 2010-12-24 カール ツァイス メディテック アクチエンゲゼルシャフト ショート・コヒーレンス干渉計
WO2013118541A1 (ja) * 2012-02-08 2013-08-15 株式会社 日立ハイテクノロジーズ 光断層画像測定装置
JP2014525563A (ja) * 2011-08-19 2014-09-29 マイケルソン ダイアグノステックス リミテッド 干渉計用検出回路
JP2018521326A (ja) * 2015-07-22 2018-08-02 メドルミクス, エセ.エレ.Medlumics, S.L. 抑制された多重散乱クロストークを有する複数の干渉計を用いる高速光干渉断層撮影
JP2020060455A (ja) * 2018-10-10 2020-04-16 株式会社吉田製作所 光干渉断層画像生成装置
JP2021503595A (ja) * 2017-11-16 2021-02-12 クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. 測定機のための複数ビーム走査システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014037A (ja) * 2000-04-26 2002-01-18 Fuji Photo Film Co Ltd 光断層画像化装置
WO2008090599A1 (ja) * 2007-01-22 2008-07-31 School Juridical Person Kitasato Institute オプティカル・コヒーレンス・トモグラフィー装置
JP2010540914A (ja) * 2007-09-28 2010-12-24 カール ツァイス メディテック アクチエンゲゼルシャフト ショート・コヒーレンス干渉計
JP2014525563A (ja) * 2011-08-19 2014-09-29 マイケルソン ダイアグノステックス リミテッド 干渉計用検出回路
WO2013118541A1 (ja) * 2012-02-08 2013-08-15 株式会社 日立ハイテクノロジーズ 光断層画像測定装置
JP2018521326A (ja) * 2015-07-22 2018-08-02 メドルミクス, エセ.エレ.Medlumics, S.L. 抑制された多重散乱クロストークを有する複数の干渉計を用いる高速光干渉断層撮影
JP2021503595A (ja) * 2017-11-16 2021-02-12 クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. 測定機のための複数ビーム走査システム
JP2020060455A (ja) * 2018-10-10 2020-04-16 株式会社吉田製作所 光干渉断層画像生成装置

Also Published As

Publication number Publication date
US20240288263A1 (en) 2024-08-29
JPWO2023275929A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
US9833148B2 (en) Methods and systems for integrated imaging using optical coherence tomography and photoacoustic imaging
JP2005249704A (ja) 断層映像装置
JP5373485B2 (ja) Oct装置及びその干渉信号レベル制御方法
US7812961B2 (en) Method, apparatus, and program for processing tomographic images
JP2021512336A (ja) コヒーレンスゲーテッド光音響リモートセンシング(cg−pars)
JP2005351839A (ja) 断層映像装置
WO2023275929A1 (ja) 光干渉断層撮像装置、光干渉断層撮像方法、及び記録媒体
WO2021192117A1 (ja) 光干渉断層撮像装置
EP2799838A1 (en) Information signal generating method
JP7327620B2 (ja) 光干渉断層撮像装置、撮像方法、及び、撮像プログラム
CN110907451A (zh) 一种基于艾里光束和组织透明化技术的超深oct系统装置
KR101146652B1 (ko) 복수의 광원을 이용한 혈관 이미징 장치 및 그 방법
US11118894B2 (en) Systems, methods, and media for multiple reference arm spectral domain optical coherence tomography
KR20130126151A (ko) 빗살무늬 스펙트럼의 광원을 이용한 광 간섭성 단층 촬영 장치
JPWO2010095487A1 (ja) 生体観測装置及び生体断層画像生成方法
WO2021192047A1 (ja) 光干渉断層撮像装置、撮像方法、及び、撮像プログラムが格納された非一時的なコンピュータ可読媒体
JP6404451B2 (ja) 光音響計測装置及びプローブ
JP5631671B2 (ja) 光イメージング装置
JP7201007B2 (ja) 光干渉断層撮像装置、および光干渉断層画像の生成方法
JP7540492B2 (ja) 光干渉断層撮像装置
JP2006267071A (ja) 光断層画像化装置
JP2012110521A (ja) Octシステム
Choi et al. Optical amplification of the signal and sensitivity of the ultrafast spectral domain optical coherence tomography at an A-scan rate of 10MHz in a wavelength region of 1300nm
JP2010025943A (ja) 断層映像装置
JPWO2023275929A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18571402

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948243

Country of ref document: EP

Kind code of ref document: A1