WO2023275283A1 - Composition d'aspect monophasique comprenant un tensioactif anionique et un tensioactif amphotère - Google Patents

Composition d'aspect monophasique comprenant un tensioactif anionique et un tensioactif amphotère Download PDF

Info

Publication number
WO2023275283A1
WO2023275283A1 PCT/EP2022/068126 EP2022068126W WO2023275283A1 WO 2023275283 A1 WO2023275283 A1 WO 2023275283A1 EP 2022068126 W EP2022068126 W EP 2022068126W WO 2023275283 A1 WO2023275283 A1 WO 2023275283A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition
mixtures
alkyl
preferentially
Prior art date
Application number
PCT/EP2022/068126
Other languages
English (en)
Inventor
Anne-Laure FAMEAU
Virginie SOULIE
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Publication of WO2023275283A1 publication Critical patent/WO2023275283A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • A61K2800/262Transparent; Translucent

Definitions

  • TITLE Composition of single-phase appearance comprising an anionic surfactant and an amphoteric surfactant
  • the present invention relates to a composition of single-phase appearance comprising a combination of an anionic surfactant and of an amphoteric or zwitterionic surfactant, at least one fatty substance, in the presence of a propellant.
  • the invention also concerns an aerosol device containing said composition, and also to a process for the cosmetic treatment of keratin materials, in particular of human keratin materials such as the skin and the hair, using said composition.
  • detergent cosmetic compositions such as shampoos and shower gels, based essentially on surfactants, for washing keratin materials notably such as the hair and the skin.
  • These compositions are applied to the keratin materials, which are preferably wet, and the foam generated by massaging or rubbing with the hands or a washing mitt makes it possible, after rinsing with water, to remove the diverse types of soiling initially present on the hair or the skin.
  • Anionic surfactants are commonly used in these cleansing products, notably in combination with other surfactants such as amphoteric surfactants, for their detergent and foaming properties.
  • Shampoos and body cleansing products are usually in the form of lotions, gels, foams, creams or sprays. When these products are packaged in the form of sprays or in aerosol devices, they are generally only available in opaque containers since the compositions usually used do not have a sufficiently attractive appearance, notably in the presence of a propellant, or even in the presence of a liquefied propellant. Now, an increasing number of users of bodycare and haircare products are notably in search of compositions that are more attractive, more fluid and clearer, or even transparent.
  • compositions are generally not stable over time or with respect to temperature, which makes their application difficult and non-uniform and gives the consumer an unpleasant sensation.
  • compositions which does not have the drawbacks mentioned above, i.e. which has an attractive aesthetic appearance that is stable over time, which is easy to spread over the entire head of hair or the skin, and which has improved foaming and cleansing (or washing) properties, notably giving keratin materials a soft, pleasant feel.
  • foaming and cleansing (or washing) properties notably giving keratin materials a soft, pleasant feel.
  • a composition of single-phase appearance comprising a combination of at least one anionic surfactant and of at least one amphoteric or zwitterionic surfactant in the presence of at least one propellant, makes it possible to achieve the objectives presented above, and notably to propose a composition which is stable over time, combining an attractive aesthetic appearance with improved foaming properties.
  • composition of single-phase appearance comprising:
  • composition according to the invention when it is dispensed by means of a conventional aerosol device, makes it possible in particular to dispense a uniform, firm and creamy mousse which holds well in the hand.
  • the foam formed from the composition according to the invention has good working qualities. It spreads easily and evenly over the keratin materials and has good conditioning and cleaning properties for the hair or the skin, and also good styling properties on the hair, where appropriate. After rinsing or not, the composition affords cosmetic properties to the keratin materials, and notably a pleasant feel.
  • the composition of the invention can be used in various cosmetic treatments of the skin and/or hair, such as cleansing compositions, conditioners or styling products.
  • the composition according to the invention also affords good curl definition, and also good curl hold.
  • the composition according to the invention gives the hair flexibility and volume, affording it a fluid movement, while at the same time maintaining a natural appearance. It also gives the hair a particularly soft, smooth and pleasant feel.
  • the head of hair styled using the composition of the invention is held in shape without being set rigid and the styling effects afforded thereto persist throughout the day.
  • the composition according to the invention has a single-phase appearance, which is preferably clear, or even transparent, which gives it a particularly attractive aesthetic appearance that is highly sought by users.
  • a pressurized device such as an aerosol
  • the propellant(s) are dispersed in the composition, giving the composition a particularly aesthetic homogeneous appearance.
  • the aesthetic appearance of the composition according to the invention is also particularly enhanced when it is packaged in a container that is itself transparent.
  • the permanent dispersion of the propellant(s) renders them non flammable, improving the safety of the final aerosol product and complying with certain regulations, notably American regulations.
  • composition according to the invention is stable over time, and also with respect to temperature.
  • appearance of the composition according to the invention remains significantly the same after two months of storage at room temperature (25°C).
  • the present invention also relates to an aerosol device comprising:
  • the present invention also relates to a process for the cosmetic treatment, preferably a washing and/or conditioning process, of keratin materials, in particular of human keratin fibres such as the hair and the skin, comprising the application to said keratin materials of a composition as previously defined, said application being optionally followed by rinsing after an optional leave-on time.
  • the present invention also relates to a process for washing and/or conditioning keratin fibres, in particular human keratin fibres such as the hair, comprising the application to said keratin fibres of a composition as defined previously, said application being optionally followed by rinsing after an optional leave-on time.
  • the present invention also relates to a process for styling keratin fibres, in particular human keratin fibres such as the hair, comprising the application to said keratin fibres of a composition as defined previously, said application being optionally followed by rinsing after an optional leave-on time.
  • two-phase or multi-phase appearance refers to a composition comprising at least two phases that are distinct from each other and superposed one on the other.
  • the cosmetic composition according to the present invention is of single phase appearance.
  • the term “of single-phase appearance” means that the composition according to the invention is constituted, at room temperature (25°C) and atmospheric pressure:
  • composition according to the invention is advantageously in the form of a clear to transparent fluid, preferably a transparent fluid.
  • the transparency of the composition according to the invention may be characterized by measuring its turbidity, by turbidimetry (in NTU units).
  • turbidity measurements were performed using a UV-Vis Cary 100 model UV spectrophotometer sold by the company Agilent. It is also possible to measure the turbidity of the composition using a turbidimeter such as the HI 88713- ISO model from the company Hanna Instruments.
  • the turbidity of the composition according to the invention measured at room temperature (25°C) and atmospheric pressure, is less than or equal to 250 NTU units, preferably less than or equal to 200 NTU units, more preferentially less than or equal to 100 NTU units, better still less than or equal to 50 NTU units, and even more preferentially less than or equal to 20 NTU units.
  • the transparency may also be assessed visually when the composition is packaged in a transparent container.
  • the composition is transparent if the printed characters on a sheet of paper placed behind the container can be read clearly.
  • the printed characters are preferably in Arial font, font size 12 or larger.
  • the composition according to the invention is free of cationic surfactants.
  • free of cationic surfactants means that the composition does not comprise any cationic surfactants, or that the total content of cationic surfactants is less than or equal to 0.1% by weight relative to the total weight of the composition.
  • composition according to the present invention comprises one or more anionic surfactants.
  • anionic surfactant means a surfactant including, as ionic or ionizable groups, only anionic groups.
  • a species is termed as being “anionic” when it bears at least one permanent negative charge or when it can be ionized as a negatively charged species, under the conditions of use of the composition of the invention (for example the medium or the pH) and not comprising any cationic charge.
  • the anionic surfactant(s) (i) may be chosen from sulfate, sulfonate and/or carboxylic (or carboxylate) surfactants. Needless to say, a mixture of these surfactants may be used.
  • the carboxylate-type anionic surfactants comprise at least one carboxylic or carboxylate function (-COOH or -COO ) and may optionally also comprise one or more sulfate and/or sulfonate functions;
  • the sulfonate-type anionic surfactants comprise at least one sulfonate function (-SO3H or -SCb-) and may optionally also comprise one or more sulfate functions, but do not comprise any carboxylate functions; and
  • the sulfate-type anionic surfactants comprise at least one sulfate function but do not comprise any carboxylate or sulfonate functions.
  • the carboxylate-type anionic surfactants that may be used in the composition of the invention thus include at least one carboxylic or carboxylate function (-COOH or -COO ).
  • acylglycinates may be chosen from the following compounds: acylglycinates, acyllactylates, acylsarcosinates, acylglutamates; alkyl-D-galactosideuronic acids, alkyl ether carboxylic acids, alkyl(C6-C3o aryl) ether carboxylic acids, alkylamido ether carboxylic acids; and also the salts of these compounds; and mixtures thereof; the alkyl and/or acyl groups of these compounds including from 6 to 30 carbon atoms, preferably from 8 to 26, and more preferentially from 10 to 22 carbon atoms; the aryl group preferably denoting a phenyl or benzyl group; these compounds possibly being polyoxyalkylenated, notably polyoxyethylenated, and then preferably including from 1 to 50 ethylene oxide units and better still from 2 to 10 ethylene oxide units.
  • C6-C30 alkyl monoesters of polyglycoside- polycarboxylic acids such as C6-C30 alkyl polyglycoside-citrates, C6-C30 alkyl polyglycoside-tartrates and C6-C30 alkyl polyglycoside-sulfosuccinates, and salts thereof.
  • carboxylate anionic surfactants are chosen, alone or as a mixture, from:
  • - acylglutamates notably of C6-C30 or even C8-C26, such as stearoylglutamates, and in particular disodium stearoylglutamate;
  • acylsarcosinates notably of C6-C30 or even C8-C26, such as palmitoylsarcosinates, and in particular sodium palmitoylsarcosinate;
  • acyllactylates notably of C 6 -C 30 or even C8-C2 6 , such as behenoyllactylates, and in particular sodium behenoyllactylate;
  • C6-C3o)alkyl(amido) ether carboxylic acids in particular those including from 2 to 50 ethylene oxide groups; in particular in the form of alkali metal or alkaline-earth metal, ammonium or amino alcohol salts.
  • - X denoting a hydrogen atom, an ammonium ion, an ion derived from an alkali metal or an alkaline-earth metal or an ion derived from an organic amine, preferably a hydrogen atom
  • - R denoting a linear or branched, saturated or unsaturated alkyl group of 5 to 29 carbon atoms.
  • R denotes a linear or branched, saturated or unsaturated alkyl group of 7 to 23 carbon atoms, preferably of 11 to 21 carbon atoms.
  • - X denoting a hydrogen atom, an ammonium ion, an ion derived from an alkali metal or an alkaline-earth metal or an ion derived from an organic amine, preferably a hydrogen atom, and
  • R denotes a linear or branched alkyl group of 8 to 24 carbon atoms, preferably of 12 to 20 carbon atoms.
  • (C 6 -C3o)acyl sarcosinates of formula (I) that may be used in the present composition, mention may be made of palmitoyl sarcosinates, stearoyl sarcosinates, myristoyl sarcosinates, lauroyl sarcosinates and cocoyl sarcosinates, in acid form or in salified form.
  • carboxylate-type surfactants mention may also be made of polyoxyalkylenated alkyl(amido) ether carboxylic acids and salts thereof, in particular those including from 2 to 50 alkylene oxide and in particular ethylene oxide groups, such as the compounds sold by the company Kao under the Akypo names.
  • polyoxyalkylenated alkyl(amido) ether carboxylic acids that may be used are preferably chosen from those of formula (II):
  • R1 represents a linear or branched Cr > -C 24 alkyl or alkenyl radical, a (Cx- C 9 )alkylphenyl radical, a radical R 2 CONH-CH 2 -CH 2 - with R2 denoting a linear or branched C9-C 2i alkyl or alkenyl radical; preferably, R1 is a Cs-C 2 o and preferably Cx-C ix alkyl radical, and aryl preferably denotes phenyl,
  • - n is an integer or decimal number (mean value) ranging from 2 to 24 and preferably from 2 to 10, - A denotes H, ammonium, Na, K, Li, Mg or a monoethanolamine or triethanolamine residue.
  • polyoxyalkylenated alkyl(amido) ether carboxylic acids that are particularly preferred are those of formula (II) in which:
  • R1 denotes a C12-C14 alkyl, cocoyl, oleyl, nonylphenyl or octylphenyl radical
  • - A denotes a hydrogen or sodium atom
  • - n ranges from 2 to 20, preferably from 2 to 10.
  • R1 denotes a C12 alkyl radical
  • A denotes a hydrogen or sodium atom
  • n ranges from 2 to 10.
  • the sulfonate-type anionic surfactants that may be used in the composition of the invention include at least one sulfonate function (-SO3H or -SCh-).
  • alkylsulfonates alkylsulfonates, alkylamidesulfonates, alkylarylsulfonates, a-olefm sulfonates, paraffin sulfonates, alkyl sulfosuccinates, alkyl ether sulfosuccinates, alkylamidesulfosuccinates, alkylsulfoacetates, N-acyltaurates, acylisethionates; alkylsulfolaurates; and also the salts of these compounds; the alkyl groups of these compounds including from 6 to 30 carbon atoms, notably from 12 to 28, even better still from 14 to 24 or even from 16 to 22 carbon atoms; the aryl group preferably denoting a phenyl or benzyl group; these compounds possibly being polyoxyalkylenated, notably polyoxyethylenated, and then preferably including from 1 to 50 ethylene oxide units and better
  • the sulfonate anionic surfactants are chosen, alone or as a mixture, from:
  • the anionic surfactant(s) (i) are chosen from sulfate-type anionic surfactants and mixtures thereof.
  • sulfate-type anionic surfactant means an anionic surfactant including one or more sulfate functions (-OSO3H or -OSO3-).
  • Such surfactants may advantageously be chosen from alkyl sulfates, alkyl ether sulfates, alkylamido sulfates, alkylamido ether sulfates, alkylaryl polyether sulfates, monoglyceride sulfates; and also salts thereof and mixtures thereof; the alkyl groups of these compounds notably including from 6 to 30 carbon atoms, preferably from 8 to 26, and more preferentially from 10 to 22 carbon atoms; the aryl group preferably denoting a phenyl or benzyl group; these compounds possibly being polyoxyalkylenated, notably polyoxyethylenated, and then preferably including from 1 to 50 ethylene oxide units, and more preferentially from 2 to 10 ethylene oxide units.
  • the sulfate-type anionic surfactant(s) are chosen from:
  • alkyl sulfates notably Cx to C26, and preferably C10 to C22, alkyl sulfates
  • alkyl ether sulfates notably Cx to C26, and preferably C10 to C22, alkyl ether sulfates, preferably comprising from 1 to 10 ethylene oxide units; in particular in the form of alkali metal, alkaline-earth metal, ammonium or amino alcohol salts; and mixtures thereof.
  • said salt may be chosen from alkali metal salts, such as the sodium or potassium salt, ammonium salts, amine salts and in particular amino alcohol salts, and alkaline-earth metal salts, such as the magnesium salt, and mixtures thereof.
  • amino alcohol salts examples include monoethanolamine, diethanolamine and triethanolamine salts, monoisopropanolamine, diisopropanolamine or triisopropanolamine salts, 2-amino-2- methyl-1 -propanol salts, 2-amino-2-methyl-l, 3-propanediol salts and tris(hydroxymethyl)aminomethane salts.
  • Alkali metal or alkaline-earth metal salts and in particular sodium or magnesium salts are preferably used.
  • the sulfate-type anionic surfactant(s) are chosen from sodium, triethanolamine, magnesium or ammonium (Cio-C22)alkyl sulfates, sodium, ammonium or magnesium (Cio-C22)alkyl ether sulfates, which are oxyethylenated, for example with 1 or 2.2 mol of ethylene oxide, and mixtures thereof.
  • the sulfate-type anionic surfactant(s) are chosen from sodium, triethanolamine, ammonium or magnesium (Cio-C22)alkyl sulfates, such as the compound sold under the name Texapon Z95P by the company BASF under the INCI name Sodium lauryl sulfate.
  • the anionic surfactant(s) (i) is chosen from sulfate, sulfonate and/or carboxylate surfactants; the carboxylate surfactants being chosen among the group consisting of:
  • - acylglutamates notably of C6-C30 or even C8-C26, such as stearoylglutamates, and in particular disodium stearoylglutamate;
  • acylsarcosinates notably of C6-C30 or even C8-C26, such as palmitoylsarcosinates, and in particular sodium palmitoylsarcosinate;
  • the anionic surfactant(s) (i) are chosen from sodium lauryl sulfate, sodium laureth sulfate and mixtures thereof.
  • the total content of the anionic surfactant(s) (i) present in the composition of the invention is greater than or equal to 5% by weight relative to the total weight of the composition.
  • the total content of the anionic surfactant(s) (i) present in the composition of the invention ranges from 5% to 35% by weight, more preferentially from 6% to 30% by weight, and better still from 7% to 20% by weight, relative to the total weight of the composition.
  • the composition comprises one or more sulfate-type anionic surfactants, preferably chosen from sodium lauryl sulfate, sodium laureth sulfate and mixtures thereof.
  • the total content of the sulfate-type anionic surfactant(s) is advantageously greater than or equal to 5% by weight; this total value preferably ranges from 5% to 35% by weight, more preferentially from 6% to 30% by weight and better still from 7% to 20% by weight, relative to the total weight of the composition.
  • the composition according to the present invention also comprises one or more amphoteric or zwitterionic surfactants.
  • the amphoteric or zwitterionic surfactant(s), which are preferably non-silicone, used in the composition according to the present invention may notably be derivatives of optionally quaternized aliphatic secondary or tertiary amines, in which derivatives the aliphatic group is a linear or branched chain including from 8 to 22 carbon atoms, said amine derivatives containing at least one anionic group, for instance a carboxylate, sulfonate, sulfate, phosphate or phosphonate group.
  • Ra represents a Cio to C30 alkyl or alkenyl group derived from an acid RaCOOH preferably present in hydrolysed coconut kernel oil; preferably, Ra represents a heptyl, nonyl or undecyl group;
  • - Rb represents a b-hydroxyethyl group
  • - M + represents a cationic counterion derived from an alkali metal or alkaline- earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • - X represents an organic or mineral anionic counterion, such as that chosen from halides, acetates, phosphates, nitrates, (Ci-C4)alkyl sulfates, (Ci-C4)alkyl- or (Ci- C4)alkylaryl- sulfonates, in particular methyl sulfate and ethyl sulfate; or alternatively M + and X are absent;
  • - X’ represents the group -CH2COOH, -CIB-COOZ’, -CH2CH2COOH or CH2CH2-COOZ’, or a hydrogen atom;
  • - Y’ represents the group -COOH, -COOZ’ or -CH2CH(0H)S03H or the group CH 2 CH(0H)S03-Z’;
  • - Z’ represents a cationic counterion derived from an alkali metal or alkaline- earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • Ra - Ra’ represents a Cio to C30 alkyl or alkenyl group of an acid Ra -COOH which is preferably present in coconut kernel oil or in hydrolysed linseed oil, preferably R a’ an alkyl group, notably a C17 group, and its iso form, or an unsaturated C17 group.
  • cocoamphodiacetate sold by the company Rhodia under the trade name Miranol ® C2M Concentrate.
  • - Y represents the group -COOH, -COOZ” or -CH2CH(0H)S03H or the group CH 2 CH(0H)S03-Z”;
  • Rd and Re independently of each other, represent a Ci to C4 alkyl or hydroxyalkyl radical
  • - Z’ ’ represents a cationic counterion derived from an alkali metal or alkaline- earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • Ra represents a Cio to C30 alkyl or alkenyl group of an acid Ra”-COOH which is preferably present in coconut kernel oil or in hydrolysed linseed oil;
  • - n and n’ denote, independently of each other, an integer ranging from 1 to 3.
  • (C8-C2o)alkylbetaines such as cocoyl betaine (Cx- C2o)alkylamido(C3-C8)alkylbetaines, such as cocamidopropylbetaine, (Cs- C2o)alkylamphoacetates, (C8-C2o)alkylamphodiacetates and mixtures thereof; and preferably (C8-C2o)alkylbetaines, (C8-C2o)alkylamido(C3-C8)alkylbetaines and mixtures thereof.
  • amphoteric or zwitterionic surfactants are chosen from (Cx- C2o)alkylbetaines, (C8-C2o)alkylamido(C3-C8)alkylbetaines, and mixtures thereof,
  • the total content of the amphoteric or zwitterionic surfactant(s) present in the composition according to the invention is advantageously greater than or equal to 0.5% by weight; preferably, this total content ranges from 0.5% to 15% by weight, more preferentially from 0.75% to 10% by weight, and better still from 1% to 5% by weight relative to the total weight of the composition.
  • the weight ratio (R) between the total content of anionic surfactant(s) (i) and the total content of amphoteric or zwitterionic surfactant(s) (ii), present in the composition of the invention is preferably greater than or equal to 1 and more preferentially greater than or equal to 1.5.
  • this weight ratio (R) ranges from 2 to 15.
  • the total content of surfactants is preferably greater than or equal to 5.5% by weight, more preferentially greater than or equal to 7.5% by weight, relative to the total weight of the composition.
  • this total content ranges from 5.5% to 40% by weight and more preferentially from 7.5% to 35% by weight, relative to the total weight of the composition.
  • composition according to the present invention also comprises one or more propellants.
  • the propellant(s) that may be used in the composition of the invention are preferably chosen from liquefied gases such as dimethyl ether, chlorinated and/or fluorinated hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, chi orodifluorom ethane, 1,1,1,2-tetrafluoroethane, chloropentafluoroethane, 1-chloro- 1,1-difluoroethane or 1,1-difluoroethane, or volatile hydrocarbons notably such as C3 to C5 alkanes, for instance propane, isopropane, n-butane, isobutane or pentane; and mixtures thereof.
  • liquefied gases such as dimethyl ether, chlorinated and/or fluorinated hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, chi orodifluorom ethane
  • the propellant(s) (iii) are chosen from volatile, optionally halogenated hydrocarbons, for example n-butane, propane, isobutane, pentane and halogenated derivatives thereof; dimethyl ether; and mixtures thereof; more preferentially from dimethyl ether, C3 to C5 alkanes, in particular propane, n-butane, isobutane, and mixtures thereof, and better still from C3 to Cs alkanes, in particular propane, n-butane, isobutane, and mixtures thereof.
  • volatile, optionally halogenated hydrocarbons for example n-butane, propane, isobutane, pentane and halogenated derivatives thereof; dimethyl ether; and mixtures thereof; more preferentially from dimethyl ether, C3 to C5 alkanes, in particular propane, n-butane, isobutane, and mixtures thereof, and better still from C3 to Cs alkanes, in
  • the propellant (s) used are fully dissolved or dispersed in the composition before the first use of the composition.
  • the term “fully dispersed in the composition” means that the propellant(s) are fully present in the composition; or that the total content of the non-dispersed propellant(s) (i.e. the propellants not present in the composition according to the invention) is less than 0.5% by weight, relative to the total weight of the composition.
  • the total content of the propellant(s) (iii) present in the composition according to the invention is less than or equal to 10% by weight, and preferably less than or equal to 6% by weight, relative to the total weight of the composition. More preferentially, the total content of the propellant(s) ranges from 0.5% to 10% by weight, better still from 1% to 8% by weight and even more preferentially from 3% to 6% by weight relative to the total weight of the composition.
  • composition according to the present invention also comprises water.
  • the total content of water present in the composition of the invention is preferably greater than 40% by weight, and more preferentially ranges from 50% to 93% by weight and better still from 70% to 90% by weight relative to the total weight of the composition.
  • the composition may optionally comprise a mixture of water and of one or more organic solvents chosen from Ci to C4 alcohols, such as ethanol, isopropanol, tert-butanol or n-butanol; polyols such as glycerol, propylene glycol and polyethylene glycols, polyol ethers, aromatic alcohols such as benzyl alcohol; and mixtures thereof.
  • Ci to C4 alcohols such as ethanol, isopropanol, tert-butanol or n-butanol
  • polyols such as glycerol, propylene glycol and polyethylene glycols, polyol ethers, aromatic alcohols such as benzyl alcohol
  • aromatic alcohols such as benzyl alcohol
  • the total content of the organic solvent(s) advantageously ranges from 0.1% to 40% by weight, preferably from 0.5% to 30% by weight, more preferentially from 1% to 20% by weight, and better still from 2% to 10% by weight, relative to the total weight of the composition.
  • the composition according to the present invention comprises one or more fatty substances with a melting point of less than or equal to 35°C at atmospheric pressure (1.013xl0 5 Pa).
  • the fatty substance(s) used in the composition of the invention have a melting point strictly less than 35°C at atmospheric pressure (1.013> ⁇ 10 5 Pa), and more preferentially less than or equal to 28°C at atmospheric pressure (1.013x 10 5 Pa).
  • the fatty substance(s) used in the composition of the present invention are liquid at 35°C and at atmospheric pressure, preferably liquid at 28°C and at atmospheric pressure.
  • the fatty substance(s) used in the composition according to the invention are liquid at room temperature, i.e. they have a melting point of less than or equal to 25°C, at atmospheric pressure (1.013xl0 5 Pa).
  • fatty substance means an organic compound that is insoluble in water at room temperature (25°C) and at atmospheric pressure (1.013xl0 5 Pa), i.e. it has a solubility of less than 5% by weight, preferably less than 1% by weight and more preferentially less than 0.1% by weight in water. They generally have in their structure at least one hydrocarbon-based chain including at least 6 carbon atoms.
  • the fatty substances are generally soluble, under the same temperature and pressure conditions, in organic solvents such as chloroform, ethanol, benzene, liquid petroleum jelly or decamethylcyclopentasiloxane.
  • the fatty substance(s) with a melting point of less than or equal to 35°C at atmospheric pressure included in the composition according to the invention are non-silicone fatty substances.
  • non-silicone fatty substance means a fatty substance whose structure does not include any silicon atoms, thus notably not comprising any siloxane groups.
  • sicone fatty substance means a fatty substance containing at least one silicon atom, and more particularly at least one Si-0 bond.
  • the fatty substances that may be used generally have in their structure a hydrocarbon-based chain including at least 6 carbon atoms. They are neither (poly)oxyalkylenated nor (poly)glycerolated, and preferably do not contain any - COOH functions.
  • the fatty substance(s) are preferably neither (poly)oxyalkylenated nor (poly)glycerolated, and preferably do not contain any -COOH functions.
  • the fatty substance(s) are namely different from nonionic surfactant(s).
  • the fatty substance(s) are non-silicone fatty substances and are neither poly)oxyalkylenated nor (poly)glycerolated, and more preferably do not contain any -COOH functions.
  • the fatty substance(s) are non-silicone fatty substances and are different from nonionic surfactant(s).
  • the fatty substance(s) that may be used in the composition according to the invention may notably be chosen from hydrocarbons, triglycerides, fatty esters, fatty acids, non-polyoxyalkylenated fatty alcohols, silicones and mixtures thereof; these compounds being liquid at 35°C at atmospheric pressure, and preferentially liquid at 28°C at atmospheric pressure.
  • fatty ester saturated or unsaturated, linear or branched esters, alcohols and acids comprising at least one hydrocarbon-based chain containing at least 6 carbon atoms.
  • hydrocarbon means a compound solely comprising carbon and hydrogen atoms.
  • hydrocarbons that are liquid at 35°C at atmospheric pressure preferably liquid at 28°C at atmospheric pressure, are chosen from:
  • Ci6 alkanes examples include hexane, undecane, dodecane, tridecane, and isoparaffins, for instance isohexadecane, isododecane and isodecane,
  • the hydrocarbon(s) are chosen from liquid paraffins, isoparaffins, liquid petroleum jelly, undecane, tridecane and isododecane, and mixtures thereof.
  • the hydrocarbon(s) are chosen from liquid petroleum jelly, isoparaffins, isododecane and a mixture of undecane and tridecane.
  • the term “fatty ester” means an ester derived from a fatty acid and/or a fatty alcohol. More particularly, the esters that are liquid at 35°C at atmospheric pressure (1.013xl0 5 Pa), which are preferably liquid at 28°C at atmospheric pressure, are chosen from esters of saturated or unsaturated, linear or branched Ci to C26 aliphatic mono- or polyacids, which are optionally hydroxylated, and of saturated or unsaturated, linear or branched Ci to C26 aliphatic mono- or polyalcohols, the total number of carbon atoms of the esters being greater than or equal to 10.
  • At least one from among the alcohol and the acid from which the esters of the invention are derived is branched.
  • alkyl palmitates notably Ci to Cix alkyl palmitates, notably ethyl palmitate and isopropyl palmitate
  • alkyl myristates notably Ci to Cis alkyl myristates, such as isopropyl myristate or ethyl myristate
  • alkyl stearates notably Ci to Cis alkyl stearates, notably isocetyl stearate, 2-ethylhexyl isononanoate, isodecyl neopentanoate and isostearyl neopentanoate.
  • esters of optionally hydroxylated C3 to C22 dicarboxylic or tricarboxylic acids and of Ci to C22 alcohols and esters of optionally hydroxylated monocarboxylic, dicarboxylic or tricarboxylic acids and of dihydroxy, trihydroxy, tetrahydroxy or pentahydroxy C4 to C26 non-sugar alcohols.
  • esters mentioned above use is preferentially made of ethyl, isopropyl, myristyl, cetyl or stearyl palmitate, 2-ethylhexyl palmitate, 2-octyldecyl palmitate, alkyl myristates, such as isopropyl, butyl, cetyl or 2-octyldodecyl myristate, hexyl stearate, propylene glycol dicaprylate, butyl stearate, isobutyl stearate, dioctyl malate, hexyl laurate, 2- hexyldecyl laurate, isononyl isononanoate, cetyl octanoate and bis(Ci2-Ci3)alkyl malate.
  • liquid fatty esters use may be made of esters and diesters of sugars and of C6-C30, preferably C12-C22
  • sugar means oxygen-bearing hydrocarbon-based compounds containing several alcohol functions, with or without aldehyde or ketone functions, and which include at least 4 carbon atoms. These sugars may be monosaccharides, oligosaccharides or polysaccharides.
  • these said sugars are chosen from sucrose, glucose, galactose, ribose, fucose, maltose, fructose, mannose, arabinose, xylose, lactose, and derivatives thereof, notably alkyl derivatives, such as methyl derivatives, for example methylglucose.
  • the sugar esters of fatty acids may be chosen notably from the group comprising the esters or mixtures of esters of sugars described previously and of linear or branched, saturated or unsaturated G to C30 and preferably C12 to C22 fatty acids.
  • these compounds may have one to three conjugated or non-conjugated carbon-carbon double bonds.
  • esters according to this variant can also be chosen from mono-, di-, tri- and tetraesters, polyesters and mixtures thereof.
  • esters may be, for example, oleates, laurates, palmitates, myristates, behenates, cocoates, stearates, linoleates, linolenates, caprates and arachidonates, and mixtures thereof, notably such as oleopalmitate, oleostearate or palmitostearate mixed esters.
  • Glucate ® DO methylglucose dioleate
  • Use may be made, among sugar esters, of pentaerythrityl esters, preferably pentaerythrityl tetraisostearate, pentaerythrityl tetraoctanoate or caprylic and capric acid hexaesters as a mixture with dipentaerythritol.
  • pentaerythrityl esters preferably pentaerythrityl tetraisostearate, pentaerythrityl tetraoctanoate or caprylic and capric acid hexaesters as a mixture with dipentaerythritol.
  • triglycerides of plant origin such as plant oils or synthetic triglycerides.
  • said plant oil(s) or synthetic oil(s) are chosen from triglyceride oils of plant or synthetic origin, such as liquid fatty acid triglycerides including from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sesame oil, soybean oil, coffee oil, safflower oil, borage oil, sunflower oil, olive oil, apricot kernel oil, camellia oil, bambara pea oil, avocado oil, mango oil, rice bran oil, cotton seed oil, rose oil, kiwi seed oil, sea buckthorn pulp oil, blueberry seed oil, poppy seed oil, orange pip oil, sweet almond oil, palm oil, coconut oil, coconut kernel oil, vemonia oil, marjoram oil, baobab oil, rapeseed oil, ximenia oil, pracaxi oil, caprylic/capric acid triglycerides such as those sold by the company Stearinerie Dub
  • triglycerides of plant origin in particular caprylic/capric acid triglycerides, coconut oil and triacetin, are used as triglycerides that are liquid at 35°C at atmospheric pressure (1.013xl0 5 Pa), more preferentially liquid at 28°C at atmospheric pressure.
  • fatty acid means a non-salified fatty acid, i.e. the fatty acid must not be in the form of a generally soluble soap, i.e. it must not be salified with a base.
  • R is a Ci to C29 alkyl or Ci to C29 alkenyl group, better still a C12 to C24 alkyl or C12 to C24 alkenyl group.
  • R may be substituted with one or more hydroxyl groups and/or one or more carboxyl groups.
  • the fatty acid(s) that are liquid at 35°C at atmospheric pressure are chosen from oleic acid, linoleic acid, isostearic acid and mixtures thereof.
  • non-polyoxyalkylenated fatty alcohols that may be used in the composition according to the invention include from 8 to 30 carbon atoms, notably from 10 to 24 carbon atoms, and may be saturated or unsaturated.
  • the saturated non-polyoxyalkylenated fatty alcohols are preferably branched. They may optionally comprise in their structure at least one aromatic or non-aromatic ring, which is preferably acyclic.
  • saturated non-polyoxyalkylenated fatty alcohols that may be used in the composition of the invention are chosen from octyldodecanol, 2- decyltetradecanol, isostearyl alcohol and 2-hexyldecanol, and mixtures thereof.
  • Octyldodecanol and 2-decyltetradecanol are most particularly preferred.
  • the unsaturated non-polyoxyalkylenated fatty alcohols have, in their structure, at least one double or triple bond, and preferably one or more double bonds. When several double bonds are present, there are preferably 2 or 3 of them, and they may be conjugated or unconjugated. These unsaturated non-polyoxyalkylenated fatty alcohols may be linear or branched.
  • They may optionally comprise in their structure at least one aromatic or non aromatic ring. They are preferably acyclic.
  • non-polyoxyalkylenated unsaturated fatty alcohols that may be used in the composition of the invention are chosen from oleyl alcohol, linoleyl alcohol, linolenyl alcohol and undecylenyl alcohol, and mixtures thereof.
  • Oleyl alcohol is most particularly preferred.
  • the silicones that are liquid at 35°C at atmospheric pressure may be volatile or non volatile, cyclic, linear or branched silicone oils, which are unmodified or modified with organic groups, and preferably have a viscosity of from 5x 10 6 to 2.5 m 2 /s at 25°C, and preferably from 1 / 10 5 to 1 m 2 /s.
  • the silicones that are liquid at 35°C at atmospheric pressure are chosen from polydialkylsiloxanes, notably polydimethylsiloxanes (PDMS), and polyorganosiloxanes that are liquid at 35°C at atmospheric pressure including at least one aryl group.
  • polydialkylsiloxanes notably polydimethylsiloxanes (PDMS)
  • PDMS polydimethylsiloxanes
  • polyorganosiloxanes that are liquid at 35°C at atmospheric pressure including at least one aryl group.
  • silicones may also be organomodified.
  • organomodified silicones that are liquid at 35°C at atmospheric pressure which may be used in accordance with the invention, are preferably liquid silicones as defined previously and including in their structure one or more organofunctional groups attached via a hydrocarbon-based group, chosen, for example, from amine groups and alkoxy groups.
  • Organopolysiloxanes are defined in greater detail in Walter Noll’s Chemistry and Technology of Silicones (1968), Academic Press. They may be volatile or non volatile.
  • the silicones are more particularly chosen from those with a boiling point of between 60°C and 260°C, and even more particularly from:
  • cyclic polydialkylsiloxanes including from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • cyclic polydialkylsiloxanes including from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • octamethylcyclotetrasiloxane sold notably under the name Volatile Silicone ® 7207 by Union Carbide or Silbione ® 70045 V2 by Rhodia
  • decamethylcyclopentasiloxane sold under the name Volatile Silicone ® 7158 by Union Carbide
  • Silbione ® 70045 V5 by Rhodia
  • linear volatile polydialkylsiloxanes containing 2 to 9 silicon atoms and having a viscosity of less than or equal to 5x 10 6 m 2 /s at 25°C.
  • An example is decamethyltetrasiloxane notably sold under the name SH 200 by the company Toray Silicone. Silicones falling within this category are also described in the article published in Cosmetics and Toiletries, Vol. 91, Jan. 76, pages 27-32 - Todd & Byers Volatile Silicone Fluids for Cosmetics.
  • Non-volatile polydialkylsiloxanes are preferably used.
  • silicones that are liquid at 35°C at atmospheric pressure are more particularly chosen from polydialkylsiloxanes, among which mention may be made mainly of polydimethylsiloxanes bearing trimethyl silyl end groups.
  • the viscosity of the silicones is measured at 25°C according to ASTM standard 445 Appendix C.
  • oils of the 200 series from the company Dow Corning such as DC200 with a viscosity of 60 000 mm 2 /s;
  • CTFA dimethiconol
  • organomodified silicones that may be used in accordance with the invention are silicones as defined above and including in their structure one or more organofunctional groups attached via a hydrocarbon-based group.
  • polyorganosiloxanes that are liquid at 35°C at atmospheric pressure including at least one aryl group, they may notably be polydiphenylsiloxanes, and polyalkylarylsiloxanes functionalized with the organofunctional groups mentioned previously.
  • the polyalkylarylsiloxanes are particularly chosen from linear and/or branched polydimethyl/methylphenylsiloxanes and polydimethyl/diphenylsiloxanes with a viscosity ranging from 1 x 10 5 to 5x 10 2 m 2 /s at 25°C.
  • oils of the SF series from General Electric such as SF 1023, SF 1154, SF 1250 and SF 1265.
  • organomodified silicones mention may be made of polyorganosiloxanes including:
  • substituted or unsubstituted amine groups such as the products sold under the names GP 4 Silicone Fluid and GP 7100 by the company Genesee or the products sold under the names Q2 8220 and Dow Corning 929 or 939 by the company Dow Corning.
  • the substituted amine groups are in particular Cl to C4 aminoalkyl groups;
  • the silicones that are liquid at 35°C at atmospheric pressure may also be chosen from amino silicones, and mixtures thereof.
  • amino silicone denotes any silicone including at least one primary, secondary or tertiary amine or a quaternary ammonium group.
  • the weight-average molecular masses of these amino silicones may be measured by gel permeation chromatography (GPC) at room temperature (25°C), as polystyrene equivalent.
  • the columns used are m styragel columns.
  • the eluent is THF and the flow rate is 1 ml/min. 200 m ⁇ of a 0.5% by weight solution of silicone in THF are injected. Detection is performed by refractometry and UV-metry.
  • the amino silicone(s) are chosen from: a) the polysiloxanes corresponding to formula (VI): in which x’ and y’ are integers such that the weight-average molecular mass (Mw) is between 5000 and 500 000 g/mol; b) the amino silicones corresponding to formula (VII):
  • - G which may be identical or different, denotes a hydrogen atom or a group from among phenyl, OH, Ci-Cs alkyl, for example methyl, or C i-Cx alkoxy, for example methoxy;
  • - a and a’ which may be identical or different, denote 0 or an integer from 1 to 3, in particular 0, with the proviso that at least one from among a and a’ is equal to zero,
  • - b denotes 0 or 1, in particular 1,
  • n + m and n are numbers such that the sum (n + m) ranges from 1 to 2000 and in particular from 50 to 150, n possibly denoting a number from 0 to 1999 and notably from 49 to 149, and m possibly denoting a number from 1 to 2000 and notably from 1 to 10; and
  • R which may be identical or different, denotes a monovalent radical of formula -C q H2qL in which q is a number ranging from 2 to 8 and L is an optionally quaternized amino group chosen from the following groups: • -NR”-Q-N + (R”)3 A-, in which R”, which may be identical or different, denotes hydrogen, phenyl, benzyl, or a saturated monovalent hydrocarbon-based radical, for example a C1-C20 alkyl radical; Q denotes a linear or branched group of formula Crhhr, r being an integer ranging from 2 to 6, preferably from 2 to 4; and A represents a cosmetically acceptable anion, notably a halide such as fluoride, chloride, bromide or iodide.
  • R which may be identical or different, denotes hydrogen, phenyl, benzyl, or a saturated monovalent hydrocarbon-based radical, for example a C1-C20 alkyl radical
  • the amino silicones corresponding to formula (VII) are chosen from the silicones known as “trimethyl silyl amodimethicone” corresponding to formula (VIII): in which m and n are numbers such that the sum (n + m) ranges from 1 to 2000 and in particular from 50 to 150, n possibly denoting a number from 0 to 1999 and notably from 49 to 149, and m possibly denoting a number from 1 to 2000 and notably from 1 to 10.
  • the amino silicones corresponding to formula (VII) are chosen from the silicones of formula (IX) below: in which: - m and n are numbers such that the sum (n + m) ranges from 1 to 1000, notably from 50 to 250 and more particularly from 100 to 200; n denoting a number from 0 to 999 and notably from 49 to 249 and more particularly from 125 to 175, and m denoting a number from 1 to 1000, notably from 1 to 10 and more particularly from 1 to 5; and
  • the alkoxy radical is a methoxy radical.
  • the hydroxy/alkoxy mole ratio preferably ranges from 0.2:1 to 0.4:1 and preferably from 0.25:1 to 0.35:1 and more particularly is equal to 0.3:1.
  • the weight-average molecular mass (Mw) of these silicones preferably ranges from 2000 to 1 000000 g/mol and more particularly from 3500 to 200000 g/mol.
  • amino silicones corresponding to formula (VII) are chosen from the silicones of formula (X) below: in which:
  • - p and q are numbers such that the sum (p + q) ranges from 1 to 1000, in particular from 50 to 350 and more particularly from 150 to 250; p denoting a number from 0 to 999, notably from 49 to 349 and more particularly from 159 to 239, and q denoting a number from 1 to 1000, notably from 1 to 10 and more particularly from 1 to 5; and
  • Ri and R2 which are different, represent a hydroxyl or C1-C4 alkoxy radical, at least one of the radicals Ri or R2 denoting an alkoxy radical.
  • the alkoxy radical is a methoxy radical.
  • the hydroxy/alkoxy mole ratio generally ranges from 1:0.8 to 1:1.1 and preferably from 1:0.9 to 1:1 and more particularly is equal to 1:0.95.
  • the weight-average molecular mass (Mw) of the silicone preferably ranges from 2000 to 200 000 g/mol, more preferentially from 5000 to 100 000 g/mol and in particular from 10 000 to 50 000 g/mol.
  • the commercial products comprising silicones of structure (IX) or (X) may include in their composition one or more other amino silicones, the structure of which is different from formula (IX) or (X).
  • a product containing amino silicones of structure (IX) is sold by the company Wacker under the name Belsil ® ADM 652.
  • a product containing amino silicones of structure (X) is sold by Wacker under the name Fluid WR 1300 ® .
  • Another product containing amino silicones of structure (IX) is sold by Wacker under the name Belsil ADM LOG 1 ® .
  • the oil- in-water emulsion may comprise one or more surfactants.
  • the surfactants may be of any nature but are preferably cationic and/or nonionic.
  • the number-average size of the silicone particles in the emulsion generally ranges from 3 nm to 500 nm.
  • use is made of microemulsions of which the mean particle size ranges from 5 nm to 60 nm (limits included) and more particularly from 10 nm to 50 nm (limits included).
  • use may be made according to the invention of the amino silicone microemulsions of formula (X) sold under the names Finish CT 96 E ® or SLM 28020 ® by the company Wacker.
  • the amino silicones corresponding to formula (VII) are chosen from the silicones of formula (XI) below: in which: - m and n are numbers such that the sum (n + m) ranges from 1 to 2000 and in particular from 50 to 150, n denoting a number from 0 to 1999 and notably from 49 to 149, and m denoting a number from 1 to 2000 and notably from 1 to 10; and
  • A denotes a linear or branched alkylene radical containing from 4 to 8 carbon atoms and preferably 4 carbon atoms. This radical is preferably linear.
  • the weight-average molecular mass (Mw) of these amino silicones preferably ranges from 2000 to 1 000 000 g/mol and more particularly from 3500 to 200000 g/mol.
  • a silicone corresponding to this formula is, for example, Xiameter MEM 8299 Emulsion from Dow Corning.
  • amino silicones corresponding to formula (VII) are chosen from the silicones of formula (XII) below: in which:
  • n + m and n are numbers such that the sum (n + m) ranges from 1 to 2000 and in particular from 50 to 150, n possibly denoting a number from 0 to 1999 and notably from 49 to 149, and m possibly denoting a number from 1 to 2000 and notably from 1 to 10; and
  • A denotes a linear or branched alkylene radical containing from 4 to 8 carbon atoms and preferably 4 carbon atoms. This radical is preferably branched.
  • the weight-average molecular mass (Mw) of these amino silicones preferably ranges from 500 to 1 000 000 g/mol and more particularly from 1000 to 200000 g/mol.
  • a silicone corresponding to this formula is, for example, DC2-8566 Amino Fluid from Dow Coming; c) the amino silicones corresponding to formula (XIII): in which:
  • - R? represents a monovalent hydrocarbon-based radical containing from 1 to 18 carbon atoms, and in particular a Ci-Cis alkyl or C2-C18 alkenyl radical, for example methyl;
  • - Re represents a divalent hydrocarbon-based radical, notably a Ci-Cis alkylene radical or a divalent C1-C18, for example Ci-Cx, alkyleneoxy radical linked to the Si via an SiC bond;
  • - Q is an anion such as a halide ion, notably chloride, or an organic acid salt, notably acetate;
  • - r represents a mean statistical value ranging from 2 to 20 and in particular from 2 to 8;
  • - s represents a mean statistical value ranging from 20 to 200 and in particular from 20 to 50.
  • R.7 which may be identical or different, represent a monovalent hydrocarbon-based radical containing from 1 to 18 carbon atoms, and in particular a C1-C18 alkyl radical, a C2-C18 alkenyl radical or a ring comprising 5 or 6 carbon atoms, for example methyl;
  • - R. 6 represents a divalent hydrocarbon-based radical, notably a C1-C18 alkylene radical or a divalent C1-C18, for example Ci-Cs, alkyleneoxy radical linked to the Si via an SiC bond;
  • - X is an anion such as a halide ion, notably chloride, or an organic acid salt, notably acetate;
  • - r represents a mean statistical value ranging from 2 to 200 and in particular from 5 to 100.
  • - n is an integer ranging from 1 to 5
  • - m is an integer ranging from 1 to 5
  • - x is chosen such that the amine number ranges from 0.01 to 1 meq/g; f) multiblock polyoxyalkylene amino silicones, of the type (AB) n , A being a polysiloxane block and B being a polyoxyalkylene block including at least one amine group.
  • Said silicones are preferably formed from repeating units having the following general formulae:
  • - a is an integer greater than or equal to 1, preferably ranging from 5 to 200 and more particularly ranging from 10 to 100;
  • - b is an integer between 0 and 200, preferably ranging from 4 to 100 and more particularly between 5 and 30;
  • - x is an integer ranging from 1 to 10 000 and more particularly from 10 to
  • - R is a hydrogen atom or a methyl
  • R which may be identical or different, represent a linear or branched divalent C2-C12 hydrocarbon-based radical, optionally including one or more heteroatoms such as oxygen; preferably, R, which may be identical or different, denote an ethylene radical, a linear or branched propylene radical, a linear or branched butylene radical or a CH2CH2CH20CH2CH(0H)CH2- radical; preferentially, R denote a CH2CH2CH20CH 2 CH(0H)CH2- radical; and
  • R’ which may be identical or different, represent a linear or branched divalent C2-C12 hydrocarbon-based radical, optionally including one or more heteroatoms such as oxygen; preferably, R’, which may be identical or different, denote an ethylene radical, a linear or branched propylene radical, a linear or branched butylene radical or a CH2CH2CH20CH2CH(0H)CH2- radical; preferentially, R’ denote -CH(CH 3 )-CH2-.
  • the siloxane blocks preferably represent between 50 mol% and 95 mol% of the total weight of the silicone, more particularly from 70 mol% to 85 mol%.
  • the amine content is preferably between 0.02 and 0.5 meq/g of copolymer in a 30% solution in dipropylene glycol, more particularly between 0.05 and 0.2.
  • the weight-average molecular mass (Mw) of the silicone is preferably between 5000 and 1 000000 g/mol and more particularly between 10000 and 200000 g/mol. Mention may notably be made of the silicones sold under the name Silsoft A-
  • R R, R’ and R, which may be identical or different, denote a C1-C4 alkyl group or a hydroxyl group,
  • - x and y are numbers ranging from 1 to 5000; preferably, x ranges from 10 to 2000 and more preferentially from 100 to 1000; preferably, y ranges from 1 to 100;
  • - Ri and R2 which may be identical or different, preferably identical, denote a linear or branched, saturated or unsaturated alkyl group comprising from 6 to 30 carbon atoms, preferably from 8 to 24 carbon atoms and more preferentially from 12 to 20 carbon atoms; and - A denotes a linear or branched alkylene radical containing from 2 to 8 carbon atoms.
  • A comprises from 3 to 6 carbon atoms, more preferentially 4 carbon atoms; preferably, A is branched.
  • Ri and R2 are independent saturated linear alkyl groups comprising 6 to 30 carbon atoms, preferably 8 to 24 carbon atoms and in particular from 12 to 20 carbon atoms; mention may be made in particular of dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl and eicosyl groups; and preferentially, Ri and R2, which may be identical or different, are chosen from hexadecyl (cetyl) and octadecyl (stearyl) groups.
  • amino silicone(s) are preferably of formula (XVII) with:
  • - x ranging from 10 to 2000 and in particular from 100 to 1000;
  • - y ranging from 1 to 100; - A comprising from 3 to 6 carbon atoms and notably 4 carbon atoms; preferably, A is branched; more particularly, A is chosen from the following divalent groups: -CH2CH2CH2 and -CH 2 CH(CH3)CH2-; and
  • Ri and R2 independently being saturated linear alkyl groups comprising from 6 to 30 carbon atoms, preferably from 8 to 24 carbon atoms and in particular from 12 to 20 carbon atoms; chosen notably from dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl and eicosyl groups; preferentially, Ri and R2, which may be identical or different, are chosen from hexadecyl (cetyl) and octadecyl (stearyl) groups.
  • a silicone of formula (XVII) that is preferred is bis-cetearyl amodimethicone. Mention may be made in particular of the amino silicone sold under the name Silsoft AX by Momentive. h) polysiloxanes and notably polydimethylsiloxanes, including primary amine groups at only one chain end or on side chains, such as those of formula (XVIII), (XIX) or (XX): In formula (XVIII), the values of n and m are such that the weight-average molecular mass of the amino silicone is between 1000 and 55 000.
  • amino silicones of formula (XVIII) mention may be made of the products sold under the names AMS-132, AMS-152, AMS-162, AMS-163, AMS- 191 and AMS- 1203 by the company Gelest and KF-8015 by the company Shin-Etsu.
  • n is such that the weight-average molecular mass of the amino silicone is between 500 and 3000.
  • amino silicones of formula (XIX) mention may be made of the products sold under the names MCR-A11 and MCR-A12 by the company Gelest.
  • n and m are such that the weight-average molecular mass of the amino silicone is between 500 and 50 000.
  • amino silicones of formula (XX) mention may be made of the aminopropyl phenyl trimethicone sold under the name DC 2-2078 Fluid by the company Dow Coming. i) and mixtures thereof.
  • the fatty substance(s) (v) with a melting point of less than or equal to 35°C at atmospheric pressure are preferably chosen from linear or branched G to Ci6 alkanes, linear or branched hydrocarbons of more than 16 carbon atoms of mineral or synthetic origin, non-polyoxyalkylenated fatty alcohols, fatty acids, triglycerides, fatty acid and/or fatty alcohol esters, silicones and mixtures thereof; these compounds being liquid at 35°C at atmospheric pressure, and more preferentially liquid at 28°C at atmospheric pressure.
  • the fatty substance(s) (ii) with a melting point of less than or equal to 35°C at atmospheric pressure are chosen from triglycerides, esters of fatty acids and/or fatty alcohols, linear or branched hydrocarbons of more than 16 carbon atoms of mineral or synthetic origin, silicones and mixtures thereof, and preferably from isopropyl myristate, coconut oil, caprylic/capric acid triglycerides, triacetin, liquid petroleum jelly, liquid paraffin, amodimethicone and mixtures thereof.
  • the total content of the fatty substance(s) (v) with a melting point of less than or equal to 35°C at atmospheric pressure is preferably greater than or equal to 0.1% by weight; more preferentially, this total content ranges from 0.2% to 10% by weight and better still from 0.25% to 5% by weight, relative to the total weight of the composition.
  • the weight ratio (Ra) between the total content of surfactants (i.e. the sum of the total contents of anionic, amphoteric or zwitterionic and optionally additional surfactants) and the total content of fatty substances with a melting point of less than or equal to 35°C at atmospheric pressure is advantageously greater than or equal to 1, preferably greater than or equal to 2; preferentially, this weight ratio (Ra) ranges from 5 to 40 and better still from 10 to 35.
  • the composition is preferably in the form of an oil-in-water emulsion, the oil particles of which advantageously have a number-average size of less than or equal to 200 nm, preferably between 1 and 150 nm, more preferentially between 2 and 100 nm, better still between 3 and 50 nm, even more preferentially between 4 and 30 nm, or even between 5 and 20 nm.
  • the number-average size of the particles (or oil drops) may be determined in particular according to the known method of quasi-elastic light scattering.
  • a machine that may be used for this determination mention may be made of the machine from Brookhaven equipped with an SX 200 optical bed (with a 532 nm laser) and a BI 9000 correlator. This machine gives a measurement of the mean diameter by photon correlation spectroscopy (PCS), which makes it possible to determine the numerical mean diameter from the polydispersity factor, which is also measured by the machine.
  • PCS photon correlation spectroscopy
  • This measurement may also be performed using a Zetasizer Nano ZS machine from Malvern Instruments which makes it possible to determine the mean diameter weighted by the scattered intensity (and not weighted by the mass, the number or the volume), and also the polydispersity index.
  • composition according to the invention has very low polydispersity, i.e. the particles (or oil drops) have very homogeneous size.
  • the particles present in the composition according to the invention are droplets of oily phase comprising the fatty substance(s) (v) and the propellant(s) (iii), in the continuous aqueous phase.
  • the nonionic surfactants are nonionic surfactants.
  • composition according to the present invention may also optionally comprise one or more nonionic surfactants.
  • nonionic surfactants that may be used in the compositions of the present invention are described, for example, in the Handbook of Surfactants by M.R. Porter, published by Blackie & Son (Glasgow and London), 1991, pages 116-178. They are notably chosen from alcohols, a-diols, (Ci-C2o)alkylphenols or fatty acids, these compounds being polyethoxylated, polypropoxylated or polyglycerolated and bearing at least one fatty chain including, for example, from 8 to 18 carbon atoms, the number of ethylene oxide or propylene oxide groups possibly ranging notably from 1 to 100, and the number of glycerol groups possibly ranging notably from 1 to 30.
  • polyethoxylated fatty amides preferably containing from 1 to 30 ethylene oxide units, polyglycerolated fatty amides including on average 1 to 5, and in particular
  • the nonionic surfactant(s) that may be used according to the present invention may be chosen more particularly from polyoxyalkylenated fatty alcohols such as polyethoxylated and/or polypropoxylated and/or polyglycerolated fatty alcohols, the number of ethylene oxide and/or propylene oxide groups possibly ranging from 1 to 100, and the number of glycerol groups possibly ranging from 2 to 30.
  • polyoxyalkylenated fatty alcohols such as polyethoxylated and/or polypropoxylated and/or polyglycerolated fatty alcohols
  • the number of ethylene oxide and/or propylene oxide groups possibly ranging from 1 to 100
  • the number of glycerol groups possibly ranging from 2 to 30.
  • polyoxyethylenated fatty alcohols are chosen from the nonionic surfactants of formula (XXI):
  • R is a linear or branched Cx to C40 alkenyl radical; and n is an integer ranging from 6 to 20.
  • R represents a linear or branched C12 to C30, more preferentially Ci6 to C20, alkenyl radical.
  • n represents an integer ranging from 8 to 12.
  • R represents a linear or branched Ci6 to C20 alkenyl radical; and/or n represents an integer ranging from 8 to 12.
  • the nonionic surfactant(s) of formula (XXI) are chosen from oleyl alcohol containing 8 mol of ethylene oxide, oleyl alcohol containing 10 mol of ethylene oxide and oleyl alcohol containing 12 mol of ethylene oxide, and mixtures thereof; and more preferentially, the nonionic surfactant of formula (XXI) is oleyl alcohol containing 10 mol of ethylene oxide (INCI name: Oleth-10).
  • polyoxyethylenated fatty alcohols such as oleth-3, oleth-5, laureth-4, ceteareth-10, ceteareth-20, oleth-30 and mixtures thereof may also be used.
  • the nonionic surfactant(s) may be chosen from ethoxylated fatty acid esters of sorbitan containing from 2 to 30 ethylene oxide units. Mention may be made in particular of the polyoxyethylenated C8-C30 (preferably C12-C18) fatty acid esters (notably monoesters, diesters and triesters) of sorbitan notably containing from 2 to 20 mol of ethylene oxide, which may be chosen from polyoxyethylenated esters of C12-C18 fatty acids, in particular lauric, myristic, cetylic or stearic acid, of sorbitan notably containing from 2 to 30 mol of ethylene oxide, such as:
  • the nonionic surfactant(s) that may be used according to the present invention may be chosen more particularly from nonionic alkyl(poly)glycoside surfactants and mixtures thereof.
  • alkyl(poly)glycoside denotes an alkylpolyglycoside or an alkylmonoglycoside, also referred to in the present patent application as an alkylglycoside, which may be alkoxylated with one or more alkylene oxide groups, preferentially of C2-C4.
  • alkyl(poly)glycoside nonionic surfactant(s) used, alone or as mixtures, in accordance with the present invention may be represented by formula (XXII) below: RiO-(R 2 0)t(G) v (XXII) in which formula (VI):
  • - Ri represents a linear or branched, saturated or unsaturated alkyl group including from 8 to 24 carbon atoms, or an alkylphenyl group in which the linear or branched alkyl group includes from 8 to 24 carbon atoms,
  • R2 represents an alkylene group including from about 2 to 4 carbon atoms
  • - G represents a saccharide unit including 5 or 6 carbon atoms
  • - 1 denotes a value ranging from 0 to 10 and preferably 0 to 4, and
  • - v denotes a value ranging from 1 to 15.
  • alkyl(poly)glycoside nonionic surfactant(s) correspond to formula (XXII) in which: - Ri denotes a linear or branched, saturated or unsaturated alkyl group including from 8 to 18 carbon atoms,
  • - G denotes glucose, fructose or galactose, preferably glucose
  • - 1 denotes a value ranging from 0 to 3, and is preferably equal to 0, and
  • the degree of polymerization of the alkyl(poly)glycoside nonionic surfactant(s) as represented, for example, by the index v in formula (XXII) ranges on average from 1 to 15 and preferably from 1 to 4. This degree of polymerization more particularly ranges from 1 to 2 and better still from 1.1 to 1.5, on average.
  • glycoside bonds between the saccharide units are 1,6- or 1,4- bonds; preferably 1,4- bonds.
  • alkyl(poly)glycoside nonionic surfactants that may be used in the present invention are preferably alkyl(poly)glycosides notably represented by the products sold by the company Cognis under the names Plantaren ® (600 CS/U, 1200 and 2000) or Plantacare ® (818, 1200 and 2000).
  • Use may also be made of the products sold by the company SEPPIC under the names Triton CG 110 (or Oramix CG 110) and Triton CG 312 (or Oramix ® NS 10), the products sold by the company BASF under the name Lutensol GD 70 or the products sold by the company Chem Y under the name AGIO LK, or the products sold by the company Evonik Goldschmidt under the trade names Tego Care CG 90 or Tego Care CG 90 MB.
  • the nonionic surfactant(s) may be chosen from silicone nonionic surfactants and mixtures thereof.
  • silicon compound means a compound which comprises at least one (-Si-O-) group.
  • the silicone surfactants that may be used may be water-soluble, spontaneously water-dispersible or water-insoluble. Preferably, they are water-soluble or spontaneously water-dispersible.
  • the silicone surfactants are oxyalkylenated, preferably oxyethylenated.
  • the silicone surfactants may be chosen from the compounds of formulae (XXIII), (XXIV), (XXV), (XXVI) and (XXVII) below: in which:
  • Ci- C30 alkyl radical or a phenyl radical represents a linear or branched Ci- C30 alkyl radical or a phenyl radical
  • R3 and R4 which may be identical or different, denote a linear or branched C1-C12 alkyl radical, preferably a methyl radical;
  • - R2 which may be identical or different, represent a group -(CH2)c-0- (C2H40)a’-(C3H60)b’-R5 or -(CH2)c-0-(C4H80)a’-R5 in which a’ ranges from 0 to 50; b’ ranges from 0 to 50 and a’+b’ is greater than or equal to 1; c ranges from 0 to 4; and
  • R5 which may be identical or different, is chosen from a hydrogen atom, a linear or branched alkyl group including from 1 to 12 carbon atoms; a linear or branched alkoxy group including from 1 to 6 carbon atoms; a linear or branched acyl group including from 2 to 12 carbon atoms; a hydroxyl group, a group -SO3M, a group -OCOR6, a Ci-Ce aminoalkoxy group optionally substituted on the amine with one or two C1-C4 alkyl radicals, optionally bearing at least one hydroxyl group; a C2-C6 aminoacyl group optionally substituted on the amine with one or two C1-C4 alkyl radicals, optionally bearing at least one hydroxyl group; a group -NHCH2CH2COOM, a group -N(CH2CH2COOM)2; a C1-C12 aminoalkyl group, optionally substituted on the amine and on the alkyl chain with one
  • - m ranges from 0 to 20;
  • - n ranges from 0 to 500;
  • the silicone surfactants correspond to the general formulae (XXIII), (XXIV) or (XXVII) as defined above, and more particularly correspond to: in which formulae (XXIII) or (XXIV) at least one, preferably all, of the following conditions are satisfied:
  • - Ri denotes a methyl group
  • R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with Rs representing a hydrogen atom, a methyl group or an acetyl group; preferably a hydrogen atom;
  • - R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with a’ ranging from 1 to 25 and more particularly from 2 to 25;
  • - R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with b’ ranging from 0 to 25; preferably, b’ is equal to 0; - n ranges from 0 to 100; and/or
  • - p ranges from 1 to 20; or to formula (XXVII) in which at least one, preferably all, of the following conditions are satisfied:
  • - Ri denotes a methyl or cetyl group;
  • R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with Rs representing a hydrogen atom, a methyl group or an acetyl group; preferably a hydrogen atom;
  • - R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with a’ ranging from 1 to 25 and more particularly from 2 to 25;
  • - R2 represents a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5, with b’ ranging from 0 to 25, preferably, from 1 to 20;
  • the silicone surfactants may be chosen from the compounds of formula (XXIV) in which, Ri denotes a methyl group, and R2 is a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5 with c equal to 2 or 3; a’ ranges from 2 to 25, b’ ranges from 0 to 25, Rs denotes a hydrogen atom or a methyl group; such as compounds of formula (XXIV) in which, Ri denotes a methyl group, and R2 is a group -(CH2)c-0-(C2H40)a -(C3H60)b -R5 with c equal to 2 or 3; a’ ranges from 2 to 25, b’ ranges from 0 to 25, Rs denotes a hydrogen atom or a methyl group; such as compounds of formula (XXIV) in which, Ri denotes a methyl group, and R2 is a group -(CH2)c-0-(C2H
  • the silicone nonionic surfactants may be chosen from PEG-dimethicone, for instance PEG- 10 dimethicone, PEG- 12 dimethicone, PEG- 14 dimethicone, PEG- 11 methyl ether dimethicone, and/or alkyl PEG/PPG dimethicone, for instance PEG/PPG- 10/1 cetyl dimethicone, PEG/PPG- 18/18 dimethicone, PEG/PPG- 14/4 dimethicone.
  • PEG-dimethicone for instance PEG- 10 dimethicone, PEG- 12 dimethicone, PEG- 14 dimethicone, PEG- 11 methyl ether dimethicone
  • alkyl PEG/PPG dimethicone for instance PEG/PPG- 10/1 cetyl dimethicone, PEG/PPG- 18/18 dimethicone, PEG/PPG- 14/4 dimethicone.
  • silicone surfactants sold under the trade names Fluid DC 193 and DC 5225C by the Dow Corning company, Silwet ® L 77 by the company OSI, and Mazil ® 756 by the company Mazer PPG, KF-6017 by the company Shin-Etsu and Abil EM 90 from Evonik.
  • the nonionic surfactant(s) are chosen from polyoxyethylenated fatty alcohols, alkyl (poly)glycosides, ethoxylated fatty acid esters of sorbitan containing from 2 to 30 ethylene oxide units, silicone surfactants and mixtures thereof, and more preferentially from oleth-10, polysorbate 80, decyl glucoside, cocoyl glucoside, lauryl glucoside, PEG-11 methyl ether dimethicone, and mixtures thereof.
  • composition according to the present invention may optionally also comprise one or more fixing polymers.
  • the term “fixing polymer” means any polymer that is capable, by application to the hair, of giving a shape to the head of hair or of holding an already acquired shape.
  • the fixing polymer(s) according to the invention are chosen from nonionic fixing polymers and anionic fixing polymers, and mixtures thereof, and more preferentially from anionic fixing polymers and mixtures thereof.
  • the anionic fixing polymers generally used are polymers including groups derived from carboxylic, sulfonic or phosphoric acid, and have a number-average molecular mass of between about 500 and 5 000 000.
  • the carboxylic groups are provided by unsaturated mono- or dicarboxylic acid monomers, such as those corresponding to formula (XXVIII):
  • - n is an integer from 0 to 10
  • - Ai denotes a methylene group, optionally connected to the carbon atom of the unsaturated group or to the adjacent methylene group, when n is greater than 1, via a heteroatom, such as oxygen or sulfur,
  • R? denotes a hydrogen atom or a phenyl or benzyl group
  • R-8 denotes a hydrogen atom or a lower alkyl or carboxyl group
  • - R? denotes a hydrogen atom, a lower alkyl group or a -CH2-COOH, phenyl or benzyl group.
  • a lower alkyl group preferably denotes a group containing 1 to 4 carbon atoms and in particular methyl and ethyl groups.
  • anionic fixing polymers containing carboxylic groups that are preferred according to the invention are:
  • A) copolymers of acrylic or methacrylic acid also known as (meth)acrylic acid or salts thereof.
  • copolymers of acrylic or methacrylic acid with a monoethylenic monomer such as ethylene, styrene, vinyl esters or acrylic or methacrylic acid esters, optionally grafted to a polyalkylene glycol, such as polyethylene glycol, and optionally crosslinked.
  • a monoethylenic monomer such as ethylene, styrene, vinyl esters or acrylic or methacrylic acid esters
  • a polyalkylene glycol such as polyethylene glycol, and optionally crosslinked.
  • Such polymers are described in particular in French patent 1 222 944 and German patent application 2 330 956, the copolymers of this type including an optionally N-alkylated and/or hydroxyalkylated acrylamide unit in their chain as described notably in Luxembourg patent applications 75370 and 75371.
  • copolymers of acrylic acid and of Ci to C4 alkyl methacrylate and terpolymers of vinylpyrrolidone of acrylic acid and of Ci to C20 alkyl methacrylate, for example lauryl methacrylate, such as that sold by ISP under the name Acrylidone ® LM (INCI name: VP/acrylates/lauryl methacrylate copolymer), acrylic acid/ethyl acrylate/N-(t-butyl)acrylamide terpolymers, such as the products Ultrahold ® Strong and Ultrahold ® 8 sold by the company BASF (INCI name: Acrylates/t-butylacrylamide copolymer), methacrylic acid/ethyl aery 1 at e// ⁇ ?
  • branched block polymers containing (meth)acrylic acid monomers such as the product sold under the name Fixate ® G-100L by the company Lubrizol (INCI name: AMP- acrylates/allyl methacrylate copolymer);
  • Crotonic acid copolymers such as those including vinyl acetate or propionate units in their chain and optionally other monomers such as allylic esters or methallylic esters, vinyl ether or vinyl ester of a linear or branched saturated carboxylic acid with a long hydrocarbon-based chain, such as those including at least 5 carbon atoms, these polymers possibly being grafted or crosslinked, or alternatively another vinyl, allylic or methallylic ester monomer of an a- or b-cyclic carboxylic acid.
  • Such polymers are described, inter alia , in French patents 1 222 944, 1 580 545, 2265 782, 2265 781, 1 564 110 and 2439798.
  • copolymers comprising (i) one or more maleic, fumaric or itaconic acids or anhydrides and (ii) at least one monomer chosen from vinyl esters, vinyl ethers, vinyl halides, phenylvinyl derivatives, acrylic acid and esters thereof, the anhydride functions of these copolymers optionally being monoesterified or monoamidated.
  • monomers chosen from vinyl esters, vinyl ethers, vinyl halides, phenylvinyl derivatives, acrylic acid and esters thereof, the anhydride functions of these copolymers optionally being monoesterified or monoamidated.
  • Gantrez ® AN or ES commercial products are notably those sold under the names Gantrez ® AN or ES by the company ISP, such as Gantrez ® ES 225 (INCI name: Ethyl ester of PVM / MA copolymer) or Gantrez ® ES 425L (INCI name: Butyl ester of PVM / MA copolymer);
  • copolymers comprising (i) one or more maleic, citraconic or itaconic anhydride units and (ii) one or more monomers chosen from allylic or methallylic esters optionally including one or more acrylamide, methacrylamide, a-olefm, acrylic or methacrylic ester, acrylic or methacrylic acid or vinylpyrrolidone groups in their chain, the anhydride functions of these copolymers optionally being monoesterified or monoamidated.
  • the fixing polymers bearing units derived from sulfonic acid may be chosen from:
  • A’ homopolymers and copolymers including vinylsulfonic, styrenesulfonic, naphthalenesulfonic or acrylamidoalkylsulfonic units.
  • These polymers may notably be chosen from:
  • polyvinylsulfonic acid salts with a molecular mass of between 1000 and 100 000 approximately, and also the copolymers with an unsaturated comonomer such as acrylic or methacrylic acids and esters thereof, and also acrylamide or derivatives thereof, vinyl ethers and vinylpyrrolidone;
  • polyacrylamidosulfonic acid salts such as those mentioned in patent US 4 128 631, and more particularly the polyacrylamidoethylpropanesulfonic acid sold under the name Rheocare ® HSP-1180 by Cognis (INCI name: polyacrylamidomethylpropane sulfonic acid);
  • Sulfonic polyesters these polymers being advantageously obtained by polycondensation of at least one dicarboxylic acid, of at least one diol or of a mixture of diol and of diamine, and of at least one difunctional monomer including a sulfonic function.
  • these polymers mention may be made of:
  • polyesters such as those described in patent applications US 3 734 874, US 3 779 993, US 4 119 680, US 4 300 580, US 4 973 656, US 5 660 816, US 5 662 893 and US 5 674 479.
  • Such polymers are, for example, the products Eastman ® AQ38S Polymer, Eastman ® AQ55S Polymer and Eastman ® AQ48 Ultra Polymer sold by the company Eastman Chemical (name Polyester-5) which are copolymers obtained from di ethylene glycol, from 1,4-cyclohexanedimethanol, from isophthalic acid and from sulfoisophthalic acid salt;
  • polyesters such as those described in patent applications WO 95/18191, WO 97/08261 and WO 97/20899.
  • Such compounds are, for example, the products Eastman ® AQ10D Polymer (name: Polyester-13) or Eastman ® AQ1350 Polymer sold by the company Eastman Chemical (name: Polyester- 13).
  • the anionic fixing polymer(s) are preferably chosen from acrylic acid copolymers, such as the acrylic acid/ethyl acrylate/N-ieri- butyl acrylamide terpolymers notably sold under the name Ultrahold ® Strong by the company BASF, copolymers derived from crotonic acid, such as the vinyl acetate/vinyl ieri-butylbenzoate/crotonic acid terpolymers and the crotonic acid/vinyl acetate/vinyl neododecanoate terpolymers notably sold under the name Resyn 28-2930 by the company AkzoNobel, polymers derived from maleic, fumaric or itaconic acids or anhydrides with vinyl esters, vinyl ethers, vinyl halides, phenylvinyl derivatives and acrylic acid and esters thereof, such as the methyl vinyl ether/monoesterified maleic anhydride copolymers sold, for example, under the names G
  • the total amount of the anionic fixing polymer(s), when they are present in the composition of the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • amphoteric fixing polymers that may be used in accordance with the invention may be chosen from polymers including units B and C randomly distributed in the polymer chain, where B denotes a unit derived from a monomer including at least one basic nitrogen atom and C denotes a unit derived from an acidic monomer including one or more carboxylic or sulfonic groups or else B and C can denote groups derived from zwitterionic carboxybetaine or sulfobetaine monomers;
  • B and C may also denote a cationic polymer chain including primary, secondary, tertiary or quaternary amine groups, in which at least one of the amine groups bears a carboxylic or sulfonic group connected via a hydrocarbon-based group or alternatively B and C form part of a chain of a polymer bearing an ethylene-a,b- dicarboxylic unit in which one of the carboxylic groups has been made to react with a polyamine including one or more primary or secondary amine groups.
  • amphoteric fixing polymers corresponding to the definition given above that are more particularly preferred are chosen from the following polymers:
  • copolymers bearing acidic vinyl units and basic vinyl units such as those resulting from the copolymerization of a monomer derived from a vinyl compound bearing a carboxylic group such as, more particularly, acrylic acid, methacrylic acid, maleic acid, a-chloroacrylic acid, and of a basic monomer derived from a substituted vinyl compound containing at least one basic atom, such as, more particularly, dialkylaminoalkyl methacrylate and acrylate, dialkylaminoalkylmethacrylamide and acrylamide.
  • a monomer derived from a vinyl compound bearing a carboxylic group such as, more particularly, acrylic acid, methacrylic acid, maleic acid, a-chloroacrylic acid
  • a basic monomer derived from a substituted vinyl compound containing at least one basic atom such as, more particularly, dialkylaminoalkyl methacrylate and acrylate, dialkylaminoalkylmethacrylamide and acrylamide.
  • the N-substituted acrylamides or methacrylamides that are more particularly preferred according to the invention are compounds in which the alkyl groups include from 2 to 12 carbon atoms and more particularly N-ethylacrylamide, N-tert- butyl acrylamide, N-tert-octylacrylamide, N-octyl acrylamide, N-decylacrylamide, N- dodecyl acrylamide and the corresponding methacrylamides.
  • the acidic comonomers are more particularly chosen from acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid and alkyl monoesters, containing 1 to 4 carbon atoms, of maleic or fumaric acids or anhydrides.
  • the preferred basic comonomers are aminoethyl, butylaminoethyl, N,N’- dimethylaminoethyl and N-tert-butylaminoethyl methacrylates.
  • copolymers of which the INCI name is Octylacrylamide/acrylates/butylaminoethyl methacrylate copolymer such as the products sold under the names Amphomer ® , Amphomer ® LV71 or Balance ® 47 by the company Akzo Nobel, are particularly used;
  • - Rio represents a divalent group derived from a saturated dicarboxylic acid, from an aliphatic mono- or dicarboxylic acid bearing an ethylenic double bond, from an ester of a lower alkanol containing from 1 to 6 carbon atoms of these acids, or from a group derived from the addition of any one of said acids to a bis-primary or bis- secondary amine, and
  • the saturated carboxylic acids are preferably chosen from acids containing 6 to 10 carbon atoms, such as adipic acid, 2,2,4-trimethyladipic acid, 2,4,4- trimethyladipic acid and terephthalic acid, and acids bearing an ethylenic double bond, for instance acrylic, methacrylic and itaconic acids.
  • the alkane sultones used in the acylation are preferably propane sultone or butane sultone; the salts of the acylating agents are preferably the sodium or potassium salts.
  • Rn denotes a polymerizable unsaturated group such as an acrylate, methacrylate, acrylamide or methacrylamide group
  • Ri2 and Ri3 represent a hydrogen atom or a methyl, ethyl or propyl group
  • Ri4 and Ris represent a hydrogen atom or an alkyl group such that the sum of the carbon atoms in Ri4 and Ris does not exceed 10.
  • the polymers comprising such units may also include units derived from non- zwitterionic monomers such as dimethyl- or di ethyl aminoethyl acrylate or methacrylate or alkyl acrylates or methacrylates, acrylamides or methacrylamides or vinyl acetate.
  • methyl methacrylate/methyl dimethylcarboxymethylammonioethyl methacrylate copolymers such as the product sold under the name Diaformer Z-301N or Z-301W by the company Clariant (INCI name: Acrylates copolymer).
  • polymers derived from the N-carboxyalkylation of chitosan such as N-carboxymethyl chitosan or N-carboxybutyl chitosan, for instance the product sold under the name Chitoglycan by the company Sinerga SPA (INCI name: Carboxymethyl chitosan);
  • amphoteric polymers of the -D-X-D-X type chosen from: a) polymers obtained by the action of chloroacetic acid or sodium chloroacetate on compounds including at least one unit of formula (XXXIV):
  • XXXIV in which D denotes a group and X denotes the symbol E or E’, where E and E’, which may be identical or different, denote a divalent group that is an alkylene group with a straight or branched chain including up to 7 carbon atoms in the main chain, which is unsubstituted or substituted with hydroxyl groups and which may include, in addition to oxygen, nitrogen and sulfur atoms, 1 to 3 aromatic and/or heterocyclic rings; the oxygen, nitrogen and sulfur atoms being present in the form of ether, thioether, sulfoxide, sulfone, sulfonium, alkylamine or alkenylamine groups, hydroxyl, benzylamine, amine oxide, quaternary ammonium, amide, imide, alcohol, ester and/or urethane groups; b) polymers of formula (XXXV): -D-X-D-X- (XXXV): -D-X-D
  • (9) (Ci-Cs)alkyl vinyl ether/maleic anhydride copolymers partially modified by semiamidation with an N,N-dialkylaminoalkylamine, such as N,N- dimethylaminopropylamine, or by semiesterification with an N,N- dialkylaminoalkanol.
  • These copolymers may also include other vinyl comonomers, such as vinylcaprolactam.
  • amphoteric fixing polymers the ones that are most particularly preferred according to the invention are those of family (3), such as the copolymers whose INCI name is octylacrylamide/acrylates/butylaminoethyl methacrylate copolymer, such as the products sold under the names Amphomer ® , Amphomer ® LV 71 or Balance ® 47 by the company AkzoNobel and those of family (4) such as the copolymers of methyl methacrylate/methyl dimethylcarboxymethylammonioethyl methacrylate, sold, for example, under the name Diaformer Z-301N or Z-301W by the company Clariant.
  • family (3) such as the copolymers whose INCI name is octylacrylamide/acrylates/butylaminoethyl methacrylate copolymer, such as the products sold under the names Amphomer ® , Amphomer ® LV 71 or Balance ® 47 by the company AkzoNo
  • the total amount of amphoteric fixing polymer(s), when they are present in the composition according to the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and even better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • the cationic fixing polymers that may be used according to the present invention are preferably chosen from polymers including primary, secondary, tertiary and/or quaternary amine groups forming part of the polymer chain or directly attached thereto, and having a molecular weight of between 500 and approximately 5 000 000 and preferably between 1000 and 3 000 000.
  • these polymers mention may be made more particularly of the following cationic polymers:
  • R-3 denotes a hydrogen atom or a CH3 group
  • - A is a linear or branched alkyl group including from 1 to 6 carbon atoms or a hydroxyalkyl group including from 1 to 4 carbon atoms;
  • R4, R-3 and R. 6 which may be identical or different, represent an alkyl group containing from 1 to 18 carbon atoms, or a benzyl group;
  • Ri and R2 which may be identical or different, each represent a hydrogen atom or an alkyl group containing from 1 to 6 carbon atoms;
  • - X denotes a methosulfate anion or a halide such as chloride or bromide.
  • the copolymers of class (1) also contain one or more units derived from comonomers which may be chosen from the class of acrylamides, methacrylamides, diacetone acrylamides, acrylamides and methacrylamides substituted on the nitrogen with Ci- to C4 alkyl groups, groups derived from acrylic or methacrylic acids or esters thereof, vinyllactams such as vinylpyrrolidone or vinylcaprolactam, and vinyl esters.
  • comonomers which may be chosen from the class of acrylamides, methacrylamides, diacetone acrylamides, acrylamides and methacrylamides substituted on the nitrogen with Ci- to C4 alkyl groups, groups derived from acrylic or methacrylic acids or esters thereof, vinyllactams such as vinylpyrrolidone or vinylcaprolactam, and vinyl esters.
  • polymers bearing a fatty chain and bearing a vinylpyrrolidone unit such as the products sold under the names Styleze W20L and Styleze W10 by the company ISP, dimethylaminoethyl methacrylate/vinylcaprolactam/vinylpyrrolidone terpolymers, such as the product sold under the name Gaffix VC 713 by the company ISP, and quaternized vinylpyrrolidone/dimethylaminopropylmethacrylamide copolymers, such as the products sold under the name Gafquat ® HS 100 by the company ISP;
  • cationic guar gums preferably containing quaternary ammonium, such as those described in US patents 3 589 578 and 4 031 307, such as guar gums containing trialkylammonium cationic groups.
  • quaternary ammonium such as those described in US patents 3 589 578 and 4 031 307
  • guar gums containing trialkylammonium cationic groups Such products are notably sold under the trade names Jaguar C13 S, Jaguar C 15 and Jaguar C 17 by the company Meyhall.
  • chitosans or salts thereof are in particular chitosan acetate, lactate, glutamate, gluconate or pyrrolidonecarboxylate.
  • chitosan having a degree of deacetylation of 90.5% by weight sold under the name Kytan Brut Standard by the company Aber Technologies, and chitosan pyrrolidonecarboxylate sold under the name Kytamer ® PC by the company Amerchol;
  • cationic cellulose derivatives such as copolymers of cellulose or of cellulose derivatives grafted with a water-soluble monomer including a quaternary ammonium and notably described in patent US 4 131 576, such as hydroxyalkylcelluloses, for example hydroxymethyl-, hydroxyethyl- or hydroxypropylcelluloses, grafted notably with a methacryloyloxyethyl- trimethylammonium, methacrylamidopropyltrimethylammonium or dimethyldiallylammonium salt.
  • the commercial products corresponding to this definition are more particularly the products sold under the names Celquat L 200 and Celquat H 100 by the company National Starch.
  • the total amount of the cationic fixing polymer(s), when they are present in the composition of the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • the nonionic fixing polymers that may be used according to the present invention are chosen, for example, from:
  • vinyl acetate copolymers for instance copolymers of vinyl acetate and of acrylic ester, copolymers of vinyl acetate and of ethylene, or copolymers of vinyl acetate and of maleic ester, for example of dibutyl maleate;
  • styrene copolymers for instance copolymers of styrene, of alkyl acrylate and of alkyl methacrylate; copolymers of styrene and of butadiene; or copolymers of styrene, of butadiene and of vinylpyridine;
  • vinyllactam homopolymers such as the vinylpyrrolidone homopolymers sold, for example, under the names Luviskol ® K30 Powder by the company BASF or PVP K30L or K60 Solution or K90 by the company ISP, or such as the polyvinylcaprolactam sold under the name Luviskol ® Plus by the company BASF (INCI name: PVP);
  • vinyllactam copolymers such as a poly(vinylpyrrolidone/vinyllactam) copolymer sold under the trade name Luvitec ® VPC 55K65W by the company BASF, poly(vinylpyrrolidone/vinyl acetate) copolymers, such as those sold under the name PVP/VA ® S630L, E735, E635 and W735 by the company ISP, Luviskol ® VA 73, VA 64 and VA 37 by the company BASF (INCI name VP/VA copolymer); and vinylpyrrolidone/methacrylamide/vinylimidazole terpolymers, for instance the product sold under the name Luviset ® Clear by the company BASF (INCI name VP/methacrylamide/vinyl imidazole copolymer).
  • a poly(vinylpyrrolidone/vinyllactam) copolymer sold under the trade name Luvitec ® VPC 55K65W
  • the alkyl groups of the nonionic polymers mentioned above preferably contain from 1 to 6 carbon atoms.
  • the content of the nonionic fixing polymer(s), present in the composition according to the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • These polymers may be amphoteric, cationic, anionic or nonionic and they are preferably anionic or nonionic.
  • Such polymers are, for example, copolymers that may be obtained by free radical polymerization from the monomer mixture formed from: a) 50% to 90% by weight of c/ -butyl acrylate, b) 0 to 40% by weight of acrylic acid, c) 5% to 40% by weight of a silicone macromer of formula: in which v is a number ranging from 5 to 700, the weight percentages being calculated relative to the total weight of the monomers.
  • grafted silicone polymers are notably polydimethylsiloxanes (PDMSs) to which are grafted mixed polymer units of the poly((meth)acrylic acid) type and of the poly(alkyl (meth)acrylate) type via a thiopropylene-type connecting chain and polydimethylsiloxanes (PDMSs) to which polymer units of the poly(isobutyl (meth)acrylate) type are grafted via a thiopropylene- type connecting chain.
  • Grafted silicone polymers are sold, for example, under the names Silicone Plus Polymer ® VS80 and VA70 by 3M (INCI names: Polysilicone-8 and Polysilicone- 7, respectively).
  • silicone fixing polymer Another type of silicone fixing polymer that may be mentioned is the product Luviflex ® Silk sold by the company BASF (INCI name: PEG/PPG-25/25 dimethicone/acrylates copolymer).
  • the total amount of fixing polymer(s) of grafted silicone type, when they are present in the composition of the invention, preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • polyurethanes particularly targeted by the present invention are those described in patent applications EP 0 751 162, EP 0 637 600, EP 0 648 485 and FR 2 743 297, of which the applicant is the proprietor, and also in patent applications EP 0 656 021 and WO 94/03510 from the company BASF and EP 0 619 111 from the company National Starch.
  • the total amount of the polyurethane(s), when they are present in the composition of the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, and even better still from 0.3% to 10% by weight, relative to the total weight of the composition.
  • the composition according to the invention also comprises one or more fixing polymers chosen from nonionic fixing polymers, anionic fixing polymers, and mixtures thereof; preferentially chosen from anionic fixing polymers and mixtures thereof; and better still chosen from copolymers of (meth)acrylic acid, copolymers derived from crotonic acid, polymers derived from maleic, fumaric or itaconic acids or anhydrides with vinyl esters, vinyl ethers, vinyl halides, phenylvinyl derivatives, acrylic acid or esters thereof, and mixtures thereof.
  • fixing polymers chosen from nonionic fixing polymers, anionic fixing polymers, and mixtures thereof; preferentially chosen from anionic fixing polymers and mixtures thereof; and better still chosen from copolymers of (meth)acrylic acid, copolymers derived from crotonic acid, polymers derived from maleic, fumaric or itaconic acids or anhydrides with vinyl esters, vinyl ethers, vinyl halides, phenylvinyl derivatives
  • the total amount of the fixing polymer(s), when they are present in the composition of the invention preferably ranges from 0.1% to 20% by weight, more preferentially from 0.2% to 15% by weight, better still from 0.3% to 10% by weight, and even more preferentially from 0.5% to 5% by weight, relative to the total weight of the composition.
  • composition according to the present invention may optionally also comprise sodium chloride, in a total content preferably ranging from 0.1% to 5% by weight and more preferentially from 0.1% to 2% by weight relative to the total weight of the composition.
  • composition according to the present invention may also optionally comprise one or more additional compounds different from the compounds defined above, preferably chosen from cationic, anionic, nonionic and amphoteric polymers different from the fixing polymers defined previously, thickeners, silicones different from silicones defined previously, fatty substances different from the fatty substances (v) defined previously, antioxidants, penetrants, sequestrants, fragrances, buffers, dispersants, conditioning agents, UV-screening agents, film-forming agents, ceramides, preserving agents, opacifiers, lubricants (or anticaking agents) and mixtures thereof.
  • additional compounds different from the compounds defined above preferably chosen from cationic, anionic, nonionic and amphoteric polymers different from the fixing polymers defined previously, thickeners, silicones different from silicones defined previously, fatty substances different from the fatty substances (v) defined previously, antioxidants, penetrants, sequestrants, fragrances, buffers, dispersants, conditioning agents, UV-screening agents, film-forming agents,
  • the additional compound(s) are generally present in a content, for each of them, of between 0.01% and 20% by weight, relative to the weight of the composition.
  • the pH of the composition according to the invention generally ranges from 3 to 9, preferably from 3 to 7.5 and better still from 3.5 to 7.
  • the pH of the composition may be adjusted to the desired value by means of basifying agents or acidifying agents that are customarily used.
  • basifying agents examples that may be mentioned include aqueous ammonia, alkanolamines, and mineral or organic hydroxides.
  • acidifying agents examples which may be mentioned include mineral or organic acids, for instance hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids, for instance acetic acid, tartaric acid, citric acid or lactic acid, and sulfonic acids.
  • the viscosity of the composition may range from 0.1 Pa.s to 4 Pa.s, preferably from 0.5 Pa.s to 2 Pa.s measured at 25°C at a shear rate of 200 tr/min.
  • the viscosity of the composition can be measured with a viscometer (Rheomat Mettler Toledo RM180 Rheomat).
  • the composition has a turbidity less than or equal to 250 NTU units, preferably less than or equal to 200 NTU units, and is in the form of an oil- in-water emulsion, the oil particles of which advantageously have a number-average size of less than or equal to 200 nm, preferably between 1 and 150 nm.
  • the composition has a turbidity less than or equal to 200 NTU units, preferably less than or equal to 150 NTU units, and is in the form of an oil- in-water emulsion, the oil particles of which advantageously have a number-average size between 2 and 100 nm, better still between 3 and 50 nm.
  • the composition has a turbidity less than or equal to 100 NTU units and is in the form of an oil-in-water emulsion, the oil particles of which advantageously have a number-average size between 2 and 100 nm, better still between 3 and 50 nm.
  • the composition has a turbidity less than or equal to 50 NTU units and is in the form of an oil-in-water emulsion, the oil particles of which advantageously have a number-average size between 3 and 50 nm, even more preferentially between 4 and 30 nm.
  • the composition has a turbidity less than or equal to 50 NTU units and is in the form of an oil-in-water emulsion, the oil particles of which advantageously have a number-average size between 5 and 20 nm.
  • composition according to the present invention is of single phase appearance and comprises:
  • acylglutamates namely C6-C30 or even C8-C26, such as stearoylglutamates, and in particular disodium stearoylglutamate,
  • acylsarcosinates notably of C6-C30 or even C8-C26, such as palmitoylsarcosinates, and in particular sodium palmitoylsarcosinate,
  • a subject of the invention is also an aerosol device comprising:
  • the aerosol device according to the invention makes it possible to dispense said composition in foam form.
  • composition according to the invention is advantageously packaged under pressure, in an aerosol device, for example a monobloc device, which comprises a spraying means and a container.
  • an aerosol device for example a monobloc device, which comprises a spraying means and a container.
  • the spraying means is generally formed from a dispensing valve controlled by a dispensing head, which itself comprises a nozzle via which the composition of the invention is sprayed, preferably in foam form.
  • a dispensing head which itself comprises a nozzle via which the composition of the invention is sprayed, preferably in foam form.
  • plastic aerosols equipped with a 2x0.51 mm GI valve and a DMPR229 dispenser.
  • the container containing the pressurized composition may be opaque or transparent. It may be made of glass, polymer or metal, and may optionally be coated with a protective varnish coat.
  • the container of said aerosol device is transparent, such that the composition according to the invention is visible to the naked eye through said container.
  • a subject of the present invention is also a process for the cosmetic treatment, in particular a process for the washing and/or conditioning, of keratin materials, in particular of human keratin materials such as the hair and the skin, comprising the application to said keratin materials of a composition as defined previously, this application optionally being followed by rinsing after an optional leave-on time.
  • a subject of the present invention is also a process for washing and/or conditioning keratin fibres, in particular human keratin fibres such as the hair, comprising the application to said keratin fibres of a composition as defined previously, this application optionally being followed by rinsing after an optional leave-on time.
  • the application of the composition according to the invention is followed by rinsing.
  • the composition may be applied to wet or dry keratin materials. It is preferably applied to wet keratin materials.
  • the keratin materials may optionally be dried or left to dry.
  • the term “keratin materials” denotes the skin and the scalp, and keratin fibres in particular such as the hair. More preferably, the keratin material is hair.
  • the cosmetic treatment process of the invention is preferably a process for the styling, i.e. the shaping and/or fixing, of keratin fibres, in particular of human keratin fibres such as the hair.
  • the cosmetic treatment process is a styling process
  • the application of the composition according to the invention is preferably not followed by rinsing.
  • the composition is applied to wet hair.
  • the composition is applied to dry hair.
  • Formulations A1 and A2 according to the invention and comparative formulation B1 below were prepared from the ingredients whose contents are indicated in the table below (as weight percentage of active material).
  • compositions Al, A2 and B1 are prepared beforehand from the ingredients indicated in Table 1 above before introducing the propellants (i.e. the isobutane/propane/butane mixture). In other words, the formulation juices do not comprise any propellants.
  • the formulation juices Al and A2 thus obtained are transparent and of single phase appearance, whereas the formulation juice B1 has a two-phase appearance.
  • the turbidity was measured using a UV-Vis Cary 100 model UV spectrophotometer sold by the company Agilent.
  • the number-average size of the oil drops in the formulation juices Al and A2 was determined via the quasi-elastic light scattering method using a Zetasizer Nona ZS machine from Malvern Instruments.
  • Results The results obtained for each of the formulation juices A1 and A2 are expressed in the table below. [Table 2j
  • the propellants 56/24/20 isobutane/propane/butane mixture) were then added to the formulation juices Al, A2 and Bl, in a juice/gas ratio of 95/5.
  • compositions Al, A2 and Bl thus obtained were then packaged in transparent PET aerosol devices equipped with a DMPR229 dispenser and a 2x0.51 mm GI valve, and pressurized.
  • the pressurized compositions Al and A2 remain single-phase and transparent, whereas the pressurized composition Bl is not transparent.
  • compositions Al and A2 are stable over time.
  • the appearance of these formulations has not changed.
  • two distinct phases form rapidly with an opaque upper phase for the comparative composition B 1. This phase distinction becomes more pronounced over time, notably after 24 hours of storage at room temperature.
  • compositions Al and A2 according to the invention dispensed by means of the aerosol device make it possible to obtain a uniform, firm and creamy foam which holds well in the hand and is easily and uniformly applied to the entire head of hair.
  • Compositions Al and A2 also afford good detergency properties in addition to a conditioning effect on the hair thus treated.
  • Formulations A3 and A4 according to the invention and comparative formulations B2 and B3 below were prepared from the ingredients whose contents are indicated in the table below (as weight percentage of active material). [Table 3] b. Protocol
  • compositions A3, A4, B2 and B3 are prepared beforehand from the ingredients indicated in Table 3 above before introducing the propellants (i.e. the isobutane/propane/butane mixture). In other words, the formulation juices do not comprise any propellants.
  • the formulation juices A3 and A4 thus obtained are transparent and of single phase appearance, whereas the comparative formulation juices B2 and B3 have a two- phase appearance.
  • the turbidity and particle size measurements of the single-phase formulation juices A3 and A4 were performed before introducing the propellants and pressurizing the compositions.
  • the turbidity was measured using a UV-Vis Cary 100 model UV spectrophotometer sold by the company Agilent.
  • the number-average size of the oil drops in the formulation juices A3 and A4 was determined via the quasi-elastic light scattering method using a Zetasizer Nona ZS machine from Malvern Instruments.
  • Results The results obtained for each of the formulation juices A3 and A4 are expressed in the table below. [Table 4j
  • the propellants 56/24/20 isobutane/propane/butane mixture) were then added to the formulation juices A3, A4, B2 and B3, in a juice/gas ratio of 95/5.
  • Compositions A3, A4, B2 and B3 thus obtained were then packaged in transparent PET aerosol devices equipped with a DMPR229 dispenser and a 2x0.51 mm GI valve, and pressurized.
  • pressurized compositions A3 and A4 remain single-phased and transparent, whereas the pressurized compositions B2 and B3 are two-phase and are not transparent.
  • compositions A3 and A4 are stable over time. In particular, after two months of storage at room temperature (25°C), the appearance of these formulations has not changed. Conversely, two distinct phases form rapidly with an opaque upper phase for the comparative compositions B2 and B3. This phase distinction becomes more pronounced over time, notably after 24 hours of storage at room temperature.
  • Compositions A3 and A4 according to the invention dispensed by means of the aerosol device make it possible to obtain a uniform, firm and creamy foam which holds well in the hand and is easily and uniformly applied to the entire head of hair. Compositions A3 and A4 also afford good detergency properties in addition to a conditioning effect on the hair thus treated.
  • Formulation A5 below was prepared using the ingredients whose contents are indicated in the table below (as weight percentage of active material). [Table 5] b. Protocol The formulation juice A5 is prepared beforehand from the ingredients indicated in Table 5 above before introducing the propellants (i.e. the isobutane/propane/butane mixture). In other words, this formulation juice does not comprise any propellants.
  • the propellants i.e. the isobutane/propane/butane mixture. In other words, this formulation juice does not comprise any propellants.
  • the formulation juice A5 thus obtained is transparent and of single-phase appearance.
  • the turbidity and particle size measurements of the single-phase formulation juice A5 were performed before introducing the propellants and pressurizing the composition.
  • the turbidity was measured using a UV-Vis Cary 100 model UV spectrophotometer sold by the company Agilent.
  • the number-average size of the oil drops in the formulation juice A5 was determined via the quasi-elastic light scattering method using a Zetasizer Nona ZS machine from Malvern Instruments. c. Results
  • the results obtained for the formulation juice A5 are expressed in the table below. [Table 6]
  • the propellants 56/24/20 isobutane/propane/butane mixture) were then added to the formulation juice A5, in a juice/gas ratio of 95/5.
  • Composition A5 thus obtained was then packaged in a transparent PET aerosol device equipped with a DMPR229 dispenser and a 2x0.51 mm GI valve, and pressurized.
  • the pressurized composition A5 remains single-phased and transparent. Moreover, this single-phase appearance and its transparency are stable over time. In particular, after two months of storage at room temperature (25°C), the appearance of the composition has not changed.
  • composition A5 according to the invention dispensed by means of the aerosol device makes it possible to obtain a uniform, firm and creamy foam which holds well in the hand and is easily and uniformly applied to the entire head of hair.
  • This composition A5 also affords good detergency properties in addition to a conditioning effect on the hair thus treated.
  • Formulations H, I, J and K according to the invention below were prepared from the ingredients whose contents are indicated in the table below (as weight percentage of active material).
  • compositions according to the present invention are prepared beforehand from the ingredients indicated in Table 7 above before introducing the propellants (i.e. the isobutane/propane/butane mixture).
  • the turbidity and particle size measurements of the single-phase formulation juices H, I, J and K were performed before introducing the propellants and pressurizing the compositions.
  • the turbidity was measured using a UV-Vis Cary 100 model UV spectrophotometer sold by the company Agilent.
  • the number-average size of the oil drops in the formulation juices A1 and A2 was determined via the quasi-elastic light scattering method using a Zetasizer Nona ZS machine from Malvern Instruments. c. Results
  • compositions H, I, J and K were then packaged in transparent PET aerosol devices equipped with a DMPR229 dispenser and a 2x0.51 mm GI valve, and pressurized.
  • the pressurized compositions H, I, J and K are of single-phase appearance and transparent.
  • compositions H, I, J and K are stable over time. In particular, after two months of storage at room temperature (25°C), the appearance of these formulations has not changed.
  • Example 5 a Preparation of the formulations Formulations A6 and A7 according to the invention below were prepared from the ingredients whose contents are indicated in the table below (as weight percentage of active material).
  • compositions according to the present invention are prepared beforehand from the ingredients indicated in Table 8 above before introducing the propellants (i.e. the isobutane/propane/butane mixture).
  • the propellants i.e. the isobutane/propane/butane mixture.
  • the turbidity and particle size measurements of the single-phase formulation juices A6 and A7 were performed before introducing the propellants and pressurizing the compositions.
  • compositions A6 and A7 thus obtained were then packaged in transparent PET aerosol devices equipped with a DMPR229 dispenser and a 2x0.51 mm GI valve, and pressurized.
  • the pressurized compositions A6 and A7 are of single-phase appearance and transparent. Moreover, the single-phase appearance and the transparency of compositions
  • A6 and A7 are stable over time. In particular, after two months of storage at room temperature (25°C), the appearance of these formulations has not changed.

Abstract

La présente invention concerne une composition d'aspect monophasique comprenant une combinaison d'un tensioactif anionique et d'un tensioactif amphotère ou zwitterionique, en présence d'une substance grasse ayant un point de fusion inférieur ou égal à 35 °C et d'un gaz propulseur. L'invention concerne également un dispositif aérosol contenant ladite composition, ainsi qu'une méthode de traitement cosmétique de matières kératiniques, en particulier de matières kératiniques humaines telles que la peau et les cheveux, à l'aide de ladite composition.
PCT/EP2022/068126 2021-06-30 2022-06-30 Composition d'aspect monophasique comprenant un tensioactif anionique et un tensioactif amphotère WO2023275283A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107093A FR3124717B1 (fr) 2021-06-30 2021-06-30 Composition d’apparence monophasique comprenant un tensioactif anionique et un tensioactif amphotère
FRFR2107093 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023275283A1 true WO2023275283A1 (fr) 2023-01-05

Family

ID=77711023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/068126 WO2023275283A1 (fr) 2021-06-30 2022-06-30 Composition d'aspect monophasique comprenant un tensioactif anionique et un tensioactif amphotère

Country Status (2)

Country Link
FR (1) FR3124717B1 (fr)
WO (1) WO2023275283A1 (fr)

Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047398A (en) 1930-06-26 1936-07-14 Ig Farbenindustrie Ag Artificial resins and process of making them
US2102113A (en) 1934-10-24 1937-12-14 Djordjevitch Yesdimir Carburetor
US2723248A (en) 1954-10-01 1955-11-08 Gen Aniline & Film Corp Film-forming compositions
FR1222944A (fr) 1958-04-15 1960-06-14 Hoechst Ag Polymères greffés et leur procédé de préparation
GB839805A (en) 1957-06-10 1960-06-29 Monsanto Chemicals Sprayable compositions
FR1400366A (fr) 1963-05-15 1965-05-28 Oreal Nouveaux composés pouvant être utilisés en particulier pour le traitement des cheveux
FR1564110A (fr) 1967-03-23 1969-04-18
FR1580545A (fr) 1967-07-28 1969-09-05
US3589578A (en) 1968-01-20 1971-06-29 Monforts Fa A Tension-relieving device for stretchable sheet material
FR2077143A5 (fr) 1970-01-30 1971-10-15 Gaf Corp
US3734874A (en) 1970-02-27 1973-05-22 Eastman Kodak Co Polyesters and polyesteramides containing ether groups and sulfonate groups in the form of a metallic salt
US3779993A (en) 1970-02-27 1973-12-18 Eastman Kodak Co Polyesters and polyesteramides containing ether groups and sulfonate groups in the form of a metallic salt
DE2330956A1 (de) 1972-06-20 1974-01-10 Oreal Kationische gepfropfte und vernetzte mischpolymerisate, verfahren zu ihrer herstellung und ihre verwendung in kosmetischen zubereitungen
FR2198719A1 (fr) 1972-09-11 1974-04-05 Hobbs R Ltd
US3836537A (en) 1970-10-07 1974-09-17 Minnesota Mining & Mfg Zwitterionic polymer hairsetting compositions and method of using same
FR2265782A1 (fr) 1974-04-01 1975-10-24 Oreal
FR2265781A1 (fr) 1974-04-01 1975-10-24 Oreal
US4031307A (en) 1976-05-03 1977-06-21 Celanese Corporation Cationic polygalactomannan compositions
FR2350384A1 (fr) 1976-05-06 1977-12-02 Berger Jenson & Nicholson Ltd Produits de revetement comprenant un latex aqueux d'un liant resineux
FR2357241A2 (fr) 1976-07-08 1978-02-03 Oreal Nouvelle composition cosmetique a base de copolymeres anhydrides mono-esterifies ou mono-amidifies, copolymeres nouveaux et leur procede de preparation
LU75370A1 (fr) 1976-07-12 1978-02-08
LU75371A1 (fr) 1976-07-12 1978-02-08
US4119680A (en) 1976-08-23 1978-10-10 Eastman Kodak Company Copolyesters as improved binders and finishes for polyester-containing fabrics
US4128631A (en) 1977-02-16 1978-12-05 General Mills Chemicals, Inc. Method of imparting lubricity to keratinous substrates and mucous membranes
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
FR2393573A1 (fr) 1977-06-10 1979-01-05 Gaf Corp Preparations capillaires contenant un copolymere de vinylpyrrolidone
US4185087A (en) 1977-12-28 1980-01-22 Union Carbide Corporation Hair conditioning compositions containing dialkylamino hydroxy organosilicon compounds and their derivatives
FR2439798A1 (fr) 1978-10-27 1980-05-23 Oreal Nouveaux copolymeres utilisables en cosmetique, notamment dans des laques et lotions de mises en plis
US4300580A (en) 1977-01-07 1981-11-17 Eastman Kodak Company Hair grooming method using linear polyesters
EP0080976A1 (fr) 1981-11-30 1983-06-08 Ciba-Geigy Ag Mélanges des sels polymères acryliques d'ammonium quaternaire, de sels mono- ou oligomères d'ammonium quaternaire et de tensioactifs, leur préparation et leur utilisation dans des compositions cosmétiques
US4693935A (en) 1986-05-19 1987-09-15 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer pressure sensitive adhesive composition and sheet materials coated therewith
US4728571A (en) 1985-07-19 1988-03-01 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer release coating sheets and adhesive tapes
US4972037A (en) 1989-08-07 1990-11-20 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer topical binder composition with novel fluorochemical comonomer and method of coating therewith
US4973656A (en) 1988-10-14 1990-11-27 Eastman Kodak Company Water-dissipatable polyester resins and coatings prepared therefrom
EP0412704A2 (fr) 1989-08-07 1991-02-13 The Procter & Gamble Company Compositions pour traiter et fixer la chevelure
EP0412707A1 (fr) 1989-08-07 1991-02-13 The Procter & Gamble Company Compositions pour le conditionnement et la mise en forme des cheveux
EP0530974A1 (fr) 1991-08-05 1993-03-10 Unilever Plc Compositions pour le soin des cheveux
WO1993023009A1 (fr) 1992-05-12 1993-11-25 Minnesota Mining And Manufacturing Company Polymeres utilises dans des compositions cosmetiques et des produits de soins
EP0582152A2 (fr) 1992-07-28 1994-02-09 Mitsubishi Chemical Corporation Composition cosmétique pour les cheveux
WO1994003510A1 (fr) 1992-07-29 1994-02-17 Basf Aktiengesellschaft Utilisation de polyurethannes solubles dans l'eau ou dispersibles dans l'eau comme adjuvants dans des preparations cosmetiques et pharmaceutiques, et polyurethannes renfermant des polyolpolylactiques incorpores par polymerisation
EP0619111A1 (fr) 1993-04-06 1994-10-12 National Starch and Chemical Investment Holding Corporation Utilisation des polyuréthanes avec des groupes carboxyliques fonctionelle comme agent fixateur des cheveux
WO1995000578A1 (fr) 1993-06-24 1995-01-05 The Procter & Gamble Company Copolymeres de polyolefine modifies au siloxane
EP0637600A1 (fr) 1993-08-04 1995-02-08 L'oreal Nouveaux polyester-polyuréthannes, leur procédé de préparation, pseudo-latex réalisés à partir desdits polyester-polyuréthannes et leur utilisation dans des compositions cosmétiques
EP0640105A1 (fr) 1992-05-15 1995-03-01 The Procter & Gamble Company Agents adhesifs contenant un polymere a greffe polysiloxane et leur compositions cosmetiques
EP0648485A1 (fr) 1993-10-15 1995-04-19 L'oreal Vernis à ongles aqueux, contenant des particules de polyester-polyuréthanne anionique à l'état dispersé
WO1995018191A1 (fr) 1993-12-29 1995-07-06 Eastman Chemical Company Composition d'adhesif dispersible dans l'eau et son procede de fabrication
US5523081A (en) * 1993-08-18 1996-06-04 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Shaving composition
EP0751162A1 (fr) 1995-06-27 1997-01-02 L'oreal Utilisation dans et pour la fabrication de compositions cosmétiques ou dermatologiques de polycondensats séquencés polyuréthanes et/ou polyurées à greffons siliconés
WO1997008261A1 (fr) 1995-08-28 1997-03-06 Eastman Chemical Company Compositions adhesives dispersables dans l'eau
WO1997020899A1 (fr) 1995-12-08 1997-06-12 Eastman Chemical Company Compositions de polyester ramifiees reticulables par rayonnement, qui sont dispersables dans l'eau, et procedes correspondants
FR2743297A1 (fr) 1996-01-05 1997-07-11 Oreal Composition cosmetiques a base de polycondensats ionisables multisequences polysiloxane/polyurethane et/ou polyuree en solution et utilisation
US5660816A (en) 1993-06-25 1997-08-26 Eastman Chemical Company Clear hair spray formulations containing a linear sulfopolyester
US5662893A (en) 1993-06-25 1997-09-02 Eastman Chemical Company Clear pump hair spray formulations containing a linear sulfopolyester in a hydroalcoholic liquid vehicle
US5674479A (en) 1993-06-25 1997-10-07 Eastman Chemical Company Clear aerosol hair spray formulations containing a linear sulfopolyester in a hydroalcoholic liquid vehicle
EP0820755A2 (fr) * 1996-07-24 1998-01-28 Imaginative Research Associates, Inc. Des solutions et des gels transparents moussant instantanément
US6096702A (en) * 1998-10-01 2000-08-01 Imaginative Research Associates, Inc. Post foaming clear gels and solutions
US20010006621A1 (en) * 1997-12-19 2001-07-05 Serge Aime Patrick Coupe Mousse-forming shampoo compositions
US6333362B1 (en) * 1996-03-07 2001-12-25 L'oreal Pressurized device comprising an ultrafine foaming oil-in-water emulsion and use of this emulsion in cleansing and care of skin
CA2914249A1 (fr) * 2013-07-10 2015-01-15 Eveready Battery Company, Inc. Produit emballe de consommation pour compositions visqueuses de soin personnel ayant un systeme de distribution a deux propulseurs
US20170165164A1 (en) * 2015-12-15 2017-06-15 The Procter & Gamble Company Deep cleansing hair care composition
US20190183777A1 (en) * 2017-12-20 2019-06-20 The Procter & Gamble Company Low viscosity, compact shampoo composition containing silicone polymers
WO2020127759A1 (fr) * 2018-12-20 2020-06-25 L'oreal Dispositif de mousse aérosol contenant une composition riche en corps gras

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047398A (en) 1930-06-26 1936-07-14 Ig Farbenindustrie Ag Artificial resins and process of making them
US2102113A (en) 1934-10-24 1937-12-14 Djordjevitch Yesdimir Carburetor
US2723248A (en) 1954-10-01 1955-11-08 Gen Aniline & Film Corp Film-forming compositions
GB839805A (en) 1957-06-10 1960-06-29 Monsanto Chemicals Sprayable compositions
FR1222944A (fr) 1958-04-15 1960-06-14 Hoechst Ag Polymères greffés et leur procédé de préparation
FR1400366A (fr) 1963-05-15 1965-05-28 Oreal Nouveaux composés pouvant être utilisés en particulier pour le traitement des cheveux
FR1564110A (fr) 1967-03-23 1969-04-18
FR1580545A (fr) 1967-07-28 1969-09-05
US3589578A (en) 1968-01-20 1971-06-29 Monforts Fa A Tension-relieving device for stretchable sheet material
FR2077143A5 (fr) 1970-01-30 1971-10-15 Gaf Corp
US3734874A (en) 1970-02-27 1973-05-22 Eastman Kodak Co Polyesters and polyesteramides containing ether groups and sulfonate groups in the form of a metallic salt
US3779993A (en) 1970-02-27 1973-12-18 Eastman Kodak Co Polyesters and polyesteramides containing ether groups and sulfonate groups in the form of a metallic salt
US3836537A (en) 1970-10-07 1974-09-17 Minnesota Mining & Mfg Zwitterionic polymer hairsetting compositions and method of using same
DE2330956A1 (de) 1972-06-20 1974-01-10 Oreal Kationische gepfropfte und vernetzte mischpolymerisate, verfahren zu ihrer herstellung und ihre verwendung in kosmetischen zubereitungen
FR2198719A1 (fr) 1972-09-11 1974-04-05 Hobbs R Ltd
FR2265781A1 (fr) 1974-04-01 1975-10-24 Oreal
FR2265782A1 (fr) 1974-04-01 1975-10-24 Oreal
US4031307A (en) 1976-05-03 1977-06-21 Celanese Corporation Cationic polygalactomannan compositions
FR2350384A1 (fr) 1976-05-06 1977-12-02 Berger Jenson & Nicholson Ltd Produits de revetement comprenant un latex aqueux d'un liant resineux
FR2357241A2 (fr) 1976-07-08 1978-02-03 Oreal Nouvelle composition cosmetique a base de copolymeres anhydrides mono-esterifies ou mono-amidifies, copolymeres nouveaux et leur procede de preparation
LU75370A1 (fr) 1976-07-12 1978-02-08
LU75371A1 (fr) 1976-07-12 1978-02-08
US4119680A (en) 1976-08-23 1978-10-10 Eastman Kodak Company Copolyesters as improved binders and finishes for polyester-containing fabrics
US4300580A (en) 1977-01-07 1981-11-17 Eastman Kodak Company Hair grooming method using linear polyesters
US4128631A (en) 1977-02-16 1978-12-05 General Mills Chemicals, Inc. Method of imparting lubricity to keratinous substrates and mucous membranes
FR2393573A1 (fr) 1977-06-10 1979-01-05 Gaf Corp Preparations capillaires contenant un copolymere de vinylpyrrolidone
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4185087A (en) 1977-12-28 1980-01-22 Union Carbide Corporation Hair conditioning compositions containing dialkylamino hydroxy organosilicon compounds and their derivatives
FR2439798A1 (fr) 1978-10-27 1980-05-23 Oreal Nouveaux copolymeres utilisables en cosmetique, notamment dans des laques et lotions de mises en plis
EP0080976A1 (fr) 1981-11-30 1983-06-08 Ciba-Geigy Ag Mélanges des sels polymères acryliques d'ammonium quaternaire, de sels mono- ou oligomères d'ammonium quaternaire et de tensioactifs, leur préparation et leur utilisation dans des compositions cosmétiques
US4728571A (en) 1985-07-19 1988-03-01 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer release coating sheets and adhesive tapes
US4693935A (en) 1986-05-19 1987-09-15 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer pressure sensitive adhesive composition and sheet materials coated therewith
US4973656A (en) 1988-10-14 1990-11-27 Eastman Kodak Company Water-dissipatable polyester resins and coatings prepared therefrom
EP0412704A2 (fr) 1989-08-07 1991-02-13 The Procter & Gamble Company Compositions pour traiter et fixer la chevelure
EP0412707A1 (fr) 1989-08-07 1991-02-13 The Procter & Gamble Company Compositions pour le conditionnement et la mise en forme des cheveux
US4972037A (en) 1989-08-07 1990-11-20 Minnesota Mining And Manufacturing Company Polysiloxane-grafted copolymer topical binder composition with novel fluorochemical comonomer and method of coating therewith
EP0530974A1 (fr) 1991-08-05 1993-03-10 Unilever Plc Compositions pour le soin des cheveux
WO1993023009A1 (fr) 1992-05-12 1993-11-25 Minnesota Mining And Manufacturing Company Polymeres utilises dans des compositions cosmetiques et des produits de soins
EP0640105A1 (fr) 1992-05-15 1995-03-01 The Procter & Gamble Company Agents adhesifs contenant un polymere a greffe polysiloxane et leur compositions cosmetiques
EP0582152A2 (fr) 1992-07-28 1994-02-09 Mitsubishi Chemical Corporation Composition cosmétique pour les cheveux
EP0656021A1 (fr) 1992-07-29 1995-06-07 Basf Ag Utilisation de polyurethannes solubles dans l'eau ou dispersibles dans l'eau comme adjuvants dans des preparations cosmetiques et pharmaceutiques, et polyurethannes renfermant des polyolpolylactiques incorpores par polymerisation.
WO1994003510A1 (fr) 1992-07-29 1994-02-17 Basf Aktiengesellschaft Utilisation de polyurethannes solubles dans l'eau ou dispersibles dans l'eau comme adjuvants dans des preparations cosmetiques et pharmaceutiques, et polyurethannes renfermant des polyolpolylactiques incorpores par polymerisation
EP0619111A1 (fr) 1993-04-06 1994-10-12 National Starch and Chemical Investment Holding Corporation Utilisation des polyuréthanes avec des groupes carboxyliques fonctionelle comme agent fixateur des cheveux
WO1995000578A1 (fr) 1993-06-24 1995-01-05 The Procter & Gamble Company Copolymeres de polyolefine modifies au siloxane
US5674479A (en) 1993-06-25 1997-10-07 Eastman Chemical Company Clear aerosol hair spray formulations containing a linear sulfopolyester in a hydroalcoholic liquid vehicle
US5660816A (en) 1993-06-25 1997-08-26 Eastman Chemical Company Clear hair spray formulations containing a linear sulfopolyester
US5662893A (en) 1993-06-25 1997-09-02 Eastman Chemical Company Clear pump hair spray formulations containing a linear sulfopolyester in a hydroalcoholic liquid vehicle
EP0637600A1 (fr) 1993-08-04 1995-02-08 L'oreal Nouveaux polyester-polyuréthannes, leur procédé de préparation, pseudo-latex réalisés à partir desdits polyester-polyuréthannes et leur utilisation dans des compositions cosmétiques
US5523081A (en) * 1993-08-18 1996-06-04 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Shaving composition
EP0648485A1 (fr) 1993-10-15 1995-04-19 L'oreal Vernis à ongles aqueux, contenant des particules de polyester-polyuréthanne anionique à l'état dispersé
WO1995018191A1 (fr) 1993-12-29 1995-07-06 Eastman Chemical Company Composition d'adhesif dispersible dans l'eau et son procede de fabrication
EP0751162A1 (fr) 1995-06-27 1997-01-02 L'oreal Utilisation dans et pour la fabrication de compositions cosmétiques ou dermatologiques de polycondensats séquencés polyuréthanes et/ou polyurées à greffons siliconés
WO1997008261A1 (fr) 1995-08-28 1997-03-06 Eastman Chemical Company Compositions adhesives dispersables dans l'eau
WO1997020899A1 (fr) 1995-12-08 1997-06-12 Eastman Chemical Company Compositions de polyester ramifiees reticulables par rayonnement, qui sont dispersables dans l'eau, et procedes correspondants
FR2743297A1 (fr) 1996-01-05 1997-07-11 Oreal Composition cosmetiques a base de polycondensats ionisables multisequences polysiloxane/polyurethane et/ou polyuree en solution et utilisation
US6333362B1 (en) * 1996-03-07 2001-12-25 L'oreal Pressurized device comprising an ultrafine foaming oil-in-water emulsion and use of this emulsion in cleansing and care of skin
EP0820755A2 (fr) * 1996-07-24 1998-01-28 Imaginative Research Associates, Inc. Des solutions et des gels transparents moussant instantanément
US6106817A (en) * 1996-07-24 2000-08-22 Imaginative Research Associates, Inc. Instant lathering clear solutions and gels
US20010006621A1 (en) * 1997-12-19 2001-07-05 Serge Aime Patrick Coupe Mousse-forming shampoo compositions
US6096702A (en) * 1998-10-01 2000-08-01 Imaginative Research Associates, Inc. Post foaming clear gels and solutions
CA2914249A1 (fr) * 2013-07-10 2015-01-15 Eveready Battery Company, Inc. Produit emballe de consommation pour compositions visqueuses de soin personnel ayant un systeme de distribution a deux propulseurs
US20170165164A1 (en) * 2015-12-15 2017-06-15 The Procter & Gamble Company Deep cleansing hair care composition
US20190183777A1 (en) * 2017-12-20 2019-06-20 The Procter & Gamble Company Low viscosity, compact shampoo composition containing silicone polymers
WO2020127759A1 (fr) * 2018-12-20 2020-06-25 L'oreal Dispositif de mousse aérosol contenant une composition riche en corps gras

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Cosmetics and Toiletries", vol. 91, TODD & BYERS, article "Volatile Silicone Fluids for Cosmetics", pages: 27 - 32
"CTFA dictionary", 1993
"Walter Noll's Chemistry and Technology of Silicones", 1968, ACADEMIC PRESS
M.R. PORTER: "Handbook of Surfactants", 1991, BLACKIE & SON, pages: 116 - 178

Also Published As

Publication number Publication date
FR3124717B1 (fr) 2024-03-01
FR3124717A1 (fr) 2023-01-06

Similar Documents

Publication Publication Date Title
US10524999B2 (en) Composition comprising a combination of particular alkoxysilanes and a fatty substance
EP2713997B1 (fr) Procédé de traitement de fibres de kératine non épaissies
EP2651371B1 (fr) Dispositif aérosol en forme d'éventail pour coiffer les cheveux
EP2613759A2 (fr) Composition cosmétique comprenant un polymère fixant et un épaississant spécifique et utilisations en coiffure
FR2961103A1 (fr) Composition cosmetique comprenant, en milieu alcoolique, un polymere anionique, un polymere amphotere, un corps gras non silicone et une silicone.
US20100186764A1 (en) Cosmetic composition comprising at least one branched sulphonic polyester and at least one (meth)acrylic thickener and methods of using in hair styling
EP3897546A1 (fr) Dispositif aérosol contenant une composition cosmétique comprenant un tensioactif anionique, un alcool gras et un gaz comprimé
WO2020127891A1 (fr) Composition cosmétique capillaire sous la forme d'une nanoémulsion comprenant un tensioactif non ionique particulier et un agent propulseur
US20150118175A1 (en) Cosmetic composition comprising a fatty-chain silane and a particular fixing polymer
WO2013160440A2 (fr) Procédé pour le traitement des cheveux avec une composition cosmétique sous pression contenant un silane à chaîne grasse
WO2023275283A1 (fr) Composition d'aspect monophasique comprenant un tensioactif anionique et un tensioactif amphotère
ES2324543T3 (es) Composicion cosmetica que comprende un poliester sulfonico lineal y una goma guar modificada.
WO2023275284A1 (fr) Composition sous forme d'émulsion comprenant un tensioactif amphotère, un corps gras et un agent propulseur
WO2023275282A1 (fr) Composition d'aspect monophasique comprenant un tensioactif non ionique et un tensioactif amphotère
WO2023275286A1 (fr) Composition sous forme d'émulsion comprenant un tensioactif non ionique particulier
WO2011117403A2 (fr) Composition comprenant un copolymère de silicone, un tensioactif siliconé et un pdms non volatile, procédé de traitement cosmétique et application
FR3124729A1 (fr) Composition d’apparence monophasique comprenant l’association de deux tensioactifs non ioniques différents l’un de l’autre, dont un est siliconé
FR3124718A1 (fr) Composition sous forme d’émulsion comprenant un tensioactif anionique sulfaté, un corps gras et un agent propulseur
FR3124726A1 (fr) Composition sous forme d’émulsion comprenant un alkyl(poly)glycoside, un corps gras et un agent propulseur
WO2011157796A1 (fr) Composition cosmétiques comprenant un polyester sulfonique branché et un épaississant particulier et utilisations en coiffure
EP3393438A1 (fr) Composition comprenant un copolymère vinylformamide/vinylamine, un polymère de fixation et une combinaison particulière de tensioactifs
WO2020002522A1 (fr) Procédé de mise en forme des cheveux comprenant une étape d'application d'une composition comprenant une lactone, une étape de mise en forme et une longue durée pendant laquelle le produit est laissé sur les cheveux
EP3393439A1 (fr) Composition pulvérisable sous forme de mousse comprenant un copolymère vinylformamide/vinylamine, un tensioactif particulier et un propulseur d'aérosol
FR2989881A1 (fr) Composition cosmetique comprenant un silane a chaine grasse et un polymere fixant particulier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE